]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx.c
c9c46e63f744ed75d15fb48941e5a2fffc8747c3
[linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65         X86_FEATURE_MATCH(X86_FEATURE_VMX),
66         {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81                         enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98  * If nested=1, nested virtualization is supported, i.e., guests may use
99  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100  * use VMX instructions.
101  */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
111
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
113 static int __read_mostly cpu_preemption_timer_multi;
114 static bool __read_mostly enable_preemption_timer = 1;
115 #ifdef CONFIG_X86_64
116 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117 #endif
118
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON                                            \
122         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS                                      \
124         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
125          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
126
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
134 /*
135  * Hyper-V requires all of these, so mark them as supported even though
136  * they are just treated the same as all-context.
137  */
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
139         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
140         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
141         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
142         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146  * ple_gap:    upper bound on the amount of time between two successive
147  *             executions of PAUSE in a loop. Also indicate if ple enabled.
148  *             According to test, this time is usually smaller than 128 cycles.
149  * ple_window: upper bound on the amount of time a guest is allowed to execute
150  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
151  *             less than 2^12 cycles
152  * Time is measured based on a counter that runs at the same rate as the TSC,
153  * refer SDM volume 3b section 21.6.13 & 22.1.3.
154  */
155 #define KVM_VMX_DEFAULT_PLE_GAP           128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
160                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
185
186 struct vmcs {
187         u32 revision_id;
188         u32 abort;
189         char data[0];
190 };
191
192 /*
193  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195  * loaded on this CPU (so we can clear them if the CPU goes down).
196  */
197 struct loaded_vmcs {
198         struct vmcs *vmcs;
199         struct vmcs *shadow_vmcs;
200         int cpu;
201         int launched;
202         struct list_head loaded_vmcss_on_cpu_link;
203 };
204
205 struct shared_msr_entry {
206         unsigned index;
207         u64 data;
208         u64 mask;
209 };
210
211 /*
212  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
213  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
214  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
215  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
216  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
217  * More than one of these structures may exist, if L1 runs multiple L2 guests.
218  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
219  * underlying hardware which will be used to run L2.
220  * This structure is packed to ensure that its layout is identical across
221  * machines (necessary for live migration).
222  * If there are changes in this struct, VMCS12_REVISION must be changed.
223  */
224 typedef u64 natural_width;
225 struct __packed vmcs12 {
226         /* According to the Intel spec, a VMCS region must start with the
227          * following two fields. Then follow implementation-specific data.
228          */
229         u32 revision_id;
230         u32 abort;
231
232         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
233         u32 padding[7]; /* room for future expansion */
234
235         u64 io_bitmap_a;
236         u64 io_bitmap_b;
237         u64 msr_bitmap;
238         u64 vm_exit_msr_store_addr;
239         u64 vm_exit_msr_load_addr;
240         u64 vm_entry_msr_load_addr;
241         u64 tsc_offset;
242         u64 virtual_apic_page_addr;
243         u64 apic_access_addr;
244         u64 posted_intr_desc_addr;
245         u64 ept_pointer;
246         u64 eoi_exit_bitmap0;
247         u64 eoi_exit_bitmap1;
248         u64 eoi_exit_bitmap2;
249         u64 eoi_exit_bitmap3;
250         u64 xss_exit_bitmap;
251         u64 guest_physical_address;
252         u64 vmcs_link_pointer;
253         u64 pml_address;
254         u64 guest_ia32_debugctl;
255         u64 guest_ia32_pat;
256         u64 guest_ia32_efer;
257         u64 guest_ia32_perf_global_ctrl;
258         u64 guest_pdptr0;
259         u64 guest_pdptr1;
260         u64 guest_pdptr2;
261         u64 guest_pdptr3;
262         u64 guest_bndcfgs;
263         u64 host_ia32_pat;
264         u64 host_ia32_efer;
265         u64 host_ia32_perf_global_ctrl;
266         u64 padding64[8]; /* room for future expansion */
267         /*
268          * To allow migration of L1 (complete with its L2 guests) between
269          * machines of different natural widths (32 or 64 bit), we cannot have
270          * unsigned long fields with no explict size. We use u64 (aliased
271          * natural_width) instead. Luckily, x86 is little-endian.
272          */
273         natural_width cr0_guest_host_mask;
274         natural_width cr4_guest_host_mask;
275         natural_width cr0_read_shadow;
276         natural_width cr4_read_shadow;
277         natural_width cr3_target_value0;
278         natural_width cr3_target_value1;
279         natural_width cr3_target_value2;
280         natural_width cr3_target_value3;
281         natural_width exit_qualification;
282         natural_width guest_linear_address;
283         natural_width guest_cr0;
284         natural_width guest_cr3;
285         natural_width guest_cr4;
286         natural_width guest_es_base;
287         natural_width guest_cs_base;
288         natural_width guest_ss_base;
289         natural_width guest_ds_base;
290         natural_width guest_fs_base;
291         natural_width guest_gs_base;
292         natural_width guest_ldtr_base;
293         natural_width guest_tr_base;
294         natural_width guest_gdtr_base;
295         natural_width guest_idtr_base;
296         natural_width guest_dr7;
297         natural_width guest_rsp;
298         natural_width guest_rip;
299         natural_width guest_rflags;
300         natural_width guest_pending_dbg_exceptions;
301         natural_width guest_sysenter_esp;
302         natural_width guest_sysenter_eip;
303         natural_width host_cr0;
304         natural_width host_cr3;
305         natural_width host_cr4;
306         natural_width host_fs_base;
307         natural_width host_gs_base;
308         natural_width host_tr_base;
309         natural_width host_gdtr_base;
310         natural_width host_idtr_base;
311         natural_width host_ia32_sysenter_esp;
312         natural_width host_ia32_sysenter_eip;
313         natural_width host_rsp;
314         natural_width host_rip;
315         natural_width paddingl[8]; /* room for future expansion */
316         u32 pin_based_vm_exec_control;
317         u32 cpu_based_vm_exec_control;
318         u32 exception_bitmap;
319         u32 page_fault_error_code_mask;
320         u32 page_fault_error_code_match;
321         u32 cr3_target_count;
322         u32 vm_exit_controls;
323         u32 vm_exit_msr_store_count;
324         u32 vm_exit_msr_load_count;
325         u32 vm_entry_controls;
326         u32 vm_entry_msr_load_count;
327         u32 vm_entry_intr_info_field;
328         u32 vm_entry_exception_error_code;
329         u32 vm_entry_instruction_len;
330         u32 tpr_threshold;
331         u32 secondary_vm_exec_control;
332         u32 vm_instruction_error;
333         u32 vm_exit_reason;
334         u32 vm_exit_intr_info;
335         u32 vm_exit_intr_error_code;
336         u32 idt_vectoring_info_field;
337         u32 idt_vectoring_error_code;
338         u32 vm_exit_instruction_len;
339         u32 vmx_instruction_info;
340         u32 guest_es_limit;
341         u32 guest_cs_limit;
342         u32 guest_ss_limit;
343         u32 guest_ds_limit;
344         u32 guest_fs_limit;
345         u32 guest_gs_limit;
346         u32 guest_ldtr_limit;
347         u32 guest_tr_limit;
348         u32 guest_gdtr_limit;
349         u32 guest_idtr_limit;
350         u32 guest_es_ar_bytes;
351         u32 guest_cs_ar_bytes;
352         u32 guest_ss_ar_bytes;
353         u32 guest_ds_ar_bytes;
354         u32 guest_fs_ar_bytes;
355         u32 guest_gs_ar_bytes;
356         u32 guest_ldtr_ar_bytes;
357         u32 guest_tr_ar_bytes;
358         u32 guest_interruptibility_info;
359         u32 guest_activity_state;
360         u32 guest_sysenter_cs;
361         u32 host_ia32_sysenter_cs;
362         u32 vmx_preemption_timer_value;
363         u32 padding32[7]; /* room for future expansion */
364         u16 virtual_processor_id;
365         u16 posted_intr_nv;
366         u16 guest_es_selector;
367         u16 guest_cs_selector;
368         u16 guest_ss_selector;
369         u16 guest_ds_selector;
370         u16 guest_fs_selector;
371         u16 guest_gs_selector;
372         u16 guest_ldtr_selector;
373         u16 guest_tr_selector;
374         u16 guest_intr_status;
375         u16 guest_pml_index;
376         u16 host_es_selector;
377         u16 host_cs_selector;
378         u16 host_ss_selector;
379         u16 host_ds_selector;
380         u16 host_fs_selector;
381         u16 host_gs_selector;
382         u16 host_tr_selector;
383 };
384
385 /*
386  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
387  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
388  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
389  */
390 #define VMCS12_REVISION 0x11e57ed0
391
392 /*
393  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
394  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
395  * current implementation, 4K are reserved to avoid future complications.
396  */
397 #define VMCS12_SIZE 0x1000
398
399 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
400 struct vmcs02_list {
401         struct list_head list;
402         gpa_t vmptr;
403         struct loaded_vmcs vmcs02;
404 };
405
406 /*
407  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
408  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
409  */
410 struct nested_vmx {
411         /* Has the level1 guest done vmxon? */
412         bool vmxon;
413         gpa_t vmxon_ptr;
414         bool pml_full;
415
416         /* The guest-physical address of the current VMCS L1 keeps for L2 */
417         gpa_t current_vmptr;
418         /* The host-usable pointer to the above */
419         struct page *current_vmcs12_page;
420         struct vmcs12 *current_vmcs12;
421         /*
422          * Cache of the guest's VMCS, existing outside of guest memory.
423          * Loaded from guest memory during VMPTRLD. Flushed to guest
424          * memory during VMXOFF, VMCLEAR, VMPTRLD.
425          */
426         struct vmcs12 *cached_vmcs12;
427         /*
428          * Indicates if the shadow vmcs must be updated with the
429          * data hold by vmcs12
430          */
431         bool sync_shadow_vmcs;
432
433         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
434         struct list_head vmcs02_pool;
435         int vmcs02_num;
436         bool change_vmcs01_virtual_x2apic_mode;
437         /* L2 must run next, and mustn't decide to exit to L1. */
438         bool nested_run_pending;
439         /*
440          * Guest pages referred to in vmcs02 with host-physical pointers, so
441          * we must keep them pinned while L2 runs.
442          */
443         struct page *apic_access_page;
444         struct page *virtual_apic_page;
445         struct page *pi_desc_page;
446         struct pi_desc *pi_desc;
447         bool pi_pending;
448         u16 posted_intr_nv;
449
450         unsigned long *msr_bitmap;
451
452         struct hrtimer preemption_timer;
453         bool preemption_timer_expired;
454
455         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
456         u64 vmcs01_debugctl;
457
458         u16 vpid02;
459         u16 last_vpid;
460
461         /*
462          * We only store the "true" versions of the VMX capability MSRs. We
463          * generate the "non-true" versions by setting the must-be-1 bits
464          * according to the SDM.
465          */
466         u32 nested_vmx_procbased_ctls_low;
467         u32 nested_vmx_procbased_ctls_high;
468         u32 nested_vmx_secondary_ctls_low;
469         u32 nested_vmx_secondary_ctls_high;
470         u32 nested_vmx_pinbased_ctls_low;
471         u32 nested_vmx_pinbased_ctls_high;
472         u32 nested_vmx_exit_ctls_low;
473         u32 nested_vmx_exit_ctls_high;
474         u32 nested_vmx_entry_ctls_low;
475         u32 nested_vmx_entry_ctls_high;
476         u32 nested_vmx_misc_low;
477         u32 nested_vmx_misc_high;
478         u32 nested_vmx_ept_caps;
479         u32 nested_vmx_vpid_caps;
480         u64 nested_vmx_basic;
481         u64 nested_vmx_cr0_fixed0;
482         u64 nested_vmx_cr0_fixed1;
483         u64 nested_vmx_cr4_fixed0;
484         u64 nested_vmx_cr4_fixed1;
485         u64 nested_vmx_vmcs_enum;
486 };
487
488 #define POSTED_INTR_ON  0
489 #define POSTED_INTR_SN  1
490
491 /* Posted-Interrupt Descriptor */
492 struct pi_desc {
493         u32 pir[8];     /* Posted interrupt requested */
494         union {
495                 struct {
496                                 /* bit 256 - Outstanding Notification */
497                         u16     on      : 1,
498                                 /* bit 257 - Suppress Notification */
499                                 sn      : 1,
500                                 /* bit 271:258 - Reserved */
501                                 rsvd_1  : 14;
502                                 /* bit 279:272 - Notification Vector */
503                         u8      nv;
504                                 /* bit 287:280 - Reserved */
505                         u8      rsvd_2;
506                                 /* bit 319:288 - Notification Destination */
507                         u32     ndst;
508                 };
509                 u64 control;
510         };
511         u32 rsvd[6];
512 } __aligned(64);
513
514 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
515 {
516         return test_and_set_bit(POSTED_INTR_ON,
517                         (unsigned long *)&pi_desc->control);
518 }
519
520 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
521 {
522         return test_and_clear_bit(POSTED_INTR_ON,
523                         (unsigned long *)&pi_desc->control);
524 }
525
526 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
527 {
528         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
529 }
530
531 static inline void pi_clear_sn(struct pi_desc *pi_desc)
532 {
533         return clear_bit(POSTED_INTR_SN,
534                         (unsigned long *)&pi_desc->control);
535 }
536
537 static inline void pi_set_sn(struct pi_desc *pi_desc)
538 {
539         return set_bit(POSTED_INTR_SN,
540                         (unsigned long *)&pi_desc->control);
541 }
542
543 static inline void pi_clear_on(struct pi_desc *pi_desc)
544 {
545         clear_bit(POSTED_INTR_ON,
546                   (unsigned long *)&pi_desc->control);
547 }
548
549 static inline int pi_test_on(struct pi_desc *pi_desc)
550 {
551         return test_bit(POSTED_INTR_ON,
552                         (unsigned long *)&pi_desc->control);
553 }
554
555 static inline int pi_test_sn(struct pi_desc *pi_desc)
556 {
557         return test_bit(POSTED_INTR_SN,
558                         (unsigned long *)&pi_desc->control);
559 }
560
561 struct vcpu_vmx {
562         struct kvm_vcpu       vcpu;
563         unsigned long         host_rsp;
564         u8                    fail;
565         bool                  nmi_known_unmasked;
566         u32                   exit_intr_info;
567         u32                   idt_vectoring_info;
568         ulong                 rflags;
569         struct shared_msr_entry *guest_msrs;
570         int                   nmsrs;
571         int                   save_nmsrs;
572         unsigned long         host_idt_base;
573 #ifdef CONFIG_X86_64
574         u64                   msr_host_kernel_gs_base;
575         u64                   msr_guest_kernel_gs_base;
576 #endif
577         u32 vm_entry_controls_shadow;
578         u32 vm_exit_controls_shadow;
579         /*
580          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
581          * non-nested (L1) guest, it always points to vmcs01. For a nested
582          * guest (L2), it points to a different VMCS.
583          */
584         struct loaded_vmcs    vmcs01;
585         struct loaded_vmcs   *loaded_vmcs;
586         bool                  __launched; /* temporary, used in vmx_vcpu_run */
587         struct msr_autoload {
588                 unsigned nr;
589                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
590                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
591         } msr_autoload;
592         struct {
593                 int           loaded;
594                 u16           fs_sel, gs_sel, ldt_sel;
595 #ifdef CONFIG_X86_64
596                 u16           ds_sel, es_sel;
597 #endif
598                 int           gs_ldt_reload_needed;
599                 int           fs_reload_needed;
600                 u64           msr_host_bndcfgs;
601                 unsigned long vmcs_host_cr3;    /* May not match real cr3 */
602                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
603         } host_state;
604         struct {
605                 int vm86_active;
606                 ulong save_rflags;
607                 struct kvm_segment segs[8];
608         } rmode;
609         struct {
610                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
611                 struct kvm_save_segment {
612                         u16 selector;
613                         unsigned long base;
614                         u32 limit;
615                         u32 ar;
616                 } seg[8];
617         } segment_cache;
618         int vpid;
619         bool emulation_required;
620
621         u32 exit_reason;
622
623         /* Posted interrupt descriptor */
624         struct pi_desc pi_desc;
625
626         /* Support for a guest hypervisor (nested VMX) */
627         struct nested_vmx nested;
628
629         /* Dynamic PLE window. */
630         int ple_window;
631         bool ple_window_dirty;
632
633         /* Support for PML */
634 #define PML_ENTITY_NUM          512
635         struct page *pml_pg;
636
637         /* apic deadline value in host tsc */
638         u64 hv_deadline_tsc;
639
640         u64 current_tsc_ratio;
641
642         bool guest_pkru_valid;
643         u32 guest_pkru;
644         u32 host_pkru;
645
646         /*
647          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649          * in msr_ia32_feature_control_valid_bits.
650          */
651         u64 msr_ia32_feature_control;
652         u64 msr_ia32_feature_control_valid_bits;
653 };
654
655 enum segment_cache_field {
656         SEG_FIELD_SEL = 0,
657         SEG_FIELD_BASE = 1,
658         SEG_FIELD_LIMIT = 2,
659         SEG_FIELD_AR = 3,
660
661         SEG_FIELD_NR = 4
662 };
663
664 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665 {
666         return container_of(vcpu, struct vcpu_vmx, vcpu);
667 }
668
669 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670 {
671         return &(to_vmx(vcpu)->pi_desc);
672 }
673
674 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
676 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
677                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
679
680 static unsigned long shadow_read_only_fields[] = {
681         /*
682          * We do NOT shadow fields that are modified when L0
683          * traps and emulates any vmx instruction (e.g. VMPTRLD,
684          * VMXON...) executed by L1.
685          * For example, VM_INSTRUCTION_ERROR is read
686          * by L1 if a vmx instruction fails (part of the error path).
687          * Note the code assumes this logic. If for some reason
688          * we start shadowing these fields then we need to
689          * force a shadow sync when L0 emulates vmx instructions
690          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691          * by nested_vmx_failValid)
692          */
693         VM_EXIT_REASON,
694         VM_EXIT_INTR_INFO,
695         VM_EXIT_INSTRUCTION_LEN,
696         IDT_VECTORING_INFO_FIELD,
697         IDT_VECTORING_ERROR_CODE,
698         VM_EXIT_INTR_ERROR_CODE,
699         EXIT_QUALIFICATION,
700         GUEST_LINEAR_ADDRESS,
701         GUEST_PHYSICAL_ADDRESS
702 };
703 static int max_shadow_read_only_fields =
704         ARRAY_SIZE(shadow_read_only_fields);
705
706 static unsigned long shadow_read_write_fields[] = {
707         TPR_THRESHOLD,
708         GUEST_RIP,
709         GUEST_RSP,
710         GUEST_CR0,
711         GUEST_CR3,
712         GUEST_CR4,
713         GUEST_INTERRUPTIBILITY_INFO,
714         GUEST_RFLAGS,
715         GUEST_CS_SELECTOR,
716         GUEST_CS_AR_BYTES,
717         GUEST_CS_LIMIT,
718         GUEST_CS_BASE,
719         GUEST_ES_BASE,
720         GUEST_BNDCFGS,
721         CR0_GUEST_HOST_MASK,
722         CR0_READ_SHADOW,
723         CR4_READ_SHADOW,
724         TSC_OFFSET,
725         EXCEPTION_BITMAP,
726         CPU_BASED_VM_EXEC_CONTROL,
727         VM_ENTRY_EXCEPTION_ERROR_CODE,
728         VM_ENTRY_INTR_INFO_FIELD,
729         VM_ENTRY_INSTRUCTION_LEN,
730         VM_ENTRY_EXCEPTION_ERROR_CODE,
731         HOST_FS_BASE,
732         HOST_GS_BASE,
733         HOST_FS_SELECTOR,
734         HOST_GS_SELECTOR
735 };
736 static int max_shadow_read_write_fields =
737         ARRAY_SIZE(shadow_read_write_fields);
738
739 static const unsigned short vmcs_field_to_offset_table[] = {
740         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
741         FIELD(POSTED_INTR_NV, posted_intr_nv),
742         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
750         FIELD(GUEST_INTR_STATUS, guest_intr_status),
751         FIELD(GUEST_PML_INDEX, guest_pml_index),
752         FIELD(HOST_ES_SELECTOR, host_es_selector),
753         FIELD(HOST_CS_SELECTOR, host_cs_selector),
754         FIELD(HOST_SS_SELECTOR, host_ss_selector),
755         FIELD(HOST_DS_SELECTOR, host_ds_selector),
756         FIELD(HOST_FS_SELECTOR, host_fs_selector),
757         FIELD(HOST_GS_SELECTOR, host_gs_selector),
758         FIELD(HOST_TR_SELECTOR, host_tr_selector),
759         FIELD64(IO_BITMAP_A, io_bitmap_a),
760         FIELD64(IO_BITMAP_B, io_bitmap_b),
761         FIELD64(MSR_BITMAP, msr_bitmap),
762         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765         FIELD64(TSC_OFFSET, tsc_offset),
766         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
768         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
769         FIELD64(EPT_POINTER, ept_pointer),
770         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
774         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
775         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
776         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
777         FIELD64(PML_ADDRESS, pml_address),
778         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
779         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
780         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
781         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
782         FIELD64(GUEST_PDPTR0, guest_pdptr0),
783         FIELD64(GUEST_PDPTR1, guest_pdptr1),
784         FIELD64(GUEST_PDPTR2, guest_pdptr2),
785         FIELD64(GUEST_PDPTR3, guest_pdptr3),
786         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
787         FIELD64(HOST_IA32_PAT, host_ia32_pat),
788         FIELD64(HOST_IA32_EFER, host_ia32_efer),
789         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
790         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
791         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
792         FIELD(EXCEPTION_BITMAP, exception_bitmap),
793         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
794         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
795         FIELD(CR3_TARGET_COUNT, cr3_target_count),
796         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
797         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
798         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
799         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
800         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
801         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
802         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
803         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
804         FIELD(TPR_THRESHOLD, tpr_threshold),
805         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
806         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
807         FIELD(VM_EXIT_REASON, vm_exit_reason),
808         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
809         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
810         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
811         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
812         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
813         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
814         FIELD(GUEST_ES_LIMIT, guest_es_limit),
815         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
816         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
817         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
818         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
819         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
820         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
821         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
822         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
823         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
824         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
825         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
826         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
827         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
828         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
829         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
830         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
831         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
832         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
833         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
834         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
835         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
836         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
837         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
838         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
839         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
840         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
841         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
842         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
843         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
844         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
845         FIELD(EXIT_QUALIFICATION, exit_qualification),
846         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
847         FIELD(GUEST_CR0, guest_cr0),
848         FIELD(GUEST_CR3, guest_cr3),
849         FIELD(GUEST_CR4, guest_cr4),
850         FIELD(GUEST_ES_BASE, guest_es_base),
851         FIELD(GUEST_CS_BASE, guest_cs_base),
852         FIELD(GUEST_SS_BASE, guest_ss_base),
853         FIELD(GUEST_DS_BASE, guest_ds_base),
854         FIELD(GUEST_FS_BASE, guest_fs_base),
855         FIELD(GUEST_GS_BASE, guest_gs_base),
856         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
857         FIELD(GUEST_TR_BASE, guest_tr_base),
858         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
859         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
860         FIELD(GUEST_DR7, guest_dr7),
861         FIELD(GUEST_RSP, guest_rsp),
862         FIELD(GUEST_RIP, guest_rip),
863         FIELD(GUEST_RFLAGS, guest_rflags),
864         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
865         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
866         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
867         FIELD(HOST_CR0, host_cr0),
868         FIELD(HOST_CR3, host_cr3),
869         FIELD(HOST_CR4, host_cr4),
870         FIELD(HOST_FS_BASE, host_fs_base),
871         FIELD(HOST_GS_BASE, host_gs_base),
872         FIELD(HOST_TR_BASE, host_tr_base),
873         FIELD(HOST_GDTR_BASE, host_gdtr_base),
874         FIELD(HOST_IDTR_BASE, host_idtr_base),
875         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
876         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
877         FIELD(HOST_RSP, host_rsp),
878         FIELD(HOST_RIP, host_rip),
879 };
880
881 static inline short vmcs_field_to_offset(unsigned long field)
882 {
883         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
884
885         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
886             vmcs_field_to_offset_table[field] == 0)
887                 return -ENOENT;
888
889         return vmcs_field_to_offset_table[field];
890 }
891
892 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
893 {
894         return to_vmx(vcpu)->nested.cached_vmcs12;
895 }
896
897 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
898 {
899         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
900         if (is_error_page(page))
901                 return NULL;
902
903         return page;
904 }
905
906 static void nested_release_page(struct page *page)
907 {
908         kvm_release_page_dirty(page);
909 }
910
911 static void nested_release_page_clean(struct page *page)
912 {
913         kvm_release_page_clean(page);
914 }
915
916 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
917 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
918 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
919 static bool vmx_xsaves_supported(void);
920 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
921 static void vmx_set_segment(struct kvm_vcpu *vcpu,
922                             struct kvm_segment *var, int seg);
923 static void vmx_get_segment(struct kvm_vcpu *vcpu,
924                             struct kvm_segment *var, int seg);
925 static bool guest_state_valid(struct kvm_vcpu *vcpu);
926 static u32 vmx_segment_access_rights(struct kvm_segment *var);
927 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
928 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
929 static int alloc_identity_pagetable(struct kvm *kvm);
930
931 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
932 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
933 /*
934  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
935  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
936  */
937 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
938
939 /*
940  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
941  * can find which vCPU should be waken up.
942  */
943 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
944 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
945
946 enum {
947         VMX_IO_BITMAP_A,
948         VMX_IO_BITMAP_B,
949         VMX_MSR_BITMAP_LEGACY,
950         VMX_MSR_BITMAP_LONGMODE,
951         VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
952         VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
953         VMX_MSR_BITMAP_LEGACY_X2APIC,
954         VMX_MSR_BITMAP_LONGMODE_X2APIC,
955         VMX_VMREAD_BITMAP,
956         VMX_VMWRITE_BITMAP,
957         VMX_BITMAP_NR
958 };
959
960 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
961
962 #define vmx_io_bitmap_a                      (vmx_bitmap[VMX_IO_BITMAP_A])
963 #define vmx_io_bitmap_b                      (vmx_bitmap[VMX_IO_BITMAP_B])
964 #define vmx_msr_bitmap_legacy                (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
965 #define vmx_msr_bitmap_longmode              (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
966 #define vmx_msr_bitmap_legacy_x2apic_apicv   (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
967 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
968 #define vmx_msr_bitmap_legacy_x2apic         (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
969 #define vmx_msr_bitmap_longmode_x2apic       (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
970 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
971 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
972
973 static bool cpu_has_load_ia32_efer;
974 static bool cpu_has_load_perf_global_ctrl;
975
976 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
977 static DEFINE_SPINLOCK(vmx_vpid_lock);
978
979 static struct vmcs_config {
980         int size;
981         int order;
982         u32 basic_cap;
983         u32 revision_id;
984         u32 pin_based_exec_ctrl;
985         u32 cpu_based_exec_ctrl;
986         u32 cpu_based_2nd_exec_ctrl;
987         u32 vmexit_ctrl;
988         u32 vmentry_ctrl;
989 } vmcs_config;
990
991 static struct vmx_capability {
992         u32 ept;
993         u32 vpid;
994 } vmx_capability;
995
996 #define VMX_SEGMENT_FIELD(seg)                                  \
997         [VCPU_SREG_##seg] = {                                   \
998                 .selector = GUEST_##seg##_SELECTOR,             \
999                 .base = GUEST_##seg##_BASE,                     \
1000                 .limit = GUEST_##seg##_LIMIT,                   \
1001                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
1002         }
1003
1004 static const struct kvm_vmx_segment_field {
1005         unsigned selector;
1006         unsigned base;
1007         unsigned limit;
1008         unsigned ar_bytes;
1009 } kvm_vmx_segment_fields[] = {
1010         VMX_SEGMENT_FIELD(CS),
1011         VMX_SEGMENT_FIELD(DS),
1012         VMX_SEGMENT_FIELD(ES),
1013         VMX_SEGMENT_FIELD(FS),
1014         VMX_SEGMENT_FIELD(GS),
1015         VMX_SEGMENT_FIELD(SS),
1016         VMX_SEGMENT_FIELD(TR),
1017         VMX_SEGMENT_FIELD(LDTR),
1018 };
1019
1020 static u64 host_efer;
1021
1022 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1023
1024 /*
1025  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1026  * away by decrementing the array size.
1027  */
1028 static const u32 vmx_msr_index[] = {
1029 #ifdef CONFIG_X86_64
1030         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1031 #endif
1032         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1033 };
1034
1035 static inline bool is_exception_n(u32 intr_info, u8 vector)
1036 {
1037         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1038                              INTR_INFO_VALID_MASK)) ==
1039                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1040 }
1041
1042 static inline bool is_debug(u32 intr_info)
1043 {
1044         return is_exception_n(intr_info, DB_VECTOR);
1045 }
1046
1047 static inline bool is_breakpoint(u32 intr_info)
1048 {
1049         return is_exception_n(intr_info, BP_VECTOR);
1050 }
1051
1052 static inline bool is_page_fault(u32 intr_info)
1053 {
1054         return is_exception_n(intr_info, PF_VECTOR);
1055 }
1056
1057 static inline bool is_no_device(u32 intr_info)
1058 {
1059         return is_exception_n(intr_info, NM_VECTOR);
1060 }
1061
1062 static inline bool is_invalid_opcode(u32 intr_info)
1063 {
1064         return is_exception_n(intr_info, UD_VECTOR);
1065 }
1066
1067 static inline bool is_external_interrupt(u32 intr_info)
1068 {
1069         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1070                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1071 }
1072
1073 static inline bool is_machine_check(u32 intr_info)
1074 {
1075         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1076                              INTR_INFO_VALID_MASK)) ==
1077                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1078 }
1079
1080 static inline bool cpu_has_vmx_msr_bitmap(void)
1081 {
1082         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1083 }
1084
1085 static inline bool cpu_has_vmx_tpr_shadow(void)
1086 {
1087         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1088 }
1089
1090 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1091 {
1092         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1093 }
1094
1095 static inline bool cpu_has_secondary_exec_ctrls(void)
1096 {
1097         return vmcs_config.cpu_based_exec_ctrl &
1098                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1099 }
1100
1101 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1102 {
1103         return vmcs_config.cpu_based_2nd_exec_ctrl &
1104                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1105 }
1106
1107 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1108 {
1109         return vmcs_config.cpu_based_2nd_exec_ctrl &
1110                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1111 }
1112
1113 static inline bool cpu_has_vmx_apic_register_virt(void)
1114 {
1115         return vmcs_config.cpu_based_2nd_exec_ctrl &
1116                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1117 }
1118
1119 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1120 {
1121         return vmcs_config.cpu_based_2nd_exec_ctrl &
1122                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1123 }
1124
1125 /*
1126  * Comment's format: document - errata name - stepping - processor name.
1127  * Refer from
1128  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1129  */
1130 static u32 vmx_preemption_cpu_tfms[] = {
1131 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1132 0x000206E6,
1133 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1134 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1135 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1136 0x00020652,
1137 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1138 0x00020655,
1139 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1140 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1141 /*
1142  * 320767.pdf - AAP86  - B1 -
1143  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1144  */
1145 0x000106E5,
1146 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1147 0x000106A0,
1148 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1149 0x000106A1,
1150 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1151 0x000106A4,
1152  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1153  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1154  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1155 0x000106A5,
1156 };
1157
1158 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1159 {
1160         u32 eax = cpuid_eax(0x00000001), i;
1161
1162         /* Clear the reserved bits */
1163         eax &= ~(0x3U << 14 | 0xfU << 28);
1164         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1165                 if (eax == vmx_preemption_cpu_tfms[i])
1166                         return true;
1167
1168         return false;
1169 }
1170
1171 static inline bool cpu_has_vmx_preemption_timer(void)
1172 {
1173         return vmcs_config.pin_based_exec_ctrl &
1174                 PIN_BASED_VMX_PREEMPTION_TIMER;
1175 }
1176
1177 static inline bool cpu_has_vmx_posted_intr(void)
1178 {
1179         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1180                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1181 }
1182
1183 static inline bool cpu_has_vmx_apicv(void)
1184 {
1185         return cpu_has_vmx_apic_register_virt() &&
1186                 cpu_has_vmx_virtual_intr_delivery() &&
1187                 cpu_has_vmx_posted_intr();
1188 }
1189
1190 static inline bool cpu_has_vmx_flexpriority(void)
1191 {
1192         return cpu_has_vmx_tpr_shadow() &&
1193                 cpu_has_vmx_virtualize_apic_accesses();
1194 }
1195
1196 static inline bool cpu_has_vmx_ept_execute_only(void)
1197 {
1198         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1199 }
1200
1201 static inline bool cpu_has_vmx_ept_2m_page(void)
1202 {
1203         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1204 }
1205
1206 static inline bool cpu_has_vmx_ept_1g_page(void)
1207 {
1208         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1209 }
1210
1211 static inline bool cpu_has_vmx_ept_4levels(void)
1212 {
1213         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1214 }
1215
1216 static inline bool cpu_has_vmx_ept_ad_bits(void)
1217 {
1218         return vmx_capability.ept & VMX_EPT_AD_BIT;
1219 }
1220
1221 static inline bool cpu_has_vmx_invept_context(void)
1222 {
1223         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1224 }
1225
1226 static inline bool cpu_has_vmx_invept_global(void)
1227 {
1228         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1229 }
1230
1231 static inline bool cpu_has_vmx_invvpid_single(void)
1232 {
1233         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1234 }
1235
1236 static inline bool cpu_has_vmx_invvpid_global(void)
1237 {
1238         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1239 }
1240
1241 static inline bool cpu_has_vmx_invvpid(void)
1242 {
1243         return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1244 }
1245
1246 static inline bool cpu_has_vmx_ept(void)
1247 {
1248         return vmcs_config.cpu_based_2nd_exec_ctrl &
1249                 SECONDARY_EXEC_ENABLE_EPT;
1250 }
1251
1252 static inline bool cpu_has_vmx_unrestricted_guest(void)
1253 {
1254         return vmcs_config.cpu_based_2nd_exec_ctrl &
1255                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1256 }
1257
1258 static inline bool cpu_has_vmx_ple(void)
1259 {
1260         return vmcs_config.cpu_based_2nd_exec_ctrl &
1261                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1262 }
1263
1264 static inline bool cpu_has_vmx_basic_inout(void)
1265 {
1266         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1267 }
1268
1269 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1270 {
1271         return flexpriority_enabled && lapic_in_kernel(vcpu);
1272 }
1273
1274 static inline bool cpu_has_vmx_vpid(void)
1275 {
1276         return vmcs_config.cpu_based_2nd_exec_ctrl &
1277                 SECONDARY_EXEC_ENABLE_VPID;
1278 }
1279
1280 static inline bool cpu_has_vmx_rdtscp(void)
1281 {
1282         return vmcs_config.cpu_based_2nd_exec_ctrl &
1283                 SECONDARY_EXEC_RDTSCP;
1284 }
1285
1286 static inline bool cpu_has_vmx_invpcid(void)
1287 {
1288         return vmcs_config.cpu_based_2nd_exec_ctrl &
1289                 SECONDARY_EXEC_ENABLE_INVPCID;
1290 }
1291
1292 static inline bool cpu_has_vmx_wbinvd_exit(void)
1293 {
1294         return vmcs_config.cpu_based_2nd_exec_ctrl &
1295                 SECONDARY_EXEC_WBINVD_EXITING;
1296 }
1297
1298 static inline bool cpu_has_vmx_shadow_vmcs(void)
1299 {
1300         u64 vmx_msr;
1301         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1302         /* check if the cpu supports writing r/o exit information fields */
1303         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1304                 return false;
1305
1306         return vmcs_config.cpu_based_2nd_exec_ctrl &
1307                 SECONDARY_EXEC_SHADOW_VMCS;
1308 }
1309
1310 static inline bool cpu_has_vmx_pml(void)
1311 {
1312         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1313 }
1314
1315 static inline bool cpu_has_vmx_tsc_scaling(void)
1316 {
1317         return vmcs_config.cpu_based_2nd_exec_ctrl &
1318                 SECONDARY_EXEC_TSC_SCALING;
1319 }
1320
1321 static inline bool report_flexpriority(void)
1322 {
1323         return flexpriority_enabled;
1324 }
1325
1326 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1327 {
1328         return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1329 }
1330
1331 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1332 {
1333         return vmcs12->cpu_based_vm_exec_control & bit;
1334 }
1335
1336 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1337 {
1338         return (vmcs12->cpu_based_vm_exec_control &
1339                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1340                 (vmcs12->secondary_vm_exec_control & bit);
1341 }
1342
1343 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1344 {
1345         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1346 }
1347
1348 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1349 {
1350         return vmcs12->pin_based_vm_exec_control &
1351                 PIN_BASED_VMX_PREEMPTION_TIMER;
1352 }
1353
1354 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1355 {
1356         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1357 }
1358
1359 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1360 {
1361         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1362                 vmx_xsaves_supported();
1363 }
1364
1365 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1366 {
1367         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1368 }
1369
1370 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1371 {
1372         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1373 }
1374
1375 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1376 {
1377         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1378 }
1379
1380 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1381 {
1382         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1383 }
1384
1385 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1386 {
1387         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1388 }
1389
1390 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1391 {
1392         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1393 }
1394
1395 static inline bool is_nmi(u32 intr_info)
1396 {
1397         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1398                 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1399 }
1400
1401 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1402                               u32 exit_intr_info,
1403                               unsigned long exit_qualification);
1404 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1405                         struct vmcs12 *vmcs12,
1406                         u32 reason, unsigned long qualification);
1407
1408 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1409 {
1410         int i;
1411
1412         for (i = 0; i < vmx->nmsrs; ++i)
1413                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1414                         return i;
1415         return -1;
1416 }
1417
1418 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1419 {
1420     struct {
1421         u64 vpid : 16;
1422         u64 rsvd : 48;
1423         u64 gva;
1424     } operand = { vpid, 0, gva };
1425
1426     asm volatile (__ex(ASM_VMX_INVVPID)
1427                   /* CF==1 or ZF==1 --> rc = -1 */
1428                   "; ja 1f ; ud2 ; 1:"
1429                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1430 }
1431
1432 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1433 {
1434         struct {
1435                 u64 eptp, gpa;
1436         } operand = {eptp, gpa};
1437
1438         asm volatile (__ex(ASM_VMX_INVEPT)
1439                         /* CF==1 or ZF==1 --> rc = -1 */
1440                         "; ja 1f ; ud2 ; 1:\n"
1441                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1442 }
1443
1444 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1445 {
1446         int i;
1447
1448         i = __find_msr_index(vmx, msr);
1449         if (i >= 0)
1450                 return &vmx->guest_msrs[i];
1451         return NULL;
1452 }
1453
1454 static void vmcs_clear(struct vmcs *vmcs)
1455 {
1456         u64 phys_addr = __pa(vmcs);
1457         u8 error;
1458
1459         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1460                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1461                       : "cc", "memory");
1462         if (error)
1463                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1464                        vmcs, phys_addr);
1465 }
1466
1467 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1468 {
1469         vmcs_clear(loaded_vmcs->vmcs);
1470         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1471                 vmcs_clear(loaded_vmcs->shadow_vmcs);
1472         loaded_vmcs->cpu = -1;
1473         loaded_vmcs->launched = 0;
1474 }
1475
1476 static void vmcs_load(struct vmcs *vmcs)
1477 {
1478         u64 phys_addr = __pa(vmcs);
1479         u8 error;
1480
1481         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1482                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1483                         : "cc", "memory");
1484         if (error)
1485                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1486                        vmcs, phys_addr);
1487 }
1488
1489 #ifdef CONFIG_KEXEC_CORE
1490 /*
1491  * This bitmap is used to indicate whether the vmclear
1492  * operation is enabled on all cpus. All disabled by
1493  * default.
1494  */
1495 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1496
1497 static inline void crash_enable_local_vmclear(int cpu)
1498 {
1499         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1500 }
1501
1502 static inline void crash_disable_local_vmclear(int cpu)
1503 {
1504         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1505 }
1506
1507 static inline int crash_local_vmclear_enabled(int cpu)
1508 {
1509         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1510 }
1511
1512 static void crash_vmclear_local_loaded_vmcss(void)
1513 {
1514         int cpu = raw_smp_processor_id();
1515         struct loaded_vmcs *v;
1516
1517         if (!crash_local_vmclear_enabled(cpu))
1518                 return;
1519
1520         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1521                             loaded_vmcss_on_cpu_link)
1522                 vmcs_clear(v->vmcs);
1523 }
1524 #else
1525 static inline void crash_enable_local_vmclear(int cpu) { }
1526 static inline void crash_disable_local_vmclear(int cpu) { }
1527 #endif /* CONFIG_KEXEC_CORE */
1528
1529 static void __loaded_vmcs_clear(void *arg)
1530 {
1531         struct loaded_vmcs *loaded_vmcs = arg;
1532         int cpu = raw_smp_processor_id();
1533
1534         if (loaded_vmcs->cpu != cpu)
1535                 return; /* vcpu migration can race with cpu offline */
1536         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1537                 per_cpu(current_vmcs, cpu) = NULL;
1538         crash_disable_local_vmclear(cpu);
1539         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1540
1541         /*
1542          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1543          * is before setting loaded_vmcs->vcpu to -1 which is done in
1544          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1545          * then adds the vmcs into percpu list before it is deleted.
1546          */
1547         smp_wmb();
1548
1549         loaded_vmcs_init(loaded_vmcs);
1550         crash_enable_local_vmclear(cpu);
1551 }
1552
1553 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1554 {
1555         int cpu = loaded_vmcs->cpu;
1556
1557         if (cpu != -1)
1558                 smp_call_function_single(cpu,
1559                          __loaded_vmcs_clear, loaded_vmcs, 1);
1560 }
1561
1562 static inline void vpid_sync_vcpu_single(int vpid)
1563 {
1564         if (vpid == 0)
1565                 return;
1566
1567         if (cpu_has_vmx_invvpid_single())
1568                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1569 }
1570
1571 static inline void vpid_sync_vcpu_global(void)
1572 {
1573         if (cpu_has_vmx_invvpid_global())
1574                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1575 }
1576
1577 static inline void vpid_sync_context(int vpid)
1578 {
1579         if (cpu_has_vmx_invvpid_single())
1580                 vpid_sync_vcpu_single(vpid);
1581         else
1582                 vpid_sync_vcpu_global();
1583 }
1584
1585 static inline void ept_sync_global(void)
1586 {
1587         if (cpu_has_vmx_invept_global())
1588                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1589 }
1590
1591 static inline void ept_sync_context(u64 eptp)
1592 {
1593         if (enable_ept) {
1594                 if (cpu_has_vmx_invept_context())
1595                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1596                 else
1597                         ept_sync_global();
1598         }
1599 }
1600
1601 static __always_inline void vmcs_check16(unsigned long field)
1602 {
1603         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1604                          "16-bit accessor invalid for 64-bit field");
1605         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1606                          "16-bit accessor invalid for 64-bit high field");
1607         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1608                          "16-bit accessor invalid for 32-bit high field");
1609         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1610                          "16-bit accessor invalid for natural width field");
1611 }
1612
1613 static __always_inline void vmcs_check32(unsigned long field)
1614 {
1615         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1616                          "32-bit accessor invalid for 16-bit field");
1617         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1618                          "32-bit accessor invalid for natural width field");
1619 }
1620
1621 static __always_inline void vmcs_check64(unsigned long field)
1622 {
1623         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1624                          "64-bit accessor invalid for 16-bit field");
1625         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1626                          "64-bit accessor invalid for 64-bit high field");
1627         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1628                          "64-bit accessor invalid for 32-bit field");
1629         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1630                          "64-bit accessor invalid for natural width field");
1631 }
1632
1633 static __always_inline void vmcs_checkl(unsigned long field)
1634 {
1635         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1636                          "Natural width accessor invalid for 16-bit field");
1637         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1638                          "Natural width accessor invalid for 64-bit field");
1639         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1640                          "Natural width accessor invalid for 64-bit high field");
1641         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1642                          "Natural width accessor invalid for 32-bit field");
1643 }
1644
1645 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1646 {
1647         unsigned long value;
1648
1649         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1650                       : "=a"(value) : "d"(field) : "cc");
1651         return value;
1652 }
1653
1654 static __always_inline u16 vmcs_read16(unsigned long field)
1655 {
1656         vmcs_check16(field);
1657         return __vmcs_readl(field);
1658 }
1659
1660 static __always_inline u32 vmcs_read32(unsigned long field)
1661 {
1662         vmcs_check32(field);
1663         return __vmcs_readl(field);
1664 }
1665
1666 static __always_inline u64 vmcs_read64(unsigned long field)
1667 {
1668         vmcs_check64(field);
1669 #ifdef CONFIG_X86_64
1670         return __vmcs_readl(field);
1671 #else
1672         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1673 #endif
1674 }
1675
1676 static __always_inline unsigned long vmcs_readl(unsigned long field)
1677 {
1678         vmcs_checkl(field);
1679         return __vmcs_readl(field);
1680 }
1681
1682 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1683 {
1684         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1685                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1686         dump_stack();
1687 }
1688
1689 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1690 {
1691         u8 error;
1692
1693         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1694                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1695         if (unlikely(error))
1696                 vmwrite_error(field, value);
1697 }
1698
1699 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1700 {
1701         vmcs_check16(field);
1702         __vmcs_writel(field, value);
1703 }
1704
1705 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1706 {
1707         vmcs_check32(field);
1708         __vmcs_writel(field, value);
1709 }
1710
1711 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1712 {
1713         vmcs_check64(field);
1714         __vmcs_writel(field, value);
1715 #ifndef CONFIG_X86_64
1716         asm volatile ("");
1717         __vmcs_writel(field+1, value >> 32);
1718 #endif
1719 }
1720
1721 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1722 {
1723         vmcs_checkl(field);
1724         __vmcs_writel(field, value);
1725 }
1726
1727 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1728 {
1729         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1730                          "vmcs_clear_bits does not support 64-bit fields");
1731         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1732 }
1733
1734 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1735 {
1736         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1737                          "vmcs_set_bits does not support 64-bit fields");
1738         __vmcs_writel(field, __vmcs_readl(field) | mask);
1739 }
1740
1741 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1742 {
1743         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1744 }
1745
1746 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1747 {
1748         vmcs_write32(VM_ENTRY_CONTROLS, val);
1749         vmx->vm_entry_controls_shadow = val;
1750 }
1751
1752 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1753 {
1754         if (vmx->vm_entry_controls_shadow != val)
1755                 vm_entry_controls_init(vmx, val);
1756 }
1757
1758 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1759 {
1760         return vmx->vm_entry_controls_shadow;
1761 }
1762
1763
1764 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1765 {
1766         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1767 }
1768
1769 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1770 {
1771         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1772 }
1773
1774 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1775 {
1776         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1777 }
1778
1779 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1780 {
1781         vmcs_write32(VM_EXIT_CONTROLS, val);
1782         vmx->vm_exit_controls_shadow = val;
1783 }
1784
1785 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1786 {
1787         if (vmx->vm_exit_controls_shadow != val)
1788                 vm_exit_controls_init(vmx, val);
1789 }
1790
1791 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1792 {
1793         return vmx->vm_exit_controls_shadow;
1794 }
1795
1796
1797 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1798 {
1799         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1800 }
1801
1802 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1803 {
1804         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1805 }
1806
1807 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1808 {
1809         vmx->segment_cache.bitmask = 0;
1810 }
1811
1812 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1813                                        unsigned field)
1814 {
1815         bool ret;
1816         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1817
1818         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1819                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1820                 vmx->segment_cache.bitmask = 0;
1821         }
1822         ret = vmx->segment_cache.bitmask & mask;
1823         vmx->segment_cache.bitmask |= mask;
1824         return ret;
1825 }
1826
1827 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1828 {
1829         u16 *p = &vmx->segment_cache.seg[seg].selector;
1830
1831         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1832                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1833         return *p;
1834 }
1835
1836 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1837 {
1838         ulong *p = &vmx->segment_cache.seg[seg].base;
1839
1840         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1841                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1842         return *p;
1843 }
1844
1845 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1846 {
1847         u32 *p = &vmx->segment_cache.seg[seg].limit;
1848
1849         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1850                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1851         return *p;
1852 }
1853
1854 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1855 {
1856         u32 *p = &vmx->segment_cache.seg[seg].ar;
1857
1858         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1859                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1860         return *p;
1861 }
1862
1863 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1864 {
1865         u32 eb;
1866
1867         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1868              (1u << DB_VECTOR) | (1u << AC_VECTOR);
1869         if ((vcpu->guest_debug &
1870              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1871             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1872                 eb |= 1u << BP_VECTOR;
1873         if (to_vmx(vcpu)->rmode.vm86_active)
1874                 eb = ~0;
1875         if (enable_ept)
1876                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1877
1878         /* When we are running a nested L2 guest and L1 specified for it a
1879          * certain exception bitmap, we must trap the same exceptions and pass
1880          * them to L1. When running L2, we will only handle the exceptions
1881          * specified above if L1 did not want them.
1882          */
1883         if (is_guest_mode(vcpu))
1884                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1885
1886         vmcs_write32(EXCEPTION_BITMAP, eb);
1887 }
1888
1889 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1890                 unsigned long entry, unsigned long exit)
1891 {
1892         vm_entry_controls_clearbit(vmx, entry);
1893         vm_exit_controls_clearbit(vmx, exit);
1894 }
1895
1896 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1897 {
1898         unsigned i;
1899         struct msr_autoload *m = &vmx->msr_autoload;
1900
1901         switch (msr) {
1902         case MSR_EFER:
1903                 if (cpu_has_load_ia32_efer) {
1904                         clear_atomic_switch_msr_special(vmx,
1905                                         VM_ENTRY_LOAD_IA32_EFER,
1906                                         VM_EXIT_LOAD_IA32_EFER);
1907                         return;
1908                 }
1909                 break;
1910         case MSR_CORE_PERF_GLOBAL_CTRL:
1911                 if (cpu_has_load_perf_global_ctrl) {
1912                         clear_atomic_switch_msr_special(vmx,
1913                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1914                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1915                         return;
1916                 }
1917                 break;
1918         }
1919
1920         for (i = 0; i < m->nr; ++i)
1921                 if (m->guest[i].index == msr)
1922                         break;
1923
1924         if (i == m->nr)
1925                 return;
1926         --m->nr;
1927         m->guest[i] = m->guest[m->nr];
1928         m->host[i] = m->host[m->nr];
1929         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1930         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1931 }
1932
1933 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1934                 unsigned long entry, unsigned long exit,
1935                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1936                 u64 guest_val, u64 host_val)
1937 {
1938         vmcs_write64(guest_val_vmcs, guest_val);
1939         vmcs_write64(host_val_vmcs, host_val);
1940         vm_entry_controls_setbit(vmx, entry);
1941         vm_exit_controls_setbit(vmx, exit);
1942 }
1943
1944 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1945                                   u64 guest_val, u64 host_val)
1946 {
1947         unsigned i;
1948         struct msr_autoload *m = &vmx->msr_autoload;
1949
1950         switch (msr) {
1951         case MSR_EFER:
1952                 if (cpu_has_load_ia32_efer) {
1953                         add_atomic_switch_msr_special(vmx,
1954                                         VM_ENTRY_LOAD_IA32_EFER,
1955                                         VM_EXIT_LOAD_IA32_EFER,
1956                                         GUEST_IA32_EFER,
1957                                         HOST_IA32_EFER,
1958                                         guest_val, host_val);
1959                         return;
1960                 }
1961                 break;
1962         case MSR_CORE_PERF_GLOBAL_CTRL:
1963                 if (cpu_has_load_perf_global_ctrl) {
1964                         add_atomic_switch_msr_special(vmx,
1965                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1966                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1967                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1968                                         HOST_IA32_PERF_GLOBAL_CTRL,
1969                                         guest_val, host_val);
1970                         return;
1971                 }
1972                 break;
1973         case MSR_IA32_PEBS_ENABLE:
1974                 /* PEBS needs a quiescent period after being disabled (to write
1975                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1976                  * provide that period, so a CPU could write host's record into
1977                  * guest's memory.
1978                  */
1979                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1980         }
1981
1982         for (i = 0; i < m->nr; ++i)
1983                 if (m->guest[i].index == msr)
1984                         break;
1985
1986         if (i == NR_AUTOLOAD_MSRS) {
1987                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1988                                 "Can't add msr %x\n", msr);
1989                 return;
1990         } else if (i == m->nr) {
1991                 ++m->nr;
1992                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1993                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1994         }
1995
1996         m->guest[i].index = msr;
1997         m->guest[i].value = guest_val;
1998         m->host[i].index = msr;
1999         m->host[i].value = host_val;
2000 }
2001
2002 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2003 {
2004         u64 guest_efer = vmx->vcpu.arch.efer;
2005         u64 ignore_bits = 0;
2006
2007         if (!enable_ept) {
2008                 /*
2009                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
2010                  * host CPUID is more efficient than testing guest CPUID
2011                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
2012                  */
2013                 if (boot_cpu_has(X86_FEATURE_SMEP))
2014                         guest_efer |= EFER_NX;
2015                 else if (!(guest_efer & EFER_NX))
2016                         ignore_bits |= EFER_NX;
2017         }
2018
2019         /*
2020          * LMA and LME handled by hardware; SCE meaningless outside long mode.
2021          */
2022         ignore_bits |= EFER_SCE;
2023 #ifdef CONFIG_X86_64
2024         ignore_bits |= EFER_LMA | EFER_LME;
2025         /* SCE is meaningful only in long mode on Intel */
2026         if (guest_efer & EFER_LMA)
2027                 ignore_bits &= ~(u64)EFER_SCE;
2028 #endif
2029
2030         clear_atomic_switch_msr(vmx, MSR_EFER);
2031
2032         /*
2033          * On EPT, we can't emulate NX, so we must switch EFER atomically.
2034          * On CPUs that support "load IA32_EFER", always switch EFER
2035          * atomically, since it's faster than switching it manually.
2036          */
2037         if (cpu_has_load_ia32_efer ||
2038             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2039                 if (!(guest_efer & EFER_LMA))
2040                         guest_efer &= ~EFER_LME;
2041                 if (guest_efer != host_efer)
2042                         add_atomic_switch_msr(vmx, MSR_EFER,
2043                                               guest_efer, host_efer);
2044                 return false;
2045         } else {
2046                 guest_efer &= ~ignore_bits;
2047                 guest_efer |= host_efer & ignore_bits;
2048
2049                 vmx->guest_msrs[efer_offset].data = guest_efer;
2050                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2051
2052                 return true;
2053         }
2054 }
2055
2056 #ifdef CONFIG_X86_32
2057 /*
2058  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2059  * VMCS rather than the segment table.  KVM uses this helper to figure
2060  * out the current bases to poke them into the VMCS before entry.
2061  */
2062 static unsigned long segment_base(u16 selector)
2063 {
2064         struct desc_struct *table;
2065         unsigned long v;
2066
2067         if (!(selector & ~SEGMENT_RPL_MASK))
2068                 return 0;
2069
2070         table = get_current_gdt_ro();
2071
2072         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2073                 u16 ldt_selector = kvm_read_ldt();
2074
2075                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2076                         return 0;
2077
2078                 table = (struct desc_struct *)segment_base(ldt_selector);
2079         }
2080         v = get_desc_base(&table[selector >> 3]);
2081         return v;
2082 }
2083 #endif
2084
2085 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2086 {
2087         struct vcpu_vmx *vmx = to_vmx(vcpu);
2088         int i;
2089
2090         if (vmx->host_state.loaded)
2091                 return;
2092
2093         vmx->host_state.loaded = 1;
2094         /*
2095          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2096          * allow segment selectors with cpl > 0 or ti == 1.
2097          */
2098         vmx->host_state.ldt_sel = kvm_read_ldt();
2099         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2100         savesegment(fs, vmx->host_state.fs_sel);
2101         if (!(vmx->host_state.fs_sel & 7)) {
2102                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2103                 vmx->host_state.fs_reload_needed = 0;
2104         } else {
2105                 vmcs_write16(HOST_FS_SELECTOR, 0);
2106                 vmx->host_state.fs_reload_needed = 1;
2107         }
2108         savesegment(gs, vmx->host_state.gs_sel);
2109         if (!(vmx->host_state.gs_sel & 7))
2110                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2111         else {
2112                 vmcs_write16(HOST_GS_SELECTOR, 0);
2113                 vmx->host_state.gs_ldt_reload_needed = 1;
2114         }
2115
2116 #ifdef CONFIG_X86_64
2117         savesegment(ds, vmx->host_state.ds_sel);
2118         savesegment(es, vmx->host_state.es_sel);
2119 #endif
2120
2121 #ifdef CONFIG_X86_64
2122         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2123         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2124 #else
2125         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2126         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2127 #endif
2128
2129 #ifdef CONFIG_X86_64
2130         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2131         if (is_long_mode(&vmx->vcpu))
2132                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2133 #endif
2134         if (boot_cpu_has(X86_FEATURE_MPX))
2135                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2136         for (i = 0; i < vmx->save_nmsrs; ++i)
2137                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2138                                    vmx->guest_msrs[i].data,
2139                                    vmx->guest_msrs[i].mask);
2140 }
2141
2142 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2143 {
2144         if (!vmx->host_state.loaded)
2145                 return;
2146
2147         ++vmx->vcpu.stat.host_state_reload;
2148         vmx->host_state.loaded = 0;
2149 #ifdef CONFIG_X86_64
2150         if (is_long_mode(&vmx->vcpu))
2151                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2152 #endif
2153         if (vmx->host_state.gs_ldt_reload_needed) {
2154                 kvm_load_ldt(vmx->host_state.ldt_sel);
2155 #ifdef CONFIG_X86_64
2156                 load_gs_index(vmx->host_state.gs_sel);
2157 #else
2158                 loadsegment(gs, vmx->host_state.gs_sel);
2159 #endif
2160         }
2161         if (vmx->host_state.fs_reload_needed)
2162                 loadsegment(fs, vmx->host_state.fs_sel);
2163 #ifdef CONFIG_X86_64
2164         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2165                 loadsegment(ds, vmx->host_state.ds_sel);
2166                 loadsegment(es, vmx->host_state.es_sel);
2167         }
2168 #endif
2169         invalidate_tss_limit();
2170 #ifdef CONFIG_X86_64
2171         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2172 #endif
2173         if (vmx->host_state.msr_host_bndcfgs)
2174                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2175         load_fixmap_gdt(raw_smp_processor_id());
2176 }
2177
2178 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2179 {
2180         preempt_disable();
2181         __vmx_load_host_state(vmx);
2182         preempt_enable();
2183 }
2184
2185 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2186 {
2187         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2188         struct pi_desc old, new;
2189         unsigned int dest;
2190
2191         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2192                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2193                 !kvm_vcpu_apicv_active(vcpu))
2194                 return;
2195
2196         do {
2197                 old.control = new.control = pi_desc->control;
2198
2199                 /*
2200                  * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2201                  * are two possible cases:
2202                  * 1. After running 'pre_block', context switch
2203                  *    happened. For this case, 'sn' was set in
2204                  *    vmx_vcpu_put(), so we need to clear it here.
2205                  * 2. After running 'pre_block', we were blocked,
2206                  *    and woken up by some other guy. For this case,
2207                  *    we don't need to do anything, 'pi_post_block'
2208                  *    will do everything for us. However, we cannot
2209                  *    check whether it is case #1 or case #2 here
2210                  *    (maybe, not needed), so we also clear sn here,
2211                  *    I think it is not a big deal.
2212                  */
2213                 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2214                         if (vcpu->cpu != cpu) {
2215                                 dest = cpu_physical_id(cpu);
2216
2217                                 if (x2apic_enabled())
2218                                         new.ndst = dest;
2219                                 else
2220                                         new.ndst = (dest << 8) & 0xFF00;
2221                         }
2222
2223                         /* set 'NV' to 'notification vector' */
2224                         new.nv = POSTED_INTR_VECTOR;
2225                 }
2226
2227                 /* Allow posting non-urgent interrupts */
2228                 new.sn = 0;
2229         } while (cmpxchg(&pi_desc->control, old.control,
2230                         new.control) != old.control);
2231 }
2232
2233 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2234 {
2235         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2236         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2237 }
2238
2239 /*
2240  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2241  * vcpu mutex is already taken.
2242  */
2243 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2244 {
2245         struct vcpu_vmx *vmx = to_vmx(vcpu);
2246         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2247
2248         if (!already_loaded) {
2249                 loaded_vmcs_clear(vmx->loaded_vmcs);
2250                 local_irq_disable();
2251                 crash_disable_local_vmclear(cpu);
2252
2253                 /*
2254                  * Read loaded_vmcs->cpu should be before fetching
2255                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2256                  * See the comments in __loaded_vmcs_clear().
2257                  */
2258                 smp_rmb();
2259
2260                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2261                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2262                 crash_enable_local_vmclear(cpu);
2263                 local_irq_enable();
2264         }
2265
2266         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2267                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2268                 vmcs_load(vmx->loaded_vmcs->vmcs);
2269         }
2270
2271         if (!already_loaded) {
2272                 void *gdt = get_current_gdt_ro();
2273                 unsigned long sysenter_esp;
2274
2275                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2276
2277                 /*
2278                  * Linux uses per-cpu TSS and GDT, so set these when switching
2279                  * processors.  See 22.2.4.
2280                  */
2281                 vmcs_writel(HOST_TR_BASE,
2282                             (unsigned long)this_cpu_ptr(&cpu_tss));
2283                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
2284
2285                 /*
2286                  * VM exits change the host TR limit to 0x67 after a VM
2287                  * exit.  This is okay, since 0x67 covers everything except
2288                  * the IO bitmap and have have code to handle the IO bitmap
2289                  * being lost after a VM exit.
2290                  */
2291                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2292
2293                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2294                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2295
2296                 vmx->loaded_vmcs->cpu = cpu;
2297         }
2298
2299         /* Setup TSC multiplier */
2300         if (kvm_has_tsc_control &&
2301             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2302                 decache_tsc_multiplier(vmx);
2303
2304         vmx_vcpu_pi_load(vcpu, cpu);
2305         vmx->host_pkru = read_pkru();
2306 }
2307
2308 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2309 {
2310         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2311
2312         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2313                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2314                 !kvm_vcpu_apicv_active(vcpu))
2315                 return;
2316
2317         /* Set SN when the vCPU is preempted */
2318         if (vcpu->preempted)
2319                 pi_set_sn(pi_desc);
2320 }
2321
2322 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2323 {
2324         vmx_vcpu_pi_put(vcpu);
2325
2326         __vmx_load_host_state(to_vmx(vcpu));
2327 }
2328
2329 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2330
2331 /*
2332  * Return the cr0 value that a nested guest would read. This is a combination
2333  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2334  * its hypervisor (cr0_read_shadow).
2335  */
2336 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2337 {
2338         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2339                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2340 }
2341 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2342 {
2343         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2344                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2345 }
2346
2347 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2348 {
2349         unsigned long rflags, save_rflags;
2350
2351         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2352                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2353                 rflags = vmcs_readl(GUEST_RFLAGS);
2354                 if (to_vmx(vcpu)->rmode.vm86_active) {
2355                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2356                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2357                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2358                 }
2359                 to_vmx(vcpu)->rflags = rflags;
2360         }
2361         return to_vmx(vcpu)->rflags;
2362 }
2363
2364 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2365 {
2366         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2367         to_vmx(vcpu)->rflags = rflags;
2368         if (to_vmx(vcpu)->rmode.vm86_active) {
2369                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2370                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2371         }
2372         vmcs_writel(GUEST_RFLAGS, rflags);
2373 }
2374
2375 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2376 {
2377         return to_vmx(vcpu)->guest_pkru;
2378 }
2379
2380 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2381 {
2382         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2383         int ret = 0;
2384
2385         if (interruptibility & GUEST_INTR_STATE_STI)
2386                 ret |= KVM_X86_SHADOW_INT_STI;
2387         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2388                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2389
2390         return ret;
2391 }
2392
2393 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2394 {
2395         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2396         u32 interruptibility = interruptibility_old;
2397
2398         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2399
2400         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2401                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2402         else if (mask & KVM_X86_SHADOW_INT_STI)
2403                 interruptibility |= GUEST_INTR_STATE_STI;
2404
2405         if ((interruptibility != interruptibility_old))
2406                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2407 }
2408
2409 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2410 {
2411         unsigned long rip;
2412
2413         rip = kvm_rip_read(vcpu);
2414         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2415         kvm_rip_write(vcpu, rip);
2416
2417         /* skipping an emulated instruction also counts */
2418         vmx_set_interrupt_shadow(vcpu, 0);
2419 }
2420
2421 /*
2422  * KVM wants to inject page-faults which it got to the guest. This function
2423  * checks whether in a nested guest, we need to inject them to L1 or L2.
2424  */
2425 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2426 {
2427         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2428
2429         if (!(vmcs12->exception_bitmap & (1u << nr)))
2430                 return 0;
2431
2432         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2433                           vmcs_read32(VM_EXIT_INTR_INFO),
2434                           vmcs_readl(EXIT_QUALIFICATION));
2435         return 1;
2436 }
2437
2438 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2439 {
2440         struct vcpu_vmx *vmx = to_vmx(vcpu);
2441         unsigned nr = vcpu->arch.exception.nr;
2442         bool has_error_code = vcpu->arch.exception.has_error_code;
2443         bool reinject = vcpu->arch.exception.reinject;
2444         u32 error_code = vcpu->arch.exception.error_code;
2445         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2446
2447         if (!reinject && is_guest_mode(vcpu) &&
2448             nested_vmx_check_exception(vcpu, nr))
2449                 return;
2450
2451         if (has_error_code) {
2452                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2453                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2454         }
2455
2456         if (vmx->rmode.vm86_active) {
2457                 int inc_eip = 0;
2458                 if (kvm_exception_is_soft(nr))
2459                         inc_eip = vcpu->arch.event_exit_inst_len;
2460                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2461                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2462                 return;
2463         }
2464
2465         if (kvm_exception_is_soft(nr)) {
2466                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2467                              vmx->vcpu.arch.event_exit_inst_len);
2468                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2469         } else
2470                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2471
2472         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2473 }
2474
2475 static bool vmx_rdtscp_supported(void)
2476 {
2477         return cpu_has_vmx_rdtscp();
2478 }
2479
2480 static bool vmx_invpcid_supported(void)
2481 {
2482         return cpu_has_vmx_invpcid() && enable_ept;
2483 }
2484
2485 /*
2486  * Swap MSR entry in host/guest MSR entry array.
2487  */
2488 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2489 {
2490         struct shared_msr_entry tmp;
2491
2492         tmp = vmx->guest_msrs[to];
2493         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2494         vmx->guest_msrs[from] = tmp;
2495 }
2496
2497 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2498 {
2499         unsigned long *msr_bitmap;
2500
2501         if (is_guest_mode(vcpu))
2502                 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2503         else if (cpu_has_secondary_exec_ctrls() &&
2504                  (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2505                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2506                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2507                         if (is_long_mode(vcpu))
2508                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2509                         else
2510                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2511                 } else {
2512                         if (is_long_mode(vcpu))
2513                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2514                         else
2515                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2516                 }
2517         } else {
2518                 if (is_long_mode(vcpu))
2519                         msr_bitmap = vmx_msr_bitmap_longmode;
2520                 else
2521                         msr_bitmap = vmx_msr_bitmap_legacy;
2522         }
2523
2524         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2525 }
2526
2527 /*
2528  * Set up the vmcs to automatically save and restore system
2529  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2530  * mode, as fiddling with msrs is very expensive.
2531  */
2532 static void setup_msrs(struct vcpu_vmx *vmx)
2533 {
2534         int save_nmsrs, index;
2535
2536         save_nmsrs = 0;
2537 #ifdef CONFIG_X86_64
2538         if (is_long_mode(&vmx->vcpu)) {
2539                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2540                 if (index >= 0)
2541                         move_msr_up(vmx, index, save_nmsrs++);
2542                 index = __find_msr_index(vmx, MSR_LSTAR);
2543                 if (index >= 0)
2544                         move_msr_up(vmx, index, save_nmsrs++);
2545                 index = __find_msr_index(vmx, MSR_CSTAR);
2546                 if (index >= 0)
2547                         move_msr_up(vmx, index, save_nmsrs++);
2548                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2549                 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2550                         move_msr_up(vmx, index, save_nmsrs++);
2551                 /*
2552                  * MSR_STAR is only needed on long mode guests, and only
2553                  * if efer.sce is enabled.
2554                  */
2555                 index = __find_msr_index(vmx, MSR_STAR);
2556                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2557                         move_msr_up(vmx, index, save_nmsrs++);
2558         }
2559 #endif
2560         index = __find_msr_index(vmx, MSR_EFER);
2561         if (index >= 0 && update_transition_efer(vmx, index))
2562                 move_msr_up(vmx, index, save_nmsrs++);
2563
2564         vmx->save_nmsrs = save_nmsrs;
2565
2566         if (cpu_has_vmx_msr_bitmap())
2567                 vmx_set_msr_bitmap(&vmx->vcpu);
2568 }
2569
2570 /*
2571  * reads and returns guest's timestamp counter "register"
2572  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2573  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2574  */
2575 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2576 {
2577         u64 host_tsc, tsc_offset;
2578
2579         host_tsc = rdtsc();
2580         tsc_offset = vmcs_read64(TSC_OFFSET);
2581         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2582 }
2583
2584 /*
2585  * writes 'offset' into guest's timestamp counter offset register
2586  */
2587 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2588 {
2589         if (is_guest_mode(vcpu)) {
2590                 /*
2591                  * We're here if L1 chose not to trap WRMSR to TSC. According
2592                  * to the spec, this should set L1's TSC; The offset that L1
2593                  * set for L2 remains unchanged, and still needs to be added
2594                  * to the newly set TSC to get L2's TSC.
2595                  */
2596                 struct vmcs12 *vmcs12;
2597                 /* recalculate vmcs02.TSC_OFFSET: */
2598                 vmcs12 = get_vmcs12(vcpu);
2599                 vmcs_write64(TSC_OFFSET, offset +
2600                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2601                          vmcs12->tsc_offset : 0));
2602         } else {
2603                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2604                                            vmcs_read64(TSC_OFFSET), offset);
2605                 vmcs_write64(TSC_OFFSET, offset);
2606         }
2607 }
2608
2609 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2610 {
2611         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2612         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2613 }
2614
2615 /*
2616  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2617  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2618  * all guests if the "nested" module option is off, and can also be disabled
2619  * for a single guest by disabling its VMX cpuid bit.
2620  */
2621 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2622 {
2623         return nested && guest_cpuid_has_vmx(vcpu);
2624 }
2625
2626 /*
2627  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2628  * returned for the various VMX controls MSRs when nested VMX is enabled.
2629  * The same values should also be used to verify that vmcs12 control fields are
2630  * valid during nested entry from L1 to L2.
2631  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2632  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2633  * bit in the high half is on if the corresponding bit in the control field
2634  * may be on. See also vmx_control_verify().
2635  */
2636 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2637 {
2638         /*
2639          * Note that as a general rule, the high half of the MSRs (bits in
2640          * the control fields which may be 1) should be initialized by the
2641          * intersection of the underlying hardware's MSR (i.e., features which
2642          * can be supported) and the list of features we want to expose -
2643          * because they are known to be properly supported in our code.
2644          * Also, usually, the low half of the MSRs (bits which must be 1) can
2645          * be set to 0, meaning that L1 may turn off any of these bits. The
2646          * reason is that if one of these bits is necessary, it will appear
2647          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2648          * fields of vmcs01 and vmcs02, will turn these bits off - and
2649          * nested_vmx_exit_handled() will not pass related exits to L1.
2650          * These rules have exceptions below.
2651          */
2652
2653         /* pin-based controls */
2654         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2655                 vmx->nested.nested_vmx_pinbased_ctls_low,
2656                 vmx->nested.nested_vmx_pinbased_ctls_high);
2657         vmx->nested.nested_vmx_pinbased_ctls_low |=
2658                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2659         vmx->nested.nested_vmx_pinbased_ctls_high &=
2660                 PIN_BASED_EXT_INTR_MASK |
2661                 PIN_BASED_NMI_EXITING |
2662                 PIN_BASED_VIRTUAL_NMIS;
2663         vmx->nested.nested_vmx_pinbased_ctls_high |=
2664                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2665                 PIN_BASED_VMX_PREEMPTION_TIMER;
2666         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2667                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2668                         PIN_BASED_POSTED_INTR;
2669
2670         /* exit controls */
2671         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2672                 vmx->nested.nested_vmx_exit_ctls_low,
2673                 vmx->nested.nested_vmx_exit_ctls_high);
2674         vmx->nested.nested_vmx_exit_ctls_low =
2675                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2676
2677         vmx->nested.nested_vmx_exit_ctls_high &=
2678 #ifdef CONFIG_X86_64
2679                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2680 #endif
2681                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2682         vmx->nested.nested_vmx_exit_ctls_high |=
2683                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2684                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2685                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2686
2687         if (kvm_mpx_supported())
2688                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2689
2690         /* We support free control of debug control saving. */
2691         vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2692
2693         /* entry controls */
2694         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2695                 vmx->nested.nested_vmx_entry_ctls_low,
2696                 vmx->nested.nested_vmx_entry_ctls_high);
2697         vmx->nested.nested_vmx_entry_ctls_low =
2698                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2699         vmx->nested.nested_vmx_entry_ctls_high &=
2700 #ifdef CONFIG_X86_64
2701                 VM_ENTRY_IA32E_MODE |
2702 #endif
2703                 VM_ENTRY_LOAD_IA32_PAT;
2704         vmx->nested.nested_vmx_entry_ctls_high |=
2705                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2706         if (kvm_mpx_supported())
2707                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2708
2709         /* We support free control of debug control loading. */
2710         vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2711
2712         /* cpu-based controls */
2713         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2714                 vmx->nested.nested_vmx_procbased_ctls_low,
2715                 vmx->nested.nested_vmx_procbased_ctls_high);
2716         vmx->nested.nested_vmx_procbased_ctls_low =
2717                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2718         vmx->nested.nested_vmx_procbased_ctls_high &=
2719                 CPU_BASED_VIRTUAL_INTR_PENDING |
2720                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2721                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2722                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2723                 CPU_BASED_CR3_STORE_EXITING |
2724 #ifdef CONFIG_X86_64
2725                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2726 #endif
2727                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2728                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2729                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2730                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2731                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2732         /*
2733          * We can allow some features even when not supported by the
2734          * hardware. For example, L1 can specify an MSR bitmap - and we
2735          * can use it to avoid exits to L1 - even when L0 runs L2
2736          * without MSR bitmaps.
2737          */
2738         vmx->nested.nested_vmx_procbased_ctls_high |=
2739                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2740                 CPU_BASED_USE_MSR_BITMAPS;
2741
2742         /* We support free control of CR3 access interception. */
2743         vmx->nested.nested_vmx_procbased_ctls_low &=
2744                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2745
2746         /* secondary cpu-based controls */
2747         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2748                 vmx->nested.nested_vmx_secondary_ctls_low,
2749                 vmx->nested.nested_vmx_secondary_ctls_high);
2750         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2751         vmx->nested.nested_vmx_secondary_ctls_high &=
2752                 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
2753                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2754                 SECONDARY_EXEC_RDTSCP |
2755                 SECONDARY_EXEC_DESC |
2756                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2757                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2758                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2759                 SECONDARY_EXEC_WBINVD_EXITING |
2760                 SECONDARY_EXEC_XSAVES;
2761
2762         if (enable_ept) {
2763                 /* nested EPT: emulate EPT also to L1 */
2764                 vmx->nested.nested_vmx_secondary_ctls_high |=
2765                         SECONDARY_EXEC_ENABLE_EPT;
2766                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2767                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2768                 if (cpu_has_vmx_ept_execute_only())
2769                         vmx->nested.nested_vmx_ept_caps |=
2770                                 VMX_EPT_EXECUTE_ONLY_BIT;
2771                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2772                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2773                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2774                         VMX_EPT_1GB_PAGE_BIT;
2775                 if (enable_ept_ad_bits) {
2776                         vmx->nested.nested_vmx_secondary_ctls_high |=
2777                                 SECONDARY_EXEC_ENABLE_PML;
2778                         vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2779                 }
2780         } else
2781                 vmx->nested.nested_vmx_ept_caps = 0;
2782
2783         /*
2784          * Old versions of KVM use the single-context version without
2785          * checking for support, so declare that it is supported even
2786          * though it is treated as global context.  The alternative is
2787          * not failing the single-context invvpid, and it is worse.
2788          */
2789         if (enable_vpid) {
2790                 vmx->nested.nested_vmx_secondary_ctls_high |=
2791                         SECONDARY_EXEC_ENABLE_VPID;
2792                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2793                         VMX_VPID_EXTENT_SUPPORTED_MASK;
2794         } else
2795                 vmx->nested.nested_vmx_vpid_caps = 0;
2796
2797         if (enable_unrestricted_guest)
2798                 vmx->nested.nested_vmx_secondary_ctls_high |=
2799                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2800
2801         /* miscellaneous data */
2802         rdmsr(MSR_IA32_VMX_MISC,
2803                 vmx->nested.nested_vmx_misc_low,
2804                 vmx->nested.nested_vmx_misc_high);
2805         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2806         vmx->nested.nested_vmx_misc_low |=
2807                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2808                 VMX_MISC_ACTIVITY_HLT;
2809         vmx->nested.nested_vmx_misc_high = 0;
2810
2811         /*
2812          * This MSR reports some information about VMX support. We
2813          * should return information about the VMX we emulate for the
2814          * guest, and the VMCS structure we give it - not about the
2815          * VMX support of the underlying hardware.
2816          */
2817         vmx->nested.nested_vmx_basic =
2818                 VMCS12_REVISION |
2819                 VMX_BASIC_TRUE_CTLS |
2820                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2821                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2822
2823         if (cpu_has_vmx_basic_inout())
2824                 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2825
2826         /*
2827          * These MSRs specify bits which the guest must keep fixed on
2828          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2829          * We picked the standard core2 setting.
2830          */
2831 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2832 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
2833         vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2834         vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2835
2836         /* These MSRs specify bits which the guest must keep fixed off. */
2837         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2838         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2839
2840         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2841         vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2842 }
2843
2844 /*
2845  * if fixed0[i] == 1: val[i] must be 1
2846  * if fixed1[i] == 0: val[i] must be 0
2847  */
2848 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2849 {
2850         return ((val & fixed1) | fixed0) == val;
2851 }
2852
2853 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2854 {
2855         return fixed_bits_valid(control, low, high);
2856 }
2857
2858 static inline u64 vmx_control_msr(u32 low, u32 high)
2859 {
2860         return low | ((u64)high << 32);
2861 }
2862
2863 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2864 {
2865         superset &= mask;
2866         subset &= mask;
2867
2868         return (superset | subset) == superset;
2869 }
2870
2871 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2872 {
2873         const u64 feature_and_reserved =
2874                 /* feature (except bit 48; see below) */
2875                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2876                 /* reserved */
2877                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2878         u64 vmx_basic = vmx->nested.nested_vmx_basic;
2879
2880         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2881                 return -EINVAL;
2882
2883         /*
2884          * KVM does not emulate a version of VMX that constrains physical
2885          * addresses of VMX structures (e.g. VMCS) to 32-bits.
2886          */
2887         if (data & BIT_ULL(48))
2888                 return -EINVAL;
2889
2890         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2891             vmx_basic_vmcs_revision_id(data))
2892                 return -EINVAL;
2893
2894         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2895                 return -EINVAL;
2896
2897         vmx->nested.nested_vmx_basic = data;
2898         return 0;
2899 }
2900
2901 static int
2902 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2903 {
2904         u64 supported;
2905         u32 *lowp, *highp;
2906
2907         switch (msr_index) {
2908         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2909                 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2910                 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2911                 break;
2912         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2913                 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2914                 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2915                 break;
2916         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2917                 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2918                 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2919                 break;
2920         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2921                 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2922                 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2923                 break;
2924         case MSR_IA32_VMX_PROCBASED_CTLS2:
2925                 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2926                 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2927                 break;
2928         default:
2929                 BUG();
2930         }
2931
2932         supported = vmx_control_msr(*lowp, *highp);
2933
2934         /* Check must-be-1 bits are still 1. */
2935         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2936                 return -EINVAL;
2937
2938         /* Check must-be-0 bits are still 0. */
2939         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2940                 return -EINVAL;
2941
2942         *lowp = data;
2943         *highp = data >> 32;
2944         return 0;
2945 }
2946
2947 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2948 {
2949         const u64 feature_and_reserved_bits =
2950                 /* feature */
2951                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2952                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2953                 /* reserved */
2954                 GENMASK_ULL(13, 9) | BIT_ULL(31);
2955         u64 vmx_misc;
2956
2957         vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2958                                    vmx->nested.nested_vmx_misc_high);
2959
2960         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2961                 return -EINVAL;
2962
2963         if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2964              PIN_BASED_VMX_PREEMPTION_TIMER) &&
2965             vmx_misc_preemption_timer_rate(data) !=
2966             vmx_misc_preemption_timer_rate(vmx_misc))
2967                 return -EINVAL;
2968
2969         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2970                 return -EINVAL;
2971
2972         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2973                 return -EINVAL;
2974
2975         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2976                 return -EINVAL;
2977
2978         vmx->nested.nested_vmx_misc_low = data;
2979         vmx->nested.nested_vmx_misc_high = data >> 32;
2980         return 0;
2981 }
2982
2983 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
2984 {
2985         u64 vmx_ept_vpid_cap;
2986
2987         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
2988                                            vmx->nested.nested_vmx_vpid_caps);
2989
2990         /* Every bit is either reserved or a feature bit. */
2991         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
2992                 return -EINVAL;
2993
2994         vmx->nested.nested_vmx_ept_caps = data;
2995         vmx->nested.nested_vmx_vpid_caps = data >> 32;
2996         return 0;
2997 }
2998
2999 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3000 {
3001         u64 *msr;
3002
3003         switch (msr_index) {
3004         case MSR_IA32_VMX_CR0_FIXED0:
3005                 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3006                 break;
3007         case MSR_IA32_VMX_CR4_FIXED0:
3008                 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3009                 break;
3010         default:
3011                 BUG();
3012         }
3013
3014         /*
3015          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3016          * must be 1 in the restored value.
3017          */
3018         if (!is_bitwise_subset(data, *msr, -1ULL))
3019                 return -EINVAL;
3020
3021         *msr = data;
3022         return 0;
3023 }
3024
3025 /*
3026  * Called when userspace is restoring VMX MSRs.
3027  *
3028  * Returns 0 on success, non-0 otherwise.
3029  */
3030 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3031 {
3032         struct vcpu_vmx *vmx = to_vmx(vcpu);
3033
3034         switch (msr_index) {
3035         case MSR_IA32_VMX_BASIC:
3036                 return vmx_restore_vmx_basic(vmx, data);
3037         case MSR_IA32_VMX_PINBASED_CTLS:
3038         case MSR_IA32_VMX_PROCBASED_CTLS:
3039         case MSR_IA32_VMX_EXIT_CTLS:
3040         case MSR_IA32_VMX_ENTRY_CTLS:
3041                 /*
3042                  * The "non-true" VMX capability MSRs are generated from the
3043                  * "true" MSRs, so we do not support restoring them directly.
3044                  *
3045                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3046                  * should restore the "true" MSRs with the must-be-1 bits
3047                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3048                  * DEFAULT SETTINGS".
3049                  */
3050                 return -EINVAL;
3051         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3052         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3053         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3054         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3055         case MSR_IA32_VMX_PROCBASED_CTLS2:
3056                 return vmx_restore_control_msr(vmx, msr_index, data);
3057         case MSR_IA32_VMX_MISC:
3058                 return vmx_restore_vmx_misc(vmx, data);
3059         case MSR_IA32_VMX_CR0_FIXED0:
3060         case MSR_IA32_VMX_CR4_FIXED0:
3061                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3062         case MSR_IA32_VMX_CR0_FIXED1:
3063         case MSR_IA32_VMX_CR4_FIXED1:
3064                 /*
3065                  * These MSRs are generated based on the vCPU's CPUID, so we
3066                  * do not support restoring them directly.
3067                  */
3068                 return -EINVAL;
3069         case MSR_IA32_VMX_EPT_VPID_CAP:
3070                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3071         case MSR_IA32_VMX_VMCS_ENUM:
3072                 vmx->nested.nested_vmx_vmcs_enum = data;
3073                 return 0;
3074         default:
3075                 /*
3076                  * The rest of the VMX capability MSRs do not support restore.
3077                  */
3078                 return -EINVAL;
3079         }
3080 }
3081
3082 /* Returns 0 on success, non-0 otherwise. */
3083 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3084 {
3085         struct vcpu_vmx *vmx = to_vmx(vcpu);
3086
3087         switch (msr_index) {
3088         case MSR_IA32_VMX_BASIC:
3089                 *pdata = vmx->nested.nested_vmx_basic;
3090                 break;
3091         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3092         case MSR_IA32_VMX_PINBASED_CTLS:
3093                 *pdata = vmx_control_msr(
3094                         vmx->nested.nested_vmx_pinbased_ctls_low,
3095                         vmx->nested.nested_vmx_pinbased_ctls_high);
3096                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3097                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3098                 break;
3099         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3100         case MSR_IA32_VMX_PROCBASED_CTLS:
3101                 *pdata = vmx_control_msr(
3102                         vmx->nested.nested_vmx_procbased_ctls_low,
3103                         vmx->nested.nested_vmx_procbased_ctls_high);
3104                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3105                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3106                 break;
3107         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3108         case MSR_IA32_VMX_EXIT_CTLS:
3109                 *pdata = vmx_control_msr(
3110                         vmx->nested.nested_vmx_exit_ctls_low,
3111                         vmx->nested.nested_vmx_exit_ctls_high);
3112                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3113                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3114                 break;
3115         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3116         case MSR_IA32_VMX_ENTRY_CTLS:
3117                 *pdata = vmx_control_msr(
3118                         vmx->nested.nested_vmx_entry_ctls_low,
3119                         vmx->nested.nested_vmx_entry_ctls_high);
3120                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3121                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3122                 break;
3123         case MSR_IA32_VMX_MISC:
3124                 *pdata = vmx_control_msr(
3125                         vmx->nested.nested_vmx_misc_low,
3126                         vmx->nested.nested_vmx_misc_high);
3127                 break;
3128         case MSR_IA32_VMX_CR0_FIXED0:
3129                 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3130                 break;
3131         case MSR_IA32_VMX_CR0_FIXED1:
3132                 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3133                 break;
3134         case MSR_IA32_VMX_CR4_FIXED0:
3135                 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3136                 break;
3137         case MSR_IA32_VMX_CR4_FIXED1:
3138                 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3139                 break;
3140         case MSR_IA32_VMX_VMCS_ENUM:
3141                 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3142                 break;
3143         case MSR_IA32_VMX_PROCBASED_CTLS2:
3144                 *pdata = vmx_control_msr(
3145                         vmx->nested.nested_vmx_secondary_ctls_low,
3146                         vmx->nested.nested_vmx_secondary_ctls_high);
3147                 break;
3148         case MSR_IA32_VMX_EPT_VPID_CAP:
3149                 *pdata = vmx->nested.nested_vmx_ept_caps |
3150                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3151                 break;
3152         default:
3153                 return 1;
3154         }
3155
3156         return 0;
3157 }
3158
3159 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3160                                                  uint64_t val)
3161 {
3162         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3163
3164         return !(val & ~valid_bits);
3165 }
3166
3167 /*
3168  * Reads an msr value (of 'msr_index') into 'pdata'.
3169  * Returns 0 on success, non-0 otherwise.
3170  * Assumes vcpu_load() was already called.
3171  */
3172 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3173 {
3174         struct shared_msr_entry *msr;
3175
3176         switch (msr_info->index) {
3177 #ifdef CONFIG_X86_64
3178         case MSR_FS_BASE:
3179                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3180                 break;
3181         case MSR_GS_BASE:
3182                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3183                 break;
3184         case MSR_KERNEL_GS_BASE:
3185                 vmx_load_host_state(to_vmx(vcpu));
3186                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3187                 break;
3188 #endif
3189         case MSR_EFER:
3190                 return kvm_get_msr_common(vcpu, msr_info);
3191         case MSR_IA32_TSC:
3192                 msr_info->data = guest_read_tsc(vcpu);
3193                 break;
3194         case MSR_IA32_SYSENTER_CS:
3195                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3196                 break;
3197         case MSR_IA32_SYSENTER_EIP:
3198                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3199                 break;
3200         case MSR_IA32_SYSENTER_ESP:
3201                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3202                 break;
3203         case MSR_IA32_BNDCFGS:
3204                 if (!kvm_mpx_supported() ||
3205                     (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3206                         return 1;
3207                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3208                 break;
3209         case MSR_IA32_MCG_EXT_CTL:
3210                 if (!msr_info->host_initiated &&
3211                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3212                       FEATURE_CONTROL_LMCE))
3213                         return 1;
3214                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3215                 break;
3216         case MSR_IA32_FEATURE_CONTROL:
3217                 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3218                 break;
3219         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3220                 if (!nested_vmx_allowed(vcpu))
3221                         return 1;
3222                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3223         case MSR_IA32_XSS:
3224                 if (!vmx_xsaves_supported())
3225                         return 1;
3226                 msr_info->data = vcpu->arch.ia32_xss;
3227                 break;
3228         case MSR_TSC_AUX:
3229                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3230                         return 1;
3231                 /* Otherwise falls through */
3232         default:
3233                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3234                 if (msr) {
3235                         msr_info->data = msr->data;
3236                         break;
3237                 }
3238                 return kvm_get_msr_common(vcpu, msr_info);
3239         }
3240
3241         return 0;
3242 }
3243
3244 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3245
3246 /*
3247  * Writes msr value into into the appropriate "register".
3248  * Returns 0 on success, non-0 otherwise.
3249  * Assumes vcpu_load() was already called.
3250  */
3251 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3252 {
3253         struct vcpu_vmx *vmx = to_vmx(vcpu);
3254         struct shared_msr_entry *msr;
3255         int ret = 0;
3256         u32 msr_index = msr_info->index;
3257         u64 data = msr_info->data;
3258
3259         switch (msr_index) {
3260         case MSR_EFER:
3261                 ret = kvm_set_msr_common(vcpu, msr_info);
3262                 break;
3263 #ifdef CONFIG_X86_64
3264         case MSR_FS_BASE:
3265                 vmx_segment_cache_clear(vmx);
3266                 vmcs_writel(GUEST_FS_BASE, data);
3267                 break;
3268         case MSR_GS_BASE:
3269                 vmx_segment_cache_clear(vmx);
3270                 vmcs_writel(GUEST_GS_BASE, data);
3271                 break;
3272         case MSR_KERNEL_GS_BASE:
3273                 vmx_load_host_state(vmx);
3274                 vmx->msr_guest_kernel_gs_base = data;
3275                 break;
3276 #endif
3277         case MSR_IA32_SYSENTER_CS:
3278                 vmcs_write32(GUEST_SYSENTER_CS, data);
3279                 break;
3280         case MSR_IA32_SYSENTER_EIP:
3281                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3282                 break;
3283         case MSR_IA32_SYSENTER_ESP:
3284                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3285                 break;
3286         case MSR_IA32_BNDCFGS:
3287                 if (!kvm_mpx_supported() ||
3288                     (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3289                         return 1;
3290                 if (is_noncanonical_address(data & PAGE_MASK) ||
3291                     (data & MSR_IA32_BNDCFGS_RSVD))
3292                         return 1;
3293                 vmcs_write64(GUEST_BNDCFGS, data);
3294                 break;
3295         case MSR_IA32_TSC:
3296                 kvm_write_tsc(vcpu, msr_info);
3297                 break;
3298         case MSR_IA32_CR_PAT:
3299                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3300                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3301                                 return 1;
3302                         vmcs_write64(GUEST_IA32_PAT, data);
3303                         vcpu->arch.pat = data;
3304                         break;
3305                 }
3306                 ret = kvm_set_msr_common(vcpu, msr_info);
3307                 break;
3308         case MSR_IA32_TSC_ADJUST:
3309                 ret = kvm_set_msr_common(vcpu, msr_info);
3310                 break;
3311         case MSR_IA32_MCG_EXT_CTL:
3312                 if ((!msr_info->host_initiated &&
3313                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3314                        FEATURE_CONTROL_LMCE)) ||
3315                     (data & ~MCG_EXT_CTL_LMCE_EN))
3316                         return 1;
3317                 vcpu->arch.mcg_ext_ctl = data;
3318                 break;
3319         case MSR_IA32_FEATURE_CONTROL:
3320                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3321                     (to_vmx(vcpu)->msr_ia32_feature_control &
3322                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3323                         return 1;
3324                 vmx->msr_ia32_feature_control = data;
3325                 if (msr_info->host_initiated && data == 0)
3326                         vmx_leave_nested(vcpu);
3327                 break;
3328         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3329                 if (!msr_info->host_initiated)
3330                         return 1; /* they are read-only */
3331                 if (!nested_vmx_allowed(vcpu))
3332                         return 1;
3333                 return vmx_set_vmx_msr(vcpu, msr_index, data);
3334         case MSR_IA32_XSS:
3335                 if (!vmx_xsaves_supported())
3336                         return 1;
3337                 /*
3338                  * The only supported bit as of Skylake is bit 8, but
3339                  * it is not supported on KVM.
3340                  */
3341                 if (data != 0)
3342                         return 1;
3343                 vcpu->arch.ia32_xss = data;
3344                 if (vcpu->arch.ia32_xss != host_xss)
3345                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3346                                 vcpu->arch.ia32_xss, host_xss);
3347                 else
3348                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3349                 break;
3350         case MSR_TSC_AUX:
3351                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3352                         return 1;
3353                 /* Check reserved bit, higher 32 bits should be zero */
3354                 if ((data >> 32) != 0)
3355                         return 1;
3356                 /* Otherwise falls through */
3357         default:
3358                 msr = find_msr_entry(vmx, msr_index);
3359                 if (msr) {
3360                         u64 old_msr_data = msr->data;
3361                         msr->data = data;
3362                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3363                                 preempt_disable();
3364                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3365                                                          msr->mask);
3366                                 preempt_enable();
3367                                 if (ret)
3368                                         msr->data = old_msr_data;
3369                         }
3370                         break;
3371                 }
3372                 ret = kvm_set_msr_common(vcpu, msr_info);
3373         }
3374
3375         return ret;
3376 }
3377
3378 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3379 {
3380         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3381         switch (reg) {
3382         case VCPU_REGS_RSP:
3383                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3384                 break;
3385         case VCPU_REGS_RIP:
3386                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3387                 break;
3388         case VCPU_EXREG_PDPTR:
3389                 if (enable_ept)
3390                         ept_save_pdptrs(vcpu);
3391                 break;
3392         default:
3393                 break;
3394         }
3395 }
3396
3397 static __init int cpu_has_kvm_support(void)
3398 {
3399         return cpu_has_vmx();
3400 }
3401
3402 static __init int vmx_disabled_by_bios(void)
3403 {
3404         u64 msr;
3405
3406         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3407         if (msr & FEATURE_CONTROL_LOCKED) {
3408                 /* launched w/ TXT and VMX disabled */
3409                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3410                         && tboot_enabled())
3411                         return 1;
3412                 /* launched w/o TXT and VMX only enabled w/ TXT */
3413                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3414                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3415                         && !tboot_enabled()) {
3416                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3417                                 "activate TXT before enabling KVM\n");
3418                         return 1;
3419                 }
3420                 /* launched w/o TXT and VMX disabled */
3421                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3422                         && !tboot_enabled())
3423                         return 1;
3424         }
3425
3426         return 0;
3427 }
3428
3429 static void kvm_cpu_vmxon(u64 addr)
3430 {
3431         cr4_set_bits(X86_CR4_VMXE);
3432         intel_pt_handle_vmx(1);
3433
3434         asm volatile (ASM_VMX_VMXON_RAX
3435                         : : "a"(&addr), "m"(addr)
3436                         : "memory", "cc");
3437 }
3438
3439 static int hardware_enable(void)
3440 {
3441         int cpu = raw_smp_processor_id();
3442         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3443         u64 old, test_bits;
3444
3445         if (cr4_read_shadow() & X86_CR4_VMXE)
3446                 return -EBUSY;
3447
3448         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3449         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3450         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3451
3452         /*
3453          * Now we can enable the vmclear operation in kdump
3454          * since the loaded_vmcss_on_cpu list on this cpu
3455          * has been initialized.
3456          *
3457          * Though the cpu is not in VMX operation now, there
3458          * is no problem to enable the vmclear operation
3459          * for the loaded_vmcss_on_cpu list is empty!
3460          */
3461         crash_enable_local_vmclear(cpu);
3462
3463         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3464
3465         test_bits = FEATURE_CONTROL_LOCKED;
3466         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3467         if (tboot_enabled())
3468                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3469
3470         if ((old & test_bits) != test_bits) {
3471                 /* enable and lock */
3472                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3473         }
3474         kvm_cpu_vmxon(phys_addr);
3475         ept_sync_global();
3476
3477         return 0;
3478 }
3479
3480 static void vmclear_local_loaded_vmcss(void)
3481 {
3482         int cpu = raw_smp_processor_id();
3483         struct loaded_vmcs *v, *n;
3484
3485         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3486                                  loaded_vmcss_on_cpu_link)
3487                 __loaded_vmcs_clear(v);
3488 }
3489
3490
3491 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3492  * tricks.
3493  */
3494 static void kvm_cpu_vmxoff(void)
3495 {
3496         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3497
3498         intel_pt_handle_vmx(0);
3499         cr4_clear_bits(X86_CR4_VMXE);
3500 }
3501
3502 static void hardware_disable(void)
3503 {
3504         vmclear_local_loaded_vmcss();
3505         kvm_cpu_vmxoff();
3506 }
3507
3508 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3509                                       u32 msr, u32 *result)
3510 {
3511         u32 vmx_msr_low, vmx_msr_high;
3512         u32 ctl = ctl_min | ctl_opt;
3513
3514         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3515
3516         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3517         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3518
3519         /* Ensure minimum (required) set of control bits are supported. */
3520         if (ctl_min & ~ctl)
3521                 return -EIO;
3522
3523         *result = ctl;
3524         return 0;
3525 }
3526
3527 static __init bool allow_1_setting(u32 msr, u32 ctl)
3528 {
3529         u32 vmx_msr_low, vmx_msr_high;
3530
3531         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3532         return vmx_msr_high & ctl;
3533 }
3534
3535 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3536 {
3537         u32 vmx_msr_low, vmx_msr_high;
3538         u32 min, opt, min2, opt2;
3539         u32 _pin_based_exec_control = 0;
3540         u32 _cpu_based_exec_control = 0;
3541         u32 _cpu_based_2nd_exec_control = 0;
3542         u32 _vmexit_control = 0;
3543         u32 _vmentry_control = 0;
3544
3545         min = CPU_BASED_HLT_EXITING |
3546 #ifdef CONFIG_X86_64
3547               CPU_BASED_CR8_LOAD_EXITING |
3548               CPU_BASED_CR8_STORE_EXITING |
3549 #endif
3550               CPU_BASED_CR3_LOAD_EXITING |
3551               CPU_BASED_CR3_STORE_EXITING |
3552               CPU_BASED_USE_IO_BITMAPS |
3553               CPU_BASED_MOV_DR_EXITING |
3554               CPU_BASED_USE_TSC_OFFSETING |
3555               CPU_BASED_INVLPG_EXITING |
3556               CPU_BASED_RDPMC_EXITING;
3557
3558         if (!kvm_mwait_in_guest())
3559                 min |= CPU_BASED_MWAIT_EXITING |
3560                         CPU_BASED_MONITOR_EXITING;
3561
3562         opt = CPU_BASED_TPR_SHADOW |
3563               CPU_BASED_USE_MSR_BITMAPS |
3564               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3565         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3566                                 &_cpu_based_exec_control) < 0)
3567                 return -EIO;
3568 #ifdef CONFIG_X86_64
3569         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3570                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3571                                            ~CPU_BASED_CR8_STORE_EXITING;
3572 #endif
3573         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3574                 min2 = 0;
3575                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3576                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3577                         SECONDARY_EXEC_WBINVD_EXITING |
3578                         SECONDARY_EXEC_ENABLE_VPID |
3579                         SECONDARY_EXEC_ENABLE_EPT |
3580                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3581                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3582                         SECONDARY_EXEC_RDTSCP |
3583                         SECONDARY_EXEC_ENABLE_INVPCID |
3584                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3585                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3586                         SECONDARY_EXEC_SHADOW_VMCS |
3587                         SECONDARY_EXEC_XSAVES |
3588                         SECONDARY_EXEC_ENABLE_PML |
3589                         SECONDARY_EXEC_TSC_SCALING;
3590                 if (adjust_vmx_controls(min2, opt2,
3591                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3592                                         &_cpu_based_2nd_exec_control) < 0)
3593                         return -EIO;
3594         }
3595 #ifndef CONFIG_X86_64
3596         if (!(_cpu_based_2nd_exec_control &
3597                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3598                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3599 #endif
3600
3601         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3602                 _cpu_based_2nd_exec_control &= ~(
3603                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3604                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3605                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3606
3607         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3608                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3609                    enabled */
3610                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3611                                              CPU_BASED_CR3_STORE_EXITING |
3612                                              CPU_BASED_INVLPG_EXITING);
3613                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3614                       vmx_capability.ept, vmx_capability.vpid);
3615         }
3616
3617         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3618 #ifdef CONFIG_X86_64
3619         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3620 #endif
3621         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3622                 VM_EXIT_CLEAR_BNDCFGS;
3623         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3624                                 &_vmexit_control) < 0)
3625                 return -EIO;
3626
3627         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3628                 PIN_BASED_VIRTUAL_NMIS;
3629         opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3630         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3631                                 &_pin_based_exec_control) < 0)
3632                 return -EIO;
3633
3634         if (cpu_has_broken_vmx_preemption_timer())
3635                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3636         if (!(_cpu_based_2nd_exec_control &
3637                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3638                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3639
3640         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3641         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3642         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3643                                 &_vmentry_control) < 0)
3644                 return -EIO;
3645
3646         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3647
3648         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3649         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3650                 return -EIO;
3651
3652 #ifdef CONFIG_X86_64
3653         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3654         if (vmx_msr_high & (1u<<16))
3655                 return -EIO;
3656 #endif
3657
3658         /* Require Write-Back (WB) memory type for VMCS accesses. */
3659         if (((vmx_msr_high >> 18) & 15) != 6)
3660                 return -EIO;
3661
3662         vmcs_conf->size = vmx_msr_high & 0x1fff;
3663         vmcs_conf->order = get_order(vmcs_conf->size);
3664         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3665         vmcs_conf->revision_id = vmx_msr_low;
3666
3667         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3668         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3669         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3670         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3671         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3672
3673         cpu_has_load_ia32_efer =
3674                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3675                                 VM_ENTRY_LOAD_IA32_EFER)
3676                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3677                                    VM_EXIT_LOAD_IA32_EFER);
3678
3679         cpu_has_load_perf_global_ctrl =
3680                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3681                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3682                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3683                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3684
3685         /*
3686          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3687          * but due to errata below it can't be used. Workaround is to use
3688          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3689          *
3690          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3691          *
3692          * AAK155             (model 26)
3693          * AAP115             (model 30)
3694          * AAT100             (model 37)
3695          * BC86,AAY89,BD102   (model 44)
3696          * BA97               (model 46)
3697          *
3698          */
3699         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3700                 switch (boot_cpu_data.x86_model) {
3701                 case 26:
3702                 case 30:
3703                 case 37:
3704                 case 44:
3705                 case 46:
3706                         cpu_has_load_perf_global_ctrl = false;
3707                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3708                                         "does not work properly. Using workaround\n");
3709                         break;
3710                 default:
3711                         break;
3712                 }
3713         }
3714
3715         if (boot_cpu_has(X86_FEATURE_XSAVES))
3716                 rdmsrl(MSR_IA32_XSS, host_xss);
3717
3718         return 0;
3719 }
3720
3721 static struct vmcs *alloc_vmcs_cpu(int cpu)
3722 {
3723         int node = cpu_to_node(cpu);
3724         struct page *pages;
3725         struct vmcs *vmcs;
3726
3727         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3728         if (!pages)
3729                 return NULL;
3730         vmcs = page_address(pages);
3731         memset(vmcs, 0, vmcs_config.size);
3732         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3733         return vmcs;
3734 }
3735
3736 static struct vmcs *alloc_vmcs(void)
3737 {
3738         return alloc_vmcs_cpu(raw_smp_processor_id());
3739 }
3740
3741 static void free_vmcs(struct vmcs *vmcs)
3742 {
3743         free_pages((unsigned long)vmcs, vmcs_config.order);
3744 }
3745
3746 /*
3747  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3748  */
3749 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3750 {
3751         if (!loaded_vmcs->vmcs)
3752                 return;
3753         loaded_vmcs_clear(loaded_vmcs);
3754         free_vmcs(loaded_vmcs->vmcs);
3755         loaded_vmcs->vmcs = NULL;
3756         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3757 }
3758
3759 static void free_kvm_area(void)
3760 {
3761         int cpu;
3762
3763         for_each_possible_cpu(cpu) {
3764                 free_vmcs(per_cpu(vmxarea, cpu));
3765                 per_cpu(vmxarea, cpu) = NULL;
3766         }
3767 }
3768
3769 enum vmcs_field_type {
3770         VMCS_FIELD_TYPE_U16 = 0,
3771         VMCS_FIELD_TYPE_U64 = 1,
3772         VMCS_FIELD_TYPE_U32 = 2,
3773         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3774 };
3775
3776 static inline int vmcs_field_type(unsigned long field)
3777 {
3778         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
3779                 return VMCS_FIELD_TYPE_U32;
3780         return (field >> 13) & 0x3 ;
3781 }
3782
3783 static inline int vmcs_field_readonly(unsigned long field)
3784 {
3785         return (((field >> 10) & 0x3) == 1);
3786 }
3787
3788 static void init_vmcs_shadow_fields(void)
3789 {
3790         int i, j;
3791
3792         /* No checks for read only fields yet */
3793
3794         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3795                 switch (shadow_read_write_fields[i]) {
3796                 case GUEST_BNDCFGS:
3797                         if (!kvm_mpx_supported())
3798                                 continue;
3799                         break;
3800                 default:
3801                         break;
3802                 }
3803
3804                 if (j < i)
3805                         shadow_read_write_fields[j] =
3806                                 shadow_read_write_fields[i];
3807                 j++;
3808         }
3809         max_shadow_read_write_fields = j;
3810
3811         /* shadowed fields guest access without vmexit */
3812         for (i = 0; i < max_shadow_read_write_fields; i++) {
3813                 unsigned long field = shadow_read_write_fields[i];
3814
3815                 clear_bit(field, vmx_vmwrite_bitmap);
3816                 clear_bit(field, vmx_vmread_bitmap);
3817                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3818                         clear_bit(field + 1, vmx_vmwrite_bitmap);
3819                         clear_bit(field + 1, vmx_vmread_bitmap);
3820                 }
3821         }
3822         for (i = 0; i < max_shadow_read_only_fields; i++) {
3823                 unsigned long field = shadow_read_only_fields[i];
3824
3825                 clear_bit(field, vmx_vmread_bitmap);
3826                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3827                         clear_bit(field + 1, vmx_vmread_bitmap);
3828         }
3829 }
3830
3831 static __init int alloc_kvm_area(void)
3832 {
3833         int cpu;
3834
3835         for_each_possible_cpu(cpu) {
3836                 struct vmcs *vmcs;
3837
3838                 vmcs = alloc_vmcs_cpu(cpu);
3839                 if (!vmcs) {
3840                         free_kvm_area();
3841                         return -ENOMEM;
3842                 }
3843
3844                 per_cpu(vmxarea, cpu) = vmcs;
3845         }
3846         return 0;
3847 }
3848
3849 static bool emulation_required(struct kvm_vcpu *vcpu)
3850 {
3851         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3852 }
3853
3854 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3855                 struct kvm_segment *save)
3856 {
3857         if (!emulate_invalid_guest_state) {
3858                 /*
3859                  * CS and SS RPL should be equal during guest entry according
3860                  * to VMX spec, but in reality it is not always so. Since vcpu
3861                  * is in the middle of the transition from real mode to
3862                  * protected mode it is safe to assume that RPL 0 is a good
3863                  * default value.
3864                  */
3865                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3866                         save->selector &= ~SEGMENT_RPL_MASK;
3867                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3868                 save->s = 1;
3869         }
3870         vmx_set_segment(vcpu, save, seg);
3871 }
3872
3873 static void enter_pmode(struct kvm_vcpu *vcpu)
3874 {
3875         unsigned long flags;
3876         struct vcpu_vmx *vmx = to_vmx(vcpu);
3877
3878         /*
3879          * Update real mode segment cache. It may be not up-to-date if sement
3880          * register was written while vcpu was in a guest mode.
3881          */
3882         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3883         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3884         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3885         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3886         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3887         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3888
3889         vmx->rmode.vm86_active = 0;
3890
3891         vmx_segment_cache_clear(vmx);
3892
3893         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3894
3895         flags = vmcs_readl(GUEST_RFLAGS);
3896         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3897         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3898         vmcs_writel(GUEST_RFLAGS, flags);
3899
3900         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3901                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3902
3903         update_exception_bitmap(vcpu);
3904
3905         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3906         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3907         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3908         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3909         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3910         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3911 }
3912
3913 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3914 {
3915         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3916         struct kvm_segment var = *save;
3917
3918         var.dpl = 0x3;
3919         if (seg == VCPU_SREG_CS)
3920                 var.type = 0x3;
3921
3922         if (!emulate_invalid_guest_state) {
3923                 var.selector = var.base >> 4;
3924                 var.base = var.base & 0xffff0;
3925                 var.limit = 0xffff;
3926                 var.g = 0;
3927                 var.db = 0;
3928                 var.present = 1;
3929                 var.s = 1;
3930                 var.l = 0;
3931                 var.unusable = 0;
3932                 var.type = 0x3;
3933                 var.avl = 0;
3934                 if (save->base & 0xf)
3935                         printk_once(KERN_WARNING "kvm: segment base is not "
3936                                         "paragraph aligned when entering "
3937                                         "protected mode (seg=%d)", seg);
3938         }
3939
3940         vmcs_write16(sf->selector, var.selector);
3941         vmcs_writel(sf->base, var.base);
3942         vmcs_write32(sf->limit, var.limit);
3943         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3944 }
3945
3946 static void enter_rmode(struct kvm_vcpu *vcpu)
3947 {
3948         unsigned long flags;
3949         struct vcpu_vmx *vmx = to_vmx(vcpu);
3950
3951         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3952         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3953         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3954         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3955         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3956         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3957         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3958
3959         vmx->rmode.vm86_active = 1;
3960
3961         /*
3962          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3963          * vcpu. Warn the user that an update is overdue.
3964          */
3965         if (!vcpu->kvm->arch.tss_addr)
3966                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3967                              "called before entering vcpu\n");
3968
3969         vmx_segment_cache_clear(vmx);
3970
3971         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3972         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3973         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3974
3975         flags = vmcs_readl(GUEST_RFLAGS);
3976         vmx->rmode.save_rflags = flags;
3977
3978         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3979
3980         vmcs_writel(GUEST_RFLAGS, flags);
3981         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3982         update_exception_bitmap(vcpu);
3983
3984         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3985         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3986         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3987         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3988         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3989         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3990
3991         kvm_mmu_reset_context(vcpu);
3992 }
3993
3994 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3995 {
3996         struct vcpu_vmx *vmx = to_vmx(vcpu);
3997         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3998
3999         if (!msr)
4000                 return;
4001
4002         /*
4003          * Force kernel_gs_base reloading before EFER changes, as control
4004          * of this msr depends on is_long_mode().
4005          */
4006         vmx_load_host_state(to_vmx(vcpu));
4007         vcpu->arch.efer = efer;
4008         if (efer & EFER_LMA) {
4009                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4010                 msr->data = efer;
4011         } else {
4012                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4013
4014                 msr->data = efer & ~EFER_LME;
4015         }
4016         setup_msrs(vmx);
4017 }
4018
4019 #ifdef CONFIG_X86_64
4020
4021 static void enter_lmode(struct kvm_vcpu *vcpu)
4022 {
4023         u32 guest_tr_ar;
4024
4025         vmx_segment_cache_clear(to_vmx(vcpu));
4026
4027         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4028         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4029                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4030                                      __func__);
4031                 vmcs_write32(GUEST_TR_AR_BYTES,
4032                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4033                              | VMX_AR_TYPE_BUSY_64_TSS);
4034         }
4035         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4036 }
4037
4038 static void exit_lmode(struct kvm_vcpu *vcpu)
4039 {
4040         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4041         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4042 }
4043
4044 #endif
4045
4046 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4047 {
4048         if (enable_ept) {
4049                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4050                         return;
4051                 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4052         } else {
4053                 vpid_sync_context(vpid);
4054         }
4055 }
4056
4057 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4058 {
4059         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4060 }
4061
4062 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4063 {
4064         if (enable_ept)
4065                 vmx_flush_tlb(vcpu);
4066 }
4067
4068 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4069 {
4070         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4071
4072         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4073         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4074 }
4075
4076 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4077 {
4078         if (enable_ept && is_paging(vcpu))
4079                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4080         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4081 }
4082
4083 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4084 {
4085         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4086
4087         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4088         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4089 }
4090
4091 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4092 {
4093         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4094
4095         if (!test_bit(VCPU_EXREG_PDPTR,
4096                       (unsigned long *)&vcpu->arch.regs_dirty))
4097                 return;
4098
4099         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4100                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4101                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4102                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4103                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4104         }
4105 }
4106
4107 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4108 {
4109         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4110
4111         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4112                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4113                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4114                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4115                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4116         }
4117
4118         __set_bit(VCPU_EXREG_PDPTR,
4119                   (unsigned long *)&vcpu->arch.regs_avail);
4120         __set_bit(VCPU_EXREG_PDPTR,
4121                   (unsigned long *)&vcpu->arch.regs_dirty);
4122 }
4123
4124 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4125 {
4126         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4127         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4128         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4129
4130         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4131                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4132             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4133                 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4134
4135         return fixed_bits_valid(val, fixed0, fixed1);
4136 }
4137
4138 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4139 {
4140         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4141         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4142
4143         return fixed_bits_valid(val, fixed0, fixed1);
4144 }
4145
4146 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4147 {
4148         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4149         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4150
4151         return fixed_bits_valid(val, fixed0, fixed1);
4152 }
4153
4154 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4155 #define nested_guest_cr4_valid  nested_cr4_valid
4156 #define nested_host_cr4_valid   nested_cr4_valid
4157
4158 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4159
4160 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4161                                         unsigned long cr0,
4162                                         struct kvm_vcpu *vcpu)
4163 {
4164         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4165                 vmx_decache_cr3(vcpu);
4166         if (!(cr0 & X86_CR0_PG)) {
4167                 /* From paging/starting to nonpaging */
4168                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4169                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4170                              (CPU_BASED_CR3_LOAD_EXITING |
4171                               CPU_BASED_CR3_STORE_EXITING));
4172                 vcpu->arch.cr0 = cr0;
4173                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4174         } else if (!is_paging(vcpu)) {
4175                 /* From nonpaging to paging */
4176                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4177                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4178                              ~(CPU_BASED_CR3_LOAD_EXITING |
4179                                CPU_BASED_CR3_STORE_EXITING));
4180                 vcpu->arch.cr0 = cr0;
4181                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4182         }
4183
4184         if (!(cr0 & X86_CR0_WP))
4185                 *hw_cr0 &= ~X86_CR0_WP;
4186 }
4187
4188 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4189 {
4190         struct vcpu_vmx *vmx = to_vmx(vcpu);
4191         unsigned long hw_cr0;
4192
4193         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4194         if (enable_unrestricted_guest)
4195                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4196         else {
4197                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4198
4199                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4200                         enter_pmode(vcpu);
4201
4202                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4203                         enter_rmode(vcpu);
4204         }
4205
4206 #ifdef CONFIG_X86_64
4207         if (vcpu->arch.efer & EFER_LME) {
4208                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4209                         enter_lmode(vcpu);
4210                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4211                         exit_lmode(vcpu);
4212         }
4213 #endif
4214
4215         if (enable_ept)
4216                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4217
4218         vmcs_writel(CR0_READ_SHADOW, cr0);
4219         vmcs_writel(GUEST_CR0, hw_cr0);
4220         vcpu->arch.cr0 = cr0;
4221
4222         /* depends on vcpu->arch.cr0 to be set to a new value */
4223         vmx->emulation_required = emulation_required(vcpu);
4224 }
4225
4226 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4227 {
4228         u64 eptp;
4229
4230         /* TODO write the value reading from MSR */
4231         eptp = VMX_EPT_DEFAULT_MT |
4232                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4233         if (enable_ept_ad_bits &&
4234             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4235                 eptp |= VMX_EPT_AD_ENABLE_BIT;
4236         eptp |= (root_hpa & PAGE_MASK);
4237
4238         return eptp;
4239 }
4240
4241 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4242 {
4243         unsigned long guest_cr3;
4244         u64 eptp;
4245
4246         guest_cr3 = cr3;
4247         if (enable_ept) {
4248                 eptp = construct_eptp(vcpu, cr3);
4249                 vmcs_write64(EPT_POINTER, eptp);
4250                 if (is_paging(vcpu) || is_guest_mode(vcpu))
4251                         guest_cr3 = kvm_read_cr3(vcpu);
4252                 else
4253                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4254                 ept_load_pdptrs(vcpu);
4255         }
4256
4257         vmx_flush_tlb(vcpu);
4258         vmcs_writel(GUEST_CR3, guest_cr3);
4259 }
4260
4261 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4262 {
4263         /*
4264          * Pass through host's Machine Check Enable value to hw_cr4, which
4265          * is in force while we are in guest mode.  Do not let guests control
4266          * this bit, even if host CR4.MCE == 0.
4267          */
4268         unsigned long hw_cr4 =
4269                 (cr4_read_shadow() & X86_CR4_MCE) |
4270                 (cr4 & ~X86_CR4_MCE) |
4271                 (to_vmx(vcpu)->rmode.vm86_active ?
4272                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4273
4274         if (cr4 & X86_CR4_VMXE) {
4275                 /*
4276                  * To use VMXON (and later other VMX instructions), a guest
4277                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
4278                  * So basically the check on whether to allow nested VMX
4279                  * is here.
4280                  */
4281                 if (!nested_vmx_allowed(vcpu))
4282                         return 1;
4283         }
4284
4285         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4286                 return 1;
4287
4288         vcpu->arch.cr4 = cr4;
4289         if (enable_ept) {
4290                 if (!is_paging(vcpu)) {
4291                         hw_cr4 &= ~X86_CR4_PAE;
4292                         hw_cr4 |= X86_CR4_PSE;
4293                 } else if (!(cr4 & X86_CR4_PAE)) {
4294                         hw_cr4 &= ~X86_CR4_PAE;
4295                 }
4296         }
4297
4298         if (!enable_unrestricted_guest && !is_paging(vcpu))
4299                 /*
4300                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4301                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4302                  * to be manually disabled when guest switches to non-paging
4303                  * mode.
4304                  *
4305                  * If !enable_unrestricted_guest, the CPU is always running
4306                  * with CR0.PG=1 and CR4 needs to be modified.
4307                  * If enable_unrestricted_guest, the CPU automatically
4308                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4309                  */
4310                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4311
4312         vmcs_writel(CR4_READ_SHADOW, cr4);
4313         vmcs_writel(GUEST_CR4, hw_cr4);
4314         return 0;
4315 }
4316
4317 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4318                             struct kvm_segment *var, int seg)
4319 {
4320         struct vcpu_vmx *vmx = to_vmx(vcpu);
4321         u32 ar;
4322
4323         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4324                 *var = vmx->rmode.segs[seg];
4325                 if (seg == VCPU_SREG_TR
4326                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4327                         return;
4328                 var->base = vmx_read_guest_seg_base(vmx, seg);
4329                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4330                 return;
4331         }
4332         var->base = vmx_read_guest_seg_base(vmx, seg);
4333         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4334         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4335         ar = vmx_read_guest_seg_ar(vmx, seg);
4336         var->unusable = (ar >> 16) & 1;
4337         var->type = ar & 15;
4338         var->s = (ar >> 4) & 1;
4339         var->dpl = (ar >> 5) & 3;
4340         /*
4341          * Some userspaces do not preserve unusable property. Since usable
4342          * segment has to be present according to VMX spec we can use present
4343          * property to amend userspace bug by making unusable segment always
4344          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4345          * segment as unusable.
4346          */
4347         var->present = !var->unusable;
4348         var->avl = (ar >> 12) & 1;
4349         var->l = (ar >> 13) & 1;
4350         var->db = (ar >> 14) & 1;
4351         var->g = (ar >> 15) & 1;
4352 }
4353
4354 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4355 {
4356         struct kvm_segment s;
4357
4358         if (to_vmx(vcpu)->rmode.vm86_active) {
4359                 vmx_get_segment(vcpu, &s, seg);
4360                 return s.base;
4361         }
4362         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4363 }
4364
4365 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4366 {
4367         struct vcpu_vmx *vmx = to_vmx(vcpu);
4368
4369         if (unlikely(vmx->rmode.vm86_active))
4370                 return 0;
4371         else {
4372                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4373                 return VMX_AR_DPL(ar);
4374         }
4375 }
4376
4377 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4378 {
4379         u32 ar;
4380
4381         if (var->unusable || !var->present)
4382                 ar = 1 << 16;
4383         else {
4384                 ar = var->type & 15;
4385                 ar |= (var->s & 1) << 4;
4386                 ar |= (var->dpl & 3) << 5;
4387                 ar |= (var->present & 1) << 7;
4388                 ar |= (var->avl & 1) << 12;
4389                 ar |= (var->l & 1) << 13;
4390                 ar |= (var->db & 1) << 14;
4391                 ar |= (var->g & 1) << 15;
4392         }
4393
4394         return ar;
4395 }
4396
4397 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4398                             struct kvm_segment *var, int seg)
4399 {
4400         struct vcpu_vmx *vmx = to_vmx(vcpu);
4401         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4402
4403         vmx_segment_cache_clear(vmx);
4404
4405         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4406                 vmx->rmode.segs[seg] = *var;
4407                 if (seg == VCPU_SREG_TR)
4408                         vmcs_write16(sf->selector, var->selector);
4409                 else if (var->s)
4410                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4411                 goto out;
4412         }
4413
4414         vmcs_writel(sf->base, var->base);
4415         vmcs_write32(sf->limit, var->limit);
4416         vmcs_write16(sf->selector, var->selector);
4417
4418         /*
4419          *   Fix the "Accessed" bit in AR field of segment registers for older
4420          * qemu binaries.
4421          *   IA32 arch specifies that at the time of processor reset the
4422          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4423          * is setting it to 0 in the userland code. This causes invalid guest
4424          * state vmexit when "unrestricted guest" mode is turned on.
4425          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4426          * tree. Newer qemu binaries with that qemu fix would not need this
4427          * kvm hack.
4428          */
4429         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4430                 var->type |= 0x1; /* Accessed */
4431
4432         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4433
4434 out:
4435         vmx->emulation_required = emulation_required(vcpu);
4436 }
4437
4438 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4439 {
4440         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4441
4442         *db = (ar >> 14) & 1;
4443         *l = (ar >> 13) & 1;
4444 }
4445
4446 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4447 {
4448         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4449         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4450 }
4451
4452 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4453 {
4454         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4455         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4456 }
4457
4458 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4459 {
4460         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4461         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4462 }
4463
4464 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4465 {
4466         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4467         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4468 }
4469
4470 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4471 {
4472         struct kvm_segment var;
4473         u32 ar;
4474
4475         vmx_get_segment(vcpu, &var, seg);
4476         var.dpl = 0x3;
4477         if (seg == VCPU_SREG_CS)
4478                 var.type = 0x3;
4479         ar = vmx_segment_access_rights(&var);
4480
4481         if (var.base != (var.selector << 4))
4482                 return false;
4483         if (var.limit != 0xffff)
4484                 return false;
4485         if (ar != 0xf3)
4486                 return false;
4487
4488         return true;
4489 }
4490
4491 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4492 {
4493         struct kvm_segment cs;
4494         unsigned int cs_rpl;
4495
4496         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4497         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4498
4499         if (cs.unusable)
4500                 return false;
4501         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4502                 return false;
4503         if (!cs.s)
4504                 return false;
4505         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4506                 if (cs.dpl > cs_rpl)
4507                         return false;
4508         } else {
4509                 if (cs.dpl != cs_rpl)
4510                         return false;
4511         }
4512         if (!cs.present)
4513                 return false;
4514
4515         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4516         return true;
4517 }
4518
4519 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4520 {
4521         struct kvm_segment ss;
4522         unsigned int ss_rpl;
4523
4524         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4525         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4526
4527         if (ss.unusable)
4528                 return true;
4529         if (ss.type != 3 && ss.type != 7)
4530                 return false;
4531         if (!ss.s)
4532                 return false;
4533         if (ss.dpl != ss_rpl) /* DPL != RPL */
4534                 return false;
4535         if (!ss.present)
4536                 return false;
4537
4538         return true;
4539 }
4540
4541 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4542 {
4543         struct kvm_segment var;
4544         unsigned int rpl;
4545
4546         vmx_get_segment(vcpu, &var, seg);
4547         rpl = var.selector & SEGMENT_RPL_MASK;
4548
4549         if (var.unusable)
4550                 return true;
4551         if (!var.s)
4552                 return false;
4553         if (!var.present)
4554                 return false;
4555         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4556                 if (var.dpl < rpl) /* DPL < RPL */
4557                         return false;
4558         }
4559
4560         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4561          * rights flags
4562          */
4563         return true;
4564 }
4565
4566 static bool tr_valid(struct kvm_vcpu *vcpu)
4567 {
4568         struct kvm_segment tr;
4569
4570         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4571
4572         if (tr.unusable)
4573                 return false;
4574         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4575                 return false;
4576         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4577                 return false;
4578         if (!tr.present)
4579                 return false;
4580
4581         return true;
4582 }
4583
4584 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4585 {
4586         struct kvm_segment ldtr;
4587
4588         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4589
4590         if (ldtr.unusable)
4591                 return true;
4592         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4593                 return false;
4594         if (ldtr.type != 2)
4595                 return false;
4596         if (!ldtr.present)
4597                 return false;
4598
4599         return true;
4600 }
4601
4602 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4603 {
4604         struct kvm_segment cs, ss;
4605
4606         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4607         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4608
4609         return ((cs.selector & SEGMENT_RPL_MASK) ==
4610                  (ss.selector & SEGMENT_RPL_MASK));
4611 }
4612
4613 /*
4614  * Check if guest state is valid. Returns true if valid, false if
4615  * not.
4616  * We assume that registers are always usable
4617  */
4618 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4619 {
4620         if (enable_unrestricted_guest)
4621                 return true;
4622
4623         /* real mode guest state checks */
4624         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4625                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4626                         return false;
4627                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4628                         return false;
4629                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4630                         return false;
4631                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4632                         return false;
4633                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4634                         return false;
4635                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4636                         return false;
4637         } else {
4638         /* protected mode guest state checks */
4639                 if (!cs_ss_rpl_check(vcpu))
4640                         return false;
4641                 if (!code_segment_valid(vcpu))
4642                         return false;
4643                 if (!stack_segment_valid(vcpu))
4644                         return false;
4645                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4646                         return false;
4647                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4648                         return false;
4649                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4650                         return false;
4651                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4652                         return false;
4653                 if (!tr_valid(vcpu))
4654                         return false;
4655                 if (!ldtr_valid(vcpu))
4656                         return false;
4657         }
4658         /* TODO:
4659          * - Add checks on RIP
4660          * - Add checks on RFLAGS
4661          */
4662
4663         return true;
4664 }
4665
4666 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4667 {
4668         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4669 }
4670
4671 static int init_rmode_tss(struct kvm *kvm)
4672 {
4673         gfn_t fn;
4674         u16 data = 0;
4675         int idx, r;
4676
4677         idx = srcu_read_lock(&kvm->srcu);
4678         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4679         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4680         if (r < 0)
4681                 goto out;
4682         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4683         r = kvm_write_guest_page(kvm, fn++, &data,
4684                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4685         if (r < 0)
4686                 goto out;
4687         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4688         if (r < 0)
4689                 goto out;
4690         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4691         if (r < 0)
4692                 goto out;
4693         data = ~0;
4694         r = kvm_write_guest_page(kvm, fn, &data,
4695                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4696                                  sizeof(u8));
4697 out:
4698         srcu_read_unlock(&kvm->srcu, idx);
4699         return r;
4700 }
4701
4702 static int init_rmode_identity_map(struct kvm *kvm)
4703 {
4704         int i, idx, r = 0;
4705         kvm_pfn_t identity_map_pfn;
4706         u32 tmp;
4707
4708         if (!enable_ept)
4709                 return 0;
4710
4711         /* Protect kvm->arch.ept_identity_pagetable_done. */
4712         mutex_lock(&kvm->slots_lock);
4713
4714         if (likely(kvm->arch.ept_identity_pagetable_done))
4715                 goto out2;
4716
4717         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4718
4719         r = alloc_identity_pagetable(kvm);
4720         if (r < 0)
4721                 goto out2;
4722
4723         idx = srcu_read_lock(&kvm->srcu);
4724         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4725         if (r < 0)
4726                 goto out;
4727         /* Set up identity-mapping pagetable for EPT in real mode */
4728         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4729                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4730                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4731                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4732                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4733                 if (r < 0)
4734                         goto out;
4735         }
4736         kvm->arch.ept_identity_pagetable_done = true;
4737
4738 out:
4739         srcu_read_unlock(&kvm->srcu, idx);
4740
4741 out2:
4742         mutex_unlock(&kvm->slots_lock);
4743         return r;
4744 }
4745
4746 static void seg_setup(int seg)
4747 {
4748         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4749         unsigned int ar;
4750
4751         vmcs_write16(sf->selector, 0);
4752         vmcs_writel(sf->base, 0);
4753         vmcs_write32(sf->limit, 0xffff);
4754         ar = 0x93;
4755         if (seg == VCPU_SREG_CS)
4756                 ar |= 0x08; /* code segment */
4757
4758         vmcs_write32(sf->ar_bytes, ar);
4759 }
4760
4761 static int alloc_apic_access_page(struct kvm *kvm)
4762 {
4763         struct page *page;
4764         int r = 0;
4765
4766         mutex_lock(&kvm->slots_lock);
4767         if (kvm->arch.apic_access_page_done)
4768                 goto out;
4769         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4770                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4771         if (r)
4772                 goto out;
4773
4774         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4775         if (is_error_page(page)) {
4776                 r = -EFAULT;
4777                 goto out;
4778         }
4779
4780         /*
4781          * Do not pin the page in memory, so that memory hot-unplug
4782          * is able to migrate it.
4783          */
4784         put_page(page);
4785         kvm->arch.apic_access_page_done = true;
4786 out:
4787         mutex_unlock(&kvm->slots_lock);
4788         return r;
4789 }
4790
4791 static int alloc_identity_pagetable(struct kvm *kvm)
4792 {
4793         /* Called with kvm->slots_lock held. */
4794
4795         int r = 0;
4796
4797         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4798
4799         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4800                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4801
4802         return r;
4803 }
4804
4805 static int allocate_vpid(void)
4806 {
4807         int vpid;
4808
4809         if (!enable_vpid)
4810                 return 0;
4811         spin_lock(&vmx_vpid_lock);
4812         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4813         if (vpid < VMX_NR_VPIDS)
4814                 __set_bit(vpid, vmx_vpid_bitmap);
4815         else
4816                 vpid = 0;
4817         spin_unlock(&vmx_vpid_lock);
4818         return vpid;
4819 }
4820
4821 static void free_vpid(int vpid)
4822 {
4823         if (!enable_vpid || vpid == 0)
4824                 return;
4825         spin_lock(&vmx_vpid_lock);
4826         __clear_bit(vpid, vmx_vpid_bitmap);
4827         spin_unlock(&vmx_vpid_lock);
4828 }
4829
4830 #define MSR_TYPE_R      1
4831 #define MSR_TYPE_W      2
4832 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4833                                                 u32 msr, int type)
4834 {
4835         int f = sizeof(unsigned long);
4836
4837         if (!cpu_has_vmx_msr_bitmap())
4838                 return;
4839
4840         /*
4841          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4842          * have the write-low and read-high bitmap offsets the wrong way round.
4843          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4844          */
4845         if (msr <= 0x1fff) {
4846                 if (type & MSR_TYPE_R)
4847                         /* read-low */
4848                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4849
4850                 if (type & MSR_TYPE_W)
4851                         /* write-low */
4852                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4853
4854         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4855                 msr &= 0x1fff;
4856                 if (type & MSR_TYPE_R)
4857                         /* read-high */
4858                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4859
4860                 if (type & MSR_TYPE_W)
4861                         /* write-high */
4862                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4863
4864         }
4865 }
4866
4867 /*
4868  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4869  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4870  */
4871 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4872                                                unsigned long *msr_bitmap_nested,
4873                                                u32 msr, int type)
4874 {
4875         int f = sizeof(unsigned long);
4876
4877         if (!cpu_has_vmx_msr_bitmap()) {
4878                 WARN_ON(1);
4879                 return;
4880         }
4881
4882         /*
4883          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4884          * have the write-low and read-high bitmap offsets the wrong way round.
4885          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4886          */
4887         if (msr <= 0x1fff) {
4888                 if (type & MSR_TYPE_R &&
4889                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4890                         /* read-low */
4891                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4892
4893                 if (type & MSR_TYPE_W &&
4894                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4895                         /* write-low */
4896                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4897
4898         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4899                 msr &= 0x1fff;
4900                 if (type & MSR_TYPE_R &&
4901                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4902                         /* read-high */
4903                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4904
4905                 if (type & MSR_TYPE_W &&
4906                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4907                         /* write-high */
4908                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4909
4910         }
4911 }
4912
4913 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4914 {
4915         if (!longmode_only)
4916                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4917                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4918         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4919                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4920 }
4921
4922 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4923 {
4924         if (apicv_active) {
4925                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4926                                 msr, type);
4927                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4928                                 msr, type);
4929         } else {
4930                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4931                                 msr, type);
4932                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4933                                 msr, type);
4934         }
4935 }
4936
4937 static bool vmx_get_enable_apicv(void)
4938 {
4939         return enable_apicv;
4940 }
4941
4942 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4943 {
4944         struct vcpu_vmx *vmx = to_vmx(vcpu);
4945         int max_irr;
4946         void *vapic_page;
4947         u16 status;
4948
4949         if (vmx->nested.pi_desc &&
4950             vmx->nested.pi_pending) {
4951                 vmx->nested.pi_pending = false;
4952                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4953                         return;
4954
4955                 max_irr = find_last_bit(
4956                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4957
4958                 if (max_irr == 256)
4959                         return;
4960
4961                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4962                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4963                 kunmap(vmx->nested.virtual_apic_page);
4964
4965                 status = vmcs_read16(GUEST_INTR_STATUS);
4966                 if ((u8)max_irr > ((u8)status & 0xff)) {
4967                         status &= ~0xff;
4968                         status |= (u8)max_irr;
4969                         vmcs_write16(GUEST_INTR_STATUS, status);
4970                 }
4971         }
4972 }
4973
4974 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4975 {
4976 #ifdef CONFIG_SMP
4977         if (vcpu->mode == IN_GUEST_MODE) {
4978                 struct vcpu_vmx *vmx = to_vmx(vcpu);
4979
4980                 /*
4981                  * Currently, we don't support urgent interrupt,
4982                  * all interrupts are recognized as non-urgent
4983                  * interrupt, so we cannot post interrupts when
4984                  * 'SN' is set.
4985                  *
4986                  * If the vcpu is in guest mode, it means it is
4987                  * running instead of being scheduled out and
4988                  * waiting in the run queue, and that's the only
4989                  * case when 'SN' is set currently, warning if
4990                  * 'SN' is set.
4991                  */
4992                 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4993
4994                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4995                                 POSTED_INTR_VECTOR);
4996                 return true;
4997         }
4998 #endif
4999         return false;
5000 }
5001
5002 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5003                                                 int vector)
5004 {
5005         struct vcpu_vmx *vmx = to_vmx(vcpu);
5006
5007         if (is_guest_mode(vcpu) &&
5008             vector == vmx->nested.posted_intr_nv) {
5009                 /* the PIR and ON have been set by L1. */
5010                 kvm_vcpu_trigger_posted_interrupt(vcpu);
5011                 /*
5012                  * If a posted intr is not recognized by hardware,
5013                  * we will accomplish it in the next vmentry.
5014                  */
5015                 vmx->nested.pi_pending = true;
5016                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5017                 return 0;
5018         }
5019         return -1;
5020 }
5021 /*
5022  * Send interrupt to vcpu via posted interrupt way.
5023  * 1. If target vcpu is running(non-root mode), send posted interrupt
5024  * notification to vcpu and hardware will sync PIR to vIRR atomically.
5025  * 2. If target vcpu isn't running(root mode), kick it to pick up the
5026  * interrupt from PIR in next vmentry.
5027  */
5028 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5029 {
5030         struct vcpu_vmx *vmx = to_vmx(vcpu);
5031         int r;
5032
5033         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5034         if (!r)
5035                 return;
5036
5037         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5038                 return;
5039
5040         /* If a previous notification has sent the IPI, nothing to do.  */
5041         if (pi_test_and_set_on(&vmx->pi_desc))
5042                 return;
5043
5044         if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
5045                 kvm_vcpu_kick(vcpu);
5046 }
5047
5048 /*
5049  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5050  * will not change in the lifetime of the guest.
5051  * Note that host-state that does change is set elsewhere. E.g., host-state
5052  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5053  */
5054 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5055 {
5056         u32 low32, high32;
5057         unsigned long tmpl;
5058         struct desc_ptr dt;
5059         unsigned long cr0, cr3, cr4;
5060
5061         cr0 = read_cr0();
5062         WARN_ON(cr0 & X86_CR0_TS);
5063         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5064
5065         /*
5066          * Save the most likely value for this task's CR3 in the VMCS.
5067          * We can't use __get_current_cr3_fast() because we're not atomic.
5068          */
5069         cr3 = __read_cr3();
5070         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
5071         vmx->host_state.vmcs_host_cr3 = cr3;
5072
5073         /* Save the most likely value for this task's CR4 in the VMCS. */
5074         cr4 = cr4_read_shadow();
5075         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5076         vmx->host_state.vmcs_host_cr4 = cr4;
5077
5078         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5079 #ifdef CONFIG_X86_64
5080         /*
5081          * Load null selectors, so we can avoid reloading them in
5082          * __vmx_load_host_state(), in case userspace uses the null selectors
5083          * too (the expected case).
5084          */
5085         vmcs_write16(HOST_DS_SELECTOR, 0);
5086         vmcs_write16(HOST_ES_SELECTOR, 0);
5087 #else
5088         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5089         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5090 #endif
5091         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5092         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5093
5094         native_store_idt(&dt);
5095         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5096         vmx->host_idt_base = dt.address;
5097
5098         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5099
5100         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5101         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5102         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5103         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5104
5105         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5106                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5107                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5108         }
5109 }
5110
5111 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5112 {
5113         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5114         if (enable_ept)
5115                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5116         if (is_guest_mode(&vmx->vcpu))
5117                 vmx->vcpu.arch.cr4_guest_owned_bits &=
5118                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5119         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5120 }
5121
5122 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5123 {
5124         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5125
5126         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5127                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5128         /* Enable the preemption timer dynamically */
5129         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5130         return pin_based_exec_ctrl;
5131 }
5132
5133 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5134 {
5135         struct vcpu_vmx *vmx = to_vmx(vcpu);
5136
5137         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5138         if (cpu_has_secondary_exec_ctrls()) {
5139                 if (kvm_vcpu_apicv_active(vcpu))
5140                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5141                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
5142                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5143                 else
5144                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5145                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
5146                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5147         }
5148
5149         if (cpu_has_vmx_msr_bitmap())
5150                 vmx_set_msr_bitmap(vcpu);
5151 }
5152
5153 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5154 {
5155         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5156
5157         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5158                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5159
5160         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5161                 exec_control &= ~CPU_BASED_TPR_SHADOW;
5162 #ifdef CONFIG_X86_64
5163                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5164                                 CPU_BASED_CR8_LOAD_EXITING;
5165 #endif
5166         }
5167         if (!enable_ept)
5168                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5169                                 CPU_BASED_CR3_LOAD_EXITING  |
5170                                 CPU_BASED_INVLPG_EXITING;
5171         return exec_control;
5172 }
5173
5174 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5175 {
5176         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5177         if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5178                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5179         if (vmx->vpid == 0)
5180                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5181         if (!enable_ept) {
5182                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5183                 enable_unrestricted_guest = 0;
5184                 /* Enable INVPCID for non-ept guests may cause performance regression. */
5185                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5186         }
5187         if (!enable_unrestricted_guest)
5188                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5189         if (!ple_gap)
5190                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5191         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5192                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5193                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5194         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5195         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5196            (handle_vmptrld).
5197            We can NOT enable shadow_vmcs here because we don't have yet
5198            a current VMCS12
5199         */
5200         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5201
5202         if (!enable_pml)
5203                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5204
5205         return exec_control;
5206 }
5207
5208 static void ept_set_mmio_spte_mask(void)
5209 {
5210         /*
5211          * EPT Misconfigurations can be generated if the value of bits 2:0
5212          * of an EPT paging-structure entry is 110b (write/execute).
5213          */
5214         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5215                                    VMX_EPT_MISCONFIG_WX_VALUE);
5216 }
5217
5218 #define VMX_XSS_EXIT_BITMAP 0
5219 /*
5220  * Sets up the vmcs for emulated real mode.
5221  */
5222 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5223 {
5224 #ifdef CONFIG_X86_64
5225         unsigned long a;
5226 #endif
5227         int i;
5228
5229         /* I/O */
5230         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5231         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5232
5233         if (enable_shadow_vmcs) {
5234                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5235                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5236         }
5237         if (cpu_has_vmx_msr_bitmap())
5238                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5239
5240         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5241
5242         /* Control */
5243         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5244         vmx->hv_deadline_tsc = -1;
5245
5246         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5247
5248         if (cpu_has_secondary_exec_ctrls()) {
5249                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5250                                 vmx_secondary_exec_control(vmx));
5251         }
5252
5253         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5254                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5255                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5256                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5257                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5258
5259                 vmcs_write16(GUEST_INTR_STATUS, 0);
5260
5261                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5262                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5263         }
5264
5265         if (ple_gap) {
5266                 vmcs_write32(PLE_GAP, ple_gap);
5267                 vmx->ple_window = ple_window;
5268                 vmx->ple_window_dirty = true;
5269         }
5270
5271         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5272         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5273         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5274
5275         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5276         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5277         vmx_set_constant_host_state(vmx);
5278 #ifdef CONFIG_X86_64
5279         rdmsrl(MSR_FS_BASE, a);
5280         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5281         rdmsrl(MSR_GS_BASE, a);
5282         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5283 #else
5284         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5285         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5286 #endif
5287
5288         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5289         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5290         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5291         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5292         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5293
5294         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5295                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5296
5297         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5298                 u32 index = vmx_msr_index[i];
5299                 u32 data_low, data_high;
5300                 int j = vmx->nmsrs;
5301
5302                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5303                         continue;
5304                 if (wrmsr_safe(index, data_low, data_high) < 0)
5305                         continue;
5306                 vmx->guest_msrs[j].index = i;
5307                 vmx->guest_msrs[j].data = 0;
5308                 vmx->guest_msrs[j].mask = -1ull;
5309                 ++vmx->nmsrs;
5310         }
5311
5312
5313         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5314
5315         /* 22.2.1, 20.8.1 */
5316         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5317
5318         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5319         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5320
5321         set_cr4_guest_host_mask(vmx);
5322
5323         if (vmx_xsaves_supported())
5324                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5325
5326         if (enable_pml) {
5327                 ASSERT(vmx->pml_pg);
5328                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5329                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5330         }
5331
5332         return 0;
5333 }
5334
5335 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5336 {
5337         struct vcpu_vmx *vmx = to_vmx(vcpu);
5338         struct msr_data apic_base_msr;
5339         u64 cr0;
5340
5341         vmx->rmode.vm86_active = 0;
5342
5343         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5344         kvm_set_cr8(vcpu, 0);
5345
5346         if (!init_event) {
5347                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5348                                      MSR_IA32_APICBASE_ENABLE;
5349                 if (kvm_vcpu_is_reset_bsp(vcpu))
5350                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5351                 apic_base_msr.host_initiated = true;
5352                 kvm_set_apic_base(vcpu, &apic_base_msr);
5353         }
5354
5355         vmx_segment_cache_clear(vmx);
5356
5357         seg_setup(VCPU_SREG_CS);
5358         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5359         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5360
5361         seg_setup(VCPU_SREG_DS);
5362         seg_setup(VCPU_SREG_ES);
5363         seg_setup(VCPU_SREG_FS);
5364         seg_setup(VCPU_SREG_GS);
5365         seg_setup(VCPU_SREG_SS);
5366
5367         vmcs_write16(GUEST_TR_SELECTOR, 0);
5368         vmcs_writel(GUEST_TR_BASE, 0);
5369         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5370         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5371
5372         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5373         vmcs_writel(GUEST_LDTR_BASE, 0);
5374         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5375         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5376
5377         if (!init_event) {
5378                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5379                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5380                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5381                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5382         }
5383
5384         vmcs_writel(GUEST_RFLAGS, 0x02);
5385         kvm_rip_write(vcpu, 0xfff0);
5386
5387         vmcs_writel(GUEST_GDTR_BASE, 0);
5388         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5389
5390         vmcs_writel(GUEST_IDTR_BASE, 0);
5391         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5392
5393         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5394         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5395         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5396
5397         setup_msrs(vmx);
5398
5399         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5400
5401         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5402                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5403                 if (cpu_need_tpr_shadow(vcpu))
5404                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5405                                      __pa(vcpu->arch.apic->regs));
5406                 vmcs_write32(TPR_THRESHOLD, 0);
5407         }
5408
5409         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5410
5411         if (kvm_vcpu_apicv_active(vcpu))
5412                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5413
5414         if (vmx->vpid != 0)
5415                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5416
5417         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5418         vmx->vcpu.arch.cr0 = cr0;
5419         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5420         vmx_set_cr4(vcpu, 0);
5421         vmx_set_efer(vcpu, 0);
5422
5423         update_exception_bitmap(vcpu);
5424
5425         vpid_sync_context(vmx->vpid);
5426 }
5427
5428 /*
5429  * In nested virtualization, check if L1 asked to exit on external interrupts.
5430  * For most existing hypervisors, this will always return true.
5431  */
5432 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5433 {
5434         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5435                 PIN_BASED_EXT_INTR_MASK;
5436 }
5437
5438 /*
5439  * In nested virtualization, check if L1 has set
5440  * VM_EXIT_ACK_INTR_ON_EXIT
5441  */
5442 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5443 {
5444         return get_vmcs12(vcpu)->vm_exit_controls &
5445                 VM_EXIT_ACK_INTR_ON_EXIT;
5446 }
5447
5448 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5449 {
5450         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5451                 PIN_BASED_NMI_EXITING;
5452 }
5453
5454 static void enable_irq_window(struct kvm_vcpu *vcpu)
5455 {
5456         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5457                       CPU_BASED_VIRTUAL_INTR_PENDING);
5458 }
5459
5460 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5461 {
5462         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5463                 enable_irq_window(vcpu);
5464                 return;
5465         }
5466
5467         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5468                       CPU_BASED_VIRTUAL_NMI_PENDING);
5469 }
5470
5471 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5472 {
5473         struct vcpu_vmx *vmx = to_vmx(vcpu);
5474         uint32_t intr;
5475         int irq = vcpu->arch.interrupt.nr;
5476
5477         trace_kvm_inj_virq(irq);
5478
5479         ++vcpu->stat.irq_injections;
5480         if (vmx->rmode.vm86_active) {
5481                 int inc_eip = 0;
5482                 if (vcpu->arch.interrupt.soft)
5483                         inc_eip = vcpu->arch.event_exit_inst_len;
5484                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5485                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5486                 return;
5487         }
5488         intr = irq | INTR_INFO_VALID_MASK;
5489         if (vcpu->arch.interrupt.soft) {
5490                 intr |= INTR_TYPE_SOFT_INTR;
5491                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5492                              vmx->vcpu.arch.event_exit_inst_len);
5493         } else
5494                 intr |= INTR_TYPE_EXT_INTR;
5495         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5496 }
5497
5498 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5499 {
5500         struct vcpu_vmx *vmx = to_vmx(vcpu);
5501
5502         if (!is_guest_mode(vcpu)) {
5503                 ++vcpu->stat.nmi_injections;
5504                 vmx->nmi_known_unmasked = false;
5505         }
5506
5507         if (vmx->rmode.vm86_active) {
5508                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5509                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5510                 return;
5511         }
5512
5513         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5514                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5515 }
5516
5517 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5518 {
5519         if (to_vmx(vcpu)->nmi_known_unmasked)
5520                 return false;
5521         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5522 }
5523
5524 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5525 {
5526         struct vcpu_vmx *vmx = to_vmx(vcpu);
5527
5528         vmx->nmi_known_unmasked = !masked;
5529         if (masked)
5530                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5531                               GUEST_INTR_STATE_NMI);
5532         else
5533                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5534                                 GUEST_INTR_STATE_NMI);
5535 }
5536
5537 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5538 {
5539         if (to_vmx(vcpu)->nested.nested_run_pending)
5540                 return 0;
5541
5542         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5543                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5544                    | GUEST_INTR_STATE_NMI));
5545 }
5546
5547 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5548 {
5549         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5550                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5551                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5552                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5553 }
5554
5555 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5556 {
5557         int ret;
5558
5559         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5560                                     PAGE_SIZE * 3);
5561         if (ret)
5562                 return ret;
5563         kvm->arch.tss_addr = addr;
5564         return init_rmode_tss(kvm);
5565 }
5566
5567 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5568 {
5569         switch (vec) {
5570         case BP_VECTOR:
5571                 /*
5572                  * Update instruction length as we may reinject the exception
5573                  * from user space while in guest debugging mode.
5574                  */
5575                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5576                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5577                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5578                         return false;
5579                 /* fall through */
5580         case DB_VECTOR:
5581                 if (vcpu->guest_debug &
5582                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5583                         return false;
5584                 /* fall through */
5585         case DE_VECTOR:
5586         case OF_VECTOR:
5587         case BR_VECTOR:
5588         case UD_VECTOR:
5589         case DF_VECTOR:
5590         case SS_VECTOR:
5591         case GP_VECTOR:
5592         case MF_VECTOR:
5593                 return true;
5594         break;
5595         }
5596         return false;
5597 }
5598
5599 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5600                                   int vec, u32 err_code)
5601 {
5602         /*
5603          * Instruction with address size override prefix opcode 0x67
5604          * Cause the #SS fault with 0 error code in VM86 mode.
5605          */
5606         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5607                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5608                         if (vcpu->arch.halt_request) {
5609                                 vcpu->arch.halt_request = 0;
5610                                 return kvm_vcpu_halt(vcpu);
5611                         }
5612                         return 1;
5613                 }
5614                 return 0;
5615         }
5616
5617         /*
5618          * Forward all other exceptions that are valid in real mode.
5619          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5620          *        the required debugging infrastructure rework.
5621          */
5622         kvm_queue_exception(vcpu, vec);
5623         return 1;
5624 }
5625
5626 /*
5627  * Trigger machine check on the host. We assume all the MSRs are already set up
5628  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5629  * We pass a fake environment to the machine check handler because we want
5630  * the guest to be always treated like user space, no matter what context
5631  * it used internally.
5632  */
5633 static void kvm_machine_check(void)
5634 {
5635 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5636         struct pt_regs regs = {
5637                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5638                 .flags = X86_EFLAGS_IF,
5639         };
5640
5641         do_machine_check(&regs, 0);
5642 #endif
5643 }
5644
5645 static int handle_machine_check(struct kvm_vcpu *vcpu)
5646 {
5647         /* already handled by vcpu_run */
5648         return 1;
5649 }
5650
5651 static int handle_exception(struct kvm_vcpu *vcpu)
5652 {
5653         struct vcpu_vmx *vmx = to_vmx(vcpu);
5654         struct kvm_run *kvm_run = vcpu->run;
5655         u32 intr_info, ex_no, error_code;
5656         unsigned long cr2, rip, dr6;
5657         u32 vect_info;
5658         enum emulation_result er;
5659
5660         vect_info = vmx->idt_vectoring_info;
5661         intr_info = vmx->exit_intr_info;
5662
5663         if (is_machine_check(intr_info))
5664                 return handle_machine_check(vcpu);
5665
5666         if (is_nmi(intr_info))
5667                 return 1;  /* already handled by vmx_vcpu_run() */
5668
5669         if (is_invalid_opcode(intr_info)) {
5670                 if (is_guest_mode(vcpu)) {
5671                         kvm_queue_exception(vcpu, UD_VECTOR);
5672                         return 1;
5673                 }
5674                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5675                 if (er != EMULATE_DONE)
5676                         kvm_queue_exception(vcpu, UD_VECTOR);
5677                 return 1;
5678         }
5679
5680         error_code = 0;
5681         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5682                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5683
5684         /*
5685          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5686          * MMIO, it is better to report an internal error.
5687          * See the comments in vmx_handle_exit.
5688          */
5689         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5690             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5691                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5692                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5693                 vcpu->run->internal.ndata = 3;
5694                 vcpu->run->internal.data[0] = vect_info;
5695                 vcpu->run->internal.data[1] = intr_info;
5696                 vcpu->run->internal.data[2] = error_code;
5697                 return 0;
5698         }
5699
5700         if (is_page_fault(intr_info)) {
5701                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5702                 /* EPT won't cause page fault directly */
5703                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5704                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5705                                 true);
5706         }
5707
5708         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5709
5710         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5711                 return handle_rmode_exception(vcpu, ex_no, error_code);
5712
5713         switch (ex_no) {
5714         case AC_VECTOR:
5715                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5716                 return 1;
5717         case DB_VECTOR:
5718                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5719                 if (!(vcpu->guest_debug &
5720                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5721                         vcpu->arch.dr6 &= ~15;
5722                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5723                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5724                                 skip_emulated_instruction(vcpu);
5725
5726                         kvm_queue_exception(vcpu, DB_VECTOR);
5727                         return 1;
5728                 }
5729                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5730                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5731                 /* fall through */
5732         case BP_VECTOR:
5733                 /*
5734                  * Update instruction length as we may reinject #BP from
5735                  * user space while in guest debugging mode. Reading it for
5736                  * #DB as well causes no harm, it is not used in that case.
5737                  */
5738                 vmx->vcpu.arch.event_exit_inst_len =
5739                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5740                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5741                 rip = kvm_rip_read(vcpu);
5742                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5743                 kvm_run->debug.arch.exception = ex_no;
5744                 break;
5745         default:
5746                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5747                 kvm_run->ex.exception = ex_no;
5748                 kvm_run->ex.error_code = error_code;
5749                 break;
5750         }
5751         return 0;
5752 }
5753
5754 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5755 {
5756         ++vcpu->stat.irq_exits;
5757         return 1;
5758 }
5759
5760 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5761 {
5762         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5763         return 0;
5764 }
5765
5766 static int handle_io(struct kvm_vcpu *vcpu)
5767 {
5768         unsigned long exit_qualification;
5769         int size, in, string, ret;
5770         unsigned port;
5771
5772         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5773         string = (exit_qualification & 16) != 0;
5774         in = (exit_qualification & 8) != 0;
5775
5776         ++vcpu->stat.io_exits;
5777
5778         if (string || in)
5779                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5780
5781         port = exit_qualification >> 16;
5782         size = (exit_qualification & 7) + 1;
5783
5784         ret = kvm_skip_emulated_instruction(vcpu);
5785
5786         /*
5787          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5788          * KVM_EXIT_DEBUG here.
5789          */
5790         return kvm_fast_pio_out(vcpu, size, port) && ret;
5791 }
5792
5793 static void
5794 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5795 {
5796         /*
5797          * Patch in the VMCALL instruction:
5798          */
5799         hypercall[0] = 0x0f;
5800         hypercall[1] = 0x01;
5801         hypercall[2] = 0xc1;
5802 }
5803
5804 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5805 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5806 {
5807         if (is_guest_mode(vcpu)) {
5808                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5809                 unsigned long orig_val = val;
5810
5811                 /*
5812                  * We get here when L2 changed cr0 in a way that did not change
5813                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5814                  * but did change L0 shadowed bits. So we first calculate the
5815                  * effective cr0 value that L1 would like to write into the
5816                  * hardware. It consists of the L2-owned bits from the new
5817                  * value combined with the L1-owned bits from L1's guest_cr0.
5818                  */
5819                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5820                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5821
5822                 if (!nested_guest_cr0_valid(vcpu, val))
5823                         return 1;
5824
5825                 if (kvm_set_cr0(vcpu, val))
5826                         return 1;
5827                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5828                 return 0;
5829         } else {
5830                 if (to_vmx(vcpu)->nested.vmxon &&
5831                     !nested_host_cr0_valid(vcpu, val))
5832                         return 1;
5833
5834                 return kvm_set_cr0(vcpu, val);
5835         }
5836 }
5837
5838 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5839 {
5840         if (is_guest_mode(vcpu)) {
5841                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5842                 unsigned long orig_val = val;
5843
5844                 /* analogously to handle_set_cr0 */
5845                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5846                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5847                 if (kvm_set_cr4(vcpu, val))
5848                         return 1;
5849                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5850                 return 0;
5851         } else
5852                 return kvm_set_cr4(vcpu, val);
5853 }
5854
5855 static int handle_cr(struct kvm_vcpu *vcpu)
5856 {
5857         unsigned long exit_qualification, val;
5858         int cr;
5859         int reg;
5860         int err;
5861         int ret;
5862
5863         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5864         cr = exit_qualification & 15;
5865         reg = (exit_qualification >> 8) & 15;
5866         switch ((exit_qualification >> 4) & 3) {
5867         case 0: /* mov to cr */
5868                 val = kvm_register_readl(vcpu, reg);
5869                 trace_kvm_cr_write(cr, val);
5870                 switch (cr) {
5871                 case 0:
5872                         err = handle_set_cr0(vcpu, val);
5873                         return kvm_complete_insn_gp(vcpu, err);
5874                 case 3:
5875                         err = kvm_set_cr3(vcpu, val);
5876                         return kvm_complete_insn_gp(vcpu, err);
5877                 case 4:
5878                         err = handle_set_cr4(vcpu, val);
5879                         return kvm_complete_insn_gp(vcpu, err);
5880                 case 8: {
5881                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5882                                 u8 cr8 = (u8)val;
5883                                 err = kvm_set_cr8(vcpu, cr8);
5884                                 ret = kvm_complete_insn_gp(vcpu, err);
5885                                 if (lapic_in_kernel(vcpu))
5886                                         return ret;
5887                                 if (cr8_prev <= cr8)
5888                                         return ret;
5889                                 /*
5890                                  * TODO: we might be squashing a
5891                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5892                                  * KVM_EXIT_DEBUG here.
5893                                  */
5894                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5895                                 return 0;
5896                         }
5897                 }
5898                 break;
5899         case 2: /* clts */
5900                 WARN_ONCE(1, "Guest should always own CR0.TS");
5901                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5902                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5903                 return kvm_skip_emulated_instruction(vcpu);
5904         case 1: /*mov from cr*/
5905                 switch (cr) {
5906                 case 3:
5907                         val = kvm_read_cr3(vcpu);
5908                         kvm_register_write(vcpu, reg, val);
5909                         trace_kvm_cr_read(cr, val);
5910                         return kvm_skip_emulated_instruction(vcpu);
5911                 case 8:
5912                         val = kvm_get_cr8(vcpu);
5913                         kvm_register_write(vcpu, reg, val);
5914                         trace_kvm_cr_read(cr, val);
5915                         return kvm_skip_emulated_instruction(vcpu);
5916                 }
5917                 break;
5918         case 3: /* lmsw */
5919                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5920                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5921                 kvm_lmsw(vcpu, val);
5922
5923                 return kvm_skip_emulated_instruction(vcpu);
5924         default:
5925                 break;
5926         }
5927         vcpu->run->exit_reason = 0;
5928         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5929                (int)(exit_qualification >> 4) & 3, cr);
5930         return 0;
5931 }
5932
5933 static int handle_dr(struct kvm_vcpu *vcpu)
5934 {
5935         unsigned long exit_qualification;
5936         int dr, dr7, reg;
5937
5938         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5939         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5940
5941         /* First, if DR does not exist, trigger UD */
5942         if (!kvm_require_dr(vcpu, dr))
5943                 return 1;
5944
5945         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5946         if (!kvm_require_cpl(vcpu, 0))
5947                 return 1;
5948         dr7 = vmcs_readl(GUEST_DR7);
5949         if (dr7 & DR7_GD) {
5950                 /*
5951                  * As the vm-exit takes precedence over the debug trap, we
5952                  * need to emulate the latter, either for the host or the
5953                  * guest debugging itself.
5954                  */
5955                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5956                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5957                         vcpu->run->debug.arch.dr7 = dr7;
5958                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5959                         vcpu->run->debug.arch.exception = DB_VECTOR;
5960                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5961                         return 0;
5962                 } else {
5963                         vcpu->arch.dr6 &= ~15;
5964                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5965                         kvm_queue_exception(vcpu, DB_VECTOR);
5966                         return 1;
5967                 }
5968         }
5969
5970         if (vcpu->guest_debug == 0) {
5971                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5972                                 CPU_BASED_MOV_DR_EXITING);
5973
5974                 /*
5975                  * No more DR vmexits; force a reload of the debug registers
5976                  * and reenter on this instruction.  The next vmexit will
5977                  * retrieve the full state of the debug registers.
5978                  */
5979                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5980                 return 1;
5981         }
5982
5983         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5984         if (exit_qualification & TYPE_MOV_FROM_DR) {
5985                 unsigned long val;
5986
5987                 if (kvm_get_dr(vcpu, dr, &val))
5988                         return 1;
5989                 kvm_register_write(vcpu, reg, val);
5990         } else
5991                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5992                         return 1;
5993
5994         return kvm_skip_emulated_instruction(vcpu);
5995 }
5996
5997 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5998 {
5999         return vcpu->arch.dr6;
6000 }
6001
6002 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6003 {
6004 }
6005
6006 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6007 {
6008         get_debugreg(vcpu->arch.db[0], 0);
6009         get_debugreg(vcpu->arch.db[1], 1);
6010         get_debugreg(vcpu->arch.db[2], 2);
6011         get_debugreg(vcpu->arch.db[3], 3);
6012         get_debugreg(vcpu->arch.dr6, 6);
6013         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6014
6015         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6016         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6017 }
6018
6019 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6020 {
6021         vmcs_writel(GUEST_DR7, val);
6022 }
6023
6024 static int handle_cpuid(struct kvm_vcpu *vcpu)
6025 {
6026         return kvm_emulate_cpuid(vcpu);
6027 }
6028
6029 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6030 {
6031         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6032         struct msr_data msr_info;
6033
6034         msr_info.index = ecx;
6035         msr_info.host_initiated = false;
6036         if (vmx_get_msr(vcpu, &msr_info)) {
6037                 trace_kvm_msr_read_ex(ecx);
6038                 kvm_inject_gp(vcpu, 0);
6039                 return 1;
6040         }
6041
6042         trace_kvm_msr_read(ecx, msr_info.data);
6043
6044         /* FIXME: handling of bits 32:63 of rax, rdx */
6045         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6046         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6047         return kvm_skip_emulated_instruction(vcpu);
6048 }
6049
6050 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6051 {
6052         struct msr_data msr;
6053         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6054         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6055                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6056
6057         msr.data = data;
6058         msr.index = ecx;
6059         msr.host_initiated = false;
6060         if (kvm_set_msr(vcpu, &msr) != 0) {
6061                 trace_kvm_msr_write_ex(ecx, data);
6062                 kvm_inject_gp(vcpu, 0);
6063                 return 1;
6064         }
6065
6066         trace_kvm_msr_write(ecx, data);
6067         return kvm_skip_emulated_instruction(vcpu);
6068 }
6069
6070 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6071 {
6072         kvm_apic_update_ppr(vcpu);
6073         return 1;
6074 }
6075
6076 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6077 {
6078         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6079                         CPU_BASED_VIRTUAL_INTR_PENDING);
6080
6081         kvm_make_request(KVM_REQ_EVENT, vcpu);
6082
6083         ++vcpu->stat.irq_window_exits;
6084         return 1;
6085 }
6086
6087 static int handle_halt(struct kvm_vcpu *vcpu)
6088 {
6089         return kvm_emulate_halt(vcpu);
6090 }
6091
6092 static int handle_vmcall(struct kvm_vcpu *vcpu)
6093 {
6094         return kvm_emulate_hypercall(vcpu);
6095 }
6096
6097 static int handle_invd(struct kvm_vcpu *vcpu)
6098 {
6099         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6100 }
6101
6102 static int handle_invlpg(struct kvm_vcpu *vcpu)
6103 {
6104         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6105
6106         kvm_mmu_invlpg(vcpu, exit_qualification);
6107         return kvm_skip_emulated_instruction(vcpu);
6108 }
6109
6110 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6111 {
6112         int err;
6113
6114         err = kvm_rdpmc(vcpu);
6115         return kvm_complete_insn_gp(vcpu, err);
6116 }
6117
6118 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6119 {
6120         return kvm_emulate_wbinvd(vcpu);
6121 }
6122
6123 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6124 {
6125         u64 new_bv = kvm_read_edx_eax(vcpu);
6126         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6127
6128         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6129                 return kvm_skip_emulated_instruction(vcpu);
6130         return 1;
6131 }
6132
6133 static int handle_xsaves(struct kvm_vcpu *vcpu)
6134 {
6135         kvm_skip_emulated_instruction(vcpu);
6136         WARN(1, "this should never happen\n");
6137         return 1;
6138 }
6139
6140 static int handle_xrstors(struct kvm_vcpu *vcpu)
6141 {
6142         kvm_skip_emulated_instruction(vcpu);
6143         WARN(1, "this should never happen\n");
6144         return 1;
6145 }
6146
6147 static int handle_apic_access(struct kvm_vcpu *vcpu)
6148 {
6149         if (likely(fasteoi)) {
6150                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6151                 int access_type, offset;
6152
6153                 access_type = exit_qualification & APIC_ACCESS_TYPE;
6154                 offset = exit_qualification & APIC_ACCESS_OFFSET;
6155                 /*
6156                  * Sane guest uses MOV to write EOI, with written value
6157                  * not cared. So make a short-circuit here by avoiding
6158                  * heavy instruction emulation.
6159                  */
6160                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6161                     (offset == APIC_EOI)) {
6162                         kvm_lapic_set_eoi(vcpu);
6163                         return kvm_skip_emulated_instruction(vcpu);
6164                 }
6165         }
6166         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6167 }
6168
6169 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6170 {
6171         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6172         int vector = exit_qualification & 0xff;
6173
6174         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6175         kvm_apic_set_eoi_accelerated(vcpu, vector);
6176         return 1;
6177 }
6178
6179 static int handle_apic_write(struct kvm_vcpu *vcpu)
6180 {
6181         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6182         u32 offset = exit_qualification & 0xfff;
6183
6184         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6185         kvm_apic_write_nodecode(vcpu, offset);
6186         return 1;
6187 }
6188
6189 static int handle_task_switch(struct kvm_vcpu *vcpu)
6190 {
6191         struct vcpu_vmx *vmx = to_vmx(vcpu);
6192         unsigned long exit_qualification;
6193         bool has_error_code = false;
6194         u32 error_code = 0;
6195         u16 tss_selector;
6196         int reason, type, idt_v, idt_index;
6197
6198         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6199         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6200         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6201
6202         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6203
6204         reason = (u32)exit_qualification >> 30;
6205         if (reason == TASK_SWITCH_GATE && idt_v) {
6206                 switch (type) {
6207                 case INTR_TYPE_NMI_INTR:
6208                         vcpu->arch.nmi_injected = false;
6209                         vmx_set_nmi_mask(vcpu, true);
6210                         break;
6211                 case INTR_TYPE_EXT_INTR:
6212                 case INTR_TYPE_SOFT_INTR:
6213                         kvm_clear_interrupt_queue(vcpu);
6214                         break;
6215                 case INTR_TYPE_HARD_EXCEPTION:
6216                         if (vmx->idt_vectoring_info &
6217                             VECTORING_INFO_DELIVER_CODE_MASK) {
6218                                 has_error_code = true;
6219                                 error_code =
6220                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6221                         }
6222                         /* fall through */
6223                 case INTR_TYPE_SOFT_EXCEPTION:
6224                         kvm_clear_exception_queue(vcpu);
6225                         break;
6226                 default:
6227                         break;
6228                 }
6229         }
6230         tss_selector = exit_qualification;
6231
6232         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6233                        type != INTR_TYPE_EXT_INTR &&
6234                        type != INTR_TYPE_NMI_INTR))
6235                 skip_emulated_instruction(vcpu);
6236
6237         if (kvm_task_switch(vcpu, tss_selector,
6238                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6239                             has_error_code, error_code) == EMULATE_FAIL) {
6240                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6241                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6242                 vcpu->run->internal.ndata = 0;
6243                 return 0;
6244         }
6245
6246         /*
6247          * TODO: What about debug traps on tss switch?
6248          *       Are we supposed to inject them and update dr6?
6249          */
6250
6251         return 1;
6252 }
6253
6254 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6255 {
6256         unsigned long exit_qualification;
6257         gpa_t gpa;
6258         u32 error_code;
6259
6260         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6261
6262         /*
6263          * EPT violation happened while executing iret from NMI,
6264          * "blocked by NMI" bit has to be set before next VM entry.
6265          * There are errata that may cause this bit to not be set:
6266          * AAK134, BY25.
6267          */
6268         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6269                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6270                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6271
6272         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6273         trace_kvm_page_fault(gpa, exit_qualification);
6274
6275         /* Is it a read fault? */
6276         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6277                      ? PFERR_USER_MASK : 0;
6278         /* Is it a write fault? */
6279         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6280                       ? PFERR_WRITE_MASK : 0;
6281         /* Is it a fetch fault? */
6282         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6283                       ? PFERR_FETCH_MASK : 0;
6284         /* ept page table entry is present? */
6285         error_code |= (exit_qualification &
6286                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6287                         EPT_VIOLATION_EXECUTABLE))
6288                       ? PFERR_PRESENT_MASK : 0;
6289
6290         vcpu->arch.gpa_available = true;
6291         vcpu->arch.exit_qualification = exit_qualification;
6292
6293         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6294 }
6295
6296 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6297 {
6298         int ret;
6299         gpa_t gpa;
6300
6301         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6302         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6303                 trace_kvm_fast_mmio(gpa);
6304                 return kvm_skip_emulated_instruction(vcpu);
6305         }
6306
6307         ret = handle_mmio_page_fault(vcpu, gpa, true);
6308         vcpu->arch.gpa_available = true;
6309         if (likely(ret == RET_MMIO_PF_EMULATE))
6310                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6311                                               EMULATE_DONE;
6312
6313         if (unlikely(ret == RET_MMIO_PF_INVALID))
6314                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6315
6316         if (unlikely(ret == RET_MMIO_PF_RETRY))
6317                 return 1;
6318
6319         /* It is the real ept misconfig */
6320         WARN_ON(1);
6321
6322         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6323         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6324
6325         return 0;
6326 }
6327
6328 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6329 {
6330         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6331                         CPU_BASED_VIRTUAL_NMI_PENDING);
6332         ++vcpu->stat.nmi_window_exits;
6333         kvm_make_request(KVM_REQ_EVENT, vcpu);
6334
6335         return 1;
6336 }
6337
6338 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6339 {
6340         struct vcpu_vmx *vmx = to_vmx(vcpu);
6341         enum emulation_result err = EMULATE_DONE;
6342         int ret = 1;
6343         u32 cpu_exec_ctrl;
6344         bool intr_window_requested;
6345         unsigned count = 130;
6346
6347         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6348         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6349
6350         while (vmx->emulation_required && count-- != 0) {
6351                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6352                         return handle_interrupt_window(&vmx->vcpu);
6353
6354                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6355                         return 1;
6356
6357                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6358
6359                 if (err == EMULATE_USER_EXIT) {
6360                         ++vcpu->stat.mmio_exits;
6361                         ret = 0;
6362                         goto out;
6363                 }
6364
6365                 if (err != EMULATE_DONE) {
6366                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6367                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6368                         vcpu->run->internal.ndata = 0;
6369                         return 0;
6370                 }
6371
6372                 if (vcpu->arch.halt_request) {
6373                         vcpu->arch.halt_request = 0;
6374                         ret = kvm_vcpu_halt(vcpu);
6375                         goto out;
6376                 }
6377
6378                 if (signal_pending(current))
6379                         goto out;
6380                 if (need_resched())
6381                         schedule();
6382         }
6383
6384 out:
6385         return ret;
6386 }
6387
6388 static int __grow_ple_window(int val)
6389 {
6390         if (ple_window_grow < 1)
6391                 return ple_window;
6392
6393         val = min(val, ple_window_actual_max);
6394
6395         if (ple_window_grow < ple_window)
6396                 val *= ple_window_grow;
6397         else
6398                 val += ple_window_grow;
6399
6400         return val;
6401 }
6402
6403 static int __shrink_ple_window(int val, int modifier, int minimum)
6404 {
6405         if (modifier < 1)
6406                 return ple_window;
6407
6408         if (modifier < ple_window)
6409                 val /= modifier;
6410         else
6411                 val -= modifier;
6412
6413         return max(val, minimum);
6414 }
6415
6416 static void grow_ple_window(struct kvm_vcpu *vcpu)
6417 {
6418         struct vcpu_vmx *vmx = to_vmx(vcpu);
6419         int old = vmx->ple_window;
6420
6421         vmx->ple_window = __grow_ple_window(old);
6422
6423         if (vmx->ple_window != old)
6424                 vmx->ple_window_dirty = true;
6425
6426         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6427 }
6428
6429 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6430 {
6431         struct vcpu_vmx *vmx = to_vmx(vcpu);
6432         int old = vmx->ple_window;
6433
6434         vmx->ple_window = __shrink_ple_window(old,
6435                                               ple_window_shrink, ple_window);
6436
6437         if (vmx->ple_window != old)
6438                 vmx->ple_window_dirty = true;
6439
6440         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6441 }
6442
6443 /*
6444  * ple_window_actual_max is computed to be one grow_ple_window() below
6445  * ple_window_max. (See __grow_ple_window for the reason.)
6446  * This prevents overflows, because ple_window_max is int.
6447  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6448  * this process.
6449  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6450  */
6451 static void update_ple_window_actual_max(void)
6452 {
6453         ple_window_actual_max =
6454                         __shrink_ple_window(max(ple_window_max, ple_window),
6455                                             ple_window_grow, INT_MIN);
6456 }
6457
6458 /*
6459  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6460  */
6461 static void wakeup_handler(void)
6462 {
6463         struct kvm_vcpu *vcpu;
6464         int cpu = smp_processor_id();
6465
6466         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6467         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6468                         blocked_vcpu_list) {
6469                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6470
6471                 if (pi_test_on(pi_desc) == 1)
6472                         kvm_vcpu_kick(vcpu);
6473         }
6474         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6475 }
6476
6477 void vmx_enable_tdp(void)
6478 {
6479         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6480                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6481                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6482                 0ull, VMX_EPT_EXECUTABLE_MASK,
6483                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6484                 VMX_EPT_RWX_MASK);
6485
6486         ept_set_mmio_spte_mask();
6487         kvm_enable_tdp();
6488 }
6489
6490 static __init int hardware_setup(void)
6491 {
6492         int r = -ENOMEM, i, msr;
6493
6494         rdmsrl_safe(MSR_EFER, &host_efer);
6495
6496         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6497                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6498
6499         for (i = 0; i < VMX_BITMAP_NR; i++) {
6500                 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6501                 if (!vmx_bitmap[i])
6502                         goto out;
6503         }
6504
6505         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6506         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6507         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6508
6509         /*
6510          * Allow direct access to the PC debug port (it is often used for I/O
6511          * delays, but the vmexits simply slow things down).
6512          */
6513         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6514         clear_bit(0x80, vmx_io_bitmap_a);
6515
6516         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6517
6518         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6519         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6520
6521         if (setup_vmcs_config(&vmcs_config) < 0) {
6522                 r = -EIO;
6523                 goto out;
6524         }
6525
6526         if (boot_cpu_has(X86_FEATURE_NX))
6527                 kvm_enable_efer_bits(EFER_NX);
6528
6529         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6530                 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6531                 enable_vpid = 0;
6532
6533         if (!cpu_has_vmx_shadow_vmcs())
6534                 enable_shadow_vmcs = 0;
6535         if (enable_shadow_vmcs)
6536                 init_vmcs_shadow_fields();
6537
6538         if (!cpu_has_vmx_ept() ||
6539             !cpu_has_vmx_ept_4levels()) {
6540                 enable_ept = 0;
6541                 enable_unrestricted_guest = 0;
6542                 enable_ept_ad_bits = 0;
6543         }
6544
6545         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6546                 enable_ept_ad_bits = 0;
6547
6548         if (!cpu_has_vmx_unrestricted_guest())
6549                 enable_unrestricted_guest = 0;
6550
6551         if (!cpu_has_vmx_flexpriority())
6552                 flexpriority_enabled = 0;
6553
6554         /*
6555          * set_apic_access_page_addr() is used to reload apic access
6556          * page upon invalidation.  No need to do anything if not
6557          * using the APIC_ACCESS_ADDR VMCS field.
6558          */
6559         if (!flexpriority_enabled)
6560                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6561
6562         if (!cpu_has_vmx_tpr_shadow())
6563                 kvm_x86_ops->update_cr8_intercept = NULL;
6564
6565         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6566                 kvm_disable_largepages();
6567
6568         if (!cpu_has_vmx_ple())
6569                 ple_gap = 0;
6570
6571         if (!cpu_has_vmx_apicv()) {
6572                 enable_apicv = 0;
6573                 kvm_x86_ops->sync_pir_to_irr = NULL;
6574         }
6575
6576         if (cpu_has_vmx_tsc_scaling()) {
6577                 kvm_has_tsc_control = true;
6578                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6579                 kvm_tsc_scaling_ratio_frac_bits = 48;
6580         }
6581
6582         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6583         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6584         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6585         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6586         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6587         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6588
6589         memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6590                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6591         memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6592                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6593         memcpy(vmx_msr_bitmap_legacy_x2apic,
6594                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6595         memcpy(vmx_msr_bitmap_longmode_x2apic,
6596                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6597
6598         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6599
6600         for (msr = 0x800; msr <= 0x8ff; msr++) {
6601                 if (msr == 0x839 /* TMCCT */)
6602                         continue;
6603                 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6604         }
6605
6606         /*
6607          * TPR reads and writes can be virtualized even if virtual interrupt
6608          * delivery is not in use.
6609          */
6610         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6611         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6612
6613         /* EOI */
6614         vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6615         /* SELF-IPI */
6616         vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6617
6618         if (enable_ept)
6619                 vmx_enable_tdp();
6620         else
6621                 kvm_disable_tdp();
6622
6623         update_ple_window_actual_max();
6624
6625         /*
6626          * Only enable PML when hardware supports PML feature, and both EPT
6627          * and EPT A/D bit features are enabled -- PML depends on them to work.
6628          */
6629         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6630                 enable_pml = 0;
6631
6632         if (!enable_pml) {
6633                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6634                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6635                 kvm_x86_ops->flush_log_dirty = NULL;
6636                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6637         }
6638
6639         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6640                 u64 vmx_msr;
6641
6642                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6643                 cpu_preemption_timer_multi =
6644                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6645         } else {
6646                 kvm_x86_ops->set_hv_timer = NULL;
6647                 kvm_x86_ops->cancel_hv_timer = NULL;
6648         }
6649
6650         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6651
6652         kvm_mce_cap_supported |= MCG_LMCE_P;
6653
6654         return alloc_kvm_area();
6655
6656 out:
6657         for (i = 0; i < VMX_BITMAP_NR; i++)
6658                 free_page((unsigned long)vmx_bitmap[i]);
6659
6660     return r;
6661 }
6662
6663 static __exit void hardware_unsetup(void)
6664 {
6665         int i;
6666
6667         for (i = 0; i < VMX_BITMAP_NR; i++)
6668                 free_page((unsigned long)vmx_bitmap[i]);
6669
6670         free_kvm_area();
6671 }
6672
6673 /*
6674  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6675  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6676  */
6677 static int handle_pause(struct kvm_vcpu *vcpu)
6678 {
6679         if (ple_gap)
6680                 grow_ple_window(vcpu);
6681
6682         kvm_vcpu_on_spin(vcpu);
6683         return kvm_skip_emulated_instruction(vcpu);
6684 }
6685
6686 static int handle_nop(struct kvm_vcpu *vcpu)
6687 {
6688         return kvm_skip_emulated_instruction(vcpu);
6689 }
6690
6691 static int handle_mwait(struct kvm_vcpu *vcpu)
6692 {
6693         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6694         return handle_nop(vcpu);
6695 }
6696
6697 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6698 {
6699         return 1;
6700 }
6701
6702 static int handle_monitor(struct kvm_vcpu *vcpu)
6703 {
6704         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6705         return handle_nop(vcpu);
6706 }
6707
6708 /*
6709  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6710  * We could reuse a single VMCS for all the L2 guests, but we also want the
6711  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6712  * allows keeping them loaded on the processor, and in the future will allow
6713  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6714  * every entry if they never change.
6715  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6716  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6717  *
6718  * The following functions allocate and free a vmcs02 in this pool.
6719  */
6720
6721 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6722 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6723 {
6724         struct vmcs02_list *item;
6725         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6726                 if (item->vmptr == vmx->nested.current_vmptr) {
6727                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6728                         return &item->vmcs02;
6729                 }
6730
6731         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6732                 /* Recycle the least recently used VMCS. */
6733                 item = list_last_entry(&vmx->nested.vmcs02_pool,
6734                                        struct vmcs02_list, list);
6735                 item->vmptr = vmx->nested.current_vmptr;
6736                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6737                 return &item->vmcs02;
6738         }
6739
6740         /* Create a new VMCS */
6741         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6742         if (!item)
6743                 return NULL;
6744         item->vmcs02.vmcs = alloc_vmcs();
6745         item->vmcs02.shadow_vmcs = NULL;
6746         if (!item->vmcs02.vmcs) {
6747                 kfree(item);
6748                 return NULL;
6749         }
6750         loaded_vmcs_init(&item->vmcs02);
6751         item->vmptr = vmx->nested.current_vmptr;
6752         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6753         vmx->nested.vmcs02_num++;
6754         return &item->vmcs02;
6755 }
6756
6757 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6758 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6759 {
6760         struct vmcs02_list *item;
6761         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6762                 if (item->vmptr == vmptr) {
6763                         free_loaded_vmcs(&item->vmcs02);
6764                         list_del(&item->list);
6765                         kfree(item);
6766                         vmx->nested.vmcs02_num--;
6767                         return;
6768                 }
6769 }
6770
6771 /*
6772  * Free all VMCSs saved for this vcpu, except the one pointed by
6773  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6774  * must be &vmx->vmcs01.
6775  */
6776 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6777 {
6778         struct vmcs02_list *item, *n;
6779
6780         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6781         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6782                 /*
6783                  * Something will leak if the above WARN triggers.  Better than
6784                  * a use-after-free.
6785                  */
6786                 if (vmx->loaded_vmcs == &item->vmcs02)
6787                         continue;
6788
6789                 free_loaded_vmcs(&item->vmcs02);
6790                 list_del(&item->list);
6791                 kfree(item);
6792                 vmx->nested.vmcs02_num--;
6793         }
6794 }
6795
6796 /*
6797  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6798  * set the success or error code of an emulated VMX instruction, as specified
6799  * by Vol 2B, VMX Instruction Reference, "Conventions".
6800  */
6801 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6802 {
6803         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6804                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6805                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6806 }
6807
6808 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6809 {
6810         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6811                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6812                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6813                         | X86_EFLAGS_CF);
6814 }
6815
6816 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6817                                         u32 vm_instruction_error)
6818 {
6819         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6820                 /*
6821                  * failValid writes the error number to the current VMCS, which
6822                  * can't be done there isn't a current VMCS.
6823                  */
6824                 nested_vmx_failInvalid(vcpu);
6825                 return;
6826         }
6827         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6828                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6829                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6830                         | X86_EFLAGS_ZF);
6831         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6832         /*
6833          * We don't need to force a shadow sync because
6834          * VM_INSTRUCTION_ERROR is not shadowed
6835          */
6836 }
6837
6838 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6839 {
6840         /* TODO: not to reset guest simply here. */
6841         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6842         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6843 }
6844
6845 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6846 {
6847         struct vcpu_vmx *vmx =
6848                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6849
6850         vmx->nested.preemption_timer_expired = true;
6851         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6852         kvm_vcpu_kick(&vmx->vcpu);
6853
6854         return HRTIMER_NORESTART;
6855 }
6856
6857 /*
6858  * Decode the memory-address operand of a vmx instruction, as recorded on an
6859  * exit caused by such an instruction (run by a guest hypervisor).
6860  * On success, returns 0. When the operand is invalid, returns 1 and throws
6861  * #UD or #GP.
6862  */
6863 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6864                                  unsigned long exit_qualification,
6865                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
6866 {
6867         gva_t off;
6868         bool exn;
6869         struct kvm_segment s;
6870
6871         /*
6872          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6873          * Execution", on an exit, vmx_instruction_info holds most of the
6874          * addressing components of the operand. Only the displacement part
6875          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6876          * For how an actual address is calculated from all these components,
6877          * refer to Vol. 1, "Operand Addressing".
6878          */
6879         int  scaling = vmx_instruction_info & 3;
6880         int  addr_size = (vmx_instruction_info >> 7) & 7;
6881         bool is_reg = vmx_instruction_info & (1u << 10);
6882         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6883         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6884         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6885         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6886         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6887
6888         if (is_reg) {
6889                 kvm_queue_exception(vcpu, UD_VECTOR);
6890                 return 1;
6891         }
6892
6893         /* Addr = segment_base + offset */
6894         /* offset = base + [index * scale] + displacement */
6895         off = exit_qualification; /* holds the displacement */
6896         if (base_is_valid)
6897                 off += kvm_register_read(vcpu, base_reg);
6898         if (index_is_valid)
6899                 off += kvm_register_read(vcpu, index_reg)<<scaling;
6900         vmx_get_segment(vcpu, &s, seg_reg);
6901         *ret = s.base + off;
6902
6903         if (addr_size == 1) /* 32 bit */
6904                 *ret &= 0xffffffff;
6905
6906         /* Checks for #GP/#SS exceptions. */
6907         exn = false;
6908         if (is_long_mode(vcpu)) {
6909                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6910                  * non-canonical form. This is the only check on the memory
6911                  * destination for long mode!
6912                  */
6913                 exn = is_noncanonical_address(*ret);
6914         } else if (is_protmode(vcpu)) {
6915                 /* Protected mode: apply checks for segment validity in the
6916                  * following order:
6917                  * - segment type check (#GP(0) may be thrown)
6918                  * - usability check (#GP(0)/#SS(0))
6919                  * - limit check (#GP(0)/#SS(0))
6920                  */
6921                 if (wr)
6922                         /* #GP(0) if the destination operand is located in a
6923                          * read-only data segment or any code segment.
6924                          */
6925                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
6926                 else
6927                         /* #GP(0) if the source operand is located in an
6928                          * execute-only code segment
6929                          */
6930                         exn = ((s.type & 0xa) == 8);
6931                 if (exn) {
6932                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6933                         return 1;
6934                 }
6935                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6936                  */
6937                 exn = (s.unusable != 0);
6938                 /* Protected mode: #GP(0)/#SS(0) if the memory
6939                  * operand is outside the segment limit.
6940                  */
6941                 exn = exn || (off + sizeof(u64) > s.limit);
6942         }
6943         if (exn) {
6944                 kvm_queue_exception_e(vcpu,
6945                                       seg_reg == VCPU_SREG_SS ?
6946                                                 SS_VECTOR : GP_VECTOR,
6947                                       0);
6948                 return 1;
6949         }
6950
6951         return 0;
6952 }
6953
6954 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
6955 {
6956         gva_t gva;
6957         struct x86_exception e;
6958
6959         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6960                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6961                 return 1;
6962
6963         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
6964                                 sizeof(*vmpointer), &e)) {
6965                 kvm_inject_page_fault(vcpu, &e);
6966                 return 1;
6967         }
6968
6969         return 0;
6970 }
6971
6972 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
6973 {
6974         struct vcpu_vmx *vmx = to_vmx(vcpu);
6975         struct vmcs *shadow_vmcs;
6976
6977         if (cpu_has_vmx_msr_bitmap()) {
6978                 vmx->nested.msr_bitmap =
6979                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6980                 if (!vmx->nested.msr_bitmap)
6981                         goto out_msr_bitmap;
6982         }
6983
6984         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
6985         if (!vmx->nested.cached_vmcs12)
6986                 goto out_cached_vmcs12;
6987
6988         if (enable_shadow_vmcs) {
6989                 shadow_vmcs = alloc_vmcs();
6990                 if (!shadow_vmcs)
6991                         goto out_shadow_vmcs;
6992                 /* mark vmcs as shadow */
6993                 shadow_vmcs->revision_id |= (1u << 31);
6994                 /* init shadow vmcs */
6995                 vmcs_clear(shadow_vmcs);
6996                 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
6997         }
6998
6999         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7000         vmx->nested.vmcs02_num = 0;
7001
7002         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7003                      HRTIMER_MODE_REL_PINNED);
7004         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7005
7006         vmx->nested.vmxon = true;
7007         return 0;
7008
7009 out_shadow_vmcs:
7010         kfree(vmx->nested.cached_vmcs12);
7011
7012 out_cached_vmcs12:
7013         free_page((unsigned long)vmx->nested.msr_bitmap);
7014
7015 out_msr_bitmap:
7016         return -ENOMEM;
7017 }
7018
7019 /*
7020  * Emulate the VMXON instruction.
7021  * Currently, we just remember that VMX is active, and do not save or even
7022  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7023  * do not currently need to store anything in that guest-allocated memory
7024  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7025  * argument is different from the VMXON pointer (which the spec says they do).
7026  */
7027 static int handle_vmon(struct kvm_vcpu *vcpu)
7028 {
7029         int ret;
7030         gpa_t vmptr;
7031         struct page *page;
7032         struct vcpu_vmx *vmx = to_vmx(vcpu);
7033         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7034                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7035
7036         /*
7037          * The Intel VMX Instruction Reference lists a bunch of bits that are
7038          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7039          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7040          * Otherwise, we should fail with #UD.  But most faulting conditions
7041          * have already been checked by hardware, prior to the VM-exit for
7042          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
7043          * that bit set to 1 in non-root mode.
7044          */
7045         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7046                 kvm_queue_exception(vcpu, UD_VECTOR);
7047                 return 1;
7048         }
7049
7050         if (vmx->nested.vmxon) {
7051                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7052                 return kvm_skip_emulated_instruction(vcpu);
7053         }
7054
7055         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7056                         != VMXON_NEEDED_FEATURES) {
7057                 kvm_inject_gp(vcpu, 0);
7058                 return 1;
7059         }
7060
7061         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7062                 return 1;
7063
7064         /*
7065          * SDM 3: 24.11.5
7066          * The first 4 bytes of VMXON region contain the supported
7067          * VMCS revision identifier
7068          *
7069          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7070          * which replaces physical address width with 32
7071          */
7072         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7073                 nested_vmx_failInvalid(vcpu);
7074                 return kvm_skip_emulated_instruction(vcpu);
7075         }
7076
7077         page = nested_get_page(vcpu, vmptr);
7078         if (page == NULL) {
7079                 nested_vmx_failInvalid(vcpu);
7080                 return kvm_skip_emulated_instruction(vcpu);
7081         }
7082         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7083                 kunmap(page);
7084                 nested_release_page_clean(page);
7085                 nested_vmx_failInvalid(vcpu);
7086                 return kvm_skip_emulated_instruction(vcpu);
7087         }
7088         kunmap(page);
7089         nested_release_page_clean(page);
7090
7091         vmx->nested.vmxon_ptr = vmptr;
7092         ret = enter_vmx_operation(vcpu);
7093         if (ret)
7094                 return ret;
7095
7096         nested_vmx_succeed(vcpu);
7097         return kvm_skip_emulated_instruction(vcpu);
7098 }
7099
7100 /*
7101  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7102  * for running VMX instructions (except VMXON, whose prerequisites are
7103  * slightly different). It also specifies what exception to inject otherwise.
7104  * Note that many of these exceptions have priority over VM exits, so they
7105  * don't have to be checked again here.
7106  */
7107 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7108 {
7109         if (!to_vmx(vcpu)->nested.vmxon) {
7110                 kvm_queue_exception(vcpu, UD_VECTOR);
7111                 return 0;
7112         }
7113         return 1;
7114 }
7115
7116 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7117 {
7118         if (vmx->nested.current_vmptr == -1ull)
7119                 return;
7120
7121         /* current_vmptr and current_vmcs12 are always set/reset together */
7122         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7123                 return;
7124
7125         if (enable_shadow_vmcs) {
7126                 /* copy to memory all shadowed fields in case
7127                    they were modified */
7128                 copy_shadow_to_vmcs12(vmx);
7129                 vmx->nested.sync_shadow_vmcs = false;
7130                 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7131                                 SECONDARY_EXEC_SHADOW_VMCS);
7132                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7133         }
7134         vmx->nested.posted_intr_nv = -1;
7135
7136         /* Flush VMCS12 to guest memory */
7137         memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7138                VMCS12_SIZE);
7139
7140         kunmap(vmx->nested.current_vmcs12_page);
7141         nested_release_page(vmx->nested.current_vmcs12_page);
7142         vmx->nested.current_vmptr = -1ull;
7143         vmx->nested.current_vmcs12 = NULL;
7144 }
7145
7146 /*
7147  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7148  * just stops using VMX.
7149  */
7150 static void free_nested(struct vcpu_vmx *vmx)
7151 {
7152         if (!vmx->nested.vmxon)
7153                 return;
7154
7155         vmx->nested.vmxon = false;
7156         free_vpid(vmx->nested.vpid02);
7157         nested_release_vmcs12(vmx);
7158         if (vmx->nested.msr_bitmap) {
7159                 free_page((unsigned long)vmx->nested.msr_bitmap);
7160                 vmx->nested.msr_bitmap = NULL;
7161         }
7162         if (enable_shadow_vmcs) {
7163                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7164                 free_vmcs(vmx->vmcs01.shadow_vmcs);
7165                 vmx->vmcs01.shadow_vmcs = NULL;
7166         }
7167         kfree(vmx->nested.cached_vmcs12);
7168         /* Unpin physical memory we referred to in current vmcs02 */
7169         if (vmx->nested.apic_access_page) {
7170                 nested_release_page(vmx->nested.apic_access_page);
7171                 vmx->nested.apic_access_page = NULL;
7172         }
7173         if (vmx->nested.virtual_apic_page) {
7174                 nested_release_page(vmx->nested.virtual_apic_page);
7175                 vmx->nested.virtual_apic_page = NULL;
7176         }
7177         if (vmx->nested.pi_desc_page) {
7178                 kunmap(vmx->nested.pi_desc_page);
7179                 nested_release_page(vmx->nested.pi_desc_page);
7180                 vmx->nested.pi_desc_page = NULL;
7181                 vmx->nested.pi_desc = NULL;
7182         }
7183
7184         nested_free_all_saved_vmcss(vmx);
7185 }
7186
7187 /* Emulate the VMXOFF instruction */
7188 static int handle_vmoff(struct kvm_vcpu *vcpu)
7189 {
7190         if (!nested_vmx_check_permission(vcpu))
7191                 return 1;
7192         free_nested(to_vmx(vcpu));
7193         nested_vmx_succeed(vcpu);
7194         return kvm_skip_emulated_instruction(vcpu);
7195 }
7196
7197 /* Emulate the VMCLEAR instruction */
7198 static int handle_vmclear(struct kvm_vcpu *vcpu)
7199 {
7200         struct vcpu_vmx *vmx = to_vmx(vcpu);
7201         u32 zero = 0;
7202         gpa_t vmptr;
7203
7204         if (!nested_vmx_check_permission(vcpu))
7205                 return 1;
7206
7207         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7208                 return 1;
7209
7210         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7211                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7212                 return kvm_skip_emulated_instruction(vcpu);
7213         }
7214
7215         if (vmptr == vmx->nested.vmxon_ptr) {
7216                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7217                 return kvm_skip_emulated_instruction(vcpu);
7218         }
7219
7220         if (vmptr == vmx->nested.current_vmptr)
7221                 nested_release_vmcs12(vmx);
7222
7223         kvm_vcpu_write_guest(vcpu,
7224                         vmptr + offsetof(struct vmcs12, launch_state),
7225                         &zero, sizeof(zero));
7226
7227         nested_free_vmcs02(vmx, vmptr);
7228
7229         nested_vmx_succeed(vcpu);
7230         return kvm_skip_emulated_instruction(vcpu);
7231 }
7232
7233 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7234
7235 /* Emulate the VMLAUNCH instruction */
7236 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7237 {
7238         return nested_vmx_run(vcpu, true);
7239 }
7240
7241 /* Emulate the VMRESUME instruction */
7242 static int handle_vmresume(struct kvm_vcpu *vcpu)
7243 {
7244
7245         return nested_vmx_run(vcpu, false);
7246 }
7247
7248 /*
7249  * Read a vmcs12 field. Since these can have varying lengths and we return
7250  * one type, we chose the biggest type (u64) and zero-extend the return value
7251  * to that size. Note that the caller, handle_vmread, might need to use only
7252  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7253  * 64-bit fields are to be returned).
7254  */
7255 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7256                                   unsigned long field, u64 *ret)
7257 {
7258         short offset = vmcs_field_to_offset(field);
7259         char *p;
7260
7261         if (offset < 0)
7262                 return offset;
7263
7264         p = ((char *)(get_vmcs12(vcpu))) + offset;
7265
7266         switch (vmcs_field_type(field)) {
7267         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7268                 *ret = *((natural_width *)p);
7269                 return 0;
7270         case VMCS_FIELD_TYPE_U16:
7271                 *ret = *((u16 *)p);
7272                 return 0;
7273         case VMCS_FIELD_TYPE_U32:
7274                 *ret = *((u32 *)p);
7275                 return 0;
7276         case VMCS_FIELD_TYPE_U64:
7277                 *ret = *((u64 *)p);
7278                 return 0;
7279         default:
7280                 WARN_ON(1);
7281                 return -ENOENT;
7282         }
7283 }
7284
7285
7286 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7287                                    unsigned long field, u64 field_value){
7288         short offset = vmcs_field_to_offset(field);
7289         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7290         if (offset < 0)
7291                 return offset;
7292
7293         switch (vmcs_field_type(field)) {
7294         case VMCS_FIELD_TYPE_U16:
7295                 *(u16 *)p = field_value;
7296                 return 0;
7297         case VMCS_FIELD_TYPE_U32:
7298                 *(u32 *)p = field_value;
7299                 return 0;
7300         case VMCS_FIELD_TYPE_U64:
7301                 *(u64 *)p = field_value;
7302                 return 0;
7303         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7304                 *(natural_width *)p = field_value;
7305                 return 0;
7306         default:
7307                 WARN_ON(1);
7308                 return -ENOENT;
7309         }
7310
7311 }
7312
7313 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7314 {
7315         int i;
7316         unsigned long field;
7317         u64 field_value;
7318         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7319         const unsigned long *fields = shadow_read_write_fields;
7320         const int num_fields = max_shadow_read_write_fields;
7321
7322         preempt_disable();
7323
7324         vmcs_load(shadow_vmcs);
7325
7326         for (i = 0; i < num_fields; i++) {
7327                 field = fields[i];
7328                 switch (vmcs_field_type(field)) {
7329                 case VMCS_FIELD_TYPE_U16:
7330                         field_value = vmcs_read16(field);
7331                         break;
7332                 case VMCS_FIELD_TYPE_U32:
7333                         field_value = vmcs_read32(field);
7334                         break;
7335                 case VMCS_FIELD_TYPE_U64:
7336                         field_value = vmcs_read64(field);
7337                         break;
7338                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7339                         field_value = vmcs_readl(field);
7340                         break;
7341                 default:
7342                         WARN_ON(1);
7343                         continue;
7344                 }
7345                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7346         }
7347
7348         vmcs_clear(shadow_vmcs);
7349         vmcs_load(vmx->loaded_vmcs->vmcs);
7350
7351         preempt_enable();
7352 }
7353
7354 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7355 {
7356         const unsigned long *fields[] = {
7357                 shadow_read_write_fields,
7358                 shadow_read_only_fields
7359         };
7360         const int max_fields[] = {
7361                 max_shadow_read_write_fields,
7362                 max_shadow_read_only_fields
7363         };
7364         int i, q;
7365         unsigned long field;
7366         u64 field_value = 0;
7367         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7368
7369         vmcs_load(shadow_vmcs);
7370
7371         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7372                 for (i = 0; i < max_fields[q]; i++) {
7373                         field = fields[q][i];
7374                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7375
7376                         switch (vmcs_field_type(field)) {
7377                         case VMCS_FIELD_TYPE_U16:
7378                                 vmcs_write16(field, (u16)field_value);
7379                                 break;
7380                         case VMCS_FIELD_TYPE_U32:
7381                                 vmcs_write32(field, (u32)field_value);
7382                                 break;
7383                         case VMCS_FIELD_TYPE_U64:
7384                                 vmcs_write64(field, (u64)field_value);
7385                                 break;
7386                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7387                                 vmcs_writel(field, (long)field_value);
7388                                 break;
7389                         default:
7390                                 WARN_ON(1);
7391                                 break;
7392                         }
7393                 }
7394         }
7395
7396         vmcs_clear(shadow_vmcs);
7397         vmcs_load(vmx->loaded_vmcs->vmcs);
7398 }
7399
7400 /*
7401  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7402  * used before) all generate the same failure when it is missing.
7403  */
7404 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7405 {
7406         struct vcpu_vmx *vmx = to_vmx(vcpu);
7407         if (vmx->nested.current_vmptr == -1ull) {
7408                 nested_vmx_failInvalid(vcpu);
7409                 return 0;
7410         }
7411         return 1;
7412 }
7413
7414 static int handle_vmread(struct kvm_vcpu *vcpu)
7415 {
7416         unsigned long field;
7417         u64 field_value;
7418         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7419         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7420         gva_t gva = 0;
7421
7422         if (!nested_vmx_check_permission(vcpu))
7423                 return 1;
7424
7425         if (!nested_vmx_check_vmcs12(vcpu))
7426                 return kvm_skip_emulated_instruction(vcpu);
7427
7428         /* Decode instruction info and find the field to read */
7429         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7430         /* Read the field, zero-extended to a u64 field_value */
7431         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7432                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7433                 return kvm_skip_emulated_instruction(vcpu);
7434         }
7435         /*
7436          * Now copy part of this value to register or memory, as requested.
7437          * Note that the number of bits actually copied is 32 or 64 depending
7438          * on the guest's mode (32 or 64 bit), not on the given field's length.
7439          */
7440         if (vmx_instruction_info & (1u << 10)) {
7441                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7442                         field_value);
7443         } else {
7444                 if (get_vmx_mem_address(vcpu, exit_qualification,
7445                                 vmx_instruction_info, true, &gva))
7446                         return 1;
7447                 /* _system ok, as hardware has verified cpl=0 */
7448                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7449                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7450         }
7451
7452         nested_vmx_succeed(vcpu);
7453         return kvm_skip_emulated_instruction(vcpu);
7454 }
7455
7456
7457 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7458 {
7459         unsigned long field;
7460         gva_t gva;
7461         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7462         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7463         /* The value to write might be 32 or 64 bits, depending on L1's long
7464          * mode, and eventually we need to write that into a field of several
7465          * possible lengths. The code below first zero-extends the value to 64
7466          * bit (field_value), and then copies only the appropriate number of
7467          * bits into the vmcs12 field.
7468          */
7469         u64 field_value = 0;
7470         struct x86_exception e;
7471
7472         if (!nested_vmx_check_permission(vcpu))
7473                 return 1;
7474
7475         if (!nested_vmx_check_vmcs12(vcpu))
7476                 return kvm_skip_emulated_instruction(vcpu);
7477
7478         if (vmx_instruction_info & (1u << 10))
7479                 field_value = kvm_register_readl(vcpu,
7480                         (((vmx_instruction_info) >> 3) & 0xf));
7481         else {
7482                 if (get_vmx_mem_address(vcpu, exit_qualification,
7483                                 vmx_instruction_info, false, &gva))
7484                         return 1;
7485                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7486                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7487                         kvm_inject_page_fault(vcpu, &e);
7488                         return 1;
7489                 }
7490         }
7491
7492
7493         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7494         if (vmcs_field_readonly(field)) {
7495                 nested_vmx_failValid(vcpu,
7496                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7497                 return kvm_skip_emulated_instruction(vcpu);
7498         }
7499
7500         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7501                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7502                 return kvm_skip_emulated_instruction(vcpu);
7503         }
7504
7505         nested_vmx_succeed(vcpu);
7506         return kvm_skip_emulated_instruction(vcpu);
7507 }
7508
7509 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7510 {
7511         vmx->nested.current_vmptr = vmptr;
7512         if (enable_shadow_vmcs) {
7513                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7514                               SECONDARY_EXEC_SHADOW_VMCS);
7515                 vmcs_write64(VMCS_LINK_POINTER,
7516                              __pa(vmx->vmcs01.shadow_vmcs));
7517                 vmx->nested.sync_shadow_vmcs = true;
7518         }
7519 }
7520
7521 /* Emulate the VMPTRLD instruction */
7522 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7523 {
7524         struct vcpu_vmx *vmx = to_vmx(vcpu);
7525         gpa_t vmptr;
7526
7527         if (!nested_vmx_check_permission(vcpu))
7528                 return 1;
7529
7530         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7531                 return 1;
7532
7533         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7534                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7535                 return kvm_skip_emulated_instruction(vcpu);
7536         }
7537
7538         if (vmptr == vmx->nested.vmxon_ptr) {
7539                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7540                 return kvm_skip_emulated_instruction(vcpu);
7541         }
7542
7543         if (vmx->nested.current_vmptr != vmptr) {
7544                 struct vmcs12 *new_vmcs12;
7545                 struct page *page;
7546                 page = nested_get_page(vcpu, vmptr);
7547                 if (page == NULL) {
7548                         nested_vmx_failInvalid(vcpu);
7549                         return kvm_skip_emulated_instruction(vcpu);
7550                 }
7551                 new_vmcs12 = kmap(page);
7552                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7553                         kunmap(page);
7554                         nested_release_page_clean(page);
7555                         nested_vmx_failValid(vcpu,
7556                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7557                         return kvm_skip_emulated_instruction(vcpu);
7558                 }
7559
7560                 nested_release_vmcs12(vmx);
7561                 vmx->nested.current_vmcs12 = new_vmcs12;
7562                 vmx->nested.current_vmcs12_page = page;
7563                 /*
7564                  * Load VMCS12 from guest memory since it is not already
7565                  * cached.
7566                  */
7567                 memcpy(vmx->nested.cached_vmcs12,
7568                        vmx->nested.current_vmcs12, VMCS12_SIZE);
7569                 set_current_vmptr(vmx, vmptr);
7570         }
7571
7572         nested_vmx_succeed(vcpu);
7573         return kvm_skip_emulated_instruction(vcpu);
7574 }
7575
7576 /* Emulate the VMPTRST instruction */
7577 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7578 {
7579         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7580         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7581         gva_t vmcs_gva;
7582         struct x86_exception e;
7583
7584         if (!nested_vmx_check_permission(vcpu))
7585                 return 1;
7586
7587         if (get_vmx_mem_address(vcpu, exit_qualification,
7588                         vmx_instruction_info, true, &vmcs_gva))
7589                 return 1;
7590         /* ok to use *_system, as hardware has verified cpl=0 */
7591         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7592                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7593                                  sizeof(u64), &e)) {
7594                 kvm_inject_page_fault(vcpu, &e);
7595                 return 1;
7596         }
7597         nested_vmx_succeed(vcpu);
7598         return kvm_skip_emulated_instruction(vcpu);
7599 }
7600
7601 /* Emulate the INVEPT instruction */
7602 static int handle_invept(struct kvm_vcpu *vcpu)
7603 {
7604         struct vcpu_vmx *vmx = to_vmx(vcpu);
7605         u32 vmx_instruction_info, types;
7606         unsigned long type;
7607         gva_t gva;
7608         struct x86_exception e;
7609         struct {
7610                 u64 eptp, gpa;
7611         } operand;
7612
7613         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7614               SECONDARY_EXEC_ENABLE_EPT) ||
7615             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7616                 kvm_queue_exception(vcpu, UD_VECTOR);
7617                 return 1;
7618         }
7619
7620         if (!nested_vmx_check_permission(vcpu))
7621                 return 1;
7622
7623         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7624         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7625
7626         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7627
7628         if (type >= 32 || !(types & (1 << type))) {
7629                 nested_vmx_failValid(vcpu,
7630                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7631                 return kvm_skip_emulated_instruction(vcpu);
7632         }
7633
7634         /* According to the Intel VMX instruction reference, the memory
7635          * operand is read even if it isn't needed (e.g., for type==global)
7636          */
7637         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7638                         vmx_instruction_info, false, &gva))
7639                 return 1;
7640         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7641                                 sizeof(operand), &e)) {
7642                 kvm_inject_page_fault(vcpu, &e);
7643                 return 1;
7644         }
7645
7646         switch (type) {
7647         case VMX_EPT_EXTENT_GLOBAL:
7648         /*
7649          * TODO: track mappings and invalidate
7650          * single context requests appropriately
7651          */
7652         case VMX_EPT_EXTENT_CONTEXT:
7653                 kvm_mmu_sync_roots(vcpu);
7654                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7655                 nested_vmx_succeed(vcpu);
7656                 break;
7657         default:
7658                 BUG_ON(1);
7659                 break;
7660         }
7661
7662         return kvm_skip_emulated_instruction(vcpu);
7663 }
7664
7665 static int handle_invvpid(struct kvm_vcpu *vcpu)
7666 {
7667         struct vcpu_vmx *vmx = to_vmx(vcpu);
7668         u32 vmx_instruction_info;
7669         unsigned long type, types;
7670         gva_t gva;
7671         struct x86_exception e;
7672         struct {
7673                 u64 vpid;
7674                 u64 gla;
7675         } operand;
7676
7677         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7678               SECONDARY_EXEC_ENABLE_VPID) ||
7679                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7680                 kvm_queue_exception(vcpu, UD_VECTOR);
7681                 return 1;
7682         }
7683
7684         if (!nested_vmx_check_permission(vcpu))
7685                 return 1;
7686
7687         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7688         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7689
7690         types = (vmx->nested.nested_vmx_vpid_caps &
7691                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7692
7693         if (type >= 32 || !(types & (1 << type))) {
7694                 nested_vmx_failValid(vcpu,
7695                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7696                 return kvm_skip_emulated_instruction(vcpu);
7697         }
7698
7699         /* according to the intel vmx instruction reference, the memory
7700          * operand is read even if it isn't needed (e.g., for type==global)
7701          */
7702         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7703                         vmx_instruction_info, false, &gva))
7704                 return 1;
7705         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7706                                 sizeof(operand), &e)) {
7707                 kvm_inject_page_fault(vcpu, &e);
7708                 return 1;
7709         }
7710         if (operand.vpid >> 16) {
7711                 nested_vmx_failValid(vcpu,
7712                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7713                 return kvm_skip_emulated_instruction(vcpu);
7714         }
7715
7716         switch (type) {
7717         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7718                 if (is_noncanonical_address(operand.gla)) {
7719                         nested_vmx_failValid(vcpu,
7720                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7721                         return kvm_skip_emulated_instruction(vcpu);
7722                 }
7723                 /* fall through */
7724         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7725         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7726                 if (!operand.vpid) {
7727                         nested_vmx_failValid(vcpu,
7728                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7729                         return kvm_skip_emulated_instruction(vcpu);
7730                 }
7731                 break;
7732         case VMX_VPID_EXTENT_ALL_CONTEXT:
7733                 break;
7734         default:
7735                 WARN_ON_ONCE(1);
7736                 return kvm_skip_emulated_instruction(vcpu);
7737         }
7738
7739         __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7740         nested_vmx_succeed(vcpu);
7741
7742         return kvm_skip_emulated_instruction(vcpu);
7743 }
7744
7745 static int handle_pml_full(struct kvm_vcpu *vcpu)
7746 {
7747         unsigned long exit_qualification;
7748
7749         trace_kvm_pml_full(vcpu->vcpu_id);
7750
7751         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7752
7753         /*
7754          * PML buffer FULL happened while executing iret from NMI,
7755          * "blocked by NMI" bit has to be set before next VM entry.
7756          */
7757         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7758                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7759                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7760                                 GUEST_INTR_STATE_NMI);
7761
7762         /*
7763          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7764          * here.., and there's no userspace involvement needed for PML.
7765          */
7766         return 1;
7767 }
7768
7769 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7770 {
7771         kvm_lapic_expired_hv_timer(vcpu);
7772         return 1;
7773 }
7774
7775 /*
7776  * The exit handlers return 1 if the exit was handled fully and guest execution
7777  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7778  * to be done to userspace and return 0.
7779  */
7780 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7781         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7782         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7783         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7784         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7785         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7786         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7787         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7788         [EXIT_REASON_CPUID]                   = handle_cpuid,
7789         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7790         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7791         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7792         [EXIT_REASON_HLT]                     = handle_halt,
7793         [EXIT_REASON_INVD]                    = handle_invd,
7794         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7795         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7796         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7797         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7798         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7799         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7800         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7801         [EXIT_REASON_VMREAD]                  = handle_vmread,
7802         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7803         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7804         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7805         [EXIT_REASON_VMON]                    = handle_vmon,
7806         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7807         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7808         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7809         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7810         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7811         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7812         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7813         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7814         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7815         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7816         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7817         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7818         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7819         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7820         [EXIT_REASON_INVEPT]                  = handle_invept,
7821         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7822         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7823         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7824         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7825         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
7826 };
7827
7828 static const int kvm_vmx_max_exit_handlers =
7829         ARRAY_SIZE(kvm_vmx_exit_handlers);
7830
7831 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7832                                        struct vmcs12 *vmcs12)
7833 {
7834         unsigned long exit_qualification;
7835         gpa_t bitmap, last_bitmap;
7836         unsigned int port;
7837         int size;
7838         u8 b;
7839
7840         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7841                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7842
7843         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7844
7845         port = exit_qualification >> 16;
7846         size = (exit_qualification & 7) + 1;
7847
7848         last_bitmap = (gpa_t)-1;
7849         b = -1;
7850
7851         while (size > 0) {
7852                 if (port < 0x8000)
7853                         bitmap = vmcs12->io_bitmap_a;
7854                 else if (port < 0x10000)
7855                         bitmap = vmcs12->io_bitmap_b;
7856                 else
7857                         return true;
7858                 bitmap += (port & 0x7fff) / 8;
7859
7860                 if (last_bitmap != bitmap)
7861                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7862                                 return true;
7863                 if (b & (1 << (port & 7)))
7864                         return true;
7865
7866                 port++;
7867                 size--;
7868                 last_bitmap = bitmap;
7869         }
7870
7871         return false;
7872 }
7873
7874 /*
7875  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7876  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7877  * disinterest in the current event (read or write a specific MSR) by using an
7878  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7879  */
7880 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7881         struct vmcs12 *vmcs12, u32 exit_reason)
7882 {
7883         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7884         gpa_t bitmap;
7885
7886         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7887                 return true;
7888
7889         /*
7890          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7891          * for the four combinations of read/write and low/high MSR numbers.
7892          * First we need to figure out which of the four to use:
7893          */
7894         bitmap = vmcs12->msr_bitmap;
7895         if (exit_reason == EXIT_REASON_MSR_WRITE)
7896                 bitmap += 2048;
7897         if (msr_index >= 0xc0000000) {
7898                 msr_index -= 0xc0000000;
7899                 bitmap += 1024;
7900         }
7901
7902         /* Then read the msr_index'th bit from this bitmap: */
7903         if (msr_index < 1024*8) {
7904                 unsigned char b;
7905                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7906                         return true;
7907                 return 1 & (b >> (msr_index & 7));
7908         } else
7909                 return true; /* let L1 handle the wrong parameter */
7910 }
7911
7912 /*
7913  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7914  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7915  * intercept (via guest_host_mask etc.) the current event.
7916  */
7917 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7918         struct vmcs12 *vmcs12)
7919 {
7920         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7921         int cr = exit_qualification & 15;
7922         int reg;
7923         unsigned long val;
7924
7925         switch ((exit_qualification >> 4) & 3) {
7926         case 0: /* mov to cr */
7927                 reg = (exit_qualification >> 8) & 15;
7928                 val = kvm_register_readl(vcpu, reg);
7929                 switch (cr) {
7930                 case 0:
7931                         if (vmcs12->cr0_guest_host_mask &
7932                             (val ^ vmcs12->cr0_read_shadow))
7933                                 return true;
7934                         break;
7935                 case 3:
7936                         if ((vmcs12->cr3_target_count >= 1 &&
7937                                         vmcs12->cr3_target_value0 == val) ||
7938                                 (vmcs12->cr3_target_count >= 2 &&
7939                                         vmcs12->cr3_target_value1 == val) ||
7940                                 (vmcs12->cr3_target_count >= 3 &&
7941                                         vmcs12->cr3_target_value2 == val) ||
7942                                 (vmcs12->cr3_target_count >= 4 &&
7943                                         vmcs12->cr3_target_value3 == val))
7944                                 return false;
7945                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7946                                 return true;
7947                         break;
7948                 case 4:
7949                         if (vmcs12->cr4_guest_host_mask &
7950                             (vmcs12->cr4_read_shadow ^ val))
7951                                 return true;
7952                         break;
7953                 case 8:
7954                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7955                                 return true;
7956                         break;
7957                 }
7958                 break;
7959         case 2: /* clts */
7960                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7961                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7962                         return true;
7963                 break;
7964         case 1: /* mov from cr */
7965                 switch (cr) {
7966                 case 3:
7967                         if (vmcs12->cpu_based_vm_exec_control &
7968                             CPU_BASED_CR3_STORE_EXITING)
7969                                 return true;
7970                         break;
7971                 case 8:
7972                         if (vmcs12->cpu_based_vm_exec_control &
7973                             CPU_BASED_CR8_STORE_EXITING)
7974                                 return true;
7975                         break;
7976                 }
7977                 break;
7978         case 3: /* lmsw */
7979                 /*
7980                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7981                  * cr0. Other attempted changes are ignored, with no exit.
7982                  */
7983                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
7984                 if (vmcs12->cr0_guest_host_mask & 0xe &
7985                     (val ^ vmcs12->cr0_read_shadow))
7986                         return true;
7987                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7988                     !(vmcs12->cr0_read_shadow & 0x1) &&
7989                     (val & 0x1))
7990                         return true;
7991                 break;
7992         }
7993         return false;
7994 }
7995
7996 /*
7997  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7998  * should handle it ourselves in L0 (and then continue L2). Only call this
7999  * when in is_guest_mode (L2).
8000  */
8001 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8002 {
8003         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8004         struct vcpu_vmx *vmx = to_vmx(vcpu);
8005         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8006         u32 exit_reason = vmx->exit_reason;
8007
8008         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8009                                 vmcs_readl(EXIT_QUALIFICATION),
8010                                 vmx->idt_vectoring_info,
8011                                 intr_info,
8012                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8013                                 KVM_ISA_VMX);
8014
8015         if (vmx->nested.nested_run_pending)
8016                 return false;
8017
8018         if (unlikely(vmx->fail)) {
8019                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8020                                     vmcs_read32(VM_INSTRUCTION_ERROR));
8021                 return true;
8022         }
8023
8024         switch (exit_reason) {
8025         case EXIT_REASON_EXCEPTION_NMI:
8026                 if (is_nmi(intr_info))
8027                         return false;
8028                 else if (is_page_fault(intr_info))
8029                         return enable_ept;
8030                 else if (is_no_device(intr_info) &&
8031                          !(vmcs12->guest_cr0 & X86_CR0_TS))
8032                         return false;
8033                 else if (is_debug(intr_info) &&
8034                          vcpu->guest_debug &
8035                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8036                         return false;
8037                 else if (is_breakpoint(intr_info) &&
8038                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8039                         return false;
8040                 return vmcs12->exception_bitmap &
8041                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8042         case EXIT_REASON_EXTERNAL_INTERRUPT:
8043                 return false;
8044         case EXIT_REASON_TRIPLE_FAULT:
8045                 return true;
8046         case EXIT_REASON_PENDING_INTERRUPT:
8047                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8048         case EXIT_REASON_NMI_WINDOW:
8049                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8050         case EXIT_REASON_TASK_SWITCH:
8051                 return true;
8052         case EXIT_REASON_CPUID:
8053                 return true;
8054         case EXIT_REASON_HLT:
8055                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8056         case EXIT_REASON_INVD:
8057                 return true;
8058         case EXIT_REASON_INVLPG:
8059                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8060         case EXIT_REASON_RDPMC:
8061                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8062         case EXIT_REASON_RDRAND:
8063                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8064         case EXIT_REASON_RDSEED:
8065                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8066         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8067                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8068         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8069         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8070         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8071         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8072         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8073         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8074                 /*
8075                  * VMX instructions trap unconditionally. This allows L1 to
8076                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
8077                  */
8078                 return true;
8079         case EXIT_REASON_CR_ACCESS:
8080                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8081         case EXIT_REASON_DR_ACCESS:
8082                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8083         case EXIT_REASON_IO_INSTRUCTION:
8084                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8085         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8086                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8087         case EXIT_REASON_MSR_READ:
8088         case EXIT_REASON_MSR_WRITE:
8089                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8090         case EXIT_REASON_INVALID_STATE:
8091                 return true;
8092         case EXIT_REASON_MWAIT_INSTRUCTION:
8093                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8094         case EXIT_REASON_MONITOR_TRAP_FLAG:
8095                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8096         case EXIT_REASON_MONITOR_INSTRUCTION:
8097                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8098         case EXIT_REASON_PAUSE_INSTRUCTION:
8099                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8100                         nested_cpu_has2(vmcs12,
8101                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8102         case EXIT_REASON_MCE_DURING_VMENTRY:
8103                 return false;
8104         case EXIT_REASON_TPR_BELOW_THRESHOLD:
8105                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8106         case EXIT_REASON_APIC_ACCESS:
8107                 return nested_cpu_has2(vmcs12,
8108                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8109         case EXIT_REASON_APIC_WRITE:
8110         case EXIT_REASON_EOI_INDUCED:
8111                 /* apic_write and eoi_induced should exit unconditionally. */
8112                 return true;
8113         case EXIT_REASON_EPT_VIOLATION:
8114                 /*
8115                  * L0 always deals with the EPT violation. If nested EPT is
8116                  * used, and the nested mmu code discovers that the address is
8117                  * missing in the guest EPT table (EPT12), the EPT violation
8118                  * will be injected with nested_ept_inject_page_fault()
8119                  */
8120                 return false;
8121         case EXIT_REASON_EPT_MISCONFIG:
8122                 /*
8123                  * L2 never uses directly L1's EPT, but rather L0's own EPT
8124                  * table (shadow on EPT) or a merged EPT table that L0 built
8125                  * (EPT on EPT). So any problems with the structure of the
8126                  * table is L0's fault.
8127                  */
8128                 return false;
8129         case EXIT_REASON_WBINVD:
8130                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8131         case EXIT_REASON_XSETBV:
8132                 return true;
8133         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8134                 /*
8135                  * This should never happen, since it is not possible to
8136                  * set XSS to a non-zero value---neither in L1 nor in L2.
8137                  * If if it were, XSS would have to be checked against
8138                  * the XSS exit bitmap in vmcs12.
8139                  */
8140                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8141         case EXIT_REASON_PREEMPTION_TIMER:
8142                 return false;
8143         case EXIT_REASON_PML_FULL:
8144                 /* We emulate PML support to L1. */
8145                 return false;
8146         default:
8147                 return true;
8148         }
8149 }
8150
8151 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8152 {
8153         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8154         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8155 }
8156
8157 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8158 {
8159         if (vmx->pml_pg) {
8160                 __free_page(vmx->pml_pg);
8161                 vmx->pml_pg = NULL;
8162         }
8163 }
8164
8165 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8166 {
8167         struct vcpu_vmx *vmx = to_vmx(vcpu);
8168         u64 *pml_buf;
8169         u16 pml_idx;
8170
8171         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8172
8173         /* Do nothing if PML buffer is empty */
8174         if (pml_idx == (PML_ENTITY_NUM - 1))
8175                 return;
8176
8177         /* PML index always points to next available PML buffer entity */
8178         if (pml_idx >= PML_ENTITY_NUM)
8179                 pml_idx = 0;
8180         else
8181                 pml_idx++;
8182
8183         pml_buf = page_address(vmx->pml_pg);
8184         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8185                 u64 gpa;
8186
8187                 gpa = pml_buf[pml_idx];
8188                 WARN_ON(gpa & (PAGE_SIZE - 1));
8189                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8190         }
8191
8192         /* reset PML index */
8193         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8194 }
8195
8196 /*
8197  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8198  * Called before reporting dirty_bitmap to userspace.
8199  */
8200 static void kvm_flush_pml_buffers(struct kvm *kvm)
8201 {
8202         int i;
8203         struct kvm_vcpu *vcpu;
8204         /*
8205          * We only need to kick vcpu out of guest mode here, as PML buffer
8206          * is flushed at beginning of all VMEXITs, and it's obvious that only
8207          * vcpus running in guest are possible to have unflushed GPAs in PML
8208          * buffer.
8209          */
8210         kvm_for_each_vcpu(i, vcpu, kvm)
8211                 kvm_vcpu_kick(vcpu);
8212 }
8213
8214 static void vmx_dump_sel(char *name, uint32_t sel)
8215 {
8216         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8217                name, vmcs_read16(sel),
8218                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8219                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8220                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8221 }
8222
8223 static void vmx_dump_dtsel(char *name, uint32_t limit)
8224 {
8225         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8226                name, vmcs_read32(limit),
8227                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8228 }
8229
8230 static void dump_vmcs(void)
8231 {
8232         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8233         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8234         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8235         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8236         u32 secondary_exec_control = 0;
8237         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8238         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8239         int i, n;
8240
8241         if (cpu_has_secondary_exec_ctrls())
8242                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8243
8244         pr_err("*** Guest State ***\n");
8245         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8246                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8247                vmcs_readl(CR0_GUEST_HOST_MASK));
8248         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8249                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8250         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8251         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8252             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8253         {
8254                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8255                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8256                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8257                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8258         }
8259         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8260                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8261         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8262                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8263         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8264                vmcs_readl(GUEST_SYSENTER_ESP),
8265                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8266         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8267         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8268         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8269         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8270         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8271         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8272         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8273         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8274         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8275         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8276         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8277             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8278                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8279                        efer, vmcs_read64(GUEST_IA32_PAT));
8280         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8281                vmcs_read64(GUEST_IA32_DEBUGCTL),
8282                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8283         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8284                 pr_err("PerfGlobCtl = 0x%016llx\n",
8285                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8286         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8287                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8288         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8289                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8290                vmcs_read32(GUEST_ACTIVITY_STATE));
8291         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8292                 pr_err("InterruptStatus = %04x\n",
8293                        vmcs_read16(GUEST_INTR_STATUS));
8294
8295         pr_err("*** Host State ***\n");
8296         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8297                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8298         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8299                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8300                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8301                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8302                vmcs_read16(HOST_TR_SELECTOR));
8303         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8304                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8305                vmcs_readl(HOST_TR_BASE));
8306         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8307                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8308         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8309                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8310                vmcs_readl(HOST_CR4));
8311         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8312                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8313                vmcs_read32(HOST_IA32_SYSENTER_CS),
8314                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8315         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8316                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8317                        vmcs_read64(HOST_IA32_EFER),
8318                        vmcs_read64(HOST_IA32_PAT));
8319         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8320                 pr_err("PerfGlobCtl = 0x%016llx\n",
8321                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8322
8323         pr_err("*** Control State ***\n");
8324         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8325                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8326         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8327         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8328                vmcs_read32(EXCEPTION_BITMAP),
8329                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8330                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8331         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8332                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8333                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8334                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8335         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8336                vmcs_read32(VM_EXIT_INTR_INFO),
8337                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8338                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8339         pr_err("        reason=%08x qualification=%016lx\n",
8340                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8341         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8342                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8343                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8344         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8345         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8346                 pr_err("TSC Multiplier = 0x%016llx\n",
8347                        vmcs_read64(TSC_MULTIPLIER));
8348         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8349                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8350         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8351                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8352         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8353                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8354         n = vmcs_read32(CR3_TARGET_COUNT);
8355         for (i = 0; i + 1 < n; i += 4)
8356                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8357                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8358                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8359         if (i < n)
8360                 pr_err("CR3 target%u=%016lx\n",
8361                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8362         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8363                 pr_err("PLE Gap=%08x Window=%08x\n",
8364                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8365         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8366                 pr_err("Virtual processor ID = 0x%04x\n",
8367                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8368 }
8369
8370 /*
8371  * The guest has exited.  See if we can fix it or if we need userspace
8372  * assistance.
8373  */
8374 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8375 {
8376         struct vcpu_vmx *vmx = to_vmx(vcpu);
8377         u32 exit_reason = vmx->exit_reason;
8378         u32 vectoring_info = vmx->idt_vectoring_info;
8379
8380         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8381         vcpu->arch.gpa_available = false;
8382
8383         /*
8384          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8385          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8386          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8387          * mode as if vcpus is in root mode, the PML buffer must has been
8388          * flushed already.
8389          */
8390         if (enable_pml)
8391                 vmx_flush_pml_buffer(vcpu);
8392
8393         /* If guest state is invalid, start emulating */
8394         if (vmx->emulation_required)
8395                 return handle_invalid_guest_state(vcpu);
8396
8397         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8398                 nested_vmx_vmexit(vcpu, exit_reason,
8399                                   vmcs_read32(VM_EXIT_INTR_INFO),
8400                                   vmcs_readl(EXIT_QUALIFICATION));
8401                 return 1;
8402         }
8403
8404         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8405                 dump_vmcs();
8406                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8407                 vcpu->run->fail_entry.hardware_entry_failure_reason
8408                         = exit_reason;
8409                 return 0;
8410         }
8411
8412         if (unlikely(vmx->fail)) {
8413                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8414                 vcpu->run->fail_entry.hardware_entry_failure_reason
8415                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8416                 return 0;
8417         }
8418
8419         /*
8420          * Note:
8421          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8422          * delivery event since it indicates guest is accessing MMIO.
8423          * The vm-exit can be triggered again after return to guest that
8424          * will cause infinite loop.
8425          */
8426         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8427                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8428                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8429                         exit_reason != EXIT_REASON_PML_FULL &&
8430                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8431                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8432                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8433                 vcpu->run->internal.ndata = 3;
8434                 vcpu->run->internal.data[0] = vectoring_info;
8435                 vcpu->run->internal.data[1] = exit_reason;
8436                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8437                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8438                         vcpu->run->internal.ndata++;
8439                         vcpu->run->internal.data[3] =
8440                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8441                 }
8442                 return 0;
8443         }
8444
8445         if (exit_reason < kvm_vmx_max_exit_handlers
8446             && kvm_vmx_exit_handlers[exit_reason])
8447                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8448         else {
8449                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8450                                 exit_reason);
8451                 kvm_queue_exception(vcpu, UD_VECTOR);
8452                 return 1;
8453         }
8454 }
8455
8456 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8457 {
8458         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8459
8460         if (is_guest_mode(vcpu) &&
8461                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8462                 return;
8463
8464         if (irr == -1 || tpr < irr) {
8465                 vmcs_write32(TPR_THRESHOLD, 0);
8466                 return;
8467         }
8468
8469         vmcs_write32(TPR_THRESHOLD, irr);
8470 }
8471
8472 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8473 {
8474         u32 sec_exec_control;
8475
8476         /* Postpone execution until vmcs01 is the current VMCS. */
8477         if (is_guest_mode(vcpu)) {
8478                 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8479                 return;
8480         }
8481
8482         if (!cpu_has_vmx_virtualize_x2apic_mode())
8483                 return;
8484
8485         if (!cpu_need_tpr_shadow(vcpu))
8486                 return;
8487
8488         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8489
8490         if (set) {
8491                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8492                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8493         } else {
8494                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8495                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8496                 vmx_flush_tlb_ept_only(vcpu);
8497         }
8498         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8499
8500         vmx_set_msr_bitmap(vcpu);
8501 }
8502
8503 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8504 {
8505         struct vcpu_vmx *vmx = to_vmx(vcpu);
8506
8507         /*
8508          * Currently we do not handle the nested case where L2 has an
8509          * APIC access page of its own; that page is still pinned.
8510          * Hence, we skip the case where the VCPU is in guest mode _and_
8511          * L1 prepared an APIC access page for L2.
8512          *
8513          * For the case where L1 and L2 share the same APIC access page
8514          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8515          * in the vmcs12), this function will only update either the vmcs01
8516          * or the vmcs02.  If the former, the vmcs02 will be updated by
8517          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8518          * the next L2->L1 exit.
8519          */
8520         if (!is_guest_mode(vcpu) ||
8521             !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8522                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8523                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8524                 vmx_flush_tlb_ept_only(vcpu);
8525         }
8526 }
8527
8528 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8529 {
8530         u16 status;
8531         u8 old;
8532
8533         if (max_isr == -1)
8534                 max_isr = 0;
8535
8536         status = vmcs_read16(GUEST_INTR_STATUS);
8537         old = status >> 8;
8538         if (max_isr != old) {
8539                 status &= 0xff;
8540                 status |= max_isr << 8;
8541                 vmcs_write16(GUEST_INTR_STATUS, status);
8542         }
8543 }
8544
8545 static void vmx_set_rvi(int vector)
8546 {
8547         u16 status;
8548         u8 old;
8549
8550         if (vector == -1)
8551                 vector = 0;
8552
8553         status = vmcs_read16(GUEST_INTR_STATUS);
8554         old = (u8)status & 0xff;
8555         if ((u8)vector != old) {
8556                 status &= ~0xff;
8557                 status |= (u8)vector;
8558                 vmcs_write16(GUEST_INTR_STATUS, status);
8559         }
8560 }
8561
8562 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8563 {
8564         if (!is_guest_mode(vcpu)) {
8565                 vmx_set_rvi(max_irr);
8566                 return;
8567         }
8568
8569         if (max_irr == -1)
8570                 return;
8571
8572         /*
8573          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8574          * handles it.
8575          */
8576         if (nested_exit_on_intr(vcpu))
8577                 return;
8578
8579         /*
8580          * Else, fall back to pre-APICv interrupt injection since L2
8581          * is run without virtual interrupt delivery.
8582          */
8583         if (!kvm_event_needs_reinjection(vcpu) &&
8584             vmx_interrupt_allowed(vcpu)) {
8585                 kvm_queue_interrupt(vcpu, max_irr, false);
8586                 vmx_inject_irq(vcpu);
8587         }
8588 }
8589
8590 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8591 {
8592         struct vcpu_vmx *vmx = to_vmx(vcpu);
8593         int max_irr;
8594
8595         WARN_ON(!vcpu->arch.apicv_active);
8596         if (pi_test_on(&vmx->pi_desc)) {
8597                 pi_clear_on(&vmx->pi_desc);
8598                 /*
8599                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8600                  * But on x86 this is just a compiler barrier anyway.
8601                  */
8602                 smp_mb__after_atomic();
8603                 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8604         } else {
8605                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8606         }
8607         vmx_hwapic_irr_update(vcpu, max_irr);
8608         return max_irr;
8609 }
8610
8611 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8612 {
8613         if (!kvm_vcpu_apicv_active(vcpu))
8614                 return;
8615
8616         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8617         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8618         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8619         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8620 }
8621
8622 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8623 {
8624         struct vcpu_vmx *vmx = to_vmx(vcpu);
8625
8626         pi_clear_on(&vmx->pi_desc);
8627         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8628 }
8629
8630 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8631 {
8632         u32 exit_intr_info = 0;
8633         u16 basic_exit_reason = (u16)vmx->exit_reason;
8634
8635         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8636               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
8637                 return;
8638
8639         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
8640                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8641         vmx->exit_intr_info = exit_intr_info;
8642
8643         /* if exit due to PF check for async PF */
8644         if (is_page_fault(exit_intr_info))
8645                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
8646
8647         /* Handle machine checks before interrupts are enabled */
8648         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
8649             is_machine_check(exit_intr_info))
8650                 kvm_machine_check();
8651
8652         /* We need to handle NMIs before interrupts are enabled */
8653         if (is_nmi(exit_intr_info)) {
8654                 kvm_before_handle_nmi(&vmx->vcpu);
8655                 asm("int $2");
8656                 kvm_after_handle_nmi(&vmx->vcpu);
8657         }
8658 }
8659
8660 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8661 {
8662         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8663         register void *__sp asm(_ASM_SP);
8664
8665         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8666                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8667                 unsigned int vector;
8668                 unsigned long entry;
8669                 gate_desc *desc;
8670                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8671 #ifdef CONFIG_X86_64
8672                 unsigned long tmp;
8673 #endif
8674
8675                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8676                 desc = (gate_desc *)vmx->host_idt_base + vector;
8677                 entry = gate_offset(*desc);
8678                 asm volatile(
8679 #ifdef CONFIG_X86_64
8680                         "mov %%" _ASM_SP ", %[sp]\n\t"
8681                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8682                         "push $%c[ss]\n\t"
8683                         "push %[sp]\n\t"
8684 #endif
8685                         "pushf\n\t"
8686                         __ASM_SIZE(push) " $%c[cs]\n\t"
8687                         "call *%[entry]\n\t"
8688                         :
8689 #ifdef CONFIG_X86_64
8690                         [sp]"=&r"(tmp),
8691 #endif
8692                         "+r"(__sp)
8693                         :
8694                         [entry]"r"(entry),
8695                         [ss]"i"(__KERNEL_DS),
8696                         [cs]"i"(__KERNEL_CS)
8697                         );
8698         }
8699 }
8700 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
8701
8702 static bool vmx_has_high_real_mode_segbase(void)
8703 {
8704         return enable_unrestricted_guest || emulate_invalid_guest_state;
8705 }
8706
8707 static bool vmx_mpx_supported(void)
8708 {
8709         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8710                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8711 }
8712
8713 static bool vmx_xsaves_supported(void)
8714 {
8715         return vmcs_config.cpu_based_2nd_exec_ctrl &
8716                 SECONDARY_EXEC_XSAVES;
8717 }
8718
8719 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8720 {
8721         u32 exit_intr_info;
8722         bool unblock_nmi;
8723         u8 vector;
8724         bool idtv_info_valid;
8725
8726         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8727
8728         if (vmx->nmi_known_unmasked)
8729                 return;
8730         /*
8731          * Can't use vmx->exit_intr_info since we're not sure what
8732          * the exit reason is.
8733          */
8734         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8735         unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8736         vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8737         /*
8738          * SDM 3: 27.7.1.2 (September 2008)
8739          * Re-set bit "block by NMI" before VM entry if vmexit caused by
8740          * a guest IRET fault.
8741          * SDM 3: 23.2.2 (September 2008)
8742          * Bit 12 is undefined in any of the following cases:
8743          *  If the VM exit sets the valid bit in the IDT-vectoring
8744          *   information field.
8745          *  If the VM exit is due to a double fault.
8746          */
8747         if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8748             vector != DF_VECTOR && !idtv_info_valid)
8749                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8750                               GUEST_INTR_STATE_NMI);
8751         else
8752                 vmx->nmi_known_unmasked =
8753                         !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8754                           & GUEST_INTR_STATE_NMI);
8755 }
8756
8757 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8758                                       u32 idt_vectoring_info,
8759                                       int instr_len_field,
8760                                       int error_code_field)
8761 {
8762         u8 vector;
8763         int type;
8764         bool idtv_info_valid;
8765
8766         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8767
8768         vcpu->arch.nmi_injected = false;
8769         kvm_clear_exception_queue(vcpu);
8770         kvm_clear_interrupt_queue(vcpu);
8771
8772         if (!idtv_info_valid)
8773                 return;
8774
8775         kvm_make_request(KVM_REQ_EVENT, vcpu);
8776
8777         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8778         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8779
8780         switch (type) {
8781         case INTR_TYPE_NMI_INTR:
8782                 vcpu->arch.nmi_injected = true;
8783                 /*
8784                  * SDM 3: 27.7.1.2 (September 2008)
8785                  * Clear bit "block by NMI" before VM entry if a NMI
8786                  * delivery faulted.
8787                  */
8788                 vmx_set_nmi_mask(vcpu, false);
8789                 break;
8790         case INTR_TYPE_SOFT_EXCEPTION:
8791                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8792                 /* fall through */
8793         case INTR_TYPE_HARD_EXCEPTION:
8794                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8795                         u32 err = vmcs_read32(error_code_field);
8796                         kvm_requeue_exception_e(vcpu, vector, err);
8797                 } else
8798                         kvm_requeue_exception(vcpu, vector);
8799                 break;
8800         case INTR_TYPE_SOFT_INTR:
8801                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8802                 /* fall through */
8803         case INTR_TYPE_EXT_INTR:
8804                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8805                 break;
8806         default:
8807                 break;
8808         }
8809 }
8810
8811 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8812 {
8813         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8814                                   VM_EXIT_INSTRUCTION_LEN,
8815                                   IDT_VECTORING_ERROR_CODE);
8816 }
8817
8818 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8819 {
8820         __vmx_complete_interrupts(vcpu,
8821                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8822                                   VM_ENTRY_INSTRUCTION_LEN,
8823                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8824
8825         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8826 }
8827
8828 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8829 {
8830         int i, nr_msrs;
8831         struct perf_guest_switch_msr *msrs;
8832
8833         msrs = perf_guest_get_msrs(&nr_msrs);
8834
8835         if (!msrs)
8836                 return;
8837
8838         for (i = 0; i < nr_msrs; i++)
8839                 if (msrs[i].host == msrs[i].guest)
8840                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8841                 else
8842                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8843                                         msrs[i].host);
8844 }
8845
8846 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8847 {
8848         struct vcpu_vmx *vmx = to_vmx(vcpu);
8849         u64 tscl;
8850         u32 delta_tsc;
8851
8852         if (vmx->hv_deadline_tsc == -1)
8853                 return;
8854
8855         tscl = rdtsc();
8856         if (vmx->hv_deadline_tsc > tscl)
8857                 /* sure to be 32 bit only because checked on set_hv_timer */
8858                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8859                         cpu_preemption_timer_multi);
8860         else
8861                 delta_tsc = 0;
8862
8863         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8864 }
8865
8866 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8867 {
8868         struct vcpu_vmx *vmx = to_vmx(vcpu);
8869         unsigned long debugctlmsr, cr3, cr4;
8870
8871         /* Don't enter VMX if guest state is invalid, let the exit handler
8872            start emulation until we arrive back to a valid state */
8873         if (vmx->emulation_required)
8874                 return;
8875
8876         if (vmx->ple_window_dirty) {
8877                 vmx->ple_window_dirty = false;
8878                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8879         }
8880
8881         if (vmx->nested.sync_shadow_vmcs) {
8882                 copy_vmcs12_to_shadow(vmx);
8883                 vmx->nested.sync_shadow_vmcs = false;
8884         }
8885
8886         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8887                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8888         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8889                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8890
8891         cr3 = __get_current_cr3_fast();
8892         if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
8893                 vmcs_writel(HOST_CR3, cr3);
8894                 vmx->host_state.vmcs_host_cr3 = cr3;
8895         }
8896
8897         cr4 = cr4_read_shadow();
8898         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8899                 vmcs_writel(HOST_CR4, cr4);
8900                 vmx->host_state.vmcs_host_cr4 = cr4;
8901         }
8902
8903         /* When single-stepping over STI and MOV SS, we must clear the
8904          * corresponding interruptibility bits in the guest state. Otherwise
8905          * vmentry fails as it then expects bit 14 (BS) in pending debug
8906          * exceptions being set, but that's not correct for the guest debugging
8907          * case. */
8908         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8909                 vmx_set_interrupt_shadow(vcpu, 0);
8910
8911         if (vmx->guest_pkru_valid)
8912                 __write_pkru(vmx->guest_pkru);
8913
8914         atomic_switch_perf_msrs(vmx);
8915         debugctlmsr = get_debugctlmsr();
8916
8917         vmx_arm_hv_timer(vcpu);
8918
8919         vmx->__launched = vmx->loaded_vmcs->launched;
8920         asm(
8921                 /* Store host registers */
8922                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8923                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8924                 "push %%" _ASM_CX " \n\t"
8925                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8926                 "je 1f \n\t"
8927                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8928                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8929                 "1: \n\t"
8930                 /* Reload cr2 if changed */
8931                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8932                 "mov %%cr2, %%" _ASM_DX " \n\t"
8933                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8934                 "je 2f \n\t"
8935                 "mov %%" _ASM_AX", %%cr2 \n\t"
8936                 "2: \n\t"
8937                 /* Check if vmlaunch of vmresume is needed */
8938                 "cmpl $0, %c[launched](%0) \n\t"
8939                 /* Load guest registers.  Don't clobber flags. */
8940                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8941                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8942                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8943                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8944                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8945                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8946 #ifdef CONFIG_X86_64
8947                 "mov %c[r8](%0),  %%r8  \n\t"
8948                 "mov %c[r9](%0),  %%r9  \n\t"
8949                 "mov %c[r10](%0), %%r10 \n\t"
8950                 "mov %c[r11](%0), %%r11 \n\t"
8951                 "mov %c[r12](%0), %%r12 \n\t"
8952                 "mov %c[r13](%0), %%r13 \n\t"
8953                 "mov %c[r14](%0), %%r14 \n\t"
8954                 "mov %c[r15](%0), %%r15 \n\t"
8955 #endif
8956                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8957
8958                 /* Enter guest mode */
8959                 "jne 1f \n\t"
8960                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8961                 "jmp 2f \n\t"
8962                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8963                 "2: "
8964                 /* Save guest registers, load host registers, keep flags */
8965                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8966                 "pop %0 \n\t"
8967                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8968                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8969                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8970                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8971                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8972                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8973                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8974 #ifdef CONFIG_X86_64
8975                 "mov %%r8,  %c[r8](%0) \n\t"
8976                 "mov %%r9,  %c[r9](%0) \n\t"
8977                 "mov %%r10, %c[r10](%0) \n\t"
8978                 "mov %%r11, %c[r11](%0) \n\t"
8979                 "mov %%r12, %c[r12](%0) \n\t"
8980                 "mov %%r13, %c[r13](%0) \n\t"
8981                 "mov %%r14, %c[r14](%0) \n\t"
8982                 "mov %%r15, %c[r15](%0) \n\t"
8983 #endif
8984                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8985                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8986
8987                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8988                 "setbe %c[fail](%0) \n\t"
8989                 ".pushsection .rodata \n\t"
8990                 ".global vmx_return \n\t"
8991                 "vmx_return: " _ASM_PTR " 2b \n\t"
8992                 ".popsection"
8993               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8994                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8995                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8996                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8997                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8998                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8999                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9000                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9001                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9002                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9003                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9004 #ifdef CONFIG_X86_64
9005                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9006                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9007                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9008                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9009                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9010                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9011                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9012                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9013 #endif
9014                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9015                 [wordsize]"i"(sizeof(ulong))
9016               : "cc", "memory"
9017 #ifdef CONFIG_X86_64
9018                 , "rax", "rbx", "rdi", "rsi"
9019                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9020 #else
9021                 , "eax", "ebx", "edi", "esi"
9022 #endif
9023               );
9024
9025         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9026         if (debugctlmsr)
9027                 update_debugctlmsr(debugctlmsr);
9028
9029 #ifndef CONFIG_X86_64
9030         /*
9031          * The sysexit path does not restore ds/es, so we must set them to
9032          * a reasonable value ourselves.
9033          *
9034          * We can't defer this to vmx_load_host_state() since that function
9035          * may be executed in interrupt context, which saves and restore segments
9036          * around it, nullifying its effect.
9037          */
9038         loadsegment(ds, __USER_DS);
9039         loadsegment(es, __USER_DS);
9040 #endif
9041
9042         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9043                                   | (1 << VCPU_EXREG_RFLAGS)
9044                                   | (1 << VCPU_EXREG_PDPTR)
9045                                   | (1 << VCPU_EXREG_SEGMENTS)
9046                                   | (1 << VCPU_EXREG_CR3));
9047         vcpu->arch.regs_dirty = 0;
9048
9049         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9050
9051         vmx->loaded_vmcs->launched = 1;
9052
9053         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9054
9055         /*
9056          * eager fpu is enabled if PKEY is supported and CR4 is switched
9057          * back on host, so it is safe to read guest PKRU from current
9058          * XSAVE.
9059          */
9060         if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9061                 vmx->guest_pkru = __read_pkru();
9062                 if (vmx->guest_pkru != vmx->host_pkru) {
9063                         vmx->guest_pkru_valid = true;
9064                         __write_pkru(vmx->host_pkru);
9065                 } else
9066                         vmx->guest_pkru_valid = false;
9067         }
9068
9069         /*
9070          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9071          * we did not inject a still-pending event to L1 now because of
9072          * nested_run_pending, we need to re-enable this bit.
9073          */
9074         if (vmx->nested.nested_run_pending)
9075                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9076
9077         vmx->nested.nested_run_pending = 0;
9078
9079         vmx_complete_atomic_exit(vmx);
9080         vmx_recover_nmi_blocking(vmx);
9081         vmx_complete_interrupts(vmx);
9082 }
9083 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9084
9085 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9086 {
9087         struct vcpu_vmx *vmx = to_vmx(vcpu);
9088         int cpu;
9089
9090         if (vmx->loaded_vmcs == vmcs)
9091                 return;
9092
9093         cpu = get_cpu();
9094         vmx->loaded_vmcs = vmcs;
9095         vmx_vcpu_put(vcpu);
9096         vmx_vcpu_load(vcpu, cpu);
9097         vcpu->cpu = cpu;
9098         put_cpu();
9099 }
9100
9101 /*
9102  * Ensure that the current vmcs of the logical processor is the
9103  * vmcs01 of the vcpu before calling free_nested().
9104  */
9105 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9106 {
9107        struct vcpu_vmx *vmx = to_vmx(vcpu);
9108        int r;
9109
9110        r = vcpu_load(vcpu);
9111        BUG_ON(r);
9112        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9113        free_nested(vmx);
9114        vcpu_put(vcpu);
9115 }
9116
9117 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9118 {
9119         struct vcpu_vmx *vmx = to_vmx(vcpu);
9120
9121         if (enable_pml)
9122                 vmx_destroy_pml_buffer(vmx);
9123         free_vpid(vmx->vpid);
9124         leave_guest_mode(vcpu);
9125         vmx_free_vcpu_nested(vcpu);
9126         free_loaded_vmcs(vmx->loaded_vmcs);
9127         kfree(vmx->guest_msrs);
9128         kvm_vcpu_uninit(vcpu);
9129         kmem_cache_free(kvm_vcpu_cache, vmx);
9130 }
9131
9132 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9133 {
9134         int err;
9135         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9136         int cpu;
9137
9138         if (!vmx)
9139                 return ERR_PTR(-ENOMEM);
9140
9141         vmx->vpid = allocate_vpid();
9142
9143         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9144         if (err)
9145                 goto free_vcpu;
9146
9147         err = -ENOMEM;
9148
9149         /*
9150          * If PML is turned on, failure on enabling PML just results in failure
9151          * of creating the vcpu, therefore we can simplify PML logic (by
9152          * avoiding dealing with cases, such as enabling PML partially on vcpus
9153          * for the guest, etc.
9154          */
9155         if (enable_pml) {
9156                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9157                 if (!vmx->pml_pg)
9158                         goto uninit_vcpu;
9159         }
9160
9161         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9162         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9163                      > PAGE_SIZE);
9164
9165         if (!vmx->guest_msrs)
9166                 goto free_pml;
9167
9168         vmx->loaded_vmcs = &vmx->vmcs01;
9169         vmx->loaded_vmcs->vmcs = alloc_vmcs();
9170         vmx->loaded_vmcs->shadow_vmcs = NULL;
9171         if (!vmx->loaded_vmcs->vmcs)
9172                 goto free_msrs;
9173         loaded_vmcs_init(vmx->loaded_vmcs);
9174
9175         cpu = get_cpu();
9176         vmx_vcpu_load(&vmx->vcpu, cpu);
9177         vmx->vcpu.cpu = cpu;
9178         err = vmx_vcpu_setup(vmx);
9179         vmx_vcpu_put(&vmx->vcpu);
9180         put_cpu();
9181         if (err)
9182                 goto free_vmcs;
9183         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9184                 err = alloc_apic_access_page(kvm);
9185                 if (err)
9186                         goto free_vmcs;
9187         }
9188
9189         if (enable_ept) {
9190                 if (!kvm->arch.ept_identity_map_addr)
9191                         kvm->arch.ept_identity_map_addr =
9192                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9193                 err = init_rmode_identity_map(kvm);
9194                 if (err)
9195                         goto free_vmcs;
9196         }
9197
9198         if (nested) {
9199                 nested_vmx_setup_ctls_msrs(vmx);
9200                 vmx->nested.vpid02 = allocate_vpid();
9201         }
9202
9203         vmx->nested.posted_intr_nv = -1;
9204         vmx->nested.current_vmptr = -1ull;
9205         vmx->nested.current_vmcs12 = NULL;
9206
9207         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9208
9209         return &vmx->vcpu;
9210
9211 free_vmcs:
9212         free_vpid(vmx->nested.vpid02);
9213         free_loaded_vmcs(vmx->loaded_vmcs);
9214 free_msrs:
9215         kfree(vmx->guest_msrs);
9216 free_pml:
9217         vmx_destroy_pml_buffer(vmx);
9218 uninit_vcpu:
9219         kvm_vcpu_uninit(&vmx->vcpu);
9220 free_vcpu:
9221         free_vpid(vmx->vpid);
9222         kmem_cache_free(kvm_vcpu_cache, vmx);
9223         return ERR_PTR(err);
9224 }
9225
9226 static void __init vmx_check_processor_compat(void *rtn)
9227 {
9228         struct vmcs_config vmcs_conf;
9229
9230         *(int *)rtn = 0;
9231         if (setup_vmcs_config(&vmcs_conf) < 0)
9232                 *(int *)rtn = -EIO;
9233         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9234                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9235                                 smp_processor_id());
9236                 *(int *)rtn = -EIO;
9237         }
9238 }
9239
9240 static int get_ept_level(void)
9241 {
9242         return VMX_EPT_DEFAULT_GAW + 1;
9243 }
9244
9245 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9246 {
9247         u8 cache;
9248         u64 ipat = 0;
9249
9250         /* For VT-d and EPT combination
9251          * 1. MMIO: always map as UC
9252          * 2. EPT with VT-d:
9253          *   a. VT-d without snooping control feature: can't guarantee the
9254          *      result, try to trust guest.
9255          *   b. VT-d with snooping control feature: snooping control feature of
9256          *      VT-d engine can guarantee the cache correctness. Just set it
9257          *      to WB to keep consistent with host. So the same as item 3.
9258          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9259          *    consistent with host MTRR
9260          */
9261         if (is_mmio) {
9262                 cache = MTRR_TYPE_UNCACHABLE;
9263                 goto exit;
9264         }
9265
9266         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9267                 ipat = VMX_EPT_IPAT_BIT;
9268                 cache = MTRR_TYPE_WRBACK;
9269                 goto exit;
9270         }
9271
9272         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9273                 ipat = VMX_EPT_IPAT_BIT;
9274                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9275                         cache = MTRR_TYPE_WRBACK;
9276                 else
9277                         cache = MTRR_TYPE_UNCACHABLE;
9278                 goto exit;
9279         }
9280
9281         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9282
9283 exit:
9284         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9285 }
9286
9287 static int vmx_get_lpage_level(void)
9288 {
9289         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9290                 return PT_DIRECTORY_LEVEL;
9291         else
9292                 /* For shadow and EPT supported 1GB page */
9293                 return PT_PDPE_LEVEL;
9294 }
9295
9296 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9297 {
9298         /*
9299          * These bits in the secondary execution controls field
9300          * are dynamic, the others are mostly based on the hypervisor
9301          * architecture and the guest's CPUID.  Do not touch the
9302          * dynamic bits.
9303          */
9304         u32 mask =
9305                 SECONDARY_EXEC_SHADOW_VMCS |
9306                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9307                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9308
9309         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9310
9311         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9312                      (new_ctl & ~mask) | (cur_ctl & mask));
9313 }
9314
9315 /*
9316  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9317  * (indicating "allowed-1") if they are supported in the guest's CPUID.
9318  */
9319 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9320 {
9321         struct vcpu_vmx *vmx = to_vmx(vcpu);
9322         struct kvm_cpuid_entry2 *entry;
9323
9324         vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9325         vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9326
9327 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
9328         if (entry && (entry->_reg & (_cpuid_mask)))                     \
9329                 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask);       \
9330 } while (0)
9331
9332         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9333         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
9334         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
9335         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
9336         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
9337         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
9338         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
9339         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
9340         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
9341         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
9342         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9343         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
9344         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
9345         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
9346         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
9347
9348         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9349         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
9350         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
9351         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
9352         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
9353         /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9354         cr4_fixed1_update(bit(11),            ecx, bit(2));
9355
9356 #undef cr4_fixed1_update
9357 }
9358
9359 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9360 {
9361         struct kvm_cpuid_entry2 *best;
9362         struct vcpu_vmx *vmx = to_vmx(vcpu);
9363         u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9364
9365         if (vmx_rdtscp_supported()) {
9366                 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9367                 if (!rdtscp_enabled)
9368                         secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9369
9370                 if (nested) {
9371                         if (rdtscp_enabled)
9372                                 vmx->nested.nested_vmx_secondary_ctls_high |=
9373                                         SECONDARY_EXEC_RDTSCP;
9374                         else
9375                                 vmx->nested.nested_vmx_secondary_ctls_high &=
9376                                         ~SECONDARY_EXEC_RDTSCP;
9377                 }
9378         }
9379
9380         /* Exposing INVPCID only when PCID is exposed */
9381         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9382         if (vmx_invpcid_supported() &&
9383             (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9384             !guest_cpuid_has_pcid(vcpu))) {
9385                 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9386
9387                 if (best)
9388                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
9389         }
9390
9391         if (cpu_has_secondary_exec_ctrls())
9392                 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9393
9394         if (nested_vmx_allowed(vcpu))
9395                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9396                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9397         else
9398                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9399                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9400
9401         if (nested_vmx_allowed(vcpu))
9402                 nested_vmx_cr_fixed1_bits_update(vcpu);
9403 }
9404
9405 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9406 {
9407         if (func == 1 && nested)
9408                 entry->ecx |= bit(X86_FEATURE_VMX);
9409 }
9410
9411 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9412                 struct x86_exception *fault)
9413 {
9414         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9415         struct vcpu_vmx *vmx = to_vmx(vcpu);
9416         u32 exit_reason;
9417         unsigned long exit_qualification = vcpu->arch.exit_qualification;
9418
9419         if (vmx->nested.pml_full) {
9420                 exit_reason = EXIT_REASON_PML_FULL;
9421                 vmx->nested.pml_full = false;
9422                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9423         } else if (fault->error_code & PFERR_RSVD_MASK)
9424                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9425         else
9426                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9427
9428         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9429         vmcs12->guest_physical_address = fault->address;
9430 }
9431
9432 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9433 {
9434         return nested_ept_get_cr3(vcpu) & VMX_EPT_AD_ENABLE_BIT;
9435 }
9436
9437 /* Callbacks for nested_ept_init_mmu_context: */
9438
9439 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9440 {
9441         /* return the page table to be shadowed - in our case, EPT12 */
9442         return get_vmcs12(vcpu)->ept_pointer;
9443 }
9444
9445 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9446 {
9447         bool wants_ad;
9448
9449         WARN_ON(mmu_is_nested(vcpu));
9450         wants_ad = nested_ept_ad_enabled(vcpu);
9451         if (wants_ad && !enable_ept_ad_bits)
9452                 return 1;
9453
9454         kvm_mmu_unload(vcpu);
9455         kvm_init_shadow_ept_mmu(vcpu,
9456                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9457                         VMX_EPT_EXECUTE_ONLY_BIT,
9458                         wants_ad);
9459         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9460         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9461         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9462
9463         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9464         return 0;
9465 }
9466
9467 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9468 {
9469         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9470 }
9471
9472 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9473                                             u16 error_code)
9474 {
9475         bool inequality, bit;
9476
9477         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9478         inequality =
9479                 (error_code & vmcs12->page_fault_error_code_mask) !=
9480                  vmcs12->page_fault_error_code_match;
9481         return inequality ^ bit;
9482 }
9483
9484 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9485                 struct x86_exception *fault)
9486 {
9487         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9488
9489         WARN_ON(!is_guest_mode(vcpu));
9490
9491         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9492                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9493                                   vmcs_read32(VM_EXIT_INTR_INFO),
9494                                   vmcs_readl(EXIT_QUALIFICATION));
9495         else
9496                 kvm_inject_page_fault(vcpu, fault);
9497 }
9498
9499 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9500                                                struct vmcs12 *vmcs12);
9501
9502 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9503                                         struct vmcs12 *vmcs12)
9504 {
9505         struct vcpu_vmx *vmx = to_vmx(vcpu);
9506         u64 hpa;
9507
9508         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9509                 /*
9510                  * Translate L1 physical address to host physical
9511                  * address for vmcs02. Keep the page pinned, so this
9512                  * physical address remains valid. We keep a reference
9513                  * to it so we can release it later.
9514                  */
9515                 if (vmx->nested.apic_access_page) /* shouldn't happen */
9516                         nested_release_page(vmx->nested.apic_access_page);
9517                 vmx->nested.apic_access_page =
9518                         nested_get_page(vcpu, vmcs12->apic_access_addr);
9519                 /*
9520                  * If translation failed, no matter: This feature asks
9521                  * to exit when accessing the given address, and if it
9522                  * can never be accessed, this feature won't do
9523                  * anything anyway.
9524                  */
9525                 if (vmx->nested.apic_access_page) {
9526                         hpa = page_to_phys(vmx->nested.apic_access_page);
9527                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
9528                 } else {
9529                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9530                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9531                 }
9532         } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9533                    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9534                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9535                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9536                 kvm_vcpu_reload_apic_access_page(vcpu);
9537         }
9538
9539         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9540                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9541                         nested_release_page(vmx->nested.virtual_apic_page);
9542                 vmx->nested.virtual_apic_page =
9543                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9544
9545                 /*
9546                  * If translation failed, VM entry will fail because
9547                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9548                  * Failing the vm entry is _not_ what the processor
9549                  * does but it's basically the only possibility we
9550                  * have.  We could still enter the guest if CR8 load
9551                  * exits are enabled, CR8 store exits are enabled, and
9552                  * virtualize APIC access is disabled; in this case
9553                  * the processor would never use the TPR shadow and we
9554                  * could simply clear the bit from the execution
9555                  * control.  But such a configuration is useless, so
9556                  * let's keep the code simple.
9557                  */
9558                 if (vmx->nested.virtual_apic_page) {
9559                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
9560                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9561                 }
9562         }
9563
9564         if (nested_cpu_has_posted_intr(vmcs12)) {
9565                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9566                         kunmap(vmx->nested.pi_desc_page);
9567                         nested_release_page(vmx->nested.pi_desc_page);
9568                 }
9569                 vmx->nested.pi_desc_page =
9570                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9571                 vmx->nested.pi_desc =
9572                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9573                 if (!vmx->nested.pi_desc) {
9574                         nested_release_page_clean(vmx->nested.pi_desc_page);
9575                         return;
9576                 }
9577                 vmx->nested.pi_desc =
9578                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
9579                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9580                         (PAGE_SIZE - 1)));
9581                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9582                         page_to_phys(vmx->nested.pi_desc_page) +
9583                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9584                         (PAGE_SIZE - 1)));
9585         }
9586         if (cpu_has_vmx_msr_bitmap() &&
9587             nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9588             nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9589                 ;
9590         else
9591                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9592                                 CPU_BASED_USE_MSR_BITMAPS);
9593 }
9594
9595 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9596 {
9597         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9598         struct vcpu_vmx *vmx = to_vmx(vcpu);
9599
9600         if (vcpu->arch.virtual_tsc_khz == 0)
9601                 return;
9602
9603         /* Make sure short timeouts reliably trigger an immediate vmexit.
9604          * hrtimer_start does not guarantee this. */
9605         if (preemption_timeout <= 1) {
9606                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9607                 return;
9608         }
9609
9610         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9611         preemption_timeout *= 1000000;
9612         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9613         hrtimer_start(&vmx->nested.preemption_timer,
9614                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9615 }
9616
9617 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9618                                                struct vmcs12 *vmcs12)
9619 {
9620         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9621                 return 0;
9622
9623         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9624             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9625                 return -EINVAL;
9626
9627         return 0;
9628 }
9629
9630 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9631                                                 struct vmcs12 *vmcs12)
9632 {
9633         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9634                 return 0;
9635
9636         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
9637                 return -EINVAL;
9638
9639         return 0;
9640 }
9641
9642 /*
9643  * Merge L0's and L1's MSR bitmap, return false to indicate that
9644  * we do not use the hardware.
9645  */
9646 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9647                                                struct vmcs12 *vmcs12)
9648 {
9649         int msr;
9650         struct page *page;
9651         unsigned long *msr_bitmap_l1;
9652         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9653
9654         /* This shortcut is ok because we support only x2APIC MSRs so far. */
9655         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9656                 return false;
9657
9658         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9659         if (!page)
9660                 return false;
9661         msr_bitmap_l1 = (unsigned long *)kmap(page);
9662
9663         memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9664
9665         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9666                 if (nested_cpu_has_apic_reg_virt(vmcs12))
9667                         for (msr = 0x800; msr <= 0x8ff; msr++)
9668                                 nested_vmx_disable_intercept_for_msr(
9669                                         msr_bitmap_l1, msr_bitmap_l0,
9670                                         msr, MSR_TYPE_R);
9671
9672                 nested_vmx_disable_intercept_for_msr(
9673                                 msr_bitmap_l1, msr_bitmap_l0,
9674                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9675                                 MSR_TYPE_R | MSR_TYPE_W);
9676
9677                 if (nested_cpu_has_vid(vmcs12)) {
9678                         nested_vmx_disable_intercept_for_msr(
9679                                 msr_bitmap_l1, msr_bitmap_l0,
9680                                 APIC_BASE_MSR + (APIC_EOI >> 4),
9681                                 MSR_TYPE_W);
9682                         nested_vmx_disable_intercept_for_msr(
9683                                 msr_bitmap_l1, msr_bitmap_l0,
9684                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9685                                 MSR_TYPE_W);
9686                 }
9687         }
9688         kunmap(page);
9689         nested_release_page_clean(page);
9690
9691         return true;
9692 }
9693
9694 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9695                                            struct vmcs12 *vmcs12)
9696 {
9697         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9698             !nested_cpu_has_apic_reg_virt(vmcs12) &&
9699             !nested_cpu_has_vid(vmcs12) &&
9700             !nested_cpu_has_posted_intr(vmcs12))
9701                 return 0;
9702
9703         /*
9704          * If virtualize x2apic mode is enabled,
9705          * virtualize apic access must be disabled.
9706          */
9707         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9708             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9709                 return -EINVAL;
9710
9711         /*
9712          * If virtual interrupt delivery is enabled,
9713          * we must exit on external interrupts.
9714          */
9715         if (nested_cpu_has_vid(vmcs12) &&
9716            !nested_exit_on_intr(vcpu))
9717                 return -EINVAL;
9718
9719         /*
9720          * bits 15:8 should be zero in posted_intr_nv,
9721          * the descriptor address has been already checked
9722          * in nested_get_vmcs12_pages.
9723          */
9724         if (nested_cpu_has_posted_intr(vmcs12) &&
9725            (!nested_cpu_has_vid(vmcs12) ||
9726             !nested_exit_intr_ack_set(vcpu) ||
9727             vmcs12->posted_intr_nv & 0xff00))
9728                 return -EINVAL;
9729
9730         /* tpr shadow is needed by all apicv features. */
9731         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9732                 return -EINVAL;
9733
9734         return 0;
9735 }
9736
9737 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9738                                        unsigned long count_field,
9739                                        unsigned long addr_field)
9740 {
9741         int maxphyaddr;
9742         u64 count, addr;
9743
9744         if (vmcs12_read_any(vcpu, count_field, &count) ||
9745             vmcs12_read_any(vcpu, addr_field, &addr)) {
9746                 WARN_ON(1);
9747                 return -EINVAL;
9748         }
9749         if (count == 0)
9750                 return 0;
9751         maxphyaddr = cpuid_maxphyaddr(vcpu);
9752         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9753             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9754                 pr_debug_ratelimited(
9755                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9756                         addr_field, maxphyaddr, count, addr);
9757                 return -EINVAL;
9758         }
9759         return 0;
9760 }
9761
9762 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9763                                                 struct vmcs12 *vmcs12)
9764 {
9765         if (vmcs12->vm_exit_msr_load_count == 0 &&
9766             vmcs12->vm_exit_msr_store_count == 0 &&
9767             vmcs12->vm_entry_msr_load_count == 0)
9768                 return 0; /* Fast path */
9769         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9770                                         VM_EXIT_MSR_LOAD_ADDR) ||
9771             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9772                                         VM_EXIT_MSR_STORE_ADDR) ||
9773             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9774                                         VM_ENTRY_MSR_LOAD_ADDR))
9775                 return -EINVAL;
9776         return 0;
9777 }
9778
9779 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
9780                                          struct vmcs12 *vmcs12)
9781 {
9782         u64 address = vmcs12->pml_address;
9783         int maxphyaddr = cpuid_maxphyaddr(vcpu);
9784
9785         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
9786                 if (!nested_cpu_has_ept(vmcs12) ||
9787                     !IS_ALIGNED(address, 4096)  ||
9788                     address >> maxphyaddr)
9789                         return -EINVAL;
9790         }
9791
9792         return 0;
9793 }
9794
9795 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9796                                        struct vmx_msr_entry *e)
9797 {
9798         /* x2APIC MSR accesses are not allowed */
9799         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9800                 return -EINVAL;
9801         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9802             e->index == MSR_IA32_UCODE_REV)
9803                 return -EINVAL;
9804         if (e->reserved != 0)
9805                 return -EINVAL;
9806         return 0;
9807 }
9808
9809 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9810                                      struct vmx_msr_entry *e)
9811 {
9812         if (e->index == MSR_FS_BASE ||
9813             e->index == MSR_GS_BASE ||
9814             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9815             nested_vmx_msr_check_common(vcpu, e))
9816                 return -EINVAL;
9817         return 0;
9818 }
9819
9820 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9821                                       struct vmx_msr_entry *e)
9822 {
9823         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9824             nested_vmx_msr_check_common(vcpu, e))
9825                 return -EINVAL;
9826         return 0;
9827 }
9828
9829 /*
9830  * Load guest's/host's msr at nested entry/exit.
9831  * return 0 for success, entry index for failure.
9832  */
9833 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9834 {
9835         u32 i;
9836         struct vmx_msr_entry e;
9837         struct msr_data msr;
9838
9839         msr.host_initiated = false;
9840         for (i = 0; i < count; i++) {
9841                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9842                                         &e, sizeof(e))) {
9843                         pr_debug_ratelimited(
9844                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9845                                 __func__, i, gpa + i * sizeof(e));
9846                         goto fail;
9847                 }
9848                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9849                         pr_debug_ratelimited(
9850                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9851                                 __func__, i, e.index, e.reserved);
9852                         goto fail;
9853                 }
9854                 msr.index = e.index;
9855                 msr.data = e.value;
9856                 if (kvm_set_msr(vcpu, &msr)) {
9857                         pr_debug_ratelimited(
9858                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9859                                 __func__, i, e.index, e.value);
9860                         goto fail;
9861                 }
9862         }
9863         return 0;
9864 fail:
9865         return i + 1;
9866 }
9867
9868 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9869 {
9870         u32 i;
9871         struct vmx_msr_entry e;
9872
9873         for (i = 0; i < count; i++) {
9874                 struct msr_data msr_info;
9875                 if (kvm_vcpu_read_guest(vcpu,
9876                                         gpa + i * sizeof(e),
9877                                         &e, 2 * sizeof(u32))) {
9878                         pr_debug_ratelimited(
9879                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9880                                 __func__, i, gpa + i * sizeof(e));
9881                         return -EINVAL;
9882                 }
9883                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9884                         pr_debug_ratelimited(
9885                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9886                                 __func__, i, e.index, e.reserved);
9887                         return -EINVAL;
9888                 }
9889                 msr_info.host_initiated = false;
9890                 msr_info.index = e.index;
9891                 if (kvm_get_msr(vcpu, &msr_info)) {
9892                         pr_debug_ratelimited(
9893                                 "%s cannot read MSR (%u, 0x%x)\n",
9894                                 __func__, i, e.index);
9895                         return -EINVAL;
9896                 }
9897                 if (kvm_vcpu_write_guest(vcpu,
9898                                          gpa + i * sizeof(e) +
9899                                              offsetof(struct vmx_msr_entry, value),
9900                                          &msr_info.data, sizeof(msr_info.data))) {
9901                         pr_debug_ratelimited(
9902                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9903                                 __func__, i, e.index, msr_info.data);
9904                         return -EINVAL;
9905                 }
9906         }
9907         return 0;
9908 }
9909
9910 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9911 {
9912         unsigned long invalid_mask;
9913
9914         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9915         return (val & invalid_mask) == 0;
9916 }
9917
9918 /*
9919  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9920  * emulating VM entry into a guest with EPT enabled.
9921  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9922  * is assigned to entry_failure_code on failure.
9923  */
9924 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
9925                                u32 *entry_failure_code)
9926 {
9927         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
9928                 if (!nested_cr3_valid(vcpu, cr3)) {
9929                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
9930                         return 1;
9931                 }
9932
9933                 /*
9934                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9935                  * must not be dereferenced.
9936                  */
9937                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9938                     !nested_ept) {
9939                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9940                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
9941                                 return 1;
9942                         }
9943                 }
9944
9945                 vcpu->arch.cr3 = cr3;
9946                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9947         }
9948
9949         kvm_mmu_reset_context(vcpu);
9950         return 0;
9951 }
9952
9953 /*
9954  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9955  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9956  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9957  * guest in a way that will both be appropriate to L1's requests, and our
9958  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9959  * function also has additional necessary side-effects, like setting various
9960  * vcpu->arch fields.
9961  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9962  * is assigned to entry_failure_code on failure.
9963  */
9964 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9965                           bool from_vmentry, u32 *entry_failure_code)
9966 {
9967         struct vcpu_vmx *vmx = to_vmx(vcpu);
9968         u32 exec_control, vmcs12_exec_ctrl;
9969
9970         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9971         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9972         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9973         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9974         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9975         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9976         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9977         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9978         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9979         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9980         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9981         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9982         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9983         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9984         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9985         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9986         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9987         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9988         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9989         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9990         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9991         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9992         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9993         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9994         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9995         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9996         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9997         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9998         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9999         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10000         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10001         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10002         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10003         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10004         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10005         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10006
10007         if (from_vmentry &&
10008             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10009                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10010                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10011         } else {
10012                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10013                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10014         }
10015         if (from_vmentry) {
10016                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10017                              vmcs12->vm_entry_intr_info_field);
10018                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10019                              vmcs12->vm_entry_exception_error_code);
10020                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10021                              vmcs12->vm_entry_instruction_len);
10022                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10023                              vmcs12->guest_interruptibility_info);
10024         } else {
10025                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10026         }
10027         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10028         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10029         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10030                 vmcs12->guest_pending_dbg_exceptions);
10031         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10032         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10033
10034         if (nested_cpu_has_xsaves(vmcs12))
10035                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10036         vmcs_write64(VMCS_LINK_POINTER, -1ull);
10037
10038         exec_control = vmcs12->pin_based_vm_exec_control;
10039
10040         /* Preemption timer setting is only taken from vmcs01.  */
10041         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10042         exec_control |= vmcs_config.pin_based_exec_ctrl;
10043         if (vmx->hv_deadline_tsc == -1)
10044                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10045
10046         /* Posted interrupts setting is only taken from vmcs12.  */
10047         if (nested_cpu_has_posted_intr(vmcs12)) {
10048                 /*
10049                  * Note that we use L0's vector here and in
10050                  * vmx_deliver_nested_posted_interrupt.
10051                  */
10052                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10053                 vmx->nested.pi_pending = false;
10054                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
10055         } else {
10056                 exec_control &= ~PIN_BASED_POSTED_INTR;
10057         }
10058
10059         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10060
10061         vmx->nested.preemption_timer_expired = false;
10062         if (nested_cpu_has_preemption_timer(vmcs12))
10063                 vmx_start_preemption_timer(vcpu);
10064
10065         /*
10066          * Whether page-faults are trapped is determined by a combination of
10067          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10068          * If enable_ept, L0 doesn't care about page faults and we should
10069          * set all of these to L1's desires. However, if !enable_ept, L0 does
10070          * care about (at least some) page faults, and because it is not easy
10071          * (if at all possible?) to merge L0 and L1's desires, we simply ask
10072          * to exit on each and every L2 page fault. This is done by setting
10073          * MASK=MATCH=0 and (see below) EB.PF=1.
10074          * Note that below we don't need special code to set EB.PF beyond the
10075          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10076          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10077          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10078          *
10079          * A problem with this approach (when !enable_ept) is that L1 may be
10080          * injected with more page faults than it asked for. This could have
10081          * caused problems, but in practice existing hypervisors don't care.
10082          * To fix this, we will need to emulate the PFEC checking (on the L1
10083          * page tables), using walk_addr(), when injecting PFs to L1.
10084          */
10085         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10086                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10087         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10088                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10089
10090         if (cpu_has_secondary_exec_ctrls()) {
10091                 exec_control = vmx_secondary_exec_control(vmx);
10092
10093                 /* Take the following fields only from vmcs12 */
10094                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10095                                   SECONDARY_EXEC_RDTSCP |
10096                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10097                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
10098                 if (nested_cpu_has(vmcs12,
10099                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10100                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10101                                 ~SECONDARY_EXEC_ENABLE_PML;
10102                         exec_control |= vmcs12_exec_ctrl;
10103                 }
10104
10105                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10106                         vmcs_write64(EOI_EXIT_BITMAP0,
10107                                 vmcs12->eoi_exit_bitmap0);
10108                         vmcs_write64(EOI_EXIT_BITMAP1,
10109                                 vmcs12->eoi_exit_bitmap1);
10110                         vmcs_write64(EOI_EXIT_BITMAP2,
10111                                 vmcs12->eoi_exit_bitmap2);
10112                         vmcs_write64(EOI_EXIT_BITMAP3,
10113                                 vmcs12->eoi_exit_bitmap3);
10114                         vmcs_write16(GUEST_INTR_STATUS,
10115                                 vmcs12->guest_intr_status);
10116                 }
10117
10118                 /*
10119                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
10120                  * nested_get_vmcs12_pages will either fix it up or
10121                  * remove the VM execution control.
10122                  */
10123                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10124                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10125
10126                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10127         }
10128
10129
10130         /*
10131          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10132          * Some constant fields are set here by vmx_set_constant_host_state().
10133          * Other fields are different per CPU, and will be set later when
10134          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10135          */
10136         vmx_set_constant_host_state(vmx);
10137
10138         /*
10139          * Set the MSR load/store lists to match L0's settings.
10140          */
10141         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10142         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10143         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10144         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10145         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10146
10147         /*
10148          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10149          * entry, but only if the current (host) sp changed from the value
10150          * we wrote last (vmx->host_rsp). This cache is no longer relevant
10151          * if we switch vmcs, and rather than hold a separate cache per vmcs,
10152          * here we just force the write to happen on entry.
10153          */
10154         vmx->host_rsp = 0;
10155
10156         exec_control = vmx_exec_control(vmx); /* L0's desires */
10157         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10158         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10159         exec_control &= ~CPU_BASED_TPR_SHADOW;
10160         exec_control |= vmcs12->cpu_based_vm_exec_control;
10161
10162         /*
10163          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10164          * nested_get_vmcs12_pages can't fix it up, the illegal value
10165          * will result in a VM entry failure.
10166          */
10167         if (exec_control & CPU_BASED_TPR_SHADOW) {
10168                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10169                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10170         }
10171
10172         /*
10173          * Merging of IO bitmap not currently supported.
10174          * Rather, exit every time.
10175          */
10176         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10177         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10178
10179         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10180
10181         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10182          * bitwise-or of what L1 wants to trap for L2, and what we want to
10183          * trap. Note that CR0.TS also needs updating - we do this later.
10184          */
10185         update_exception_bitmap(vcpu);
10186         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10187         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10188
10189         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10190          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10191          * bits are further modified by vmx_set_efer() below.
10192          */
10193         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10194
10195         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10196          * emulated by vmx_set_efer(), below.
10197          */
10198         vm_entry_controls_init(vmx, 
10199                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10200                         ~VM_ENTRY_IA32E_MODE) |
10201                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10202
10203         if (from_vmentry &&
10204             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10205                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10206                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10207         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10208                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10209         }
10210
10211         set_cr4_guest_host_mask(vmx);
10212
10213         if (from_vmentry &&
10214             vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10215                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10216
10217         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10218                 vmcs_write64(TSC_OFFSET,
10219                         vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10220         else
10221                 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10222         if (kvm_has_tsc_control)
10223                 decache_tsc_multiplier(vmx);
10224
10225         if (enable_vpid) {
10226                 /*
10227                  * There is no direct mapping between vpid02 and vpid12, the
10228                  * vpid02 is per-vCPU for L0 and reused while the value of
10229                  * vpid12 is changed w/ one invvpid during nested vmentry.
10230                  * The vpid12 is allocated by L1 for L2, so it will not
10231                  * influence global bitmap(for vpid01 and vpid02 allocation)
10232                  * even if spawn a lot of nested vCPUs.
10233                  */
10234                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10235                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10236                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10237                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10238                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10239                         }
10240                 } else {
10241                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10242                         vmx_flush_tlb(vcpu);
10243                 }
10244
10245         }
10246
10247         if (enable_pml) {
10248                 /*
10249                  * Conceptually we want to copy the PML address and index from
10250                  * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10251                  * since we always flush the log on each vmexit, this happens
10252                  * to be equivalent to simply resetting the fields in vmcs02.
10253                  */
10254                 ASSERT(vmx->pml_pg);
10255                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10256                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10257         }
10258
10259         if (nested_cpu_has_ept(vmcs12)) {
10260                 if (nested_ept_init_mmu_context(vcpu)) {
10261                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10262                         return 1;
10263                 }
10264         } else if (nested_cpu_has2(vmcs12,
10265                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10266                 vmx_flush_tlb_ept_only(vcpu);
10267         }
10268
10269         /*
10270          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10271          * bits which we consider mandatory enabled.
10272          * The CR0_READ_SHADOW is what L2 should have expected to read given
10273          * the specifications by L1; It's not enough to take
10274          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10275          * have more bits than L1 expected.
10276          */
10277         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10278         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10279
10280         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10281         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10282
10283         if (from_vmentry &&
10284             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10285                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10286         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10287                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10288         else
10289                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10290         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10291         vmx_set_efer(vcpu, vcpu->arch.efer);
10292
10293         /* Shadow page tables on either EPT or shadow page tables. */
10294         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10295                                 entry_failure_code))
10296                 return 1;
10297
10298         if (!enable_ept)
10299                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10300
10301         /*
10302          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10303          */
10304         if (enable_ept) {
10305                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10306                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10307                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10308                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10309         }
10310
10311         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10312         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10313         return 0;
10314 }
10315
10316 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10317 {
10318         struct vcpu_vmx *vmx = to_vmx(vcpu);
10319
10320         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10321             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10322                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10323
10324         if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10325                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10326
10327         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10328                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10329
10330         if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10331                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10332
10333         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10334                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10335
10336         if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10337                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10338
10339         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10340                                 vmx->nested.nested_vmx_procbased_ctls_low,
10341                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10342             (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10343              !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10344                                  vmx->nested.nested_vmx_secondary_ctls_low,
10345                                  vmx->nested.nested_vmx_secondary_ctls_high)) ||
10346             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10347                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10348                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10349             !vmx_control_verify(vmcs12->vm_exit_controls,
10350                                 vmx->nested.nested_vmx_exit_ctls_low,
10351                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10352             !vmx_control_verify(vmcs12->vm_entry_controls,
10353                                 vmx->nested.nested_vmx_entry_ctls_low,
10354                                 vmx->nested.nested_vmx_entry_ctls_high))
10355                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10356
10357         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10358                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10359
10360         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10361             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10362             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10363                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10364
10365         return 0;
10366 }
10367
10368 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10369                                   u32 *exit_qual)
10370 {
10371         bool ia32e;
10372
10373         *exit_qual = ENTRY_FAIL_DEFAULT;
10374
10375         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10376             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10377                 return 1;
10378
10379         if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10380             vmcs12->vmcs_link_pointer != -1ull) {
10381                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10382                 return 1;
10383         }
10384
10385         /*
10386          * If the load IA32_EFER VM-entry control is 1, the following checks
10387          * are performed on the field for the IA32_EFER MSR:
10388          * - Bits reserved in the IA32_EFER MSR must be 0.
10389          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10390          *   the IA-32e mode guest VM-exit control. It must also be identical
10391          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10392          *   CR0.PG) is 1.
10393          */
10394         if (to_vmx(vcpu)->nested.nested_run_pending &&
10395             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10396                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10397                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10398                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10399                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10400                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10401                         return 1;
10402         }
10403
10404         /*
10405          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10406          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10407          * the values of the LMA and LME bits in the field must each be that of
10408          * the host address-space size VM-exit control.
10409          */
10410         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10411                 ia32e = (vmcs12->vm_exit_controls &
10412                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10413                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10414                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10415                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10416                         return 1;
10417         }
10418
10419         return 0;
10420 }
10421
10422 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10423 {
10424         struct vcpu_vmx *vmx = to_vmx(vcpu);
10425         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10426         struct loaded_vmcs *vmcs02;
10427         u32 msr_entry_idx;
10428         u32 exit_qual;
10429
10430         vmcs02 = nested_get_current_vmcs02(vmx);
10431         if (!vmcs02)
10432                 return -ENOMEM;
10433
10434         enter_guest_mode(vcpu);
10435
10436         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10437                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10438
10439         vmx_switch_vmcs(vcpu, vmcs02);
10440         vmx_segment_cache_clear(vmx);
10441
10442         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10443                 leave_guest_mode(vcpu);
10444                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10445                 nested_vmx_entry_failure(vcpu, vmcs12,
10446                                          EXIT_REASON_INVALID_STATE, exit_qual);
10447                 return 1;
10448         }
10449
10450         nested_get_vmcs12_pages(vcpu, vmcs12);
10451
10452         msr_entry_idx = nested_vmx_load_msr(vcpu,
10453                                             vmcs12->vm_entry_msr_load_addr,
10454                                             vmcs12->vm_entry_msr_load_count);
10455         if (msr_entry_idx) {
10456                 leave_guest_mode(vcpu);
10457                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10458                 nested_vmx_entry_failure(vcpu, vmcs12,
10459                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10460                 return 1;
10461         }
10462
10463         /*
10464          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10465          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10466          * returned as far as L1 is concerned. It will only return (and set
10467          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10468          */
10469         return 0;
10470 }
10471
10472 /*
10473  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10474  * for running an L2 nested guest.
10475  */
10476 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10477 {
10478         struct vmcs12 *vmcs12;
10479         struct vcpu_vmx *vmx = to_vmx(vcpu);
10480         u32 exit_qual;
10481         int ret;
10482
10483         if (!nested_vmx_check_permission(vcpu))
10484                 return 1;
10485
10486         if (!nested_vmx_check_vmcs12(vcpu))
10487                 goto out;
10488
10489         vmcs12 = get_vmcs12(vcpu);
10490
10491         if (enable_shadow_vmcs)
10492                 copy_shadow_to_vmcs12(vmx);
10493
10494         /*
10495          * The nested entry process starts with enforcing various prerequisites
10496          * on vmcs12 as required by the Intel SDM, and act appropriately when
10497          * they fail: As the SDM explains, some conditions should cause the
10498          * instruction to fail, while others will cause the instruction to seem
10499          * to succeed, but return an EXIT_REASON_INVALID_STATE.
10500          * To speed up the normal (success) code path, we should avoid checking
10501          * for misconfigurations which will anyway be caught by the processor
10502          * when using the merged vmcs02.
10503          */
10504         if (vmcs12->launch_state == launch) {
10505                 nested_vmx_failValid(vcpu,
10506                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10507                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10508                 goto out;
10509         }
10510
10511         ret = check_vmentry_prereqs(vcpu, vmcs12);
10512         if (ret) {
10513                 nested_vmx_failValid(vcpu, ret);
10514                 goto out;
10515         }
10516
10517         /*
10518          * After this point, the trap flag no longer triggers a singlestep trap
10519          * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10520          * This is not 100% correct; for performance reasons, we delegate most
10521          * of the checks on host state to the processor.  If those fail,
10522          * the singlestep trap is missed.
10523          */
10524         skip_emulated_instruction(vcpu);
10525
10526         ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10527         if (ret) {
10528                 nested_vmx_entry_failure(vcpu, vmcs12,
10529                                          EXIT_REASON_INVALID_STATE, exit_qual);
10530                 return 1;
10531         }
10532
10533         /*
10534          * We're finally done with prerequisite checking, and can start with
10535          * the nested entry.
10536          */
10537
10538         ret = enter_vmx_non_root_mode(vcpu, true);
10539         if (ret)
10540                 return ret;
10541
10542         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10543                 return kvm_vcpu_halt(vcpu);
10544
10545         vmx->nested.nested_run_pending = 1;
10546
10547         return 1;
10548
10549 out:
10550         return kvm_skip_emulated_instruction(vcpu);
10551 }
10552
10553 /*
10554  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10555  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10556  * This function returns the new value we should put in vmcs12.guest_cr0.
10557  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10558  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10559  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10560  *     didn't trap the bit, because if L1 did, so would L0).
10561  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10562  *     been modified by L2, and L1 knows it. So just leave the old value of
10563  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10564  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10565  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10566  *     changed these bits, and therefore they need to be updated, but L0
10567  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10568  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10569  */
10570 static inline unsigned long
10571 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10572 {
10573         return
10574         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10575         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10576         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10577                         vcpu->arch.cr0_guest_owned_bits));
10578 }
10579
10580 static inline unsigned long
10581 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10582 {
10583         return
10584         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10585         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10586         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10587                         vcpu->arch.cr4_guest_owned_bits));
10588 }
10589
10590 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10591                                        struct vmcs12 *vmcs12)
10592 {
10593         u32 idt_vectoring;
10594         unsigned int nr;
10595
10596         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10597                 nr = vcpu->arch.exception.nr;
10598                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10599
10600                 if (kvm_exception_is_soft(nr)) {
10601                         vmcs12->vm_exit_instruction_len =
10602                                 vcpu->arch.event_exit_inst_len;
10603                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10604                 } else
10605                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10606
10607                 if (vcpu->arch.exception.has_error_code) {
10608                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10609                         vmcs12->idt_vectoring_error_code =
10610                                 vcpu->arch.exception.error_code;
10611                 }
10612
10613                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10614         } else if (vcpu->arch.nmi_injected) {
10615                 vmcs12->idt_vectoring_info_field =
10616                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10617         } else if (vcpu->arch.interrupt.pending) {
10618                 nr = vcpu->arch.interrupt.nr;
10619                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10620
10621                 if (vcpu->arch.interrupt.soft) {
10622                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
10623                         vmcs12->vm_entry_instruction_len =
10624                                 vcpu->arch.event_exit_inst_len;
10625                 } else
10626                         idt_vectoring |= INTR_TYPE_EXT_INTR;
10627
10628                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10629         }
10630 }
10631
10632 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10633 {
10634         struct vcpu_vmx *vmx = to_vmx(vcpu);
10635
10636         if (vcpu->arch.exception.pending ||
10637                 vcpu->arch.nmi_injected ||
10638                 vcpu->arch.interrupt.pending)
10639                 return -EBUSY;
10640
10641         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10642             vmx->nested.preemption_timer_expired) {
10643                 if (vmx->nested.nested_run_pending)
10644                         return -EBUSY;
10645                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10646                 return 0;
10647         }
10648
10649         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10650                 if (vmx->nested.nested_run_pending)
10651                         return -EBUSY;
10652                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10653                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
10654                                   INTR_INFO_VALID_MASK, 0);
10655                 /*
10656                  * The NMI-triggered VM exit counts as injection:
10657                  * clear this one and block further NMIs.
10658                  */
10659                 vcpu->arch.nmi_pending = 0;
10660                 vmx_set_nmi_mask(vcpu, true);
10661                 return 0;
10662         }
10663
10664         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10665             nested_exit_on_intr(vcpu)) {
10666                 if (vmx->nested.nested_run_pending)
10667                         return -EBUSY;
10668                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10669                 return 0;
10670         }
10671
10672         vmx_complete_nested_posted_interrupt(vcpu);
10673         return 0;
10674 }
10675
10676 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10677 {
10678         ktime_t remaining =
10679                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10680         u64 value;
10681
10682         if (ktime_to_ns(remaining) <= 0)
10683                 return 0;
10684
10685         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10686         do_div(value, 1000000);
10687         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10688 }
10689
10690 /*
10691  * Update the guest state fields of vmcs12 to reflect changes that
10692  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10693  * VM-entry controls is also updated, since this is really a guest
10694  * state bit.)
10695  */
10696 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10697 {
10698         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10699         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10700
10701         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10702         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10703         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10704
10705         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10706         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10707         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10708         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10709         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10710         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10711         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10712         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10713         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10714         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10715         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10716         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10717         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10718         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10719         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10720         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10721         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10722         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10723         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10724         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10725         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10726         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10727         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10728         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10729         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10730         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10731         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10732         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10733         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10734         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10735         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10736         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10737         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10738         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10739         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10740         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10741
10742         vmcs12->guest_interruptibility_info =
10743                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10744         vmcs12->guest_pending_dbg_exceptions =
10745                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10746         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10747                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10748         else
10749                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10750
10751         if (nested_cpu_has_preemption_timer(vmcs12)) {
10752                 if (vmcs12->vm_exit_controls &
10753                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10754                         vmcs12->vmx_preemption_timer_value =
10755                                 vmx_get_preemption_timer_value(vcpu);
10756                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10757         }
10758
10759         /*
10760          * In some cases (usually, nested EPT), L2 is allowed to change its
10761          * own CR3 without exiting. If it has changed it, we must keep it.
10762          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10763          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10764          *
10765          * Additionally, restore L2's PDPTR to vmcs12.
10766          */
10767         if (enable_ept) {
10768                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10769                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10770                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10771                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10772                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10773         }
10774
10775         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10776
10777         if (nested_cpu_has_vid(vmcs12))
10778                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10779
10780         vmcs12->vm_entry_controls =
10781                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10782                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10783
10784         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10785                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10786                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10787         }
10788
10789         /* TODO: These cannot have changed unless we have MSR bitmaps and
10790          * the relevant bit asks not to trap the change */
10791         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10792                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10793         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10794                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10795         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10796         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10797         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10798         if (kvm_mpx_supported())
10799                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10800 }
10801
10802 /*
10803  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10804  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10805  * and this function updates it to reflect the changes to the guest state while
10806  * L2 was running (and perhaps made some exits which were handled directly by L0
10807  * without going back to L1), and to reflect the exit reason.
10808  * Note that we do not have to copy here all VMCS fields, just those that
10809  * could have changed by the L2 guest or the exit - i.e., the guest-state and
10810  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10811  * which already writes to vmcs12 directly.
10812  */
10813 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10814                            u32 exit_reason, u32 exit_intr_info,
10815                            unsigned long exit_qualification)
10816 {
10817         /* update guest state fields: */
10818         sync_vmcs12(vcpu, vmcs12);
10819
10820         /* update exit information fields: */
10821
10822         vmcs12->vm_exit_reason = exit_reason;
10823         vmcs12->exit_qualification = exit_qualification;
10824
10825         vmcs12->vm_exit_intr_info = exit_intr_info;
10826         if ((vmcs12->vm_exit_intr_info &
10827              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10828             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10829                 vmcs12->vm_exit_intr_error_code =
10830                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10831         vmcs12->idt_vectoring_info_field = 0;
10832         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10833         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10834
10835         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10836                 vmcs12->launch_state = 1;
10837
10838                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10839                  * instead of reading the real value. */
10840                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10841
10842                 /*
10843                  * Transfer the event that L0 or L1 may wanted to inject into
10844                  * L2 to IDT_VECTORING_INFO_FIELD.
10845                  */
10846                 vmcs12_save_pending_event(vcpu, vmcs12);
10847         }
10848
10849         /*
10850          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10851          * preserved above and would only end up incorrectly in L1.
10852          */
10853         vcpu->arch.nmi_injected = false;
10854         kvm_clear_exception_queue(vcpu);
10855         kvm_clear_interrupt_queue(vcpu);
10856 }
10857
10858 /*
10859  * A part of what we need to when the nested L2 guest exits and we want to
10860  * run its L1 parent, is to reset L1's guest state to the host state specified
10861  * in vmcs12.
10862  * This function is to be called not only on normal nested exit, but also on
10863  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10864  * Failures During or After Loading Guest State").
10865  * This function should be called when the active VMCS is L1's (vmcs01).
10866  */
10867 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10868                                    struct vmcs12 *vmcs12)
10869 {
10870         struct kvm_segment seg;
10871         u32 entry_failure_code;
10872
10873         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10874                 vcpu->arch.efer = vmcs12->host_ia32_efer;
10875         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10876                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10877         else
10878                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10879         vmx_set_efer(vcpu, vcpu->arch.efer);
10880
10881         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10882         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10883         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10884         /*
10885          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10886          * actually changed, because vmx_set_cr0 refers to efer set above.
10887          *
10888          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10889          * (KVM doesn't change it);
10890          */
10891         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
10892         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10893
10894         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
10895         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10896         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10897
10898         nested_ept_uninit_mmu_context(vcpu);
10899
10900         /*
10901          * Only PDPTE load can fail as the value of cr3 was checked on entry and
10902          * couldn't have changed.
10903          */
10904         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10905                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
10906
10907         if (!enable_ept)
10908                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10909
10910         if (enable_vpid) {
10911                 /*
10912                  * Trivially support vpid by letting L2s share their parent
10913                  * L1's vpid. TODO: move to a more elaborate solution, giving
10914                  * each L2 its own vpid and exposing the vpid feature to L1.
10915                  */
10916                 vmx_flush_tlb(vcpu);
10917         }
10918
10919
10920         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10921         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10922         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10923         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10924         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10925
10926         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10927         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10928                 vmcs_write64(GUEST_BNDCFGS, 0);
10929
10930         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10931                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10932                 vcpu->arch.pat = vmcs12->host_ia32_pat;
10933         }
10934         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10935                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10936                         vmcs12->host_ia32_perf_global_ctrl);
10937
10938         /* Set L1 segment info according to Intel SDM
10939             27.5.2 Loading Host Segment and Descriptor-Table Registers */
10940         seg = (struct kvm_segment) {
10941                 .base = 0,
10942                 .limit = 0xFFFFFFFF,
10943                 .selector = vmcs12->host_cs_selector,
10944                 .type = 11,
10945                 .present = 1,
10946                 .s = 1,
10947                 .g = 1
10948         };
10949         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10950                 seg.l = 1;
10951         else
10952                 seg.db = 1;
10953         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10954         seg = (struct kvm_segment) {
10955                 .base = 0,
10956                 .limit = 0xFFFFFFFF,
10957                 .type = 3,
10958                 .present = 1,
10959                 .s = 1,
10960                 .db = 1,
10961                 .g = 1
10962         };
10963         seg.selector = vmcs12->host_ds_selector;
10964         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10965         seg.selector = vmcs12->host_es_selector;
10966         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10967         seg.selector = vmcs12->host_ss_selector;
10968         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10969         seg.selector = vmcs12->host_fs_selector;
10970         seg.base = vmcs12->host_fs_base;
10971         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10972         seg.selector = vmcs12->host_gs_selector;
10973         seg.base = vmcs12->host_gs_base;
10974         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10975         seg = (struct kvm_segment) {
10976                 .base = vmcs12->host_tr_base,
10977                 .limit = 0x67,
10978                 .selector = vmcs12->host_tr_selector,
10979                 .type = 11,
10980                 .present = 1
10981         };
10982         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10983
10984         kvm_set_dr(vcpu, 7, 0x400);
10985         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10986
10987         if (cpu_has_vmx_msr_bitmap())
10988                 vmx_set_msr_bitmap(vcpu);
10989
10990         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10991                                 vmcs12->vm_exit_msr_load_count))
10992                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10993 }
10994
10995 /*
10996  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10997  * and modify vmcs12 to make it see what it would expect to see there if
10998  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10999  */
11000 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11001                               u32 exit_intr_info,
11002                               unsigned long exit_qualification)
11003 {
11004         struct vcpu_vmx *vmx = to_vmx(vcpu);
11005         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11006         u32 vm_inst_error = 0;
11007
11008         /* trying to cancel vmlaunch/vmresume is a bug */
11009         WARN_ON_ONCE(vmx->nested.nested_run_pending);
11010
11011         leave_guest_mode(vcpu);
11012         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11013                        exit_qualification);
11014
11015         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11016                                  vmcs12->vm_exit_msr_store_count))
11017                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11018
11019         if (unlikely(vmx->fail))
11020                 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
11021
11022         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11023
11024         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
11025             && nested_exit_intr_ack_set(vcpu)) {
11026                 int irq = kvm_cpu_get_interrupt(vcpu);
11027                 WARN_ON(irq < 0);
11028                 vmcs12->vm_exit_intr_info = irq |
11029                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11030         }
11031
11032         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11033                                        vmcs12->exit_qualification,
11034                                        vmcs12->idt_vectoring_info_field,
11035                                        vmcs12->vm_exit_intr_info,
11036                                        vmcs12->vm_exit_intr_error_code,
11037                                        KVM_ISA_VMX);
11038
11039         vm_entry_controls_reset_shadow(vmx);
11040         vm_exit_controls_reset_shadow(vmx);
11041         vmx_segment_cache_clear(vmx);
11042
11043         /* if no vmcs02 cache requested, remove the one we used */
11044         if (VMCS02_POOL_SIZE == 0)
11045                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11046
11047         load_vmcs12_host_state(vcpu, vmcs12);
11048
11049         /* Update any VMCS fields that might have changed while L2 ran */
11050         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11051         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11052         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11053         if (vmx->hv_deadline_tsc == -1)
11054                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11055                                 PIN_BASED_VMX_PREEMPTION_TIMER);
11056         else
11057                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11058                               PIN_BASED_VMX_PREEMPTION_TIMER);
11059         if (kvm_has_tsc_control)
11060                 decache_tsc_multiplier(vmx);
11061
11062         if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11063                 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11064                 vmx_set_virtual_x2apic_mode(vcpu,
11065                                 vcpu->arch.apic_base & X2APIC_ENABLE);
11066         } else if (!nested_cpu_has_ept(vmcs12) &&
11067                    nested_cpu_has2(vmcs12,
11068                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11069                 vmx_flush_tlb_ept_only(vcpu);
11070         }
11071
11072         /* This is needed for same reason as it was needed in prepare_vmcs02 */
11073         vmx->host_rsp = 0;
11074
11075         /* Unpin physical memory we referred to in vmcs02 */
11076         if (vmx->nested.apic_access_page) {
11077                 nested_release_page(vmx->nested.apic_access_page);
11078                 vmx->nested.apic_access_page = NULL;
11079         }
11080         if (vmx->nested.virtual_apic_page) {
11081                 nested_release_page(vmx->nested.virtual_apic_page);
11082                 vmx->nested.virtual_apic_page = NULL;
11083         }
11084         if (vmx->nested.pi_desc_page) {
11085                 kunmap(vmx->nested.pi_desc_page);
11086                 nested_release_page(vmx->nested.pi_desc_page);
11087                 vmx->nested.pi_desc_page = NULL;
11088                 vmx->nested.pi_desc = NULL;
11089         }
11090
11091         /*
11092          * We are now running in L2, mmu_notifier will force to reload the
11093          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11094          */
11095         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11096
11097         /*
11098          * Exiting from L2 to L1, we're now back to L1 which thinks it just
11099          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11100          * success or failure flag accordingly.
11101          */
11102         if (unlikely(vmx->fail)) {
11103                 vmx->fail = 0;
11104                 nested_vmx_failValid(vcpu, vm_inst_error);
11105         } else
11106                 nested_vmx_succeed(vcpu);
11107         if (enable_shadow_vmcs)
11108                 vmx->nested.sync_shadow_vmcs = true;
11109
11110         /* in case we halted in L2 */
11111         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11112 }
11113
11114 /*
11115  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11116  */
11117 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11118 {
11119         if (is_guest_mode(vcpu)) {
11120                 to_vmx(vcpu)->nested.nested_run_pending = 0;
11121                 nested_vmx_vmexit(vcpu, -1, 0, 0);
11122         }
11123         free_nested(to_vmx(vcpu));
11124 }
11125
11126 /*
11127  * L1's failure to enter L2 is a subset of a normal exit, as explained in
11128  * 23.7 "VM-entry failures during or after loading guest state" (this also
11129  * lists the acceptable exit-reason and exit-qualification parameters).
11130  * It should only be called before L2 actually succeeded to run, and when
11131  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11132  */
11133 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11134                         struct vmcs12 *vmcs12,
11135                         u32 reason, unsigned long qualification)
11136 {
11137         load_vmcs12_host_state(vcpu, vmcs12);
11138         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11139         vmcs12->exit_qualification = qualification;
11140         nested_vmx_succeed(vcpu);
11141         if (enable_shadow_vmcs)
11142                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11143 }
11144
11145 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11146                                struct x86_instruction_info *info,
11147                                enum x86_intercept_stage stage)
11148 {
11149         return X86EMUL_CONTINUE;
11150 }
11151
11152 #ifdef CONFIG_X86_64
11153 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11154 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11155                                   u64 divisor, u64 *result)
11156 {
11157         u64 low = a << shift, high = a >> (64 - shift);
11158
11159         /* To avoid the overflow on divq */
11160         if (high >= divisor)
11161                 return 1;
11162
11163         /* Low hold the result, high hold rem which is discarded */
11164         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11165             "rm" (divisor), "0" (low), "1" (high));
11166         *result = low;
11167
11168         return 0;
11169 }
11170
11171 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11172 {
11173         struct vcpu_vmx *vmx = to_vmx(vcpu);
11174         u64 tscl = rdtsc();
11175         u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11176         u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11177
11178         /* Convert to host delta tsc if tsc scaling is enabled */
11179         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11180                         u64_shl_div_u64(delta_tsc,
11181                                 kvm_tsc_scaling_ratio_frac_bits,
11182                                 vcpu->arch.tsc_scaling_ratio,
11183                                 &delta_tsc))
11184                 return -ERANGE;
11185
11186         /*
11187          * If the delta tsc can't fit in the 32 bit after the multi shift,
11188          * we can't use the preemption timer.
11189          * It's possible that it fits on later vmentries, but checking
11190          * on every vmentry is costly so we just use an hrtimer.
11191          */
11192         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11193                 return -ERANGE;
11194
11195         vmx->hv_deadline_tsc = tscl + delta_tsc;
11196         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11197                         PIN_BASED_VMX_PREEMPTION_TIMER);
11198
11199         return delta_tsc == 0;
11200 }
11201
11202 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11203 {
11204         struct vcpu_vmx *vmx = to_vmx(vcpu);
11205         vmx->hv_deadline_tsc = -1;
11206         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11207                         PIN_BASED_VMX_PREEMPTION_TIMER);
11208 }
11209 #endif
11210
11211 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11212 {
11213         if (ple_gap)
11214                 shrink_ple_window(vcpu);
11215 }
11216
11217 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11218                                      struct kvm_memory_slot *slot)
11219 {
11220         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11221         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11222 }
11223
11224 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11225                                        struct kvm_memory_slot *slot)
11226 {
11227         kvm_mmu_slot_set_dirty(kvm, slot);
11228 }
11229
11230 static void vmx_flush_log_dirty(struct kvm *kvm)
11231 {
11232         kvm_flush_pml_buffers(kvm);
11233 }
11234
11235 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11236 {
11237         struct vmcs12 *vmcs12;
11238         struct vcpu_vmx *vmx = to_vmx(vcpu);
11239         gpa_t gpa;
11240         struct page *page = NULL;
11241         u64 *pml_address;
11242
11243         if (is_guest_mode(vcpu)) {
11244                 WARN_ON_ONCE(vmx->nested.pml_full);
11245
11246                 /*
11247                  * Check if PML is enabled for the nested guest.
11248                  * Whether eptp bit 6 is set is already checked
11249                  * as part of A/D emulation.
11250                  */
11251                 vmcs12 = get_vmcs12(vcpu);
11252                 if (!nested_cpu_has_pml(vmcs12))
11253                         return 0;
11254
11255                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11256                         vmx->nested.pml_full = true;
11257                         return 1;
11258                 }
11259
11260                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11261
11262                 page = nested_get_page(vcpu, vmcs12->pml_address);
11263                 if (!page)
11264                         return 0;
11265
11266                 pml_address = kmap(page);
11267                 pml_address[vmcs12->guest_pml_index--] = gpa;
11268                 kunmap(page);
11269                 nested_release_page_clean(page);
11270         }
11271
11272         return 0;
11273 }
11274
11275 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11276                                            struct kvm_memory_slot *memslot,
11277                                            gfn_t offset, unsigned long mask)
11278 {
11279         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11280 }
11281
11282 /*
11283  * This routine does the following things for vCPU which is going
11284  * to be blocked if VT-d PI is enabled.
11285  * - Store the vCPU to the wakeup list, so when interrupts happen
11286  *   we can find the right vCPU to wake up.
11287  * - Change the Posted-interrupt descriptor as below:
11288  *      'NDST' <-- vcpu->pre_pcpu
11289  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11290  * - If 'ON' is set during this process, which means at least one
11291  *   interrupt is posted for this vCPU, we cannot block it, in
11292  *   this case, return 1, otherwise, return 0.
11293  *
11294  */
11295 static int pi_pre_block(struct kvm_vcpu *vcpu)
11296 {
11297         unsigned long flags;
11298         unsigned int dest;
11299         struct pi_desc old, new;
11300         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11301
11302         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11303                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11304                 !kvm_vcpu_apicv_active(vcpu))
11305                 return 0;
11306
11307         vcpu->pre_pcpu = vcpu->cpu;
11308         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11309                           vcpu->pre_pcpu), flags);
11310         list_add_tail(&vcpu->blocked_vcpu_list,
11311                       &per_cpu(blocked_vcpu_on_cpu,
11312                       vcpu->pre_pcpu));
11313         spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11314                                vcpu->pre_pcpu), flags);
11315
11316         do {
11317                 old.control = new.control = pi_desc->control;
11318
11319                 /*
11320                  * We should not block the vCPU if
11321                  * an interrupt is posted for it.
11322                  */
11323                 if (pi_test_on(pi_desc) == 1) {
11324                         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11325                                           vcpu->pre_pcpu), flags);
11326                         list_del(&vcpu->blocked_vcpu_list);
11327                         spin_unlock_irqrestore(
11328                                         &per_cpu(blocked_vcpu_on_cpu_lock,
11329                                         vcpu->pre_pcpu), flags);
11330                         vcpu->pre_pcpu = -1;
11331
11332                         return 1;
11333                 }
11334
11335                 WARN((pi_desc->sn == 1),
11336                      "Warning: SN field of posted-interrupts "
11337                      "is set before blocking\n");
11338
11339                 /*
11340                  * Since vCPU can be preempted during this process,
11341                  * vcpu->cpu could be different with pre_pcpu, we
11342                  * need to set pre_pcpu as the destination of wakeup
11343                  * notification event, then we can find the right vCPU
11344                  * to wakeup in wakeup handler if interrupts happen
11345                  * when the vCPU is in blocked state.
11346                  */
11347                 dest = cpu_physical_id(vcpu->pre_pcpu);
11348
11349                 if (x2apic_enabled())
11350                         new.ndst = dest;
11351                 else
11352                         new.ndst = (dest << 8) & 0xFF00;
11353
11354                 /* set 'NV' to 'wakeup vector' */
11355                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11356         } while (cmpxchg(&pi_desc->control, old.control,
11357                         new.control) != old.control);
11358
11359         return 0;
11360 }
11361
11362 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11363 {
11364         if (pi_pre_block(vcpu))
11365                 return 1;
11366
11367         if (kvm_lapic_hv_timer_in_use(vcpu))
11368                 kvm_lapic_switch_to_sw_timer(vcpu);
11369
11370         return 0;
11371 }
11372
11373 static void pi_post_block(struct kvm_vcpu *vcpu)
11374 {
11375         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11376         struct pi_desc old, new;
11377         unsigned int dest;
11378         unsigned long flags;
11379
11380         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11381                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11382                 !kvm_vcpu_apicv_active(vcpu))
11383                 return;
11384
11385         do {
11386                 old.control = new.control = pi_desc->control;
11387
11388                 dest = cpu_physical_id(vcpu->cpu);
11389
11390                 if (x2apic_enabled())
11391                         new.ndst = dest;
11392                 else
11393                         new.ndst = (dest << 8) & 0xFF00;
11394
11395                 /* Allow posting non-urgent interrupts */
11396                 new.sn = 0;
11397
11398                 /* set 'NV' to 'notification vector' */
11399                 new.nv = POSTED_INTR_VECTOR;
11400         } while (cmpxchg(&pi_desc->control, old.control,
11401                         new.control) != old.control);
11402
11403         if(vcpu->pre_pcpu != -1) {
11404                 spin_lock_irqsave(
11405                         &per_cpu(blocked_vcpu_on_cpu_lock,
11406                         vcpu->pre_pcpu), flags);
11407                 list_del(&vcpu->blocked_vcpu_list);
11408                 spin_unlock_irqrestore(
11409                         &per_cpu(blocked_vcpu_on_cpu_lock,
11410                         vcpu->pre_pcpu), flags);
11411                 vcpu->pre_pcpu = -1;
11412         }
11413 }
11414
11415 static void vmx_post_block(struct kvm_vcpu *vcpu)
11416 {
11417         if (kvm_x86_ops->set_hv_timer)
11418                 kvm_lapic_switch_to_hv_timer(vcpu);
11419
11420         pi_post_block(vcpu);
11421 }
11422
11423 /*
11424  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11425  *
11426  * @kvm: kvm
11427  * @host_irq: host irq of the interrupt
11428  * @guest_irq: gsi of the interrupt
11429  * @set: set or unset PI
11430  * returns 0 on success, < 0 on failure
11431  */
11432 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11433                               uint32_t guest_irq, bool set)
11434 {
11435         struct kvm_kernel_irq_routing_entry *e;
11436         struct kvm_irq_routing_table *irq_rt;
11437         struct kvm_lapic_irq irq;
11438         struct kvm_vcpu *vcpu;
11439         struct vcpu_data vcpu_info;
11440         int idx, ret = -EINVAL;
11441
11442         if (!kvm_arch_has_assigned_device(kvm) ||
11443                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11444                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11445                 return 0;
11446
11447         idx = srcu_read_lock(&kvm->irq_srcu);
11448         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11449         BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11450
11451         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11452                 if (e->type != KVM_IRQ_ROUTING_MSI)
11453                         continue;
11454                 /*
11455                  * VT-d PI cannot support posting multicast/broadcast
11456                  * interrupts to a vCPU, we still use interrupt remapping
11457                  * for these kind of interrupts.
11458                  *
11459                  * For lowest-priority interrupts, we only support
11460                  * those with single CPU as the destination, e.g. user
11461                  * configures the interrupts via /proc/irq or uses
11462                  * irqbalance to make the interrupts single-CPU.
11463                  *
11464                  * We will support full lowest-priority interrupt later.
11465                  */
11466
11467                 kvm_set_msi_irq(kvm, e, &irq);
11468                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11469                         /*
11470                          * Make sure the IRTE is in remapped mode if
11471                          * we don't handle it in posted mode.
11472                          */
11473                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11474                         if (ret < 0) {
11475                                 printk(KERN_INFO
11476                                    "failed to back to remapped mode, irq: %u\n",
11477                                    host_irq);
11478                                 goto out;
11479                         }
11480
11481                         continue;
11482                 }
11483
11484                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11485                 vcpu_info.vector = irq.vector;
11486
11487                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11488                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11489
11490                 if (set)
11491                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11492                 else {
11493                         /* suppress notification event before unposting */
11494                         pi_set_sn(vcpu_to_pi_desc(vcpu));
11495                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11496                         pi_clear_sn(vcpu_to_pi_desc(vcpu));
11497                 }
11498
11499                 if (ret < 0) {
11500                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
11501                                         __func__);
11502                         goto out;
11503                 }
11504         }
11505
11506         ret = 0;
11507 out:
11508         srcu_read_unlock(&kvm->irq_srcu, idx);
11509         return ret;
11510 }
11511
11512 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11513 {
11514         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11515                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11516                         FEATURE_CONTROL_LMCE;
11517         else
11518                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11519                         ~FEATURE_CONTROL_LMCE;
11520 }
11521
11522 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11523         .cpu_has_kvm_support = cpu_has_kvm_support,
11524         .disabled_by_bios = vmx_disabled_by_bios,
11525         .hardware_setup = hardware_setup,
11526         .hardware_unsetup = hardware_unsetup,
11527         .check_processor_compatibility = vmx_check_processor_compat,
11528         .hardware_enable = hardware_enable,
11529         .hardware_disable = hardware_disable,
11530         .cpu_has_accelerated_tpr = report_flexpriority,
11531         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11532
11533         .vcpu_create = vmx_create_vcpu,
11534         .vcpu_free = vmx_free_vcpu,
11535         .vcpu_reset = vmx_vcpu_reset,
11536
11537         .prepare_guest_switch = vmx_save_host_state,
11538         .vcpu_load = vmx_vcpu_load,
11539         .vcpu_put = vmx_vcpu_put,
11540
11541         .update_bp_intercept = update_exception_bitmap,
11542         .get_msr = vmx_get_msr,
11543         .set_msr = vmx_set_msr,
11544         .get_segment_base = vmx_get_segment_base,
11545         .get_segment = vmx_get_segment,
11546         .set_segment = vmx_set_segment,
11547         .get_cpl = vmx_get_cpl,
11548         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11549         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11550         .decache_cr3 = vmx_decache_cr3,
11551         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11552         .set_cr0 = vmx_set_cr0,
11553         .set_cr3 = vmx_set_cr3,
11554         .set_cr4 = vmx_set_cr4,
11555         .set_efer = vmx_set_efer,
11556         .get_idt = vmx_get_idt,
11557         .set_idt = vmx_set_idt,
11558         .get_gdt = vmx_get_gdt,
11559         .set_gdt = vmx_set_gdt,
11560         .get_dr6 = vmx_get_dr6,
11561         .set_dr6 = vmx_set_dr6,
11562         .set_dr7 = vmx_set_dr7,
11563         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11564         .cache_reg = vmx_cache_reg,
11565         .get_rflags = vmx_get_rflags,
11566         .set_rflags = vmx_set_rflags,
11567
11568         .get_pkru = vmx_get_pkru,
11569
11570         .tlb_flush = vmx_flush_tlb,
11571
11572         .run = vmx_vcpu_run,
11573         .handle_exit = vmx_handle_exit,
11574         .skip_emulated_instruction = skip_emulated_instruction,
11575         .set_interrupt_shadow = vmx_set_interrupt_shadow,
11576         .get_interrupt_shadow = vmx_get_interrupt_shadow,
11577         .patch_hypercall = vmx_patch_hypercall,
11578         .set_irq = vmx_inject_irq,
11579         .set_nmi = vmx_inject_nmi,
11580         .queue_exception = vmx_queue_exception,
11581         .cancel_injection = vmx_cancel_injection,
11582         .interrupt_allowed = vmx_interrupt_allowed,
11583         .nmi_allowed = vmx_nmi_allowed,
11584         .get_nmi_mask = vmx_get_nmi_mask,
11585         .set_nmi_mask = vmx_set_nmi_mask,
11586         .enable_nmi_window = enable_nmi_window,
11587         .enable_irq_window = enable_irq_window,
11588         .update_cr8_intercept = update_cr8_intercept,
11589         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11590         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11591         .get_enable_apicv = vmx_get_enable_apicv,
11592         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11593         .load_eoi_exitmap = vmx_load_eoi_exitmap,
11594         .apicv_post_state_restore = vmx_apicv_post_state_restore,
11595         .hwapic_irr_update = vmx_hwapic_irr_update,
11596         .hwapic_isr_update = vmx_hwapic_isr_update,
11597         .sync_pir_to_irr = vmx_sync_pir_to_irr,
11598         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11599
11600         .set_tss_addr = vmx_set_tss_addr,
11601         .get_tdp_level = get_ept_level,
11602         .get_mt_mask = vmx_get_mt_mask,
11603
11604         .get_exit_info = vmx_get_exit_info,
11605
11606         .get_lpage_level = vmx_get_lpage_level,
11607
11608         .cpuid_update = vmx_cpuid_update,
11609
11610         .rdtscp_supported = vmx_rdtscp_supported,
11611         .invpcid_supported = vmx_invpcid_supported,
11612
11613         .set_supported_cpuid = vmx_set_supported_cpuid,
11614
11615         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11616
11617         .write_tsc_offset = vmx_write_tsc_offset,
11618
11619         .set_tdp_cr3 = vmx_set_cr3,
11620
11621         .check_intercept = vmx_check_intercept,
11622         .handle_external_intr = vmx_handle_external_intr,
11623         .mpx_supported = vmx_mpx_supported,
11624         .xsaves_supported = vmx_xsaves_supported,
11625
11626         .check_nested_events = vmx_check_nested_events,
11627
11628         .sched_in = vmx_sched_in,
11629
11630         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11631         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11632         .flush_log_dirty = vmx_flush_log_dirty,
11633         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11634         .write_log_dirty = vmx_write_pml_buffer,
11635
11636         .pre_block = vmx_pre_block,
11637         .post_block = vmx_post_block,
11638
11639         .pmu_ops = &intel_pmu_ops,
11640
11641         .update_pi_irte = vmx_update_pi_irte,
11642
11643 #ifdef CONFIG_X86_64
11644         .set_hv_timer = vmx_set_hv_timer,
11645         .cancel_hv_timer = vmx_cancel_hv_timer,
11646 #endif
11647
11648         .setup_mce = vmx_setup_mce,
11649 };
11650
11651 static int __init vmx_init(void)
11652 {
11653         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11654                      __alignof__(struct vcpu_vmx), THIS_MODULE);
11655         if (r)
11656                 return r;
11657
11658 #ifdef CONFIG_KEXEC_CORE
11659         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11660                            crash_vmclear_local_loaded_vmcss);
11661 #endif
11662
11663         return 0;
11664 }
11665
11666 static void __exit vmx_exit(void)
11667 {
11668 #ifdef CONFIG_KEXEC_CORE
11669         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11670         synchronize_rcu();
11671 #endif
11672
11673         kvm_exit();
11674 }
11675
11676 module_init(vmx_init)
11677 module_exit(vmx_exit)