]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx.c
Merge tag 'wireless-drivers-for-davem-2017-09-25' of git://git.kernel.org/pub/scm...
[linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65         X86_FEATURE_MATCH(X86_FEATURE_VMX),
66         {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81                         enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98  * If nested=1, nested virtualization is supported, i.e., guests may use
99  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100  * use VMX instructions.
101  */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
111
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
113 static int __read_mostly cpu_preemption_timer_multi;
114 static bool __read_mostly enable_preemption_timer = 1;
115 #ifdef CONFIG_X86_64
116 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117 #endif
118
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON                                            \
122         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS                                      \
124         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
125          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
126
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
134 /*
135  * Hyper-V requires all of these, so mark them as supported even though
136  * they are just treated the same as all-context.
137  */
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
139         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
140         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
141         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
142         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146  * ple_gap:    upper bound on the amount of time between two successive
147  *             executions of PAUSE in a loop. Also indicate if ple enabled.
148  *             According to test, this time is usually smaller than 128 cycles.
149  * ple_window: upper bound on the amount of time a guest is allowed to execute
150  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
151  *             less than 2^12 cycles
152  * Time is measured based on a counter that runs at the same rate as the TSC,
153  * refer SDM volume 3b section 21.6.13 & 22.1.3.
154  */
155 #define KVM_VMX_DEFAULT_PLE_GAP           128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
160                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
185
186 struct vmcs {
187         u32 revision_id;
188         u32 abort;
189         char data[0];
190 };
191
192 /*
193  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195  * loaded on this CPU (so we can clear them if the CPU goes down).
196  */
197 struct loaded_vmcs {
198         struct vmcs *vmcs;
199         struct vmcs *shadow_vmcs;
200         int cpu;
201         bool launched;
202         bool nmi_known_unmasked;
203         struct list_head loaded_vmcss_on_cpu_link;
204 };
205
206 struct shared_msr_entry {
207         unsigned index;
208         u64 data;
209         u64 mask;
210 };
211
212 /*
213  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
214  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
215  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
216  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
217  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
218  * More than one of these structures may exist, if L1 runs multiple L2 guests.
219  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
220  * underlying hardware which will be used to run L2.
221  * This structure is packed to ensure that its layout is identical across
222  * machines (necessary for live migration).
223  * If there are changes in this struct, VMCS12_REVISION must be changed.
224  */
225 typedef u64 natural_width;
226 struct __packed vmcs12 {
227         /* According to the Intel spec, a VMCS region must start with the
228          * following two fields. Then follow implementation-specific data.
229          */
230         u32 revision_id;
231         u32 abort;
232
233         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
234         u32 padding[7]; /* room for future expansion */
235
236         u64 io_bitmap_a;
237         u64 io_bitmap_b;
238         u64 msr_bitmap;
239         u64 vm_exit_msr_store_addr;
240         u64 vm_exit_msr_load_addr;
241         u64 vm_entry_msr_load_addr;
242         u64 tsc_offset;
243         u64 virtual_apic_page_addr;
244         u64 apic_access_addr;
245         u64 posted_intr_desc_addr;
246         u64 vm_function_control;
247         u64 ept_pointer;
248         u64 eoi_exit_bitmap0;
249         u64 eoi_exit_bitmap1;
250         u64 eoi_exit_bitmap2;
251         u64 eoi_exit_bitmap3;
252         u64 eptp_list_address;
253         u64 xss_exit_bitmap;
254         u64 guest_physical_address;
255         u64 vmcs_link_pointer;
256         u64 pml_address;
257         u64 guest_ia32_debugctl;
258         u64 guest_ia32_pat;
259         u64 guest_ia32_efer;
260         u64 guest_ia32_perf_global_ctrl;
261         u64 guest_pdptr0;
262         u64 guest_pdptr1;
263         u64 guest_pdptr2;
264         u64 guest_pdptr3;
265         u64 guest_bndcfgs;
266         u64 host_ia32_pat;
267         u64 host_ia32_efer;
268         u64 host_ia32_perf_global_ctrl;
269         u64 padding64[8]; /* room for future expansion */
270         /*
271          * To allow migration of L1 (complete with its L2 guests) between
272          * machines of different natural widths (32 or 64 bit), we cannot have
273          * unsigned long fields with no explict size. We use u64 (aliased
274          * natural_width) instead. Luckily, x86 is little-endian.
275          */
276         natural_width cr0_guest_host_mask;
277         natural_width cr4_guest_host_mask;
278         natural_width cr0_read_shadow;
279         natural_width cr4_read_shadow;
280         natural_width cr3_target_value0;
281         natural_width cr3_target_value1;
282         natural_width cr3_target_value2;
283         natural_width cr3_target_value3;
284         natural_width exit_qualification;
285         natural_width guest_linear_address;
286         natural_width guest_cr0;
287         natural_width guest_cr3;
288         natural_width guest_cr4;
289         natural_width guest_es_base;
290         natural_width guest_cs_base;
291         natural_width guest_ss_base;
292         natural_width guest_ds_base;
293         natural_width guest_fs_base;
294         natural_width guest_gs_base;
295         natural_width guest_ldtr_base;
296         natural_width guest_tr_base;
297         natural_width guest_gdtr_base;
298         natural_width guest_idtr_base;
299         natural_width guest_dr7;
300         natural_width guest_rsp;
301         natural_width guest_rip;
302         natural_width guest_rflags;
303         natural_width guest_pending_dbg_exceptions;
304         natural_width guest_sysenter_esp;
305         natural_width guest_sysenter_eip;
306         natural_width host_cr0;
307         natural_width host_cr3;
308         natural_width host_cr4;
309         natural_width host_fs_base;
310         natural_width host_gs_base;
311         natural_width host_tr_base;
312         natural_width host_gdtr_base;
313         natural_width host_idtr_base;
314         natural_width host_ia32_sysenter_esp;
315         natural_width host_ia32_sysenter_eip;
316         natural_width host_rsp;
317         natural_width host_rip;
318         natural_width paddingl[8]; /* room for future expansion */
319         u32 pin_based_vm_exec_control;
320         u32 cpu_based_vm_exec_control;
321         u32 exception_bitmap;
322         u32 page_fault_error_code_mask;
323         u32 page_fault_error_code_match;
324         u32 cr3_target_count;
325         u32 vm_exit_controls;
326         u32 vm_exit_msr_store_count;
327         u32 vm_exit_msr_load_count;
328         u32 vm_entry_controls;
329         u32 vm_entry_msr_load_count;
330         u32 vm_entry_intr_info_field;
331         u32 vm_entry_exception_error_code;
332         u32 vm_entry_instruction_len;
333         u32 tpr_threshold;
334         u32 secondary_vm_exec_control;
335         u32 vm_instruction_error;
336         u32 vm_exit_reason;
337         u32 vm_exit_intr_info;
338         u32 vm_exit_intr_error_code;
339         u32 idt_vectoring_info_field;
340         u32 idt_vectoring_error_code;
341         u32 vm_exit_instruction_len;
342         u32 vmx_instruction_info;
343         u32 guest_es_limit;
344         u32 guest_cs_limit;
345         u32 guest_ss_limit;
346         u32 guest_ds_limit;
347         u32 guest_fs_limit;
348         u32 guest_gs_limit;
349         u32 guest_ldtr_limit;
350         u32 guest_tr_limit;
351         u32 guest_gdtr_limit;
352         u32 guest_idtr_limit;
353         u32 guest_es_ar_bytes;
354         u32 guest_cs_ar_bytes;
355         u32 guest_ss_ar_bytes;
356         u32 guest_ds_ar_bytes;
357         u32 guest_fs_ar_bytes;
358         u32 guest_gs_ar_bytes;
359         u32 guest_ldtr_ar_bytes;
360         u32 guest_tr_ar_bytes;
361         u32 guest_interruptibility_info;
362         u32 guest_activity_state;
363         u32 guest_sysenter_cs;
364         u32 host_ia32_sysenter_cs;
365         u32 vmx_preemption_timer_value;
366         u32 padding32[7]; /* room for future expansion */
367         u16 virtual_processor_id;
368         u16 posted_intr_nv;
369         u16 guest_es_selector;
370         u16 guest_cs_selector;
371         u16 guest_ss_selector;
372         u16 guest_ds_selector;
373         u16 guest_fs_selector;
374         u16 guest_gs_selector;
375         u16 guest_ldtr_selector;
376         u16 guest_tr_selector;
377         u16 guest_intr_status;
378         u16 guest_pml_index;
379         u16 host_es_selector;
380         u16 host_cs_selector;
381         u16 host_ss_selector;
382         u16 host_ds_selector;
383         u16 host_fs_selector;
384         u16 host_gs_selector;
385         u16 host_tr_selector;
386 };
387
388 /*
389  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
390  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
391  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
392  */
393 #define VMCS12_REVISION 0x11e57ed0
394
395 /*
396  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
397  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
398  * current implementation, 4K are reserved to avoid future complications.
399  */
400 #define VMCS12_SIZE 0x1000
401
402 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
403 struct vmcs02_list {
404         struct list_head list;
405         gpa_t vmptr;
406         struct loaded_vmcs vmcs02;
407 };
408
409 /*
410  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
411  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
412  */
413 struct nested_vmx {
414         /* Has the level1 guest done vmxon? */
415         bool vmxon;
416         gpa_t vmxon_ptr;
417         bool pml_full;
418
419         /* The guest-physical address of the current VMCS L1 keeps for L2 */
420         gpa_t current_vmptr;
421         /*
422          * Cache of the guest's VMCS, existing outside of guest memory.
423          * Loaded from guest memory during VMPTRLD. Flushed to guest
424          * memory during VMCLEAR and VMPTRLD.
425          */
426         struct vmcs12 *cached_vmcs12;
427         /*
428          * Indicates if the shadow vmcs must be updated with the
429          * data hold by vmcs12
430          */
431         bool sync_shadow_vmcs;
432
433         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
434         struct list_head vmcs02_pool;
435         int vmcs02_num;
436         bool change_vmcs01_virtual_x2apic_mode;
437         /* L2 must run next, and mustn't decide to exit to L1. */
438         bool nested_run_pending;
439         /*
440          * Guest pages referred to in vmcs02 with host-physical pointers, so
441          * we must keep them pinned while L2 runs.
442          */
443         struct page *apic_access_page;
444         struct page *virtual_apic_page;
445         struct page *pi_desc_page;
446         struct pi_desc *pi_desc;
447         bool pi_pending;
448         u16 posted_intr_nv;
449
450         unsigned long *msr_bitmap;
451
452         struct hrtimer preemption_timer;
453         bool preemption_timer_expired;
454
455         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
456         u64 vmcs01_debugctl;
457
458         u16 vpid02;
459         u16 last_vpid;
460
461         /*
462          * We only store the "true" versions of the VMX capability MSRs. We
463          * generate the "non-true" versions by setting the must-be-1 bits
464          * according to the SDM.
465          */
466         u32 nested_vmx_procbased_ctls_low;
467         u32 nested_vmx_procbased_ctls_high;
468         u32 nested_vmx_secondary_ctls_low;
469         u32 nested_vmx_secondary_ctls_high;
470         u32 nested_vmx_pinbased_ctls_low;
471         u32 nested_vmx_pinbased_ctls_high;
472         u32 nested_vmx_exit_ctls_low;
473         u32 nested_vmx_exit_ctls_high;
474         u32 nested_vmx_entry_ctls_low;
475         u32 nested_vmx_entry_ctls_high;
476         u32 nested_vmx_misc_low;
477         u32 nested_vmx_misc_high;
478         u32 nested_vmx_ept_caps;
479         u32 nested_vmx_vpid_caps;
480         u64 nested_vmx_basic;
481         u64 nested_vmx_cr0_fixed0;
482         u64 nested_vmx_cr0_fixed1;
483         u64 nested_vmx_cr4_fixed0;
484         u64 nested_vmx_cr4_fixed1;
485         u64 nested_vmx_vmcs_enum;
486         u64 nested_vmx_vmfunc_controls;
487 };
488
489 #define POSTED_INTR_ON  0
490 #define POSTED_INTR_SN  1
491
492 /* Posted-Interrupt Descriptor */
493 struct pi_desc {
494         u32 pir[8];     /* Posted interrupt requested */
495         union {
496                 struct {
497                                 /* bit 256 - Outstanding Notification */
498                         u16     on      : 1,
499                                 /* bit 257 - Suppress Notification */
500                                 sn      : 1,
501                                 /* bit 271:258 - Reserved */
502                                 rsvd_1  : 14;
503                                 /* bit 279:272 - Notification Vector */
504                         u8      nv;
505                                 /* bit 287:280 - Reserved */
506                         u8      rsvd_2;
507                                 /* bit 319:288 - Notification Destination */
508                         u32     ndst;
509                 };
510                 u64 control;
511         };
512         u32 rsvd[6];
513 } __aligned(64);
514
515 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
516 {
517         return test_and_set_bit(POSTED_INTR_ON,
518                         (unsigned long *)&pi_desc->control);
519 }
520
521 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
522 {
523         return test_and_clear_bit(POSTED_INTR_ON,
524                         (unsigned long *)&pi_desc->control);
525 }
526
527 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
528 {
529         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
530 }
531
532 static inline void pi_clear_sn(struct pi_desc *pi_desc)
533 {
534         return clear_bit(POSTED_INTR_SN,
535                         (unsigned long *)&pi_desc->control);
536 }
537
538 static inline void pi_set_sn(struct pi_desc *pi_desc)
539 {
540         return set_bit(POSTED_INTR_SN,
541                         (unsigned long *)&pi_desc->control);
542 }
543
544 static inline void pi_clear_on(struct pi_desc *pi_desc)
545 {
546         clear_bit(POSTED_INTR_ON,
547                   (unsigned long *)&pi_desc->control);
548 }
549
550 static inline int pi_test_on(struct pi_desc *pi_desc)
551 {
552         return test_bit(POSTED_INTR_ON,
553                         (unsigned long *)&pi_desc->control);
554 }
555
556 static inline int pi_test_sn(struct pi_desc *pi_desc)
557 {
558         return test_bit(POSTED_INTR_SN,
559                         (unsigned long *)&pi_desc->control);
560 }
561
562 struct vcpu_vmx {
563         struct kvm_vcpu       vcpu;
564         unsigned long         host_rsp;
565         u8                    fail;
566         u32                   exit_intr_info;
567         u32                   idt_vectoring_info;
568         ulong                 rflags;
569         struct shared_msr_entry *guest_msrs;
570         int                   nmsrs;
571         int                   save_nmsrs;
572         unsigned long         host_idt_base;
573 #ifdef CONFIG_X86_64
574         u64                   msr_host_kernel_gs_base;
575         u64                   msr_guest_kernel_gs_base;
576 #endif
577         u32 vm_entry_controls_shadow;
578         u32 vm_exit_controls_shadow;
579         u32 secondary_exec_control;
580
581         /*
582          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
583          * non-nested (L1) guest, it always points to vmcs01. For a nested
584          * guest (L2), it points to a different VMCS.
585          */
586         struct loaded_vmcs    vmcs01;
587         struct loaded_vmcs   *loaded_vmcs;
588         bool                  __launched; /* temporary, used in vmx_vcpu_run */
589         struct msr_autoload {
590                 unsigned nr;
591                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
592                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
593         } msr_autoload;
594         struct {
595                 int           loaded;
596                 u16           fs_sel, gs_sel, ldt_sel;
597 #ifdef CONFIG_X86_64
598                 u16           ds_sel, es_sel;
599 #endif
600                 int           gs_ldt_reload_needed;
601                 int           fs_reload_needed;
602                 u64           msr_host_bndcfgs;
603                 unsigned long vmcs_host_cr3;    /* May not match real cr3 */
604                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
605         } host_state;
606         struct {
607                 int vm86_active;
608                 ulong save_rflags;
609                 struct kvm_segment segs[8];
610         } rmode;
611         struct {
612                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
613                 struct kvm_save_segment {
614                         u16 selector;
615                         unsigned long base;
616                         u32 limit;
617                         u32 ar;
618                 } seg[8];
619         } segment_cache;
620         int vpid;
621         bool emulation_required;
622
623         u32 exit_reason;
624
625         /* Posted interrupt descriptor */
626         struct pi_desc pi_desc;
627
628         /* Support for a guest hypervisor (nested VMX) */
629         struct nested_vmx nested;
630
631         /* Dynamic PLE window. */
632         int ple_window;
633         bool ple_window_dirty;
634
635         /* Support for PML */
636 #define PML_ENTITY_NUM          512
637         struct page *pml_pg;
638
639         /* apic deadline value in host tsc */
640         u64 hv_deadline_tsc;
641
642         u64 current_tsc_ratio;
643
644         u32 host_pkru;
645
646         /*
647          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649          * in msr_ia32_feature_control_valid_bits.
650          */
651         u64 msr_ia32_feature_control;
652         u64 msr_ia32_feature_control_valid_bits;
653 };
654
655 enum segment_cache_field {
656         SEG_FIELD_SEL = 0,
657         SEG_FIELD_BASE = 1,
658         SEG_FIELD_LIMIT = 2,
659         SEG_FIELD_AR = 3,
660
661         SEG_FIELD_NR = 4
662 };
663
664 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665 {
666         return container_of(vcpu, struct vcpu_vmx, vcpu);
667 }
668
669 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670 {
671         return &(to_vmx(vcpu)->pi_desc);
672 }
673
674 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
676 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
677                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
679
680 static unsigned long shadow_read_only_fields[] = {
681         /*
682          * We do NOT shadow fields that are modified when L0
683          * traps and emulates any vmx instruction (e.g. VMPTRLD,
684          * VMXON...) executed by L1.
685          * For example, VM_INSTRUCTION_ERROR is read
686          * by L1 if a vmx instruction fails (part of the error path).
687          * Note the code assumes this logic. If for some reason
688          * we start shadowing these fields then we need to
689          * force a shadow sync when L0 emulates vmx instructions
690          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691          * by nested_vmx_failValid)
692          */
693         VM_EXIT_REASON,
694         VM_EXIT_INTR_INFO,
695         VM_EXIT_INSTRUCTION_LEN,
696         IDT_VECTORING_INFO_FIELD,
697         IDT_VECTORING_ERROR_CODE,
698         VM_EXIT_INTR_ERROR_CODE,
699         EXIT_QUALIFICATION,
700         GUEST_LINEAR_ADDRESS,
701         GUEST_PHYSICAL_ADDRESS
702 };
703 static int max_shadow_read_only_fields =
704         ARRAY_SIZE(shadow_read_only_fields);
705
706 static unsigned long shadow_read_write_fields[] = {
707         TPR_THRESHOLD,
708         GUEST_RIP,
709         GUEST_RSP,
710         GUEST_CR0,
711         GUEST_CR3,
712         GUEST_CR4,
713         GUEST_INTERRUPTIBILITY_INFO,
714         GUEST_RFLAGS,
715         GUEST_CS_SELECTOR,
716         GUEST_CS_AR_BYTES,
717         GUEST_CS_LIMIT,
718         GUEST_CS_BASE,
719         GUEST_ES_BASE,
720         GUEST_BNDCFGS,
721         CR0_GUEST_HOST_MASK,
722         CR0_READ_SHADOW,
723         CR4_READ_SHADOW,
724         TSC_OFFSET,
725         EXCEPTION_BITMAP,
726         CPU_BASED_VM_EXEC_CONTROL,
727         VM_ENTRY_EXCEPTION_ERROR_CODE,
728         VM_ENTRY_INTR_INFO_FIELD,
729         VM_ENTRY_INSTRUCTION_LEN,
730         VM_ENTRY_EXCEPTION_ERROR_CODE,
731         HOST_FS_BASE,
732         HOST_GS_BASE,
733         HOST_FS_SELECTOR,
734         HOST_GS_SELECTOR
735 };
736 static int max_shadow_read_write_fields =
737         ARRAY_SIZE(shadow_read_write_fields);
738
739 static const unsigned short vmcs_field_to_offset_table[] = {
740         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
741         FIELD(POSTED_INTR_NV, posted_intr_nv),
742         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
750         FIELD(GUEST_INTR_STATUS, guest_intr_status),
751         FIELD(GUEST_PML_INDEX, guest_pml_index),
752         FIELD(HOST_ES_SELECTOR, host_es_selector),
753         FIELD(HOST_CS_SELECTOR, host_cs_selector),
754         FIELD(HOST_SS_SELECTOR, host_ss_selector),
755         FIELD(HOST_DS_SELECTOR, host_ds_selector),
756         FIELD(HOST_FS_SELECTOR, host_fs_selector),
757         FIELD(HOST_GS_SELECTOR, host_gs_selector),
758         FIELD(HOST_TR_SELECTOR, host_tr_selector),
759         FIELD64(IO_BITMAP_A, io_bitmap_a),
760         FIELD64(IO_BITMAP_B, io_bitmap_b),
761         FIELD64(MSR_BITMAP, msr_bitmap),
762         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765         FIELD64(TSC_OFFSET, tsc_offset),
766         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
768         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
769         FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
770         FIELD64(EPT_POINTER, ept_pointer),
771         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
772         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
773         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
774         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
775         FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
776         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
777         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
778         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
779         FIELD64(PML_ADDRESS, pml_address),
780         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
781         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
782         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
783         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
784         FIELD64(GUEST_PDPTR0, guest_pdptr0),
785         FIELD64(GUEST_PDPTR1, guest_pdptr1),
786         FIELD64(GUEST_PDPTR2, guest_pdptr2),
787         FIELD64(GUEST_PDPTR3, guest_pdptr3),
788         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
789         FIELD64(HOST_IA32_PAT, host_ia32_pat),
790         FIELD64(HOST_IA32_EFER, host_ia32_efer),
791         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
792         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
793         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
794         FIELD(EXCEPTION_BITMAP, exception_bitmap),
795         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
796         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
797         FIELD(CR3_TARGET_COUNT, cr3_target_count),
798         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
799         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
800         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
801         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
802         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
803         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
804         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
805         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
806         FIELD(TPR_THRESHOLD, tpr_threshold),
807         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
808         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
809         FIELD(VM_EXIT_REASON, vm_exit_reason),
810         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
811         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
812         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
813         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
814         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
815         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
816         FIELD(GUEST_ES_LIMIT, guest_es_limit),
817         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
818         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
819         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
820         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
821         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
822         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
823         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
824         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
825         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
826         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
827         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
828         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
829         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
830         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
831         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
832         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
833         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
834         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
835         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
836         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
837         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
838         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
839         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
840         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
841         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
842         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
843         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
844         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
845         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
846         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
847         FIELD(EXIT_QUALIFICATION, exit_qualification),
848         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
849         FIELD(GUEST_CR0, guest_cr0),
850         FIELD(GUEST_CR3, guest_cr3),
851         FIELD(GUEST_CR4, guest_cr4),
852         FIELD(GUEST_ES_BASE, guest_es_base),
853         FIELD(GUEST_CS_BASE, guest_cs_base),
854         FIELD(GUEST_SS_BASE, guest_ss_base),
855         FIELD(GUEST_DS_BASE, guest_ds_base),
856         FIELD(GUEST_FS_BASE, guest_fs_base),
857         FIELD(GUEST_GS_BASE, guest_gs_base),
858         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
859         FIELD(GUEST_TR_BASE, guest_tr_base),
860         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
861         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
862         FIELD(GUEST_DR7, guest_dr7),
863         FIELD(GUEST_RSP, guest_rsp),
864         FIELD(GUEST_RIP, guest_rip),
865         FIELD(GUEST_RFLAGS, guest_rflags),
866         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
867         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
868         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
869         FIELD(HOST_CR0, host_cr0),
870         FIELD(HOST_CR3, host_cr3),
871         FIELD(HOST_CR4, host_cr4),
872         FIELD(HOST_FS_BASE, host_fs_base),
873         FIELD(HOST_GS_BASE, host_gs_base),
874         FIELD(HOST_TR_BASE, host_tr_base),
875         FIELD(HOST_GDTR_BASE, host_gdtr_base),
876         FIELD(HOST_IDTR_BASE, host_idtr_base),
877         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
878         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
879         FIELD(HOST_RSP, host_rsp),
880         FIELD(HOST_RIP, host_rip),
881 };
882
883 static inline short vmcs_field_to_offset(unsigned long field)
884 {
885         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
886
887         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
888             vmcs_field_to_offset_table[field] == 0)
889                 return -ENOENT;
890
891         return vmcs_field_to_offset_table[field];
892 }
893
894 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
895 {
896         return to_vmx(vcpu)->nested.cached_vmcs12;
897 }
898
899 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
900 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
901 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
902 static bool vmx_xsaves_supported(void);
903 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
904 static void vmx_set_segment(struct kvm_vcpu *vcpu,
905                             struct kvm_segment *var, int seg);
906 static void vmx_get_segment(struct kvm_vcpu *vcpu,
907                             struct kvm_segment *var, int seg);
908 static bool guest_state_valid(struct kvm_vcpu *vcpu);
909 static u32 vmx_segment_access_rights(struct kvm_segment *var);
910 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
911 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
912 static int alloc_identity_pagetable(struct kvm *kvm);
913 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
914 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
915 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
916                                             u16 error_code);
917
918 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
919 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
920 /*
921  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
922  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
923  */
924 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
925
926 /*
927  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
928  * can find which vCPU should be waken up.
929  */
930 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
931 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
932
933 enum {
934         VMX_IO_BITMAP_A,
935         VMX_IO_BITMAP_B,
936         VMX_MSR_BITMAP_LEGACY,
937         VMX_MSR_BITMAP_LONGMODE,
938         VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
939         VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
940         VMX_MSR_BITMAP_LEGACY_X2APIC,
941         VMX_MSR_BITMAP_LONGMODE_X2APIC,
942         VMX_VMREAD_BITMAP,
943         VMX_VMWRITE_BITMAP,
944         VMX_BITMAP_NR
945 };
946
947 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
948
949 #define vmx_io_bitmap_a                      (vmx_bitmap[VMX_IO_BITMAP_A])
950 #define vmx_io_bitmap_b                      (vmx_bitmap[VMX_IO_BITMAP_B])
951 #define vmx_msr_bitmap_legacy                (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
952 #define vmx_msr_bitmap_longmode              (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
953 #define vmx_msr_bitmap_legacy_x2apic_apicv   (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
954 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
955 #define vmx_msr_bitmap_legacy_x2apic         (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
956 #define vmx_msr_bitmap_longmode_x2apic       (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
957 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
958 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
959
960 static bool cpu_has_load_ia32_efer;
961 static bool cpu_has_load_perf_global_ctrl;
962
963 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
964 static DEFINE_SPINLOCK(vmx_vpid_lock);
965
966 static struct vmcs_config {
967         int size;
968         int order;
969         u32 basic_cap;
970         u32 revision_id;
971         u32 pin_based_exec_ctrl;
972         u32 cpu_based_exec_ctrl;
973         u32 cpu_based_2nd_exec_ctrl;
974         u32 vmexit_ctrl;
975         u32 vmentry_ctrl;
976 } vmcs_config;
977
978 static struct vmx_capability {
979         u32 ept;
980         u32 vpid;
981 } vmx_capability;
982
983 #define VMX_SEGMENT_FIELD(seg)                                  \
984         [VCPU_SREG_##seg] = {                                   \
985                 .selector = GUEST_##seg##_SELECTOR,             \
986                 .base = GUEST_##seg##_BASE,                     \
987                 .limit = GUEST_##seg##_LIMIT,                   \
988                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
989         }
990
991 static const struct kvm_vmx_segment_field {
992         unsigned selector;
993         unsigned base;
994         unsigned limit;
995         unsigned ar_bytes;
996 } kvm_vmx_segment_fields[] = {
997         VMX_SEGMENT_FIELD(CS),
998         VMX_SEGMENT_FIELD(DS),
999         VMX_SEGMENT_FIELD(ES),
1000         VMX_SEGMENT_FIELD(FS),
1001         VMX_SEGMENT_FIELD(GS),
1002         VMX_SEGMENT_FIELD(SS),
1003         VMX_SEGMENT_FIELD(TR),
1004         VMX_SEGMENT_FIELD(LDTR),
1005 };
1006
1007 static u64 host_efer;
1008
1009 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1010
1011 /*
1012  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1013  * away by decrementing the array size.
1014  */
1015 static const u32 vmx_msr_index[] = {
1016 #ifdef CONFIG_X86_64
1017         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1018 #endif
1019         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1020 };
1021
1022 static inline bool is_exception_n(u32 intr_info, u8 vector)
1023 {
1024         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1025                              INTR_INFO_VALID_MASK)) ==
1026                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1027 }
1028
1029 static inline bool is_debug(u32 intr_info)
1030 {
1031         return is_exception_n(intr_info, DB_VECTOR);
1032 }
1033
1034 static inline bool is_breakpoint(u32 intr_info)
1035 {
1036         return is_exception_n(intr_info, BP_VECTOR);
1037 }
1038
1039 static inline bool is_page_fault(u32 intr_info)
1040 {
1041         return is_exception_n(intr_info, PF_VECTOR);
1042 }
1043
1044 static inline bool is_no_device(u32 intr_info)
1045 {
1046         return is_exception_n(intr_info, NM_VECTOR);
1047 }
1048
1049 static inline bool is_invalid_opcode(u32 intr_info)
1050 {
1051         return is_exception_n(intr_info, UD_VECTOR);
1052 }
1053
1054 static inline bool is_external_interrupt(u32 intr_info)
1055 {
1056         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1057                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1058 }
1059
1060 static inline bool is_machine_check(u32 intr_info)
1061 {
1062         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1063                              INTR_INFO_VALID_MASK)) ==
1064                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1065 }
1066
1067 static inline bool cpu_has_vmx_msr_bitmap(void)
1068 {
1069         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1070 }
1071
1072 static inline bool cpu_has_vmx_tpr_shadow(void)
1073 {
1074         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1075 }
1076
1077 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1078 {
1079         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1080 }
1081
1082 static inline bool cpu_has_secondary_exec_ctrls(void)
1083 {
1084         return vmcs_config.cpu_based_exec_ctrl &
1085                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1086 }
1087
1088 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1089 {
1090         return vmcs_config.cpu_based_2nd_exec_ctrl &
1091                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1092 }
1093
1094 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1095 {
1096         return vmcs_config.cpu_based_2nd_exec_ctrl &
1097                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1098 }
1099
1100 static inline bool cpu_has_vmx_apic_register_virt(void)
1101 {
1102         return vmcs_config.cpu_based_2nd_exec_ctrl &
1103                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1104 }
1105
1106 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1107 {
1108         return vmcs_config.cpu_based_2nd_exec_ctrl &
1109                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1110 }
1111
1112 /*
1113  * Comment's format: document - errata name - stepping - processor name.
1114  * Refer from
1115  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1116  */
1117 static u32 vmx_preemption_cpu_tfms[] = {
1118 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1119 0x000206E6,
1120 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1121 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1122 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1123 0x00020652,
1124 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1125 0x00020655,
1126 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1127 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1128 /*
1129  * 320767.pdf - AAP86  - B1 -
1130  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1131  */
1132 0x000106E5,
1133 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1134 0x000106A0,
1135 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1136 0x000106A1,
1137 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1138 0x000106A4,
1139  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1140  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1141  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1142 0x000106A5,
1143 };
1144
1145 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1146 {
1147         u32 eax = cpuid_eax(0x00000001), i;
1148
1149         /* Clear the reserved bits */
1150         eax &= ~(0x3U << 14 | 0xfU << 28);
1151         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1152                 if (eax == vmx_preemption_cpu_tfms[i])
1153                         return true;
1154
1155         return false;
1156 }
1157
1158 static inline bool cpu_has_vmx_preemption_timer(void)
1159 {
1160         return vmcs_config.pin_based_exec_ctrl &
1161                 PIN_BASED_VMX_PREEMPTION_TIMER;
1162 }
1163
1164 static inline bool cpu_has_vmx_posted_intr(void)
1165 {
1166         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1167                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1168 }
1169
1170 static inline bool cpu_has_vmx_apicv(void)
1171 {
1172         return cpu_has_vmx_apic_register_virt() &&
1173                 cpu_has_vmx_virtual_intr_delivery() &&
1174                 cpu_has_vmx_posted_intr();
1175 }
1176
1177 static inline bool cpu_has_vmx_flexpriority(void)
1178 {
1179         return cpu_has_vmx_tpr_shadow() &&
1180                 cpu_has_vmx_virtualize_apic_accesses();
1181 }
1182
1183 static inline bool cpu_has_vmx_ept_execute_only(void)
1184 {
1185         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1186 }
1187
1188 static inline bool cpu_has_vmx_ept_2m_page(void)
1189 {
1190         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1191 }
1192
1193 static inline bool cpu_has_vmx_ept_1g_page(void)
1194 {
1195         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1196 }
1197
1198 static inline bool cpu_has_vmx_ept_4levels(void)
1199 {
1200         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1201 }
1202
1203 static inline bool cpu_has_vmx_ept_mt_wb(void)
1204 {
1205         return vmx_capability.ept & VMX_EPTP_WB_BIT;
1206 }
1207
1208 static inline bool cpu_has_vmx_ept_5levels(void)
1209 {
1210         return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1211 }
1212
1213 static inline bool cpu_has_vmx_ept_ad_bits(void)
1214 {
1215         return vmx_capability.ept & VMX_EPT_AD_BIT;
1216 }
1217
1218 static inline bool cpu_has_vmx_invept_context(void)
1219 {
1220         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1221 }
1222
1223 static inline bool cpu_has_vmx_invept_global(void)
1224 {
1225         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1226 }
1227
1228 static inline bool cpu_has_vmx_invvpid_single(void)
1229 {
1230         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1231 }
1232
1233 static inline bool cpu_has_vmx_invvpid_global(void)
1234 {
1235         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1236 }
1237
1238 static inline bool cpu_has_vmx_invvpid(void)
1239 {
1240         return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1241 }
1242
1243 static inline bool cpu_has_vmx_ept(void)
1244 {
1245         return vmcs_config.cpu_based_2nd_exec_ctrl &
1246                 SECONDARY_EXEC_ENABLE_EPT;
1247 }
1248
1249 static inline bool cpu_has_vmx_unrestricted_guest(void)
1250 {
1251         return vmcs_config.cpu_based_2nd_exec_ctrl &
1252                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1253 }
1254
1255 static inline bool cpu_has_vmx_ple(void)
1256 {
1257         return vmcs_config.cpu_based_2nd_exec_ctrl &
1258                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1259 }
1260
1261 static inline bool cpu_has_vmx_basic_inout(void)
1262 {
1263         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1264 }
1265
1266 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1267 {
1268         return flexpriority_enabled && lapic_in_kernel(vcpu);
1269 }
1270
1271 static inline bool cpu_has_vmx_vpid(void)
1272 {
1273         return vmcs_config.cpu_based_2nd_exec_ctrl &
1274                 SECONDARY_EXEC_ENABLE_VPID;
1275 }
1276
1277 static inline bool cpu_has_vmx_rdtscp(void)
1278 {
1279         return vmcs_config.cpu_based_2nd_exec_ctrl &
1280                 SECONDARY_EXEC_RDTSCP;
1281 }
1282
1283 static inline bool cpu_has_vmx_invpcid(void)
1284 {
1285         return vmcs_config.cpu_based_2nd_exec_ctrl &
1286                 SECONDARY_EXEC_ENABLE_INVPCID;
1287 }
1288
1289 static inline bool cpu_has_vmx_wbinvd_exit(void)
1290 {
1291         return vmcs_config.cpu_based_2nd_exec_ctrl &
1292                 SECONDARY_EXEC_WBINVD_EXITING;
1293 }
1294
1295 static inline bool cpu_has_vmx_shadow_vmcs(void)
1296 {
1297         u64 vmx_msr;
1298         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1299         /* check if the cpu supports writing r/o exit information fields */
1300         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1301                 return false;
1302
1303         return vmcs_config.cpu_based_2nd_exec_ctrl &
1304                 SECONDARY_EXEC_SHADOW_VMCS;
1305 }
1306
1307 static inline bool cpu_has_vmx_pml(void)
1308 {
1309         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1310 }
1311
1312 static inline bool cpu_has_vmx_tsc_scaling(void)
1313 {
1314         return vmcs_config.cpu_based_2nd_exec_ctrl &
1315                 SECONDARY_EXEC_TSC_SCALING;
1316 }
1317
1318 static inline bool cpu_has_vmx_vmfunc(void)
1319 {
1320         return vmcs_config.cpu_based_2nd_exec_ctrl &
1321                 SECONDARY_EXEC_ENABLE_VMFUNC;
1322 }
1323
1324 static inline bool report_flexpriority(void)
1325 {
1326         return flexpriority_enabled;
1327 }
1328
1329 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1330 {
1331         return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1332 }
1333
1334 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1335 {
1336         return vmcs12->cpu_based_vm_exec_control & bit;
1337 }
1338
1339 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1340 {
1341         return (vmcs12->cpu_based_vm_exec_control &
1342                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1343                 (vmcs12->secondary_vm_exec_control & bit);
1344 }
1345
1346 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1347 {
1348         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1349 }
1350
1351 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1352 {
1353         return vmcs12->pin_based_vm_exec_control &
1354                 PIN_BASED_VMX_PREEMPTION_TIMER;
1355 }
1356
1357 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1358 {
1359         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1360 }
1361
1362 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1363 {
1364         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
1365 }
1366
1367 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1368 {
1369         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1370 }
1371
1372 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1373 {
1374         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1375 }
1376
1377 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1378 {
1379         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1380 }
1381
1382 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1383 {
1384         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1385 }
1386
1387 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1388 {
1389         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1390 }
1391
1392 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1393 {
1394         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1395 }
1396
1397 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1398 {
1399         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1400 }
1401
1402 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1403 {
1404         return nested_cpu_has_vmfunc(vmcs12) &&
1405                 (vmcs12->vm_function_control &
1406                  VMX_VMFUNC_EPTP_SWITCHING);
1407 }
1408
1409 static inline bool is_nmi(u32 intr_info)
1410 {
1411         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1412                 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1413 }
1414
1415 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1416                               u32 exit_intr_info,
1417                               unsigned long exit_qualification);
1418 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1419                         struct vmcs12 *vmcs12,
1420                         u32 reason, unsigned long qualification);
1421
1422 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1423 {
1424         int i;
1425
1426         for (i = 0; i < vmx->nmsrs; ++i)
1427                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1428                         return i;
1429         return -1;
1430 }
1431
1432 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1433 {
1434     struct {
1435         u64 vpid : 16;
1436         u64 rsvd : 48;
1437         u64 gva;
1438     } operand = { vpid, 0, gva };
1439
1440     asm volatile (__ex(ASM_VMX_INVVPID)
1441                   /* CF==1 or ZF==1 --> rc = -1 */
1442                   "; ja 1f ; ud2 ; 1:"
1443                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1444 }
1445
1446 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1447 {
1448         struct {
1449                 u64 eptp, gpa;
1450         } operand = {eptp, gpa};
1451
1452         asm volatile (__ex(ASM_VMX_INVEPT)
1453                         /* CF==1 or ZF==1 --> rc = -1 */
1454                         "; ja 1f ; ud2 ; 1:\n"
1455                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1456 }
1457
1458 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1459 {
1460         int i;
1461
1462         i = __find_msr_index(vmx, msr);
1463         if (i >= 0)
1464                 return &vmx->guest_msrs[i];
1465         return NULL;
1466 }
1467
1468 static void vmcs_clear(struct vmcs *vmcs)
1469 {
1470         u64 phys_addr = __pa(vmcs);
1471         u8 error;
1472
1473         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1474                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1475                       : "cc", "memory");
1476         if (error)
1477                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1478                        vmcs, phys_addr);
1479 }
1480
1481 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1482 {
1483         vmcs_clear(loaded_vmcs->vmcs);
1484         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1485                 vmcs_clear(loaded_vmcs->shadow_vmcs);
1486         loaded_vmcs->cpu = -1;
1487         loaded_vmcs->launched = 0;
1488 }
1489
1490 static void vmcs_load(struct vmcs *vmcs)
1491 {
1492         u64 phys_addr = __pa(vmcs);
1493         u8 error;
1494
1495         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1496                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1497                         : "cc", "memory");
1498         if (error)
1499                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1500                        vmcs, phys_addr);
1501 }
1502
1503 #ifdef CONFIG_KEXEC_CORE
1504 /*
1505  * This bitmap is used to indicate whether the vmclear
1506  * operation is enabled on all cpus. All disabled by
1507  * default.
1508  */
1509 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1510
1511 static inline void crash_enable_local_vmclear(int cpu)
1512 {
1513         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1514 }
1515
1516 static inline void crash_disable_local_vmclear(int cpu)
1517 {
1518         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1519 }
1520
1521 static inline int crash_local_vmclear_enabled(int cpu)
1522 {
1523         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1524 }
1525
1526 static void crash_vmclear_local_loaded_vmcss(void)
1527 {
1528         int cpu = raw_smp_processor_id();
1529         struct loaded_vmcs *v;
1530
1531         if (!crash_local_vmclear_enabled(cpu))
1532                 return;
1533
1534         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1535                             loaded_vmcss_on_cpu_link)
1536                 vmcs_clear(v->vmcs);
1537 }
1538 #else
1539 static inline void crash_enable_local_vmclear(int cpu) { }
1540 static inline void crash_disable_local_vmclear(int cpu) { }
1541 #endif /* CONFIG_KEXEC_CORE */
1542
1543 static void __loaded_vmcs_clear(void *arg)
1544 {
1545         struct loaded_vmcs *loaded_vmcs = arg;
1546         int cpu = raw_smp_processor_id();
1547
1548         if (loaded_vmcs->cpu != cpu)
1549                 return; /* vcpu migration can race with cpu offline */
1550         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1551                 per_cpu(current_vmcs, cpu) = NULL;
1552         crash_disable_local_vmclear(cpu);
1553         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1554
1555         /*
1556          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1557          * is before setting loaded_vmcs->vcpu to -1 which is done in
1558          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1559          * then adds the vmcs into percpu list before it is deleted.
1560          */
1561         smp_wmb();
1562
1563         loaded_vmcs_init(loaded_vmcs);
1564         crash_enable_local_vmclear(cpu);
1565 }
1566
1567 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1568 {
1569         int cpu = loaded_vmcs->cpu;
1570
1571         if (cpu != -1)
1572                 smp_call_function_single(cpu,
1573                          __loaded_vmcs_clear, loaded_vmcs, 1);
1574 }
1575
1576 static inline void vpid_sync_vcpu_single(int vpid)
1577 {
1578         if (vpid == 0)
1579                 return;
1580
1581         if (cpu_has_vmx_invvpid_single())
1582                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1583 }
1584
1585 static inline void vpid_sync_vcpu_global(void)
1586 {
1587         if (cpu_has_vmx_invvpid_global())
1588                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1589 }
1590
1591 static inline void vpid_sync_context(int vpid)
1592 {
1593         if (cpu_has_vmx_invvpid_single())
1594                 vpid_sync_vcpu_single(vpid);
1595         else
1596                 vpid_sync_vcpu_global();
1597 }
1598
1599 static inline void ept_sync_global(void)
1600 {
1601         if (cpu_has_vmx_invept_global())
1602                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1603 }
1604
1605 static inline void ept_sync_context(u64 eptp)
1606 {
1607         if (enable_ept) {
1608                 if (cpu_has_vmx_invept_context())
1609                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1610                 else
1611                         ept_sync_global();
1612         }
1613 }
1614
1615 static __always_inline void vmcs_check16(unsigned long field)
1616 {
1617         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1618                          "16-bit accessor invalid for 64-bit field");
1619         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1620                          "16-bit accessor invalid for 64-bit high field");
1621         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1622                          "16-bit accessor invalid for 32-bit high field");
1623         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1624                          "16-bit accessor invalid for natural width field");
1625 }
1626
1627 static __always_inline void vmcs_check32(unsigned long field)
1628 {
1629         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1630                          "32-bit accessor invalid for 16-bit field");
1631         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1632                          "32-bit accessor invalid for natural width field");
1633 }
1634
1635 static __always_inline void vmcs_check64(unsigned long field)
1636 {
1637         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1638                          "64-bit accessor invalid for 16-bit field");
1639         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1640                          "64-bit accessor invalid for 64-bit high field");
1641         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1642                          "64-bit accessor invalid for 32-bit field");
1643         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1644                          "64-bit accessor invalid for natural width field");
1645 }
1646
1647 static __always_inline void vmcs_checkl(unsigned long field)
1648 {
1649         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1650                          "Natural width accessor invalid for 16-bit field");
1651         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1652                          "Natural width accessor invalid for 64-bit field");
1653         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1654                          "Natural width accessor invalid for 64-bit high field");
1655         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1656                          "Natural width accessor invalid for 32-bit field");
1657 }
1658
1659 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1660 {
1661         unsigned long value;
1662
1663         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1664                       : "=a"(value) : "d"(field) : "cc");
1665         return value;
1666 }
1667
1668 static __always_inline u16 vmcs_read16(unsigned long field)
1669 {
1670         vmcs_check16(field);
1671         return __vmcs_readl(field);
1672 }
1673
1674 static __always_inline u32 vmcs_read32(unsigned long field)
1675 {
1676         vmcs_check32(field);
1677         return __vmcs_readl(field);
1678 }
1679
1680 static __always_inline u64 vmcs_read64(unsigned long field)
1681 {
1682         vmcs_check64(field);
1683 #ifdef CONFIG_X86_64
1684         return __vmcs_readl(field);
1685 #else
1686         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1687 #endif
1688 }
1689
1690 static __always_inline unsigned long vmcs_readl(unsigned long field)
1691 {
1692         vmcs_checkl(field);
1693         return __vmcs_readl(field);
1694 }
1695
1696 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1697 {
1698         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1699                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1700         dump_stack();
1701 }
1702
1703 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1704 {
1705         u8 error;
1706
1707         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1708                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1709         if (unlikely(error))
1710                 vmwrite_error(field, value);
1711 }
1712
1713 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1714 {
1715         vmcs_check16(field);
1716         __vmcs_writel(field, value);
1717 }
1718
1719 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1720 {
1721         vmcs_check32(field);
1722         __vmcs_writel(field, value);
1723 }
1724
1725 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1726 {
1727         vmcs_check64(field);
1728         __vmcs_writel(field, value);
1729 #ifndef CONFIG_X86_64
1730         asm volatile ("");
1731         __vmcs_writel(field+1, value >> 32);
1732 #endif
1733 }
1734
1735 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1736 {
1737         vmcs_checkl(field);
1738         __vmcs_writel(field, value);
1739 }
1740
1741 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1742 {
1743         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1744                          "vmcs_clear_bits does not support 64-bit fields");
1745         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1746 }
1747
1748 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1749 {
1750         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1751                          "vmcs_set_bits does not support 64-bit fields");
1752         __vmcs_writel(field, __vmcs_readl(field) | mask);
1753 }
1754
1755 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1756 {
1757         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1758 }
1759
1760 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1761 {
1762         vmcs_write32(VM_ENTRY_CONTROLS, val);
1763         vmx->vm_entry_controls_shadow = val;
1764 }
1765
1766 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1767 {
1768         if (vmx->vm_entry_controls_shadow != val)
1769                 vm_entry_controls_init(vmx, val);
1770 }
1771
1772 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1773 {
1774         return vmx->vm_entry_controls_shadow;
1775 }
1776
1777
1778 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1779 {
1780         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1781 }
1782
1783 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1784 {
1785         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1786 }
1787
1788 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1789 {
1790         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1791 }
1792
1793 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1794 {
1795         vmcs_write32(VM_EXIT_CONTROLS, val);
1796         vmx->vm_exit_controls_shadow = val;
1797 }
1798
1799 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1800 {
1801         if (vmx->vm_exit_controls_shadow != val)
1802                 vm_exit_controls_init(vmx, val);
1803 }
1804
1805 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1806 {
1807         return vmx->vm_exit_controls_shadow;
1808 }
1809
1810
1811 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1812 {
1813         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1814 }
1815
1816 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1817 {
1818         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1819 }
1820
1821 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1822 {
1823         vmx->segment_cache.bitmask = 0;
1824 }
1825
1826 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1827                                        unsigned field)
1828 {
1829         bool ret;
1830         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1831
1832         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1833                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1834                 vmx->segment_cache.bitmask = 0;
1835         }
1836         ret = vmx->segment_cache.bitmask & mask;
1837         vmx->segment_cache.bitmask |= mask;
1838         return ret;
1839 }
1840
1841 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1842 {
1843         u16 *p = &vmx->segment_cache.seg[seg].selector;
1844
1845         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1846                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1847         return *p;
1848 }
1849
1850 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1851 {
1852         ulong *p = &vmx->segment_cache.seg[seg].base;
1853
1854         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1855                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1856         return *p;
1857 }
1858
1859 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1860 {
1861         u32 *p = &vmx->segment_cache.seg[seg].limit;
1862
1863         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1864                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1865         return *p;
1866 }
1867
1868 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1869 {
1870         u32 *p = &vmx->segment_cache.seg[seg].ar;
1871
1872         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1873                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1874         return *p;
1875 }
1876
1877 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1878 {
1879         u32 eb;
1880
1881         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1882              (1u << DB_VECTOR) | (1u << AC_VECTOR);
1883         if ((vcpu->guest_debug &
1884              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1885             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1886                 eb |= 1u << BP_VECTOR;
1887         if (to_vmx(vcpu)->rmode.vm86_active)
1888                 eb = ~0;
1889         if (enable_ept)
1890                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1891
1892         /* When we are running a nested L2 guest and L1 specified for it a
1893          * certain exception bitmap, we must trap the same exceptions and pass
1894          * them to L1. When running L2, we will only handle the exceptions
1895          * specified above if L1 did not want them.
1896          */
1897         if (is_guest_mode(vcpu))
1898                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1899
1900         vmcs_write32(EXCEPTION_BITMAP, eb);
1901 }
1902
1903 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1904                 unsigned long entry, unsigned long exit)
1905 {
1906         vm_entry_controls_clearbit(vmx, entry);
1907         vm_exit_controls_clearbit(vmx, exit);
1908 }
1909
1910 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1911 {
1912         unsigned i;
1913         struct msr_autoload *m = &vmx->msr_autoload;
1914
1915         switch (msr) {
1916         case MSR_EFER:
1917                 if (cpu_has_load_ia32_efer) {
1918                         clear_atomic_switch_msr_special(vmx,
1919                                         VM_ENTRY_LOAD_IA32_EFER,
1920                                         VM_EXIT_LOAD_IA32_EFER);
1921                         return;
1922                 }
1923                 break;
1924         case MSR_CORE_PERF_GLOBAL_CTRL:
1925                 if (cpu_has_load_perf_global_ctrl) {
1926                         clear_atomic_switch_msr_special(vmx,
1927                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1928                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1929                         return;
1930                 }
1931                 break;
1932         }
1933
1934         for (i = 0; i < m->nr; ++i)
1935                 if (m->guest[i].index == msr)
1936                         break;
1937
1938         if (i == m->nr)
1939                 return;
1940         --m->nr;
1941         m->guest[i] = m->guest[m->nr];
1942         m->host[i] = m->host[m->nr];
1943         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1944         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1945 }
1946
1947 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1948                 unsigned long entry, unsigned long exit,
1949                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1950                 u64 guest_val, u64 host_val)
1951 {
1952         vmcs_write64(guest_val_vmcs, guest_val);
1953         vmcs_write64(host_val_vmcs, host_val);
1954         vm_entry_controls_setbit(vmx, entry);
1955         vm_exit_controls_setbit(vmx, exit);
1956 }
1957
1958 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1959                                   u64 guest_val, u64 host_val)
1960 {
1961         unsigned i;
1962         struct msr_autoload *m = &vmx->msr_autoload;
1963
1964         switch (msr) {
1965         case MSR_EFER:
1966                 if (cpu_has_load_ia32_efer) {
1967                         add_atomic_switch_msr_special(vmx,
1968                                         VM_ENTRY_LOAD_IA32_EFER,
1969                                         VM_EXIT_LOAD_IA32_EFER,
1970                                         GUEST_IA32_EFER,
1971                                         HOST_IA32_EFER,
1972                                         guest_val, host_val);
1973                         return;
1974                 }
1975                 break;
1976         case MSR_CORE_PERF_GLOBAL_CTRL:
1977                 if (cpu_has_load_perf_global_ctrl) {
1978                         add_atomic_switch_msr_special(vmx,
1979                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1980                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1981                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1982                                         HOST_IA32_PERF_GLOBAL_CTRL,
1983                                         guest_val, host_val);
1984                         return;
1985                 }
1986                 break;
1987         case MSR_IA32_PEBS_ENABLE:
1988                 /* PEBS needs a quiescent period after being disabled (to write
1989                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1990                  * provide that period, so a CPU could write host's record into
1991                  * guest's memory.
1992                  */
1993                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1994         }
1995
1996         for (i = 0; i < m->nr; ++i)
1997                 if (m->guest[i].index == msr)
1998                         break;
1999
2000         if (i == NR_AUTOLOAD_MSRS) {
2001                 printk_once(KERN_WARNING "Not enough msr switch entries. "
2002                                 "Can't add msr %x\n", msr);
2003                 return;
2004         } else if (i == m->nr) {
2005                 ++m->nr;
2006                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2007                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2008         }
2009
2010         m->guest[i].index = msr;
2011         m->guest[i].value = guest_val;
2012         m->host[i].index = msr;
2013         m->host[i].value = host_val;
2014 }
2015
2016 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2017 {
2018         u64 guest_efer = vmx->vcpu.arch.efer;
2019         u64 ignore_bits = 0;
2020
2021         if (!enable_ept) {
2022                 /*
2023                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
2024                  * host CPUID is more efficient than testing guest CPUID
2025                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
2026                  */
2027                 if (boot_cpu_has(X86_FEATURE_SMEP))
2028                         guest_efer |= EFER_NX;
2029                 else if (!(guest_efer & EFER_NX))
2030                         ignore_bits |= EFER_NX;
2031         }
2032
2033         /*
2034          * LMA and LME handled by hardware; SCE meaningless outside long mode.
2035          */
2036         ignore_bits |= EFER_SCE;
2037 #ifdef CONFIG_X86_64
2038         ignore_bits |= EFER_LMA | EFER_LME;
2039         /* SCE is meaningful only in long mode on Intel */
2040         if (guest_efer & EFER_LMA)
2041                 ignore_bits &= ~(u64)EFER_SCE;
2042 #endif
2043
2044         clear_atomic_switch_msr(vmx, MSR_EFER);
2045
2046         /*
2047          * On EPT, we can't emulate NX, so we must switch EFER atomically.
2048          * On CPUs that support "load IA32_EFER", always switch EFER
2049          * atomically, since it's faster than switching it manually.
2050          */
2051         if (cpu_has_load_ia32_efer ||
2052             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2053                 if (!(guest_efer & EFER_LMA))
2054                         guest_efer &= ~EFER_LME;
2055                 if (guest_efer != host_efer)
2056                         add_atomic_switch_msr(vmx, MSR_EFER,
2057                                               guest_efer, host_efer);
2058                 return false;
2059         } else {
2060                 guest_efer &= ~ignore_bits;
2061                 guest_efer |= host_efer & ignore_bits;
2062
2063                 vmx->guest_msrs[efer_offset].data = guest_efer;
2064                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2065
2066                 return true;
2067         }
2068 }
2069
2070 #ifdef CONFIG_X86_32
2071 /*
2072  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2073  * VMCS rather than the segment table.  KVM uses this helper to figure
2074  * out the current bases to poke them into the VMCS before entry.
2075  */
2076 static unsigned long segment_base(u16 selector)
2077 {
2078         struct desc_struct *table;
2079         unsigned long v;
2080
2081         if (!(selector & ~SEGMENT_RPL_MASK))
2082                 return 0;
2083
2084         table = get_current_gdt_ro();
2085
2086         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2087                 u16 ldt_selector = kvm_read_ldt();
2088
2089                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2090                         return 0;
2091
2092                 table = (struct desc_struct *)segment_base(ldt_selector);
2093         }
2094         v = get_desc_base(&table[selector >> 3]);
2095         return v;
2096 }
2097 #endif
2098
2099 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2100 {
2101         struct vcpu_vmx *vmx = to_vmx(vcpu);
2102         int i;
2103
2104         if (vmx->host_state.loaded)
2105                 return;
2106
2107         vmx->host_state.loaded = 1;
2108         /*
2109          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2110          * allow segment selectors with cpl > 0 or ti == 1.
2111          */
2112         vmx->host_state.ldt_sel = kvm_read_ldt();
2113         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2114         savesegment(fs, vmx->host_state.fs_sel);
2115         if (!(vmx->host_state.fs_sel & 7)) {
2116                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2117                 vmx->host_state.fs_reload_needed = 0;
2118         } else {
2119                 vmcs_write16(HOST_FS_SELECTOR, 0);
2120                 vmx->host_state.fs_reload_needed = 1;
2121         }
2122         savesegment(gs, vmx->host_state.gs_sel);
2123         if (!(vmx->host_state.gs_sel & 7))
2124                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2125         else {
2126                 vmcs_write16(HOST_GS_SELECTOR, 0);
2127                 vmx->host_state.gs_ldt_reload_needed = 1;
2128         }
2129
2130 #ifdef CONFIG_X86_64
2131         savesegment(ds, vmx->host_state.ds_sel);
2132         savesegment(es, vmx->host_state.es_sel);
2133 #endif
2134
2135 #ifdef CONFIG_X86_64
2136         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2137         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2138 #else
2139         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2140         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2141 #endif
2142
2143 #ifdef CONFIG_X86_64
2144         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2145         if (is_long_mode(&vmx->vcpu))
2146                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2147 #endif
2148         if (boot_cpu_has(X86_FEATURE_MPX))
2149                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2150         for (i = 0; i < vmx->save_nmsrs; ++i)
2151                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2152                                    vmx->guest_msrs[i].data,
2153                                    vmx->guest_msrs[i].mask);
2154 }
2155
2156 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2157 {
2158         if (!vmx->host_state.loaded)
2159                 return;
2160
2161         ++vmx->vcpu.stat.host_state_reload;
2162         vmx->host_state.loaded = 0;
2163 #ifdef CONFIG_X86_64
2164         if (is_long_mode(&vmx->vcpu))
2165                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2166 #endif
2167         if (vmx->host_state.gs_ldt_reload_needed) {
2168                 kvm_load_ldt(vmx->host_state.ldt_sel);
2169 #ifdef CONFIG_X86_64
2170                 load_gs_index(vmx->host_state.gs_sel);
2171 #else
2172                 loadsegment(gs, vmx->host_state.gs_sel);
2173 #endif
2174         }
2175         if (vmx->host_state.fs_reload_needed)
2176                 loadsegment(fs, vmx->host_state.fs_sel);
2177 #ifdef CONFIG_X86_64
2178         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2179                 loadsegment(ds, vmx->host_state.ds_sel);
2180                 loadsegment(es, vmx->host_state.es_sel);
2181         }
2182 #endif
2183         invalidate_tss_limit();
2184 #ifdef CONFIG_X86_64
2185         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2186 #endif
2187         if (vmx->host_state.msr_host_bndcfgs)
2188                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2189         load_fixmap_gdt(raw_smp_processor_id());
2190 }
2191
2192 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2193 {
2194         preempt_disable();
2195         __vmx_load_host_state(vmx);
2196         preempt_enable();
2197 }
2198
2199 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2200 {
2201         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2202         struct pi_desc old, new;
2203         unsigned int dest;
2204
2205         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2206                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2207                 !kvm_vcpu_apicv_active(vcpu))
2208                 return;
2209
2210         do {
2211                 old.control = new.control = pi_desc->control;
2212
2213                 /*
2214                  * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2215                  * are two possible cases:
2216                  * 1. After running 'pre_block', context switch
2217                  *    happened. For this case, 'sn' was set in
2218                  *    vmx_vcpu_put(), so we need to clear it here.
2219                  * 2. After running 'pre_block', we were blocked,
2220                  *    and woken up by some other guy. For this case,
2221                  *    we don't need to do anything, 'pi_post_block'
2222                  *    will do everything for us. However, we cannot
2223                  *    check whether it is case #1 or case #2 here
2224                  *    (maybe, not needed), so we also clear sn here,
2225                  *    I think it is not a big deal.
2226                  */
2227                 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2228                         if (vcpu->cpu != cpu) {
2229                                 dest = cpu_physical_id(cpu);
2230
2231                                 if (x2apic_enabled())
2232                                         new.ndst = dest;
2233                                 else
2234                                         new.ndst = (dest << 8) & 0xFF00;
2235                         }
2236
2237                         /* set 'NV' to 'notification vector' */
2238                         new.nv = POSTED_INTR_VECTOR;
2239                 }
2240
2241                 /* Allow posting non-urgent interrupts */
2242                 new.sn = 0;
2243         } while (cmpxchg(&pi_desc->control, old.control,
2244                         new.control) != old.control);
2245 }
2246
2247 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2248 {
2249         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2250         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2251 }
2252
2253 /*
2254  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2255  * vcpu mutex is already taken.
2256  */
2257 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2258 {
2259         struct vcpu_vmx *vmx = to_vmx(vcpu);
2260         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2261
2262         if (!already_loaded) {
2263                 loaded_vmcs_clear(vmx->loaded_vmcs);
2264                 local_irq_disable();
2265                 crash_disable_local_vmclear(cpu);
2266
2267                 /*
2268                  * Read loaded_vmcs->cpu should be before fetching
2269                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2270                  * See the comments in __loaded_vmcs_clear().
2271                  */
2272                 smp_rmb();
2273
2274                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2275                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2276                 crash_enable_local_vmclear(cpu);
2277                 local_irq_enable();
2278         }
2279
2280         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2281                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2282                 vmcs_load(vmx->loaded_vmcs->vmcs);
2283         }
2284
2285         if (!already_loaded) {
2286                 void *gdt = get_current_gdt_ro();
2287                 unsigned long sysenter_esp;
2288
2289                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2290
2291                 /*
2292                  * Linux uses per-cpu TSS and GDT, so set these when switching
2293                  * processors.  See 22.2.4.
2294                  */
2295                 vmcs_writel(HOST_TR_BASE,
2296                             (unsigned long)this_cpu_ptr(&cpu_tss));
2297                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
2298
2299                 /*
2300                  * VM exits change the host TR limit to 0x67 after a VM
2301                  * exit.  This is okay, since 0x67 covers everything except
2302                  * the IO bitmap and have have code to handle the IO bitmap
2303                  * being lost after a VM exit.
2304                  */
2305                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2306
2307                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2308                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2309
2310                 vmx->loaded_vmcs->cpu = cpu;
2311         }
2312
2313         /* Setup TSC multiplier */
2314         if (kvm_has_tsc_control &&
2315             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2316                 decache_tsc_multiplier(vmx);
2317
2318         vmx_vcpu_pi_load(vcpu, cpu);
2319         vmx->host_pkru = read_pkru();
2320 }
2321
2322 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2323 {
2324         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2325
2326         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2327                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2328                 !kvm_vcpu_apicv_active(vcpu))
2329                 return;
2330
2331         /* Set SN when the vCPU is preempted */
2332         if (vcpu->preempted)
2333                 pi_set_sn(pi_desc);
2334 }
2335
2336 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2337 {
2338         vmx_vcpu_pi_put(vcpu);
2339
2340         __vmx_load_host_state(to_vmx(vcpu));
2341 }
2342
2343 static bool emulation_required(struct kvm_vcpu *vcpu)
2344 {
2345         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2346 }
2347
2348 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2349
2350 /*
2351  * Return the cr0 value that a nested guest would read. This is a combination
2352  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2353  * its hypervisor (cr0_read_shadow).
2354  */
2355 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2356 {
2357         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2358                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2359 }
2360 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2361 {
2362         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2363                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2364 }
2365
2366 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2367 {
2368         unsigned long rflags, save_rflags;
2369
2370         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2371                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2372                 rflags = vmcs_readl(GUEST_RFLAGS);
2373                 if (to_vmx(vcpu)->rmode.vm86_active) {
2374                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2375                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2376                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2377                 }
2378                 to_vmx(vcpu)->rflags = rflags;
2379         }
2380         return to_vmx(vcpu)->rflags;
2381 }
2382
2383 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2384 {
2385         unsigned long old_rflags = vmx_get_rflags(vcpu);
2386
2387         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2388         to_vmx(vcpu)->rflags = rflags;
2389         if (to_vmx(vcpu)->rmode.vm86_active) {
2390                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2391                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2392         }
2393         vmcs_writel(GUEST_RFLAGS, rflags);
2394
2395         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2396                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2397 }
2398
2399 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2400 {
2401         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2402         int ret = 0;
2403
2404         if (interruptibility & GUEST_INTR_STATE_STI)
2405                 ret |= KVM_X86_SHADOW_INT_STI;
2406         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2407                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2408
2409         return ret;
2410 }
2411
2412 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2413 {
2414         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2415         u32 interruptibility = interruptibility_old;
2416
2417         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2418
2419         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2420                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2421         else if (mask & KVM_X86_SHADOW_INT_STI)
2422                 interruptibility |= GUEST_INTR_STATE_STI;
2423
2424         if ((interruptibility != interruptibility_old))
2425                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2426 }
2427
2428 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2429 {
2430         unsigned long rip;
2431
2432         rip = kvm_rip_read(vcpu);
2433         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2434         kvm_rip_write(vcpu, rip);
2435
2436         /* skipping an emulated instruction also counts */
2437         vmx_set_interrupt_shadow(vcpu, 0);
2438 }
2439
2440 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2441                                                unsigned long exit_qual)
2442 {
2443         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2444         unsigned int nr = vcpu->arch.exception.nr;
2445         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2446
2447         if (vcpu->arch.exception.has_error_code) {
2448                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2449                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2450         }
2451
2452         if (kvm_exception_is_soft(nr))
2453                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2454         else
2455                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2456
2457         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2458             vmx_get_nmi_mask(vcpu))
2459                 intr_info |= INTR_INFO_UNBLOCK_NMI;
2460
2461         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2462 }
2463
2464 /*
2465  * KVM wants to inject page-faults which it got to the guest. This function
2466  * checks whether in a nested guest, we need to inject them to L1 or L2.
2467  */
2468 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
2469 {
2470         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2471         unsigned int nr = vcpu->arch.exception.nr;
2472
2473         if (nr == PF_VECTOR) {
2474                 if (vcpu->arch.exception.nested_apf) {
2475                         *exit_qual = vcpu->arch.apf.nested_apf_token;
2476                         return 1;
2477                 }
2478                 /*
2479                  * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2480                  * The fix is to add the ancillary datum (CR2 or DR6) to structs
2481                  * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2482                  * can be written only when inject_pending_event runs.  This should be
2483                  * conditional on a new capability---if the capability is disabled,
2484                  * kvm_multiple_exception would write the ancillary information to
2485                  * CR2 or DR6, for backwards ABI-compatibility.
2486                  */
2487                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2488                                                     vcpu->arch.exception.error_code)) {
2489                         *exit_qual = vcpu->arch.cr2;
2490                         return 1;
2491                 }
2492         } else {
2493                 if (vmcs12->exception_bitmap & (1u << nr)) {
2494                         if (nr == DB_VECTOR)
2495                                 *exit_qual = vcpu->arch.dr6;
2496                         else
2497                                 *exit_qual = 0;
2498                         return 1;
2499                 }
2500         }
2501
2502         return 0;
2503 }
2504
2505 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2506 {
2507         struct vcpu_vmx *vmx = to_vmx(vcpu);
2508         unsigned nr = vcpu->arch.exception.nr;
2509         bool has_error_code = vcpu->arch.exception.has_error_code;
2510         u32 error_code = vcpu->arch.exception.error_code;
2511         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2512
2513         if (has_error_code) {
2514                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2515                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2516         }
2517
2518         if (vmx->rmode.vm86_active) {
2519                 int inc_eip = 0;
2520                 if (kvm_exception_is_soft(nr))
2521                         inc_eip = vcpu->arch.event_exit_inst_len;
2522                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2523                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2524                 return;
2525         }
2526
2527         if (kvm_exception_is_soft(nr)) {
2528                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2529                              vmx->vcpu.arch.event_exit_inst_len);
2530                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2531         } else
2532                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2533
2534         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2535 }
2536
2537 static bool vmx_rdtscp_supported(void)
2538 {
2539         return cpu_has_vmx_rdtscp();
2540 }
2541
2542 static bool vmx_invpcid_supported(void)
2543 {
2544         return cpu_has_vmx_invpcid() && enable_ept;
2545 }
2546
2547 /*
2548  * Swap MSR entry in host/guest MSR entry array.
2549  */
2550 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2551 {
2552         struct shared_msr_entry tmp;
2553
2554         tmp = vmx->guest_msrs[to];
2555         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2556         vmx->guest_msrs[from] = tmp;
2557 }
2558
2559 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2560 {
2561         unsigned long *msr_bitmap;
2562
2563         if (is_guest_mode(vcpu))
2564                 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2565         else if (cpu_has_secondary_exec_ctrls() &&
2566                  (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2567                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2568                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2569                         if (is_long_mode(vcpu))
2570                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2571                         else
2572                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2573                 } else {
2574                         if (is_long_mode(vcpu))
2575                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2576                         else
2577                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2578                 }
2579         } else {
2580                 if (is_long_mode(vcpu))
2581                         msr_bitmap = vmx_msr_bitmap_longmode;
2582                 else
2583                         msr_bitmap = vmx_msr_bitmap_legacy;
2584         }
2585
2586         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2587 }
2588
2589 /*
2590  * Set up the vmcs to automatically save and restore system
2591  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2592  * mode, as fiddling with msrs is very expensive.
2593  */
2594 static void setup_msrs(struct vcpu_vmx *vmx)
2595 {
2596         int save_nmsrs, index;
2597
2598         save_nmsrs = 0;
2599 #ifdef CONFIG_X86_64
2600         if (is_long_mode(&vmx->vcpu)) {
2601                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2602                 if (index >= 0)
2603                         move_msr_up(vmx, index, save_nmsrs++);
2604                 index = __find_msr_index(vmx, MSR_LSTAR);
2605                 if (index >= 0)
2606                         move_msr_up(vmx, index, save_nmsrs++);
2607                 index = __find_msr_index(vmx, MSR_CSTAR);
2608                 if (index >= 0)
2609                         move_msr_up(vmx, index, save_nmsrs++);
2610                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2611                 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
2612                         move_msr_up(vmx, index, save_nmsrs++);
2613                 /*
2614                  * MSR_STAR is only needed on long mode guests, and only
2615                  * if efer.sce is enabled.
2616                  */
2617                 index = __find_msr_index(vmx, MSR_STAR);
2618                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2619                         move_msr_up(vmx, index, save_nmsrs++);
2620         }
2621 #endif
2622         index = __find_msr_index(vmx, MSR_EFER);
2623         if (index >= 0 && update_transition_efer(vmx, index))
2624                 move_msr_up(vmx, index, save_nmsrs++);
2625
2626         vmx->save_nmsrs = save_nmsrs;
2627
2628         if (cpu_has_vmx_msr_bitmap())
2629                 vmx_set_msr_bitmap(&vmx->vcpu);
2630 }
2631
2632 /*
2633  * reads and returns guest's timestamp counter "register"
2634  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2635  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2636  */
2637 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2638 {
2639         u64 host_tsc, tsc_offset;
2640
2641         host_tsc = rdtsc();
2642         tsc_offset = vmcs_read64(TSC_OFFSET);
2643         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2644 }
2645
2646 /*
2647  * writes 'offset' into guest's timestamp counter offset register
2648  */
2649 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2650 {
2651         if (is_guest_mode(vcpu)) {
2652                 /*
2653                  * We're here if L1 chose not to trap WRMSR to TSC. According
2654                  * to the spec, this should set L1's TSC; The offset that L1
2655                  * set for L2 remains unchanged, and still needs to be added
2656                  * to the newly set TSC to get L2's TSC.
2657                  */
2658                 struct vmcs12 *vmcs12;
2659                 /* recalculate vmcs02.TSC_OFFSET: */
2660                 vmcs12 = get_vmcs12(vcpu);
2661                 vmcs_write64(TSC_OFFSET, offset +
2662                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2663                          vmcs12->tsc_offset : 0));
2664         } else {
2665                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2666                                            vmcs_read64(TSC_OFFSET), offset);
2667                 vmcs_write64(TSC_OFFSET, offset);
2668         }
2669 }
2670
2671 /*
2672  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2673  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2674  * all guests if the "nested" module option is off, and can also be disabled
2675  * for a single guest by disabling its VMX cpuid bit.
2676  */
2677 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2678 {
2679         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
2680 }
2681
2682 /*
2683  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2684  * returned for the various VMX controls MSRs when nested VMX is enabled.
2685  * The same values should also be used to verify that vmcs12 control fields are
2686  * valid during nested entry from L1 to L2.
2687  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2688  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2689  * bit in the high half is on if the corresponding bit in the control field
2690  * may be on. See also vmx_control_verify().
2691  */
2692 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2693 {
2694         /*
2695          * Note that as a general rule, the high half of the MSRs (bits in
2696          * the control fields which may be 1) should be initialized by the
2697          * intersection of the underlying hardware's MSR (i.e., features which
2698          * can be supported) and the list of features we want to expose -
2699          * because they are known to be properly supported in our code.
2700          * Also, usually, the low half of the MSRs (bits which must be 1) can
2701          * be set to 0, meaning that L1 may turn off any of these bits. The
2702          * reason is that if one of these bits is necessary, it will appear
2703          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2704          * fields of vmcs01 and vmcs02, will turn these bits off - and
2705          * nested_vmx_exit_reflected() will not pass related exits to L1.
2706          * These rules have exceptions below.
2707          */
2708
2709         /* pin-based controls */
2710         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2711                 vmx->nested.nested_vmx_pinbased_ctls_low,
2712                 vmx->nested.nested_vmx_pinbased_ctls_high);
2713         vmx->nested.nested_vmx_pinbased_ctls_low |=
2714                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2715         vmx->nested.nested_vmx_pinbased_ctls_high &=
2716                 PIN_BASED_EXT_INTR_MASK |
2717                 PIN_BASED_NMI_EXITING |
2718                 PIN_BASED_VIRTUAL_NMIS;
2719         vmx->nested.nested_vmx_pinbased_ctls_high |=
2720                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2721                 PIN_BASED_VMX_PREEMPTION_TIMER;
2722         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2723                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2724                         PIN_BASED_POSTED_INTR;
2725
2726         /* exit controls */
2727         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2728                 vmx->nested.nested_vmx_exit_ctls_low,
2729                 vmx->nested.nested_vmx_exit_ctls_high);
2730         vmx->nested.nested_vmx_exit_ctls_low =
2731                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2732
2733         vmx->nested.nested_vmx_exit_ctls_high &=
2734 #ifdef CONFIG_X86_64
2735                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2736 #endif
2737                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2738         vmx->nested.nested_vmx_exit_ctls_high |=
2739                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2740                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2741                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2742
2743         if (kvm_mpx_supported())
2744                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2745
2746         /* We support free control of debug control saving. */
2747         vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2748
2749         /* entry controls */
2750         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2751                 vmx->nested.nested_vmx_entry_ctls_low,
2752                 vmx->nested.nested_vmx_entry_ctls_high);
2753         vmx->nested.nested_vmx_entry_ctls_low =
2754                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2755         vmx->nested.nested_vmx_entry_ctls_high &=
2756 #ifdef CONFIG_X86_64
2757                 VM_ENTRY_IA32E_MODE |
2758 #endif
2759                 VM_ENTRY_LOAD_IA32_PAT;
2760         vmx->nested.nested_vmx_entry_ctls_high |=
2761                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2762         if (kvm_mpx_supported())
2763                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2764
2765         /* We support free control of debug control loading. */
2766         vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2767
2768         /* cpu-based controls */
2769         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2770                 vmx->nested.nested_vmx_procbased_ctls_low,
2771                 vmx->nested.nested_vmx_procbased_ctls_high);
2772         vmx->nested.nested_vmx_procbased_ctls_low =
2773                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2774         vmx->nested.nested_vmx_procbased_ctls_high &=
2775                 CPU_BASED_VIRTUAL_INTR_PENDING |
2776                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2777                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2778                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2779                 CPU_BASED_CR3_STORE_EXITING |
2780 #ifdef CONFIG_X86_64
2781                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2782 #endif
2783                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2784                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2785                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2786                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2787                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2788         /*
2789          * We can allow some features even when not supported by the
2790          * hardware. For example, L1 can specify an MSR bitmap - and we
2791          * can use it to avoid exits to L1 - even when L0 runs L2
2792          * without MSR bitmaps.
2793          */
2794         vmx->nested.nested_vmx_procbased_ctls_high |=
2795                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2796                 CPU_BASED_USE_MSR_BITMAPS;
2797
2798         /* We support free control of CR3 access interception. */
2799         vmx->nested.nested_vmx_procbased_ctls_low &=
2800                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2801
2802         /*
2803          * secondary cpu-based controls.  Do not include those that
2804          * depend on CPUID bits, they are added later by vmx_cpuid_update.
2805          */
2806         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2807                 vmx->nested.nested_vmx_secondary_ctls_low,
2808                 vmx->nested.nested_vmx_secondary_ctls_high);
2809         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2810         vmx->nested.nested_vmx_secondary_ctls_high &=
2811                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2812                 SECONDARY_EXEC_DESC |
2813                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2814                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2815                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2816                 SECONDARY_EXEC_WBINVD_EXITING;
2817
2818         if (enable_ept) {
2819                 /* nested EPT: emulate EPT also to L1 */
2820                 vmx->nested.nested_vmx_secondary_ctls_high |=
2821                         SECONDARY_EXEC_ENABLE_EPT;
2822                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2823                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2824                 if (cpu_has_vmx_ept_execute_only())
2825                         vmx->nested.nested_vmx_ept_caps |=
2826                                 VMX_EPT_EXECUTE_ONLY_BIT;
2827                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2828                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2829                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2830                         VMX_EPT_1GB_PAGE_BIT;
2831                 if (enable_ept_ad_bits) {
2832                         vmx->nested.nested_vmx_secondary_ctls_high |=
2833                                 SECONDARY_EXEC_ENABLE_PML;
2834                         vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2835                 }
2836         } else
2837                 vmx->nested.nested_vmx_ept_caps = 0;
2838
2839         if (cpu_has_vmx_vmfunc()) {
2840                 vmx->nested.nested_vmx_secondary_ctls_high |=
2841                         SECONDARY_EXEC_ENABLE_VMFUNC;
2842                 /*
2843                  * Advertise EPTP switching unconditionally
2844                  * since we emulate it
2845                  */
2846                 vmx->nested.nested_vmx_vmfunc_controls =
2847                         VMX_VMFUNC_EPTP_SWITCHING;
2848         }
2849
2850         /*
2851          * Old versions of KVM use the single-context version without
2852          * checking for support, so declare that it is supported even
2853          * though it is treated as global context.  The alternative is
2854          * not failing the single-context invvpid, and it is worse.
2855          */
2856         if (enable_vpid) {
2857                 vmx->nested.nested_vmx_secondary_ctls_high |=
2858                         SECONDARY_EXEC_ENABLE_VPID;
2859                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2860                         VMX_VPID_EXTENT_SUPPORTED_MASK;
2861         } else
2862                 vmx->nested.nested_vmx_vpid_caps = 0;
2863
2864         if (enable_unrestricted_guest)
2865                 vmx->nested.nested_vmx_secondary_ctls_high |=
2866                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2867
2868         /* miscellaneous data */
2869         rdmsr(MSR_IA32_VMX_MISC,
2870                 vmx->nested.nested_vmx_misc_low,
2871                 vmx->nested.nested_vmx_misc_high);
2872         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2873         vmx->nested.nested_vmx_misc_low |=
2874                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2875                 VMX_MISC_ACTIVITY_HLT;
2876         vmx->nested.nested_vmx_misc_high = 0;
2877
2878         /*
2879          * This MSR reports some information about VMX support. We
2880          * should return information about the VMX we emulate for the
2881          * guest, and the VMCS structure we give it - not about the
2882          * VMX support of the underlying hardware.
2883          */
2884         vmx->nested.nested_vmx_basic =
2885                 VMCS12_REVISION |
2886                 VMX_BASIC_TRUE_CTLS |
2887                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2888                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2889
2890         if (cpu_has_vmx_basic_inout())
2891                 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2892
2893         /*
2894          * These MSRs specify bits which the guest must keep fixed on
2895          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2896          * We picked the standard core2 setting.
2897          */
2898 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2899 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
2900         vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2901         vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2902
2903         /* These MSRs specify bits which the guest must keep fixed off. */
2904         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2905         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2906
2907         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2908         vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2909 }
2910
2911 /*
2912  * if fixed0[i] == 1: val[i] must be 1
2913  * if fixed1[i] == 0: val[i] must be 0
2914  */
2915 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2916 {
2917         return ((val & fixed1) | fixed0) == val;
2918 }
2919
2920 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2921 {
2922         return fixed_bits_valid(control, low, high);
2923 }
2924
2925 static inline u64 vmx_control_msr(u32 low, u32 high)
2926 {
2927         return low | ((u64)high << 32);
2928 }
2929
2930 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2931 {
2932         superset &= mask;
2933         subset &= mask;
2934
2935         return (superset | subset) == superset;
2936 }
2937
2938 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2939 {
2940         const u64 feature_and_reserved =
2941                 /* feature (except bit 48; see below) */
2942                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2943                 /* reserved */
2944                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2945         u64 vmx_basic = vmx->nested.nested_vmx_basic;
2946
2947         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2948                 return -EINVAL;
2949
2950         /*
2951          * KVM does not emulate a version of VMX that constrains physical
2952          * addresses of VMX structures (e.g. VMCS) to 32-bits.
2953          */
2954         if (data & BIT_ULL(48))
2955                 return -EINVAL;
2956
2957         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2958             vmx_basic_vmcs_revision_id(data))
2959                 return -EINVAL;
2960
2961         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2962                 return -EINVAL;
2963
2964         vmx->nested.nested_vmx_basic = data;
2965         return 0;
2966 }
2967
2968 static int
2969 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2970 {
2971         u64 supported;
2972         u32 *lowp, *highp;
2973
2974         switch (msr_index) {
2975         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2976                 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2977                 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2978                 break;
2979         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2980                 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2981                 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2982                 break;
2983         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2984                 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2985                 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2986                 break;
2987         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2988                 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2989                 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2990                 break;
2991         case MSR_IA32_VMX_PROCBASED_CTLS2:
2992                 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2993                 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2994                 break;
2995         default:
2996                 BUG();
2997         }
2998
2999         supported = vmx_control_msr(*lowp, *highp);
3000
3001         /* Check must-be-1 bits are still 1. */
3002         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3003                 return -EINVAL;
3004
3005         /* Check must-be-0 bits are still 0. */
3006         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3007                 return -EINVAL;
3008
3009         *lowp = data;
3010         *highp = data >> 32;
3011         return 0;
3012 }
3013
3014 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3015 {
3016         const u64 feature_and_reserved_bits =
3017                 /* feature */
3018                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3019                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3020                 /* reserved */
3021                 GENMASK_ULL(13, 9) | BIT_ULL(31);
3022         u64 vmx_misc;
3023
3024         vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
3025                                    vmx->nested.nested_vmx_misc_high);
3026
3027         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3028                 return -EINVAL;
3029
3030         if ((vmx->nested.nested_vmx_pinbased_ctls_high &
3031              PIN_BASED_VMX_PREEMPTION_TIMER) &&
3032             vmx_misc_preemption_timer_rate(data) !=
3033             vmx_misc_preemption_timer_rate(vmx_misc))
3034                 return -EINVAL;
3035
3036         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3037                 return -EINVAL;
3038
3039         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3040                 return -EINVAL;
3041
3042         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3043                 return -EINVAL;
3044
3045         vmx->nested.nested_vmx_misc_low = data;
3046         vmx->nested.nested_vmx_misc_high = data >> 32;
3047         return 0;
3048 }
3049
3050 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3051 {
3052         u64 vmx_ept_vpid_cap;
3053
3054         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
3055                                            vmx->nested.nested_vmx_vpid_caps);
3056
3057         /* Every bit is either reserved or a feature bit. */
3058         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3059                 return -EINVAL;
3060
3061         vmx->nested.nested_vmx_ept_caps = data;
3062         vmx->nested.nested_vmx_vpid_caps = data >> 32;
3063         return 0;
3064 }
3065
3066 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3067 {
3068         u64 *msr;
3069
3070         switch (msr_index) {
3071         case MSR_IA32_VMX_CR0_FIXED0:
3072                 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3073                 break;
3074         case MSR_IA32_VMX_CR4_FIXED0:
3075                 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3076                 break;
3077         default:
3078                 BUG();
3079         }
3080
3081         /*
3082          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3083          * must be 1 in the restored value.
3084          */
3085         if (!is_bitwise_subset(data, *msr, -1ULL))
3086                 return -EINVAL;
3087
3088         *msr = data;
3089         return 0;
3090 }
3091
3092 /*
3093  * Called when userspace is restoring VMX MSRs.
3094  *
3095  * Returns 0 on success, non-0 otherwise.
3096  */
3097 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3098 {
3099         struct vcpu_vmx *vmx = to_vmx(vcpu);
3100
3101         switch (msr_index) {
3102         case MSR_IA32_VMX_BASIC:
3103                 return vmx_restore_vmx_basic(vmx, data);
3104         case MSR_IA32_VMX_PINBASED_CTLS:
3105         case MSR_IA32_VMX_PROCBASED_CTLS:
3106         case MSR_IA32_VMX_EXIT_CTLS:
3107         case MSR_IA32_VMX_ENTRY_CTLS:
3108                 /*
3109                  * The "non-true" VMX capability MSRs are generated from the
3110                  * "true" MSRs, so we do not support restoring them directly.
3111                  *
3112                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3113                  * should restore the "true" MSRs with the must-be-1 bits
3114                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3115                  * DEFAULT SETTINGS".
3116                  */
3117                 return -EINVAL;
3118         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3119         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3120         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3121         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3122         case MSR_IA32_VMX_PROCBASED_CTLS2:
3123                 return vmx_restore_control_msr(vmx, msr_index, data);
3124         case MSR_IA32_VMX_MISC:
3125                 return vmx_restore_vmx_misc(vmx, data);
3126         case MSR_IA32_VMX_CR0_FIXED0:
3127         case MSR_IA32_VMX_CR4_FIXED0:
3128                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3129         case MSR_IA32_VMX_CR0_FIXED1:
3130         case MSR_IA32_VMX_CR4_FIXED1:
3131                 /*
3132                  * These MSRs are generated based on the vCPU's CPUID, so we
3133                  * do not support restoring them directly.
3134                  */
3135                 return -EINVAL;
3136         case MSR_IA32_VMX_EPT_VPID_CAP:
3137                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3138         case MSR_IA32_VMX_VMCS_ENUM:
3139                 vmx->nested.nested_vmx_vmcs_enum = data;
3140                 return 0;
3141         default:
3142                 /*
3143                  * The rest of the VMX capability MSRs do not support restore.
3144                  */
3145                 return -EINVAL;
3146         }
3147 }
3148
3149 /* Returns 0 on success, non-0 otherwise. */
3150 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3151 {
3152         struct vcpu_vmx *vmx = to_vmx(vcpu);
3153
3154         switch (msr_index) {
3155         case MSR_IA32_VMX_BASIC:
3156                 *pdata = vmx->nested.nested_vmx_basic;
3157                 break;
3158         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3159         case MSR_IA32_VMX_PINBASED_CTLS:
3160                 *pdata = vmx_control_msr(
3161                         vmx->nested.nested_vmx_pinbased_ctls_low,
3162                         vmx->nested.nested_vmx_pinbased_ctls_high);
3163                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3164                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3165                 break;
3166         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3167         case MSR_IA32_VMX_PROCBASED_CTLS:
3168                 *pdata = vmx_control_msr(
3169                         vmx->nested.nested_vmx_procbased_ctls_low,
3170                         vmx->nested.nested_vmx_procbased_ctls_high);
3171                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3172                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3173                 break;
3174         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3175         case MSR_IA32_VMX_EXIT_CTLS:
3176                 *pdata = vmx_control_msr(
3177                         vmx->nested.nested_vmx_exit_ctls_low,
3178                         vmx->nested.nested_vmx_exit_ctls_high);
3179                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3180                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3181                 break;
3182         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3183         case MSR_IA32_VMX_ENTRY_CTLS:
3184                 *pdata = vmx_control_msr(
3185                         vmx->nested.nested_vmx_entry_ctls_low,
3186                         vmx->nested.nested_vmx_entry_ctls_high);
3187                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3188                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3189                 break;
3190         case MSR_IA32_VMX_MISC:
3191                 *pdata = vmx_control_msr(
3192                         vmx->nested.nested_vmx_misc_low,
3193                         vmx->nested.nested_vmx_misc_high);
3194                 break;
3195         case MSR_IA32_VMX_CR0_FIXED0:
3196                 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3197                 break;
3198         case MSR_IA32_VMX_CR0_FIXED1:
3199                 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3200                 break;
3201         case MSR_IA32_VMX_CR4_FIXED0:
3202                 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3203                 break;
3204         case MSR_IA32_VMX_CR4_FIXED1:
3205                 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3206                 break;
3207         case MSR_IA32_VMX_VMCS_ENUM:
3208                 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3209                 break;
3210         case MSR_IA32_VMX_PROCBASED_CTLS2:
3211                 *pdata = vmx_control_msr(
3212                         vmx->nested.nested_vmx_secondary_ctls_low,
3213                         vmx->nested.nested_vmx_secondary_ctls_high);
3214                 break;
3215         case MSR_IA32_VMX_EPT_VPID_CAP:
3216                 *pdata = vmx->nested.nested_vmx_ept_caps |
3217                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3218                 break;
3219         case MSR_IA32_VMX_VMFUNC:
3220                 *pdata = vmx->nested.nested_vmx_vmfunc_controls;
3221                 break;
3222         default:
3223                 return 1;
3224         }
3225
3226         return 0;
3227 }
3228
3229 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3230                                                  uint64_t val)
3231 {
3232         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3233
3234         return !(val & ~valid_bits);
3235 }
3236
3237 /*
3238  * Reads an msr value (of 'msr_index') into 'pdata'.
3239  * Returns 0 on success, non-0 otherwise.
3240  * Assumes vcpu_load() was already called.
3241  */
3242 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3243 {
3244         struct shared_msr_entry *msr;
3245
3246         switch (msr_info->index) {
3247 #ifdef CONFIG_X86_64
3248         case MSR_FS_BASE:
3249                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3250                 break;
3251         case MSR_GS_BASE:
3252                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3253                 break;
3254         case MSR_KERNEL_GS_BASE:
3255                 vmx_load_host_state(to_vmx(vcpu));
3256                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3257                 break;
3258 #endif
3259         case MSR_EFER:
3260                 return kvm_get_msr_common(vcpu, msr_info);
3261         case MSR_IA32_TSC:
3262                 msr_info->data = guest_read_tsc(vcpu);
3263                 break;
3264         case MSR_IA32_SYSENTER_CS:
3265                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3266                 break;
3267         case MSR_IA32_SYSENTER_EIP:
3268                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3269                 break;
3270         case MSR_IA32_SYSENTER_ESP:
3271                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3272                 break;
3273         case MSR_IA32_BNDCFGS:
3274                 if (!kvm_mpx_supported() ||
3275                     (!msr_info->host_initiated &&
3276                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3277                         return 1;
3278                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3279                 break;
3280         case MSR_IA32_MCG_EXT_CTL:
3281                 if (!msr_info->host_initiated &&
3282                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3283                       FEATURE_CONTROL_LMCE))
3284                         return 1;
3285                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3286                 break;
3287         case MSR_IA32_FEATURE_CONTROL:
3288                 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3289                 break;
3290         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3291                 if (!nested_vmx_allowed(vcpu))
3292                         return 1;
3293                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3294         case MSR_IA32_XSS:
3295                 if (!vmx_xsaves_supported())
3296                         return 1;
3297                 msr_info->data = vcpu->arch.ia32_xss;
3298                 break;
3299         case MSR_TSC_AUX:
3300                 if (!msr_info->host_initiated &&
3301                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3302                         return 1;
3303                 /* Otherwise falls through */
3304         default:
3305                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3306                 if (msr) {
3307                         msr_info->data = msr->data;
3308                         break;
3309                 }
3310                 return kvm_get_msr_common(vcpu, msr_info);
3311         }
3312
3313         return 0;
3314 }
3315
3316 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3317
3318 /*
3319  * Writes msr value into into the appropriate "register".
3320  * Returns 0 on success, non-0 otherwise.
3321  * Assumes vcpu_load() was already called.
3322  */
3323 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3324 {
3325         struct vcpu_vmx *vmx = to_vmx(vcpu);
3326         struct shared_msr_entry *msr;
3327         int ret = 0;
3328         u32 msr_index = msr_info->index;
3329         u64 data = msr_info->data;
3330
3331         switch (msr_index) {
3332         case MSR_EFER:
3333                 ret = kvm_set_msr_common(vcpu, msr_info);
3334                 break;
3335 #ifdef CONFIG_X86_64
3336         case MSR_FS_BASE:
3337                 vmx_segment_cache_clear(vmx);
3338                 vmcs_writel(GUEST_FS_BASE, data);
3339                 break;
3340         case MSR_GS_BASE:
3341                 vmx_segment_cache_clear(vmx);
3342                 vmcs_writel(GUEST_GS_BASE, data);
3343                 break;
3344         case MSR_KERNEL_GS_BASE:
3345                 vmx_load_host_state(vmx);
3346                 vmx->msr_guest_kernel_gs_base = data;
3347                 break;
3348 #endif
3349         case MSR_IA32_SYSENTER_CS:
3350                 vmcs_write32(GUEST_SYSENTER_CS, data);
3351                 break;
3352         case MSR_IA32_SYSENTER_EIP:
3353                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3354                 break;
3355         case MSR_IA32_SYSENTER_ESP:
3356                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3357                 break;
3358         case MSR_IA32_BNDCFGS:
3359                 if (!kvm_mpx_supported() ||
3360                     (!msr_info->host_initiated &&
3361                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3362                         return 1;
3363                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
3364                     (data & MSR_IA32_BNDCFGS_RSVD))
3365                         return 1;
3366                 vmcs_write64(GUEST_BNDCFGS, data);
3367                 break;
3368         case MSR_IA32_TSC:
3369                 kvm_write_tsc(vcpu, msr_info);
3370                 break;
3371         case MSR_IA32_CR_PAT:
3372                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3373                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3374                                 return 1;
3375                         vmcs_write64(GUEST_IA32_PAT, data);
3376                         vcpu->arch.pat = data;
3377                         break;
3378                 }
3379                 ret = kvm_set_msr_common(vcpu, msr_info);
3380                 break;
3381         case MSR_IA32_TSC_ADJUST:
3382                 ret = kvm_set_msr_common(vcpu, msr_info);
3383                 break;
3384         case MSR_IA32_MCG_EXT_CTL:
3385                 if ((!msr_info->host_initiated &&
3386                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3387                        FEATURE_CONTROL_LMCE)) ||
3388                     (data & ~MCG_EXT_CTL_LMCE_EN))
3389                         return 1;
3390                 vcpu->arch.mcg_ext_ctl = data;
3391                 break;
3392         case MSR_IA32_FEATURE_CONTROL:
3393                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3394                     (to_vmx(vcpu)->msr_ia32_feature_control &
3395                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3396                         return 1;
3397                 vmx->msr_ia32_feature_control = data;
3398                 if (msr_info->host_initiated && data == 0)
3399                         vmx_leave_nested(vcpu);
3400                 break;
3401         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3402                 if (!msr_info->host_initiated)
3403                         return 1; /* they are read-only */
3404                 if (!nested_vmx_allowed(vcpu))
3405                         return 1;
3406                 return vmx_set_vmx_msr(vcpu, msr_index, data);
3407         case MSR_IA32_XSS:
3408                 if (!vmx_xsaves_supported())
3409                         return 1;
3410                 /*
3411                  * The only supported bit as of Skylake is bit 8, but
3412                  * it is not supported on KVM.
3413                  */
3414                 if (data != 0)
3415                         return 1;
3416                 vcpu->arch.ia32_xss = data;
3417                 if (vcpu->arch.ia32_xss != host_xss)
3418                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3419                                 vcpu->arch.ia32_xss, host_xss);
3420                 else
3421                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3422                 break;
3423         case MSR_TSC_AUX:
3424                 if (!msr_info->host_initiated &&
3425                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3426                         return 1;
3427                 /* Check reserved bit, higher 32 bits should be zero */
3428                 if ((data >> 32) != 0)
3429                         return 1;
3430                 /* Otherwise falls through */
3431         default:
3432                 msr = find_msr_entry(vmx, msr_index);
3433                 if (msr) {
3434                         u64 old_msr_data = msr->data;
3435                         msr->data = data;
3436                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3437                                 preempt_disable();
3438                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3439                                                          msr->mask);
3440                                 preempt_enable();
3441                                 if (ret)
3442                                         msr->data = old_msr_data;
3443                         }
3444                         break;
3445                 }
3446                 ret = kvm_set_msr_common(vcpu, msr_info);
3447         }
3448
3449         return ret;
3450 }
3451
3452 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3453 {
3454         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3455         switch (reg) {
3456         case VCPU_REGS_RSP:
3457                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3458                 break;
3459         case VCPU_REGS_RIP:
3460                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3461                 break;
3462         case VCPU_EXREG_PDPTR:
3463                 if (enable_ept)
3464                         ept_save_pdptrs(vcpu);
3465                 break;
3466         default:
3467                 break;
3468         }
3469 }
3470
3471 static __init int cpu_has_kvm_support(void)
3472 {
3473         return cpu_has_vmx();
3474 }
3475
3476 static __init int vmx_disabled_by_bios(void)
3477 {
3478         u64 msr;
3479
3480         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3481         if (msr & FEATURE_CONTROL_LOCKED) {
3482                 /* launched w/ TXT and VMX disabled */
3483                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3484                         && tboot_enabled())
3485                         return 1;
3486                 /* launched w/o TXT and VMX only enabled w/ TXT */
3487                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3488                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3489                         && !tboot_enabled()) {
3490                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3491                                 "activate TXT before enabling KVM\n");
3492                         return 1;
3493                 }
3494                 /* launched w/o TXT and VMX disabled */
3495                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3496                         && !tboot_enabled())
3497                         return 1;
3498         }
3499
3500         return 0;
3501 }
3502
3503 static void kvm_cpu_vmxon(u64 addr)
3504 {
3505         cr4_set_bits(X86_CR4_VMXE);
3506         intel_pt_handle_vmx(1);
3507
3508         asm volatile (ASM_VMX_VMXON_RAX
3509                         : : "a"(&addr), "m"(addr)
3510                         : "memory", "cc");
3511 }
3512
3513 static int hardware_enable(void)
3514 {
3515         int cpu = raw_smp_processor_id();
3516         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3517         u64 old, test_bits;
3518
3519         if (cr4_read_shadow() & X86_CR4_VMXE)
3520                 return -EBUSY;
3521
3522         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3523         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3524         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3525
3526         /*
3527          * Now we can enable the vmclear operation in kdump
3528          * since the loaded_vmcss_on_cpu list on this cpu
3529          * has been initialized.
3530          *
3531          * Though the cpu is not in VMX operation now, there
3532          * is no problem to enable the vmclear operation
3533          * for the loaded_vmcss_on_cpu list is empty!
3534          */
3535         crash_enable_local_vmclear(cpu);
3536
3537         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3538
3539         test_bits = FEATURE_CONTROL_LOCKED;
3540         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3541         if (tboot_enabled())
3542                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3543
3544         if ((old & test_bits) != test_bits) {
3545                 /* enable and lock */
3546                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3547         }
3548         kvm_cpu_vmxon(phys_addr);
3549         ept_sync_global();
3550
3551         return 0;
3552 }
3553
3554 static void vmclear_local_loaded_vmcss(void)
3555 {
3556         int cpu = raw_smp_processor_id();
3557         struct loaded_vmcs *v, *n;
3558
3559         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3560                                  loaded_vmcss_on_cpu_link)
3561                 __loaded_vmcs_clear(v);
3562 }
3563
3564
3565 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3566  * tricks.
3567  */
3568 static void kvm_cpu_vmxoff(void)
3569 {
3570         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3571
3572         intel_pt_handle_vmx(0);
3573         cr4_clear_bits(X86_CR4_VMXE);
3574 }
3575
3576 static void hardware_disable(void)
3577 {
3578         vmclear_local_loaded_vmcss();
3579         kvm_cpu_vmxoff();
3580 }
3581
3582 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3583                                       u32 msr, u32 *result)
3584 {
3585         u32 vmx_msr_low, vmx_msr_high;
3586         u32 ctl = ctl_min | ctl_opt;
3587
3588         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3589
3590         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3591         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3592
3593         /* Ensure minimum (required) set of control bits are supported. */
3594         if (ctl_min & ~ctl)
3595                 return -EIO;
3596
3597         *result = ctl;
3598         return 0;
3599 }
3600
3601 static __init bool allow_1_setting(u32 msr, u32 ctl)
3602 {
3603         u32 vmx_msr_low, vmx_msr_high;
3604
3605         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3606         return vmx_msr_high & ctl;
3607 }
3608
3609 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3610 {
3611         u32 vmx_msr_low, vmx_msr_high;
3612         u32 min, opt, min2, opt2;
3613         u32 _pin_based_exec_control = 0;
3614         u32 _cpu_based_exec_control = 0;
3615         u32 _cpu_based_2nd_exec_control = 0;
3616         u32 _vmexit_control = 0;
3617         u32 _vmentry_control = 0;
3618
3619         min = CPU_BASED_HLT_EXITING |
3620 #ifdef CONFIG_X86_64
3621               CPU_BASED_CR8_LOAD_EXITING |
3622               CPU_BASED_CR8_STORE_EXITING |
3623 #endif
3624               CPU_BASED_CR3_LOAD_EXITING |
3625               CPU_BASED_CR3_STORE_EXITING |
3626               CPU_BASED_USE_IO_BITMAPS |
3627               CPU_BASED_MOV_DR_EXITING |
3628               CPU_BASED_USE_TSC_OFFSETING |
3629               CPU_BASED_INVLPG_EXITING |
3630               CPU_BASED_RDPMC_EXITING;
3631
3632         if (!kvm_mwait_in_guest())
3633                 min |= CPU_BASED_MWAIT_EXITING |
3634                         CPU_BASED_MONITOR_EXITING;
3635
3636         opt = CPU_BASED_TPR_SHADOW |
3637               CPU_BASED_USE_MSR_BITMAPS |
3638               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3639         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3640                                 &_cpu_based_exec_control) < 0)
3641                 return -EIO;
3642 #ifdef CONFIG_X86_64
3643         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3644                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3645                                            ~CPU_BASED_CR8_STORE_EXITING;
3646 #endif
3647         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3648                 min2 = 0;
3649                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3650                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3651                         SECONDARY_EXEC_WBINVD_EXITING |
3652                         SECONDARY_EXEC_ENABLE_VPID |
3653                         SECONDARY_EXEC_ENABLE_EPT |
3654                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3655                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3656                         SECONDARY_EXEC_RDTSCP |
3657                         SECONDARY_EXEC_ENABLE_INVPCID |
3658                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3659                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3660                         SECONDARY_EXEC_SHADOW_VMCS |
3661                         SECONDARY_EXEC_XSAVES |
3662                         SECONDARY_EXEC_RDSEED |
3663                         SECONDARY_EXEC_RDRAND |
3664                         SECONDARY_EXEC_ENABLE_PML |
3665                         SECONDARY_EXEC_TSC_SCALING |
3666                         SECONDARY_EXEC_ENABLE_VMFUNC;
3667                 if (adjust_vmx_controls(min2, opt2,
3668                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3669                                         &_cpu_based_2nd_exec_control) < 0)
3670                         return -EIO;
3671         }
3672 #ifndef CONFIG_X86_64
3673         if (!(_cpu_based_2nd_exec_control &
3674                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3675                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3676 #endif
3677
3678         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3679                 _cpu_based_2nd_exec_control &= ~(
3680                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3681                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3682                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3683
3684         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3685                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3686                    enabled */
3687                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3688                                              CPU_BASED_CR3_STORE_EXITING |
3689                                              CPU_BASED_INVLPG_EXITING);
3690                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3691                       vmx_capability.ept, vmx_capability.vpid);
3692         }
3693
3694         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3695 #ifdef CONFIG_X86_64
3696         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3697 #endif
3698         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3699                 VM_EXIT_CLEAR_BNDCFGS;
3700         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3701                                 &_vmexit_control) < 0)
3702                 return -EIO;
3703
3704         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3705                 PIN_BASED_VIRTUAL_NMIS;
3706         opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3707         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3708                                 &_pin_based_exec_control) < 0)
3709                 return -EIO;
3710
3711         if (cpu_has_broken_vmx_preemption_timer())
3712                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3713         if (!(_cpu_based_2nd_exec_control &
3714                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3715                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3716
3717         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3718         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3719         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3720                                 &_vmentry_control) < 0)
3721                 return -EIO;
3722
3723         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3724
3725         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3726         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3727                 return -EIO;
3728
3729 #ifdef CONFIG_X86_64
3730         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3731         if (vmx_msr_high & (1u<<16))
3732                 return -EIO;
3733 #endif
3734
3735         /* Require Write-Back (WB) memory type for VMCS accesses. */
3736         if (((vmx_msr_high >> 18) & 15) != 6)
3737                 return -EIO;
3738
3739         vmcs_conf->size = vmx_msr_high & 0x1fff;
3740         vmcs_conf->order = get_order(vmcs_conf->size);
3741         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3742         vmcs_conf->revision_id = vmx_msr_low;
3743
3744         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3745         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3746         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3747         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3748         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3749
3750         cpu_has_load_ia32_efer =
3751                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3752                                 VM_ENTRY_LOAD_IA32_EFER)
3753                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3754                                    VM_EXIT_LOAD_IA32_EFER);
3755
3756         cpu_has_load_perf_global_ctrl =
3757                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3758                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3759                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3760                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3761
3762         /*
3763          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3764          * but due to errata below it can't be used. Workaround is to use
3765          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3766          *
3767          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3768          *
3769          * AAK155             (model 26)
3770          * AAP115             (model 30)
3771          * AAT100             (model 37)
3772          * BC86,AAY89,BD102   (model 44)
3773          * BA97               (model 46)
3774          *
3775          */
3776         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3777                 switch (boot_cpu_data.x86_model) {
3778                 case 26:
3779                 case 30:
3780                 case 37:
3781                 case 44:
3782                 case 46:
3783                         cpu_has_load_perf_global_ctrl = false;
3784                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3785                                         "does not work properly. Using workaround\n");
3786                         break;
3787                 default:
3788                         break;
3789                 }
3790         }
3791
3792         if (boot_cpu_has(X86_FEATURE_XSAVES))
3793                 rdmsrl(MSR_IA32_XSS, host_xss);
3794
3795         return 0;
3796 }
3797
3798 static struct vmcs *alloc_vmcs_cpu(int cpu)
3799 {
3800         int node = cpu_to_node(cpu);
3801         struct page *pages;
3802         struct vmcs *vmcs;
3803
3804         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3805         if (!pages)
3806                 return NULL;
3807         vmcs = page_address(pages);
3808         memset(vmcs, 0, vmcs_config.size);
3809         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3810         return vmcs;
3811 }
3812
3813 static struct vmcs *alloc_vmcs(void)
3814 {
3815         return alloc_vmcs_cpu(raw_smp_processor_id());
3816 }
3817
3818 static void free_vmcs(struct vmcs *vmcs)
3819 {
3820         free_pages((unsigned long)vmcs, vmcs_config.order);
3821 }
3822
3823 /*
3824  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3825  */
3826 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3827 {
3828         if (!loaded_vmcs->vmcs)
3829                 return;
3830         loaded_vmcs_clear(loaded_vmcs);
3831         free_vmcs(loaded_vmcs->vmcs);
3832         loaded_vmcs->vmcs = NULL;
3833         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3834 }
3835
3836 static void free_kvm_area(void)
3837 {
3838         int cpu;
3839
3840         for_each_possible_cpu(cpu) {
3841                 free_vmcs(per_cpu(vmxarea, cpu));
3842                 per_cpu(vmxarea, cpu) = NULL;
3843         }
3844 }
3845
3846 enum vmcs_field_type {
3847         VMCS_FIELD_TYPE_U16 = 0,
3848         VMCS_FIELD_TYPE_U64 = 1,
3849         VMCS_FIELD_TYPE_U32 = 2,
3850         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
3851 };
3852
3853 static inline int vmcs_field_type(unsigned long field)
3854 {
3855         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
3856                 return VMCS_FIELD_TYPE_U32;
3857         return (field >> 13) & 0x3 ;
3858 }
3859
3860 static inline int vmcs_field_readonly(unsigned long field)
3861 {
3862         return (((field >> 10) & 0x3) == 1);
3863 }
3864
3865 static void init_vmcs_shadow_fields(void)
3866 {
3867         int i, j;
3868
3869         /* No checks for read only fields yet */
3870
3871         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3872                 switch (shadow_read_write_fields[i]) {
3873                 case GUEST_BNDCFGS:
3874                         if (!kvm_mpx_supported())
3875                                 continue;
3876                         break;
3877                 default:
3878                         break;
3879                 }
3880
3881                 if (j < i)
3882                         shadow_read_write_fields[j] =
3883                                 shadow_read_write_fields[i];
3884                 j++;
3885         }
3886         max_shadow_read_write_fields = j;
3887
3888         /* shadowed fields guest access without vmexit */
3889         for (i = 0; i < max_shadow_read_write_fields; i++) {
3890                 unsigned long field = shadow_read_write_fields[i];
3891
3892                 clear_bit(field, vmx_vmwrite_bitmap);
3893                 clear_bit(field, vmx_vmread_bitmap);
3894                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64) {
3895                         clear_bit(field + 1, vmx_vmwrite_bitmap);
3896                         clear_bit(field + 1, vmx_vmread_bitmap);
3897                 }
3898         }
3899         for (i = 0; i < max_shadow_read_only_fields; i++) {
3900                 unsigned long field = shadow_read_only_fields[i];
3901
3902                 clear_bit(field, vmx_vmread_bitmap);
3903                 if (vmcs_field_type(field) == VMCS_FIELD_TYPE_U64)
3904                         clear_bit(field + 1, vmx_vmread_bitmap);
3905         }
3906 }
3907
3908 static __init int alloc_kvm_area(void)
3909 {
3910         int cpu;
3911
3912         for_each_possible_cpu(cpu) {
3913                 struct vmcs *vmcs;
3914
3915                 vmcs = alloc_vmcs_cpu(cpu);
3916                 if (!vmcs) {
3917                         free_kvm_area();
3918                         return -ENOMEM;
3919                 }
3920
3921                 per_cpu(vmxarea, cpu) = vmcs;
3922         }
3923         return 0;
3924 }
3925
3926 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3927                 struct kvm_segment *save)
3928 {
3929         if (!emulate_invalid_guest_state) {
3930                 /*
3931                  * CS and SS RPL should be equal during guest entry according
3932                  * to VMX spec, but in reality it is not always so. Since vcpu
3933                  * is in the middle of the transition from real mode to
3934                  * protected mode it is safe to assume that RPL 0 is a good
3935                  * default value.
3936                  */
3937                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3938                         save->selector &= ~SEGMENT_RPL_MASK;
3939                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3940                 save->s = 1;
3941         }
3942         vmx_set_segment(vcpu, save, seg);
3943 }
3944
3945 static void enter_pmode(struct kvm_vcpu *vcpu)
3946 {
3947         unsigned long flags;
3948         struct vcpu_vmx *vmx = to_vmx(vcpu);
3949
3950         /*
3951          * Update real mode segment cache. It may be not up-to-date if sement
3952          * register was written while vcpu was in a guest mode.
3953          */
3954         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3955         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3956         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3957         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3958         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3959         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3960
3961         vmx->rmode.vm86_active = 0;
3962
3963         vmx_segment_cache_clear(vmx);
3964
3965         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3966
3967         flags = vmcs_readl(GUEST_RFLAGS);
3968         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3969         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3970         vmcs_writel(GUEST_RFLAGS, flags);
3971
3972         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3973                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3974
3975         update_exception_bitmap(vcpu);
3976
3977         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3978         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3979         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3980         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3981         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3982         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3983 }
3984
3985 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3986 {
3987         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3988         struct kvm_segment var = *save;
3989
3990         var.dpl = 0x3;
3991         if (seg == VCPU_SREG_CS)
3992                 var.type = 0x3;
3993
3994         if (!emulate_invalid_guest_state) {
3995                 var.selector = var.base >> 4;
3996                 var.base = var.base & 0xffff0;
3997                 var.limit = 0xffff;
3998                 var.g = 0;
3999                 var.db = 0;
4000                 var.present = 1;
4001                 var.s = 1;
4002                 var.l = 0;
4003                 var.unusable = 0;
4004                 var.type = 0x3;
4005                 var.avl = 0;
4006                 if (save->base & 0xf)
4007                         printk_once(KERN_WARNING "kvm: segment base is not "
4008                                         "paragraph aligned when entering "
4009                                         "protected mode (seg=%d)", seg);
4010         }
4011
4012         vmcs_write16(sf->selector, var.selector);
4013         vmcs_writel(sf->base, var.base);
4014         vmcs_write32(sf->limit, var.limit);
4015         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
4016 }
4017
4018 static void enter_rmode(struct kvm_vcpu *vcpu)
4019 {
4020         unsigned long flags;
4021         struct vcpu_vmx *vmx = to_vmx(vcpu);
4022
4023         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4024         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4025         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4026         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4027         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4028         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4029         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4030
4031         vmx->rmode.vm86_active = 1;
4032
4033         /*
4034          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4035          * vcpu. Warn the user that an update is overdue.
4036          */
4037         if (!vcpu->kvm->arch.tss_addr)
4038                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4039                              "called before entering vcpu\n");
4040
4041         vmx_segment_cache_clear(vmx);
4042
4043         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
4044         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
4045         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4046
4047         flags = vmcs_readl(GUEST_RFLAGS);
4048         vmx->rmode.save_rflags = flags;
4049
4050         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
4051
4052         vmcs_writel(GUEST_RFLAGS, flags);
4053         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
4054         update_exception_bitmap(vcpu);
4055
4056         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4057         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4058         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4059         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4060         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4061         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4062
4063         kvm_mmu_reset_context(vcpu);
4064 }
4065
4066 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4067 {
4068         struct vcpu_vmx *vmx = to_vmx(vcpu);
4069         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4070
4071         if (!msr)
4072                 return;
4073
4074         /*
4075          * Force kernel_gs_base reloading before EFER changes, as control
4076          * of this msr depends on is_long_mode().
4077          */
4078         vmx_load_host_state(to_vmx(vcpu));
4079         vcpu->arch.efer = efer;
4080         if (efer & EFER_LMA) {
4081                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4082                 msr->data = efer;
4083         } else {
4084                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4085
4086                 msr->data = efer & ~EFER_LME;
4087         }
4088         setup_msrs(vmx);
4089 }
4090
4091 #ifdef CONFIG_X86_64
4092
4093 static void enter_lmode(struct kvm_vcpu *vcpu)
4094 {
4095         u32 guest_tr_ar;
4096
4097         vmx_segment_cache_clear(to_vmx(vcpu));
4098
4099         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4100         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4101                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4102                                      __func__);
4103                 vmcs_write32(GUEST_TR_AR_BYTES,
4104                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4105                              | VMX_AR_TYPE_BUSY_64_TSS);
4106         }
4107         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4108 }
4109
4110 static void exit_lmode(struct kvm_vcpu *vcpu)
4111 {
4112         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4113         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4114 }
4115
4116 #endif
4117
4118 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4119 {
4120         if (enable_ept) {
4121                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4122                         return;
4123                 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4124         } else {
4125                 vpid_sync_context(vpid);
4126         }
4127 }
4128
4129 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4130 {
4131         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4132 }
4133
4134 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4135 {
4136         if (enable_ept)
4137                 vmx_flush_tlb(vcpu);
4138 }
4139
4140 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4141 {
4142         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4143
4144         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4145         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4146 }
4147
4148 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4149 {
4150         if (enable_ept && is_paging(vcpu))
4151                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4152         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4153 }
4154
4155 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4156 {
4157         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4158
4159         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4160         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4161 }
4162
4163 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4164 {
4165         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4166
4167         if (!test_bit(VCPU_EXREG_PDPTR,
4168                       (unsigned long *)&vcpu->arch.regs_dirty))
4169                 return;
4170
4171         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4172                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4173                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4174                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4175                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4176         }
4177 }
4178
4179 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4180 {
4181         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4182
4183         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4184                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4185                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4186                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4187                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4188         }
4189
4190         __set_bit(VCPU_EXREG_PDPTR,
4191                   (unsigned long *)&vcpu->arch.regs_avail);
4192         __set_bit(VCPU_EXREG_PDPTR,
4193                   (unsigned long *)&vcpu->arch.regs_dirty);
4194 }
4195
4196 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4197 {
4198         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4199         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4200         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4201
4202         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4203                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4204             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4205                 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4206
4207         return fixed_bits_valid(val, fixed0, fixed1);
4208 }
4209
4210 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4211 {
4212         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4213         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4214
4215         return fixed_bits_valid(val, fixed0, fixed1);
4216 }
4217
4218 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4219 {
4220         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4221         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4222
4223         return fixed_bits_valid(val, fixed0, fixed1);
4224 }
4225
4226 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4227 #define nested_guest_cr4_valid  nested_cr4_valid
4228 #define nested_host_cr4_valid   nested_cr4_valid
4229
4230 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4231
4232 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4233                                         unsigned long cr0,
4234                                         struct kvm_vcpu *vcpu)
4235 {
4236         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4237                 vmx_decache_cr3(vcpu);
4238         if (!(cr0 & X86_CR0_PG)) {
4239                 /* From paging/starting to nonpaging */
4240                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4241                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4242                              (CPU_BASED_CR3_LOAD_EXITING |
4243                               CPU_BASED_CR3_STORE_EXITING));
4244                 vcpu->arch.cr0 = cr0;
4245                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4246         } else if (!is_paging(vcpu)) {
4247                 /* From nonpaging to paging */
4248                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4249                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4250                              ~(CPU_BASED_CR3_LOAD_EXITING |
4251                                CPU_BASED_CR3_STORE_EXITING));
4252                 vcpu->arch.cr0 = cr0;
4253                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4254         }
4255
4256         if (!(cr0 & X86_CR0_WP))
4257                 *hw_cr0 &= ~X86_CR0_WP;
4258 }
4259
4260 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4261 {
4262         struct vcpu_vmx *vmx = to_vmx(vcpu);
4263         unsigned long hw_cr0;
4264
4265         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4266         if (enable_unrestricted_guest)
4267                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4268         else {
4269                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4270
4271                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4272                         enter_pmode(vcpu);
4273
4274                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4275                         enter_rmode(vcpu);
4276         }
4277
4278 #ifdef CONFIG_X86_64
4279         if (vcpu->arch.efer & EFER_LME) {
4280                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4281                         enter_lmode(vcpu);
4282                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4283                         exit_lmode(vcpu);
4284         }
4285 #endif
4286
4287         if (enable_ept)
4288                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4289
4290         vmcs_writel(CR0_READ_SHADOW, cr0);
4291         vmcs_writel(GUEST_CR0, hw_cr0);
4292         vcpu->arch.cr0 = cr0;
4293
4294         /* depends on vcpu->arch.cr0 to be set to a new value */
4295         vmx->emulation_required = emulation_required(vcpu);
4296 }
4297
4298 static int get_ept_level(struct kvm_vcpu *vcpu)
4299 {
4300         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4301                 return 5;
4302         return 4;
4303 }
4304
4305 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4306 {
4307         u64 eptp = VMX_EPTP_MT_WB;
4308
4309         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
4310
4311         if (enable_ept_ad_bits &&
4312             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4313                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
4314         eptp |= (root_hpa & PAGE_MASK);
4315
4316         return eptp;
4317 }
4318
4319 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4320 {
4321         unsigned long guest_cr3;
4322         u64 eptp;
4323
4324         guest_cr3 = cr3;
4325         if (enable_ept) {
4326                 eptp = construct_eptp(vcpu, cr3);
4327                 vmcs_write64(EPT_POINTER, eptp);
4328                 if (is_paging(vcpu) || is_guest_mode(vcpu))
4329                         guest_cr3 = kvm_read_cr3(vcpu);
4330                 else
4331                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4332                 ept_load_pdptrs(vcpu);
4333         }
4334
4335         vmx_flush_tlb(vcpu);
4336         vmcs_writel(GUEST_CR3, guest_cr3);
4337 }
4338
4339 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4340 {
4341         /*
4342          * Pass through host's Machine Check Enable value to hw_cr4, which
4343          * is in force while we are in guest mode.  Do not let guests control
4344          * this bit, even if host CR4.MCE == 0.
4345          */
4346         unsigned long hw_cr4 =
4347                 (cr4_read_shadow() & X86_CR4_MCE) |
4348                 (cr4 & ~X86_CR4_MCE) |
4349                 (to_vmx(vcpu)->rmode.vm86_active ?
4350                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4351
4352         if (cr4 & X86_CR4_VMXE) {
4353                 /*
4354                  * To use VMXON (and later other VMX instructions), a guest
4355                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
4356                  * So basically the check on whether to allow nested VMX
4357                  * is here.
4358                  */
4359                 if (!nested_vmx_allowed(vcpu))
4360                         return 1;
4361         }
4362
4363         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4364                 return 1;
4365
4366         vcpu->arch.cr4 = cr4;
4367         if (enable_ept) {
4368                 if (!is_paging(vcpu)) {
4369                         hw_cr4 &= ~X86_CR4_PAE;
4370                         hw_cr4 |= X86_CR4_PSE;
4371                 } else if (!(cr4 & X86_CR4_PAE)) {
4372                         hw_cr4 &= ~X86_CR4_PAE;
4373                 }
4374         }
4375
4376         if (!enable_unrestricted_guest && !is_paging(vcpu))
4377                 /*
4378                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4379                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4380                  * to be manually disabled when guest switches to non-paging
4381                  * mode.
4382                  *
4383                  * If !enable_unrestricted_guest, the CPU is always running
4384                  * with CR0.PG=1 and CR4 needs to be modified.
4385                  * If enable_unrestricted_guest, the CPU automatically
4386                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4387                  */
4388                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4389
4390         vmcs_writel(CR4_READ_SHADOW, cr4);
4391         vmcs_writel(GUEST_CR4, hw_cr4);
4392         return 0;
4393 }
4394
4395 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4396                             struct kvm_segment *var, int seg)
4397 {
4398         struct vcpu_vmx *vmx = to_vmx(vcpu);
4399         u32 ar;
4400
4401         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4402                 *var = vmx->rmode.segs[seg];
4403                 if (seg == VCPU_SREG_TR
4404                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4405                         return;
4406                 var->base = vmx_read_guest_seg_base(vmx, seg);
4407                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4408                 return;
4409         }
4410         var->base = vmx_read_guest_seg_base(vmx, seg);
4411         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4412         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4413         ar = vmx_read_guest_seg_ar(vmx, seg);
4414         var->unusable = (ar >> 16) & 1;
4415         var->type = ar & 15;
4416         var->s = (ar >> 4) & 1;
4417         var->dpl = (ar >> 5) & 3;
4418         /*
4419          * Some userspaces do not preserve unusable property. Since usable
4420          * segment has to be present according to VMX spec we can use present
4421          * property to amend userspace bug by making unusable segment always
4422          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4423          * segment as unusable.
4424          */
4425         var->present = !var->unusable;
4426         var->avl = (ar >> 12) & 1;
4427         var->l = (ar >> 13) & 1;
4428         var->db = (ar >> 14) & 1;
4429         var->g = (ar >> 15) & 1;
4430 }
4431
4432 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4433 {
4434         struct kvm_segment s;
4435
4436         if (to_vmx(vcpu)->rmode.vm86_active) {
4437                 vmx_get_segment(vcpu, &s, seg);
4438                 return s.base;
4439         }
4440         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4441 }
4442
4443 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4444 {
4445         struct vcpu_vmx *vmx = to_vmx(vcpu);
4446
4447         if (unlikely(vmx->rmode.vm86_active))
4448                 return 0;
4449         else {
4450                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4451                 return VMX_AR_DPL(ar);
4452         }
4453 }
4454
4455 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4456 {
4457         u32 ar;
4458
4459         if (var->unusable || !var->present)
4460                 ar = 1 << 16;
4461         else {
4462                 ar = var->type & 15;
4463                 ar |= (var->s & 1) << 4;
4464                 ar |= (var->dpl & 3) << 5;
4465                 ar |= (var->present & 1) << 7;
4466                 ar |= (var->avl & 1) << 12;
4467                 ar |= (var->l & 1) << 13;
4468                 ar |= (var->db & 1) << 14;
4469                 ar |= (var->g & 1) << 15;
4470         }
4471
4472         return ar;
4473 }
4474
4475 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4476                             struct kvm_segment *var, int seg)
4477 {
4478         struct vcpu_vmx *vmx = to_vmx(vcpu);
4479         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4480
4481         vmx_segment_cache_clear(vmx);
4482
4483         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4484                 vmx->rmode.segs[seg] = *var;
4485                 if (seg == VCPU_SREG_TR)
4486                         vmcs_write16(sf->selector, var->selector);
4487                 else if (var->s)
4488                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4489                 goto out;
4490         }
4491
4492         vmcs_writel(sf->base, var->base);
4493         vmcs_write32(sf->limit, var->limit);
4494         vmcs_write16(sf->selector, var->selector);
4495
4496         /*
4497          *   Fix the "Accessed" bit in AR field of segment registers for older
4498          * qemu binaries.
4499          *   IA32 arch specifies that at the time of processor reset the
4500          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4501          * is setting it to 0 in the userland code. This causes invalid guest
4502          * state vmexit when "unrestricted guest" mode is turned on.
4503          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4504          * tree. Newer qemu binaries with that qemu fix would not need this
4505          * kvm hack.
4506          */
4507         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4508                 var->type |= 0x1; /* Accessed */
4509
4510         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4511
4512 out:
4513         vmx->emulation_required = emulation_required(vcpu);
4514 }
4515
4516 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4517 {
4518         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4519
4520         *db = (ar >> 14) & 1;
4521         *l = (ar >> 13) & 1;
4522 }
4523
4524 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4525 {
4526         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4527         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4528 }
4529
4530 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4531 {
4532         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4533         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4534 }
4535
4536 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4537 {
4538         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4539         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4540 }
4541
4542 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4543 {
4544         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4545         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4546 }
4547
4548 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4549 {
4550         struct kvm_segment var;
4551         u32 ar;
4552
4553         vmx_get_segment(vcpu, &var, seg);
4554         var.dpl = 0x3;
4555         if (seg == VCPU_SREG_CS)
4556                 var.type = 0x3;
4557         ar = vmx_segment_access_rights(&var);
4558
4559         if (var.base != (var.selector << 4))
4560                 return false;
4561         if (var.limit != 0xffff)
4562                 return false;
4563         if (ar != 0xf3)
4564                 return false;
4565
4566         return true;
4567 }
4568
4569 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4570 {
4571         struct kvm_segment cs;
4572         unsigned int cs_rpl;
4573
4574         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4575         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4576
4577         if (cs.unusable)
4578                 return false;
4579         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4580                 return false;
4581         if (!cs.s)
4582                 return false;
4583         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4584                 if (cs.dpl > cs_rpl)
4585                         return false;
4586         } else {
4587                 if (cs.dpl != cs_rpl)
4588                         return false;
4589         }
4590         if (!cs.present)
4591                 return false;
4592
4593         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4594         return true;
4595 }
4596
4597 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4598 {
4599         struct kvm_segment ss;
4600         unsigned int ss_rpl;
4601
4602         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4603         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4604
4605         if (ss.unusable)
4606                 return true;
4607         if (ss.type != 3 && ss.type != 7)
4608                 return false;
4609         if (!ss.s)
4610                 return false;
4611         if (ss.dpl != ss_rpl) /* DPL != RPL */
4612                 return false;
4613         if (!ss.present)
4614                 return false;
4615
4616         return true;
4617 }
4618
4619 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4620 {
4621         struct kvm_segment var;
4622         unsigned int rpl;
4623
4624         vmx_get_segment(vcpu, &var, seg);
4625         rpl = var.selector & SEGMENT_RPL_MASK;
4626
4627         if (var.unusable)
4628                 return true;
4629         if (!var.s)
4630                 return false;
4631         if (!var.present)
4632                 return false;
4633         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4634                 if (var.dpl < rpl) /* DPL < RPL */
4635                         return false;
4636         }
4637
4638         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4639          * rights flags
4640          */
4641         return true;
4642 }
4643
4644 static bool tr_valid(struct kvm_vcpu *vcpu)
4645 {
4646         struct kvm_segment tr;
4647
4648         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4649
4650         if (tr.unusable)
4651                 return false;
4652         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4653                 return false;
4654         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4655                 return false;
4656         if (!tr.present)
4657                 return false;
4658
4659         return true;
4660 }
4661
4662 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4663 {
4664         struct kvm_segment ldtr;
4665
4666         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4667
4668         if (ldtr.unusable)
4669                 return true;
4670         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4671                 return false;
4672         if (ldtr.type != 2)
4673                 return false;
4674         if (!ldtr.present)
4675                 return false;
4676
4677         return true;
4678 }
4679
4680 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4681 {
4682         struct kvm_segment cs, ss;
4683
4684         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4685         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4686
4687         return ((cs.selector & SEGMENT_RPL_MASK) ==
4688                  (ss.selector & SEGMENT_RPL_MASK));
4689 }
4690
4691 /*
4692  * Check if guest state is valid. Returns true if valid, false if
4693  * not.
4694  * We assume that registers are always usable
4695  */
4696 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4697 {
4698         if (enable_unrestricted_guest)
4699                 return true;
4700
4701         /* real mode guest state checks */
4702         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4703                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4704                         return false;
4705                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4706                         return false;
4707                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4708                         return false;
4709                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4710                         return false;
4711                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4712                         return false;
4713                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4714                         return false;
4715         } else {
4716         /* protected mode guest state checks */
4717                 if (!cs_ss_rpl_check(vcpu))
4718                         return false;
4719                 if (!code_segment_valid(vcpu))
4720                         return false;
4721                 if (!stack_segment_valid(vcpu))
4722                         return false;
4723                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4724                         return false;
4725                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4726                         return false;
4727                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4728                         return false;
4729                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4730                         return false;
4731                 if (!tr_valid(vcpu))
4732                         return false;
4733                 if (!ldtr_valid(vcpu))
4734                         return false;
4735         }
4736         /* TODO:
4737          * - Add checks on RIP
4738          * - Add checks on RFLAGS
4739          */
4740
4741         return true;
4742 }
4743
4744 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
4745 {
4746         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
4747 }
4748
4749 static int init_rmode_tss(struct kvm *kvm)
4750 {
4751         gfn_t fn;
4752         u16 data = 0;
4753         int idx, r;
4754
4755         idx = srcu_read_lock(&kvm->srcu);
4756         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4757         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4758         if (r < 0)
4759                 goto out;
4760         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4761         r = kvm_write_guest_page(kvm, fn++, &data,
4762                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4763         if (r < 0)
4764                 goto out;
4765         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4766         if (r < 0)
4767                 goto out;
4768         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4769         if (r < 0)
4770                 goto out;
4771         data = ~0;
4772         r = kvm_write_guest_page(kvm, fn, &data,
4773                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4774                                  sizeof(u8));
4775 out:
4776         srcu_read_unlock(&kvm->srcu, idx);
4777         return r;
4778 }
4779
4780 static int init_rmode_identity_map(struct kvm *kvm)
4781 {
4782         int i, idx, r = 0;
4783         kvm_pfn_t identity_map_pfn;
4784         u32 tmp;
4785
4786         if (!enable_ept)
4787                 return 0;
4788
4789         /* Protect kvm->arch.ept_identity_pagetable_done. */
4790         mutex_lock(&kvm->slots_lock);
4791
4792         if (likely(kvm->arch.ept_identity_pagetable_done))
4793                 goto out2;
4794
4795         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4796
4797         r = alloc_identity_pagetable(kvm);
4798         if (r < 0)
4799                 goto out2;
4800
4801         idx = srcu_read_lock(&kvm->srcu);
4802         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4803         if (r < 0)
4804                 goto out;
4805         /* Set up identity-mapping pagetable for EPT in real mode */
4806         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4807                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4808                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4809                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4810                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4811                 if (r < 0)
4812                         goto out;
4813         }
4814         kvm->arch.ept_identity_pagetable_done = true;
4815
4816 out:
4817         srcu_read_unlock(&kvm->srcu, idx);
4818
4819 out2:
4820         mutex_unlock(&kvm->slots_lock);
4821         return r;
4822 }
4823
4824 static void seg_setup(int seg)
4825 {
4826         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4827         unsigned int ar;
4828
4829         vmcs_write16(sf->selector, 0);
4830         vmcs_writel(sf->base, 0);
4831         vmcs_write32(sf->limit, 0xffff);
4832         ar = 0x93;
4833         if (seg == VCPU_SREG_CS)
4834                 ar |= 0x08; /* code segment */
4835
4836         vmcs_write32(sf->ar_bytes, ar);
4837 }
4838
4839 static int alloc_apic_access_page(struct kvm *kvm)
4840 {
4841         struct page *page;
4842         int r = 0;
4843
4844         mutex_lock(&kvm->slots_lock);
4845         if (kvm->arch.apic_access_page_done)
4846                 goto out;
4847         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4848                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4849         if (r)
4850                 goto out;
4851
4852         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4853         if (is_error_page(page)) {
4854                 r = -EFAULT;
4855                 goto out;
4856         }
4857
4858         /*
4859          * Do not pin the page in memory, so that memory hot-unplug
4860          * is able to migrate it.
4861          */
4862         put_page(page);
4863         kvm->arch.apic_access_page_done = true;
4864 out:
4865         mutex_unlock(&kvm->slots_lock);
4866         return r;
4867 }
4868
4869 static int alloc_identity_pagetable(struct kvm *kvm)
4870 {
4871         /* Called with kvm->slots_lock held. */
4872
4873         int r = 0;
4874
4875         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4876
4877         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4878                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4879
4880         return r;
4881 }
4882
4883 static int allocate_vpid(void)
4884 {
4885         int vpid;
4886
4887         if (!enable_vpid)
4888                 return 0;
4889         spin_lock(&vmx_vpid_lock);
4890         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4891         if (vpid < VMX_NR_VPIDS)
4892                 __set_bit(vpid, vmx_vpid_bitmap);
4893         else
4894                 vpid = 0;
4895         spin_unlock(&vmx_vpid_lock);
4896         return vpid;
4897 }
4898
4899 static void free_vpid(int vpid)
4900 {
4901         if (!enable_vpid || vpid == 0)
4902                 return;
4903         spin_lock(&vmx_vpid_lock);
4904         __clear_bit(vpid, vmx_vpid_bitmap);
4905         spin_unlock(&vmx_vpid_lock);
4906 }
4907
4908 #define MSR_TYPE_R      1
4909 #define MSR_TYPE_W      2
4910 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4911                                                 u32 msr, int type)
4912 {
4913         int f = sizeof(unsigned long);
4914
4915         if (!cpu_has_vmx_msr_bitmap())
4916                 return;
4917
4918         /*
4919          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4920          * have the write-low and read-high bitmap offsets the wrong way round.
4921          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4922          */
4923         if (msr <= 0x1fff) {
4924                 if (type & MSR_TYPE_R)
4925                         /* read-low */
4926                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4927
4928                 if (type & MSR_TYPE_W)
4929                         /* write-low */
4930                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4931
4932         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4933                 msr &= 0x1fff;
4934                 if (type & MSR_TYPE_R)
4935                         /* read-high */
4936                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4937
4938                 if (type & MSR_TYPE_W)
4939                         /* write-high */
4940                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4941
4942         }
4943 }
4944
4945 /*
4946  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4947  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4948  */
4949 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4950                                                unsigned long *msr_bitmap_nested,
4951                                                u32 msr, int type)
4952 {
4953         int f = sizeof(unsigned long);
4954
4955         if (!cpu_has_vmx_msr_bitmap()) {
4956                 WARN_ON(1);
4957                 return;
4958         }
4959
4960         /*
4961          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4962          * have the write-low and read-high bitmap offsets the wrong way round.
4963          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4964          */
4965         if (msr <= 0x1fff) {
4966                 if (type & MSR_TYPE_R &&
4967                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4968                         /* read-low */
4969                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4970
4971                 if (type & MSR_TYPE_W &&
4972                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4973                         /* write-low */
4974                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4975
4976         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4977                 msr &= 0x1fff;
4978                 if (type & MSR_TYPE_R &&
4979                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4980                         /* read-high */
4981                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4982
4983                 if (type & MSR_TYPE_W &&
4984                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4985                         /* write-high */
4986                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4987
4988         }
4989 }
4990
4991 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4992 {
4993         if (!longmode_only)
4994                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4995                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4996         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4997                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4998 }
4999
5000 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
5001 {
5002         if (apicv_active) {
5003                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
5004                                 msr, type);
5005                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
5006                                 msr, type);
5007         } else {
5008                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
5009                                 msr, type);
5010                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
5011                                 msr, type);
5012         }
5013 }
5014
5015 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
5016 {
5017         return enable_apicv;
5018 }
5019
5020 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5021 {
5022         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5023         gfn_t gfn;
5024
5025         /*
5026          * Don't need to mark the APIC access page dirty; it is never
5027          * written to by the CPU during APIC virtualization.
5028          */
5029
5030         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5031                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5032                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5033         }
5034
5035         if (nested_cpu_has_posted_intr(vmcs12)) {
5036                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5037                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5038         }
5039 }
5040
5041
5042 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
5043 {
5044         struct vcpu_vmx *vmx = to_vmx(vcpu);
5045         int max_irr;
5046         void *vapic_page;
5047         u16 status;
5048
5049         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5050                 return;
5051
5052         vmx->nested.pi_pending = false;
5053         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5054                 return;
5055
5056         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5057         if (max_irr != 256) {
5058                 vapic_page = kmap(vmx->nested.virtual_apic_page);
5059                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
5060                 kunmap(vmx->nested.virtual_apic_page);
5061
5062                 status = vmcs_read16(GUEST_INTR_STATUS);
5063                 if ((u8)max_irr > ((u8)status & 0xff)) {
5064                         status &= ~0xff;
5065                         status |= (u8)max_irr;
5066                         vmcs_write16(GUEST_INTR_STATUS, status);
5067                 }
5068         }
5069
5070         nested_mark_vmcs12_pages_dirty(vcpu);
5071 }
5072
5073 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5074                                                      bool nested)
5075 {
5076 #ifdef CONFIG_SMP
5077         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5078
5079         if (vcpu->mode == IN_GUEST_MODE) {
5080                 /*
5081                  * The vector of interrupt to be delivered to vcpu had
5082                  * been set in PIR before this function.
5083                  *
5084                  * Following cases will be reached in this block, and
5085                  * we always send a notification event in all cases as
5086                  * explained below.
5087                  *
5088                  * Case 1: vcpu keeps in non-root mode. Sending a
5089                  * notification event posts the interrupt to vcpu.
5090                  *
5091                  * Case 2: vcpu exits to root mode and is still
5092                  * runnable. PIR will be synced to vIRR before the
5093                  * next vcpu entry. Sending a notification event in
5094                  * this case has no effect, as vcpu is not in root
5095                  * mode.
5096                  *
5097                  * Case 3: vcpu exits to root mode and is blocked.
5098                  * vcpu_block() has already synced PIR to vIRR and
5099                  * never blocks vcpu if vIRR is not cleared. Therefore,
5100                  * a blocked vcpu here does not wait for any requested
5101                  * interrupts in PIR, and sending a notification event
5102                  * which has no effect is safe here.
5103                  */
5104
5105                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5106                 return true;
5107         }
5108 #endif
5109         return false;
5110 }
5111
5112 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5113                                                 int vector)
5114 {
5115         struct vcpu_vmx *vmx = to_vmx(vcpu);
5116
5117         if (is_guest_mode(vcpu) &&
5118             vector == vmx->nested.posted_intr_nv) {
5119                 /* the PIR and ON have been set by L1. */
5120                 kvm_vcpu_trigger_posted_interrupt(vcpu, true);
5121                 /*
5122                  * If a posted intr is not recognized by hardware,
5123                  * we will accomplish it in the next vmentry.
5124                  */
5125                 vmx->nested.pi_pending = true;
5126                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5127                 return 0;
5128         }
5129         return -1;
5130 }
5131 /*
5132  * Send interrupt to vcpu via posted interrupt way.
5133  * 1. If target vcpu is running(non-root mode), send posted interrupt
5134  * notification to vcpu and hardware will sync PIR to vIRR atomically.
5135  * 2. If target vcpu isn't running(root mode), kick it to pick up the
5136  * interrupt from PIR in next vmentry.
5137  */
5138 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5139 {
5140         struct vcpu_vmx *vmx = to_vmx(vcpu);
5141         int r;
5142
5143         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5144         if (!r)
5145                 return;
5146
5147         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5148                 return;
5149
5150         /* If a previous notification has sent the IPI, nothing to do.  */
5151         if (pi_test_and_set_on(&vmx->pi_desc))
5152                 return;
5153
5154         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5155                 kvm_vcpu_kick(vcpu);
5156 }
5157
5158 /*
5159  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5160  * will not change in the lifetime of the guest.
5161  * Note that host-state that does change is set elsewhere. E.g., host-state
5162  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5163  */
5164 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5165 {
5166         u32 low32, high32;
5167         unsigned long tmpl;
5168         struct desc_ptr dt;
5169         unsigned long cr0, cr3, cr4;
5170
5171         cr0 = read_cr0();
5172         WARN_ON(cr0 & X86_CR0_TS);
5173         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5174
5175         /*
5176          * Save the most likely value for this task's CR3 in the VMCS.
5177          * We can't use __get_current_cr3_fast() because we're not atomic.
5178          */
5179         cr3 = __read_cr3();
5180         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
5181         vmx->host_state.vmcs_host_cr3 = cr3;
5182
5183         /* Save the most likely value for this task's CR4 in the VMCS. */
5184         cr4 = cr4_read_shadow();
5185         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5186         vmx->host_state.vmcs_host_cr4 = cr4;
5187
5188         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5189 #ifdef CONFIG_X86_64
5190         /*
5191          * Load null selectors, so we can avoid reloading them in
5192          * __vmx_load_host_state(), in case userspace uses the null selectors
5193          * too (the expected case).
5194          */
5195         vmcs_write16(HOST_DS_SELECTOR, 0);
5196         vmcs_write16(HOST_ES_SELECTOR, 0);
5197 #else
5198         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5199         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5200 #endif
5201         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5202         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5203
5204         store_idt(&dt);
5205         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5206         vmx->host_idt_base = dt.address;
5207
5208         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5209
5210         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5211         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5212         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5213         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5214
5215         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5216                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5217                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5218         }
5219 }
5220
5221 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5222 {
5223         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5224         if (enable_ept)
5225                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5226         if (is_guest_mode(&vmx->vcpu))
5227                 vmx->vcpu.arch.cr4_guest_owned_bits &=
5228                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5229         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5230 }
5231
5232 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5233 {
5234         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5235
5236         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5237                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5238         /* Enable the preemption timer dynamically */
5239         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5240         return pin_based_exec_ctrl;
5241 }
5242
5243 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5244 {
5245         struct vcpu_vmx *vmx = to_vmx(vcpu);
5246
5247         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5248         if (cpu_has_secondary_exec_ctrls()) {
5249                 if (kvm_vcpu_apicv_active(vcpu))
5250                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5251                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
5252                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5253                 else
5254                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5255                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
5256                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5257         }
5258
5259         if (cpu_has_vmx_msr_bitmap())
5260                 vmx_set_msr_bitmap(vcpu);
5261 }
5262
5263 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5264 {
5265         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5266
5267         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5268                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5269
5270         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5271                 exec_control &= ~CPU_BASED_TPR_SHADOW;
5272 #ifdef CONFIG_X86_64
5273                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5274                                 CPU_BASED_CR8_LOAD_EXITING;
5275 #endif
5276         }
5277         if (!enable_ept)
5278                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5279                                 CPU_BASED_CR3_LOAD_EXITING  |
5280                                 CPU_BASED_INVLPG_EXITING;
5281         return exec_control;
5282 }
5283
5284 static bool vmx_rdrand_supported(void)
5285 {
5286         return vmcs_config.cpu_based_2nd_exec_ctrl &
5287                 SECONDARY_EXEC_RDRAND;
5288 }
5289
5290 static bool vmx_rdseed_supported(void)
5291 {
5292         return vmcs_config.cpu_based_2nd_exec_ctrl &
5293                 SECONDARY_EXEC_RDSEED;
5294 }
5295
5296 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
5297 {
5298         struct kvm_vcpu *vcpu = &vmx->vcpu;
5299
5300         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5301         if (!cpu_need_virtualize_apic_accesses(vcpu))
5302                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5303         if (vmx->vpid == 0)
5304                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5305         if (!enable_ept) {
5306                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5307                 enable_unrestricted_guest = 0;
5308                 /* Enable INVPCID for non-ept guests may cause performance regression. */
5309                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5310         }
5311         if (!enable_unrestricted_guest)
5312                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5313         if (!ple_gap)
5314                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5315         if (!kvm_vcpu_apicv_active(vcpu))
5316                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5317                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5318         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5319         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5320            (handle_vmptrld).
5321            We can NOT enable shadow_vmcs here because we don't have yet
5322            a current VMCS12
5323         */
5324         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5325
5326         if (!enable_pml)
5327                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5328
5329         if (vmx_xsaves_supported()) {
5330                 /* Exposing XSAVES only when XSAVE is exposed */
5331                 bool xsaves_enabled =
5332                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5333                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5334
5335                 if (!xsaves_enabled)
5336                         exec_control &= ~SECONDARY_EXEC_XSAVES;
5337
5338                 if (nested) {
5339                         if (xsaves_enabled)
5340                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5341                                         SECONDARY_EXEC_XSAVES;
5342                         else
5343                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5344                                         ~SECONDARY_EXEC_XSAVES;
5345                 }
5346         }
5347
5348         if (vmx_rdtscp_supported()) {
5349                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5350                 if (!rdtscp_enabled)
5351                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
5352
5353                 if (nested) {
5354                         if (rdtscp_enabled)
5355                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5356                                         SECONDARY_EXEC_RDTSCP;
5357                         else
5358                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5359                                         ~SECONDARY_EXEC_RDTSCP;
5360                 }
5361         }
5362
5363         if (vmx_invpcid_supported()) {
5364                 /* Exposing INVPCID only when PCID is exposed */
5365                 bool invpcid_enabled =
5366                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5367                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5368
5369                 if (!invpcid_enabled) {
5370                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5371                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5372                 }
5373
5374                 if (nested) {
5375                         if (invpcid_enabled)
5376                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5377                                         SECONDARY_EXEC_ENABLE_INVPCID;
5378                         else
5379                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5380                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
5381                 }
5382         }
5383
5384         if (vmx_rdrand_supported()) {
5385                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5386                 if (rdrand_enabled)
5387                         exec_control &= ~SECONDARY_EXEC_RDRAND;
5388
5389                 if (nested) {
5390                         if (rdrand_enabled)
5391                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5392                                         SECONDARY_EXEC_RDRAND;
5393                         else
5394                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5395                                         ~SECONDARY_EXEC_RDRAND;
5396                 }
5397         }
5398
5399         if (vmx_rdseed_supported()) {
5400                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5401                 if (rdseed_enabled)
5402                         exec_control &= ~SECONDARY_EXEC_RDSEED;
5403
5404                 if (nested) {
5405                         if (rdseed_enabled)
5406                                 vmx->nested.nested_vmx_secondary_ctls_high |=
5407                                         SECONDARY_EXEC_RDSEED;
5408                         else
5409                                 vmx->nested.nested_vmx_secondary_ctls_high &=
5410                                         ~SECONDARY_EXEC_RDSEED;
5411                 }
5412         }
5413
5414         vmx->secondary_exec_control = exec_control;
5415 }
5416
5417 static void ept_set_mmio_spte_mask(void)
5418 {
5419         /*
5420          * EPT Misconfigurations can be generated if the value of bits 2:0
5421          * of an EPT paging-structure entry is 110b (write/execute).
5422          */
5423         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5424                                    VMX_EPT_MISCONFIG_WX_VALUE);
5425 }
5426
5427 #define VMX_XSS_EXIT_BITMAP 0
5428 /*
5429  * Sets up the vmcs for emulated real mode.
5430  */
5431 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5432 {
5433 #ifdef CONFIG_X86_64
5434         unsigned long a;
5435 #endif
5436         int i;
5437
5438         /* I/O */
5439         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5440         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5441
5442         if (enable_shadow_vmcs) {
5443                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5444                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5445         }
5446         if (cpu_has_vmx_msr_bitmap())
5447                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5448
5449         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5450
5451         /* Control */
5452         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5453         vmx->hv_deadline_tsc = -1;
5454
5455         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5456
5457         if (cpu_has_secondary_exec_ctrls()) {
5458                 vmx_compute_secondary_exec_control(vmx);
5459                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5460                              vmx->secondary_exec_control);
5461         }
5462
5463         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5464                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5465                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5466                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5467                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5468
5469                 vmcs_write16(GUEST_INTR_STATUS, 0);
5470
5471                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5472                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5473         }
5474
5475         if (ple_gap) {
5476                 vmcs_write32(PLE_GAP, ple_gap);
5477                 vmx->ple_window = ple_window;
5478                 vmx->ple_window_dirty = true;
5479         }
5480
5481         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5482         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5483         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5484
5485         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5486         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5487         vmx_set_constant_host_state(vmx);
5488 #ifdef CONFIG_X86_64
5489         rdmsrl(MSR_FS_BASE, a);
5490         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5491         rdmsrl(MSR_GS_BASE, a);
5492         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5493 #else
5494         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5495         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5496 #endif
5497
5498         if (cpu_has_vmx_vmfunc())
5499                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
5500
5501         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5502         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5503         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5504         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5505         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5506
5507         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5508                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5509
5510         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5511                 u32 index = vmx_msr_index[i];
5512                 u32 data_low, data_high;
5513                 int j = vmx->nmsrs;
5514
5515                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5516                         continue;
5517                 if (wrmsr_safe(index, data_low, data_high) < 0)
5518                         continue;
5519                 vmx->guest_msrs[j].index = i;
5520                 vmx->guest_msrs[j].data = 0;
5521                 vmx->guest_msrs[j].mask = -1ull;
5522                 ++vmx->nmsrs;
5523         }
5524
5525
5526         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5527
5528         /* 22.2.1, 20.8.1 */
5529         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5530
5531         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5532         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5533
5534         set_cr4_guest_host_mask(vmx);
5535
5536         if (vmx_xsaves_supported())
5537                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5538
5539         if (enable_pml) {
5540                 ASSERT(vmx->pml_pg);
5541                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5542                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5543         }
5544
5545         return 0;
5546 }
5547
5548 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5549 {
5550         struct vcpu_vmx *vmx = to_vmx(vcpu);
5551         struct msr_data apic_base_msr;
5552         u64 cr0;
5553
5554         vmx->rmode.vm86_active = 0;
5555
5556         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5557         kvm_set_cr8(vcpu, 0);
5558
5559         if (!init_event) {
5560                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5561                                      MSR_IA32_APICBASE_ENABLE;
5562                 if (kvm_vcpu_is_reset_bsp(vcpu))
5563                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5564                 apic_base_msr.host_initiated = true;
5565                 kvm_set_apic_base(vcpu, &apic_base_msr);
5566         }
5567
5568         vmx_segment_cache_clear(vmx);
5569
5570         seg_setup(VCPU_SREG_CS);
5571         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5572         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5573
5574         seg_setup(VCPU_SREG_DS);
5575         seg_setup(VCPU_SREG_ES);
5576         seg_setup(VCPU_SREG_FS);
5577         seg_setup(VCPU_SREG_GS);
5578         seg_setup(VCPU_SREG_SS);
5579
5580         vmcs_write16(GUEST_TR_SELECTOR, 0);
5581         vmcs_writel(GUEST_TR_BASE, 0);
5582         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5583         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5584
5585         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5586         vmcs_writel(GUEST_LDTR_BASE, 0);
5587         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5588         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5589
5590         if (!init_event) {
5591                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5592                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5593                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5594                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5595         }
5596
5597         vmcs_writel(GUEST_RFLAGS, 0x02);
5598         kvm_rip_write(vcpu, 0xfff0);
5599
5600         vmcs_writel(GUEST_GDTR_BASE, 0);
5601         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5602
5603         vmcs_writel(GUEST_IDTR_BASE, 0);
5604         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5605
5606         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5607         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5608         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5609
5610         setup_msrs(vmx);
5611
5612         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5613
5614         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5615                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5616                 if (cpu_need_tpr_shadow(vcpu))
5617                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5618                                      __pa(vcpu->arch.apic->regs));
5619                 vmcs_write32(TPR_THRESHOLD, 0);
5620         }
5621
5622         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5623
5624         if (kvm_vcpu_apicv_active(vcpu))
5625                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5626
5627         if (vmx->vpid != 0)
5628                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5629
5630         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5631         vmx->vcpu.arch.cr0 = cr0;
5632         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5633         vmx_set_cr4(vcpu, 0);
5634         vmx_set_efer(vcpu, 0);
5635
5636         update_exception_bitmap(vcpu);
5637
5638         vpid_sync_context(vmx->vpid);
5639 }
5640
5641 /*
5642  * In nested virtualization, check if L1 asked to exit on external interrupts.
5643  * For most existing hypervisors, this will always return true.
5644  */
5645 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5646 {
5647         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5648                 PIN_BASED_EXT_INTR_MASK;
5649 }
5650
5651 /*
5652  * In nested virtualization, check if L1 has set
5653  * VM_EXIT_ACK_INTR_ON_EXIT
5654  */
5655 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5656 {
5657         return get_vmcs12(vcpu)->vm_exit_controls &
5658                 VM_EXIT_ACK_INTR_ON_EXIT;
5659 }
5660
5661 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5662 {
5663         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5664                 PIN_BASED_NMI_EXITING;
5665 }
5666
5667 static void enable_irq_window(struct kvm_vcpu *vcpu)
5668 {
5669         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5670                       CPU_BASED_VIRTUAL_INTR_PENDING);
5671 }
5672
5673 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5674 {
5675         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5676                 enable_irq_window(vcpu);
5677                 return;
5678         }
5679
5680         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5681                       CPU_BASED_VIRTUAL_NMI_PENDING);
5682 }
5683
5684 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5685 {
5686         struct vcpu_vmx *vmx = to_vmx(vcpu);
5687         uint32_t intr;
5688         int irq = vcpu->arch.interrupt.nr;
5689
5690         trace_kvm_inj_virq(irq);
5691
5692         ++vcpu->stat.irq_injections;
5693         if (vmx->rmode.vm86_active) {
5694                 int inc_eip = 0;
5695                 if (vcpu->arch.interrupt.soft)
5696                         inc_eip = vcpu->arch.event_exit_inst_len;
5697                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5698                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5699                 return;
5700         }
5701         intr = irq | INTR_INFO_VALID_MASK;
5702         if (vcpu->arch.interrupt.soft) {
5703                 intr |= INTR_TYPE_SOFT_INTR;
5704                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5705                              vmx->vcpu.arch.event_exit_inst_len);
5706         } else
5707                 intr |= INTR_TYPE_EXT_INTR;
5708         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5709 }
5710
5711 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5712 {
5713         struct vcpu_vmx *vmx = to_vmx(vcpu);
5714
5715         ++vcpu->stat.nmi_injections;
5716         vmx->loaded_vmcs->nmi_known_unmasked = false;
5717
5718         if (vmx->rmode.vm86_active) {
5719                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5720                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5721                 return;
5722         }
5723
5724         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5725                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5726 }
5727
5728 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5729 {
5730         struct vcpu_vmx *vmx = to_vmx(vcpu);
5731         bool masked;
5732
5733         if (vmx->loaded_vmcs->nmi_known_unmasked)
5734                 return false;
5735         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5736         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5737         return masked;
5738 }
5739
5740 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5741 {
5742         struct vcpu_vmx *vmx = to_vmx(vcpu);
5743
5744         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5745         if (masked)
5746                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5747                               GUEST_INTR_STATE_NMI);
5748         else
5749                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5750                                 GUEST_INTR_STATE_NMI);
5751 }
5752
5753 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5754 {
5755         if (to_vmx(vcpu)->nested.nested_run_pending)
5756                 return 0;
5757
5758         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5759                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5760                    | GUEST_INTR_STATE_NMI));
5761 }
5762
5763 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5764 {
5765         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5766                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5767                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5768                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5769 }
5770
5771 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5772 {
5773         int ret;
5774
5775         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5776                                     PAGE_SIZE * 3);
5777         if (ret)
5778                 return ret;
5779         kvm->arch.tss_addr = addr;
5780         return init_rmode_tss(kvm);
5781 }
5782
5783 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5784 {
5785         switch (vec) {
5786         case BP_VECTOR:
5787                 /*
5788                  * Update instruction length as we may reinject the exception
5789                  * from user space while in guest debugging mode.
5790                  */
5791                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5792                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5793                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5794                         return false;
5795                 /* fall through */
5796         case DB_VECTOR:
5797                 if (vcpu->guest_debug &
5798                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5799                         return false;
5800                 /* fall through */
5801         case DE_VECTOR:
5802         case OF_VECTOR:
5803         case BR_VECTOR:
5804         case UD_VECTOR:
5805         case DF_VECTOR:
5806         case SS_VECTOR:
5807         case GP_VECTOR:
5808         case MF_VECTOR:
5809                 return true;
5810         break;
5811         }
5812         return false;
5813 }
5814
5815 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5816                                   int vec, u32 err_code)
5817 {
5818         /*
5819          * Instruction with address size override prefix opcode 0x67
5820          * Cause the #SS fault with 0 error code in VM86 mode.
5821          */
5822         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5823                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5824                         if (vcpu->arch.halt_request) {
5825                                 vcpu->arch.halt_request = 0;
5826                                 return kvm_vcpu_halt(vcpu);
5827                         }
5828                         return 1;
5829                 }
5830                 return 0;
5831         }
5832
5833         /*
5834          * Forward all other exceptions that are valid in real mode.
5835          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5836          *        the required debugging infrastructure rework.
5837          */
5838         kvm_queue_exception(vcpu, vec);
5839         return 1;
5840 }
5841
5842 /*
5843  * Trigger machine check on the host. We assume all the MSRs are already set up
5844  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5845  * We pass a fake environment to the machine check handler because we want
5846  * the guest to be always treated like user space, no matter what context
5847  * it used internally.
5848  */
5849 static void kvm_machine_check(void)
5850 {
5851 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5852         struct pt_regs regs = {
5853                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5854                 .flags = X86_EFLAGS_IF,
5855         };
5856
5857         do_machine_check(&regs, 0);
5858 #endif
5859 }
5860
5861 static int handle_machine_check(struct kvm_vcpu *vcpu)
5862 {
5863         /* already handled by vcpu_run */
5864         return 1;
5865 }
5866
5867 static int handle_exception(struct kvm_vcpu *vcpu)
5868 {
5869         struct vcpu_vmx *vmx = to_vmx(vcpu);
5870         struct kvm_run *kvm_run = vcpu->run;
5871         u32 intr_info, ex_no, error_code;
5872         unsigned long cr2, rip, dr6;
5873         u32 vect_info;
5874         enum emulation_result er;
5875
5876         vect_info = vmx->idt_vectoring_info;
5877         intr_info = vmx->exit_intr_info;
5878
5879         if (is_machine_check(intr_info))
5880                 return handle_machine_check(vcpu);
5881
5882         if (is_nmi(intr_info))
5883                 return 1;  /* already handled by vmx_vcpu_run() */
5884
5885         if (is_invalid_opcode(intr_info)) {
5886                 if (is_guest_mode(vcpu)) {
5887                         kvm_queue_exception(vcpu, UD_VECTOR);
5888                         return 1;
5889                 }
5890                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5891                 if (er != EMULATE_DONE)
5892                         kvm_queue_exception(vcpu, UD_VECTOR);
5893                 return 1;
5894         }
5895
5896         error_code = 0;
5897         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5898                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5899
5900         /*
5901          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5902          * MMIO, it is better to report an internal error.
5903          * See the comments in vmx_handle_exit.
5904          */
5905         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5906             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5907                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5908                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5909                 vcpu->run->internal.ndata = 3;
5910                 vcpu->run->internal.data[0] = vect_info;
5911                 vcpu->run->internal.data[1] = intr_info;
5912                 vcpu->run->internal.data[2] = error_code;
5913                 return 0;
5914         }
5915
5916         if (is_page_fault(intr_info)) {
5917                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5918                 /* EPT won't cause page fault directly */
5919                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
5920                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0,
5921                                 true);
5922         }
5923
5924         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5925
5926         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5927                 return handle_rmode_exception(vcpu, ex_no, error_code);
5928
5929         switch (ex_no) {
5930         case AC_VECTOR:
5931                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5932                 return 1;
5933         case DB_VECTOR:
5934                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5935                 if (!(vcpu->guest_debug &
5936                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5937                         vcpu->arch.dr6 &= ~15;
5938                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5939                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5940                                 skip_emulated_instruction(vcpu);
5941
5942                         kvm_queue_exception(vcpu, DB_VECTOR);
5943                         return 1;
5944                 }
5945                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5946                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5947                 /* fall through */
5948         case BP_VECTOR:
5949                 /*
5950                  * Update instruction length as we may reinject #BP from
5951                  * user space while in guest debugging mode. Reading it for
5952                  * #DB as well causes no harm, it is not used in that case.
5953                  */
5954                 vmx->vcpu.arch.event_exit_inst_len =
5955                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5956                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5957                 rip = kvm_rip_read(vcpu);
5958                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5959                 kvm_run->debug.arch.exception = ex_no;
5960                 break;
5961         default:
5962                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5963                 kvm_run->ex.exception = ex_no;
5964                 kvm_run->ex.error_code = error_code;
5965                 break;
5966         }
5967         return 0;
5968 }
5969
5970 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5971 {
5972         ++vcpu->stat.irq_exits;
5973         return 1;
5974 }
5975
5976 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5977 {
5978         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5979         vcpu->mmio_needed = 0;
5980         return 0;
5981 }
5982
5983 static int handle_io(struct kvm_vcpu *vcpu)
5984 {
5985         unsigned long exit_qualification;
5986         int size, in, string, ret;
5987         unsigned port;
5988
5989         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5990         string = (exit_qualification & 16) != 0;
5991         in = (exit_qualification & 8) != 0;
5992
5993         ++vcpu->stat.io_exits;
5994
5995         if (string || in)
5996                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5997
5998         port = exit_qualification >> 16;
5999         size = (exit_qualification & 7) + 1;
6000
6001         ret = kvm_skip_emulated_instruction(vcpu);
6002
6003         /*
6004          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6005          * KVM_EXIT_DEBUG here.
6006          */
6007         return kvm_fast_pio_out(vcpu, size, port) && ret;
6008 }
6009
6010 static void
6011 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6012 {
6013         /*
6014          * Patch in the VMCALL instruction:
6015          */
6016         hypercall[0] = 0x0f;
6017         hypercall[1] = 0x01;
6018         hypercall[2] = 0xc1;
6019 }
6020
6021 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
6022 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6023 {
6024         if (is_guest_mode(vcpu)) {
6025                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6026                 unsigned long orig_val = val;
6027
6028                 /*
6029                  * We get here when L2 changed cr0 in a way that did not change
6030                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
6031                  * but did change L0 shadowed bits. So we first calculate the
6032                  * effective cr0 value that L1 would like to write into the
6033                  * hardware. It consists of the L2-owned bits from the new
6034                  * value combined with the L1-owned bits from L1's guest_cr0.
6035                  */
6036                 val = (val & ~vmcs12->cr0_guest_host_mask) |
6037                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6038
6039                 if (!nested_guest_cr0_valid(vcpu, val))
6040                         return 1;
6041
6042                 if (kvm_set_cr0(vcpu, val))
6043                         return 1;
6044                 vmcs_writel(CR0_READ_SHADOW, orig_val);
6045                 return 0;
6046         } else {
6047                 if (to_vmx(vcpu)->nested.vmxon &&
6048                     !nested_host_cr0_valid(vcpu, val))
6049                         return 1;
6050
6051                 return kvm_set_cr0(vcpu, val);
6052         }
6053 }
6054
6055 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6056 {
6057         if (is_guest_mode(vcpu)) {
6058                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6059                 unsigned long orig_val = val;
6060
6061                 /* analogously to handle_set_cr0 */
6062                 val = (val & ~vmcs12->cr4_guest_host_mask) |
6063                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6064                 if (kvm_set_cr4(vcpu, val))
6065                         return 1;
6066                 vmcs_writel(CR4_READ_SHADOW, orig_val);
6067                 return 0;
6068         } else
6069                 return kvm_set_cr4(vcpu, val);
6070 }
6071
6072 static int handle_cr(struct kvm_vcpu *vcpu)
6073 {
6074         unsigned long exit_qualification, val;
6075         int cr;
6076         int reg;
6077         int err;
6078         int ret;
6079
6080         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6081         cr = exit_qualification & 15;
6082         reg = (exit_qualification >> 8) & 15;
6083         switch ((exit_qualification >> 4) & 3) {
6084         case 0: /* mov to cr */
6085                 val = kvm_register_readl(vcpu, reg);
6086                 trace_kvm_cr_write(cr, val);
6087                 switch (cr) {
6088                 case 0:
6089                         err = handle_set_cr0(vcpu, val);
6090                         return kvm_complete_insn_gp(vcpu, err);
6091                 case 3:
6092                         err = kvm_set_cr3(vcpu, val);
6093                         return kvm_complete_insn_gp(vcpu, err);
6094                 case 4:
6095                         err = handle_set_cr4(vcpu, val);
6096                         return kvm_complete_insn_gp(vcpu, err);
6097                 case 8: {
6098                                 u8 cr8_prev = kvm_get_cr8(vcpu);
6099                                 u8 cr8 = (u8)val;
6100                                 err = kvm_set_cr8(vcpu, cr8);
6101                                 ret = kvm_complete_insn_gp(vcpu, err);
6102                                 if (lapic_in_kernel(vcpu))
6103                                         return ret;
6104                                 if (cr8_prev <= cr8)
6105                                         return ret;
6106                                 /*
6107                                  * TODO: we might be squashing a
6108                                  * KVM_GUESTDBG_SINGLESTEP-triggered
6109                                  * KVM_EXIT_DEBUG here.
6110                                  */
6111                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
6112                                 return 0;
6113                         }
6114                 }
6115                 break;
6116         case 2: /* clts */
6117                 WARN_ONCE(1, "Guest should always own CR0.TS");
6118                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
6119                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6120                 return kvm_skip_emulated_instruction(vcpu);
6121         case 1: /*mov from cr*/
6122                 switch (cr) {
6123                 case 3:
6124                         val = kvm_read_cr3(vcpu);
6125                         kvm_register_write(vcpu, reg, val);
6126                         trace_kvm_cr_read(cr, val);
6127                         return kvm_skip_emulated_instruction(vcpu);
6128                 case 8:
6129                         val = kvm_get_cr8(vcpu);
6130                         kvm_register_write(vcpu, reg, val);
6131                         trace_kvm_cr_read(cr, val);
6132                         return kvm_skip_emulated_instruction(vcpu);
6133                 }
6134                 break;
6135         case 3: /* lmsw */
6136                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6137                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
6138                 kvm_lmsw(vcpu, val);
6139
6140                 return kvm_skip_emulated_instruction(vcpu);
6141         default:
6142                 break;
6143         }
6144         vcpu->run->exit_reason = 0;
6145         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6146                (int)(exit_qualification >> 4) & 3, cr);
6147         return 0;
6148 }
6149
6150 static int handle_dr(struct kvm_vcpu *vcpu)
6151 {
6152         unsigned long exit_qualification;
6153         int dr, dr7, reg;
6154
6155         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6156         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6157
6158         /* First, if DR does not exist, trigger UD */
6159         if (!kvm_require_dr(vcpu, dr))
6160                 return 1;
6161
6162         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6163         if (!kvm_require_cpl(vcpu, 0))
6164                 return 1;
6165         dr7 = vmcs_readl(GUEST_DR7);
6166         if (dr7 & DR7_GD) {
6167                 /*
6168                  * As the vm-exit takes precedence over the debug trap, we
6169                  * need to emulate the latter, either for the host or the
6170                  * guest debugging itself.
6171                  */
6172                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6173                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6174                         vcpu->run->debug.arch.dr7 = dr7;
6175                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6176                         vcpu->run->debug.arch.exception = DB_VECTOR;
6177                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6178                         return 0;
6179                 } else {
6180                         vcpu->arch.dr6 &= ~15;
6181                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6182                         kvm_queue_exception(vcpu, DB_VECTOR);
6183                         return 1;
6184                 }
6185         }
6186
6187         if (vcpu->guest_debug == 0) {
6188                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6189                                 CPU_BASED_MOV_DR_EXITING);
6190
6191                 /*
6192                  * No more DR vmexits; force a reload of the debug registers
6193                  * and reenter on this instruction.  The next vmexit will
6194                  * retrieve the full state of the debug registers.
6195                  */
6196                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6197                 return 1;
6198         }
6199
6200         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6201         if (exit_qualification & TYPE_MOV_FROM_DR) {
6202                 unsigned long val;
6203
6204                 if (kvm_get_dr(vcpu, dr, &val))
6205                         return 1;
6206                 kvm_register_write(vcpu, reg, val);
6207         } else
6208                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6209                         return 1;
6210
6211         return kvm_skip_emulated_instruction(vcpu);
6212 }
6213
6214 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6215 {
6216         return vcpu->arch.dr6;
6217 }
6218
6219 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6220 {
6221 }
6222
6223 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6224 {
6225         get_debugreg(vcpu->arch.db[0], 0);
6226         get_debugreg(vcpu->arch.db[1], 1);
6227         get_debugreg(vcpu->arch.db[2], 2);
6228         get_debugreg(vcpu->arch.db[3], 3);
6229         get_debugreg(vcpu->arch.dr6, 6);
6230         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6231
6232         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6233         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6234 }
6235
6236 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6237 {
6238         vmcs_writel(GUEST_DR7, val);
6239 }
6240
6241 static int handle_cpuid(struct kvm_vcpu *vcpu)
6242 {
6243         return kvm_emulate_cpuid(vcpu);
6244 }
6245
6246 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6247 {
6248         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6249         struct msr_data msr_info;
6250
6251         msr_info.index = ecx;
6252         msr_info.host_initiated = false;
6253         if (vmx_get_msr(vcpu, &msr_info)) {
6254                 trace_kvm_msr_read_ex(ecx);
6255                 kvm_inject_gp(vcpu, 0);
6256                 return 1;
6257         }
6258
6259         trace_kvm_msr_read(ecx, msr_info.data);
6260
6261         /* FIXME: handling of bits 32:63 of rax, rdx */
6262         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6263         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6264         return kvm_skip_emulated_instruction(vcpu);
6265 }
6266
6267 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6268 {
6269         struct msr_data msr;
6270         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6271         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6272                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6273
6274         msr.data = data;
6275         msr.index = ecx;
6276         msr.host_initiated = false;
6277         if (kvm_set_msr(vcpu, &msr) != 0) {
6278                 trace_kvm_msr_write_ex(ecx, data);
6279                 kvm_inject_gp(vcpu, 0);
6280                 return 1;
6281         }
6282
6283         trace_kvm_msr_write(ecx, data);
6284         return kvm_skip_emulated_instruction(vcpu);
6285 }
6286
6287 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6288 {
6289         kvm_apic_update_ppr(vcpu);
6290         return 1;
6291 }
6292
6293 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6294 {
6295         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6296                         CPU_BASED_VIRTUAL_INTR_PENDING);
6297
6298         kvm_make_request(KVM_REQ_EVENT, vcpu);
6299
6300         ++vcpu->stat.irq_window_exits;
6301         return 1;
6302 }
6303
6304 static int handle_halt(struct kvm_vcpu *vcpu)
6305 {
6306         return kvm_emulate_halt(vcpu);
6307 }
6308
6309 static int handle_vmcall(struct kvm_vcpu *vcpu)
6310 {
6311         return kvm_emulate_hypercall(vcpu);
6312 }
6313
6314 static int handle_invd(struct kvm_vcpu *vcpu)
6315 {
6316         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6317 }
6318
6319 static int handle_invlpg(struct kvm_vcpu *vcpu)
6320 {
6321         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6322
6323         kvm_mmu_invlpg(vcpu, exit_qualification);
6324         return kvm_skip_emulated_instruction(vcpu);
6325 }
6326
6327 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6328 {
6329         int err;
6330
6331         err = kvm_rdpmc(vcpu);
6332         return kvm_complete_insn_gp(vcpu, err);
6333 }
6334
6335 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6336 {
6337         return kvm_emulate_wbinvd(vcpu);
6338 }
6339
6340 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6341 {
6342         u64 new_bv = kvm_read_edx_eax(vcpu);
6343         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6344
6345         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6346                 return kvm_skip_emulated_instruction(vcpu);
6347         return 1;
6348 }
6349
6350 static int handle_xsaves(struct kvm_vcpu *vcpu)
6351 {
6352         kvm_skip_emulated_instruction(vcpu);
6353         WARN(1, "this should never happen\n");
6354         return 1;
6355 }
6356
6357 static int handle_xrstors(struct kvm_vcpu *vcpu)
6358 {
6359         kvm_skip_emulated_instruction(vcpu);
6360         WARN(1, "this should never happen\n");
6361         return 1;
6362 }
6363
6364 static int handle_apic_access(struct kvm_vcpu *vcpu)
6365 {
6366         if (likely(fasteoi)) {
6367                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6368                 int access_type, offset;
6369
6370                 access_type = exit_qualification & APIC_ACCESS_TYPE;
6371                 offset = exit_qualification & APIC_ACCESS_OFFSET;
6372                 /*
6373                  * Sane guest uses MOV to write EOI, with written value
6374                  * not cared. So make a short-circuit here by avoiding
6375                  * heavy instruction emulation.
6376                  */
6377                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6378                     (offset == APIC_EOI)) {
6379                         kvm_lapic_set_eoi(vcpu);
6380                         return kvm_skip_emulated_instruction(vcpu);
6381                 }
6382         }
6383         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6384 }
6385
6386 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6387 {
6388         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6389         int vector = exit_qualification & 0xff;
6390
6391         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6392         kvm_apic_set_eoi_accelerated(vcpu, vector);
6393         return 1;
6394 }
6395
6396 static int handle_apic_write(struct kvm_vcpu *vcpu)
6397 {
6398         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6399         u32 offset = exit_qualification & 0xfff;
6400
6401         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6402         kvm_apic_write_nodecode(vcpu, offset);
6403         return 1;
6404 }
6405
6406 static int handle_task_switch(struct kvm_vcpu *vcpu)
6407 {
6408         struct vcpu_vmx *vmx = to_vmx(vcpu);
6409         unsigned long exit_qualification;
6410         bool has_error_code = false;
6411         u32 error_code = 0;
6412         u16 tss_selector;
6413         int reason, type, idt_v, idt_index;
6414
6415         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6416         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6417         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6418
6419         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6420
6421         reason = (u32)exit_qualification >> 30;
6422         if (reason == TASK_SWITCH_GATE && idt_v) {
6423                 switch (type) {
6424                 case INTR_TYPE_NMI_INTR:
6425                         vcpu->arch.nmi_injected = false;
6426                         vmx_set_nmi_mask(vcpu, true);
6427                         break;
6428                 case INTR_TYPE_EXT_INTR:
6429                 case INTR_TYPE_SOFT_INTR:
6430                         kvm_clear_interrupt_queue(vcpu);
6431                         break;
6432                 case INTR_TYPE_HARD_EXCEPTION:
6433                         if (vmx->idt_vectoring_info &
6434                             VECTORING_INFO_DELIVER_CODE_MASK) {
6435                                 has_error_code = true;
6436                                 error_code =
6437                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6438                         }
6439                         /* fall through */
6440                 case INTR_TYPE_SOFT_EXCEPTION:
6441                         kvm_clear_exception_queue(vcpu);
6442                         break;
6443                 default:
6444                         break;
6445                 }
6446         }
6447         tss_selector = exit_qualification;
6448
6449         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6450                        type != INTR_TYPE_EXT_INTR &&
6451                        type != INTR_TYPE_NMI_INTR))
6452                 skip_emulated_instruction(vcpu);
6453
6454         if (kvm_task_switch(vcpu, tss_selector,
6455                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6456                             has_error_code, error_code) == EMULATE_FAIL) {
6457                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6458                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6459                 vcpu->run->internal.ndata = 0;
6460                 return 0;
6461         }
6462
6463         /*
6464          * TODO: What about debug traps on tss switch?
6465          *       Are we supposed to inject them and update dr6?
6466          */
6467
6468         return 1;
6469 }
6470
6471 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6472 {
6473         unsigned long exit_qualification;
6474         gpa_t gpa;
6475         u64 error_code;
6476
6477         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6478
6479         /*
6480          * EPT violation happened while executing iret from NMI,
6481          * "blocked by NMI" bit has to be set before next VM entry.
6482          * There are errata that may cause this bit to not be set:
6483          * AAK134, BY25.
6484          */
6485         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6486                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6487                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6488
6489         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6490         trace_kvm_page_fault(gpa, exit_qualification);
6491
6492         /* Is it a read fault? */
6493         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6494                      ? PFERR_USER_MASK : 0;
6495         /* Is it a write fault? */
6496         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6497                       ? PFERR_WRITE_MASK : 0;
6498         /* Is it a fetch fault? */
6499         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6500                       ? PFERR_FETCH_MASK : 0;
6501         /* ept page table entry is present? */
6502         error_code |= (exit_qualification &
6503                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6504                         EPT_VIOLATION_EXECUTABLE))
6505                       ? PFERR_PRESENT_MASK : 0;
6506
6507         error_code |= (exit_qualification & 0x100) != 0 ?
6508                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
6509
6510         vcpu->arch.exit_qualification = exit_qualification;
6511         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6512 }
6513
6514 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6515 {
6516         int ret;
6517         gpa_t gpa;
6518
6519         /*
6520          * A nested guest cannot optimize MMIO vmexits, because we have an
6521          * nGPA here instead of the required GPA.
6522          */
6523         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6524         if (!is_guest_mode(vcpu) &&
6525             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6526                 trace_kvm_fast_mmio(gpa);
6527                 return kvm_skip_emulated_instruction(vcpu);
6528         }
6529
6530         ret = kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
6531         if (ret >= 0)
6532                 return ret;
6533
6534         /* It is the real ept misconfig */
6535         WARN_ON(1);
6536
6537         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6538         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6539
6540         return 0;
6541 }
6542
6543 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6544 {
6545         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6546                         CPU_BASED_VIRTUAL_NMI_PENDING);
6547         ++vcpu->stat.nmi_window_exits;
6548         kvm_make_request(KVM_REQ_EVENT, vcpu);
6549
6550         return 1;
6551 }
6552
6553 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6554 {
6555         struct vcpu_vmx *vmx = to_vmx(vcpu);
6556         enum emulation_result err = EMULATE_DONE;
6557         int ret = 1;
6558         u32 cpu_exec_ctrl;
6559         bool intr_window_requested;
6560         unsigned count = 130;
6561
6562         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6563         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6564
6565         while (vmx->emulation_required && count-- != 0) {
6566                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6567                         return handle_interrupt_window(&vmx->vcpu);
6568
6569                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6570                         return 1;
6571
6572                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6573
6574                 if (err == EMULATE_USER_EXIT) {
6575                         ++vcpu->stat.mmio_exits;
6576                         ret = 0;
6577                         goto out;
6578                 }
6579
6580                 if (err != EMULATE_DONE) {
6581                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6582                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6583                         vcpu->run->internal.ndata = 0;
6584                         return 0;
6585                 }
6586
6587                 if (vcpu->arch.halt_request) {
6588                         vcpu->arch.halt_request = 0;
6589                         ret = kvm_vcpu_halt(vcpu);
6590                         goto out;
6591                 }
6592
6593                 if (signal_pending(current))
6594                         goto out;
6595                 if (need_resched())
6596                         schedule();
6597         }
6598
6599 out:
6600         return ret;
6601 }
6602
6603 static int __grow_ple_window(int val)
6604 {
6605         if (ple_window_grow < 1)
6606                 return ple_window;
6607
6608         val = min(val, ple_window_actual_max);
6609
6610         if (ple_window_grow < ple_window)
6611                 val *= ple_window_grow;
6612         else
6613                 val += ple_window_grow;
6614
6615         return val;
6616 }
6617
6618 static int __shrink_ple_window(int val, int modifier, int minimum)
6619 {
6620         if (modifier < 1)
6621                 return ple_window;
6622
6623         if (modifier < ple_window)
6624                 val /= modifier;
6625         else
6626                 val -= modifier;
6627
6628         return max(val, minimum);
6629 }
6630
6631 static void grow_ple_window(struct kvm_vcpu *vcpu)
6632 {
6633         struct vcpu_vmx *vmx = to_vmx(vcpu);
6634         int old = vmx->ple_window;
6635
6636         vmx->ple_window = __grow_ple_window(old);
6637
6638         if (vmx->ple_window != old)
6639                 vmx->ple_window_dirty = true;
6640
6641         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6642 }
6643
6644 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6645 {
6646         struct vcpu_vmx *vmx = to_vmx(vcpu);
6647         int old = vmx->ple_window;
6648
6649         vmx->ple_window = __shrink_ple_window(old,
6650                                               ple_window_shrink, ple_window);
6651
6652         if (vmx->ple_window != old)
6653                 vmx->ple_window_dirty = true;
6654
6655         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6656 }
6657
6658 /*
6659  * ple_window_actual_max is computed to be one grow_ple_window() below
6660  * ple_window_max. (See __grow_ple_window for the reason.)
6661  * This prevents overflows, because ple_window_max is int.
6662  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6663  * this process.
6664  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6665  */
6666 static void update_ple_window_actual_max(void)
6667 {
6668         ple_window_actual_max =
6669                         __shrink_ple_window(max(ple_window_max, ple_window),
6670                                             ple_window_grow, INT_MIN);
6671 }
6672
6673 /*
6674  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6675  */
6676 static void wakeup_handler(void)
6677 {
6678         struct kvm_vcpu *vcpu;
6679         int cpu = smp_processor_id();
6680
6681         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6682         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6683                         blocked_vcpu_list) {
6684                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6685
6686                 if (pi_test_on(pi_desc) == 1)
6687                         kvm_vcpu_kick(vcpu);
6688         }
6689         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6690 }
6691
6692 void vmx_enable_tdp(void)
6693 {
6694         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6695                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6696                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6697                 0ull, VMX_EPT_EXECUTABLE_MASK,
6698                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6699                 VMX_EPT_RWX_MASK, 0ull);
6700
6701         ept_set_mmio_spte_mask();
6702         kvm_enable_tdp();
6703 }
6704
6705 static __init int hardware_setup(void)
6706 {
6707         int r = -ENOMEM, i, msr;
6708
6709         rdmsrl_safe(MSR_EFER, &host_efer);
6710
6711         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6712                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6713
6714         for (i = 0; i < VMX_BITMAP_NR; i++) {
6715                 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6716                 if (!vmx_bitmap[i])
6717                         goto out;
6718         }
6719
6720         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6721         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6722         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6723
6724         /*
6725          * Allow direct access to the PC debug port (it is often used for I/O
6726          * delays, but the vmexits simply slow things down).
6727          */
6728         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6729         clear_bit(0x80, vmx_io_bitmap_a);
6730
6731         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6732
6733         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6734         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6735
6736         if (setup_vmcs_config(&vmcs_config) < 0) {
6737                 r = -EIO;
6738                 goto out;
6739         }
6740
6741         if (boot_cpu_has(X86_FEATURE_NX))
6742                 kvm_enable_efer_bits(EFER_NX);
6743
6744         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6745                 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6746                 enable_vpid = 0;
6747
6748         if (!cpu_has_vmx_shadow_vmcs())
6749                 enable_shadow_vmcs = 0;
6750         if (enable_shadow_vmcs)
6751                 init_vmcs_shadow_fields();
6752
6753         if (!cpu_has_vmx_ept() ||
6754             !cpu_has_vmx_ept_4levels() ||
6755             !cpu_has_vmx_ept_mt_wb()) {
6756                 enable_ept = 0;
6757                 enable_unrestricted_guest = 0;
6758                 enable_ept_ad_bits = 0;
6759         }
6760
6761         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6762                 enable_ept_ad_bits = 0;
6763
6764         if (!cpu_has_vmx_unrestricted_guest())
6765                 enable_unrestricted_guest = 0;
6766
6767         if (!cpu_has_vmx_flexpriority())
6768                 flexpriority_enabled = 0;
6769
6770         /*
6771          * set_apic_access_page_addr() is used to reload apic access
6772          * page upon invalidation.  No need to do anything if not
6773          * using the APIC_ACCESS_ADDR VMCS field.
6774          */
6775         if (!flexpriority_enabled)
6776                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6777
6778         if (!cpu_has_vmx_tpr_shadow())
6779                 kvm_x86_ops->update_cr8_intercept = NULL;
6780
6781         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6782                 kvm_disable_largepages();
6783
6784         if (!cpu_has_vmx_ple())
6785                 ple_gap = 0;
6786
6787         if (!cpu_has_vmx_apicv()) {
6788                 enable_apicv = 0;
6789                 kvm_x86_ops->sync_pir_to_irr = NULL;
6790         }
6791
6792         if (cpu_has_vmx_tsc_scaling()) {
6793                 kvm_has_tsc_control = true;
6794                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6795                 kvm_tsc_scaling_ratio_frac_bits = 48;
6796         }
6797
6798         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6799         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6800         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6801         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6802         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6803         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6804
6805         memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6806                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6807         memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6808                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6809         memcpy(vmx_msr_bitmap_legacy_x2apic,
6810                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6811         memcpy(vmx_msr_bitmap_longmode_x2apic,
6812                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6813
6814         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6815
6816         for (msr = 0x800; msr <= 0x8ff; msr++) {
6817                 if (msr == 0x839 /* TMCCT */)
6818                         continue;
6819                 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6820         }
6821
6822         /*
6823          * TPR reads and writes can be virtualized even if virtual interrupt
6824          * delivery is not in use.
6825          */
6826         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6827         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6828
6829         /* EOI */
6830         vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6831         /* SELF-IPI */
6832         vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6833
6834         if (enable_ept)
6835                 vmx_enable_tdp();
6836         else
6837                 kvm_disable_tdp();
6838
6839         update_ple_window_actual_max();
6840
6841         /*
6842          * Only enable PML when hardware supports PML feature, and both EPT
6843          * and EPT A/D bit features are enabled -- PML depends on them to work.
6844          */
6845         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6846                 enable_pml = 0;
6847
6848         if (!enable_pml) {
6849                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6850                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6851                 kvm_x86_ops->flush_log_dirty = NULL;
6852                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6853         }
6854
6855         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6856                 u64 vmx_msr;
6857
6858                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6859                 cpu_preemption_timer_multi =
6860                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6861         } else {
6862                 kvm_x86_ops->set_hv_timer = NULL;
6863                 kvm_x86_ops->cancel_hv_timer = NULL;
6864         }
6865
6866         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6867
6868         kvm_mce_cap_supported |= MCG_LMCE_P;
6869
6870         return alloc_kvm_area();
6871
6872 out:
6873         for (i = 0; i < VMX_BITMAP_NR; i++)
6874                 free_page((unsigned long)vmx_bitmap[i]);
6875
6876     return r;
6877 }
6878
6879 static __exit void hardware_unsetup(void)
6880 {
6881         int i;
6882
6883         for (i = 0; i < VMX_BITMAP_NR; i++)
6884                 free_page((unsigned long)vmx_bitmap[i]);
6885
6886         free_kvm_area();
6887 }
6888
6889 /*
6890  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6891  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6892  */
6893 static int handle_pause(struct kvm_vcpu *vcpu)
6894 {
6895         if (ple_gap)
6896                 grow_ple_window(vcpu);
6897
6898         /*
6899          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
6900          * VM-execution control is ignored if CPL > 0. OTOH, KVM
6901          * never set PAUSE_EXITING and just set PLE if supported,
6902          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
6903          */
6904         kvm_vcpu_on_spin(vcpu, true);
6905         return kvm_skip_emulated_instruction(vcpu);
6906 }
6907
6908 static int handle_nop(struct kvm_vcpu *vcpu)
6909 {
6910         return kvm_skip_emulated_instruction(vcpu);
6911 }
6912
6913 static int handle_mwait(struct kvm_vcpu *vcpu)
6914 {
6915         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6916         return handle_nop(vcpu);
6917 }
6918
6919 static int handle_invalid_op(struct kvm_vcpu *vcpu)
6920 {
6921         kvm_queue_exception(vcpu, UD_VECTOR);
6922         return 1;
6923 }
6924
6925 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6926 {
6927         return 1;
6928 }
6929
6930 static int handle_monitor(struct kvm_vcpu *vcpu)
6931 {
6932         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6933         return handle_nop(vcpu);
6934 }
6935
6936 /*
6937  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6938  * We could reuse a single VMCS for all the L2 guests, but we also want the
6939  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6940  * allows keeping them loaded on the processor, and in the future will allow
6941  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6942  * every entry if they never change.
6943  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6944  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6945  *
6946  * The following functions allocate and free a vmcs02 in this pool.
6947  */
6948
6949 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6950 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6951 {
6952         struct vmcs02_list *item;
6953         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6954                 if (item->vmptr == vmx->nested.current_vmptr) {
6955                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6956                         return &item->vmcs02;
6957                 }
6958
6959         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6960                 /* Recycle the least recently used VMCS. */
6961                 item = list_last_entry(&vmx->nested.vmcs02_pool,
6962                                        struct vmcs02_list, list);
6963                 item->vmptr = vmx->nested.current_vmptr;
6964                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6965                 return &item->vmcs02;
6966         }
6967
6968         /* Create a new VMCS */
6969         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6970         if (!item)
6971                 return NULL;
6972         item->vmcs02.vmcs = alloc_vmcs();
6973         item->vmcs02.shadow_vmcs = NULL;
6974         if (!item->vmcs02.vmcs) {
6975                 kfree(item);
6976                 return NULL;
6977         }
6978         loaded_vmcs_init(&item->vmcs02);
6979         item->vmptr = vmx->nested.current_vmptr;
6980         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6981         vmx->nested.vmcs02_num++;
6982         return &item->vmcs02;
6983 }
6984
6985 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6986 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6987 {
6988         struct vmcs02_list *item;
6989         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6990                 if (item->vmptr == vmptr) {
6991                         free_loaded_vmcs(&item->vmcs02);
6992                         list_del(&item->list);
6993                         kfree(item);
6994                         vmx->nested.vmcs02_num--;
6995                         return;
6996                 }
6997 }
6998
6999 /*
7000  * Free all VMCSs saved for this vcpu, except the one pointed by
7001  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
7002  * must be &vmx->vmcs01.
7003  */
7004 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
7005 {
7006         struct vmcs02_list *item, *n;
7007
7008         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
7009         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
7010                 /*
7011                  * Something will leak if the above WARN triggers.  Better than
7012                  * a use-after-free.
7013                  */
7014                 if (vmx->loaded_vmcs == &item->vmcs02)
7015                         continue;
7016
7017                 free_loaded_vmcs(&item->vmcs02);
7018                 list_del(&item->list);
7019                 kfree(item);
7020                 vmx->nested.vmcs02_num--;
7021         }
7022 }
7023
7024 /*
7025  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7026  * set the success or error code of an emulated VMX instruction, as specified
7027  * by Vol 2B, VMX Instruction Reference, "Conventions".
7028  */
7029 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7030 {
7031         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7032                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7033                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7034 }
7035
7036 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7037 {
7038         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7039                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7040                             X86_EFLAGS_SF | X86_EFLAGS_OF))
7041                         | X86_EFLAGS_CF);
7042 }
7043
7044 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
7045                                         u32 vm_instruction_error)
7046 {
7047         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7048                 /*
7049                  * failValid writes the error number to the current VMCS, which
7050                  * can't be done there isn't a current VMCS.
7051                  */
7052                 nested_vmx_failInvalid(vcpu);
7053                 return;
7054         }
7055         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7056                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7057                             X86_EFLAGS_SF | X86_EFLAGS_OF))
7058                         | X86_EFLAGS_ZF);
7059         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7060         /*
7061          * We don't need to force a shadow sync because
7062          * VM_INSTRUCTION_ERROR is not shadowed
7063          */
7064 }
7065
7066 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7067 {
7068         /* TODO: not to reset guest simply here. */
7069         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7070         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
7071 }
7072
7073 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7074 {
7075         struct vcpu_vmx *vmx =
7076                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7077
7078         vmx->nested.preemption_timer_expired = true;
7079         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7080         kvm_vcpu_kick(&vmx->vcpu);
7081
7082         return HRTIMER_NORESTART;
7083 }
7084
7085 /*
7086  * Decode the memory-address operand of a vmx instruction, as recorded on an
7087  * exit caused by such an instruction (run by a guest hypervisor).
7088  * On success, returns 0. When the operand is invalid, returns 1 and throws
7089  * #UD or #GP.
7090  */
7091 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7092                                  unsigned long exit_qualification,
7093                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
7094 {
7095         gva_t off;
7096         bool exn;
7097         struct kvm_segment s;
7098
7099         /*
7100          * According to Vol. 3B, "Information for VM Exits Due to Instruction
7101          * Execution", on an exit, vmx_instruction_info holds most of the
7102          * addressing components of the operand. Only the displacement part
7103          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7104          * For how an actual address is calculated from all these components,
7105          * refer to Vol. 1, "Operand Addressing".
7106          */
7107         int  scaling = vmx_instruction_info & 3;
7108         int  addr_size = (vmx_instruction_info >> 7) & 7;
7109         bool is_reg = vmx_instruction_info & (1u << 10);
7110         int  seg_reg = (vmx_instruction_info >> 15) & 7;
7111         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
7112         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7113         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
7114         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
7115
7116         if (is_reg) {
7117                 kvm_queue_exception(vcpu, UD_VECTOR);
7118                 return 1;
7119         }
7120
7121         /* Addr = segment_base + offset */
7122         /* offset = base + [index * scale] + displacement */
7123         off = exit_qualification; /* holds the displacement */
7124         if (base_is_valid)
7125                 off += kvm_register_read(vcpu, base_reg);
7126         if (index_is_valid)
7127                 off += kvm_register_read(vcpu, index_reg)<<scaling;
7128         vmx_get_segment(vcpu, &s, seg_reg);
7129         *ret = s.base + off;
7130
7131         if (addr_size == 1) /* 32 bit */
7132                 *ret &= 0xffffffff;
7133
7134         /* Checks for #GP/#SS exceptions. */
7135         exn = false;
7136         if (is_long_mode(vcpu)) {
7137                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7138                  * non-canonical form. This is the only check on the memory
7139                  * destination for long mode!
7140                  */
7141                 exn = is_noncanonical_address(*ret, vcpu);
7142         } else if (is_protmode(vcpu)) {
7143                 /* Protected mode: apply checks for segment validity in the
7144                  * following order:
7145                  * - segment type check (#GP(0) may be thrown)
7146                  * - usability check (#GP(0)/#SS(0))
7147                  * - limit check (#GP(0)/#SS(0))
7148                  */
7149                 if (wr)
7150                         /* #GP(0) if the destination operand is located in a
7151                          * read-only data segment or any code segment.
7152                          */
7153                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
7154                 else
7155                         /* #GP(0) if the source operand is located in an
7156                          * execute-only code segment
7157                          */
7158                         exn = ((s.type & 0xa) == 8);
7159                 if (exn) {
7160                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7161                         return 1;
7162                 }
7163                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7164                  */
7165                 exn = (s.unusable != 0);
7166                 /* Protected mode: #GP(0)/#SS(0) if the memory
7167                  * operand is outside the segment limit.
7168                  */
7169                 exn = exn || (off + sizeof(u64) > s.limit);
7170         }
7171         if (exn) {
7172                 kvm_queue_exception_e(vcpu,
7173                                       seg_reg == VCPU_SREG_SS ?
7174                                                 SS_VECTOR : GP_VECTOR,
7175                                       0);
7176                 return 1;
7177         }
7178
7179         return 0;
7180 }
7181
7182 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
7183 {
7184         gva_t gva;
7185         struct x86_exception e;
7186
7187         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7188                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
7189                 return 1;
7190
7191         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7192                                 sizeof(*vmpointer), &e)) {
7193                 kvm_inject_page_fault(vcpu, &e);
7194                 return 1;
7195         }
7196
7197         return 0;
7198 }
7199
7200 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7201 {
7202         struct vcpu_vmx *vmx = to_vmx(vcpu);
7203         struct vmcs *shadow_vmcs;
7204
7205         if (cpu_has_vmx_msr_bitmap()) {
7206                 vmx->nested.msr_bitmap =
7207                                 (unsigned long *)__get_free_page(GFP_KERNEL);
7208                 if (!vmx->nested.msr_bitmap)
7209                         goto out_msr_bitmap;
7210         }
7211
7212         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7213         if (!vmx->nested.cached_vmcs12)
7214                 goto out_cached_vmcs12;
7215
7216         if (enable_shadow_vmcs) {
7217                 shadow_vmcs = alloc_vmcs();
7218                 if (!shadow_vmcs)
7219                         goto out_shadow_vmcs;
7220                 /* mark vmcs as shadow */
7221                 shadow_vmcs->revision_id |= (1u << 31);
7222                 /* init shadow vmcs */
7223                 vmcs_clear(shadow_vmcs);
7224                 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7225         }
7226
7227         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7228         vmx->nested.vmcs02_num = 0;
7229
7230         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7231                      HRTIMER_MODE_REL_PINNED);
7232         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7233
7234         vmx->nested.vmxon = true;
7235         return 0;
7236
7237 out_shadow_vmcs:
7238         kfree(vmx->nested.cached_vmcs12);
7239
7240 out_cached_vmcs12:
7241         free_page((unsigned long)vmx->nested.msr_bitmap);
7242
7243 out_msr_bitmap:
7244         return -ENOMEM;
7245 }
7246
7247 /*
7248  * Emulate the VMXON instruction.
7249  * Currently, we just remember that VMX is active, and do not save or even
7250  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7251  * do not currently need to store anything in that guest-allocated memory
7252  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7253  * argument is different from the VMXON pointer (which the spec says they do).
7254  */
7255 static int handle_vmon(struct kvm_vcpu *vcpu)
7256 {
7257         int ret;
7258         gpa_t vmptr;
7259         struct page *page;
7260         struct vcpu_vmx *vmx = to_vmx(vcpu);
7261         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7262                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7263
7264         /*
7265          * The Intel VMX Instruction Reference lists a bunch of bits that are
7266          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7267          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7268          * Otherwise, we should fail with #UD.  But most faulting conditions
7269          * have already been checked by hardware, prior to the VM-exit for
7270          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
7271          * that bit set to 1 in non-root mode.
7272          */
7273         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7274                 kvm_queue_exception(vcpu, UD_VECTOR);
7275                 return 1;
7276         }
7277
7278         if (vmx->nested.vmxon) {
7279                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7280                 return kvm_skip_emulated_instruction(vcpu);
7281         }
7282
7283         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7284                         != VMXON_NEEDED_FEATURES) {
7285                 kvm_inject_gp(vcpu, 0);
7286                 return 1;
7287         }
7288
7289         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7290                 return 1;
7291
7292         /*
7293          * SDM 3: 24.11.5
7294          * The first 4 bytes of VMXON region contain the supported
7295          * VMCS revision identifier
7296          *
7297          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7298          * which replaces physical address width with 32
7299          */
7300         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7301                 nested_vmx_failInvalid(vcpu);
7302                 return kvm_skip_emulated_instruction(vcpu);
7303         }
7304
7305         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7306         if (is_error_page(page)) {
7307                 nested_vmx_failInvalid(vcpu);
7308                 return kvm_skip_emulated_instruction(vcpu);
7309         }
7310         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7311                 kunmap(page);
7312                 kvm_release_page_clean(page);
7313                 nested_vmx_failInvalid(vcpu);
7314                 return kvm_skip_emulated_instruction(vcpu);
7315         }
7316         kunmap(page);
7317         kvm_release_page_clean(page);
7318
7319         vmx->nested.vmxon_ptr = vmptr;
7320         ret = enter_vmx_operation(vcpu);
7321         if (ret)
7322                 return ret;
7323
7324         nested_vmx_succeed(vcpu);
7325         return kvm_skip_emulated_instruction(vcpu);
7326 }
7327
7328 /*
7329  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7330  * for running VMX instructions (except VMXON, whose prerequisites are
7331  * slightly different). It also specifies what exception to inject otherwise.
7332  * Note that many of these exceptions have priority over VM exits, so they
7333  * don't have to be checked again here.
7334  */
7335 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7336 {
7337         if (!to_vmx(vcpu)->nested.vmxon) {
7338                 kvm_queue_exception(vcpu, UD_VECTOR);
7339                 return 0;
7340         }
7341         return 1;
7342 }
7343
7344 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7345 {
7346         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7347         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7348 }
7349
7350 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7351 {
7352         if (vmx->nested.current_vmptr == -1ull)
7353                 return;
7354
7355         if (enable_shadow_vmcs) {
7356                 /* copy to memory all shadowed fields in case
7357                    they were modified */
7358                 copy_shadow_to_vmcs12(vmx);
7359                 vmx->nested.sync_shadow_vmcs = false;
7360                 vmx_disable_shadow_vmcs(vmx);
7361         }
7362         vmx->nested.posted_intr_nv = -1;
7363
7364         /* Flush VMCS12 to guest memory */
7365         kvm_vcpu_write_guest_page(&vmx->vcpu,
7366                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
7367                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
7368
7369         vmx->nested.current_vmptr = -1ull;
7370 }
7371
7372 /*
7373  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7374  * just stops using VMX.
7375  */
7376 static void free_nested(struct vcpu_vmx *vmx)
7377 {
7378         if (!vmx->nested.vmxon)
7379                 return;
7380
7381         vmx->nested.vmxon = false;
7382         free_vpid(vmx->nested.vpid02);
7383         vmx->nested.posted_intr_nv = -1;
7384         vmx->nested.current_vmptr = -1ull;
7385         if (vmx->nested.msr_bitmap) {
7386                 free_page((unsigned long)vmx->nested.msr_bitmap);
7387                 vmx->nested.msr_bitmap = NULL;
7388         }
7389         if (enable_shadow_vmcs) {
7390                 vmx_disable_shadow_vmcs(vmx);
7391                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7392                 free_vmcs(vmx->vmcs01.shadow_vmcs);
7393                 vmx->vmcs01.shadow_vmcs = NULL;
7394         }
7395         kfree(vmx->nested.cached_vmcs12);
7396         /* Unpin physical memory we referred to in current vmcs02 */
7397         if (vmx->nested.apic_access_page) {
7398                 kvm_release_page_dirty(vmx->nested.apic_access_page);
7399                 vmx->nested.apic_access_page = NULL;
7400         }
7401         if (vmx->nested.virtual_apic_page) {
7402                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
7403                 vmx->nested.virtual_apic_page = NULL;
7404         }
7405         if (vmx->nested.pi_desc_page) {
7406                 kunmap(vmx->nested.pi_desc_page);
7407                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
7408                 vmx->nested.pi_desc_page = NULL;
7409                 vmx->nested.pi_desc = NULL;
7410         }
7411
7412         nested_free_all_saved_vmcss(vmx);
7413 }
7414
7415 /* Emulate the VMXOFF instruction */
7416 static int handle_vmoff(struct kvm_vcpu *vcpu)
7417 {
7418         if (!nested_vmx_check_permission(vcpu))
7419                 return 1;
7420         free_nested(to_vmx(vcpu));
7421         nested_vmx_succeed(vcpu);
7422         return kvm_skip_emulated_instruction(vcpu);
7423 }
7424
7425 /* Emulate the VMCLEAR instruction */
7426 static int handle_vmclear(struct kvm_vcpu *vcpu)
7427 {
7428         struct vcpu_vmx *vmx = to_vmx(vcpu);
7429         u32 zero = 0;
7430         gpa_t vmptr;
7431
7432         if (!nested_vmx_check_permission(vcpu))
7433                 return 1;
7434
7435         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7436                 return 1;
7437
7438         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7439                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7440                 return kvm_skip_emulated_instruction(vcpu);
7441         }
7442
7443         if (vmptr == vmx->nested.vmxon_ptr) {
7444                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7445                 return kvm_skip_emulated_instruction(vcpu);
7446         }
7447
7448         if (vmptr == vmx->nested.current_vmptr)
7449                 nested_release_vmcs12(vmx);
7450
7451         kvm_vcpu_write_guest(vcpu,
7452                         vmptr + offsetof(struct vmcs12, launch_state),
7453                         &zero, sizeof(zero));
7454
7455         nested_free_vmcs02(vmx, vmptr);
7456
7457         nested_vmx_succeed(vcpu);
7458         return kvm_skip_emulated_instruction(vcpu);
7459 }
7460
7461 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7462
7463 /* Emulate the VMLAUNCH instruction */
7464 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7465 {
7466         return nested_vmx_run(vcpu, true);
7467 }
7468
7469 /* Emulate the VMRESUME instruction */
7470 static int handle_vmresume(struct kvm_vcpu *vcpu)
7471 {
7472
7473         return nested_vmx_run(vcpu, false);
7474 }
7475
7476 /*
7477  * Read a vmcs12 field. Since these can have varying lengths and we return
7478  * one type, we chose the biggest type (u64) and zero-extend the return value
7479  * to that size. Note that the caller, handle_vmread, might need to use only
7480  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7481  * 64-bit fields are to be returned).
7482  */
7483 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7484                                   unsigned long field, u64 *ret)
7485 {
7486         short offset = vmcs_field_to_offset(field);
7487         char *p;
7488
7489         if (offset < 0)
7490                 return offset;
7491
7492         p = ((char *)(get_vmcs12(vcpu))) + offset;
7493
7494         switch (vmcs_field_type(field)) {
7495         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7496                 *ret = *((natural_width *)p);
7497                 return 0;
7498         case VMCS_FIELD_TYPE_U16:
7499                 *ret = *((u16 *)p);
7500                 return 0;
7501         case VMCS_FIELD_TYPE_U32:
7502                 *ret = *((u32 *)p);
7503                 return 0;
7504         case VMCS_FIELD_TYPE_U64:
7505                 *ret = *((u64 *)p);
7506                 return 0;
7507         default:
7508                 WARN_ON(1);
7509                 return -ENOENT;
7510         }
7511 }
7512
7513
7514 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7515                                    unsigned long field, u64 field_value){
7516         short offset = vmcs_field_to_offset(field);
7517         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7518         if (offset < 0)
7519                 return offset;
7520
7521         switch (vmcs_field_type(field)) {
7522         case VMCS_FIELD_TYPE_U16:
7523                 *(u16 *)p = field_value;
7524                 return 0;
7525         case VMCS_FIELD_TYPE_U32:
7526                 *(u32 *)p = field_value;
7527                 return 0;
7528         case VMCS_FIELD_TYPE_U64:
7529                 *(u64 *)p = field_value;
7530                 return 0;
7531         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7532                 *(natural_width *)p = field_value;
7533                 return 0;
7534         default:
7535                 WARN_ON(1);
7536                 return -ENOENT;
7537         }
7538
7539 }
7540
7541 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7542 {
7543         int i;
7544         unsigned long field;
7545         u64 field_value;
7546         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7547         const unsigned long *fields = shadow_read_write_fields;
7548         const int num_fields = max_shadow_read_write_fields;
7549
7550         preempt_disable();
7551
7552         vmcs_load(shadow_vmcs);
7553
7554         for (i = 0; i < num_fields; i++) {
7555                 field = fields[i];
7556                 switch (vmcs_field_type(field)) {
7557                 case VMCS_FIELD_TYPE_U16:
7558                         field_value = vmcs_read16(field);
7559                         break;
7560                 case VMCS_FIELD_TYPE_U32:
7561                         field_value = vmcs_read32(field);
7562                         break;
7563                 case VMCS_FIELD_TYPE_U64:
7564                         field_value = vmcs_read64(field);
7565                         break;
7566                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7567                         field_value = vmcs_readl(field);
7568                         break;
7569                 default:
7570                         WARN_ON(1);
7571                         continue;
7572                 }
7573                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7574         }
7575
7576         vmcs_clear(shadow_vmcs);
7577         vmcs_load(vmx->loaded_vmcs->vmcs);
7578
7579         preempt_enable();
7580 }
7581
7582 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7583 {
7584         const unsigned long *fields[] = {
7585                 shadow_read_write_fields,
7586                 shadow_read_only_fields
7587         };
7588         const int max_fields[] = {
7589                 max_shadow_read_write_fields,
7590                 max_shadow_read_only_fields
7591         };
7592         int i, q;
7593         unsigned long field;
7594         u64 field_value = 0;
7595         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7596
7597         vmcs_load(shadow_vmcs);
7598
7599         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7600                 for (i = 0; i < max_fields[q]; i++) {
7601                         field = fields[q][i];
7602                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7603
7604                         switch (vmcs_field_type(field)) {
7605                         case VMCS_FIELD_TYPE_U16:
7606                                 vmcs_write16(field, (u16)field_value);
7607                                 break;
7608                         case VMCS_FIELD_TYPE_U32:
7609                                 vmcs_write32(field, (u32)field_value);
7610                                 break;
7611                         case VMCS_FIELD_TYPE_U64:
7612                                 vmcs_write64(field, (u64)field_value);
7613                                 break;
7614                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7615                                 vmcs_writel(field, (long)field_value);
7616                                 break;
7617                         default:
7618                                 WARN_ON(1);
7619                                 break;
7620                         }
7621                 }
7622         }
7623
7624         vmcs_clear(shadow_vmcs);
7625         vmcs_load(vmx->loaded_vmcs->vmcs);
7626 }
7627
7628 /*
7629  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7630  * used before) all generate the same failure when it is missing.
7631  */
7632 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7633 {
7634         struct vcpu_vmx *vmx = to_vmx(vcpu);
7635         if (vmx->nested.current_vmptr == -1ull) {
7636                 nested_vmx_failInvalid(vcpu);
7637                 return 0;
7638         }
7639         return 1;
7640 }
7641
7642 static int handle_vmread(struct kvm_vcpu *vcpu)
7643 {
7644         unsigned long field;
7645         u64 field_value;
7646         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7647         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7648         gva_t gva = 0;
7649
7650         if (!nested_vmx_check_permission(vcpu))
7651                 return 1;
7652
7653         if (!nested_vmx_check_vmcs12(vcpu))
7654                 return kvm_skip_emulated_instruction(vcpu);
7655
7656         /* Decode instruction info and find the field to read */
7657         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7658         /* Read the field, zero-extended to a u64 field_value */
7659         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7660                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7661                 return kvm_skip_emulated_instruction(vcpu);
7662         }
7663         /*
7664          * Now copy part of this value to register or memory, as requested.
7665          * Note that the number of bits actually copied is 32 or 64 depending
7666          * on the guest's mode (32 or 64 bit), not on the given field's length.
7667          */
7668         if (vmx_instruction_info & (1u << 10)) {
7669                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7670                         field_value);
7671         } else {
7672                 if (get_vmx_mem_address(vcpu, exit_qualification,
7673                                 vmx_instruction_info, true, &gva))
7674                         return 1;
7675                 /* _system ok, as hardware has verified cpl=0 */
7676                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7677                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7678         }
7679
7680         nested_vmx_succeed(vcpu);
7681         return kvm_skip_emulated_instruction(vcpu);
7682 }
7683
7684
7685 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7686 {
7687         unsigned long field;
7688         gva_t gva;
7689         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7690         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7691         /* The value to write might be 32 or 64 bits, depending on L1's long
7692          * mode, and eventually we need to write that into a field of several
7693          * possible lengths. The code below first zero-extends the value to 64
7694          * bit (field_value), and then copies only the appropriate number of
7695          * bits into the vmcs12 field.
7696          */
7697         u64 field_value = 0;
7698         struct x86_exception e;
7699
7700         if (!nested_vmx_check_permission(vcpu))
7701                 return 1;
7702
7703         if (!nested_vmx_check_vmcs12(vcpu))
7704                 return kvm_skip_emulated_instruction(vcpu);
7705
7706         if (vmx_instruction_info & (1u << 10))
7707                 field_value = kvm_register_readl(vcpu,
7708                         (((vmx_instruction_info) >> 3) & 0xf));
7709         else {
7710                 if (get_vmx_mem_address(vcpu, exit_qualification,
7711                                 vmx_instruction_info, false, &gva))
7712                         return 1;
7713                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7714                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7715                         kvm_inject_page_fault(vcpu, &e);
7716                         return 1;
7717                 }
7718         }
7719
7720
7721         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7722         if (vmcs_field_readonly(field)) {
7723                 nested_vmx_failValid(vcpu,
7724                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7725                 return kvm_skip_emulated_instruction(vcpu);
7726         }
7727
7728         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7729                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7730                 return kvm_skip_emulated_instruction(vcpu);
7731         }
7732
7733         nested_vmx_succeed(vcpu);
7734         return kvm_skip_emulated_instruction(vcpu);
7735 }
7736
7737 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7738 {
7739         vmx->nested.current_vmptr = vmptr;
7740         if (enable_shadow_vmcs) {
7741                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7742                               SECONDARY_EXEC_SHADOW_VMCS);
7743                 vmcs_write64(VMCS_LINK_POINTER,
7744                              __pa(vmx->vmcs01.shadow_vmcs));
7745                 vmx->nested.sync_shadow_vmcs = true;
7746         }
7747 }
7748
7749 /* Emulate the VMPTRLD instruction */
7750 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7751 {
7752         struct vcpu_vmx *vmx = to_vmx(vcpu);
7753         gpa_t vmptr;
7754
7755         if (!nested_vmx_check_permission(vcpu))
7756                 return 1;
7757
7758         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7759                 return 1;
7760
7761         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7762                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7763                 return kvm_skip_emulated_instruction(vcpu);
7764         }
7765
7766         if (vmptr == vmx->nested.vmxon_ptr) {
7767                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7768                 return kvm_skip_emulated_instruction(vcpu);
7769         }
7770
7771         if (vmx->nested.current_vmptr != vmptr) {
7772                 struct vmcs12 *new_vmcs12;
7773                 struct page *page;
7774                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7775                 if (is_error_page(page)) {
7776                         nested_vmx_failInvalid(vcpu);
7777                         return kvm_skip_emulated_instruction(vcpu);
7778                 }
7779                 new_vmcs12 = kmap(page);
7780                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7781                         kunmap(page);
7782                         kvm_release_page_clean(page);
7783                         nested_vmx_failValid(vcpu,
7784                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7785                         return kvm_skip_emulated_instruction(vcpu);
7786                 }
7787
7788                 nested_release_vmcs12(vmx);
7789                 /*
7790                  * Load VMCS12 from guest memory since it is not already
7791                  * cached.
7792                  */
7793                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
7794                 kunmap(page);
7795                 kvm_release_page_clean(page);
7796
7797                 set_current_vmptr(vmx, vmptr);
7798         }
7799
7800         nested_vmx_succeed(vcpu);
7801         return kvm_skip_emulated_instruction(vcpu);
7802 }
7803
7804 /* Emulate the VMPTRST instruction */
7805 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7806 {
7807         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7808         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7809         gva_t vmcs_gva;
7810         struct x86_exception e;
7811
7812         if (!nested_vmx_check_permission(vcpu))
7813                 return 1;
7814
7815         if (get_vmx_mem_address(vcpu, exit_qualification,
7816                         vmx_instruction_info, true, &vmcs_gva))
7817                 return 1;
7818         /* ok to use *_system, as hardware has verified cpl=0 */
7819         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7820                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7821                                  sizeof(u64), &e)) {
7822                 kvm_inject_page_fault(vcpu, &e);
7823                 return 1;
7824         }
7825         nested_vmx_succeed(vcpu);
7826         return kvm_skip_emulated_instruction(vcpu);
7827 }
7828
7829 /* Emulate the INVEPT instruction */
7830 static int handle_invept(struct kvm_vcpu *vcpu)
7831 {
7832         struct vcpu_vmx *vmx = to_vmx(vcpu);
7833         u32 vmx_instruction_info, types;
7834         unsigned long type;
7835         gva_t gva;
7836         struct x86_exception e;
7837         struct {
7838                 u64 eptp, gpa;
7839         } operand;
7840
7841         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7842               SECONDARY_EXEC_ENABLE_EPT) ||
7843             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7844                 kvm_queue_exception(vcpu, UD_VECTOR);
7845                 return 1;
7846         }
7847
7848         if (!nested_vmx_check_permission(vcpu))
7849                 return 1;
7850
7851         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7852         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7853
7854         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7855
7856         if (type >= 32 || !(types & (1 << type))) {
7857                 nested_vmx_failValid(vcpu,
7858                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7859                 return kvm_skip_emulated_instruction(vcpu);
7860         }
7861
7862         /* According to the Intel VMX instruction reference, the memory
7863          * operand is read even if it isn't needed (e.g., for type==global)
7864          */
7865         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7866                         vmx_instruction_info, false, &gva))
7867                 return 1;
7868         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7869                                 sizeof(operand), &e)) {
7870                 kvm_inject_page_fault(vcpu, &e);
7871                 return 1;
7872         }
7873
7874         switch (type) {
7875         case VMX_EPT_EXTENT_GLOBAL:
7876         /*
7877          * TODO: track mappings and invalidate
7878          * single context requests appropriately
7879          */
7880         case VMX_EPT_EXTENT_CONTEXT:
7881                 kvm_mmu_sync_roots(vcpu);
7882                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7883                 nested_vmx_succeed(vcpu);
7884                 break;
7885         default:
7886                 BUG_ON(1);
7887                 break;
7888         }
7889
7890         return kvm_skip_emulated_instruction(vcpu);
7891 }
7892
7893 static int handle_invvpid(struct kvm_vcpu *vcpu)
7894 {
7895         struct vcpu_vmx *vmx = to_vmx(vcpu);
7896         u32 vmx_instruction_info;
7897         unsigned long type, types;
7898         gva_t gva;
7899         struct x86_exception e;
7900         struct {
7901                 u64 vpid;
7902                 u64 gla;
7903         } operand;
7904
7905         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7906               SECONDARY_EXEC_ENABLE_VPID) ||
7907                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7908                 kvm_queue_exception(vcpu, UD_VECTOR);
7909                 return 1;
7910         }
7911
7912         if (!nested_vmx_check_permission(vcpu))
7913                 return 1;
7914
7915         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7916         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7917
7918         types = (vmx->nested.nested_vmx_vpid_caps &
7919                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7920
7921         if (type >= 32 || !(types & (1 << type))) {
7922                 nested_vmx_failValid(vcpu,
7923                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7924                 return kvm_skip_emulated_instruction(vcpu);
7925         }
7926
7927         /* according to the intel vmx instruction reference, the memory
7928          * operand is read even if it isn't needed (e.g., for type==global)
7929          */
7930         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7931                         vmx_instruction_info, false, &gva))
7932                 return 1;
7933         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7934                                 sizeof(operand), &e)) {
7935                 kvm_inject_page_fault(vcpu, &e);
7936                 return 1;
7937         }
7938         if (operand.vpid >> 16) {
7939                 nested_vmx_failValid(vcpu,
7940                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7941                 return kvm_skip_emulated_instruction(vcpu);
7942         }
7943
7944         switch (type) {
7945         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7946                 if (is_noncanonical_address(operand.gla, vcpu)) {
7947                         nested_vmx_failValid(vcpu,
7948                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7949                         return kvm_skip_emulated_instruction(vcpu);
7950                 }
7951                 /* fall through */
7952         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7953         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7954                 if (!operand.vpid) {
7955                         nested_vmx_failValid(vcpu,
7956                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7957                         return kvm_skip_emulated_instruction(vcpu);
7958                 }
7959                 break;
7960         case VMX_VPID_EXTENT_ALL_CONTEXT:
7961                 break;
7962         default:
7963                 WARN_ON_ONCE(1);
7964                 return kvm_skip_emulated_instruction(vcpu);
7965         }
7966
7967         __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7968         nested_vmx_succeed(vcpu);
7969
7970         return kvm_skip_emulated_instruction(vcpu);
7971 }
7972
7973 static int handle_pml_full(struct kvm_vcpu *vcpu)
7974 {
7975         unsigned long exit_qualification;
7976
7977         trace_kvm_pml_full(vcpu->vcpu_id);
7978
7979         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7980
7981         /*
7982          * PML buffer FULL happened while executing iret from NMI,
7983          * "blocked by NMI" bit has to be set before next VM entry.
7984          */
7985         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7986                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7987                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7988                                 GUEST_INTR_STATE_NMI);
7989
7990         /*
7991          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7992          * here.., and there's no userspace involvement needed for PML.
7993          */
7994         return 1;
7995 }
7996
7997 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7998 {
7999         kvm_lapic_expired_hv_timer(vcpu);
8000         return 1;
8001 }
8002
8003 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8004 {
8005         struct vcpu_vmx *vmx = to_vmx(vcpu);
8006         int maxphyaddr = cpuid_maxphyaddr(vcpu);
8007
8008         /* Check for memory type validity */
8009         switch (address & VMX_EPTP_MT_MASK) {
8010         case VMX_EPTP_MT_UC:
8011                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_UC_BIT))
8012                         return false;
8013                 break;
8014         case VMX_EPTP_MT_WB:
8015                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPTP_WB_BIT))
8016                         return false;
8017                 break;
8018         default:
8019                 return false;
8020         }
8021
8022         /* only 4 levels page-walk length are valid */
8023         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
8024                 return false;
8025
8026         /* Reserved bits should not be set */
8027         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8028                 return false;
8029
8030         /* AD, if set, should be supported */
8031         if (address & VMX_EPTP_AD_ENABLE_BIT) {
8032                 if (!(vmx->nested.nested_vmx_ept_caps & VMX_EPT_AD_BIT))
8033                         return false;
8034         }
8035
8036         return true;
8037 }
8038
8039 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8040                                      struct vmcs12 *vmcs12)
8041 {
8042         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8043         u64 address;
8044         bool accessed_dirty;
8045         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8046
8047         if (!nested_cpu_has_eptp_switching(vmcs12) ||
8048             !nested_cpu_has_ept(vmcs12))
8049                 return 1;
8050
8051         if (index >= VMFUNC_EPTP_ENTRIES)
8052                 return 1;
8053
8054
8055         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8056                                      &address, index * 8, 8))
8057                 return 1;
8058
8059         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
8060
8061         /*
8062          * If the (L2) guest does a vmfunc to the currently
8063          * active ept pointer, we don't have to do anything else
8064          */
8065         if (vmcs12->ept_pointer != address) {
8066                 if (!valid_ept_address(vcpu, address))
8067                         return 1;
8068
8069                 kvm_mmu_unload(vcpu);
8070                 mmu->ept_ad = accessed_dirty;
8071                 mmu->base_role.ad_disabled = !accessed_dirty;
8072                 vmcs12->ept_pointer = address;
8073                 /*
8074                  * TODO: Check what's the correct approach in case
8075                  * mmu reload fails. Currently, we just let the next
8076                  * reload potentially fail
8077                  */
8078                 kvm_mmu_reload(vcpu);
8079         }
8080
8081         return 0;
8082 }
8083
8084 static int handle_vmfunc(struct kvm_vcpu *vcpu)
8085 {
8086         struct vcpu_vmx *vmx = to_vmx(vcpu);
8087         struct vmcs12 *vmcs12;
8088         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8089
8090         /*
8091          * VMFUNC is only supported for nested guests, but we always enable the
8092          * secondary control for simplicity; for non-nested mode, fake that we
8093          * didn't by injecting #UD.
8094          */
8095         if (!is_guest_mode(vcpu)) {
8096                 kvm_queue_exception(vcpu, UD_VECTOR);
8097                 return 1;
8098         }
8099
8100         vmcs12 = get_vmcs12(vcpu);
8101         if ((vmcs12->vm_function_control & (1 << function)) == 0)
8102                 goto fail;
8103
8104         switch (function) {
8105         case 0:
8106                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8107                         goto fail;
8108                 break;
8109         default:
8110                 goto fail;
8111         }
8112         return kvm_skip_emulated_instruction(vcpu);
8113
8114 fail:
8115         nested_vmx_vmexit(vcpu, vmx->exit_reason,
8116                           vmcs_read32(VM_EXIT_INTR_INFO),
8117                           vmcs_readl(EXIT_QUALIFICATION));
8118         return 1;
8119 }
8120
8121 /*
8122  * The exit handlers return 1 if the exit was handled fully and guest execution
8123  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
8124  * to be done to userspace and return 0.
8125  */
8126 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
8127         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
8128         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
8129         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
8130         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
8131         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
8132         [EXIT_REASON_CR_ACCESS]               = handle_cr,
8133         [EXIT_REASON_DR_ACCESS]               = handle_dr,
8134         [EXIT_REASON_CPUID]                   = handle_cpuid,
8135         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
8136         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
8137         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
8138         [EXIT_REASON_HLT]                     = handle_halt,
8139         [EXIT_REASON_INVD]                    = handle_invd,
8140         [EXIT_REASON_INVLPG]                  = handle_invlpg,
8141         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
8142         [EXIT_REASON_VMCALL]                  = handle_vmcall,
8143         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
8144         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
8145         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
8146         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
8147         [EXIT_REASON_VMREAD]                  = handle_vmread,
8148         [EXIT_REASON_VMRESUME]                = handle_vmresume,
8149         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
8150         [EXIT_REASON_VMOFF]                   = handle_vmoff,
8151         [EXIT_REASON_VMON]                    = handle_vmon,
8152         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
8153         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
8154         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
8155         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
8156         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
8157         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
8158         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
8159         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
8160         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
8161         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
8162         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
8163         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
8164         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
8165         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
8166         [EXIT_REASON_INVEPT]                  = handle_invept,
8167         [EXIT_REASON_INVVPID]                 = handle_invvpid,
8168         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
8169         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
8170         [EXIT_REASON_XSAVES]                  = handle_xsaves,
8171         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
8172         [EXIT_REASON_PML_FULL]                = handle_pml_full,
8173         [EXIT_REASON_VMFUNC]                  = handle_vmfunc,
8174         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
8175 };
8176
8177 static const int kvm_vmx_max_exit_handlers =
8178         ARRAY_SIZE(kvm_vmx_exit_handlers);
8179
8180 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8181                                        struct vmcs12 *vmcs12)
8182 {
8183         unsigned long exit_qualification;
8184         gpa_t bitmap, last_bitmap;
8185         unsigned int port;
8186         int size;
8187         u8 b;
8188
8189         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8190                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8191
8192         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8193
8194         port = exit_qualification >> 16;
8195         size = (exit_qualification & 7) + 1;
8196
8197         last_bitmap = (gpa_t)-1;
8198         b = -1;
8199
8200         while (size > 0) {
8201                 if (port < 0x8000)
8202                         bitmap = vmcs12->io_bitmap_a;
8203                 else if (port < 0x10000)
8204                         bitmap = vmcs12->io_bitmap_b;
8205                 else
8206                         return true;
8207                 bitmap += (port & 0x7fff) / 8;
8208
8209                 if (last_bitmap != bitmap)
8210                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
8211                                 return true;
8212                 if (b & (1 << (port & 7)))
8213                         return true;
8214
8215                 port++;
8216                 size--;
8217                 last_bitmap = bitmap;
8218         }
8219
8220         return false;
8221 }
8222
8223 /*
8224  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8225  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8226  * disinterest in the current event (read or write a specific MSR) by using an
8227  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8228  */
8229 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8230         struct vmcs12 *vmcs12, u32 exit_reason)
8231 {
8232         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8233         gpa_t bitmap;
8234
8235         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8236                 return true;
8237
8238         /*
8239          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8240          * for the four combinations of read/write and low/high MSR numbers.
8241          * First we need to figure out which of the four to use:
8242          */
8243         bitmap = vmcs12->msr_bitmap;
8244         if (exit_reason == EXIT_REASON_MSR_WRITE)
8245                 bitmap += 2048;
8246         if (msr_index >= 0xc0000000) {
8247                 msr_index -= 0xc0000000;
8248                 bitmap += 1024;
8249         }
8250
8251         /* Then read the msr_index'th bit from this bitmap: */
8252         if (msr_index < 1024*8) {
8253                 unsigned char b;
8254                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
8255                         return true;
8256                 return 1 & (b >> (msr_index & 7));
8257         } else
8258                 return true; /* let L1 handle the wrong parameter */
8259 }
8260
8261 /*
8262  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8263  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8264  * intercept (via guest_host_mask etc.) the current event.
8265  */
8266 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8267         struct vmcs12 *vmcs12)
8268 {
8269         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8270         int cr = exit_qualification & 15;
8271         int reg;
8272         unsigned long val;
8273
8274         switch ((exit_qualification >> 4) & 3) {
8275         case 0: /* mov to cr */
8276                 reg = (exit_qualification >> 8) & 15;
8277                 val = kvm_register_readl(vcpu, reg);
8278                 switch (cr) {
8279                 case 0:
8280                         if (vmcs12->cr0_guest_host_mask &
8281                             (val ^ vmcs12->cr0_read_shadow))
8282                                 return true;
8283                         break;
8284                 case 3:
8285                         if ((vmcs12->cr3_target_count >= 1 &&
8286                                         vmcs12->cr3_target_value0 == val) ||
8287                                 (vmcs12->cr3_target_count >= 2 &&
8288                                         vmcs12->cr3_target_value1 == val) ||
8289                                 (vmcs12->cr3_target_count >= 3 &&
8290                                         vmcs12->cr3_target_value2 == val) ||
8291                                 (vmcs12->cr3_target_count >= 4 &&
8292                                         vmcs12->cr3_target_value3 == val))
8293                                 return false;
8294                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8295                                 return true;
8296                         break;
8297                 case 4:
8298                         if (vmcs12->cr4_guest_host_mask &
8299                             (vmcs12->cr4_read_shadow ^ val))
8300                                 return true;
8301                         break;
8302                 case 8:
8303                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8304                                 return true;
8305                         break;
8306                 }
8307                 break;
8308         case 2: /* clts */
8309                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8310                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
8311                         return true;
8312                 break;
8313         case 1: /* mov from cr */
8314                 switch (cr) {
8315                 case 3:
8316                         if (vmcs12->cpu_based_vm_exec_control &
8317                             CPU_BASED_CR3_STORE_EXITING)
8318                                 return true;
8319                         break;
8320                 case 8:
8321                         if (vmcs12->cpu_based_vm_exec_control &
8322                             CPU_BASED_CR8_STORE_EXITING)
8323                                 return true;
8324                         break;
8325                 }
8326                 break;
8327         case 3: /* lmsw */
8328                 /*
8329                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8330                  * cr0. Other attempted changes are ignored, with no exit.
8331                  */
8332                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8333                 if (vmcs12->cr0_guest_host_mask & 0xe &
8334                     (val ^ vmcs12->cr0_read_shadow))
8335                         return true;
8336                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8337                     !(vmcs12->cr0_read_shadow & 0x1) &&
8338                     (val & 0x1))
8339                         return true;
8340                 break;
8341         }
8342         return false;
8343 }
8344
8345 /*
8346  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8347  * should handle it ourselves in L0 (and then continue L2). Only call this
8348  * when in is_guest_mode (L2).
8349  */
8350 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
8351 {
8352         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8353         struct vcpu_vmx *vmx = to_vmx(vcpu);
8354         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8355
8356         if (vmx->nested.nested_run_pending)
8357                 return false;
8358
8359         if (unlikely(vmx->fail)) {
8360                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8361                                     vmcs_read32(VM_INSTRUCTION_ERROR));
8362                 return true;
8363         }
8364
8365         /*
8366          * The host physical addresses of some pages of guest memory
8367          * are loaded into VMCS02 (e.g. L1's Virtual APIC Page). The CPU
8368          * may write to these pages via their host physical address while
8369          * L2 is running, bypassing any address-translation-based dirty
8370          * tracking (e.g. EPT write protection).
8371          *
8372          * Mark them dirty on every exit from L2 to prevent them from
8373          * getting out of sync with dirty tracking.
8374          */
8375         nested_mark_vmcs12_pages_dirty(vcpu);
8376
8377         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8378                                 vmcs_readl(EXIT_QUALIFICATION),
8379                                 vmx->idt_vectoring_info,
8380                                 intr_info,
8381                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8382                                 KVM_ISA_VMX);
8383
8384         switch (exit_reason) {
8385         case EXIT_REASON_EXCEPTION_NMI:
8386                 if (is_nmi(intr_info))
8387                         return false;
8388                 else if (is_page_fault(intr_info))
8389                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
8390                 else if (is_no_device(intr_info) &&
8391                          !(vmcs12->guest_cr0 & X86_CR0_TS))
8392                         return false;
8393                 else if (is_debug(intr_info) &&
8394                          vcpu->guest_debug &
8395                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8396                         return false;
8397                 else if (is_breakpoint(intr_info) &&
8398                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8399                         return false;
8400                 return vmcs12->exception_bitmap &
8401                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8402         case EXIT_REASON_EXTERNAL_INTERRUPT:
8403                 return false;
8404         case EXIT_REASON_TRIPLE_FAULT:
8405                 return true;
8406         case EXIT_REASON_PENDING_INTERRUPT:
8407                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8408         case EXIT_REASON_NMI_WINDOW:
8409                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8410         case EXIT_REASON_TASK_SWITCH:
8411                 return true;
8412         case EXIT_REASON_CPUID:
8413                 return true;
8414         case EXIT_REASON_HLT:
8415                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8416         case EXIT_REASON_INVD:
8417                 return true;
8418         case EXIT_REASON_INVLPG:
8419                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8420         case EXIT_REASON_RDPMC:
8421                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8422         case EXIT_REASON_RDRAND:
8423                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8424         case EXIT_REASON_RDSEED:
8425                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8426         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8427                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8428         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8429         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8430         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8431         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8432         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8433         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8434                 /*
8435                  * VMX instructions trap unconditionally. This allows L1 to
8436                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
8437                  */
8438                 return true;
8439         case EXIT_REASON_CR_ACCESS:
8440                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8441         case EXIT_REASON_DR_ACCESS:
8442                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8443         case EXIT_REASON_IO_INSTRUCTION:
8444                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8445         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8446                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8447         case EXIT_REASON_MSR_READ:
8448         case EXIT_REASON_MSR_WRITE:
8449                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8450         case EXIT_REASON_INVALID_STATE:
8451                 return true;
8452         case EXIT_REASON_MWAIT_INSTRUCTION:
8453                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8454         case EXIT_REASON_MONITOR_TRAP_FLAG:
8455                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8456         case EXIT_REASON_MONITOR_INSTRUCTION:
8457                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8458         case EXIT_REASON_PAUSE_INSTRUCTION:
8459                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8460                         nested_cpu_has2(vmcs12,
8461                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8462         case EXIT_REASON_MCE_DURING_VMENTRY:
8463                 return false;
8464         case EXIT_REASON_TPR_BELOW_THRESHOLD:
8465                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8466         case EXIT_REASON_APIC_ACCESS:
8467                 return nested_cpu_has2(vmcs12,
8468                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8469         case EXIT_REASON_APIC_WRITE:
8470         case EXIT_REASON_EOI_INDUCED:
8471                 /* apic_write and eoi_induced should exit unconditionally. */
8472                 return true;
8473         case EXIT_REASON_EPT_VIOLATION:
8474                 /*
8475                  * L0 always deals with the EPT violation. If nested EPT is
8476                  * used, and the nested mmu code discovers that the address is
8477                  * missing in the guest EPT table (EPT12), the EPT violation
8478                  * will be injected with nested_ept_inject_page_fault()
8479                  */
8480                 return false;
8481         case EXIT_REASON_EPT_MISCONFIG:
8482                 /*
8483                  * L2 never uses directly L1's EPT, but rather L0's own EPT
8484                  * table (shadow on EPT) or a merged EPT table that L0 built
8485                  * (EPT on EPT). So any problems with the structure of the
8486                  * table is L0's fault.
8487                  */
8488                 return false;
8489         case EXIT_REASON_INVPCID:
8490                 return
8491                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8492                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8493         case EXIT_REASON_WBINVD:
8494                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8495         case EXIT_REASON_XSETBV:
8496                 return true;
8497         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8498                 /*
8499                  * This should never happen, since it is not possible to
8500                  * set XSS to a non-zero value---neither in L1 nor in L2.
8501                  * If if it were, XSS would have to be checked against
8502                  * the XSS exit bitmap in vmcs12.
8503                  */
8504                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8505         case EXIT_REASON_PREEMPTION_TIMER:
8506                 return false;
8507         case EXIT_REASON_PML_FULL:
8508                 /* We emulate PML support to L1. */
8509                 return false;
8510         case EXIT_REASON_VMFUNC:
8511                 /* VM functions are emulated through L2->L0 vmexits. */
8512                 return false;
8513         default:
8514                 return true;
8515         }
8516 }
8517
8518 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8519 {
8520         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8521
8522         /*
8523          * At this point, the exit interruption info in exit_intr_info
8524          * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
8525          * we need to query the in-kernel LAPIC.
8526          */
8527         WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8528         if ((exit_intr_info &
8529              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8530             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8531                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8532                 vmcs12->vm_exit_intr_error_code =
8533                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8534         }
8535
8536         nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8537                           vmcs_readl(EXIT_QUALIFICATION));
8538         return 1;
8539 }
8540
8541 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8542 {
8543         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8544         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8545 }
8546
8547 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8548 {
8549         if (vmx->pml_pg) {
8550                 __free_page(vmx->pml_pg);
8551                 vmx->pml_pg = NULL;
8552         }
8553 }
8554
8555 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8556 {
8557         struct vcpu_vmx *vmx = to_vmx(vcpu);
8558         u64 *pml_buf;
8559         u16 pml_idx;
8560
8561         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8562
8563         /* Do nothing if PML buffer is empty */
8564         if (pml_idx == (PML_ENTITY_NUM - 1))
8565                 return;
8566
8567         /* PML index always points to next available PML buffer entity */
8568         if (pml_idx >= PML_ENTITY_NUM)
8569                 pml_idx = 0;
8570         else
8571                 pml_idx++;
8572
8573         pml_buf = page_address(vmx->pml_pg);
8574         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8575                 u64 gpa;
8576
8577                 gpa = pml_buf[pml_idx];
8578                 WARN_ON(gpa & (PAGE_SIZE - 1));
8579                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8580         }
8581
8582         /* reset PML index */
8583         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8584 }
8585
8586 /*
8587  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8588  * Called before reporting dirty_bitmap to userspace.
8589  */
8590 static void kvm_flush_pml_buffers(struct kvm *kvm)
8591 {
8592         int i;
8593         struct kvm_vcpu *vcpu;
8594         /*
8595          * We only need to kick vcpu out of guest mode here, as PML buffer
8596          * is flushed at beginning of all VMEXITs, and it's obvious that only
8597          * vcpus running in guest are possible to have unflushed GPAs in PML
8598          * buffer.
8599          */
8600         kvm_for_each_vcpu(i, vcpu, kvm)
8601                 kvm_vcpu_kick(vcpu);
8602 }
8603
8604 static void vmx_dump_sel(char *name, uint32_t sel)
8605 {
8606         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8607                name, vmcs_read16(sel),
8608                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8609                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8610                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8611 }
8612
8613 static void vmx_dump_dtsel(char *name, uint32_t limit)
8614 {
8615         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8616                name, vmcs_read32(limit),
8617                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8618 }
8619
8620 static void dump_vmcs(void)
8621 {
8622         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8623         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8624         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8625         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8626         u32 secondary_exec_control = 0;
8627         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8628         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8629         int i, n;
8630
8631         if (cpu_has_secondary_exec_ctrls())
8632                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8633
8634         pr_err("*** Guest State ***\n");
8635         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8636                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8637                vmcs_readl(CR0_GUEST_HOST_MASK));
8638         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8639                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8640         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8641         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8642             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8643         {
8644                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8645                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8646                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8647                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8648         }
8649         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8650                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8651         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8652                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8653         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8654                vmcs_readl(GUEST_SYSENTER_ESP),
8655                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8656         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8657         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8658         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8659         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8660         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8661         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8662         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8663         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8664         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8665         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8666         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8667             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8668                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8669                        efer, vmcs_read64(GUEST_IA32_PAT));
8670         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8671                vmcs_read64(GUEST_IA32_DEBUGCTL),
8672                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8673         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8674                 pr_err("PerfGlobCtl = 0x%016llx\n",
8675                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8676         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8677                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8678         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8679                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8680                vmcs_read32(GUEST_ACTIVITY_STATE));
8681         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8682                 pr_err("InterruptStatus = %04x\n",
8683                        vmcs_read16(GUEST_INTR_STATUS));
8684
8685         pr_err("*** Host State ***\n");
8686         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8687                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8688         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8689                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8690                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8691                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8692                vmcs_read16(HOST_TR_SELECTOR));
8693         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8694                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8695                vmcs_readl(HOST_TR_BASE));
8696         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8697                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8698         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8699                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8700                vmcs_readl(HOST_CR4));
8701         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8702                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8703                vmcs_read32(HOST_IA32_SYSENTER_CS),
8704                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8705         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8706                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8707                        vmcs_read64(HOST_IA32_EFER),
8708                        vmcs_read64(HOST_IA32_PAT));
8709         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8710                 pr_err("PerfGlobCtl = 0x%016llx\n",
8711                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8712
8713         pr_err("*** Control State ***\n");
8714         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8715                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8716         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8717         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8718                vmcs_read32(EXCEPTION_BITMAP),
8719                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8720                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8721         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8722                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8723                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8724                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8725         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8726                vmcs_read32(VM_EXIT_INTR_INFO),
8727                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8728                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8729         pr_err("        reason=%08x qualification=%016lx\n",
8730                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8731         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8732                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8733                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8734         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8735         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8736                 pr_err("TSC Multiplier = 0x%016llx\n",
8737                        vmcs_read64(TSC_MULTIPLIER));
8738         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8739                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8740         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8741                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8742         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8743                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8744         n = vmcs_read32(CR3_TARGET_COUNT);
8745         for (i = 0; i + 1 < n; i += 4)
8746                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8747                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8748                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8749         if (i < n)
8750                 pr_err("CR3 target%u=%016lx\n",
8751                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8752         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8753                 pr_err("PLE Gap=%08x Window=%08x\n",
8754                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8755         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8756                 pr_err("Virtual processor ID = 0x%04x\n",
8757                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8758 }
8759
8760 /*
8761  * The guest has exited.  See if we can fix it or if we need userspace
8762  * assistance.
8763  */
8764 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8765 {
8766         struct vcpu_vmx *vmx = to_vmx(vcpu);
8767         u32 exit_reason = vmx->exit_reason;
8768         u32 vectoring_info = vmx->idt_vectoring_info;
8769
8770         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8771
8772         /*
8773          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8774          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8775          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8776          * mode as if vcpus is in root mode, the PML buffer must has been
8777          * flushed already.
8778          */
8779         if (enable_pml)
8780                 vmx_flush_pml_buffer(vcpu);
8781
8782         /* If guest state is invalid, start emulating */
8783         if (vmx->emulation_required)
8784                 return handle_invalid_guest_state(vcpu);
8785
8786         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
8787                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
8788
8789         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8790                 dump_vmcs();
8791                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8792                 vcpu->run->fail_entry.hardware_entry_failure_reason
8793                         = exit_reason;
8794                 return 0;
8795         }
8796
8797         if (unlikely(vmx->fail)) {
8798                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8799                 vcpu->run->fail_entry.hardware_entry_failure_reason
8800                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8801                 return 0;
8802         }
8803
8804         /*
8805          * Note:
8806          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8807          * delivery event since it indicates guest is accessing MMIO.
8808          * The vm-exit can be triggered again after return to guest that
8809          * will cause infinite loop.
8810          */
8811         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8812                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8813                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8814                         exit_reason != EXIT_REASON_PML_FULL &&
8815                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8816                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8817                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8818                 vcpu->run->internal.ndata = 3;
8819                 vcpu->run->internal.data[0] = vectoring_info;
8820                 vcpu->run->internal.data[1] = exit_reason;
8821                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
8822                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
8823                         vcpu->run->internal.ndata++;
8824                         vcpu->run->internal.data[3] =
8825                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
8826                 }
8827                 return 0;
8828         }
8829
8830         if (exit_reason < kvm_vmx_max_exit_handlers
8831             && kvm_vmx_exit_handlers[exit_reason])
8832                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8833         else {
8834                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8835                                 exit_reason);
8836                 kvm_queue_exception(vcpu, UD_VECTOR);
8837                 return 1;
8838         }
8839 }
8840
8841 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8842 {
8843         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8844
8845         if (is_guest_mode(vcpu) &&
8846                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8847                 return;
8848
8849         if (irr == -1 || tpr < irr) {
8850                 vmcs_write32(TPR_THRESHOLD, 0);
8851                 return;
8852         }
8853
8854         vmcs_write32(TPR_THRESHOLD, irr);
8855 }
8856
8857 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8858 {
8859         u32 sec_exec_control;
8860
8861         /* Postpone execution until vmcs01 is the current VMCS. */
8862         if (is_guest_mode(vcpu)) {
8863                 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8864                 return;
8865         }
8866
8867         if (!cpu_has_vmx_virtualize_x2apic_mode())
8868                 return;
8869
8870         if (!cpu_need_tpr_shadow(vcpu))
8871                 return;
8872
8873         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8874
8875         if (set) {
8876                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8877                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8878         } else {
8879                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8880                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8881                 vmx_flush_tlb_ept_only(vcpu);
8882         }
8883         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8884
8885         vmx_set_msr_bitmap(vcpu);
8886 }
8887
8888 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8889 {
8890         struct vcpu_vmx *vmx = to_vmx(vcpu);
8891
8892         /*
8893          * Currently we do not handle the nested case where L2 has an
8894          * APIC access page of its own; that page is still pinned.
8895          * Hence, we skip the case where the VCPU is in guest mode _and_
8896          * L1 prepared an APIC access page for L2.
8897          *
8898          * For the case where L1 and L2 share the same APIC access page
8899          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8900          * in the vmcs12), this function will only update either the vmcs01
8901          * or the vmcs02.  If the former, the vmcs02 will be updated by
8902          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8903          * the next L2->L1 exit.
8904          */
8905         if (!is_guest_mode(vcpu) ||
8906             !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8907                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8908                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8909                 vmx_flush_tlb_ept_only(vcpu);
8910         }
8911 }
8912
8913 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8914 {
8915         u16 status;
8916         u8 old;
8917
8918         if (max_isr == -1)
8919                 max_isr = 0;
8920
8921         status = vmcs_read16(GUEST_INTR_STATUS);
8922         old = status >> 8;
8923         if (max_isr != old) {
8924                 status &= 0xff;
8925                 status |= max_isr << 8;
8926                 vmcs_write16(GUEST_INTR_STATUS, status);
8927         }
8928 }
8929
8930 static void vmx_set_rvi(int vector)
8931 {
8932         u16 status;
8933         u8 old;
8934
8935         if (vector == -1)
8936                 vector = 0;
8937
8938         status = vmcs_read16(GUEST_INTR_STATUS);
8939         old = (u8)status & 0xff;
8940         if ((u8)vector != old) {
8941                 status &= ~0xff;
8942                 status |= (u8)vector;
8943                 vmcs_write16(GUEST_INTR_STATUS, status);
8944         }
8945 }
8946
8947 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8948 {
8949         if (!is_guest_mode(vcpu)) {
8950                 vmx_set_rvi(max_irr);
8951                 return;
8952         }
8953
8954         if (max_irr == -1)
8955                 return;
8956
8957         /*
8958          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8959          * handles it.
8960          */
8961         if (nested_exit_on_intr(vcpu))
8962                 return;
8963
8964         /*
8965          * Else, fall back to pre-APICv interrupt injection since L2
8966          * is run without virtual interrupt delivery.
8967          */
8968         if (!kvm_event_needs_reinjection(vcpu) &&
8969             vmx_interrupt_allowed(vcpu)) {
8970                 kvm_queue_interrupt(vcpu, max_irr, false);
8971                 vmx_inject_irq(vcpu);
8972         }
8973 }
8974
8975 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8976 {
8977         struct vcpu_vmx *vmx = to_vmx(vcpu);
8978         int max_irr;
8979
8980         WARN_ON(!vcpu->arch.apicv_active);
8981         if (pi_test_on(&vmx->pi_desc)) {
8982                 pi_clear_on(&vmx->pi_desc);
8983                 /*
8984                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8985                  * But on x86 this is just a compiler barrier anyway.
8986                  */
8987                 smp_mb__after_atomic();
8988                 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8989         } else {
8990                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8991         }
8992         vmx_hwapic_irr_update(vcpu, max_irr);
8993         return max_irr;
8994 }
8995
8996 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8997 {
8998         if (!kvm_vcpu_apicv_active(vcpu))
8999                 return;
9000
9001         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9002         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9003         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9004         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9005 }
9006
9007 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9008 {
9009         struct vcpu_vmx *vmx = to_vmx(vcpu);
9010
9011         pi_clear_on(&vmx->pi_desc);
9012         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9013 }
9014
9015 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
9016 {
9017         u32 exit_intr_info = 0;
9018         u16 basic_exit_reason = (u16)vmx->exit_reason;
9019
9020         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9021               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
9022                 return;
9023
9024         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9025                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9026         vmx->exit_intr_info = exit_intr_info;
9027
9028         /* if exit due to PF check for async PF */
9029         if (is_page_fault(exit_intr_info))
9030                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9031
9032         /* Handle machine checks before interrupts are enabled */
9033         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9034             is_machine_check(exit_intr_info))
9035                 kvm_machine_check();
9036
9037         /* We need to handle NMIs before interrupts are enabled */
9038         if (is_nmi(exit_intr_info)) {
9039                 kvm_before_handle_nmi(&vmx->vcpu);
9040                 asm("int $2");
9041                 kvm_after_handle_nmi(&vmx->vcpu);
9042         }
9043 }
9044
9045 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9046 {
9047         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9048         register void *__sp asm(_ASM_SP);
9049
9050         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9051                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9052                 unsigned int vector;
9053                 unsigned long entry;
9054                 gate_desc *desc;
9055                 struct vcpu_vmx *vmx = to_vmx(vcpu);
9056 #ifdef CONFIG_X86_64
9057                 unsigned long tmp;
9058 #endif
9059
9060                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
9061                 desc = (gate_desc *)vmx->host_idt_base + vector;
9062                 entry = gate_offset(desc);
9063                 asm volatile(
9064 #ifdef CONFIG_X86_64
9065                         "mov %%" _ASM_SP ", %[sp]\n\t"
9066                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9067                         "push $%c[ss]\n\t"
9068                         "push %[sp]\n\t"
9069 #endif
9070                         "pushf\n\t"
9071                         __ASM_SIZE(push) " $%c[cs]\n\t"
9072                         "call *%[entry]\n\t"
9073                         :
9074 #ifdef CONFIG_X86_64
9075                         [sp]"=&r"(tmp),
9076 #endif
9077                         "+r"(__sp)
9078                         :
9079                         [entry]"r"(entry),
9080                         [ss]"i"(__KERNEL_DS),
9081                         [cs]"i"(__KERNEL_CS)
9082                         );
9083         }
9084 }
9085 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
9086
9087 static bool vmx_has_high_real_mode_segbase(void)
9088 {
9089         return enable_unrestricted_guest || emulate_invalid_guest_state;
9090 }
9091
9092 static bool vmx_mpx_supported(void)
9093 {
9094         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9095                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9096 }
9097
9098 static bool vmx_xsaves_supported(void)
9099 {
9100         return vmcs_config.cpu_based_2nd_exec_ctrl &
9101                 SECONDARY_EXEC_XSAVES;
9102 }
9103
9104 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9105 {
9106         u32 exit_intr_info;
9107         bool unblock_nmi;
9108         u8 vector;
9109         bool idtv_info_valid;
9110
9111         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9112
9113         if (vmx->loaded_vmcs->nmi_known_unmasked)
9114                 return;
9115         /*
9116          * Can't use vmx->exit_intr_info since we're not sure what
9117          * the exit reason is.
9118          */
9119         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9120         unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9121         vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9122         /*
9123          * SDM 3: 27.7.1.2 (September 2008)
9124          * Re-set bit "block by NMI" before VM entry if vmexit caused by
9125          * a guest IRET fault.
9126          * SDM 3: 23.2.2 (September 2008)
9127          * Bit 12 is undefined in any of the following cases:
9128          *  If the VM exit sets the valid bit in the IDT-vectoring
9129          *   information field.
9130          *  If the VM exit is due to a double fault.
9131          */
9132         if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9133             vector != DF_VECTOR && !idtv_info_valid)
9134                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9135                               GUEST_INTR_STATE_NMI);
9136         else
9137                 vmx->loaded_vmcs->nmi_known_unmasked =
9138                         !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9139                           & GUEST_INTR_STATE_NMI);
9140 }
9141
9142 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
9143                                       u32 idt_vectoring_info,
9144                                       int instr_len_field,
9145                                       int error_code_field)
9146 {
9147         u8 vector;
9148         int type;
9149         bool idtv_info_valid;
9150
9151         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9152
9153         vcpu->arch.nmi_injected = false;
9154         kvm_clear_exception_queue(vcpu);
9155         kvm_clear_interrupt_queue(vcpu);
9156
9157         if (!idtv_info_valid)
9158                 return;
9159
9160         kvm_make_request(KVM_REQ_EVENT, vcpu);
9161
9162         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9163         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
9164
9165         switch (type) {
9166         case INTR_TYPE_NMI_INTR:
9167                 vcpu->arch.nmi_injected = true;
9168                 /*
9169                  * SDM 3: 27.7.1.2 (September 2008)
9170                  * Clear bit "block by NMI" before VM entry if a NMI
9171                  * delivery faulted.
9172                  */
9173                 vmx_set_nmi_mask(vcpu, false);
9174                 break;
9175         case INTR_TYPE_SOFT_EXCEPTION:
9176                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9177                 /* fall through */
9178         case INTR_TYPE_HARD_EXCEPTION:
9179                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
9180                         u32 err = vmcs_read32(error_code_field);
9181                         kvm_requeue_exception_e(vcpu, vector, err);
9182                 } else
9183                         kvm_requeue_exception(vcpu, vector);
9184                 break;
9185         case INTR_TYPE_SOFT_INTR:
9186                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9187                 /* fall through */
9188         case INTR_TYPE_EXT_INTR:
9189                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
9190                 break;
9191         default:
9192                 break;
9193         }
9194 }
9195
9196 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9197 {
9198         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
9199                                   VM_EXIT_INSTRUCTION_LEN,
9200                                   IDT_VECTORING_ERROR_CODE);
9201 }
9202
9203 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9204 {
9205         __vmx_complete_interrupts(vcpu,
9206                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9207                                   VM_ENTRY_INSTRUCTION_LEN,
9208                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
9209
9210         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9211 }
9212
9213 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9214 {
9215         int i, nr_msrs;
9216         struct perf_guest_switch_msr *msrs;
9217
9218         msrs = perf_guest_get_msrs(&nr_msrs);
9219
9220         if (!msrs)
9221                 return;
9222
9223         for (i = 0; i < nr_msrs; i++)
9224                 if (msrs[i].host == msrs[i].guest)
9225                         clear_atomic_switch_msr(vmx, msrs[i].msr);
9226                 else
9227                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9228                                         msrs[i].host);
9229 }
9230
9231 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
9232 {
9233         struct vcpu_vmx *vmx = to_vmx(vcpu);
9234         u64 tscl;
9235         u32 delta_tsc;
9236
9237         if (vmx->hv_deadline_tsc == -1)
9238                 return;
9239
9240         tscl = rdtsc();
9241         if (vmx->hv_deadline_tsc > tscl)
9242                 /* sure to be 32 bit only because checked on set_hv_timer */
9243                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9244                         cpu_preemption_timer_multi);
9245         else
9246                 delta_tsc = 0;
9247
9248         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9249 }
9250
9251 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
9252 {
9253         struct vcpu_vmx *vmx = to_vmx(vcpu);
9254         unsigned long debugctlmsr, cr3, cr4;
9255
9256         /* Don't enter VMX if guest state is invalid, let the exit handler
9257            start emulation until we arrive back to a valid state */
9258         if (vmx->emulation_required)
9259                 return;
9260
9261         if (vmx->ple_window_dirty) {
9262                 vmx->ple_window_dirty = false;
9263                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9264         }
9265
9266         if (vmx->nested.sync_shadow_vmcs) {
9267                 copy_vmcs12_to_shadow(vmx);
9268                 vmx->nested.sync_shadow_vmcs = false;
9269         }
9270
9271         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9272                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9273         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9274                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9275
9276         cr3 = __get_current_cr3_fast();
9277         if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
9278                 vmcs_writel(HOST_CR3, cr3);
9279                 vmx->host_state.vmcs_host_cr3 = cr3;
9280         }
9281
9282         cr4 = cr4_read_shadow();
9283         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
9284                 vmcs_writel(HOST_CR4, cr4);
9285                 vmx->host_state.vmcs_host_cr4 = cr4;
9286         }
9287
9288         /* When single-stepping over STI and MOV SS, we must clear the
9289          * corresponding interruptibility bits in the guest state. Otherwise
9290          * vmentry fails as it then expects bit 14 (BS) in pending debug
9291          * exceptions being set, but that's not correct for the guest debugging
9292          * case. */
9293         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9294                 vmx_set_interrupt_shadow(vcpu, 0);
9295
9296         if (static_cpu_has(X86_FEATURE_PKU) &&
9297             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9298             vcpu->arch.pkru != vmx->host_pkru)
9299                 __write_pkru(vcpu->arch.pkru);
9300
9301         atomic_switch_perf_msrs(vmx);
9302         debugctlmsr = get_debugctlmsr();
9303
9304         vmx_arm_hv_timer(vcpu);
9305
9306         vmx->__launched = vmx->loaded_vmcs->launched;
9307         asm(
9308                 /* Store host registers */
9309                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9310                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9311                 "push %%" _ASM_CX " \n\t"
9312                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9313                 "je 1f \n\t"
9314                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
9315                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
9316                 "1: \n\t"
9317                 /* Reload cr2 if changed */
9318                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9319                 "mov %%cr2, %%" _ASM_DX " \n\t"
9320                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
9321                 "je 2f \n\t"
9322                 "mov %%" _ASM_AX", %%cr2 \n\t"
9323                 "2: \n\t"
9324                 /* Check if vmlaunch of vmresume is needed */
9325                 "cmpl $0, %c[launched](%0) \n\t"
9326                 /* Load guest registers.  Don't clobber flags. */
9327                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9328                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9329                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9330                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9331                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9332                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
9333 #ifdef CONFIG_X86_64
9334                 "mov %c[r8](%0),  %%r8  \n\t"
9335                 "mov %c[r9](%0),  %%r9  \n\t"
9336                 "mov %c[r10](%0), %%r10 \n\t"
9337                 "mov %c[r11](%0), %%r11 \n\t"
9338                 "mov %c[r12](%0), %%r12 \n\t"
9339                 "mov %c[r13](%0), %%r13 \n\t"
9340                 "mov %c[r14](%0), %%r14 \n\t"
9341                 "mov %c[r15](%0), %%r15 \n\t"
9342 #endif
9343                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
9344
9345                 /* Enter guest mode */
9346                 "jne 1f \n\t"
9347                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
9348                 "jmp 2f \n\t"
9349                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9350                 "2: "
9351                 /* Save guest registers, load host registers, keep flags */
9352                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
9353                 "pop %0 \n\t"
9354                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9355                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9356                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9357                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9358                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9359                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9360                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
9361 #ifdef CONFIG_X86_64
9362                 "mov %%r8,  %c[r8](%0) \n\t"
9363                 "mov %%r9,  %c[r9](%0) \n\t"
9364                 "mov %%r10, %c[r10](%0) \n\t"
9365                 "mov %%r11, %c[r11](%0) \n\t"
9366                 "mov %%r12, %c[r12](%0) \n\t"
9367                 "mov %%r13, %c[r13](%0) \n\t"
9368                 "mov %%r14, %c[r14](%0) \n\t"
9369                 "mov %%r15, %c[r15](%0) \n\t"
9370 #endif
9371                 "mov %%cr2, %%" _ASM_AX "   \n\t"
9372                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
9373
9374                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
9375                 "setbe %c[fail](%0) \n\t"
9376                 ".pushsection .rodata \n\t"
9377                 ".global vmx_return \n\t"
9378                 "vmx_return: " _ASM_PTR " 2b \n\t"
9379                 ".popsection"
9380               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9381                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9382                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9383                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9384                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9385                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9386                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9387                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9388                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9389                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9390                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9391 #ifdef CONFIG_X86_64
9392                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9393                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9394                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9395                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9396                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9397                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9398                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9399                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9400 #endif
9401                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9402                 [wordsize]"i"(sizeof(ulong))
9403               : "cc", "memory"
9404 #ifdef CONFIG_X86_64
9405                 , "rax", "rbx", "rdi", "rsi"
9406                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9407 #else
9408                 , "eax", "ebx", "edi", "esi"
9409 #endif
9410               );
9411
9412         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9413         if (debugctlmsr)
9414                 update_debugctlmsr(debugctlmsr);
9415
9416 #ifndef CONFIG_X86_64
9417         /*
9418          * The sysexit path does not restore ds/es, so we must set them to
9419          * a reasonable value ourselves.
9420          *
9421          * We can't defer this to vmx_load_host_state() since that function
9422          * may be executed in interrupt context, which saves and restore segments
9423          * around it, nullifying its effect.
9424          */
9425         loadsegment(ds, __USER_DS);
9426         loadsegment(es, __USER_DS);
9427 #endif
9428
9429         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9430                                   | (1 << VCPU_EXREG_RFLAGS)
9431                                   | (1 << VCPU_EXREG_PDPTR)
9432                                   | (1 << VCPU_EXREG_SEGMENTS)
9433                                   | (1 << VCPU_EXREG_CR3));
9434         vcpu->arch.regs_dirty = 0;
9435
9436         /*
9437          * eager fpu is enabled if PKEY is supported and CR4 is switched
9438          * back on host, so it is safe to read guest PKRU from current
9439          * XSAVE.
9440          */
9441         if (static_cpu_has(X86_FEATURE_PKU) &&
9442             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9443                 vcpu->arch.pkru = __read_pkru();
9444                 if (vcpu->arch.pkru != vmx->host_pkru)
9445                         __write_pkru(vmx->host_pkru);
9446         }
9447
9448         /*
9449          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9450          * we did not inject a still-pending event to L1 now because of
9451          * nested_run_pending, we need to re-enable this bit.
9452          */
9453         if (vmx->nested.nested_run_pending)
9454                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9455
9456         vmx->nested.nested_run_pending = 0;
9457         vmx->idt_vectoring_info = 0;
9458
9459         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9460         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9461                 return;
9462
9463         vmx->loaded_vmcs->launched = 1;
9464         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9465
9466         vmx_complete_atomic_exit(vmx);
9467         vmx_recover_nmi_blocking(vmx);
9468         vmx_complete_interrupts(vmx);
9469 }
9470 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9471
9472 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9473 {
9474         struct vcpu_vmx *vmx = to_vmx(vcpu);
9475         int cpu;
9476
9477         if (vmx->loaded_vmcs == vmcs)
9478                 return;
9479
9480         cpu = get_cpu();
9481         vmx->loaded_vmcs = vmcs;
9482         vmx_vcpu_put(vcpu);
9483         vmx_vcpu_load(vcpu, cpu);
9484         vcpu->cpu = cpu;
9485         put_cpu();
9486 }
9487
9488 /*
9489  * Ensure that the current vmcs of the logical processor is the
9490  * vmcs01 of the vcpu before calling free_nested().
9491  */
9492 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9493 {
9494        struct vcpu_vmx *vmx = to_vmx(vcpu);
9495        int r;
9496
9497        r = vcpu_load(vcpu);
9498        BUG_ON(r);
9499        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9500        free_nested(vmx);
9501        vcpu_put(vcpu);
9502 }
9503
9504 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9505 {
9506         struct vcpu_vmx *vmx = to_vmx(vcpu);
9507
9508         if (enable_pml)
9509                 vmx_destroy_pml_buffer(vmx);
9510         free_vpid(vmx->vpid);
9511         leave_guest_mode(vcpu);
9512         vmx_free_vcpu_nested(vcpu);
9513         free_loaded_vmcs(vmx->loaded_vmcs);
9514         kfree(vmx->guest_msrs);
9515         kvm_vcpu_uninit(vcpu);
9516         kmem_cache_free(kvm_vcpu_cache, vmx);
9517 }
9518
9519 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9520 {
9521         int err;
9522         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9523         int cpu;
9524
9525         if (!vmx)
9526                 return ERR_PTR(-ENOMEM);
9527
9528         vmx->vpid = allocate_vpid();
9529
9530         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9531         if (err)
9532                 goto free_vcpu;
9533
9534         err = -ENOMEM;
9535
9536         /*
9537          * If PML is turned on, failure on enabling PML just results in failure
9538          * of creating the vcpu, therefore we can simplify PML logic (by
9539          * avoiding dealing with cases, such as enabling PML partially on vcpus
9540          * for the guest, etc.
9541          */
9542         if (enable_pml) {
9543                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9544                 if (!vmx->pml_pg)
9545                         goto uninit_vcpu;
9546         }
9547
9548         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9549         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9550                      > PAGE_SIZE);
9551
9552         if (!vmx->guest_msrs)
9553                 goto free_pml;
9554
9555         vmx->loaded_vmcs = &vmx->vmcs01;
9556         vmx->loaded_vmcs->vmcs = alloc_vmcs();
9557         vmx->loaded_vmcs->shadow_vmcs = NULL;
9558         if (!vmx->loaded_vmcs->vmcs)
9559                 goto free_msrs;
9560         loaded_vmcs_init(vmx->loaded_vmcs);
9561
9562         cpu = get_cpu();
9563         vmx_vcpu_load(&vmx->vcpu, cpu);
9564         vmx->vcpu.cpu = cpu;
9565         err = vmx_vcpu_setup(vmx);
9566         vmx_vcpu_put(&vmx->vcpu);
9567         put_cpu();
9568         if (err)
9569                 goto free_vmcs;
9570         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9571                 err = alloc_apic_access_page(kvm);
9572                 if (err)
9573                         goto free_vmcs;
9574         }
9575
9576         if (enable_ept) {
9577                 if (!kvm->arch.ept_identity_map_addr)
9578                         kvm->arch.ept_identity_map_addr =
9579                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9580                 err = init_rmode_identity_map(kvm);
9581                 if (err)
9582                         goto free_vmcs;
9583         }
9584
9585         if (nested) {
9586                 nested_vmx_setup_ctls_msrs(vmx);
9587                 vmx->nested.vpid02 = allocate_vpid();
9588         }
9589
9590         vmx->nested.posted_intr_nv = -1;
9591         vmx->nested.current_vmptr = -1ull;
9592
9593         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9594
9595         return &vmx->vcpu;
9596
9597 free_vmcs:
9598         free_vpid(vmx->nested.vpid02);
9599         free_loaded_vmcs(vmx->loaded_vmcs);
9600 free_msrs:
9601         kfree(vmx->guest_msrs);
9602 free_pml:
9603         vmx_destroy_pml_buffer(vmx);
9604 uninit_vcpu:
9605         kvm_vcpu_uninit(&vmx->vcpu);
9606 free_vcpu:
9607         free_vpid(vmx->vpid);
9608         kmem_cache_free(kvm_vcpu_cache, vmx);
9609         return ERR_PTR(err);
9610 }
9611
9612 static void __init vmx_check_processor_compat(void *rtn)
9613 {
9614         struct vmcs_config vmcs_conf;
9615
9616         *(int *)rtn = 0;
9617         if (setup_vmcs_config(&vmcs_conf) < 0)
9618                 *(int *)rtn = -EIO;
9619         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9620                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9621                                 smp_processor_id());
9622                 *(int *)rtn = -EIO;
9623         }
9624 }
9625
9626 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9627 {
9628         u8 cache;
9629         u64 ipat = 0;
9630
9631         /* For VT-d and EPT combination
9632          * 1. MMIO: always map as UC
9633          * 2. EPT with VT-d:
9634          *   a. VT-d without snooping control feature: can't guarantee the
9635          *      result, try to trust guest.
9636          *   b. VT-d with snooping control feature: snooping control feature of
9637          *      VT-d engine can guarantee the cache correctness. Just set it
9638          *      to WB to keep consistent with host. So the same as item 3.
9639          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9640          *    consistent with host MTRR
9641          */
9642         if (is_mmio) {
9643                 cache = MTRR_TYPE_UNCACHABLE;
9644                 goto exit;
9645         }
9646
9647         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9648                 ipat = VMX_EPT_IPAT_BIT;
9649                 cache = MTRR_TYPE_WRBACK;
9650                 goto exit;
9651         }
9652
9653         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9654                 ipat = VMX_EPT_IPAT_BIT;
9655                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9656                         cache = MTRR_TYPE_WRBACK;
9657                 else
9658                         cache = MTRR_TYPE_UNCACHABLE;
9659                 goto exit;
9660         }
9661
9662         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9663
9664 exit:
9665         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9666 }
9667
9668 static int vmx_get_lpage_level(void)
9669 {
9670         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9671                 return PT_DIRECTORY_LEVEL;
9672         else
9673                 /* For shadow and EPT supported 1GB page */
9674                 return PT_PDPE_LEVEL;
9675 }
9676
9677 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9678 {
9679         /*
9680          * These bits in the secondary execution controls field
9681          * are dynamic, the others are mostly based on the hypervisor
9682          * architecture and the guest's CPUID.  Do not touch the
9683          * dynamic bits.
9684          */
9685         u32 mask =
9686                 SECONDARY_EXEC_SHADOW_VMCS |
9687                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9688                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9689
9690         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9691
9692         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9693                      (new_ctl & ~mask) | (cur_ctl & mask));
9694 }
9695
9696 /*
9697  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9698  * (indicating "allowed-1") if they are supported in the guest's CPUID.
9699  */
9700 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9701 {
9702         struct vcpu_vmx *vmx = to_vmx(vcpu);
9703         struct kvm_cpuid_entry2 *entry;
9704
9705         vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9706         vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9707
9708 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
9709         if (entry && (entry->_reg & (_cpuid_mask)))                     \
9710                 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask);       \
9711 } while (0)
9712
9713         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9714         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
9715         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
9716         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
9717         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
9718         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
9719         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
9720         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
9721         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
9722         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
9723         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9724         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
9725         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
9726         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
9727         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
9728
9729         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9730         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
9731         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
9732         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
9733         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
9734         /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9735         cr4_fixed1_update(bit(11),            ecx, bit(2));
9736
9737 #undef cr4_fixed1_update
9738 }
9739
9740 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9741 {
9742         struct vcpu_vmx *vmx = to_vmx(vcpu);
9743
9744         if (cpu_has_secondary_exec_ctrls()) {
9745                 vmx_compute_secondary_exec_control(vmx);
9746                 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
9747         }
9748
9749         if (nested_vmx_allowed(vcpu))
9750                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9751                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9752         else
9753                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9754                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9755
9756         if (nested_vmx_allowed(vcpu))
9757                 nested_vmx_cr_fixed1_bits_update(vcpu);
9758 }
9759
9760 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9761 {
9762         if (func == 1 && nested)
9763                 entry->ecx |= bit(X86_FEATURE_VMX);
9764 }
9765
9766 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9767                 struct x86_exception *fault)
9768 {
9769         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9770         struct vcpu_vmx *vmx = to_vmx(vcpu);
9771         u32 exit_reason;
9772         unsigned long exit_qualification = vcpu->arch.exit_qualification;
9773
9774         if (vmx->nested.pml_full) {
9775                 exit_reason = EXIT_REASON_PML_FULL;
9776                 vmx->nested.pml_full = false;
9777                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9778         } else if (fault->error_code & PFERR_RSVD_MASK)
9779                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9780         else
9781                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9782
9783         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9784         vmcs12->guest_physical_address = fault->address;
9785 }
9786
9787 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
9788 {
9789         return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
9790 }
9791
9792 /* Callbacks for nested_ept_init_mmu_context: */
9793
9794 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9795 {
9796         /* return the page table to be shadowed - in our case, EPT12 */
9797         return get_vmcs12(vcpu)->ept_pointer;
9798 }
9799
9800 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9801 {
9802         WARN_ON(mmu_is_nested(vcpu));
9803         if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
9804                 return 1;
9805
9806         kvm_mmu_unload(vcpu);
9807         kvm_init_shadow_ept_mmu(vcpu,
9808                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9809                         VMX_EPT_EXECUTE_ONLY_BIT,
9810                         nested_ept_ad_enabled(vcpu));
9811         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9812         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9813         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9814
9815         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9816         return 0;
9817 }
9818
9819 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9820 {
9821         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9822 }
9823
9824 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9825                                             u16 error_code)
9826 {
9827         bool inequality, bit;
9828
9829         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9830         inequality =
9831                 (error_code & vmcs12->page_fault_error_code_mask) !=
9832                  vmcs12->page_fault_error_code_match;
9833         return inequality ^ bit;
9834 }
9835
9836 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9837                 struct x86_exception *fault)
9838 {
9839         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9840
9841         WARN_ON(!is_guest_mode(vcpu));
9842
9843         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code)) {
9844                 vmcs12->vm_exit_intr_error_code = fault->error_code;
9845                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
9846                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
9847                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
9848                                   fault->address);
9849         } else {
9850                 kvm_inject_page_fault(vcpu, fault);
9851         }
9852 }
9853
9854 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9855                                                struct vmcs12 *vmcs12);
9856
9857 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9858                                         struct vmcs12 *vmcs12)
9859 {
9860         struct vcpu_vmx *vmx = to_vmx(vcpu);
9861         struct page *page;
9862         u64 hpa;
9863
9864         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9865                 /*
9866                  * Translate L1 physical address to host physical
9867                  * address for vmcs02. Keep the page pinned, so this
9868                  * physical address remains valid. We keep a reference
9869                  * to it so we can release it later.
9870                  */
9871                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
9872                         kvm_release_page_dirty(vmx->nested.apic_access_page);
9873                         vmx->nested.apic_access_page = NULL;
9874                 }
9875                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
9876                 /*
9877                  * If translation failed, no matter: This feature asks
9878                  * to exit when accessing the given address, and if it
9879                  * can never be accessed, this feature won't do
9880                  * anything anyway.
9881                  */
9882                 if (!is_error_page(page)) {
9883                         vmx->nested.apic_access_page = page;
9884                         hpa = page_to_phys(vmx->nested.apic_access_page);
9885                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
9886                 } else {
9887                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9888                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9889                 }
9890         } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9891                    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9892                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9893                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9894                 kvm_vcpu_reload_apic_access_page(vcpu);
9895         }
9896
9897         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9898                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
9899                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
9900                         vmx->nested.virtual_apic_page = NULL;
9901                 }
9902                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
9903
9904                 /*
9905                  * If translation failed, VM entry will fail because
9906                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9907                  * Failing the vm entry is _not_ what the processor
9908                  * does but it's basically the only possibility we
9909                  * have.  We could still enter the guest if CR8 load
9910                  * exits are enabled, CR8 store exits are enabled, and
9911                  * virtualize APIC access is disabled; in this case
9912                  * the processor would never use the TPR shadow and we
9913                  * could simply clear the bit from the execution
9914                  * control.  But such a configuration is useless, so
9915                  * let's keep the code simple.
9916                  */
9917                 if (!is_error_page(page)) {
9918                         vmx->nested.virtual_apic_page = page;
9919                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
9920                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9921                 }
9922         }
9923
9924         if (nested_cpu_has_posted_intr(vmcs12)) {
9925                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9926                         kunmap(vmx->nested.pi_desc_page);
9927                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
9928                         vmx->nested.pi_desc_page = NULL;
9929                 }
9930                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
9931                 if (is_error_page(page))
9932                         return;
9933                 vmx->nested.pi_desc_page = page;
9934                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
9935                 vmx->nested.pi_desc =
9936                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
9937                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9938                         (PAGE_SIZE - 1)));
9939                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9940                         page_to_phys(vmx->nested.pi_desc_page) +
9941                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9942                         (PAGE_SIZE - 1)));
9943         }
9944         if (cpu_has_vmx_msr_bitmap() &&
9945             nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9946             nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9947                 ;
9948         else
9949                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9950                                 CPU_BASED_USE_MSR_BITMAPS);
9951 }
9952
9953 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9954 {
9955         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9956         struct vcpu_vmx *vmx = to_vmx(vcpu);
9957
9958         if (vcpu->arch.virtual_tsc_khz == 0)
9959                 return;
9960
9961         /* Make sure short timeouts reliably trigger an immediate vmexit.
9962          * hrtimer_start does not guarantee this. */
9963         if (preemption_timeout <= 1) {
9964                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9965                 return;
9966         }
9967
9968         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9969         preemption_timeout *= 1000000;
9970         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9971         hrtimer_start(&vmx->nested.preemption_timer,
9972                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9973 }
9974
9975 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
9976                                                struct vmcs12 *vmcs12)
9977 {
9978         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
9979                 return 0;
9980
9981         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
9982             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
9983                 return -EINVAL;
9984
9985         return 0;
9986 }
9987
9988 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9989                                                 struct vmcs12 *vmcs12)
9990 {
9991         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9992                 return 0;
9993
9994         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
9995                 return -EINVAL;
9996
9997         return 0;
9998 }
9999
10000 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10001                                                 struct vmcs12 *vmcs12)
10002 {
10003         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10004                 return 0;
10005
10006         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10007                 return -EINVAL;
10008
10009         return 0;
10010 }
10011
10012 /*
10013  * Merge L0's and L1's MSR bitmap, return false to indicate that
10014  * we do not use the hardware.
10015  */
10016 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
10017                                                struct vmcs12 *vmcs12)
10018 {
10019         int msr;
10020         struct page *page;
10021         unsigned long *msr_bitmap_l1;
10022         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
10023
10024         /* This shortcut is ok because we support only x2APIC MSRs so far. */
10025         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
10026                 return false;
10027
10028         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10029         if (is_error_page(page))
10030                 return false;
10031         msr_bitmap_l1 = (unsigned long *)kmap(page);
10032
10033         memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
10034
10035         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
10036                 if (nested_cpu_has_apic_reg_virt(vmcs12))
10037                         for (msr = 0x800; msr <= 0x8ff; msr++)
10038                                 nested_vmx_disable_intercept_for_msr(
10039                                         msr_bitmap_l1, msr_bitmap_l0,
10040                                         msr, MSR_TYPE_R);
10041
10042                 nested_vmx_disable_intercept_for_msr(
10043                                 msr_bitmap_l1, msr_bitmap_l0,
10044                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
10045                                 MSR_TYPE_R | MSR_TYPE_W);
10046
10047                 if (nested_cpu_has_vid(vmcs12)) {
10048                         nested_vmx_disable_intercept_for_msr(
10049                                 msr_bitmap_l1, msr_bitmap_l0,
10050                                 APIC_BASE_MSR + (APIC_EOI >> 4),
10051                                 MSR_TYPE_W);
10052                         nested_vmx_disable_intercept_for_msr(
10053                                 msr_bitmap_l1, msr_bitmap_l0,
10054                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
10055                                 MSR_TYPE_W);
10056                 }
10057         }
10058         kunmap(page);
10059         kvm_release_page_clean(page);
10060
10061         return true;
10062 }
10063
10064 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10065                                            struct vmcs12 *vmcs12)
10066 {
10067         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10068             !nested_cpu_has_apic_reg_virt(vmcs12) &&
10069             !nested_cpu_has_vid(vmcs12) &&
10070             !nested_cpu_has_posted_intr(vmcs12))
10071                 return 0;
10072
10073         /*
10074          * If virtualize x2apic mode is enabled,
10075          * virtualize apic access must be disabled.
10076          */
10077         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10078             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
10079                 return -EINVAL;
10080
10081         /*
10082          * If virtual interrupt delivery is enabled,
10083          * we must exit on external interrupts.
10084          */
10085         if (nested_cpu_has_vid(vmcs12) &&
10086            !nested_exit_on_intr(vcpu))
10087                 return -EINVAL;
10088
10089         /*
10090          * bits 15:8 should be zero in posted_intr_nv,
10091          * the descriptor address has been already checked
10092          * in nested_get_vmcs12_pages.
10093          */
10094         if (nested_cpu_has_posted_intr(vmcs12) &&
10095            (!nested_cpu_has_vid(vmcs12) ||
10096             !nested_exit_intr_ack_set(vcpu) ||
10097             vmcs12->posted_intr_nv & 0xff00))
10098                 return -EINVAL;
10099
10100         /* tpr shadow is needed by all apicv features. */
10101         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10102                 return -EINVAL;
10103
10104         return 0;
10105 }
10106
10107 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10108                                        unsigned long count_field,
10109                                        unsigned long addr_field)
10110 {
10111         int maxphyaddr;
10112         u64 count, addr;
10113
10114         if (vmcs12_read_any(vcpu, count_field, &count) ||
10115             vmcs12_read_any(vcpu, addr_field, &addr)) {
10116                 WARN_ON(1);
10117                 return -EINVAL;
10118         }
10119         if (count == 0)
10120                 return 0;
10121         maxphyaddr = cpuid_maxphyaddr(vcpu);
10122         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10123             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
10124                 pr_debug_ratelimited(
10125                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10126                         addr_field, maxphyaddr, count, addr);
10127                 return -EINVAL;
10128         }
10129         return 0;
10130 }
10131
10132 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10133                                                 struct vmcs12 *vmcs12)
10134 {
10135         if (vmcs12->vm_exit_msr_load_count == 0 &&
10136             vmcs12->vm_exit_msr_store_count == 0 &&
10137             vmcs12->vm_entry_msr_load_count == 0)
10138                 return 0; /* Fast path */
10139         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
10140                                         VM_EXIT_MSR_LOAD_ADDR) ||
10141             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
10142                                         VM_EXIT_MSR_STORE_ADDR) ||
10143             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
10144                                         VM_ENTRY_MSR_LOAD_ADDR))
10145                 return -EINVAL;
10146         return 0;
10147 }
10148
10149 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10150                                          struct vmcs12 *vmcs12)
10151 {
10152         u64 address = vmcs12->pml_address;
10153         int maxphyaddr = cpuid_maxphyaddr(vcpu);
10154
10155         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10156                 if (!nested_cpu_has_ept(vmcs12) ||
10157                     !IS_ALIGNED(address, 4096)  ||
10158                     address >> maxphyaddr)
10159                         return -EINVAL;
10160         }
10161
10162         return 0;
10163 }
10164
10165 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10166                                        struct vmx_msr_entry *e)
10167 {
10168         /* x2APIC MSR accesses are not allowed */
10169         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
10170                 return -EINVAL;
10171         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10172             e->index == MSR_IA32_UCODE_REV)
10173                 return -EINVAL;
10174         if (e->reserved != 0)
10175                 return -EINVAL;
10176         return 0;
10177 }
10178
10179 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10180                                      struct vmx_msr_entry *e)
10181 {
10182         if (e->index == MSR_FS_BASE ||
10183             e->index == MSR_GS_BASE ||
10184             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10185             nested_vmx_msr_check_common(vcpu, e))
10186                 return -EINVAL;
10187         return 0;
10188 }
10189
10190 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10191                                       struct vmx_msr_entry *e)
10192 {
10193         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10194             nested_vmx_msr_check_common(vcpu, e))
10195                 return -EINVAL;
10196         return 0;
10197 }
10198
10199 /*
10200  * Load guest's/host's msr at nested entry/exit.
10201  * return 0 for success, entry index for failure.
10202  */
10203 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10204 {
10205         u32 i;
10206         struct vmx_msr_entry e;
10207         struct msr_data msr;
10208
10209         msr.host_initiated = false;
10210         for (i = 0; i < count; i++) {
10211                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10212                                         &e, sizeof(e))) {
10213                         pr_debug_ratelimited(
10214                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10215                                 __func__, i, gpa + i * sizeof(e));
10216                         goto fail;
10217                 }
10218                 if (nested_vmx_load_msr_check(vcpu, &e)) {
10219                         pr_debug_ratelimited(
10220                                 "%s check failed (%u, 0x%x, 0x%x)\n",
10221                                 __func__, i, e.index, e.reserved);
10222                         goto fail;
10223                 }
10224                 msr.index = e.index;
10225                 msr.data = e.value;
10226                 if (kvm_set_msr(vcpu, &msr)) {
10227                         pr_debug_ratelimited(
10228                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10229                                 __func__, i, e.index, e.value);
10230                         goto fail;
10231                 }
10232         }
10233         return 0;
10234 fail:
10235         return i + 1;
10236 }
10237
10238 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10239 {
10240         u32 i;
10241         struct vmx_msr_entry e;
10242
10243         for (i = 0; i < count; i++) {
10244                 struct msr_data msr_info;
10245                 if (kvm_vcpu_read_guest(vcpu,
10246                                         gpa + i * sizeof(e),
10247                                         &e, 2 * sizeof(u32))) {
10248                         pr_debug_ratelimited(
10249                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10250                                 __func__, i, gpa + i * sizeof(e));
10251                         return -EINVAL;
10252                 }
10253                 if (nested_vmx_store_msr_check(vcpu, &e)) {
10254                         pr_debug_ratelimited(
10255                                 "%s check failed (%u, 0x%x, 0x%x)\n",
10256                                 __func__, i, e.index, e.reserved);
10257                         return -EINVAL;
10258                 }
10259                 msr_info.host_initiated = false;
10260                 msr_info.index = e.index;
10261                 if (kvm_get_msr(vcpu, &msr_info)) {
10262                         pr_debug_ratelimited(
10263                                 "%s cannot read MSR (%u, 0x%x)\n",
10264                                 __func__, i, e.index);
10265                         return -EINVAL;
10266                 }
10267                 if (kvm_vcpu_write_guest(vcpu,
10268                                          gpa + i * sizeof(e) +
10269                                              offsetof(struct vmx_msr_entry, value),
10270                                          &msr_info.data, sizeof(msr_info.data))) {
10271                         pr_debug_ratelimited(
10272                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10273                                 __func__, i, e.index, msr_info.data);
10274                         return -EINVAL;
10275                 }
10276         }
10277         return 0;
10278 }
10279
10280 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10281 {
10282         unsigned long invalid_mask;
10283
10284         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10285         return (val & invalid_mask) == 0;
10286 }
10287
10288 /*
10289  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10290  * emulating VM entry into a guest with EPT enabled.
10291  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10292  * is assigned to entry_failure_code on failure.
10293  */
10294 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
10295                                u32 *entry_failure_code)
10296 {
10297         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
10298                 if (!nested_cr3_valid(vcpu, cr3)) {
10299                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10300                         return 1;
10301                 }
10302
10303                 /*
10304                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10305                  * must not be dereferenced.
10306                  */
10307                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10308                     !nested_ept) {
10309                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10310                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
10311                                 return 1;
10312                         }
10313                 }
10314
10315                 vcpu->arch.cr3 = cr3;
10316                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10317         }
10318
10319         kvm_mmu_reset_context(vcpu);
10320         return 0;
10321 }
10322
10323 /*
10324  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10325  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10326  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10327  * guest in a way that will both be appropriate to L1's requests, and our
10328  * needs. In addition to modifying the active vmcs (which is vmcs02), this
10329  * function also has additional necessary side-effects, like setting various
10330  * vcpu->arch fields.
10331  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10332  * is assigned to entry_failure_code on failure.
10333  */
10334 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10335                           bool from_vmentry, u32 *entry_failure_code)
10336 {
10337         struct vcpu_vmx *vmx = to_vmx(vcpu);
10338         u32 exec_control, vmcs12_exec_ctrl;
10339
10340         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
10341         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
10342         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10343         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10344         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10345         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10346         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10347         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10348         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
10349         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
10350         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10351         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10352         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10353         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10354         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10355         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10356         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10357         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10358         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
10359         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
10360         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10361         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10362         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10363         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10364         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10365         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
10366         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
10367         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
10368         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10369         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10370         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10371         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10372         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10373         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10374         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10375         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10376
10377         if (from_vmentry &&
10378             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
10379                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
10380                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
10381         } else {
10382                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
10383                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
10384         }
10385         if (from_vmentry) {
10386                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
10387                              vmcs12->vm_entry_intr_info_field);
10388                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
10389                              vmcs12->vm_entry_exception_error_code);
10390                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
10391                              vmcs12->vm_entry_instruction_len);
10392                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
10393                              vmcs12->guest_interruptibility_info);
10394                 vmx->loaded_vmcs->nmi_known_unmasked =
10395                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
10396         } else {
10397                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
10398         }
10399         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10400         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
10401         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10402                 vmcs12->guest_pending_dbg_exceptions);
10403         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10404         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10405
10406         if (nested_cpu_has_xsaves(vmcs12))
10407                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10408         vmcs_write64(VMCS_LINK_POINTER, -1ull);
10409
10410         exec_control = vmcs12->pin_based_vm_exec_control;
10411
10412         /* Preemption timer setting is only taken from vmcs01.  */
10413         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10414         exec_control |= vmcs_config.pin_based_exec_ctrl;
10415         if (vmx->hv_deadline_tsc == -1)
10416                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10417
10418         /* Posted interrupts setting is only taken from vmcs12.  */
10419         if (nested_cpu_has_posted_intr(vmcs12)) {
10420                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10421                 vmx->nested.pi_pending = false;
10422                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10423         } else {
10424                 exec_control &= ~PIN_BASED_POSTED_INTR;
10425         }
10426
10427         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10428
10429         vmx->nested.preemption_timer_expired = false;
10430         if (nested_cpu_has_preemption_timer(vmcs12))
10431                 vmx_start_preemption_timer(vcpu);
10432
10433         /*
10434          * Whether page-faults are trapped is determined by a combination of
10435          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10436          * If enable_ept, L0 doesn't care about page faults and we should
10437          * set all of these to L1's desires. However, if !enable_ept, L0 does
10438          * care about (at least some) page faults, and because it is not easy
10439          * (if at all possible?) to merge L0 and L1's desires, we simply ask
10440          * to exit on each and every L2 page fault. This is done by setting
10441          * MASK=MATCH=0 and (see below) EB.PF=1.
10442          * Note that below we don't need special code to set EB.PF beyond the
10443          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10444          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10445          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10446          */
10447         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10448                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10449         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10450                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10451
10452         if (cpu_has_secondary_exec_ctrls()) {
10453                 exec_control = vmx->secondary_exec_control;
10454
10455                 /* Take the following fields only from vmcs12 */
10456                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10457                                   SECONDARY_EXEC_ENABLE_INVPCID |
10458                                   SECONDARY_EXEC_RDTSCP |
10459                                   SECONDARY_EXEC_XSAVES |
10460                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10461                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
10462                                   SECONDARY_EXEC_ENABLE_VMFUNC);
10463                 if (nested_cpu_has(vmcs12,
10464                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10465                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10466                                 ~SECONDARY_EXEC_ENABLE_PML;
10467                         exec_control |= vmcs12_exec_ctrl;
10468                 }
10469
10470                 /* All VMFUNCs are currently emulated through L0 vmexits.  */
10471                 if (exec_control & SECONDARY_EXEC_ENABLE_VMFUNC)
10472                         vmcs_write64(VM_FUNCTION_CONTROL, 0);
10473
10474                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10475                         vmcs_write64(EOI_EXIT_BITMAP0,
10476                                 vmcs12->eoi_exit_bitmap0);
10477                         vmcs_write64(EOI_EXIT_BITMAP1,
10478                                 vmcs12->eoi_exit_bitmap1);
10479                         vmcs_write64(EOI_EXIT_BITMAP2,
10480                                 vmcs12->eoi_exit_bitmap2);
10481                         vmcs_write64(EOI_EXIT_BITMAP3,
10482                                 vmcs12->eoi_exit_bitmap3);
10483                         vmcs_write16(GUEST_INTR_STATUS,
10484                                 vmcs12->guest_intr_status);
10485                 }
10486
10487                 /*
10488                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
10489                  * nested_get_vmcs12_pages will either fix it up or
10490                  * remove the VM execution control.
10491                  */
10492                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10493                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10494
10495                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10496         }
10497
10498
10499         /*
10500          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10501          * Some constant fields are set here by vmx_set_constant_host_state().
10502          * Other fields are different per CPU, and will be set later when
10503          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10504          */
10505         vmx_set_constant_host_state(vmx);
10506
10507         /*
10508          * Set the MSR load/store lists to match L0's settings.
10509          */
10510         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10511         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10512         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10513         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10514         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10515
10516         /*
10517          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10518          * entry, but only if the current (host) sp changed from the value
10519          * we wrote last (vmx->host_rsp). This cache is no longer relevant
10520          * if we switch vmcs, and rather than hold a separate cache per vmcs,
10521          * here we just force the write to happen on entry.
10522          */
10523         vmx->host_rsp = 0;
10524
10525         exec_control = vmx_exec_control(vmx); /* L0's desires */
10526         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10527         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10528         exec_control &= ~CPU_BASED_TPR_SHADOW;
10529         exec_control |= vmcs12->cpu_based_vm_exec_control;
10530
10531         /*
10532          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10533          * nested_get_vmcs12_pages can't fix it up, the illegal value
10534          * will result in a VM entry failure.
10535          */
10536         if (exec_control & CPU_BASED_TPR_SHADOW) {
10537                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10538                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10539         } else {
10540 #ifdef CONFIG_X86_64
10541                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10542                                 CPU_BASED_CR8_STORE_EXITING;
10543 #endif
10544         }
10545
10546         /*
10547          * Merging of IO bitmap not currently supported.
10548          * Rather, exit every time.
10549          */
10550         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10551         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10552
10553         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10554
10555         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10556          * bitwise-or of what L1 wants to trap for L2, and what we want to
10557          * trap. Note that CR0.TS also needs updating - we do this later.
10558          */
10559         update_exception_bitmap(vcpu);
10560         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10561         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10562
10563         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10564          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10565          * bits are further modified by vmx_set_efer() below.
10566          */
10567         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10568
10569         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10570          * emulated by vmx_set_efer(), below.
10571          */
10572         vm_entry_controls_init(vmx, 
10573                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10574                         ~VM_ENTRY_IA32E_MODE) |
10575                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10576
10577         if (from_vmentry &&
10578             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10579                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10580                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10581         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10582                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10583         }
10584
10585         set_cr4_guest_host_mask(vmx);
10586
10587         if (from_vmentry &&
10588             vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10589                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10590
10591         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10592                 vmcs_write64(TSC_OFFSET,
10593                         vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10594         else
10595                 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10596         if (kvm_has_tsc_control)
10597                 decache_tsc_multiplier(vmx);
10598
10599         if (enable_vpid) {
10600                 /*
10601                  * There is no direct mapping between vpid02 and vpid12, the
10602                  * vpid02 is per-vCPU for L0 and reused while the value of
10603                  * vpid12 is changed w/ one invvpid during nested vmentry.
10604                  * The vpid12 is allocated by L1 for L2, so it will not
10605                  * influence global bitmap(for vpid01 and vpid02 allocation)
10606                  * even if spawn a lot of nested vCPUs.
10607                  */
10608                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10609                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10610                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10611                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10612                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10613                         }
10614                 } else {
10615                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10616                         vmx_flush_tlb(vcpu);
10617                 }
10618
10619         }
10620
10621         if (enable_pml) {
10622                 /*
10623                  * Conceptually we want to copy the PML address and index from
10624                  * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10625                  * since we always flush the log on each vmexit, this happens
10626                  * to be equivalent to simply resetting the fields in vmcs02.
10627                  */
10628                 ASSERT(vmx->pml_pg);
10629                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10630                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10631         }
10632
10633         if (nested_cpu_has_ept(vmcs12)) {
10634                 if (nested_ept_init_mmu_context(vcpu)) {
10635                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10636                         return 1;
10637                 }
10638         } else if (nested_cpu_has2(vmcs12,
10639                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10640                 vmx_flush_tlb_ept_only(vcpu);
10641         }
10642
10643         /*
10644          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10645          * bits which we consider mandatory enabled.
10646          * The CR0_READ_SHADOW is what L2 should have expected to read given
10647          * the specifications by L1; It's not enough to take
10648          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10649          * have more bits than L1 expected.
10650          */
10651         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10652         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10653
10654         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10655         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10656
10657         if (from_vmentry &&
10658             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10659                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10660         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10661                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10662         else
10663                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10664         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10665         vmx_set_efer(vcpu, vcpu->arch.efer);
10666
10667         /* Shadow page tables on either EPT or shadow page tables. */
10668         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10669                                 entry_failure_code))
10670                 return 1;
10671
10672         if (!enable_ept)
10673                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10674
10675         /*
10676          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10677          */
10678         if (enable_ept) {
10679                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10680                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10681                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10682                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10683         }
10684
10685         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10686         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10687         return 0;
10688 }
10689
10690 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10691 {
10692         struct vcpu_vmx *vmx = to_vmx(vcpu);
10693
10694         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10695             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10696                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10697
10698         if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
10699                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10700
10701         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10702                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10703
10704         if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
10705                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10706
10707         if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10708                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10709
10710         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10711                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10712
10713         if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10714                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10715
10716         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10717                                 vmx->nested.nested_vmx_procbased_ctls_low,
10718                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10719             (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10720              !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10721                                  vmx->nested.nested_vmx_secondary_ctls_low,
10722                                  vmx->nested.nested_vmx_secondary_ctls_high)) ||
10723             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10724                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10725                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10726             !vmx_control_verify(vmcs12->vm_exit_controls,
10727                                 vmx->nested.nested_vmx_exit_ctls_low,
10728                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10729             !vmx_control_verify(vmcs12->vm_entry_controls,
10730                                 vmx->nested.nested_vmx_entry_ctls_low,
10731                                 vmx->nested.nested_vmx_entry_ctls_high))
10732                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10733
10734         if (nested_cpu_has_vmfunc(vmcs12)) {
10735                 if (vmcs12->vm_function_control &
10736                     ~vmx->nested.nested_vmx_vmfunc_controls)
10737                         return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10738
10739                 if (nested_cpu_has_eptp_switching(vmcs12)) {
10740                         if (!nested_cpu_has_ept(vmcs12) ||
10741                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
10742                                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10743                 }
10744         }
10745
10746         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10747                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10748
10749         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10750             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10751             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10752                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10753
10754         return 0;
10755 }
10756
10757 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10758                                   u32 *exit_qual)
10759 {
10760         bool ia32e;
10761
10762         *exit_qual = ENTRY_FAIL_DEFAULT;
10763
10764         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10765             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10766                 return 1;
10767
10768         if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10769             vmcs12->vmcs_link_pointer != -1ull) {
10770                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10771                 return 1;
10772         }
10773
10774         /*
10775          * If the load IA32_EFER VM-entry control is 1, the following checks
10776          * are performed on the field for the IA32_EFER MSR:
10777          * - Bits reserved in the IA32_EFER MSR must be 0.
10778          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10779          *   the IA-32e mode guest VM-exit control. It must also be identical
10780          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10781          *   CR0.PG) is 1.
10782          */
10783         if (to_vmx(vcpu)->nested.nested_run_pending &&
10784             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10785                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10786                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10787                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10788                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10789                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10790                         return 1;
10791         }
10792
10793         /*
10794          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10795          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10796          * the values of the LMA and LME bits in the field must each be that of
10797          * the host address-space size VM-exit control.
10798          */
10799         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10800                 ia32e = (vmcs12->vm_exit_controls &
10801                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10802                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10803                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10804                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10805                         return 1;
10806         }
10807
10808         return 0;
10809 }
10810
10811 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10812 {
10813         struct vcpu_vmx *vmx = to_vmx(vcpu);
10814         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10815         struct loaded_vmcs *vmcs02;
10816         u32 msr_entry_idx;
10817         u32 exit_qual;
10818
10819         vmcs02 = nested_get_current_vmcs02(vmx);
10820         if (!vmcs02)
10821                 return -ENOMEM;
10822
10823         enter_guest_mode(vcpu);
10824
10825         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10826                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10827
10828         vmx_switch_vmcs(vcpu, vmcs02);
10829         vmx_segment_cache_clear(vmx);
10830
10831         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10832                 leave_guest_mode(vcpu);
10833                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10834                 nested_vmx_entry_failure(vcpu, vmcs12,
10835                                          EXIT_REASON_INVALID_STATE, exit_qual);
10836                 return 1;
10837         }
10838
10839         nested_get_vmcs12_pages(vcpu, vmcs12);
10840
10841         msr_entry_idx = nested_vmx_load_msr(vcpu,
10842                                             vmcs12->vm_entry_msr_load_addr,
10843                                             vmcs12->vm_entry_msr_load_count);
10844         if (msr_entry_idx) {
10845                 leave_guest_mode(vcpu);
10846                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10847                 nested_vmx_entry_failure(vcpu, vmcs12,
10848                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10849                 return 1;
10850         }
10851
10852         /*
10853          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10854          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10855          * returned as far as L1 is concerned. It will only return (and set
10856          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10857          */
10858         return 0;
10859 }
10860
10861 /*
10862  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10863  * for running an L2 nested guest.
10864  */
10865 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10866 {
10867         struct vmcs12 *vmcs12;
10868         struct vcpu_vmx *vmx = to_vmx(vcpu);
10869         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
10870         u32 exit_qual;
10871         int ret;
10872
10873         if (!nested_vmx_check_permission(vcpu))
10874                 return 1;
10875
10876         if (!nested_vmx_check_vmcs12(vcpu))
10877                 goto out;
10878
10879         vmcs12 = get_vmcs12(vcpu);
10880
10881         if (enable_shadow_vmcs)
10882                 copy_shadow_to_vmcs12(vmx);
10883
10884         /*
10885          * The nested entry process starts with enforcing various prerequisites
10886          * on vmcs12 as required by the Intel SDM, and act appropriately when
10887          * they fail: As the SDM explains, some conditions should cause the
10888          * instruction to fail, while others will cause the instruction to seem
10889          * to succeed, but return an EXIT_REASON_INVALID_STATE.
10890          * To speed up the normal (success) code path, we should avoid checking
10891          * for misconfigurations which will anyway be caught by the processor
10892          * when using the merged vmcs02.
10893          */
10894         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
10895                 nested_vmx_failValid(vcpu,
10896                                      VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
10897                 goto out;
10898         }
10899
10900         if (vmcs12->launch_state == launch) {
10901                 nested_vmx_failValid(vcpu,
10902                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10903                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10904                 goto out;
10905         }
10906
10907         ret = check_vmentry_prereqs(vcpu, vmcs12);
10908         if (ret) {
10909                 nested_vmx_failValid(vcpu, ret);
10910                 goto out;
10911         }
10912
10913         /*
10914          * After this point, the trap flag no longer triggers a singlestep trap
10915          * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10916          * This is not 100% correct; for performance reasons, we delegate most
10917          * of the checks on host state to the processor.  If those fail,
10918          * the singlestep trap is missed.
10919          */
10920         skip_emulated_instruction(vcpu);
10921
10922         ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10923         if (ret) {
10924                 nested_vmx_entry_failure(vcpu, vmcs12,
10925                                          EXIT_REASON_INVALID_STATE, exit_qual);
10926                 return 1;
10927         }
10928
10929         /*
10930          * We're finally done with prerequisite checking, and can start with
10931          * the nested entry.
10932          */
10933
10934         ret = enter_vmx_non_root_mode(vcpu, true);
10935         if (ret)
10936                 return ret;
10937
10938         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10939                 return kvm_vcpu_halt(vcpu);
10940
10941         vmx->nested.nested_run_pending = 1;
10942
10943         return 1;
10944
10945 out:
10946         return kvm_skip_emulated_instruction(vcpu);
10947 }
10948
10949 /*
10950  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10951  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10952  * This function returns the new value we should put in vmcs12.guest_cr0.
10953  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10954  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10955  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10956  *     didn't trap the bit, because if L1 did, so would L0).
10957  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10958  *     been modified by L2, and L1 knows it. So just leave the old value of
10959  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10960  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10961  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10962  *     changed these bits, and therefore they need to be updated, but L0
10963  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10964  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10965  */
10966 static inline unsigned long
10967 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10968 {
10969         return
10970         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10971         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10972         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10973                         vcpu->arch.cr0_guest_owned_bits));
10974 }
10975
10976 static inline unsigned long
10977 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10978 {
10979         return
10980         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10981         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10982         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10983                         vcpu->arch.cr4_guest_owned_bits));
10984 }
10985
10986 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10987                                        struct vmcs12 *vmcs12)
10988 {
10989         u32 idt_vectoring;
10990         unsigned int nr;
10991
10992         if (vcpu->arch.exception.injected) {
10993                 nr = vcpu->arch.exception.nr;
10994                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10995
10996                 if (kvm_exception_is_soft(nr)) {
10997                         vmcs12->vm_exit_instruction_len =
10998                                 vcpu->arch.event_exit_inst_len;
10999                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11000                 } else
11001                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11002
11003                 if (vcpu->arch.exception.has_error_code) {
11004                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11005                         vmcs12->idt_vectoring_error_code =
11006                                 vcpu->arch.exception.error_code;
11007                 }
11008
11009                 vmcs12->idt_vectoring_info_field = idt_vectoring;
11010         } else if (vcpu->arch.nmi_injected) {
11011                 vmcs12->idt_vectoring_info_field =
11012                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11013         } else if (vcpu->arch.interrupt.pending) {
11014                 nr = vcpu->arch.interrupt.nr;
11015                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11016
11017                 if (vcpu->arch.interrupt.soft) {
11018                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
11019                         vmcs12->vm_entry_instruction_len =
11020                                 vcpu->arch.event_exit_inst_len;
11021                 } else
11022                         idt_vectoring |= INTR_TYPE_EXT_INTR;
11023
11024                 vmcs12->idt_vectoring_info_field = idt_vectoring;
11025         }
11026 }
11027
11028 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11029 {
11030         struct vcpu_vmx *vmx = to_vmx(vcpu);
11031         unsigned long exit_qual;
11032
11033         if (kvm_event_needs_reinjection(vcpu))
11034                 return -EBUSY;
11035
11036         if (vcpu->arch.exception.pending &&
11037                 nested_vmx_check_exception(vcpu, &exit_qual)) {
11038                 if (vmx->nested.nested_run_pending)
11039                         return -EBUSY;
11040                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11041                 vcpu->arch.exception.pending = false;
11042                 return 0;
11043         }
11044
11045         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11046             vmx->nested.preemption_timer_expired) {
11047                 if (vmx->nested.nested_run_pending)
11048                         return -EBUSY;
11049                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11050                 return 0;
11051         }
11052
11053         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
11054                 if (vmx->nested.nested_run_pending)
11055                         return -EBUSY;
11056                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11057                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
11058                                   INTR_INFO_VALID_MASK, 0);
11059                 /*
11060                  * The NMI-triggered VM exit counts as injection:
11061                  * clear this one and block further NMIs.
11062                  */
11063                 vcpu->arch.nmi_pending = 0;
11064                 vmx_set_nmi_mask(vcpu, true);
11065                 return 0;
11066         }
11067
11068         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11069             nested_exit_on_intr(vcpu)) {
11070                 if (vmx->nested.nested_run_pending)
11071                         return -EBUSY;
11072                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
11073                 return 0;
11074         }
11075
11076         vmx_complete_nested_posted_interrupt(vcpu);
11077         return 0;
11078 }
11079
11080 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11081 {
11082         ktime_t remaining =
11083                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11084         u64 value;
11085
11086         if (ktime_to_ns(remaining) <= 0)
11087                 return 0;
11088
11089         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11090         do_div(value, 1000000);
11091         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11092 }
11093
11094 /*
11095  * Update the guest state fields of vmcs12 to reflect changes that
11096  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11097  * VM-entry controls is also updated, since this is really a guest
11098  * state bit.)
11099  */
11100 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11101 {
11102         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11103         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11104
11105         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11106         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11107         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11108
11109         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11110         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11111         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11112         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11113         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11114         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11115         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11116         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11117         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11118         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11119         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11120         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11121         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11122         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11123         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11124         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11125         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11126         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11127         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11128         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11129         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11130         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11131         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11132         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11133         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11134         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11135         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11136         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11137         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11138         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11139         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11140         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11141         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11142         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11143         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11144         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11145
11146         vmcs12->guest_interruptibility_info =
11147                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11148         vmcs12->guest_pending_dbg_exceptions =
11149                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
11150         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11151                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11152         else
11153                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
11154
11155         if (nested_cpu_has_preemption_timer(vmcs12)) {
11156                 if (vmcs12->vm_exit_controls &
11157                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11158                         vmcs12->vmx_preemption_timer_value =
11159                                 vmx_get_preemption_timer_value(vcpu);
11160                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11161         }
11162
11163         /*
11164          * In some cases (usually, nested EPT), L2 is allowed to change its
11165          * own CR3 without exiting. If it has changed it, we must keep it.
11166          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11167          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11168          *
11169          * Additionally, restore L2's PDPTR to vmcs12.
11170          */
11171         if (enable_ept) {
11172                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
11173                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11174                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11175                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11176                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11177         }
11178
11179         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
11180
11181         if (nested_cpu_has_vid(vmcs12))
11182                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11183
11184         vmcs12->vm_entry_controls =
11185                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
11186                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
11187
11188         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11189                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11190                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11191         }
11192
11193         /* TODO: These cannot have changed unless we have MSR bitmaps and
11194          * the relevant bit asks not to trap the change */
11195         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
11196                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
11197         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11198                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
11199         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11200         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11201         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
11202         if (kvm_mpx_supported())
11203                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
11204 }
11205
11206 /*
11207  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11208  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11209  * and this function updates it to reflect the changes to the guest state while
11210  * L2 was running (and perhaps made some exits which were handled directly by L0
11211  * without going back to L1), and to reflect the exit reason.
11212  * Note that we do not have to copy here all VMCS fields, just those that
11213  * could have changed by the L2 guest or the exit - i.e., the guest-state and
11214  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11215  * which already writes to vmcs12 directly.
11216  */
11217 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11218                            u32 exit_reason, u32 exit_intr_info,
11219                            unsigned long exit_qualification)
11220 {
11221         /* update guest state fields: */
11222         sync_vmcs12(vcpu, vmcs12);
11223
11224         /* update exit information fields: */
11225
11226         vmcs12->vm_exit_reason = exit_reason;
11227         vmcs12->exit_qualification = exit_qualification;
11228         vmcs12->vm_exit_intr_info = exit_intr_info;
11229
11230         vmcs12->idt_vectoring_info_field = 0;
11231         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11232         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11233
11234         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
11235                 vmcs12->launch_state = 1;
11236
11237                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11238                  * instead of reading the real value. */
11239                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
11240
11241                 /*
11242                  * Transfer the event that L0 or L1 may wanted to inject into
11243                  * L2 to IDT_VECTORING_INFO_FIELD.
11244                  */
11245                 vmcs12_save_pending_event(vcpu, vmcs12);
11246         }
11247
11248         /*
11249          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11250          * preserved above and would only end up incorrectly in L1.
11251          */
11252         vcpu->arch.nmi_injected = false;
11253         kvm_clear_exception_queue(vcpu);
11254         kvm_clear_interrupt_queue(vcpu);
11255 }
11256
11257 /*
11258  * A part of what we need to when the nested L2 guest exits and we want to
11259  * run its L1 parent, is to reset L1's guest state to the host state specified
11260  * in vmcs12.
11261  * This function is to be called not only on normal nested exit, but also on
11262  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11263  * Failures During or After Loading Guest State").
11264  * This function should be called when the active VMCS is L1's (vmcs01).
11265  */
11266 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11267                                    struct vmcs12 *vmcs12)
11268 {
11269         struct kvm_segment seg;
11270         u32 entry_failure_code;
11271
11272         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11273                 vcpu->arch.efer = vmcs12->host_ia32_efer;
11274         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11275                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11276         else
11277                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11278         vmx_set_efer(vcpu, vcpu->arch.efer);
11279
11280         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11281         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
11282         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
11283         /*
11284          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
11285          * actually changed, because vmx_set_cr0 refers to efer set above.
11286          *
11287          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11288          * (KVM doesn't change it);
11289          */
11290         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
11291         vmx_set_cr0(vcpu, vmcs12->host_cr0);
11292
11293         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
11294         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
11295         kvm_set_cr4(vcpu, vmcs12->host_cr4);
11296
11297         nested_ept_uninit_mmu_context(vcpu);
11298
11299         /*
11300          * Only PDPTE load can fail as the value of cr3 was checked on entry and
11301          * couldn't have changed.
11302          */
11303         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11304                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11305
11306         if (!enable_ept)
11307                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11308
11309         if (enable_vpid) {
11310                 /*
11311                  * Trivially support vpid by letting L2s share their parent
11312                  * L1's vpid. TODO: move to a more elaborate solution, giving
11313                  * each L2 its own vpid and exposing the vpid feature to L1.
11314                  */
11315                 vmx_flush_tlb(vcpu);
11316         }
11317         /* Restore posted intr vector. */
11318         if (nested_cpu_has_posted_intr(vmcs12))
11319                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
11320
11321         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11322         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11323         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11324         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11325         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
11326
11327         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
11328         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11329                 vmcs_write64(GUEST_BNDCFGS, 0);
11330
11331         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
11332                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
11333                 vcpu->arch.pat = vmcs12->host_ia32_pat;
11334         }
11335         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11336                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11337                         vmcs12->host_ia32_perf_global_ctrl);
11338
11339         /* Set L1 segment info according to Intel SDM
11340             27.5.2 Loading Host Segment and Descriptor-Table Registers */
11341         seg = (struct kvm_segment) {
11342                 .base = 0,
11343                 .limit = 0xFFFFFFFF,
11344                 .selector = vmcs12->host_cs_selector,
11345                 .type = 11,
11346                 .present = 1,
11347                 .s = 1,
11348                 .g = 1
11349         };
11350         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11351                 seg.l = 1;
11352         else
11353                 seg.db = 1;
11354         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11355         seg = (struct kvm_segment) {
11356                 .base = 0,
11357                 .limit = 0xFFFFFFFF,
11358                 .type = 3,
11359                 .present = 1,
11360                 .s = 1,
11361                 .db = 1,
11362                 .g = 1
11363         };
11364         seg.selector = vmcs12->host_ds_selector;
11365         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11366         seg.selector = vmcs12->host_es_selector;
11367         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11368         seg.selector = vmcs12->host_ss_selector;
11369         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11370         seg.selector = vmcs12->host_fs_selector;
11371         seg.base = vmcs12->host_fs_base;
11372         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11373         seg.selector = vmcs12->host_gs_selector;
11374         seg.base = vmcs12->host_gs_base;
11375         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11376         seg = (struct kvm_segment) {
11377                 .base = vmcs12->host_tr_base,
11378                 .limit = 0x67,
11379                 .selector = vmcs12->host_tr_selector,
11380                 .type = 11,
11381                 .present = 1
11382         };
11383         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11384
11385         kvm_set_dr(vcpu, 7, 0x400);
11386         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
11387
11388         if (cpu_has_vmx_msr_bitmap())
11389                 vmx_set_msr_bitmap(vcpu);
11390
11391         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
11392                                 vmcs12->vm_exit_msr_load_count))
11393                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
11394 }
11395
11396 /*
11397  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
11398  * and modify vmcs12 to make it see what it would expect to see there if
11399  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
11400  */
11401 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
11402                               u32 exit_intr_info,
11403                               unsigned long exit_qualification)
11404 {
11405         struct vcpu_vmx *vmx = to_vmx(vcpu);
11406         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11407
11408         /* trying to cancel vmlaunch/vmresume is a bug */
11409         WARN_ON_ONCE(vmx->nested.nested_run_pending);
11410
11411         /*
11412          * The only expected VM-instruction error is "VM entry with
11413          * invalid control field(s)." Anything else indicates a
11414          * problem with L0.
11415          */
11416         WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
11417                                    VMXERR_ENTRY_INVALID_CONTROL_FIELD));
11418
11419         leave_guest_mode(vcpu);
11420
11421         if (likely(!vmx->fail)) {
11422                 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
11423                                exit_qualification);
11424
11425                 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
11426                                          vmcs12->vm_exit_msr_store_count))
11427                         nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
11428         }
11429
11430         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11431         vm_entry_controls_reset_shadow(vmx);
11432         vm_exit_controls_reset_shadow(vmx);
11433         vmx_segment_cache_clear(vmx);
11434
11435         /* if no vmcs02 cache requested, remove the one we used */
11436         if (VMCS02_POOL_SIZE == 0)
11437                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11438
11439         /* Update any VMCS fields that might have changed while L2 ran */
11440         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11441         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11442         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11443         if (vmx->hv_deadline_tsc == -1)
11444                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11445                                 PIN_BASED_VMX_PREEMPTION_TIMER);
11446         else
11447                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11448                               PIN_BASED_VMX_PREEMPTION_TIMER);
11449         if (kvm_has_tsc_control)
11450                 decache_tsc_multiplier(vmx);
11451
11452         if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11453                 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11454                 vmx_set_virtual_x2apic_mode(vcpu,
11455                                 vcpu->arch.apic_base & X2APIC_ENABLE);
11456         } else if (!nested_cpu_has_ept(vmcs12) &&
11457                    nested_cpu_has2(vmcs12,
11458                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11459                 vmx_flush_tlb_ept_only(vcpu);
11460         }
11461
11462         /* This is needed for same reason as it was needed in prepare_vmcs02 */
11463         vmx->host_rsp = 0;
11464
11465         /* Unpin physical memory we referred to in vmcs02 */
11466         if (vmx->nested.apic_access_page) {
11467                 kvm_release_page_dirty(vmx->nested.apic_access_page);
11468                 vmx->nested.apic_access_page = NULL;
11469         }
11470         if (vmx->nested.virtual_apic_page) {
11471                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
11472                 vmx->nested.virtual_apic_page = NULL;
11473         }
11474         if (vmx->nested.pi_desc_page) {
11475                 kunmap(vmx->nested.pi_desc_page);
11476                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
11477                 vmx->nested.pi_desc_page = NULL;
11478                 vmx->nested.pi_desc = NULL;
11479         }
11480
11481         /*
11482          * We are now running in L2, mmu_notifier will force to reload the
11483          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11484          */
11485         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11486
11487         if (enable_shadow_vmcs)
11488                 vmx->nested.sync_shadow_vmcs = true;
11489
11490         /* in case we halted in L2 */
11491         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11492
11493         if (likely(!vmx->fail)) {
11494                 /*
11495                  * TODO: SDM says that with acknowledge interrupt on
11496                  * exit, bit 31 of the VM-exit interrupt information
11497                  * (valid interrupt) is always set to 1 on
11498                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
11499                  * need kvm_cpu_has_interrupt().  See the commit
11500                  * message for details.
11501                  */
11502                 if (nested_exit_intr_ack_set(vcpu) &&
11503                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
11504                     kvm_cpu_has_interrupt(vcpu)) {
11505                         int irq = kvm_cpu_get_interrupt(vcpu);
11506                         WARN_ON(irq < 0);
11507                         vmcs12->vm_exit_intr_info = irq |
11508                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
11509                 }
11510
11511                 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
11512                                                vmcs12->exit_qualification,
11513                                                vmcs12->idt_vectoring_info_field,
11514                                                vmcs12->vm_exit_intr_info,
11515                                                vmcs12->vm_exit_intr_error_code,
11516                                                KVM_ISA_VMX);
11517
11518                 load_vmcs12_host_state(vcpu, vmcs12);
11519
11520                 return;
11521         }
11522         
11523         /*
11524          * After an early L2 VM-entry failure, we're now back
11525          * in L1 which thinks it just finished a VMLAUNCH or
11526          * VMRESUME instruction, so we need to set the failure
11527          * flag and the VM-instruction error field of the VMCS
11528          * accordingly.
11529          */
11530         nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
11531         /*
11532          * The emulated instruction was already skipped in
11533          * nested_vmx_run, but the updated RIP was never
11534          * written back to the vmcs01.
11535          */
11536         skip_emulated_instruction(vcpu);
11537         vmx->fail = 0;
11538 }
11539
11540 /*
11541  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11542  */
11543 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11544 {
11545         if (is_guest_mode(vcpu)) {
11546                 to_vmx(vcpu)->nested.nested_run_pending = 0;
11547                 nested_vmx_vmexit(vcpu, -1, 0, 0);
11548         }
11549         free_nested(to_vmx(vcpu));
11550 }
11551
11552 /*
11553  * L1's failure to enter L2 is a subset of a normal exit, as explained in
11554  * 23.7 "VM-entry failures during or after loading guest state" (this also
11555  * lists the acceptable exit-reason and exit-qualification parameters).
11556  * It should only be called before L2 actually succeeded to run, and when
11557  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11558  */
11559 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11560                         struct vmcs12 *vmcs12,
11561                         u32 reason, unsigned long qualification)
11562 {
11563         load_vmcs12_host_state(vcpu, vmcs12);
11564         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11565         vmcs12->exit_qualification = qualification;
11566         nested_vmx_succeed(vcpu);
11567         if (enable_shadow_vmcs)
11568                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11569 }
11570
11571 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11572                                struct x86_instruction_info *info,
11573                                enum x86_intercept_stage stage)
11574 {
11575         return X86EMUL_CONTINUE;
11576 }
11577
11578 #ifdef CONFIG_X86_64
11579 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11580 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11581                                   u64 divisor, u64 *result)
11582 {
11583         u64 low = a << shift, high = a >> (64 - shift);
11584
11585         /* To avoid the overflow on divq */
11586         if (high >= divisor)
11587                 return 1;
11588
11589         /* Low hold the result, high hold rem which is discarded */
11590         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11591             "rm" (divisor), "0" (low), "1" (high));
11592         *result = low;
11593
11594         return 0;
11595 }
11596
11597 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11598 {
11599         struct vcpu_vmx *vmx = to_vmx(vcpu);
11600         u64 tscl = rdtsc();
11601         u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11602         u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11603
11604         /* Convert to host delta tsc if tsc scaling is enabled */
11605         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11606                         u64_shl_div_u64(delta_tsc,
11607                                 kvm_tsc_scaling_ratio_frac_bits,
11608                                 vcpu->arch.tsc_scaling_ratio,
11609                                 &delta_tsc))
11610                 return -ERANGE;
11611
11612         /*
11613          * If the delta tsc can't fit in the 32 bit after the multi shift,
11614          * we can't use the preemption timer.
11615          * It's possible that it fits on later vmentries, but checking
11616          * on every vmentry is costly so we just use an hrtimer.
11617          */
11618         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11619                 return -ERANGE;
11620
11621         vmx->hv_deadline_tsc = tscl + delta_tsc;
11622         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11623                         PIN_BASED_VMX_PREEMPTION_TIMER);
11624
11625         return delta_tsc == 0;
11626 }
11627
11628 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11629 {
11630         struct vcpu_vmx *vmx = to_vmx(vcpu);
11631         vmx->hv_deadline_tsc = -1;
11632         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11633                         PIN_BASED_VMX_PREEMPTION_TIMER);
11634 }
11635 #endif
11636
11637 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11638 {
11639         if (ple_gap)
11640                 shrink_ple_window(vcpu);
11641 }
11642
11643 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11644                                      struct kvm_memory_slot *slot)
11645 {
11646         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11647         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11648 }
11649
11650 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11651                                        struct kvm_memory_slot *slot)
11652 {
11653         kvm_mmu_slot_set_dirty(kvm, slot);
11654 }
11655
11656 static void vmx_flush_log_dirty(struct kvm *kvm)
11657 {
11658         kvm_flush_pml_buffers(kvm);
11659 }
11660
11661 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11662 {
11663         struct vmcs12 *vmcs12;
11664         struct vcpu_vmx *vmx = to_vmx(vcpu);
11665         gpa_t gpa;
11666         struct page *page = NULL;
11667         u64 *pml_address;
11668
11669         if (is_guest_mode(vcpu)) {
11670                 WARN_ON_ONCE(vmx->nested.pml_full);
11671
11672                 /*
11673                  * Check if PML is enabled for the nested guest.
11674                  * Whether eptp bit 6 is set is already checked
11675                  * as part of A/D emulation.
11676                  */
11677                 vmcs12 = get_vmcs12(vcpu);
11678                 if (!nested_cpu_has_pml(vmcs12))
11679                         return 0;
11680
11681                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11682                         vmx->nested.pml_full = true;
11683                         return 1;
11684                 }
11685
11686                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11687
11688                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
11689                 if (is_error_page(page))
11690                         return 0;
11691
11692                 pml_address = kmap(page);
11693                 pml_address[vmcs12->guest_pml_index--] = gpa;
11694                 kunmap(page);
11695                 kvm_release_page_clean(page);
11696         }
11697
11698         return 0;
11699 }
11700
11701 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11702                                            struct kvm_memory_slot *memslot,
11703                                            gfn_t offset, unsigned long mask)
11704 {
11705         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11706 }
11707
11708 /*
11709  * This routine does the following things for vCPU which is going
11710  * to be blocked if VT-d PI is enabled.
11711  * - Store the vCPU to the wakeup list, so when interrupts happen
11712  *   we can find the right vCPU to wake up.
11713  * - Change the Posted-interrupt descriptor as below:
11714  *      'NDST' <-- vcpu->pre_pcpu
11715  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11716  * - If 'ON' is set during this process, which means at least one
11717  *   interrupt is posted for this vCPU, we cannot block it, in
11718  *   this case, return 1, otherwise, return 0.
11719  *
11720  */
11721 static int pi_pre_block(struct kvm_vcpu *vcpu)
11722 {
11723         unsigned long flags;
11724         unsigned int dest;
11725         struct pi_desc old, new;
11726         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11727
11728         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11729                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11730                 !kvm_vcpu_apicv_active(vcpu))
11731                 return 0;
11732
11733         vcpu->pre_pcpu = vcpu->cpu;
11734         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11735                           vcpu->pre_pcpu), flags);
11736         list_add_tail(&vcpu->blocked_vcpu_list,
11737                       &per_cpu(blocked_vcpu_on_cpu,
11738                       vcpu->pre_pcpu));
11739         spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11740                                vcpu->pre_pcpu), flags);
11741
11742         do {
11743                 old.control = new.control = pi_desc->control;
11744
11745                 /*
11746                  * We should not block the vCPU if
11747                  * an interrupt is posted for it.
11748                  */
11749                 if (pi_test_on(pi_desc) == 1) {
11750                         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11751                                           vcpu->pre_pcpu), flags);
11752                         list_del(&vcpu->blocked_vcpu_list);
11753                         spin_unlock_irqrestore(
11754                                         &per_cpu(blocked_vcpu_on_cpu_lock,
11755                                         vcpu->pre_pcpu), flags);
11756                         vcpu->pre_pcpu = -1;
11757
11758                         return 1;
11759                 }
11760
11761                 WARN((pi_desc->sn == 1),
11762                      "Warning: SN field of posted-interrupts "
11763                      "is set before blocking\n");
11764
11765                 /*
11766                  * Since vCPU can be preempted during this process,
11767                  * vcpu->cpu could be different with pre_pcpu, we
11768                  * need to set pre_pcpu as the destination of wakeup
11769                  * notification event, then we can find the right vCPU
11770                  * to wakeup in wakeup handler if interrupts happen
11771                  * when the vCPU is in blocked state.
11772                  */
11773                 dest = cpu_physical_id(vcpu->pre_pcpu);
11774
11775                 if (x2apic_enabled())
11776                         new.ndst = dest;
11777                 else
11778                         new.ndst = (dest << 8) & 0xFF00;
11779
11780                 /* set 'NV' to 'wakeup vector' */
11781                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11782         } while (cmpxchg(&pi_desc->control, old.control,
11783                         new.control) != old.control);
11784
11785         return 0;
11786 }
11787
11788 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11789 {
11790         if (pi_pre_block(vcpu))
11791                 return 1;
11792
11793         if (kvm_lapic_hv_timer_in_use(vcpu))
11794                 kvm_lapic_switch_to_sw_timer(vcpu);
11795
11796         return 0;
11797 }
11798
11799 static void pi_post_block(struct kvm_vcpu *vcpu)
11800 {
11801         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11802         struct pi_desc old, new;
11803         unsigned int dest;
11804         unsigned long flags;
11805
11806         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11807                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11808                 !kvm_vcpu_apicv_active(vcpu))
11809                 return;
11810
11811         do {
11812                 old.control = new.control = pi_desc->control;
11813
11814                 dest = cpu_physical_id(vcpu->cpu);
11815
11816                 if (x2apic_enabled())
11817                         new.ndst = dest;
11818                 else
11819                         new.ndst = (dest << 8) & 0xFF00;
11820
11821                 /* Allow posting non-urgent interrupts */
11822                 new.sn = 0;
11823
11824                 /* set 'NV' to 'notification vector' */
11825                 new.nv = POSTED_INTR_VECTOR;
11826         } while (cmpxchg(&pi_desc->control, old.control,
11827                         new.control) != old.control);
11828
11829         if(vcpu->pre_pcpu != -1) {
11830                 spin_lock_irqsave(
11831                         &per_cpu(blocked_vcpu_on_cpu_lock,
11832                         vcpu->pre_pcpu), flags);
11833                 list_del(&vcpu->blocked_vcpu_list);
11834                 spin_unlock_irqrestore(
11835                         &per_cpu(blocked_vcpu_on_cpu_lock,
11836                         vcpu->pre_pcpu), flags);
11837                 vcpu->pre_pcpu = -1;
11838         }
11839 }
11840
11841 static void vmx_post_block(struct kvm_vcpu *vcpu)
11842 {
11843         if (kvm_x86_ops->set_hv_timer)
11844                 kvm_lapic_switch_to_hv_timer(vcpu);
11845
11846         pi_post_block(vcpu);
11847 }
11848
11849 /*
11850  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11851  *
11852  * @kvm: kvm
11853  * @host_irq: host irq of the interrupt
11854  * @guest_irq: gsi of the interrupt
11855  * @set: set or unset PI
11856  * returns 0 on success, < 0 on failure
11857  */
11858 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11859                               uint32_t guest_irq, bool set)
11860 {
11861         struct kvm_kernel_irq_routing_entry *e;
11862         struct kvm_irq_routing_table *irq_rt;
11863         struct kvm_lapic_irq irq;
11864         struct kvm_vcpu *vcpu;
11865         struct vcpu_data vcpu_info;
11866         int idx, ret = 0;
11867
11868         if (!kvm_arch_has_assigned_device(kvm) ||
11869                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11870                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11871                 return 0;
11872
11873         idx = srcu_read_lock(&kvm->irq_srcu);
11874         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11875         if (guest_irq >= irq_rt->nr_rt_entries ||
11876             hlist_empty(&irq_rt->map[guest_irq])) {
11877                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11878                              guest_irq, irq_rt->nr_rt_entries);
11879                 goto out;
11880         }
11881
11882         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11883                 if (e->type != KVM_IRQ_ROUTING_MSI)
11884                         continue;
11885                 /*
11886                  * VT-d PI cannot support posting multicast/broadcast
11887                  * interrupts to a vCPU, we still use interrupt remapping
11888                  * for these kind of interrupts.
11889                  *
11890                  * For lowest-priority interrupts, we only support
11891                  * those with single CPU as the destination, e.g. user
11892                  * configures the interrupts via /proc/irq or uses
11893                  * irqbalance to make the interrupts single-CPU.
11894                  *
11895                  * We will support full lowest-priority interrupt later.
11896                  */
11897
11898                 kvm_set_msi_irq(kvm, e, &irq);
11899                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11900                         /*
11901                          * Make sure the IRTE is in remapped mode if
11902                          * we don't handle it in posted mode.
11903                          */
11904                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11905                         if (ret < 0) {
11906                                 printk(KERN_INFO
11907                                    "failed to back to remapped mode, irq: %u\n",
11908                                    host_irq);
11909                                 goto out;
11910                         }
11911
11912                         continue;
11913                 }
11914
11915                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11916                 vcpu_info.vector = irq.vector;
11917
11918                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11919                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11920
11921                 if (set)
11922                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11923                 else
11924                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11925
11926                 if (ret < 0) {
11927                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
11928                                         __func__);
11929                         goto out;
11930                 }
11931         }
11932
11933         ret = 0;
11934 out:
11935         srcu_read_unlock(&kvm->irq_srcu, idx);
11936         return ret;
11937 }
11938
11939 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11940 {
11941         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11942                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11943                         FEATURE_CONTROL_LMCE;
11944         else
11945                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11946                         ~FEATURE_CONTROL_LMCE;
11947 }
11948
11949 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11950         .cpu_has_kvm_support = cpu_has_kvm_support,
11951         .disabled_by_bios = vmx_disabled_by_bios,
11952         .hardware_setup = hardware_setup,
11953         .hardware_unsetup = hardware_unsetup,
11954         .check_processor_compatibility = vmx_check_processor_compat,
11955         .hardware_enable = hardware_enable,
11956         .hardware_disable = hardware_disable,
11957         .cpu_has_accelerated_tpr = report_flexpriority,
11958         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11959
11960         .vcpu_create = vmx_create_vcpu,
11961         .vcpu_free = vmx_free_vcpu,
11962         .vcpu_reset = vmx_vcpu_reset,
11963
11964         .prepare_guest_switch = vmx_save_host_state,
11965         .vcpu_load = vmx_vcpu_load,
11966         .vcpu_put = vmx_vcpu_put,
11967
11968         .update_bp_intercept = update_exception_bitmap,
11969         .get_msr = vmx_get_msr,
11970         .set_msr = vmx_set_msr,
11971         .get_segment_base = vmx_get_segment_base,
11972         .get_segment = vmx_get_segment,
11973         .set_segment = vmx_set_segment,
11974         .get_cpl = vmx_get_cpl,
11975         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11976         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11977         .decache_cr3 = vmx_decache_cr3,
11978         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11979         .set_cr0 = vmx_set_cr0,
11980         .set_cr3 = vmx_set_cr3,
11981         .set_cr4 = vmx_set_cr4,
11982         .set_efer = vmx_set_efer,
11983         .get_idt = vmx_get_idt,
11984         .set_idt = vmx_set_idt,
11985         .get_gdt = vmx_get_gdt,
11986         .set_gdt = vmx_set_gdt,
11987         .get_dr6 = vmx_get_dr6,
11988         .set_dr6 = vmx_set_dr6,
11989         .set_dr7 = vmx_set_dr7,
11990         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11991         .cache_reg = vmx_cache_reg,
11992         .get_rflags = vmx_get_rflags,
11993         .set_rflags = vmx_set_rflags,
11994
11995         .tlb_flush = vmx_flush_tlb,
11996
11997         .run = vmx_vcpu_run,
11998         .handle_exit = vmx_handle_exit,
11999         .skip_emulated_instruction = skip_emulated_instruction,
12000         .set_interrupt_shadow = vmx_set_interrupt_shadow,
12001         .get_interrupt_shadow = vmx_get_interrupt_shadow,
12002         .patch_hypercall = vmx_patch_hypercall,
12003         .set_irq = vmx_inject_irq,
12004         .set_nmi = vmx_inject_nmi,
12005         .queue_exception = vmx_queue_exception,
12006         .cancel_injection = vmx_cancel_injection,
12007         .interrupt_allowed = vmx_interrupt_allowed,
12008         .nmi_allowed = vmx_nmi_allowed,
12009         .get_nmi_mask = vmx_get_nmi_mask,
12010         .set_nmi_mask = vmx_set_nmi_mask,
12011         .enable_nmi_window = enable_nmi_window,
12012         .enable_irq_window = enable_irq_window,
12013         .update_cr8_intercept = update_cr8_intercept,
12014         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
12015         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
12016         .get_enable_apicv = vmx_get_enable_apicv,
12017         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
12018         .load_eoi_exitmap = vmx_load_eoi_exitmap,
12019         .apicv_post_state_restore = vmx_apicv_post_state_restore,
12020         .hwapic_irr_update = vmx_hwapic_irr_update,
12021         .hwapic_isr_update = vmx_hwapic_isr_update,
12022         .sync_pir_to_irr = vmx_sync_pir_to_irr,
12023         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
12024
12025         .set_tss_addr = vmx_set_tss_addr,
12026         .get_tdp_level = get_ept_level,
12027         .get_mt_mask = vmx_get_mt_mask,
12028
12029         .get_exit_info = vmx_get_exit_info,
12030
12031         .get_lpage_level = vmx_get_lpage_level,
12032
12033         .cpuid_update = vmx_cpuid_update,
12034
12035         .rdtscp_supported = vmx_rdtscp_supported,
12036         .invpcid_supported = vmx_invpcid_supported,
12037
12038         .set_supported_cpuid = vmx_set_supported_cpuid,
12039
12040         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
12041
12042         .write_tsc_offset = vmx_write_tsc_offset,
12043
12044         .set_tdp_cr3 = vmx_set_cr3,
12045
12046         .check_intercept = vmx_check_intercept,
12047         .handle_external_intr = vmx_handle_external_intr,
12048         .mpx_supported = vmx_mpx_supported,
12049         .xsaves_supported = vmx_xsaves_supported,
12050
12051         .check_nested_events = vmx_check_nested_events,
12052
12053         .sched_in = vmx_sched_in,
12054
12055         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12056         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12057         .flush_log_dirty = vmx_flush_log_dirty,
12058         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
12059         .write_log_dirty = vmx_write_pml_buffer,
12060
12061         .pre_block = vmx_pre_block,
12062         .post_block = vmx_post_block,
12063
12064         .pmu_ops = &intel_pmu_ops,
12065
12066         .update_pi_irte = vmx_update_pi_irte,
12067
12068 #ifdef CONFIG_X86_64
12069         .set_hv_timer = vmx_set_hv_timer,
12070         .cancel_hv_timer = vmx_cancel_hv_timer,
12071 #endif
12072
12073         .setup_mce = vmx_setup_mce,
12074 };
12075
12076 static int __init vmx_init(void)
12077 {
12078         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
12079                      __alignof__(struct vcpu_vmx), THIS_MODULE);
12080         if (r)
12081                 return r;
12082
12083 #ifdef CONFIG_KEXEC_CORE
12084         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12085                            crash_vmclear_local_loaded_vmcss);
12086 #endif
12087
12088         return 0;
12089 }
12090
12091 static void __exit vmx_exit(void)
12092 {
12093 #ifdef CONFIG_KEXEC_CORE
12094         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
12095         synchronize_rcu();
12096 #endif
12097
12098         kvm_exit();
12099 }
12100
12101 module_init(vmx_init)
12102 module_exit(vmx_exit)