]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx.c
Merge tag 'microblaze-v4.18-rc3' of git://git.monstr.eu/linux-2.6-microblaze
[linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include <linux/nospec.h>
38 #include "kvm_cache_regs.h"
39 #include "x86.h"
40
41 #include <asm/cpu.h>
42 #include <asm/io.h>
43 #include <asm/desc.h>
44 #include <asm/vmx.h>
45 #include <asm/virtext.h>
46 #include <asm/mce.h>
47 #include <asm/fpu/internal.h>
48 #include <asm/perf_event.h>
49 #include <asm/debugreg.h>
50 #include <asm/kexec.h>
51 #include <asm/apic.h>
52 #include <asm/irq_remapping.h>
53 #include <asm/mmu_context.h>
54 #include <asm/spec-ctrl.h>
55 #include <asm/mshyperv.h>
56
57 #include "trace.h"
58 #include "pmu.h"
59 #include "vmx_evmcs.h"
60
61 #define __ex(x) __kvm_handle_fault_on_reboot(x)
62 #define __ex_clear(x, reg) \
63         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
64
65 MODULE_AUTHOR("Qumranet");
66 MODULE_LICENSE("GPL");
67
68 static const struct x86_cpu_id vmx_cpu_id[] = {
69         X86_FEATURE_MATCH(X86_FEATURE_VMX),
70         {}
71 };
72 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
73
74 static bool __read_mostly enable_vpid = 1;
75 module_param_named(vpid, enable_vpid, bool, 0444);
76
77 static bool __read_mostly enable_vnmi = 1;
78 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
79
80 static bool __read_mostly flexpriority_enabled = 1;
81 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept = 1;
84 module_param_named(ept, enable_ept, bool, S_IRUGO);
85
86 static bool __read_mostly enable_unrestricted_guest = 1;
87 module_param_named(unrestricted_guest,
88                         enable_unrestricted_guest, bool, S_IRUGO);
89
90 static bool __read_mostly enable_ept_ad_bits = 1;
91 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
92
93 static bool __read_mostly emulate_invalid_guest_state = true;
94 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
95
96 static bool __read_mostly fasteoi = 1;
97 module_param(fasteoi, bool, S_IRUGO);
98
99 static bool __read_mostly enable_apicv = 1;
100 module_param(enable_apicv, bool, S_IRUGO);
101
102 static bool __read_mostly enable_shadow_vmcs = 1;
103 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
104 /*
105  * If nested=1, nested virtualization is supported, i.e., guests may use
106  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
107  * use VMX instructions.
108  */
109 static bool __read_mostly nested = 0;
110 module_param(nested, bool, S_IRUGO);
111
112 static u64 __read_mostly host_xss;
113
114 static bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116
117 #define MSR_TYPE_R      1
118 #define MSR_TYPE_W      2
119 #define MSR_TYPE_RW     3
120
121 #define MSR_BITMAP_MODE_X2APIC          1
122 #define MSR_BITMAP_MODE_X2APIC_APICV    2
123 #define MSR_BITMAP_MODE_LM              4
124
125 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
126
127 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
128 static int __read_mostly cpu_preemption_timer_multi;
129 static bool __read_mostly enable_preemption_timer = 1;
130 #ifdef CONFIG_X86_64
131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
132 #endif
133
134 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
135 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
136 #define KVM_VM_CR0_ALWAYS_ON                            \
137         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
138          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
139 #define KVM_CR4_GUEST_OWNED_BITS                                      \
140         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
141          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
142
143 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
144 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
145 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
146
147 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
148
149 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
150
151 /*
152  * Hyper-V requires all of these, so mark them as supported even though
153  * they are just treated the same as all-context.
154  */
155 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
156         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
157         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
158         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
159         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
160
161 /*
162  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
163  * ple_gap:    upper bound on the amount of time between two successive
164  *             executions of PAUSE in a loop. Also indicate if ple enabled.
165  *             According to test, this time is usually smaller than 128 cycles.
166  * ple_window: upper bound on the amount of time a guest is allowed to execute
167  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
168  *             less than 2^12 cycles
169  * Time is measured based on a counter that runs at the same rate as the TSC,
170  * refer SDM volume 3b section 21.6.13 & 22.1.3.
171  */
172 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
173
174 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
175 module_param(ple_window, uint, 0444);
176
177 /* Default doubles per-vcpu window every exit. */
178 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
179 module_param(ple_window_grow, uint, 0444);
180
181 /* Default resets per-vcpu window every exit to ple_window. */
182 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
183 module_param(ple_window_shrink, uint, 0444);
184
185 /* Default is to compute the maximum so we can never overflow. */
186 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
187 module_param(ple_window_max, uint, 0444);
188
189 extern const ulong vmx_return;
190
191 struct kvm_vmx {
192         struct kvm kvm;
193
194         unsigned int tss_addr;
195         bool ept_identity_pagetable_done;
196         gpa_t ept_identity_map_addr;
197 };
198
199 #define NR_AUTOLOAD_MSRS 8
200
201 struct vmcs {
202         u32 revision_id;
203         u32 abort;
204         char data[0];
205 };
206
207 /*
208  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
209  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
210  * loaded on this CPU (so we can clear them if the CPU goes down).
211  */
212 struct loaded_vmcs {
213         struct vmcs *vmcs;
214         struct vmcs *shadow_vmcs;
215         int cpu;
216         bool launched;
217         bool nmi_known_unmasked;
218         unsigned long vmcs_host_cr3;    /* May not match real cr3 */
219         unsigned long vmcs_host_cr4;    /* May not match real cr4 */
220         /* Support for vnmi-less CPUs */
221         int soft_vnmi_blocked;
222         ktime_t entry_time;
223         s64 vnmi_blocked_time;
224         unsigned long *msr_bitmap;
225         struct list_head loaded_vmcss_on_cpu_link;
226 };
227
228 struct shared_msr_entry {
229         unsigned index;
230         u64 data;
231         u64 mask;
232 };
233
234 /*
235  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
236  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
237  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
238  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
239  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
240  * More than one of these structures may exist, if L1 runs multiple L2 guests.
241  * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
242  * underlying hardware which will be used to run L2.
243  * This structure is packed to ensure that its layout is identical across
244  * machines (necessary for live migration).
245  *
246  * IMPORTANT: Changing the layout of existing fields in this structure
247  * will break save/restore compatibility with older kvm releases. When
248  * adding new fields, either use space in the reserved padding* arrays
249  * or add the new fields to the end of the structure.
250  */
251 typedef u64 natural_width;
252 struct __packed vmcs12 {
253         /* According to the Intel spec, a VMCS region must start with the
254          * following two fields. Then follow implementation-specific data.
255          */
256         u32 revision_id;
257         u32 abort;
258
259         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
260         u32 padding[7]; /* room for future expansion */
261
262         u64 io_bitmap_a;
263         u64 io_bitmap_b;
264         u64 msr_bitmap;
265         u64 vm_exit_msr_store_addr;
266         u64 vm_exit_msr_load_addr;
267         u64 vm_entry_msr_load_addr;
268         u64 tsc_offset;
269         u64 virtual_apic_page_addr;
270         u64 apic_access_addr;
271         u64 posted_intr_desc_addr;
272         u64 ept_pointer;
273         u64 eoi_exit_bitmap0;
274         u64 eoi_exit_bitmap1;
275         u64 eoi_exit_bitmap2;
276         u64 eoi_exit_bitmap3;
277         u64 xss_exit_bitmap;
278         u64 guest_physical_address;
279         u64 vmcs_link_pointer;
280         u64 guest_ia32_debugctl;
281         u64 guest_ia32_pat;
282         u64 guest_ia32_efer;
283         u64 guest_ia32_perf_global_ctrl;
284         u64 guest_pdptr0;
285         u64 guest_pdptr1;
286         u64 guest_pdptr2;
287         u64 guest_pdptr3;
288         u64 guest_bndcfgs;
289         u64 host_ia32_pat;
290         u64 host_ia32_efer;
291         u64 host_ia32_perf_global_ctrl;
292         u64 vmread_bitmap;
293         u64 vmwrite_bitmap;
294         u64 vm_function_control;
295         u64 eptp_list_address;
296         u64 pml_address;
297         u64 padding64[3]; /* room for future expansion */
298         /*
299          * To allow migration of L1 (complete with its L2 guests) between
300          * machines of different natural widths (32 or 64 bit), we cannot have
301          * unsigned long fields with no explict size. We use u64 (aliased
302          * natural_width) instead. Luckily, x86 is little-endian.
303          */
304         natural_width cr0_guest_host_mask;
305         natural_width cr4_guest_host_mask;
306         natural_width cr0_read_shadow;
307         natural_width cr4_read_shadow;
308         natural_width cr3_target_value0;
309         natural_width cr3_target_value1;
310         natural_width cr3_target_value2;
311         natural_width cr3_target_value3;
312         natural_width exit_qualification;
313         natural_width guest_linear_address;
314         natural_width guest_cr0;
315         natural_width guest_cr3;
316         natural_width guest_cr4;
317         natural_width guest_es_base;
318         natural_width guest_cs_base;
319         natural_width guest_ss_base;
320         natural_width guest_ds_base;
321         natural_width guest_fs_base;
322         natural_width guest_gs_base;
323         natural_width guest_ldtr_base;
324         natural_width guest_tr_base;
325         natural_width guest_gdtr_base;
326         natural_width guest_idtr_base;
327         natural_width guest_dr7;
328         natural_width guest_rsp;
329         natural_width guest_rip;
330         natural_width guest_rflags;
331         natural_width guest_pending_dbg_exceptions;
332         natural_width guest_sysenter_esp;
333         natural_width guest_sysenter_eip;
334         natural_width host_cr0;
335         natural_width host_cr3;
336         natural_width host_cr4;
337         natural_width host_fs_base;
338         natural_width host_gs_base;
339         natural_width host_tr_base;
340         natural_width host_gdtr_base;
341         natural_width host_idtr_base;
342         natural_width host_ia32_sysenter_esp;
343         natural_width host_ia32_sysenter_eip;
344         natural_width host_rsp;
345         natural_width host_rip;
346         natural_width paddingl[8]; /* room for future expansion */
347         u32 pin_based_vm_exec_control;
348         u32 cpu_based_vm_exec_control;
349         u32 exception_bitmap;
350         u32 page_fault_error_code_mask;
351         u32 page_fault_error_code_match;
352         u32 cr3_target_count;
353         u32 vm_exit_controls;
354         u32 vm_exit_msr_store_count;
355         u32 vm_exit_msr_load_count;
356         u32 vm_entry_controls;
357         u32 vm_entry_msr_load_count;
358         u32 vm_entry_intr_info_field;
359         u32 vm_entry_exception_error_code;
360         u32 vm_entry_instruction_len;
361         u32 tpr_threshold;
362         u32 secondary_vm_exec_control;
363         u32 vm_instruction_error;
364         u32 vm_exit_reason;
365         u32 vm_exit_intr_info;
366         u32 vm_exit_intr_error_code;
367         u32 idt_vectoring_info_field;
368         u32 idt_vectoring_error_code;
369         u32 vm_exit_instruction_len;
370         u32 vmx_instruction_info;
371         u32 guest_es_limit;
372         u32 guest_cs_limit;
373         u32 guest_ss_limit;
374         u32 guest_ds_limit;
375         u32 guest_fs_limit;
376         u32 guest_gs_limit;
377         u32 guest_ldtr_limit;
378         u32 guest_tr_limit;
379         u32 guest_gdtr_limit;
380         u32 guest_idtr_limit;
381         u32 guest_es_ar_bytes;
382         u32 guest_cs_ar_bytes;
383         u32 guest_ss_ar_bytes;
384         u32 guest_ds_ar_bytes;
385         u32 guest_fs_ar_bytes;
386         u32 guest_gs_ar_bytes;
387         u32 guest_ldtr_ar_bytes;
388         u32 guest_tr_ar_bytes;
389         u32 guest_interruptibility_info;
390         u32 guest_activity_state;
391         u32 guest_sysenter_cs;
392         u32 host_ia32_sysenter_cs;
393         u32 vmx_preemption_timer_value;
394         u32 padding32[7]; /* room for future expansion */
395         u16 virtual_processor_id;
396         u16 posted_intr_nv;
397         u16 guest_es_selector;
398         u16 guest_cs_selector;
399         u16 guest_ss_selector;
400         u16 guest_ds_selector;
401         u16 guest_fs_selector;
402         u16 guest_gs_selector;
403         u16 guest_ldtr_selector;
404         u16 guest_tr_selector;
405         u16 guest_intr_status;
406         u16 host_es_selector;
407         u16 host_cs_selector;
408         u16 host_ss_selector;
409         u16 host_ds_selector;
410         u16 host_fs_selector;
411         u16 host_gs_selector;
412         u16 host_tr_selector;
413         u16 guest_pml_index;
414 };
415
416 /*
417  * For save/restore compatibility, the vmcs12 field offsets must not change.
418  */
419 #define CHECK_OFFSET(field, loc)                                \
420         BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc),       \
421                 "Offset of " #field " in struct vmcs12 has changed.")
422
423 static inline void vmx_check_vmcs12_offsets(void) {
424         CHECK_OFFSET(revision_id, 0);
425         CHECK_OFFSET(abort, 4);
426         CHECK_OFFSET(launch_state, 8);
427         CHECK_OFFSET(io_bitmap_a, 40);
428         CHECK_OFFSET(io_bitmap_b, 48);
429         CHECK_OFFSET(msr_bitmap, 56);
430         CHECK_OFFSET(vm_exit_msr_store_addr, 64);
431         CHECK_OFFSET(vm_exit_msr_load_addr, 72);
432         CHECK_OFFSET(vm_entry_msr_load_addr, 80);
433         CHECK_OFFSET(tsc_offset, 88);
434         CHECK_OFFSET(virtual_apic_page_addr, 96);
435         CHECK_OFFSET(apic_access_addr, 104);
436         CHECK_OFFSET(posted_intr_desc_addr, 112);
437         CHECK_OFFSET(ept_pointer, 120);
438         CHECK_OFFSET(eoi_exit_bitmap0, 128);
439         CHECK_OFFSET(eoi_exit_bitmap1, 136);
440         CHECK_OFFSET(eoi_exit_bitmap2, 144);
441         CHECK_OFFSET(eoi_exit_bitmap3, 152);
442         CHECK_OFFSET(xss_exit_bitmap, 160);
443         CHECK_OFFSET(guest_physical_address, 168);
444         CHECK_OFFSET(vmcs_link_pointer, 176);
445         CHECK_OFFSET(guest_ia32_debugctl, 184);
446         CHECK_OFFSET(guest_ia32_pat, 192);
447         CHECK_OFFSET(guest_ia32_efer, 200);
448         CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208);
449         CHECK_OFFSET(guest_pdptr0, 216);
450         CHECK_OFFSET(guest_pdptr1, 224);
451         CHECK_OFFSET(guest_pdptr2, 232);
452         CHECK_OFFSET(guest_pdptr3, 240);
453         CHECK_OFFSET(guest_bndcfgs, 248);
454         CHECK_OFFSET(host_ia32_pat, 256);
455         CHECK_OFFSET(host_ia32_efer, 264);
456         CHECK_OFFSET(host_ia32_perf_global_ctrl, 272);
457         CHECK_OFFSET(vmread_bitmap, 280);
458         CHECK_OFFSET(vmwrite_bitmap, 288);
459         CHECK_OFFSET(vm_function_control, 296);
460         CHECK_OFFSET(eptp_list_address, 304);
461         CHECK_OFFSET(pml_address, 312);
462         CHECK_OFFSET(cr0_guest_host_mask, 344);
463         CHECK_OFFSET(cr4_guest_host_mask, 352);
464         CHECK_OFFSET(cr0_read_shadow, 360);
465         CHECK_OFFSET(cr4_read_shadow, 368);
466         CHECK_OFFSET(cr3_target_value0, 376);
467         CHECK_OFFSET(cr3_target_value1, 384);
468         CHECK_OFFSET(cr3_target_value2, 392);
469         CHECK_OFFSET(cr3_target_value3, 400);
470         CHECK_OFFSET(exit_qualification, 408);
471         CHECK_OFFSET(guest_linear_address, 416);
472         CHECK_OFFSET(guest_cr0, 424);
473         CHECK_OFFSET(guest_cr3, 432);
474         CHECK_OFFSET(guest_cr4, 440);
475         CHECK_OFFSET(guest_es_base, 448);
476         CHECK_OFFSET(guest_cs_base, 456);
477         CHECK_OFFSET(guest_ss_base, 464);
478         CHECK_OFFSET(guest_ds_base, 472);
479         CHECK_OFFSET(guest_fs_base, 480);
480         CHECK_OFFSET(guest_gs_base, 488);
481         CHECK_OFFSET(guest_ldtr_base, 496);
482         CHECK_OFFSET(guest_tr_base, 504);
483         CHECK_OFFSET(guest_gdtr_base, 512);
484         CHECK_OFFSET(guest_idtr_base, 520);
485         CHECK_OFFSET(guest_dr7, 528);
486         CHECK_OFFSET(guest_rsp, 536);
487         CHECK_OFFSET(guest_rip, 544);
488         CHECK_OFFSET(guest_rflags, 552);
489         CHECK_OFFSET(guest_pending_dbg_exceptions, 560);
490         CHECK_OFFSET(guest_sysenter_esp, 568);
491         CHECK_OFFSET(guest_sysenter_eip, 576);
492         CHECK_OFFSET(host_cr0, 584);
493         CHECK_OFFSET(host_cr3, 592);
494         CHECK_OFFSET(host_cr4, 600);
495         CHECK_OFFSET(host_fs_base, 608);
496         CHECK_OFFSET(host_gs_base, 616);
497         CHECK_OFFSET(host_tr_base, 624);
498         CHECK_OFFSET(host_gdtr_base, 632);
499         CHECK_OFFSET(host_idtr_base, 640);
500         CHECK_OFFSET(host_ia32_sysenter_esp, 648);
501         CHECK_OFFSET(host_ia32_sysenter_eip, 656);
502         CHECK_OFFSET(host_rsp, 664);
503         CHECK_OFFSET(host_rip, 672);
504         CHECK_OFFSET(pin_based_vm_exec_control, 744);
505         CHECK_OFFSET(cpu_based_vm_exec_control, 748);
506         CHECK_OFFSET(exception_bitmap, 752);
507         CHECK_OFFSET(page_fault_error_code_mask, 756);
508         CHECK_OFFSET(page_fault_error_code_match, 760);
509         CHECK_OFFSET(cr3_target_count, 764);
510         CHECK_OFFSET(vm_exit_controls, 768);
511         CHECK_OFFSET(vm_exit_msr_store_count, 772);
512         CHECK_OFFSET(vm_exit_msr_load_count, 776);
513         CHECK_OFFSET(vm_entry_controls, 780);
514         CHECK_OFFSET(vm_entry_msr_load_count, 784);
515         CHECK_OFFSET(vm_entry_intr_info_field, 788);
516         CHECK_OFFSET(vm_entry_exception_error_code, 792);
517         CHECK_OFFSET(vm_entry_instruction_len, 796);
518         CHECK_OFFSET(tpr_threshold, 800);
519         CHECK_OFFSET(secondary_vm_exec_control, 804);
520         CHECK_OFFSET(vm_instruction_error, 808);
521         CHECK_OFFSET(vm_exit_reason, 812);
522         CHECK_OFFSET(vm_exit_intr_info, 816);
523         CHECK_OFFSET(vm_exit_intr_error_code, 820);
524         CHECK_OFFSET(idt_vectoring_info_field, 824);
525         CHECK_OFFSET(idt_vectoring_error_code, 828);
526         CHECK_OFFSET(vm_exit_instruction_len, 832);
527         CHECK_OFFSET(vmx_instruction_info, 836);
528         CHECK_OFFSET(guest_es_limit, 840);
529         CHECK_OFFSET(guest_cs_limit, 844);
530         CHECK_OFFSET(guest_ss_limit, 848);
531         CHECK_OFFSET(guest_ds_limit, 852);
532         CHECK_OFFSET(guest_fs_limit, 856);
533         CHECK_OFFSET(guest_gs_limit, 860);
534         CHECK_OFFSET(guest_ldtr_limit, 864);
535         CHECK_OFFSET(guest_tr_limit, 868);
536         CHECK_OFFSET(guest_gdtr_limit, 872);
537         CHECK_OFFSET(guest_idtr_limit, 876);
538         CHECK_OFFSET(guest_es_ar_bytes, 880);
539         CHECK_OFFSET(guest_cs_ar_bytes, 884);
540         CHECK_OFFSET(guest_ss_ar_bytes, 888);
541         CHECK_OFFSET(guest_ds_ar_bytes, 892);
542         CHECK_OFFSET(guest_fs_ar_bytes, 896);
543         CHECK_OFFSET(guest_gs_ar_bytes, 900);
544         CHECK_OFFSET(guest_ldtr_ar_bytes, 904);
545         CHECK_OFFSET(guest_tr_ar_bytes, 908);
546         CHECK_OFFSET(guest_interruptibility_info, 912);
547         CHECK_OFFSET(guest_activity_state, 916);
548         CHECK_OFFSET(guest_sysenter_cs, 920);
549         CHECK_OFFSET(host_ia32_sysenter_cs, 924);
550         CHECK_OFFSET(vmx_preemption_timer_value, 928);
551         CHECK_OFFSET(virtual_processor_id, 960);
552         CHECK_OFFSET(posted_intr_nv, 962);
553         CHECK_OFFSET(guest_es_selector, 964);
554         CHECK_OFFSET(guest_cs_selector, 966);
555         CHECK_OFFSET(guest_ss_selector, 968);
556         CHECK_OFFSET(guest_ds_selector, 970);
557         CHECK_OFFSET(guest_fs_selector, 972);
558         CHECK_OFFSET(guest_gs_selector, 974);
559         CHECK_OFFSET(guest_ldtr_selector, 976);
560         CHECK_OFFSET(guest_tr_selector, 978);
561         CHECK_OFFSET(guest_intr_status, 980);
562         CHECK_OFFSET(host_es_selector, 982);
563         CHECK_OFFSET(host_cs_selector, 984);
564         CHECK_OFFSET(host_ss_selector, 986);
565         CHECK_OFFSET(host_ds_selector, 988);
566         CHECK_OFFSET(host_fs_selector, 990);
567         CHECK_OFFSET(host_gs_selector, 992);
568         CHECK_OFFSET(host_tr_selector, 994);
569         CHECK_OFFSET(guest_pml_index, 996);
570 }
571
572 /*
573  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
574  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
575  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
576  *
577  * IMPORTANT: Changing this value will break save/restore compatibility with
578  * older kvm releases.
579  */
580 #define VMCS12_REVISION 0x11e57ed0
581
582 /*
583  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
584  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
585  * current implementation, 4K are reserved to avoid future complications.
586  */
587 #define VMCS12_SIZE 0x1000
588
589 /*
590  * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
591  * supported VMCS12 field encoding.
592  */
593 #define VMCS12_MAX_FIELD_INDEX 0x17
594
595 struct nested_vmx_msrs {
596         /*
597          * We only store the "true" versions of the VMX capability MSRs. We
598          * generate the "non-true" versions by setting the must-be-1 bits
599          * according to the SDM.
600          */
601         u32 procbased_ctls_low;
602         u32 procbased_ctls_high;
603         u32 secondary_ctls_low;
604         u32 secondary_ctls_high;
605         u32 pinbased_ctls_low;
606         u32 pinbased_ctls_high;
607         u32 exit_ctls_low;
608         u32 exit_ctls_high;
609         u32 entry_ctls_low;
610         u32 entry_ctls_high;
611         u32 misc_low;
612         u32 misc_high;
613         u32 ept_caps;
614         u32 vpid_caps;
615         u64 basic;
616         u64 cr0_fixed0;
617         u64 cr0_fixed1;
618         u64 cr4_fixed0;
619         u64 cr4_fixed1;
620         u64 vmcs_enum;
621         u64 vmfunc_controls;
622 };
623
624 /*
625  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
626  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
627  */
628 struct nested_vmx {
629         /* Has the level1 guest done vmxon? */
630         bool vmxon;
631         gpa_t vmxon_ptr;
632         bool pml_full;
633
634         /* The guest-physical address of the current VMCS L1 keeps for L2 */
635         gpa_t current_vmptr;
636         /*
637          * Cache of the guest's VMCS, existing outside of guest memory.
638          * Loaded from guest memory during VMPTRLD. Flushed to guest
639          * memory during VMCLEAR and VMPTRLD.
640          */
641         struct vmcs12 *cached_vmcs12;
642         /*
643          * Indicates if the shadow vmcs must be updated with the
644          * data hold by vmcs12
645          */
646         bool sync_shadow_vmcs;
647         bool dirty_vmcs12;
648
649         bool change_vmcs01_virtual_apic_mode;
650
651         /* L2 must run next, and mustn't decide to exit to L1. */
652         bool nested_run_pending;
653
654         struct loaded_vmcs vmcs02;
655
656         /*
657          * Guest pages referred to in the vmcs02 with host-physical
658          * pointers, so we must keep them pinned while L2 runs.
659          */
660         struct page *apic_access_page;
661         struct page *virtual_apic_page;
662         struct page *pi_desc_page;
663         struct pi_desc *pi_desc;
664         bool pi_pending;
665         u16 posted_intr_nv;
666
667         struct hrtimer preemption_timer;
668         bool preemption_timer_expired;
669
670         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
671         u64 vmcs01_debugctl;
672
673         u16 vpid02;
674         u16 last_vpid;
675
676         struct nested_vmx_msrs msrs;
677
678         /* SMM related state */
679         struct {
680                 /* in VMX operation on SMM entry? */
681                 bool vmxon;
682                 /* in guest mode on SMM entry? */
683                 bool guest_mode;
684         } smm;
685 };
686
687 #define POSTED_INTR_ON  0
688 #define POSTED_INTR_SN  1
689
690 /* Posted-Interrupt Descriptor */
691 struct pi_desc {
692         u32 pir[8];     /* Posted interrupt requested */
693         union {
694                 struct {
695                                 /* bit 256 - Outstanding Notification */
696                         u16     on      : 1,
697                                 /* bit 257 - Suppress Notification */
698                                 sn      : 1,
699                                 /* bit 271:258 - Reserved */
700                                 rsvd_1  : 14;
701                                 /* bit 279:272 - Notification Vector */
702                         u8      nv;
703                                 /* bit 287:280 - Reserved */
704                         u8      rsvd_2;
705                                 /* bit 319:288 - Notification Destination */
706                         u32     ndst;
707                 };
708                 u64 control;
709         };
710         u32 rsvd[6];
711 } __aligned(64);
712
713 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
714 {
715         return test_and_set_bit(POSTED_INTR_ON,
716                         (unsigned long *)&pi_desc->control);
717 }
718
719 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
720 {
721         return test_and_clear_bit(POSTED_INTR_ON,
722                         (unsigned long *)&pi_desc->control);
723 }
724
725 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
726 {
727         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
728 }
729
730 static inline void pi_clear_sn(struct pi_desc *pi_desc)
731 {
732         return clear_bit(POSTED_INTR_SN,
733                         (unsigned long *)&pi_desc->control);
734 }
735
736 static inline void pi_set_sn(struct pi_desc *pi_desc)
737 {
738         return set_bit(POSTED_INTR_SN,
739                         (unsigned long *)&pi_desc->control);
740 }
741
742 static inline void pi_clear_on(struct pi_desc *pi_desc)
743 {
744         clear_bit(POSTED_INTR_ON,
745                   (unsigned long *)&pi_desc->control);
746 }
747
748 static inline int pi_test_on(struct pi_desc *pi_desc)
749 {
750         return test_bit(POSTED_INTR_ON,
751                         (unsigned long *)&pi_desc->control);
752 }
753
754 static inline int pi_test_sn(struct pi_desc *pi_desc)
755 {
756         return test_bit(POSTED_INTR_SN,
757                         (unsigned long *)&pi_desc->control);
758 }
759
760 struct vcpu_vmx {
761         struct kvm_vcpu       vcpu;
762         unsigned long         host_rsp;
763         u8                    fail;
764         u8                    msr_bitmap_mode;
765         u32                   exit_intr_info;
766         u32                   idt_vectoring_info;
767         ulong                 rflags;
768         struct shared_msr_entry *guest_msrs;
769         int                   nmsrs;
770         int                   save_nmsrs;
771         unsigned long         host_idt_base;
772 #ifdef CONFIG_X86_64
773         u64                   msr_host_kernel_gs_base;
774         u64                   msr_guest_kernel_gs_base;
775 #endif
776
777         u64                   arch_capabilities;
778         u64                   spec_ctrl;
779
780         u32 vm_entry_controls_shadow;
781         u32 vm_exit_controls_shadow;
782         u32 secondary_exec_control;
783
784         /*
785          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
786          * non-nested (L1) guest, it always points to vmcs01. For a nested
787          * guest (L2), it points to a different VMCS.
788          */
789         struct loaded_vmcs    vmcs01;
790         struct loaded_vmcs   *loaded_vmcs;
791         bool                  __launched; /* temporary, used in vmx_vcpu_run */
792         struct msr_autoload {
793                 unsigned nr;
794                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
795                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
796         } msr_autoload;
797         struct {
798                 int           loaded;
799                 u16           fs_sel, gs_sel, ldt_sel;
800 #ifdef CONFIG_X86_64
801                 u16           ds_sel, es_sel;
802 #endif
803                 int           gs_ldt_reload_needed;
804                 int           fs_reload_needed;
805                 u64           msr_host_bndcfgs;
806         } host_state;
807         struct {
808                 int vm86_active;
809                 ulong save_rflags;
810                 struct kvm_segment segs[8];
811         } rmode;
812         struct {
813                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
814                 struct kvm_save_segment {
815                         u16 selector;
816                         unsigned long base;
817                         u32 limit;
818                         u32 ar;
819                 } seg[8];
820         } segment_cache;
821         int vpid;
822         bool emulation_required;
823
824         u32 exit_reason;
825
826         /* Posted interrupt descriptor */
827         struct pi_desc pi_desc;
828
829         /* Support for a guest hypervisor (nested VMX) */
830         struct nested_vmx nested;
831
832         /* Dynamic PLE window. */
833         int ple_window;
834         bool ple_window_dirty;
835
836         /* Support for PML */
837 #define PML_ENTITY_NUM          512
838         struct page *pml_pg;
839
840         /* apic deadline value in host tsc */
841         u64 hv_deadline_tsc;
842
843         u64 current_tsc_ratio;
844
845         u32 host_pkru;
846
847         unsigned long host_debugctlmsr;
848
849         /*
850          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
851          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
852          * in msr_ia32_feature_control_valid_bits.
853          */
854         u64 msr_ia32_feature_control;
855         u64 msr_ia32_feature_control_valid_bits;
856 };
857
858 enum segment_cache_field {
859         SEG_FIELD_SEL = 0,
860         SEG_FIELD_BASE = 1,
861         SEG_FIELD_LIMIT = 2,
862         SEG_FIELD_AR = 3,
863
864         SEG_FIELD_NR = 4
865 };
866
867 static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
868 {
869         return container_of(kvm, struct kvm_vmx, kvm);
870 }
871
872 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
873 {
874         return container_of(vcpu, struct vcpu_vmx, vcpu);
875 }
876
877 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
878 {
879         return &(to_vmx(vcpu)->pi_desc);
880 }
881
882 #define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
883 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
884 #define FIELD(number, name)     [ROL16(number, 6)] = VMCS12_OFFSET(name)
885 #define FIELD64(number, name)                                           \
886         FIELD(number, name),                                            \
887         [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
888
889
890 static u16 shadow_read_only_fields[] = {
891 #define SHADOW_FIELD_RO(x) x,
892 #include "vmx_shadow_fields.h"
893 };
894 static int max_shadow_read_only_fields =
895         ARRAY_SIZE(shadow_read_only_fields);
896
897 static u16 shadow_read_write_fields[] = {
898 #define SHADOW_FIELD_RW(x) x,
899 #include "vmx_shadow_fields.h"
900 };
901 static int max_shadow_read_write_fields =
902         ARRAY_SIZE(shadow_read_write_fields);
903
904 static const unsigned short vmcs_field_to_offset_table[] = {
905         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
906         FIELD(POSTED_INTR_NV, posted_intr_nv),
907         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
908         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
909         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
910         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
911         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
912         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
913         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
914         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
915         FIELD(GUEST_INTR_STATUS, guest_intr_status),
916         FIELD(GUEST_PML_INDEX, guest_pml_index),
917         FIELD(HOST_ES_SELECTOR, host_es_selector),
918         FIELD(HOST_CS_SELECTOR, host_cs_selector),
919         FIELD(HOST_SS_SELECTOR, host_ss_selector),
920         FIELD(HOST_DS_SELECTOR, host_ds_selector),
921         FIELD(HOST_FS_SELECTOR, host_fs_selector),
922         FIELD(HOST_GS_SELECTOR, host_gs_selector),
923         FIELD(HOST_TR_SELECTOR, host_tr_selector),
924         FIELD64(IO_BITMAP_A, io_bitmap_a),
925         FIELD64(IO_BITMAP_B, io_bitmap_b),
926         FIELD64(MSR_BITMAP, msr_bitmap),
927         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
928         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
929         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
930         FIELD64(PML_ADDRESS, pml_address),
931         FIELD64(TSC_OFFSET, tsc_offset),
932         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
933         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
934         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
935         FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
936         FIELD64(EPT_POINTER, ept_pointer),
937         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
938         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
939         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
940         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
941         FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
942         FIELD64(VMREAD_BITMAP, vmread_bitmap),
943         FIELD64(VMWRITE_BITMAP, vmwrite_bitmap),
944         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
945         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
946         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
947         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
948         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
949         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
950         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
951         FIELD64(GUEST_PDPTR0, guest_pdptr0),
952         FIELD64(GUEST_PDPTR1, guest_pdptr1),
953         FIELD64(GUEST_PDPTR2, guest_pdptr2),
954         FIELD64(GUEST_PDPTR3, guest_pdptr3),
955         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
956         FIELD64(HOST_IA32_PAT, host_ia32_pat),
957         FIELD64(HOST_IA32_EFER, host_ia32_efer),
958         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
959         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
960         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
961         FIELD(EXCEPTION_BITMAP, exception_bitmap),
962         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
963         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
964         FIELD(CR3_TARGET_COUNT, cr3_target_count),
965         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
966         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
967         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
968         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
969         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
970         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
971         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
972         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
973         FIELD(TPR_THRESHOLD, tpr_threshold),
974         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
975         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
976         FIELD(VM_EXIT_REASON, vm_exit_reason),
977         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
978         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
979         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
980         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
981         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
982         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
983         FIELD(GUEST_ES_LIMIT, guest_es_limit),
984         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
985         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
986         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
987         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
988         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
989         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
990         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
991         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
992         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
993         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
994         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
995         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
996         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
997         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
998         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
999         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
1000         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
1001         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
1002         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
1003         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
1004         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
1005         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
1006         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
1007         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
1008         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
1009         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
1010         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
1011         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
1012         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
1013         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
1014         FIELD(EXIT_QUALIFICATION, exit_qualification),
1015         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
1016         FIELD(GUEST_CR0, guest_cr0),
1017         FIELD(GUEST_CR3, guest_cr3),
1018         FIELD(GUEST_CR4, guest_cr4),
1019         FIELD(GUEST_ES_BASE, guest_es_base),
1020         FIELD(GUEST_CS_BASE, guest_cs_base),
1021         FIELD(GUEST_SS_BASE, guest_ss_base),
1022         FIELD(GUEST_DS_BASE, guest_ds_base),
1023         FIELD(GUEST_FS_BASE, guest_fs_base),
1024         FIELD(GUEST_GS_BASE, guest_gs_base),
1025         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
1026         FIELD(GUEST_TR_BASE, guest_tr_base),
1027         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
1028         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
1029         FIELD(GUEST_DR7, guest_dr7),
1030         FIELD(GUEST_RSP, guest_rsp),
1031         FIELD(GUEST_RIP, guest_rip),
1032         FIELD(GUEST_RFLAGS, guest_rflags),
1033         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
1034         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
1035         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
1036         FIELD(HOST_CR0, host_cr0),
1037         FIELD(HOST_CR3, host_cr3),
1038         FIELD(HOST_CR4, host_cr4),
1039         FIELD(HOST_FS_BASE, host_fs_base),
1040         FIELD(HOST_GS_BASE, host_gs_base),
1041         FIELD(HOST_TR_BASE, host_tr_base),
1042         FIELD(HOST_GDTR_BASE, host_gdtr_base),
1043         FIELD(HOST_IDTR_BASE, host_idtr_base),
1044         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
1045         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
1046         FIELD(HOST_RSP, host_rsp),
1047         FIELD(HOST_RIP, host_rip),
1048 };
1049
1050 static inline short vmcs_field_to_offset(unsigned long field)
1051 {
1052         const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
1053         unsigned short offset;
1054         unsigned index;
1055
1056         if (field >> 15)
1057                 return -ENOENT;
1058
1059         index = ROL16(field, 6);
1060         if (index >= size)
1061                 return -ENOENT;
1062
1063         index = array_index_nospec(index, size);
1064         offset = vmcs_field_to_offset_table[index];
1065         if (offset == 0)
1066                 return -ENOENT;
1067         return offset;
1068 }
1069
1070 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
1071 {
1072         return to_vmx(vcpu)->nested.cached_vmcs12;
1073 }
1074
1075 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
1076 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
1077 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
1078 static bool vmx_xsaves_supported(void);
1079 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1080                             struct kvm_segment *var, int seg);
1081 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1082                             struct kvm_segment *var, int seg);
1083 static bool guest_state_valid(struct kvm_vcpu *vcpu);
1084 static u32 vmx_segment_access_rights(struct kvm_segment *var);
1085 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
1086 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
1087 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
1088 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
1089                                             u16 error_code);
1090 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
1091 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
1092                                                           u32 msr, int type);
1093
1094 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
1095 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
1096 /*
1097  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
1098  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
1099  */
1100 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
1101
1102 /*
1103  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
1104  * can find which vCPU should be waken up.
1105  */
1106 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
1107 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
1108
1109 enum {
1110         VMX_VMREAD_BITMAP,
1111         VMX_VMWRITE_BITMAP,
1112         VMX_BITMAP_NR
1113 };
1114
1115 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
1116
1117 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
1118 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
1119
1120 static bool cpu_has_load_ia32_efer;
1121 static bool cpu_has_load_perf_global_ctrl;
1122
1123 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
1124 static DEFINE_SPINLOCK(vmx_vpid_lock);
1125
1126 static struct vmcs_config {
1127         int size;
1128         int order;
1129         u32 basic_cap;
1130         u32 revision_id;
1131         u32 pin_based_exec_ctrl;
1132         u32 cpu_based_exec_ctrl;
1133         u32 cpu_based_2nd_exec_ctrl;
1134         u32 vmexit_ctrl;
1135         u32 vmentry_ctrl;
1136         struct nested_vmx_msrs nested;
1137 } vmcs_config;
1138
1139 static struct vmx_capability {
1140         u32 ept;
1141         u32 vpid;
1142 } vmx_capability;
1143
1144 #define VMX_SEGMENT_FIELD(seg)                                  \
1145         [VCPU_SREG_##seg] = {                                   \
1146                 .selector = GUEST_##seg##_SELECTOR,             \
1147                 .base = GUEST_##seg##_BASE,                     \
1148                 .limit = GUEST_##seg##_LIMIT,                   \
1149                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
1150         }
1151
1152 static const struct kvm_vmx_segment_field {
1153         unsigned selector;
1154         unsigned base;
1155         unsigned limit;
1156         unsigned ar_bytes;
1157 } kvm_vmx_segment_fields[] = {
1158         VMX_SEGMENT_FIELD(CS),
1159         VMX_SEGMENT_FIELD(DS),
1160         VMX_SEGMENT_FIELD(ES),
1161         VMX_SEGMENT_FIELD(FS),
1162         VMX_SEGMENT_FIELD(GS),
1163         VMX_SEGMENT_FIELD(SS),
1164         VMX_SEGMENT_FIELD(TR),
1165         VMX_SEGMENT_FIELD(LDTR),
1166 };
1167
1168 static u64 host_efer;
1169
1170 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1171
1172 /*
1173  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1174  * away by decrementing the array size.
1175  */
1176 static const u32 vmx_msr_index[] = {
1177 #ifdef CONFIG_X86_64
1178         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1179 #endif
1180         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1181 };
1182
1183 DEFINE_STATIC_KEY_FALSE(enable_evmcs);
1184
1185 #define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
1186
1187 #define KVM_EVMCS_VERSION 1
1188
1189 #if IS_ENABLED(CONFIG_HYPERV)
1190 static bool __read_mostly enlightened_vmcs = true;
1191 module_param(enlightened_vmcs, bool, 0444);
1192
1193 static inline void evmcs_write64(unsigned long field, u64 value)
1194 {
1195         u16 clean_field;
1196         int offset = get_evmcs_offset(field, &clean_field);
1197
1198         if (offset < 0)
1199                 return;
1200
1201         *(u64 *)((char *)current_evmcs + offset) = value;
1202
1203         current_evmcs->hv_clean_fields &= ~clean_field;
1204 }
1205
1206 static inline void evmcs_write32(unsigned long field, u32 value)
1207 {
1208         u16 clean_field;
1209         int offset = get_evmcs_offset(field, &clean_field);
1210
1211         if (offset < 0)
1212                 return;
1213
1214         *(u32 *)((char *)current_evmcs + offset) = value;
1215         current_evmcs->hv_clean_fields &= ~clean_field;
1216 }
1217
1218 static inline void evmcs_write16(unsigned long field, u16 value)
1219 {
1220         u16 clean_field;
1221         int offset = get_evmcs_offset(field, &clean_field);
1222
1223         if (offset < 0)
1224                 return;
1225
1226         *(u16 *)((char *)current_evmcs + offset) = value;
1227         current_evmcs->hv_clean_fields &= ~clean_field;
1228 }
1229
1230 static inline u64 evmcs_read64(unsigned long field)
1231 {
1232         int offset = get_evmcs_offset(field, NULL);
1233
1234         if (offset < 0)
1235                 return 0;
1236
1237         return *(u64 *)((char *)current_evmcs + offset);
1238 }
1239
1240 static inline u32 evmcs_read32(unsigned long field)
1241 {
1242         int offset = get_evmcs_offset(field, NULL);
1243
1244         if (offset < 0)
1245                 return 0;
1246
1247         return *(u32 *)((char *)current_evmcs + offset);
1248 }
1249
1250 static inline u16 evmcs_read16(unsigned long field)
1251 {
1252         int offset = get_evmcs_offset(field, NULL);
1253
1254         if (offset < 0)
1255                 return 0;
1256
1257         return *(u16 *)((char *)current_evmcs + offset);
1258 }
1259
1260 static inline void evmcs_touch_msr_bitmap(void)
1261 {
1262         if (unlikely(!current_evmcs))
1263                 return;
1264
1265         if (current_evmcs->hv_enlightenments_control.msr_bitmap)
1266                 current_evmcs->hv_clean_fields &=
1267                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
1268 }
1269
1270 static void evmcs_load(u64 phys_addr)
1271 {
1272         struct hv_vp_assist_page *vp_ap =
1273                 hv_get_vp_assist_page(smp_processor_id());
1274
1275         vp_ap->current_nested_vmcs = phys_addr;
1276         vp_ap->enlighten_vmentry = 1;
1277 }
1278
1279 static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
1280 {
1281         /*
1282          * Enlightened VMCSv1 doesn't support these:
1283          *
1284          *      POSTED_INTR_NV                  = 0x00000002,
1285          *      GUEST_INTR_STATUS               = 0x00000810,
1286          *      APIC_ACCESS_ADDR                = 0x00002014,
1287          *      POSTED_INTR_DESC_ADDR           = 0x00002016,
1288          *      EOI_EXIT_BITMAP0                = 0x0000201c,
1289          *      EOI_EXIT_BITMAP1                = 0x0000201e,
1290          *      EOI_EXIT_BITMAP2                = 0x00002020,
1291          *      EOI_EXIT_BITMAP3                = 0x00002022,
1292          */
1293         vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
1294         vmcs_conf->cpu_based_2nd_exec_ctrl &=
1295                 ~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1296         vmcs_conf->cpu_based_2nd_exec_ctrl &=
1297                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1298         vmcs_conf->cpu_based_2nd_exec_ctrl &=
1299                 ~SECONDARY_EXEC_APIC_REGISTER_VIRT;
1300
1301         /*
1302          *      GUEST_PML_INDEX                 = 0x00000812,
1303          *      PML_ADDRESS                     = 0x0000200e,
1304          */
1305         vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_PML;
1306
1307         /*      VM_FUNCTION_CONTROL             = 0x00002018, */
1308         vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
1309
1310         /*
1311          *      EPTP_LIST_ADDRESS               = 0x00002024,
1312          *      VMREAD_BITMAP                   = 0x00002026,
1313          *      VMWRITE_BITMAP                  = 0x00002028,
1314          */
1315         vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_SHADOW_VMCS;
1316
1317         /*
1318          *      TSC_MULTIPLIER                  = 0x00002032,
1319          */
1320         vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_TSC_SCALING;
1321
1322         /*
1323          *      PLE_GAP                         = 0x00004020,
1324          *      PLE_WINDOW                      = 0x00004022,
1325          */
1326         vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1327
1328         /*
1329          *      VMX_PREEMPTION_TIMER_VALUE      = 0x0000482E,
1330          */
1331         vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
1332
1333         /*
1334          *      GUEST_IA32_PERF_GLOBAL_CTRL     = 0x00002808,
1335          *      HOST_IA32_PERF_GLOBAL_CTRL      = 0x00002c04,
1336          */
1337         vmcs_conf->vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
1338         vmcs_conf->vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
1339
1340         /*
1341          * Currently unsupported in KVM:
1342          *      GUEST_IA32_RTIT_CTL             = 0x00002814,
1343          */
1344 }
1345 #else /* !IS_ENABLED(CONFIG_HYPERV) */
1346 static inline void evmcs_write64(unsigned long field, u64 value) {}
1347 static inline void evmcs_write32(unsigned long field, u32 value) {}
1348 static inline void evmcs_write16(unsigned long field, u16 value) {}
1349 static inline u64 evmcs_read64(unsigned long field) { return 0; }
1350 static inline u32 evmcs_read32(unsigned long field) { return 0; }
1351 static inline u16 evmcs_read16(unsigned long field) { return 0; }
1352 static inline void evmcs_load(u64 phys_addr) {}
1353 static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
1354 static inline void evmcs_touch_msr_bitmap(void) {}
1355 #endif /* IS_ENABLED(CONFIG_HYPERV) */
1356
1357 static inline bool is_exception_n(u32 intr_info, u8 vector)
1358 {
1359         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1360                              INTR_INFO_VALID_MASK)) ==
1361                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1362 }
1363
1364 static inline bool is_debug(u32 intr_info)
1365 {
1366         return is_exception_n(intr_info, DB_VECTOR);
1367 }
1368
1369 static inline bool is_breakpoint(u32 intr_info)
1370 {
1371         return is_exception_n(intr_info, BP_VECTOR);
1372 }
1373
1374 static inline bool is_page_fault(u32 intr_info)
1375 {
1376         return is_exception_n(intr_info, PF_VECTOR);
1377 }
1378
1379 static inline bool is_no_device(u32 intr_info)
1380 {
1381         return is_exception_n(intr_info, NM_VECTOR);
1382 }
1383
1384 static inline bool is_invalid_opcode(u32 intr_info)
1385 {
1386         return is_exception_n(intr_info, UD_VECTOR);
1387 }
1388
1389 static inline bool is_gp_fault(u32 intr_info)
1390 {
1391         return is_exception_n(intr_info, GP_VECTOR);
1392 }
1393
1394 static inline bool is_external_interrupt(u32 intr_info)
1395 {
1396         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1397                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1398 }
1399
1400 static inline bool is_machine_check(u32 intr_info)
1401 {
1402         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1403                              INTR_INFO_VALID_MASK)) ==
1404                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1405 }
1406
1407 /* Undocumented: icebp/int1 */
1408 static inline bool is_icebp(u32 intr_info)
1409 {
1410         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1411                 == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
1412 }
1413
1414 static inline bool cpu_has_vmx_msr_bitmap(void)
1415 {
1416         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1417 }
1418
1419 static inline bool cpu_has_vmx_tpr_shadow(void)
1420 {
1421         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1422 }
1423
1424 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1425 {
1426         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1427 }
1428
1429 static inline bool cpu_has_secondary_exec_ctrls(void)
1430 {
1431         return vmcs_config.cpu_based_exec_ctrl &
1432                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1433 }
1434
1435 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1436 {
1437         return vmcs_config.cpu_based_2nd_exec_ctrl &
1438                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1439 }
1440
1441 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1442 {
1443         return vmcs_config.cpu_based_2nd_exec_ctrl &
1444                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1445 }
1446
1447 static inline bool cpu_has_vmx_apic_register_virt(void)
1448 {
1449         return vmcs_config.cpu_based_2nd_exec_ctrl &
1450                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1451 }
1452
1453 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1454 {
1455         return vmcs_config.cpu_based_2nd_exec_ctrl &
1456                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1457 }
1458
1459 /*
1460  * Comment's format: document - errata name - stepping - processor name.
1461  * Refer from
1462  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1463  */
1464 static u32 vmx_preemption_cpu_tfms[] = {
1465 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1466 0x000206E6,
1467 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1468 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1469 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1470 0x00020652,
1471 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1472 0x00020655,
1473 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1474 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1475 /*
1476  * 320767.pdf - AAP86  - B1 -
1477  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1478  */
1479 0x000106E5,
1480 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1481 0x000106A0,
1482 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1483 0x000106A1,
1484 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1485 0x000106A4,
1486  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1487  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1488  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1489 0x000106A5,
1490 };
1491
1492 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1493 {
1494         u32 eax = cpuid_eax(0x00000001), i;
1495
1496         /* Clear the reserved bits */
1497         eax &= ~(0x3U << 14 | 0xfU << 28);
1498         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1499                 if (eax == vmx_preemption_cpu_tfms[i])
1500                         return true;
1501
1502         return false;
1503 }
1504
1505 static inline bool cpu_has_vmx_preemption_timer(void)
1506 {
1507         return vmcs_config.pin_based_exec_ctrl &
1508                 PIN_BASED_VMX_PREEMPTION_TIMER;
1509 }
1510
1511 static inline bool cpu_has_vmx_posted_intr(void)
1512 {
1513         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1514                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1515 }
1516
1517 static inline bool cpu_has_vmx_apicv(void)
1518 {
1519         return cpu_has_vmx_apic_register_virt() &&
1520                 cpu_has_vmx_virtual_intr_delivery() &&
1521                 cpu_has_vmx_posted_intr();
1522 }
1523
1524 static inline bool cpu_has_vmx_flexpriority(void)
1525 {
1526         return cpu_has_vmx_tpr_shadow() &&
1527                 cpu_has_vmx_virtualize_apic_accesses();
1528 }
1529
1530 static inline bool cpu_has_vmx_ept_execute_only(void)
1531 {
1532         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1533 }
1534
1535 static inline bool cpu_has_vmx_ept_2m_page(void)
1536 {
1537         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1538 }
1539
1540 static inline bool cpu_has_vmx_ept_1g_page(void)
1541 {
1542         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1543 }
1544
1545 static inline bool cpu_has_vmx_ept_4levels(void)
1546 {
1547         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1548 }
1549
1550 static inline bool cpu_has_vmx_ept_mt_wb(void)
1551 {
1552         return vmx_capability.ept & VMX_EPTP_WB_BIT;
1553 }
1554
1555 static inline bool cpu_has_vmx_ept_5levels(void)
1556 {
1557         return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1558 }
1559
1560 static inline bool cpu_has_vmx_ept_ad_bits(void)
1561 {
1562         return vmx_capability.ept & VMX_EPT_AD_BIT;
1563 }
1564
1565 static inline bool cpu_has_vmx_invept_context(void)
1566 {
1567         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1568 }
1569
1570 static inline bool cpu_has_vmx_invept_global(void)
1571 {
1572         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1573 }
1574
1575 static inline bool cpu_has_vmx_invvpid_individual_addr(void)
1576 {
1577         return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT;
1578 }
1579
1580 static inline bool cpu_has_vmx_invvpid_single(void)
1581 {
1582         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1583 }
1584
1585 static inline bool cpu_has_vmx_invvpid_global(void)
1586 {
1587         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1588 }
1589
1590 static inline bool cpu_has_vmx_invvpid(void)
1591 {
1592         return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1593 }
1594
1595 static inline bool cpu_has_vmx_ept(void)
1596 {
1597         return vmcs_config.cpu_based_2nd_exec_ctrl &
1598                 SECONDARY_EXEC_ENABLE_EPT;
1599 }
1600
1601 static inline bool cpu_has_vmx_unrestricted_guest(void)
1602 {
1603         return vmcs_config.cpu_based_2nd_exec_ctrl &
1604                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1605 }
1606
1607 static inline bool cpu_has_vmx_ple(void)
1608 {
1609         return vmcs_config.cpu_based_2nd_exec_ctrl &
1610                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1611 }
1612
1613 static inline bool cpu_has_vmx_basic_inout(void)
1614 {
1615         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1616 }
1617
1618 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1619 {
1620         return flexpriority_enabled && lapic_in_kernel(vcpu);
1621 }
1622
1623 static inline bool cpu_has_vmx_vpid(void)
1624 {
1625         return vmcs_config.cpu_based_2nd_exec_ctrl &
1626                 SECONDARY_EXEC_ENABLE_VPID;
1627 }
1628
1629 static inline bool cpu_has_vmx_rdtscp(void)
1630 {
1631         return vmcs_config.cpu_based_2nd_exec_ctrl &
1632                 SECONDARY_EXEC_RDTSCP;
1633 }
1634
1635 static inline bool cpu_has_vmx_invpcid(void)
1636 {
1637         return vmcs_config.cpu_based_2nd_exec_ctrl &
1638                 SECONDARY_EXEC_ENABLE_INVPCID;
1639 }
1640
1641 static inline bool cpu_has_virtual_nmis(void)
1642 {
1643         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1644 }
1645
1646 static inline bool cpu_has_vmx_wbinvd_exit(void)
1647 {
1648         return vmcs_config.cpu_based_2nd_exec_ctrl &
1649                 SECONDARY_EXEC_WBINVD_EXITING;
1650 }
1651
1652 static inline bool cpu_has_vmx_shadow_vmcs(void)
1653 {
1654         u64 vmx_msr;
1655         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1656         /* check if the cpu supports writing r/o exit information fields */
1657         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1658                 return false;
1659
1660         return vmcs_config.cpu_based_2nd_exec_ctrl &
1661                 SECONDARY_EXEC_SHADOW_VMCS;
1662 }
1663
1664 static inline bool cpu_has_vmx_pml(void)
1665 {
1666         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1667 }
1668
1669 static inline bool cpu_has_vmx_tsc_scaling(void)
1670 {
1671         return vmcs_config.cpu_based_2nd_exec_ctrl &
1672                 SECONDARY_EXEC_TSC_SCALING;
1673 }
1674
1675 static inline bool cpu_has_vmx_vmfunc(void)
1676 {
1677         return vmcs_config.cpu_based_2nd_exec_ctrl &
1678                 SECONDARY_EXEC_ENABLE_VMFUNC;
1679 }
1680
1681 static bool vmx_umip_emulated(void)
1682 {
1683         return vmcs_config.cpu_based_2nd_exec_ctrl &
1684                 SECONDARY_EXEC_DESC;
1685 }
1686
1687 static inline bool report_flexpriority(void)
1688 {
1689         return flexpriority_enabled;
1690 }
1691
1692 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1693 {
1694         return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
1695 }
1696
1697 /*
1698  * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
1699  * to modify any valid field of the VMCS, or are the VM-exit
1700  * information fields read-only?
1701  */
1702 static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
1703 {
1704         return to_vmx(vcpu)->nested.msrs.misc_low &
1705                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
1706 }
1707
1708 static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
1709 {
1710         return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
1711 }
1712
1713 static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
1714 {
1715         return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
1716                         CPU_BASED_MONITOR_TRAP_FLAG;
1717 }
1718
1719 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1720 {
1721         return vmcs12->cpu_based_vm_exec_control & bit;
1722 }
1723
1724 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1725 {
1726         return (vmcs12->cpu_based_vm_exec_control &
1727                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1728                 (vmcs12->secondary_vm_exec_control & bit);
1729 }
1730
1731 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1732 {
1733         return vmcs12->pin_based_vm_exec_control &
1734                 PIN_BASED_VMX_PREEMPTION_TIMER;
1735 }
1736
1737 static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
1738 {
1739         return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
1740 }
1741
1742 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1743 {
1744         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1745 }
1746
1747 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1748 {
1749         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1750 }
1751
1752 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1753 {
1754         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
1755 }
1756
1757 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1758 {
1759         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1760 }
1761
1762 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1763 {
1764         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1765 }
1766
1767 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1768 {
1769         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1770 }
1771
1772 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1773 {
1774         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1775 }
1776
1777 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1778 {
1779         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1780 }
1781
1782 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1783 {
1784         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1785 }
1786
1787 static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1788 {
1789         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1790 }
1791
1792 static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1793 {
1794         return nested_cpu_has_vmfunc(vmcs12) &&
1795                 (vmcs12->vm_function_control &
1796                  VMX_VMFUNC_EPTP_SWITCHING);
1797 }
1798
1799 static inline bool is_nmi(u32 intr_info)
1800 {
1801         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1802                 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1803 }
1804
1805 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1806                               u32 exit_intr_info,
1807                               unsigned long exit_qualification);
1808 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1809                         struct vmcs12 *vmcs12,
1810                         u32 reason, unsigned long qualification);
1811
1812 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1813 {
1814         int i;
1815
1816         for (i = 0; i < vmx->nmsrs; ++i)
1817                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1818                         return i;
1819         return -1;
1820 }
1821
1822 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1823 {
1824     struct {
1825         u64 vpid : 16;
1826         u64 rsvd : 48;
1827         u64 gva;
1828     } operand = { vpid, 0, gva };
1829
1830     asm volatile (__ex(ASM_VMX_INVVPID)
1831                   /* CF==1 or ZF==1 --> rc = -1 */
1832                   "; ja 1f ; ud2 ; 1:"
1833                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1834 }
1835
1836 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1837 {
1838         struct {
1839                 u64 eptp, gpa;
1840         } operand = {eptp, gpa};
1841
1842         asm volatile (__ex(ASM_VMX_INVEPT)
1843                         /* CF==1 or ZF==1 --> rc = -1 */
1844                         "; ja 1f ; ud2 ; 1:\n"
1845                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1846 }
1847
1848 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1849 {
1850         int i;
1851
1852         i = __find_msr_index(vmx, msr);
1853         if (i >= 0)
1854                 return &vmx->guest_msrs[i];
1855         return NULL;
1856 }
1857
1858 static void vmcs_clear(struct vmcs *vmcs)
1859 {
1860         u64 phys_addr = __pa(vmcs);
1861         u8 error;
1862
1863         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1864                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1865                       : "cc", "memory");
1866         if (error)
1867                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1868                        vmcs, phys_addr);
1869 }
1870
1871 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1872 {
1873         vmcs_clear(loaded_vmcs->vmcs);
1874         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1875                 vmcs_clear(loaded_vmcs->shadow_vmcs);
1876         loaded_vmcs->cpu = -1;
1877         loaded_vmcs->launched = 0;
1878 }
1879
1880 static void vmcs_load(struct vmcs *vmcs)
1881 {
1882         u64 phys_addr = __pa(vmcs);
1883         u8 error;
1884
1885         if (static_branch_unlikely(&enable_evmcs))
1886                 return evmcs_load(phys_addr);
1887
1888         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1889                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1890                         : "cc", "memory");
1891         if (error)
1892                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1893                        vmcs, phys_addr);
1894 }
1895
1896 #ifdef CONFIG_KEXEC_CORE
1897 /*
1898  * This bitmap is used to indicate whether the vmclear
1899  * operation is enabled on all cpus. All disabled by
1900  * default.
1901  */
1902 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1903
1904 static inline void crash_enable_local_vmclear(int cpu)
1905 {
1906         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1907 }
1908
1909 static inline void crash_disable_local_vmclear(int cpu)
1910 {
1911         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1912 }
1913
1914 static inline int crash_local_vmclear_enabled(int cpu)
1915 {
1916         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1917 }
1918
1919 static void crash_vmclear_local_loaded_vmcss(void)
1920 {
1921         int cpu = raw_smp_processor_id();
1922         struct loaded_vmcs *v;
1923
1924         if (!crash_local_vmclear_enabled(cpu))
1925                 return;
1926
1927         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1928                             loaded_vmcss_on_cpu_link)
1929                 vmcs_clear(v->vmcs);
1930 }
1931 #else
1932 static inline void crash_enable_local_vmclear(int cpu) { }
1933 static inline void crash_disable_local_vmclear(int cpu) { }
1934 #endif /* CONFIG_KEXEC_CORE */
1935
1936 static void __loaded_vmcs_clear(void *arg)
1937 {
1938         struct loaded_vmcs *loaded_vmcs = arg;
1939         int cpu = raw_smp_processor_id();
1940
1941         if (loaded_vmcs->cpu != cpu)
1942                 return; /* vcpu migration can race with cpu offline */
1943         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1944                 per_cpu(current_vmcs, cpu) = NULL;
1945         crash_disable_local_vmclear(cpu);
1946         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1947
1948         /*
1949          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1950          * is before setting loaded_vmcs->vcpu to -1 which is done in
1951          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1952          * then adds the vmcs into percpu list before it is deleted.
1953          */
1954         smp_wmb();
1955
1956         loaded_vmcs_init(loaded_vmcs);
1957         crash_enable_local_vmclear(cpu);
1958 }
1959
1960 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1961 {
1962         int cpu = loaded_vmcs->cpu;
1963
1964         if (cpu != -1)
1965                 smp_call_function_single(cpu,
1966                          __loaded_vmcs_clear, loaded_vmcs, 1);
1967 }
1968
1969 static inline void vpid_sync_vcpu_single(int vpid)
1970 {
1971         if (vpid == 0)
1972                 return;
1973
1974         if (cpu_has_vmx_invvpid_single())
1975                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1976 }
1977
1978 static inline void vpid_sync_vcpu_global(void)
1979 {
1980         if (cpu_has_vmx_invvpid_global())
1981                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1982 }
1983
1984 static inline void vpid_sync_context(int vpid)
1985 {
1986         if (cpu_has_vmx_invvpid_single())
1987                 vpid_sync_vcpu_single(vpid);
1988         else
1989                 vpid_sync_vcpu_global();
1990 }
1991
1992 static inline void ept_sync_global(void)
1993 {
1994         __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1995 }
1996
1997 static inline void ept_sync_context(u64 eptp)
1998 {
1999         if (cpu_has_vmx_invept_context())
2000                 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
2001         else
2002                 ept_sync_global();
2003 }
2004
2005 static __always_inline void vmcs_check16(unsigned long field)
2006 {
2007         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
2008                          "16-bit accessor invalid for 64-bit field");
2009         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
2010                          "16-bit accessor invalid for 64-bit high field");
2011         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
2012                          "16-bit accessor invalid for 32-bit high field");
2013         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
2014                          "16-bit accessor invalid for natural width field");
2015 }
2016
2017 static __always_inline void vmcs_check32(unsigned long field)
2018 {
2019         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
2020                          "32-bit accessor invalid for 16-bit field");
2021         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
2022                          "32-bit accessor invalid for natural width field");
2023 }
2024
2025 static __always_inline void vmcs_check64(unsigned long field)
2026 {
2027         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
2028                          "64-bit accessor invalid for 16-bit field");
2029         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
2030                          "64-bit accessor invalid for 64-bit high field");
2031         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
2032                          "64-bit accessor invalid for 32-bit field");
2033         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
2034                          "64-bit accessor invalid for natural width field");
2035 }
2036
2037 static __always_inline void vmcs_checkl(unsigned long field)
2038 {
2039         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
2040                          "Natural width accessor invalid for 16-bit field");
2041         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
2042                          "Natural width accessor invalid for 64-bit field");
2043         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
2044                          "Natural width accessor invalid for 64-bit high field");
2045         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
2046                          "Natural width accessor invalid for 32-bit field");
2047 }
2048
2049 static __always_inline unsigned long __vmcs_readl(unsigned long field)
2050 {
2051         unsigned long value;
2052
2053         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
2054                       : "=a"(value) : "d"(field) : "cc");
2055         return value;
2056 }
2057
2058 static __always_inline u16 vmcs_read16(unsigned long field)
2059 {
2060         vmcs_check16(field);
2061         if (static_branch_unlikely(&enable_evmcs))
2062                 return evmcs_read16(field);
2063         return __vmcs_readl(field);
2064 }
2065
2066 static __always_inline u32 vmcs_read32(unsigned long field)
2067 {
2068         vmcs_check32(field);
2069         if (static_branch_unlikely(&enable_evmcs))
2070                 return evmcs_read32(field);
2071         return __vmcs_readl(field);
2072 }
2073
2074 static __always_inline u64 vmcs_read64(unsigned long field)
2075 {
2076         vmcs_check64(field);
2077         if (static_branch_unlikely(&enable_evmcs))
2078                 return evmcs_read64(field);
2079 #ifdef CONFIG_X86_64
2080         return __vmcs_readl(field);
2081 #else
2082         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
2083 #endif
2084 }
2085
2086 static __always_inline unsigned long vmcs_readl(unsigned long field)
2087 {
2088         vmcs_checkl(field);
2089         if (static_branch_unlikely(&enable_evmcs))
2090                 return evmcs_read64(field);
2091         return __vmcs_readl(field);
2092 }
2093
2094 static noinline void vmwrite_error(unsigned long field, unsigned long value)
2095 {
2096         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
2097                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
2098         dump_stack();
2099 }
2100
2101 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
2102 {
2103         u8 error;
2104
2105         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
2106                        : "=q"(error) : "a"(value), "d"(field) : "cc");
2107         if (unlikely(error))
2108                 vmwrite_error(field, value);
2109 }
2110
2111 static __always_inline void vmcs_write16(unsigned long field, u16 value)
2112 {
2113         vmcs_check16(field);
2114         if (static_branch_unlikely(&enable_evmcs))
2115                 return evmcs_write16(field, value);
2116
2117         __vmcs_writel(field, value);
2118 }
2119
2120 static __always_inline void vmcs_write32(unsigned long field, u32 value)
2121 {
2122         vmcs_check32(field);
2123         if (static_branch_unlikely(&enable_evmcs))
2124                 return evmcs_write32(field, value);
2125
2126         __vmcs_writel(field, value);
2127 }
2128
2129 static __always_inline void vmcs_write64(unsigned long field, u64 value)
2130 {
2131         vmcs_check64(field);
2132         if (static_branch_unlikely(&enable_evmcs))
2133                 return evmcs_write64(field, value);
2134
2135         __vmcs_writel(field, value);
2136 #ifndef CONFIG_X86_64
2137         asm volatile ("");
2138         __vmcs_writel(field+1, value >> 32);
2139 #endif
2140 }
2141
2142 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2143 {
2144         vmcs_checkl(field);
2145         if (static_branch_unlikely(&enable_evmcs))
2146                 return evmcs_write64(field, value);
2147
2148         __vmcs_writel(field, value);
2149 }
2150
2151 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2152 {
2153         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
2154                          "vmcs_clear_bits does not support 64-bit fields");
2155         if (static_branch_unlikely(&enable_evmcs))
2156                 return evmcs_write32(field, evmcs_read32(field) & ~mask);
2157
2158         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2159 }
2160
2161 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2162 {
2163         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
2164                          "vmcs_set_bits does not support 64-bit fields");
2165         if (static_branch_unlikely(&enable_evmcs))
2166                 return evmcs_write32(field, evmcs_read32(field) | mask);
2167
2168         __vmcs_writel(field, __vmcs_readl(field) | mask);
2169 }
2170
2171 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
2172 {
2173         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
2174 }
2175
2176 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
2177 {
2178         vmcs_write32(VM_ENTRY_CONTROLS, val);
2179         vmx->vm_entry_controls_shadow = val;
2180 }
2181
2182 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
2183 {
2184         if (vmx->vm_entry_controls_shadow != val)
2185                 vm_entry_controls_init(vmx, val);
2186 }
2187
2188 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
2189 {
2190         return vmx->vm_entry_controls_shadow;
2191 }
2192
2193
2194 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
2195 {
2196         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
2197 }
2198
2199 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
2200 {
2201         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
2202 }
2203
2204 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
2205 {
2206         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
2207 }
2208
2209 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
2210 {
2211         vmcs_write32(VM_EXIT_CONTROLS, val);
2212         vmx->vm_exit_controls_shadow = val;
2213 }
2214
2215 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
2216 {
2217         if (vmx->vm_exit_controls_shadow != val)
2218                 vm_exit_controls_init(vmx, val);
2219 }
2220
2221 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
2222 {
2223         return vmx->vm_exit_controls_shadow;
2224 }
2225
2226
2227 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
2228 {
2229         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
2230 }
2231
2232 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
2233 {
2234         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
2235 }
2236
2237 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
2238 {
2239         vmx->segment_cache.bitmask = 0;
2240 }
2241
2242 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
2243                                        unsigned field)
2244 {
2245         bool ret;
2246         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
2247
2248         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
2249                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
2250                 vmx->segment_cache.bitmask = 0;
2251         }
2252         ret = vmx->segment_cache.bitmask & mask;
2253         vmx->segment_cache.bitmask |= mask;
2254         return ret;
2255 }
2256
2257 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
2258 {
2259         u16 *p = &vmx->segment_cache.seg[seg].selector;
2260
2261         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
2262                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
2263         return *p;
2264 }
2265
2266 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
2267 {
2268         ulong *p = &vmx->segment_cache.seg[seg].base;
2269
2270         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
2271                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
2272         return *p;
2273 }
2274
2275 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
2276 {
2277         u32 *p = &vmx->segment_cache.seg[seg].limit;
2278
2279         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
2280                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
2281         return *p;
2282 }
2283
2284 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
2285 {
2286         u32 *p = &vmx->segment_cache.seg[seg].ar;
2287
2288         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
2289                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
2290         return *p;
2291 }
2292
2293 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
2294 {
2295         u32 eb;
2296
2297         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
2298              (1u << DB_VECTOR) | (1u << AC_VECTOR);
2299         /*
2300          * Guest access to VMware backdoor ports could legitimately
2301          * trigger #GP because of TSS I/O permission bitmap.
2302          * We intercept those #GP and allow access to them anyway
2303          * as VMware does.
2304          */
2305         if (enable_vmware_backdoor)
2306                 eb |= (1u << GP_VECTOR);
2307         if ((vcpu->guest_debug &
2308              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
2309             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
2310                 eb |= 1u << BP_VECTOR;
2311         if (to_vmx(vcpu)->rmode.vm86_active)
2312                 eb = ~0;
2313         if (enable_ept)
2314                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
2315
2316         /* When we are running a nested L2 guest and L1 specified for it a
2317          * certain exception bitmap, we must trap the same exceptions and pass
2318          * them to L1. When running L2, we will only handle the exceptions
2319          * specified above if L1 did not want them.
2320          */
2321         if (is_guest_mode(vcpu))
2322                 eb |= get_vmcs12(vcpu)->exception_bitmap;
2323
2324         vmcs_write32(EXCEPTION_BITMAP, eb);
2325 }
2326
2327 /*
2328  * Check if MSR is intercepted for currently loaded MSR bitmap.
2329  */
2330 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
2331 {
2332         unsigned long *msr_bitmap;
2333         int f = sizeof(unsigned long);
2334
2335         if (!cpu_has_vmx_msr_bitmap())
2336                 return true;
2337
2338         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
2339
2340         if (msr <= 0x1fff) {
2341                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
2342         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2343                 msr &= 0x1fff;
2344                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2345         }
2346
2347         return true;
2348 }
2349
2350 /*
2351  * Check if MSR is intercepted for L01 MSR bitmap.
2352  */
2353 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
2354 {
2355         unsigned long *msr_bitmap;
2356         int f = sizeof(unsigned long);
2357
2358         if (!cpu_has_vmx_msr_bitmap())
2359                 return true;
2360
2361         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
2362
2363         if (msr <= 0x1fff) {
2364                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
2365         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2366                 msr &= 0x1fff;
2367                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2368         }
2369
2370         return true;
2371 }
2372
2373 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2374                 unsigned long entry, unsigned long exit)
2375 {
2376         vm_entry_controls_clearbit(vmx, entry);
2377         vm_exit_controls_clearbit(vmx, exit);
2378 }
2379
2380 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
2381 {
2382         unsigned i;
2383         struct msr_autoload *m = &vmx->msr_autoload;
2384
2385         switch (msr) {
2386         case MSR_EFER:
2387                 if (cpu_has_load_ia32_efer) {
2388                         clear_atomic_switch_msr_special(vmx,
2389                                         VM_ENTRY_LOAD_IA32_EFER,
2390                                         VM_EXIT_LOAD_IA32_EFER);
2391                         return;
2392                 }
2393                 break;
2394         case MSR_CORE_PERF_GLOBAL_CTRL:
2395                 if (cpu_has_load_perf_global_ctrl) {
2396                         clear_atomic_switch_msr_special(vmx,
2397                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2398                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2399                         return;
2400                 }
2401                 break;
2402         }
2403
2404         for (i = 0; i < m->nr; ++i)
2405                 if (m->guest[i].index == msr)
2406                         break;
2407
2408         if (i == m->nr)
2409                 return;
2410         --m->nr;
2411         m->guest[i] = m->guest[m->nr];
2412         m->host[i] = m->host[m->nr];
2413         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2414         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2415 }
2416
2417 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2418                 unsigned long entry, unsigned long exit,
2419                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
2420                 u64 guest_val, u64 host_val)
2421 {
2422         vmcs_write64(guest_val_vmcs, guest_val);
2423         vmcs_write64(host_val_vmcs, host_val);
2424         vm_entry_controls_setbit(vmx, entry);
2425         vm_exit_controls_setbit(vmx, exit);
2426 }
2427
2428 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
2429                                   u64 guest_val, u64 host_val)
2430 {
2431         unsigned i;
2432         struct msr_autoload *m = &vmx->msr_autoload;
2433
2434         switch (msr) {
2435         case MSR_EFER:
2436                 if (cpu_has_load_ia32_efer) {
2437                         add_atomic_switch_msr_special(vmx,
2438                                         VM_ENTRY_LOAD_IA32_EFER,
2439                                         VM_EXIT_LOAD_IA32_EFER,
2440                                         GUEST_IA32_EFER,
2441                                         HOST_IA32_EFER,
2442                                         guest_val, host_val);
2443                         return;
2444                 }
2445                 break;
2446         case MSR_CORE_PERF_GLOBAL_CTRL:
2447                 if (cpu_has_load_perf_global_ctrl) {
2448                         add_atomic_switch_msr_special(vmx,
2449                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2450                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
2451                                         GUEST_IA32_PERF_GLOBAL_CTRL,
2452                                         HOST_IA32_PERF_GLOBAL_CTRL,
2453                                         guest_val, host_val);
2454                         return;
2455                 }
2456                 break;
2457         case MSR_IA32_PEBS_ENABLE:
2458                 /* PEBS needs a quiescent period after being disabled (to write
2459                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
2460                  * provide that period, so a CPU could write host's record into
2461                  * guest's memory.
2462                  */
2463                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
2464         }
2465
2466         for (i = 0; i < m->nr; ++i)
2467                 if (m->guest[i].index == msr)
2468                         break;
2469
2470         if (i == NR_AUTOLOAD_MSRS) {
2471                 printk_once(KERN_WARNING "Not enough msr switch entries. "
2472                                 "Can't add msr %x\n", msr);
2473                 return;
2474         } else if (i == m->nr) {
2475                 ++m->nr;
2476                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2477                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2478         }
2479
2480         m->guest[i].index = msr;
2481         m->guest[i].value = guest_val;
2482         m->host[i].index = msr;
2483         m->host[i].value = host_val;
2484 }
2485
2486 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2487 {
2488         u64 guest_efer = vmx->vcpu.arch.efer;
2489         u64 ignore_bits = 0;
2490
2491         if (!enable_ept) {
2492                 /*
2493                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
2494                  * host CPUID is more efficient than testing guest CPUID
2495                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
2496                  */
2497                 if (boot_cpu_has(X86_FEATURE_SMEP))
2498                         guest_efer |= EFER_NX;
2499                 else if (!(guest_efer & EFER_NX))
2500                         ignore_bits |= EFER_NX;
2501         }
2502
2503         /*
2504          * LMA and LME handled by hardware; SCE meaningless outside long mode.
2505          */
2506         ignore_bits |= EFER_SCE;
2507 #ifdef CONFIG_X86_64
2508         ignore_bits |= EFER_LMA | EFER_LME;
2509         /* SCE is meaningful only in long mode on Intel */
2510         if (guest_efer & EFER_LMA)
2511                 ignore_bits &= ~(u64)EFER_SCE;
2512 #endif
2513
2514         clear_atomic_switch_msr(vmx, MSR_EFER);
2515
2516         /*
2517          * On EPT, we can't emulate NX, so we must switch EFER atomically.
2518          * On CPUs that support "load IA32_EFER", always switch EFER
2519          * atomically, since it's faster than switching it manually.
2520          */
2521         if (cpu_has_load_ia32_efer ||
2522             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2523                 if (!(guest_efer & EFER_LMA))
2524                         guest_efer &= ~EFER_LME;
2525                 if (guest_efer != host_efer)
2526                         add_atomic_switch_msr(vmx, MSR_EFER,
2527                                               guest_efer, host_efer);
2528                 return false;
2529         } else {
2530                 guest_efer &= ~ignore_bits;
2531                 guest_efer |= host_efer & ignore_bits;
2532
2533                 vmx->guest_msrs[efer_offset].data = guest_efer;
2534                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2535
2536                 return true;
2537         }
2538 }
2539
2540 #ifdef CONFIG_X86_32
2541 /*
2542  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2543  * VMCS rather than the segment table.  KVM uses this helper to figure
2544  * out the current bases to poke them into the VMCS before entry.
2545  */
2546 static unsigned long segment_base(u16 selector)
2547 {
2548         struct desc_struct *table;
2549         unsigned long v;
2550
2551         if (!(selector & ~SEGMENT_RPL_MASK))
2552                 return 0;
2553
2554         table = get_current_gdt_ro();
2555
2556         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2557                 u16 ldt_selector = kvm_read_ldt();
2558
2559                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2560                         return 0;
2561
2562                 table = (struct desc_struct *)segment_base(ldt_selector);
2563         }
2564         v = get_desc_base(&table[selector >> 3]);
2565         return v;
2566 }
2567 #endif
2568
2569 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2570 {
2571         struct vcpu_vmx *vmx = to_vmx(vcpu);
2572 #ifdef CONFIG_X86_64
2573         int cpu = raw_smp_processor_id();
2574 #endif
2575         int i;
2576
2577         if (vmx->host_state.loaded)
2578                 return;
2579
2580         vmx->host_state.loaded = 1;
2581         /*
2582          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2583          * allow segment selectors with cpl > 0 or ti == 1.
2584          */
2585         vmx->host_state.ldt_sel = kvm_read_ldt();
2586         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2587
2588 #ifdef CONFIG_X86_64
2589         save_fsgs_for_kvm();
2590         vmx->host_state.fs_sel = current->thread.fsindex;
2591         vmx->host_state.gs_sel = current->thread.gsindex;
2592 #else
2593         savesegment(fs, vmx->host_state.fs_sel);
2594         savesegment(gs, vmx->host_state.gs_sel);
2595 #endif
2596         if (!(vmx->host_state.fs_sel & 7)) {
2597                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2598                 vmx->host_state.fs_reload_needed = 0;
2599         } else {
2600                 vmcs_write16(HOST_FS_SELECTOR, 0);
2601                 vmx->host_state.fs_reload_needed = 1;
2602         }
2603         if (!(vmx->host_state.gs_sel & 7))
2604                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2605         else {
2606                 vmcs_write16(HOST_GS_SELECTOR, 0);
2607                 vmx->host_state.gs_ldt_reload_needed = 1;
2608         }
2609
2610 #ifdef CONFIG_X86_64
2611         savesegment(ds, vmx->host_state.ds_sel);
2612         savesegment(es, vmx->host_state.es_sel);
2613
2614         vmcs_writel(HOST_FS_BASE, current->thread.fsbase);
2615         vmcs_writel(HOST_GS_BASE, cpu_kernelmode_gs_base(cpu));
2616
2617         vmx->msr_host_kernel_gs_base = current->thread.gsbase;
2618         if (is_long_mode(&vmx->vcpu))
2619                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2620 #else
2621         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2622         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2623 #endif
2624         if (boot_cpu_has(X86_FEATURE_MPX))
2625                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2626         for (i = 0; i < vmx->save_nmsrs; ++i)
2627                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2628                                    vmx->guest_msrs[i].data,
2629                                    vmx->guest_msrs[i].mask);
2630 }
2631
2632 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2633 {
2634         if (!vmx->host_state.loaded)
2635                 return;
2636
2637         ++vmx->vcpu.stat.host_state_reload;
2638         vmx->host_state.loaded = 0;
2639 #ifdef CONFIG_X86_64
2640         if (is_long_mode(&vmx->vcpu))
2641                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2642 #endif
2643         if (vmx->host_state.gs_ldt_reload_needed) {
2644                 kvm_load_ldt(vmx->host_state.ldt_sel);
2645 #ifdef CONFIG_X86_64
2646                 load_gs_index(vmx->host_state.gs_sel);
2647 #else
2648                 loadsegment(gs, vmx->host_state.gs_sel);
2649 #endif
2650         }
2651         if (vmx->host_state.fs_reload_needed)
2652                 loadsegment(fs, vmx->host_state.fs_sel);
2653 #ifdef CONFIG_X86_64
2654         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2655                 loadsegment(ds, vmx->host_state.ds_sel);
2656                 loadsegment(es, vmx->host_state.es_sel);
2657         }
2658 #endif
2659         invalidate_tss_limit();
2660 #ifdef CONFIG_X86_64
2661         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2662 #endif
2663         if (vmx->host_state.msr_host_bndcfgs)
2664                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2665         load_fixmap_gdt(raw_smp_processor_id());
2666 }
2667
2668 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2669 {
2670         preempt_disable();
2671         __vmx_load_host_state(vmx);
2672         preempt_enable();
2673 }
2674
2675 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2676 {
2677         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2678         struct pi_desc old, new;
2679         unsigned int dest;
2680
2681         /*
2682          * In case of hot-plug or hot-unplug, we may have to undo
2683          * vmx_vcpu_pi_put even if there is no assigned device.  And we
2684          * always keep PI.NDST up to date for simplicity: it makes the
2685          * code easier, and CPU migration is not a fast path.
2686          */
2687         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
2688                 return;
2689
2690         /*
2691          * First handle the simple case where no cmpxchg is necessary; just
2692          * allow posting non-urgent interrupts.
2693          *
2694          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2695          * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2696          * expects the VCPU to be on the blocked_vcpu_list that matches
2697          * PI.NDST.
2698          */
2699         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2700             vcpu->cpu == cpu) {
2701                 pi_clear_sn(pi_desc);
2702                 return;
2703         }
2704
2705         /* The full case.  */
2706         do {
2707                 old.control = new.control = pi_desc->control;
2708
2709                 dest = cpu_physical_id(cpu);
2710
2711                 if (x2apic_enabled())
2712                         new.ndst = dest;
2713                 else
2714                         new.ndst = (dest << 8) & 0xFF00;
2715
2716                 new.sn = 0;
2717         } while (cmpxchg64(&pi_desc->control, old.control,
2718                            new.control) != old.control);
2719 }
2720
2721 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2722 {
2723         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2724         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2725 }
2726
2727 /*
2728  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2729  * vcpu mutex is already taken.
2730  */
2731 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2732 {
2733         struct vcpu_vmx *vmx = to_vmx(vcpu);
2734         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2735
2736         if (!already_loaded) {
2737                 loaded_vmcs_clear(vmx->loaded_vmcs);
2738                 local_irq_disable();
2739                 crash_disable_local_vmclear(cpu);
2740
2741                 /*
2742                  * Read loaded_vmcs->cpu should be before fetching
2743                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2744                  * See the comments in __loaded_vmcs_clear().
2745                  */
2746                 smp_rmb();
2747
2748                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2749                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2750                 crash_enable_local_vmclear(cpu);
2751                 local_irq_enable();
2752         }
2753
2754         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2755                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2756                 vmcs_load(vmx->loaded_vmcs->vmcs);
2757                 indirect_branch_prediction_barrier();
2758         }
2759
2760         if (!already_loaded) {
2761                 void *gdt = get_current_gdt_ro();
2762                 unsigned long sysenter_esp;
2763
2764                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2765
2766                 /*
2767                  * Linux uses per-cpu TSS and GDT, so set these when switching
2768                  * processors.  See 22.2.4.
2769                  */
2770                 vmcs_writel(HOST_TR_BASE,
2771                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
2772                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
2773
2774                 /*
2775                  * VM exits change the host TR limit to 0x67 after a VM
2776                  * exit.  This is okay, since 0x67 covers everything except
2777                  * the IO bitmap and have have code to handle the IO bitmap
2778                  * being lost after a VM exit.
2779                  */
2780                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2781
2782                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2783                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2784
2785                 vmx->loaded_vmcs->cpu = cpu;
2786         }
2787
2788         /* Setup TSC multiplier */
2789         if (kvm_has_tsc_control &&
2790             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2791                 decache_tsc_multiplier(vmx);
2792
2793         vmx_vcpu_pi_load(vcpu, cpu);
2794         vmx->host_pkru = read_pkru();
2795         vmx->host_debugctlmsr = get_debugctlmsr();
2796 }
2797
2798 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2799 {
2800         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2801
2802         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2803                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2804                 !kvm_vcpu_apicv_active(vcpu))
2805                 return;
2806
2807         /* Set SN when the vCPU is preempted */
2808         if (vcpu->preempted)
2809                 pi_set_sn(pi_desc);
2810 }
2811
2812 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2813 {
2814         vmx_vcpu_pi_put(vcpu);
2815
2816         __vmx_load_host_state(to_vmx(vcpu));
2817 }
2818
2819 static bool emulation_required(struct kvm_vcpu *vcpu)
2820 {
2821         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2822 }
2823
2824 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2825
2826 /*
2827  * Return the cr0 value that a nested guest would read. This is a combination
2828  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2829  * its hypervisor (cr0_read_shadow).
2830  */
2831 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2832 {
2833         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2834                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2835 }
2836 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2837 {
2838         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2839                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2840 }
2841
2842 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2843 {
2844         unsigned long rflags, save_rflags;
2845
2846         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2847                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2848                 rflags = vmcs_readl(GUEST_RFLAGS);
2849                 if (to_vmx(vcpu)->rmode.vm86_active) {
2850                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2851                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2852                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2853                 }
2854                 to_vmx(vcpu)->rflags = rflags;
2855         }
2856         return to_vmx(vcpu)->rflags;
2857 }
2858
2859 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2860 {
2861         unsigned long old_rflags = vmx_get_rflags(vcpu);
2862
2863         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2864         to_vmx(vcpu)->rflags = rflags;
2865         if (to_vmx(vcpu)->rmode.vm86_active) {
2866                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2867                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2868         }
2869         vmcs_writel(GUEST_RFLAGS, rflags);
2870
2871         if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2872                 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
2873 }
2874
2875 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2876 {
2877         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2878         int ret = 0;
2879
2880         if (interruptibility & GUEST_INTR_STATE_STI)
2881                 ret |= KVM_X86_SHADOW_INT_STI;
2882         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2883                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2884
2885         return ret;
2886 }
2887
2888 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2889 {
2890         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2891         u32 interruptibility = interruptibility_old;
2892
2893         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2894
2895         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2896                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2897         else if (mask & KVM_X86_SHADOW_INT_STI)
2898                 interruptibility |= GUEST_INTR_STATE_STI;
2899
2900         if ((interruptibility != interruptibility_old))
2901                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2902 }
2903
2904 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2905 {
2906         unsigned long rip;
2907
2908         rip = kvm_rip_read(vcpu);
2909         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2910         kvm_rip_write(vcpu, rip);
2911
2912         /* skipping an emulated instruction also counts */
2913         vmx_set_interrupt_shadow(vcpu, 0);
2914 }
2915
2916 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2917                                                unsigned long exit_qual)
2918 {
2919         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2920         unsigned int nr = vcpu->arch.exception.nr;
2921         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2922
2923         if (vcpu->arch.exception.has_error_code) {
2924                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2925                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2926         }
2927
2928         if (kvm_exception_is_soft(nr))
2929                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2930         else
2931                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2932
2933         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2934             vmx_get_nmi_mask(vcpu))
2935                 intr_info |= INTR_INFO_UNBLOCK_NMI;
2936
2937         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2938 }
2939
2940 /*
2941  * KVM wants to inject page-faults which it got to the guest. This function
2942  * checks whether in a nested guest, we need to inject them to L1 or L2.
2943  */
2944 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
2945 {
2946         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2947         unsigned int nr = vcpu->arch.exception.nr;
2948
2949         if (nr == PF_VECTOR) {
2950                 if (vcpu->arch.exception.nested_apf) {
2951                         *exit_qual = vcpu->arch.apf.nested_apf_token;
2952                         return 1;
2953                 }
2954                 /*
2955                  * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2956                  * The fix is to add the ancillary datum (CR2 or DR6) to structs
2957                  * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2958                  * can be written only when inject_pending_event runs.  This should be
2959                  * conditional on a new capability---if the capability is disabled,
2960                  * kvm_multiple_exception would write the ancillary information to
2961                  * CR2 or DR6, for backwards ABI-compatibility.
2962                  */
2963                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2964                                                     vcpu->arch.exception.error_code)) {
2965                         *exit_qual = vcpu->arch.cr2;
2966                         return 1;
2967                 }
2968         } else {
2969                 if (vmcs12->exception_bitmap & (1u << nr)) {
2970                         if (nr == DB_VECTOR)
2971                                 *exit_qual = vcpu->arch.dr6;
2972                         else
2973                                 *exit_qual = 0;
2974                         return 1;
2975                 }
2976         }
2977
2978         return 0;
2979 }
2980
2981 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
2982 {
2983         /*
2984          * Ensure that we clear the HLT state in the VMCS.  We don't need to
2985          * explicitly skip the instruction because if the HLT state is set,
2986          * then the instruction is already executing and RIP has already been
2987          * advanced.
2988          */
2989         if (kvm_hlt_in_guest(vcpu->kvm) &&
2990                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
2991                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2992 }
2993
2994 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
2995 {
2996         struct vcpu_vmx *vmx = to_vmx(vcpu);
2997         unsigned nr = vcpu->arch.exception.nr;
2998         bool has_error_code = vcpu->arch.exception.has_error_code;
2999         u32 error_code = vcpu->arch.exception.error_code;
3000         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3001
3002         if (has_error_code) {
3003                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
3004                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3005         }
3006
3007         if (vmx->rmode.vm86_active) {
3008                 int inc_eip = 0;
3009                 if (kvm_exception_is_soft(nr))
3010                         inc_eip = vcpu->arch.event_exit_inst_len;
3011                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
3012                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3013                 return;
3014         }
3015
3016         WARN_ON_ONCE(vmx->emulation_required);
3017
3018         if (kvm_exception_is_soft(nr)) {
3019                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3020                              vmx->vcpu.arch.event_exit_inst_len);
3021                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3022         } else
3023                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3024
3025         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
3026
3027         vmx_clear_hlt(vcpu);
3028 }
3029
3030 static bool vmx_rdtscp_supported(void)
3031 {
3032         return cpu_has_vmx_rdtscp();
3033 }
3034
3035 static bool vmx_invpcid_supported(void)
3036 {
3037         return cpu_has_vmx_invpcid() && enable_ept;
3038 }
3039
3040 /*
3041  * Swap MSR entry in host/guest MSR entry array.
3042  */
3043 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
3044 {
3045         struct shared_msr_entry tmp;
3046
3047         tmp = vmx->guest_msrs[to];
3048         vmx->guest_msrs[to] = vmx->guest_msrs[from];
3049         vmx->guest_msrs[from] = tmp;
3050 }
3051
3052 /*
3053  * Set up the vmcs to automatically save and restore system
3054  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
3055  * mode, as fiddling with msrs is very expensive.
3056  */
3057 static void setup_msrs(struct vcpu_vmx *vmx)
3058 {
3059         int save_nmsrs, index;
3060
3061         save_nmsrs = 0;
3062 #ifdef CONFIG_X86_64
3063         if (is_long_mode(&vmx->vcpu)) {
3064                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
3065                 if (index >= 0)
3066                         move_msr_up(vmx, index, save_nmsrs++);
3067                 index = __find_msr_index(vmx, MSR_LSTAR);
3068                 if (index >= 0)
3069                         move_msr_up(vmx, index, save_nmsrs++);
3070                 index = __find_msr_index(vmx, MSR_CSTAR);
3071                 if (index >= 0)
3072                         move_msr_up(vmx, index, save_nmsrs++);
3073                 index = __find_msr_index(vmx, MSR_TSC_AUX);
3074                 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
3075                         move_msr_up(vmx, index, save_nmsrs++);
3076                 /*
3077                  * MSR_STAR is only needed on long mode guests, and only
3078                  * if efer.sce is enabled.
3079                  */
3080                 index = __find_msr_index(vmx, MSR_STAR);
3081                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
3082                         move_msr_up(vmx, index, save_nmsrs++);
3083         }
3084 #endif
3085         index = __find_msr_index(vmx, MSR_EFER);
3086         if (index >= 0 && update_transition_efer(vmx, index))
3087                 move_msr_up(vmx, index, save_nmsrs++);
3088
3089         vmx->save_nmsrs = save_nmsrs;
3090
3091         if (cpu_has_vmx_msr_bitmap())
3092                 vmx_update_msr_bitmap(&vmx->vcpu);
3093 }
3094
3095 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
3096 {
3097         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3098
3099         if (is_guest_mode(vcpu) &&
3100             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
3101                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
3102
3103         return vcpu->arch.tsc_offset;
3104 }
3105
3106 /*
3107  * writes 'offset' into guest's timestamp counter offset register
3108  */
3109 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
3110 {
3111         if (is_guest_mode(vcpu)) {
3112                 /*
3113                  * We're here if L1 chose not to trap WRMSR to TSC. According
3114                  * to the spec, this should set L1's TSC; The offset that L1
3115                  * set for L2 remains unchanged, and still needs to be added
3116                  * to the newly set TSC to get L2's TSC.
3117                  */
3118                 struct vmcs12 *vmcs12;
3119                 /* recalculate vmcs02.TSC_OFFSET: */
3120                 vmcs12 = get_vmcs12(vcpu);
3121                 vmcs_write64(TSC_OFFSET, offset +
3122                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
3123                          vmcs12->tsc_offset : 0));
3124         } else {
3125                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
3126                                            vmcs_read64(TSC_OFFSET), offset);
3127                 vmcs_write64(TSC_OFFSET, offset);
3128         }
3129 }
3130
3131 /*
3132  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
3133  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
3134  * all guests if the "nested" module option is off, and can also be disabled
3135  * for a single guest by disabling its VMX cpuid bit.
3136  */
3137 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
3138 {
3139         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
3140 }
3141
3142 /*
3143  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
3144  * returned for the various VMX controls MSRs when nested VMX is enabled.
3145  * The same values should also be used to verify that vmcs12 control fields are
3146  * valid during nested entry from L1 to L2.
3147  * Each of these control msrs has a low and high 32-bit half: A low bit is on
3148  * if the corresponding bit in the (32-bit) control field *must* be on, and a
3149  * bit in the high half is on if the corresponding bit in the control field
3150  * may be on. See also vmx_control_verify().
3151  */
3152 static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv)
3153 {
3154         if (!nested) {
3155                 memset(msrs, 0, sizeof(*msrs));
3156                 return;
3157         }
3158
3159         /*
3160          * Note that as a general rule, the high half of the MSRs (bits in
3161          * the control fields which may be 1) should be initialized by the
3162          * intersection of the underlying hardware's MSR (i.e., features which
3163          * can be supported) and the list of features we want to expose -
3164          * because they are known to be properly supported in our code.
3165          * Also, usually, the low half of the MSRs (bits which must be 1) can
3166          * be set to 0, meaning that L1 may turn off any of these bits. The
3167          * reason is that if one of these bits is necessary, it will appear
3168          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
3169          * fields of vmcs01 and vmcs02, will turn these bits off - and
3170          * nested_vmx_exit_reflected() will not pass related exits to L1.
3171          * These rules have exceptions below.
3172          */
3173
3174         /* pin-based controls */
3175         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
3176                 msrs->pinbased_ctls_low,
3177                 msrs->pinbased_ctls_high);
3178         msrs->pinbased_ctls_low |=
3179                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3180         msrs->pinbased_ctls_high &=
3181                 PIN_BASED_EXT_INTR_MASK |
3182                 PIN_BASED_NMI_EXITING |
3183                 PIN_BASED_VIRTUAL_NMIS |
3184                 (apicv ? PIN_BASED_POSTED_INTR : 0);
3185         msrs->pinbased_ctls_high |=
3186                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
3187                 PIN_BASED_VMX_PREEMPTION_TIMER;
3188
3189         /* exit controls */
3190         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
3191                 msrs->exit_ctls_low,
3192                 msrs->exit_ctls_high);
3193         msrs->exit_ctls_low =
3194                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3195
3196         msrs->exit_ctls_high &=
3197 #ifdef CONFIG_X86_64
3198                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
3199 #endif
3200                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
3201         msrs->exit_ctls_high |=
3202                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
3203                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
3204                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
3205
3206         if (kvm_mpx_supported())
3207                 msrs->exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
3208
3209         /* We support free control of debug control saving. */
3210         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
3211
3212         /* entry controls */
3213         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
3214                 msrs->entry_ctls_low,
3215                 msrs->entry_ctls_high);
3216         msrs->entry_ctls_low =
3217                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3218         msrs->entry_ctls_high &=
3219 #ifdef CONFIG_X86_64
3220                 VM_ENTRY_IA32E_MODE |
3221 #endif
3222                 VM_ENTRY_LOAD_IA32_PAT;
3223         msrs->entry_ctls_high |=
3224                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
3225         if (kvm_mpx_supported())
3226                 msrs->entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
3227
3228         /* We support free control of debug control loading. */
3229         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
3230
3231         /* cpu-based controls */
3232         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
3233                 msrs->procbased_ctls_low,
3234                 msrs->procbased_ctls_high);
3235         msrs->procbased_ctls_low =
3236                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3237         msrs->procbased_ctls_high &=
3238                 CPU_BASED_VIRTUAL_INTR_PENDING |
3239                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
3240                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
3241                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
3242                 CPU_BASED_CR3_STORE_EXITING |
3243 #ifdef CONFIG_X86_64
3244                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
3245 #endif
3246                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
3247                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
3248                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
3249                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
3250                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3251         /*
3252          * We can allow some features even when not supported by the
3253          * hardware. For example, L1 can specify an MSR bitmap - and we
3254          * can use it to avoid exits to L1 - even when L0 runs L2
3255          * without MSR bitmaps.
3256          */
3257         msrs->procbased_ctls_high |=
3258                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
3259                 CPU_BASED_USE_MSR_BITMAPS;
3260
3261         /* We support free control of CR3 access interception. */
3262         msrs->procbased_ctls_low &=
3263                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
3264
3265         /*
3266          * secondary cpu-based controls.  Do not include those that
3267          * depend on CPUID bits, they are added later by vmx_cpuid_update.
3268          */
3269         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
3270                 msrs->secondary_ctls_low,
3271                 msrs->secondary_ctls_high);
3272         msrs->secondary_ctls_low = 0;
3273         msrs->secondary_ctls_high &=
3274                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3275                 SECONDARY_EXEC_DESC |
3276                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3277                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3278                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3279                 SECONDARY_EXEC_WBINVD_EXITING;
3280
3281         if (enable_ept) {
3282                 /* nested EPT: emulate EPT also to L1 */
3283                 msrs->secondary_ctls_high |=
3284                         SECONDARY_EXEC_ENABLE_EPT;
3285                 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
3286                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
3287                 if (cpu_has_vmx_ept_execute_only())
3288                         msrs->ept_caps |=
3289                                 VMX_EPT_EXECUTE_ONLY_BIT;
3290                 msrs->ept_caps &= vmx_capability.ept;
3291                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
3292                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
3293                         VMX_EPT_1GB_PAGE_BIT;
3294                 if (enable_ept_ad_bits) {
3295                         msrs->secondary_ctls_high |=
3296                                 SECONDARY_EXEC_ENABLE_PML;
3297                         msrs->ept_caps |= VMX_EPT_AD_BIT;
3298                 }
3299         }
3300
3301         if (cpu_has_vmx_vmfunc()) {
3302                 msrs->secondary_ctls_high |=
3303                         SECONDARY_EXEC_ENABLE_VMFUNC;
3304                 /*
3305                  * Advertise EPTP switching unconditionally
3306                  * since we emulate it
3307                  */
3308                 if (enable_ept)
3309                         msrs->vmfunc_controls =
3310                                 VMX_VMFUNC_EPTP_SWITCHING;
3311         }
3312
3313         /*
3314          * Old versions of KVM use the single-context version without
3315          * checking for support, so declare that it is supported even
3316          * though it is treated as global context.  The alternative is
3317          * not failing the single-context invvpid, and it is worse.
3318          */
3319         if (enable_vpid) {
3320                 msrs->secondary_ctls_high |=
3321                         SECONDARY_EXEC_ENABLE_VPID;
3322                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
3323                         VMX_VPID_EXTENT_SUPPORTED_MASK;
3324         }
3325
3326         if (enable_unrestricted_guest)
3327                 msrs->secondary_ctls_high |=
3328                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
3329
3330         /* miscellaneous data */
3331         rdmsr(MSR_IA32_VMX_MISC,
3332                 msrs->misc_low,
3333                 msrs->misc_high);
3334         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
3335         msrs->misc_low |=
3336                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
3337                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
3338                 VMX_MISC_ACTIVITY_HLT;
3339         msrs->misc_high = 0;
3340
3341         /*
3342          * This MSR reports some information about VMX support. We
3343          * should return information about the VMX we emulate for the
3344          * guest, and the VMCS structure we give it - not about the
3345          * VMX support of the underlying hardware.
3346          */
3347         msrs->basic =
3348                 VMCS12_REVISION |
3349                 VMX_BASIC_TRUE_CTLS |
3350                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
3351                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
3352
3353         if (cpu_has_vmx_basic_inout())
3354                 msrs->basic |= VMX_BASIC_INOUT;
3355
3356         /*
3357          * These MSRs specify bits which the guest must keep fixed on
3358          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
3359          * We picked the standard core2 setting.
3360          */
3361 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
3362 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
3363         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
3364         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
3365
3366         /* These MSRs specify bits which the guest must keep fixed off. */
3367         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
3368         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
3369
3370         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
3371         msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
3372 }
3373
3374 /*
3375  * if fixed0[i] == 1: val[i] must be 1
3376  * if fixed1[i] == 0: val[i] must be 0
3377  */
3378 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
3379 {
3380         return ((val & fixed1) | fixed0) == val;
3381 }
3382
3383 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
3384 {
3385         return fixed_bits_valid(control, low, high);
3386 }
3387
3388 static inline u64 vmx_control_msr(u32 low, u32 high)
3389 {
3390         return low | ((u64)high << 32);
3391 }
3392
3393 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
3394 {
3395         superset &= mask;
3396         subset &= mask;
3397
3398         return (superset | subset) == superset;
3399 }
3400
3401 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
3402 {
3403         const u64 feature_and_reserved =
3404                 /* feature (except bit 48; see below) */
3405                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
3406                 /* reserved */
3407                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
3408         u64 vmx_basic = vmx->nested.msrs.basic;
3409
3410         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
3411                 return -EINVAL;
3412
3413         /*
3414          * KVM does not emulate a version of VMX that constrains physical
3415          * addresses of VMX structures (e.g. VMCS) to 32-bits.
3416          */
3417         if (data & BIT_ULL(48))
3418                 return -EINVAL;
3419
3420         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
3421             vmx_basic_vmcs_revision_id(data))
3422                 return -EINVAL;
3423
3424         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
3425                 return -EINVAL;
3426
3427         vmx->nested.msrs.basic = data;
3428         return 0;
3429 }
3430
3431 static int
3432 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3433 {
3434         u64 supported;
3435         u32 *lowp, *highp;
3436
3437         switch (msr_index) {
3438         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3439                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
3440                 highp = &vmx->nested.msrs.pinbased_ctls_high;
3441                 break;
3442         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3443                 lowp = &vmx->nested.msrs.procbased_ctls_low;
3444                 highp = &vmx->nested.msrs.procbased_ctls_high;
3445                 break;
3446         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3447                 lowp = &vmx->nested.msrs.exit_ctls_low;
3448                 highp = &vmx->nested.msrs.exit_ctls_high;
3449                 break;
3450         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3451                 lowp = &vmx->nested.msrs.entry_ctls_low;
3452                 highp = &vmx->nested.msrs.entry_ctls_high;
3453                 break;
3454         case MSR_IA32_VMX_PROCBASED_CTLS2:
3455                 lowp = &vmx->nested.msrs.secondary_ctls_low;
3456                 highp = &vmx->nested.msrs.secondary_ctls_high;
3457                 break;
3458         default:
3459                 BUG();
3460         }
3461
3462         supported = vmx_control_msr(*lowp, *highp);
3463
3464         /* Check must-be-1 bits are still 1. */
3465         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3466                 return -EINVAL;
3467
3468         /* Check must-be-0 bits are still 0. */
3469         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3470                 return -EINVAL;
3471
3472         *lowp = data;
3473         *highp = data >> 32;
3474         return 0;
3475 }
3476
3477 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3478 {
3479         const u64 feature_and_reserved_bits =
3480                 /* feature */
3481                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3482                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3483                 /* reserved */
3484                 GENMASK_ULL(13, 9) | BIT_ULL(31);
3485         u64 vmx_misc;
3486
3487         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
3488                                    vmx->nested.msrs.misc_high);
3489
3490         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3491                 return -EINVAL;
3492
3493         if ((vmx->nested.msrs.pinbased_ctls_high &
3494              PIN_BASED_VMX_PREEMPTION_TIMER) &&
3495             vmx_misc_preemption_timer_rate(data) !=
3496             vmx_misc_preemption_timer_rate(vmx_misc))
3497                 return -EINVAL;
3498
3499         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3500                 return -EINVAL;
3501
3502         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3503                 return -EINVAL;
3504
3505         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3506                 return -EINVAL;
3507
3508         vmx->nested.msrs.misc_low = data;
3509         vmx->nested.msrs.misc_high = data >> 32;
3510
3511         /*
3512          * If L1 has read-only VM-exit information fields, use the
3513          * less permissive vmx_vmwrite_bitmap to specify write
3514          * permissions for the shadow VMCS.
3515          */
3516         if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
3517                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
3518
3519         return 0;
3520 }
3521
3522 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3523 {
3524         u64 vmx_ept_vpid_cap;
3525
3526         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
3527                                            vmx->nested.msrs.vpid_caps);
3528
3529         /* Every bit is either reserved or a feature bit. */
3530         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3531                 return -EINVAL;
3532
3533         vmx->nested.msrs.ept_caps = data;
3534         vmx->nested.msrs.vpid_caps = data >> 32;
3535         return 0;
3536 }
3537
3538 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3539 {
3540         u64 *msr;
3541
3542         switch (msr_index) {
3543         case MSR_IA32_VMX_CR0_FIXED0:
3544                 msr = &vmx->nested.msrs.cr0_fixed0;
3545                 break;
3546         case MSR_IA32_VMX_CR4_FIXED0:
3547                 msr = &vmx->nested.msrs.cr4_fixed0;
3548                 break;
3549         default:
3550                 BUG();
3551         }
3552
3553         /*
3554          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3555          * must be 1 in the restored value.
3556          */
3557         if (!is_bitwise_subset(data, *msr, -1ULL))
3558                 return -EINVAL;
3559
3560         *msr = data;
3561         return 0;
3562 }
3563
3564 /*
3565  * Called when userspace is restoring VMX MSRs.
3566  *
3567  * Returns 0 on success, non-0 otherwise.
3568  */
3569 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3570 {
3571         struct vcpu_vmx *vmx = to_vmx(vcpu);
3572
3573         /*
3574          * Don't allow changes to the VMX capability MSRs while the vCPU
3575          * is in VMX operation.
3576          */
3577         if (vmx->nested.vmxon)
3578                 return -EBUSY;
3579
3580         switch (msr_index) {
3581         case MSR_IA32_VMX_BASIC:
3582                 return vmx_restore_vmx_basic(vmx, data);
3583         case MSR_IA32_VMX_PINBASED_CTLS:
3584         case MSR_IA32_VMX_PROCBASED_CTLS:
3585         case MSR_IA32_VMX_EXIT_CTLS:
3586         case MSR_IA32_VMX_ENTRY_CTLS:
3587                 /*
3588                  * The "non-true" VMX capability MSRs are generated from the
3589                  * "true" MSRs, so we do not support restoring them directly.
3590                  *
3591                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3592                  * should restore the "true" MSRs with the must-be-1 bits
3593                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3594                  * DEFAULT SETTINGS".
3595                  */
3596                 return -EINVAL;
3597         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3598         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3599         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3600         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3601         case MSR_IA32_VMX_PROCBASED_CTLS2:
3602                 return vmx_restore_control_msr(vmx, msr_index, data);
3603         case MSR_IA32_VMX_MISC:
3604                 return vmx_restore_vmx_misc(vmx, data);
3605         case MSR_IA32_VMX_CR0_FIXED0:
3606         case MSR_IA32_VMX_CR4_FIXED0:
3607                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3608         case MSR_IA32_VMX_CR0_FIXED1:
3609         case MSR_IA32_VMX_CR4_FIXED1:
3610                 /*
3611                  * These MSRs are generated based on the vCPU's CPUID, so we
3612                  * do not support restoring them directly.
3613                  */
3614                 return -EINVAL;
3615         case MSR_IA32_VMX_EPT_VPID_CAP:
3616                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3617         case MSR_IA32_VMX_VMCS_ENUM:
3618                 vmx->nested.msrs.vmcs_enum = data;
3619                 return 0;
3620         default:
3621                 /*
3622                  * The rest of the VMX capability MSRs do not support restore.
3623                  */
3624                 return -EINVAL;
3625         }
3626 }
3627
3628 /* Returns 0 on success, non-0 otherwise. */
3629 static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
3630 {
3631         switch (msr_index) {
3632         case MSR_IA32_VMX_BASIC:
3633                 *pdata = msrs->basic;
3634                 break;
3635         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3636         case MSR_IA32_VMX_PINBASED_CTLS:
3637                 *pdata = vmx_control_msr(
3638                         msrs->pinbased_ctls_low,
3639                         msrs->pinbased_ctls_high);
3640                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3641                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3642                 break;
3643         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3644         case MSR_IA32_VMX_PROCBASED_CTLS:
3645                 *pdata = vmx_control_msr(
3646                         msrs->procbased_ctls_low,
3647                         msrs->procbased_ctls_high);
3648                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3649                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3650                 break;
3651         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3652         case MSR_IA32_VMX_EXIT_CTLS:
3653                 *pdata = vmx_control_msr(
3654                         msrs->exit_ctls_low,
3655                         msrs->exit_ctls_high);
3656                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3657                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3658                 break;
3659         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3660         case MSR_IA32_VMX_ENTRY_CTLS:
3661                 *pdata = vmx_control_msr(
3662                         msrs->entry_ctls_low,
3663                         msrs->entry_ctls_high);
3664                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3665                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3666                 break;
3667         case MSR_IA32_VMX_MISC:
3668                 *pdata = vmx_control_msr(
3669                         msrs->misc_low,
3670                         msrs->misc_high);
3671                 break;
3672         case MSR_IA32_VMX_CR0_FIXED0:
3673                 *pdata = msrs->cr0_fixed0;
3674                 break;
3675         case MSR_IA32_VMX_CR0_FIXED1:
3676                 *pdata = msrs->cr0_fixed1;
3677                 break;
3678         case MSR_IA32_VMX_CR4_FIXED0:
3679                 *pdata = msrs->cr4_fixed0;
3680                 break;
3681         case MSR_IA32_VMX_CR4_FIXED1:
3682                 *pdata = msrs->cr4_fixed1;
3683                 break;
3684         case MSR_IA32_VMX_VMCS_ENUM:
3685                 *pdata = msrs->vmcs_enum;
3686                 break;
3687         case MSR_IA32_VMX_PROCBASED_CTLS2:
3688                 *pdata = vmx_control_msr(
3689                         msrs->secondary_ctls_low,
3690                         msrs->secondary_ctls_high);
3691                 break;
3692         case MSR_IA32_VMX_EPT_VPID_CAP:
3693                 *pdata = msrs->ept_caps |
3694                         ((u64)msrs->vpid_caps << 32);
3695                 break;
3696         case MSR_IA32_VMX_VMFUNC:
3697                 *pdata = msrs->vmfunc_controls;
3698                 break;
3699         default:
3700                 return 1;
3701         }
3702
3703         return 0;
3704 }
3705
3706 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3707                                                  uint64_t val)
3708 {
3709         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3710
3711         return !(val & ~valid_bits);
3712 }
3713
3714 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
3715 {
3716         switch (msr->index) {
3717         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3718                 if (!nested)
3719                         return 1;
3720                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
3721         default:
3722                 return 1;
3723         }
3724
3725         return 0;
3726 }
3727
3728 /*
3729  * Reads an msr value (of 'msr_index') into 'pdata'.
3730  * Returns 0 on success, non-0 otherwise.
3731  * Assumes vcpu_load() was already called.
3732  */
3733 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3734 {
3735         struct vcpu_vmx *vmx = to_vmx(vcpu);
3736         struct shared_msr_entry *msr;
3737
3738         switch (msr_info->index) {
3739 #ifdef CONFIG_X86_64
3740         case MSR_FS_BASE:
3741                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3742                 break;
3743         case MSR_GS_BASE:
3744                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3745                 break;
3746         case MSR_KERNEL_GS_BASE:
3747                 vmx_load_host_state(vmx);
3748                 msr_info->data = vmx->msr_guest_kernel_gs_base;
3749                 break;
3750 #endif
3751         case MSR_EFER:
3752                 return kvm_get_msr_common(vcpu, msr_info);
3753         case MSR_IA32_SPEC_CTRL:
3754                 if (!msr_info->host_initiated &&
3755                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3756                         return 1;
3757
3758                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
3759                 break;
3760         case MSR_IA32_ARCH_CAPABILITIES:
3761                 if (!msr_info->host_initiated &&
3762                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3763                         return 1;
3764                 msr_info->data = to_vmx(vcpu)->arch_capabilities;
3765                 break;
3766         case MSR_IA32_SYSENTER_CS:
3767                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3768                 break;
3769         case MSR_IA32_SYSENTER_EIP:
3770                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3771                 break;
3772         case MSR_IA32_SYSENTER_ESP:
3773                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3774                 break;
3775         case MSR_IA32_BNDCFGS:
3776                 if (!kvm_mpx_supported() ||
3777                     (!msr_info->host_initiated &&
3778                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3779                         return 1;
3780                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3781                 break;
3782         case MSR_IA32_MCG_EXT_CTL:
3783                 if (!msr_info->host_initiated &&
3784                     !(vmx->msr_ia32_feature_control &
3785                       FEATURE_CONTROL_LMCE))
3786                         return 1;
3787                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3788                 break;
3789         case MSR_IA32_FEATURE_CONTROL:
3790                 msr_info->data = vmx->msr_ia32_feature_control;
3791                 break;
3792         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3793                 if (!nested_vmx_allowed(vcpu))
3794                         return 1;
3795                 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
3796                                        &msr_info->data);
3797         case MSR_IA32_XSS:
3798                 if (!vmx_xsaves_supported())
3799                         return 1;
3800                 msr_info->data = vcpu->arch.ia32_xss;
3801                 break;
3802         case MSR_TSC_AUX:
3803                 if (!msr_info->host_initiated &&
3804                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3805                         return 1;
3806                 /* Otherwise falls through */
3807         default:
3808                 msr = find_msr_entry(vmx, msr_info->index);
3809                 if (msr) {
3810                         msr_info->data = msr->data;
3811                         break;
3812                 }
3813                 return kvm_get_msr_common(vcpu, msr_info);
3814         }
3815
3816         return 0;
3817 }
3818
3819 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3820
3821 /*
3822  * Writes msr value into into the appropriate "register".
3823  * Returns 0 on success, non-0 otherwise.
3824  * Assumes vcpu_load() was already called.
3825  */
3826 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3827 {
3828         struct vcpu_vmx *vmx = to_vmx(vcpu);
3829         struct shared_msr_entry *msr;
3830         int ret = 0;
3831         u32 msr_index = msr_info->index;
3832         u64 data = msr_info->data;
3833
3834         switch (msr_index) {
3835         case MSR_EFER:
3836                 ret = kvm_set_msr_common(vcpu, msr_info);
3837                 break;
3838 #ifdef CONFIG_X86_64
3839         case MSR_FS_BASE:
3840                 vmx_segment_cache_clear(vmx);
3841                 vmcs_writel(GUEST_FS_BASE, data);
3842                 break;
3843         case MSR_GS_BASE:
3844                 vmx_segment_cache_clear(vmx);
3845                 vmcs_writel(GUEST_GS_BASE, data);
3846                 break;
3847         case MSR_KERNEL_GS_BASE:
3848                 vmx_load_host_state(vmx);
3849                 vmx->msr_guest_kernel_gs_base = data;
3850                 break;
3851 #endif
3852         case MSR_IA32_SYSENTER_CS:
3853                 vmcs_write32(GUEST_SYSENTER_CS, data);
3854                 break;
3855         case MSR_IA32_SYSENTER_EIP:
3856                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3857                 break;
3858         case MSR_IA32_SYSENTER_ESP:
3859                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3860                 break;
3861         case MSR_IA32_BNDCFGS:
3862                 if (!kvm_mpx_supported() ||
3863                     (!msr_info->host_initiated &&
3864                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
3865                         return 1;
3866                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
3867                     (data & MSR_IA32_BNDCFGS_RSVD))
3868                         return 1;
3869                 vmcs_write64(GUEST_BNDCFGS, data);
3870                 break;
3871         case MSR_IA32_SPEC_CTRL:
3872                 if (!msr_info->host_initiated &&
3873                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3874                         return 1;
3875
3876                 /* The STIBP bit doesn't fault even if it's not advertised */
3877                 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
3878                         return 1;
3879
3880                 vmx->spec_ctrl = data;
3881
3882                 if (!data)
3883                         break;
3884
3885                 /*
3886                  * For non-nested:
3887                  * When it's written (to non-zero) for the first time, pass
3888                  * it through.
3889                  *
3890                  * For nested:
3891                  * The handling of the MSR bitmap for L2 guests is done in
3892                  * nested_vmx_merge_msr_bitmap. We should not touch the
3893                  * vmcs02.msr_bitmap here since it gets completely overwritten
3894                  * in the merging. We update the vmcs01 here for L1 as well
3895                  * since it will end up touching the MSR anyway now.
3896                  */
3897                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
3898                                               MSR_IA32_SPEC_CTRL,
3899                                               MSR_TYPE_RW);
3900                 break;
3901         case MSR_IA32_PRED_CMD:
3902                 if (!msr_info->host_initiated &&
3903                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3904                         return 1;
3905
3906                 if (data & ~PRED_CMD_IBPB)
3907                         return 1;
3908
3909                 if (!data)
3910                         break;
3911
3912                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3913
3914                 /*
3915                  * For non-nested:
3916                  * When it's written (to non-zero) for the first time, pass
3917                  * it through.
3918                  *
3919                  * For nested:
3920                  * The handling of the MSR bitmap for L2 guests is done in
3921                  * nested_vmx_merge_msr_bitmap. We should not touch the
3922                  * vmcs02.msr_bitmap here since it gets completely overwritten
3923                  * in the merging.
3924                  */
3925                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
3926                                               MSR_TYPE_W);
3927                 break;
3928         case MSR_IA32_ARCH_CAPABILITIES:
3929                 if (!msr_info->host_initiated)
3930                         return 1;
3931                 vmx->arch_capabilities = data;
3932                 break;
3933         case MSR_IA32_CR_PAT:
3934                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3935                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3936                                 return 1;
3937                         vmcs_write64(GUEST_IA32_PAT, data);
3938                         vcpu->arch.pat = data;
3939                         break;
3940                 }
3941                 ret = kvm_set_msr_common(vcpu, msr_info);
3942                 break;
3943         case MSR_IA32_TSC_ADJUST:
3944                 ret = kvm_set_msr_common(vcpu, msr_info);
3945                 break;
3946         case MSR_IA32_MCG_EXT_CTL:
3947                 if ((!msr_info->host_initiated &&
3948                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3949                        FEATURE_CONTROL_LMCE)) ||
3950                     (data & ~MCG_EXT_CTL_LMCE_EN))
3951                         return 1;
3952                 vcpu->arch.mcg_ext_ctl = data;
3953                 break;
3954         case MSR_IA32_FEATURE_CONTROL:
3955                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3956                     (to_vmx(vcpu)->msr_ia32_feature_control &
3957                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3958                         return 1;
3959                 vmx->msr_ia32_feature_control = data;
3960                 if (msr_info->host_initiated && data == 0)
3961                         vmx_leave_nested(vcpu);
3962                 break;
3963         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3964                 if (!msr_info->host_initiated)
3965                         return 1; /* they are read-only */
3966                 if (!nested_vmx_allowed(vcpu))
3967                         return 1;
3968                 return vmx_set_vmx_msr(vcpu, msr_index, data);
3969         case MSR_IA32_XSS:
3970                 if (!vmx_xsaves_supported())
3971                         return 1;
3972                 /*
3973                  * The only supported bit as of Skylake is bit 8, but
3974                  * it is not supported on KVM.
3975                  */
3976                 if (data != 0)
3977                         return 1;
3978                 vcpu->arch.ia32_xss = data;
3979                 if (vcpu->arch.ia32_xss != host_xss)
3980                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3981                                 vcpu->arch.ia32_xss, host_xss);
3982                 else
3983                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3984                 break;
3985         case MSR_TSC_AUX:
3986                 if (!msr_info->host_initiated &&
3987                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
3988                         return 1;
3989                 /* Check reserved bit, higher 32 bits should be zero */
3990                 if ((data >> 32) != 0)
3991                         return 1;
3992                 /* Otherwise falls through */
3993         default:
3994                 msr = find_msr_entry(vmx, msr_index);
3995                 if (msr) {
3996                         u64 old_msr_data = msr->data;
3997                         msr->data = data;
3998                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3999                                 preempt_disable();
4000                                 ret = kvm_set_shared_msr(msr->index, msr->data,
4001                                                          msr->mask);
4002                                 preempt_enable();
4003                                 if (ret)
4004                                         msr->data = old_msr_data;
4005                         }
4006                         break;
4007                 }
4008                 ret = kvm_set_msr_common(vcpu, msr_info);
4009         }
4010
4011         return ret;
4012 }
4013
4014 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
4015 {
4016         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
4017         switch (reg) {
4018         case VCPU_REGS_RSP:
4019                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
4020                 break;
4021         case VCPU_REGS_RIP:
4022                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
4023                 break;
4024         case VCPU_EXREG_PDPTR:
4025                 if (enable_ept)
4026                         ept_save_pdptrs(vcpu);
4027                 break;
4028         default:
4029                 break;
4030         }
4031 }
4032
4033 static __init int cpu_has_kvm_support(void)
4034 {
4035         return cpu_has_vmx();
4036 }
4037
4038 static __init int vmx_disabled_by_bios(void)
4039 {
4040         u64 msr;
4041
4042         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
4043         if (msr & FEATURE_CONTROL_LOCKED) {
4044                 /* launched w/ TXT and VMX disabled */
4045                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
4046                         && tboot_enabled())
4047                         return 1;
4048                 /* launched w/o TXT and VMX only enabled w/ TXT */
4049                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
4050                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
4051                         && !tboot_enabled()) {
4052                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
4053                                 "activate TXT before enabling KVM\n");
4054                         return 1;
4055                 }
4056                 /* launched w/o TXT and VMX disabled */
4057                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
4058                         && !tboot_enabled())
4059                         return 1;
4060         }
4061
4062         return 0;
4063 }
4064
4065 static void kvm_cpu_vmxon(u64 addr)
4066 {
4067         cr4_set_bits(X86_CR4_VMXE);
4068         intel_pt_handle_vmx(1);
4069
4070         asm volatile (ASM_VMX_VMXON_RAX
4071                         : : "a"(&addr), "m"(addr)
4072                         : "memory", "cc");
4073 }
4074
4075 static int hardware_enable(void)
4076 {
4077         int cpu = raw_smp_processor_id();
4078         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
4079         u64 old, test_bits;
4080
4081         if (cr4_read_shadow() & X86_CR4_VMXE)
4082                 return -EBUSY;
4083
4084         /*
4085          * This can happen if we hot-added a CPU but failed to allocate
4086          * VP assist page for it.
4087          */
4088         if (static_branch_unlikely(&enable_evmcs) &&
4089             !hv_get_vp_assist_page(cpu))
4090                 return -EFAULT;
4091
4092         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
4093         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
4094         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
4095
4096         /*
4097          * Now we can enable the vmclear operation in kdump
4098          * since the loaded_vmcss_on_cpu list on this cpu
4099          * has been initialized.
4100          *
4101          * Though the cpu is not in VMX operation now, there
4102          * is no problem to enable the vmclear operation
4103          * for the loaded_vmcss_on_cpu list is empty!
4104          */
4105         crash_enable_local_vmclear(cpu);
4106
4107         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
4108
4109         test_bits = FEATURE_CONTROL_LOCKED;
4110         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4111         if (tboot_enabled())
4112                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
4113
4114         if ((old & test_bits) != test_bits) {
4115                 /* enable and lock */
4116                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
4117         }
4118         kvm_cpu_vmxon(phys_addr);
4119         if (enable_ept)
4120                 ept_sync_global();
4121
4122         return 0;
4123 }
4124
4125 static void vmclear_local_loaded_vmcss(void)
4126 {
4127         int cpu = raw_smp_processor_id();
4128         struct loaded_vmcs *v, *n;
4129
4130         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
4131                                  loaded_vmcss_on_cpu_link)
4132                 __loaded_vmcs_clear(v);
4133 }
4134
4135
4136 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
4137  * tricks.
4138  */
4139 static void kvm_cpu_vmxoff(void)
4140 {
4141         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
4142
4143         intel_pt_handle_vmx(0);
4144         cr4_clear_bits(X86_CR4_VMXE);
4145 }
4146
4147 static void hardware_disable(void)
4148 {
4149         vmclear_local_loaded_vmcss();
4150         kvm_cpu_vmxoff();
4151 }
4152
4153 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
4154                                       u32 msr, u32 *result)
4155 {
4156         u32 vmx_msr_low, vmx_msr_high;
4157         u32 ctl = ctl_min | ctl_opt;
4158
4159         rdmsr(msr, vmx_msr_low, vmx_msr_high);
4160
4161         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
4162         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
4163
4164         /* Ensure minimum (required) set of control bits are supported. */
4165         if (ctl_min & ~ctl)
4166                 return -EIO;
4167
4168         *result = ctl;
4169         return 0;
4170 }
4171
4172 static __init bool allow_1_setting(u32 msr, u32 ctl)
4173 {
4174         u32 vmx_msr_low, vmx_msr_high;
4175
4176         rdmsr(msr, vmx_msr_low, vmx_msr_high);
4177         return vmx_msr_high & ctl;
4178 }
4179
4180 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
4181 {
4182         u32 vmx_msr_low, vmx_msr_high;
4183         u32 min, opt, min2, opt2;
4184         u32 _pin_based_exec_control = 0;
4185         u32 _cpu_based_exec_control = 0;
4186         u32 _cpu_based_2nd_exec_control = 0;
4187         u32 _vmexit_control = 0;
4188         u32 _vmentry_control = 0;
4189
4190         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
4191         min = CPU_BASED_HLT_EXITING |
4192 #ifdef CONFIG_X86_64
4193               CPU_BASED_CR8_LOAD_EXITING |
4194               CPU_BASED_CR8_STORE_EXITING |
4195 #endif
4196               CPU_BASED_CR3_LOAD_EXITING |
4197               CPU_BASED_CR3_STORE_EXITING |
4198               CPU_BASED_UNCOND_IO_EXITING |
4199               CPU_BASED_MOV_DR_EXITING |
4200               CPU_BASED_USE_TSC_OFFSETING |
4201               CPU_BASED_MWAIT_EXITING |
4202               CPU_BASED_MONITOR_EXITING |
4203               CPU_BASED_INVLPG_EXITING |
4204               CPU_BASED_RDPMC_EXITING;
4205
4206         opt = CPU_BASED_TPR_SHADOW |
4207               CPU_BASED_USE_MSR_BITMAPS |
4208               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
4209         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
4210                                 &_cpu_based_exec_control) < 0)
4211                 return -EIO;
4212 #ifdef CONFIG_X86_64
4213         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
4214                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
4215                                            ~CPU_BASED_CR8_STORE_EXITING;
4216 #endif
4217         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
4218                 min2 = 0;
4219                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
4220                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
4221                         SECONDARY_EXEC_WBINVD_EXITING |
4222                         SECONDARY_EXEC_ENABLE_VPID |
4223                         SECONDARY_EXEC_ENABLE_EPT |
4224                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
4225                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
4226                         SECONDARY_EXEC_DESC |
4227                         SECONDARY_EXEC_RDTSCP |
4228                         SECONDARY_EXEC_ENABLE_INVPCID |
4229                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4230                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
4231                         SECONDARY_EXEC_SHADOW_VMCS |
4232                         SECONDARY_EXEC_XSAVES |
4233                         SECONDARY_EXEC_RDSEED_EXITING |
4234                         SECONDARY_EXEC_RDRAND_EXITING |
4235                         SECONDARY_EXEC_ENABLE_PML |
4236                         SECONDARY_EXEC_TSC_SCALING |
4237                         SECONDARY_EXEC_ENABLE_VMFUNC;
4238                 if (adjust_vmx_controls(min2, opt2,
4239                                         MSR_IA32_VMX_PROCBASED_CTLS2,
4240                                         &_cpu_based_2nd_exec_control) < 0)
4241                         return -EIO;
4242         }
4243 #ifndef CONFIG_X86_64
4244         if (!(_cpu_based_2nd_exec_control &
4245                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
4246                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
4247 #endif
4248
4249         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
4250                 _cpu_based_2nd_exec_control &= ~(
4251                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4252                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
4253                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4254
4255         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
4256                 &vmx_capability.ept, &vmx_capability.vpid);
4257
4258         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
4259                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
4260                    enabled */
4261                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4262                                              CPU_BASED_CR3_STORE_EXITING |
4263                                              CPU_BASED_INVLPG_EXITING);
4264         } else if (vmx_capability.ept) {
4265                 vmx_capability.ept = 0;
4266                 pr_warn_once("EPT CAP should not exist if not support "
4267                                 "1-setting enable EPT VM-execution control\n");
4268         }
4269         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
4270                 vmx_capability.vpid) {
4271                 vmx_capability.vpid = 0;
4272                 pr_warn_once("VPID CAP should not exist if not support "
4273                                 "1-setting enable VPID VM-execution control\n");
4274         }
4275
4276         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
4277 #ifdef CONFIG_X86_64
4278         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
4279 #endif
4280         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
4281                 VM_EXIT_CLEAR_BNDCFGS;
4282         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
4283                                 &_vmexit_control) < 0)
4284                 return -EIO;
4285
4286         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
4287         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
4288                  PIN_BASED_VMX_PREEMPTION_TIMER;
4289         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
4290                                 &_pin_based_exec_control) < 0)
4291                 return -EIO;
4292
4293         if (cpu_has_broken_vmx_preemption_timer())
4294                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4295         if (!(_cpu_based_2nd_exec_control &
4296                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
4297                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
4298
4299         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
4300         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
4301         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
4302                                 &_vmentry_control) < 0)
4303                 return -EIO;
4304
4305         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
4306
4307         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
4308         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
4309                 return -EIO;
4310
4311 #ifdef CONFIG_X86_64
4312         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
4313         if (vmx_msr_high & (1u<<16))
4314                 return -EIO;
4315 #endif
4316
4317         /* Require Write-Back (WB) memory type for VMCS accesses. */
4318         if (((vmx_msr_high >> 18) & 15) != 6)
4319                 return -EIO;
4320
4321         vmcs_conf->size = vmx_msr_high & 0x1fff;
4322         vmcs_conf->order = get_order(vmcs_conf->size);
4323         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
4324
4325         /* KVM supports Enlightened VMCS v1 only */
4326         if (static_branch_unlikely(&enable_evmcs))
4327                 vmcs_conf->revision_id = KVM_EVMCS_VERSION;
4328         else
4329                 vmcs_conf->revision_id = vmx_msr_low;
4330
4331         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
4332         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
4333         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
4334         vmcs_conf->vmexit_ctrl         = _vmexit_control;
4335         vmcs_conf->vmentry_ctrl        = _vmentry_control;
4336
4337         if (static_branch_unlikely(&enable_evmcs))
4338                 evmcs_sanitize_exec_ctrls(vmcs_conf);
4339
4340         cpu_has_load_ia32_efer =
4341                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4342                                 VM_ENTRY_LOAD_IA32_EFER)
4343                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4344                                    VM_EXIT_LOAD_IA32_EFER);
4345
4346         cpu_has_load_perf_global_ctrl =
4347                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4348                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
4349                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4350                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
4351
4352         /*
4353          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
4354          * but due to errata below it can't be used. Workaround is to use
4355          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
4356          *
4357          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
4358          *
4359          * AAK155             (model 26)
4360          * AAP115             (model 30)
4361          * AAT100             (model 37)
4362          * BC86,AAY89,BD102   (model 44)
4363          * BA97               (model 46)
4364          *
4365          */
4366         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
4367                 switch (boot_cpu_data.x86_model) {
4368                 case 26:
4369                 case 30:
4370                 case 37:
4371                 case 44:
4372                 case 46:
4373                         cpu_has_load_perf_global_ctrl = false;
4374                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
4375                                         "does not work properly. Using workaround\n");
4376                         break;
4377                 default:
4378                         break;
4379                 }
4380         }
4381
4382         if (boot_cpu_has(X86_FEATURE_XSAVES))
4383                 rdmsrl(MSR_IA32_XSS, host_xss);
4384
4385         return 0;
4386 }
4387
4388 static struct vmcs *alloc_vmcs_cpu(int cpu)
4389 {
4390         int node = cpu_to_node(cpu);
4391         struct page *pages;
4392         struct vmcs *vmcs;
4393
4394         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
4395         if (!pages)
4396                 return NULL;
4397         vmcs = page_address(pages);
4398         memset(vmcs, 0, vmcs_config.size);
4399         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
4400         return vmcs;
4401 }
4402
4403 static void free_vmcs(struct vmcs *vmcs)
4404 {
4405         free_pages((unsigned long)vmcs, vmcs_config.order);
4406 }
4407
4408 /*
4409  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
4410  */
4411 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4412 {
4413         if (!loaded_vmcs->vmcs)
4414                 return;
4415         loaded_vmcs_clear(loaded_vmcs);
4416         free_vmcs(loaded_vmcs->vmcs);
4417         loaded_vmcs->vmcs = NULL;
4418         if (loaded_vmcs->msr_bitmap)
4419                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
4420         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
4421 }
4422
4423 static struct vmcs *alloc_vmcs(void)
4424 {
4425         return alloc_vmcs_cpu(raw_smp_processor_id());
4426 }
4427
4428 static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4429 {
4430         loaded_vmcs->vmcs = alloc_vmcs();
4431         if (!loaded_vmcs->vmcs)
4432                 return -ENOMEM;
4433
4434         loaded_vmcs->shadow_vmcs = NULL;
4435         loaded_vmcs_init(loaded_vmcs);
4436
4437         if (cpu_has_vmx_msr_bitmap()) {
4438                 loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
4439                 if (!loaded_vmcs->msr_bitmap)
4440                         goto out_vmcs;
4441                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
4442
4443                 if (IS_ENABLED(CONFIG_HYPERV) &&
4444                     static_branch_unlikely(&enable_evmcs) &&
4445                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
4446                         struct hv_enlightened_vmcs *evmcs =
4447                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
4448
4449                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
4450                 }
4451         }
4452         return 0;
4453
4454 out_vmcs:
4455         free_loaded_vmcs(loaded_vmcs);
4456         return -ENOMEM;
4457 }
4458
4459 static void free_kvm_area(void)
4460 {
4461         int cpu;
4462
4463         for_each_possible_cpu(cpu) {
4464                 free_vmcs(per_cpu(vmxarea, cpu));
4465                 per_cpu(vmxarea, cpu) = NULL;
4466         }
4467 }
4468
4469 enum vmcs_field_width {
4470         VMCS_FIELD_WIDTH_U16 = 0,
4471         VMCS_FIELD_WIDTH_U64 = 1,
4472         VMCS_FIELD_WIDTH_U32 = 2,
4473         VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
4474 };
4475
4476 static inline int vmcs_field_width(unsigned long field)
4477 {
4478         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
4479                 return VMCS_FIELD_WIDTH_U32;
4480         return (field >> 13) & 0x3 ;
4481 }
4482
4483 static inline int vmcs_field_readonly(unsigned long field)
4484 {
4485         return (((field >> 10) & 0x3) == 1);
4486 }
4487
4488 static void init_vmcs_shadow_fields(void)
4489 {
4490         int i, j;
4491
4492         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
4493                 u16 field = shadow_read_only_fields[i];
4494                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
4495                     (i + 1 == max_shadow_read_only_fields ||
4496                      shadow_read_only_fields[i + 1] != field + 1))
4497                         pr_err("Missing field from shadow_read_only_field %x\n",
4498                                field + 1);
4499
4500                 clear_bit(field, vmx_vmread_bitmap);
4501 #ifdef CONFIG_X86_64
4502                 if (field & 1)
4503                         continue;
4504 #endif
4505                 if (j < i)
4506                         shadow_read_only_fields[j] = field;
4507                 j++;
4508         }
4509         max_shadow_read_only_fields = j;
4510
4511         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
4512                 u16 field = shadow_read_write_fields[i];
4513                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
4514                     (i + 1 == max_shadow_read_write_fields ||
4515                      shadow_read_write_fields[i + 1] != field + 1))
4516                         pr_err("Missing field from shadow_read_write_field %x\n",
4517                                field + 1);
4518
4519                 /*
4520                  * PML and the preemption timer can be emulated, but the
4521                  * processor cannot vmwrite to fields that don't exist
4522                  * on bare metal.
4523                  */
4524                 switch (field) {
4525                 case GUEST_PML_INDEX:
4526                         if (!cpu_has_vmx_pml())
4527                                 continue;
4528                         break;
4529                 case VMX_PREEMPTION_TIMER_VALUE:
4530                         if (!cpu_has_vmx_preemption_timer())
4531                                 continue;
4532                         break;
4533                 case GUEST_INTR_STATUS:
4534                         if (!cpu_has_vmx_apicv())
4535                                 continue;
4536                         break;
4537                 default:
4538                         break;
4539                 }
4540
4541                 clear_bit(field, vmx_vmwrite_bitmap);
4542                 clear_bit(field, vmx_vmread_bitmap);
4543 #ifdef CONFIG_X86_64
4544                 if (field & 1)
4545                         continue;
4546 #endif
4547                 if (j < i)
4548                         shadow_read_write_fields[j] = field;
4549                 j++;
4550         }
4551         max_shadow_read_write_fields = j;
4552 }
4553
4554 static __init int alloc_kvm_area(void)
4555 {
4556         int cpu;
4557
4558         for_each_possible_cpu(cpu) {
4559                 struct vmcs *vmcs;
4560
4561                 vmcs = alloc_vmcs_cpu(cpu);
4562                 if (!vmcs) {
4563                         free_kvm_area();
4564                         return -ENOMEM;
4565                 }
4566
4567                 per_cpu(vmxarea, cpu) = vmcs;
4568         }
4569         return 0;
4570 }
4571
4572 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
4573                 struct kvm_segment *save)
4574 {
4575         if (!emulate_invalid_guest_state) {
4576                 /*
4577                  * CS and SS RPL should be equal during guest entry according
4578                  * to VMX spec, but in reality it is not always so. Since vcpu
4579                  * is in the middle of the transition from real mode to
4580                  * protected mode it is safe to assume that RPL 0 is a good
4581                  * default value.
4582                  */
4583                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
4584                         save->selector &= ~SEGMENT_RPL_MASK;
4585                 save->dpl = save->selector & SEGMENT_RPL_MASK;
4586                 save->s = 1;
4587         }
4588         vmx_set_segment(vcpu, save, seg);
4589 }
4590
4591 static void enter_pmode(struct kvm_vcpu *vcpu)
4592 {
4593         unsigned long flags;
4594         struct vcpu_vmx *vmx = to_vmx(vcpu);
4595
4596         /*
4597          * Update real mode segment cache. It may be not up-to-date if sement
4598          * register was written while vcpu was in a guest mode.
4599          */
4600         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4601         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4602         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4603         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4604         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4605         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4606
4607         vmx->rmode.vm86_active = 0;
4608
4609         vmx_segment_cache_clear(vmx);
4610
4611         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4612
4613         flags = vmcs_readl(GUEST_RFLAGS);
4614         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
4615         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
4616         vmcs_writel(GUEST_RFLAGS, flags);
4617
4618         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
4619                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
4620
4621         update_exception_bitmap(vcpu);
4622
4623         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4624         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4625         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4626         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4627         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4628         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4629 }
4630
4631 static void fix_rmode_seg(int seg, struct kvm_segment *save)
4632 {
4633         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4634         struct kvm_segment var = *save;
4635
4636         var.dpl = 0x3;
4637         if (seg == VCPU_SREG_CS)
4638                 var.type = 0x3;
4639
4640         if (!emulate_invalid_guest_state) {
4641                 var.selector = var.base >> 4;
4642                 var.base = var.base & 0xffff0;
4643                 var.limit = 0xffff;
4644                 var.g = 0;
4645                 var.db = 0;
4646                 var.present = 1;
4647                 var.s = 1;
4648                 var.l = 0;
4649                 var.unusable = 0;
4650                 var.type = 0x3;
4651                 var.avl = 0;
4652                 if (save->base & 0xf)
4653                         printk_once(KERN_WARNING "kvm: segment base is not "
4654                                         "paragraph aligned when entering "
4655                                         "protected mode (seg=%d)", seg);
4656         }
4657
4658         vmcs_write16(sf->selector, var.selector);
4659         vmcs_writel(sf->base, var.base);
4660         vmcs_write32(sf->limit, var.limit);
4661         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
4662 }
4663
4664 static void enter_rmode(struct kvm_vcpu *vcpu)
4665 {
4666         unsigned long flags;
4667         struct vcpu_vmx *vmx = to_vmx(vcpu);
4668         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
4669
4670         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4671         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4672         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4673         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4674         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4675         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4676         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4677
4678         vmx->rmode.vm86_active = 1;
4679
4680         /*
4681          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4682          * vcpu. Warn the user that an update is overdue.
4683          */
4684         if (!kvm_vmx->tss_addr)
4685                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4686                              "called before entering vcpu\n");
4687
4688         vmx_segment_cache_clear(vmx);
4689
4690         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
4691         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
4692         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4693
4694         flags = vmcs_readl(GUEST_RFLAGS);
4695         vmx->rmode.save_rflags = flags;
4696
4697         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
4698
4699         vmcs_writel(GUEST_RFLAGS, flags);
4700         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
4701         update_exception_bitmap(vcpu);
4702
4703         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4704         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4705         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4706         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4707         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4708         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4709
4710         kvm_mmu_reset_context(vcpu);
4711 }
4712
4713 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4714 {
4715         struct vcpu_vmx *vmx = to_vmx(vcpu);
4716         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4717
4718         if (!msr)
4719                 return;
4720
4721         /*
4722          * Force kernel_gs_base reloading before EFER changes, as control
4723          * of this msr depends on is_long_mode().
4724          */
4725         vmx_load_host_state(to_vmx(vcpu));
4726         vcpu->arch.efer = efer;
4727         if (efer & EFER_LMA) {
4728                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4729                 msr->data = efer;
4730         } else {
4731                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4732
4733                 msr->data = efer & ~EFER_LME;
4734         }
4735         setup_msrs(vmx);
4736 }
4737
4738 #ifdef CONFIG_X86_64
4739
4740 static void enter_lmode(struct kvm_vcpu *vcpu)
4741 {
4742         u32 guest_tr_ar;
4743
4744         vmx_segment_cache_clear(to_vmx(vcpu));
4745
4746         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4747         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
4748                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4749                                      __func__);
4750                 vmcs_write32(GUEST_TR_AR_BYTES,
4751                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4752                              | VMX_AR_TYPE_BUSY_64_TSS);
4753         }
4754         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4755 }
4756
4757 static void exit_lmode(struct kvm_vcpu *vcpu)
4758 {
4759         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4760         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4761 }
4762
4763 #endif
4764
4765 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
4766                                 bool invalidate_gpa)
4767 {
4768         if (enable_ept && (invalidate_gpa || !enable_vpid)) {
4769                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4770                         return;
4771                 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
4772         } else {
4773                 vpid_sync_context(vpid);
4774         }
4775 }
4776
4777 static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
4778 {
4779         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
4780 }
4781
4782 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4783 {
4784         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4785
4786         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4787         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4788 }
4789
4790 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4791 {
4792         if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
4793                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4794         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4795 }
4796
4797 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4798 {
4799         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4800
4801         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4802         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4803 }
4804
4805 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4806 {
4807         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4808
4809         if (!test_bit(VCPU_EXREG_PDPTR,
4810                       (unsigned long *)&vcpu->arch.regs_dirty))
4811                 return;
4812
4813         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4814                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4815                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4816                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4817                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4818         }
4819 }
4820
4821 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4822 {
4823         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4824
4825         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4826                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4827                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4828                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4829                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4830         }
4831
4832         __set_bit(VCPU_EXREG_PDPTR,
4833                   (unsigned long *)&vcpu->arch.regs_avail);
4834         __set_bit(VCPU_EXREG_PDPTR,
4835                   (unsigned long *)&vcpu->arch.regs_dirty);
4836 }
4837
4838 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4839 {
4840         u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
4841         u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
4842         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4843
4844         if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
4845                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4846             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4847                 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4848
4849         return fixed_bits_valid(val, fixed0, fixed1);
4850 }
4851
4852 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4853 {
4854         u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
4855         u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
4856
4857         return fixed_bits_valid(val, fixed0, fixed1);
4858 }
4859
4860 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4861 {
4862         u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
4863         u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
4864
4865         return fixed_bits_valid(val, fixed0, fixed1);
4866 }
4867
4868 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4869 #define nested_guest_cr4_valid  nested_cr4_valid
4870 #define nested_host_cr4_valid   nested_cr4_valid
4871
4872 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4873
4874 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4875                                         unsigned long cr0,
4876                                         struct kvm_vcpu *vcpu)
4877 {
4878         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4879                 vmx_decache_cr3(vcpu);
4880         if (!(cr0 & X86_CR0_PG)) {
4881                 /* From paging/starting to nonpaging */
4882                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4883                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4884                              (CPU_BASED_CR3_LOAD_EXITING |
4885                               CPU_BASED_CR3_STORE_EXITING));
4886                 vcpu->arch.cr0 = cr0;
4887                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4888         } else if (!is_paging(vcpu)) {
4889                 /* From nonpaging to paging */
4890                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4891                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4892                              ~(CPU_BASED_CR3_LOAD_EXITING |
4893                                CPU_BASED_CR3_STORE_EXITING));
4894                 vcpu->arch.cr0 = cr0;
4895                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4896         }
4897
4898         if (!(cr0 & X86_CR0_WP))
4899                 *hw_cr0 &= ~X86_CR0_WP;
4900 }
4901
4902 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4903 {
4904         struct vcpu_vmx *vmx = to_vmx(vcpu);
4905         unsigned long hw_cr0;
4906
4907         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4908         if (enable_unrestricted_guest)
4909                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4910         else {
4911                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4912
4913                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4914                         enter_pmode(vcpu);
4915
4916                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4917                         enter_rmode(vcpu);
4918         }
4919
4920 #ifdef CONFIG_X86_64
4921         if (vcpu->arch.efer & EFER_LME) {
4922                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4923                         enter_lmode(vcpu);
4924                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4925                         exit_lmode(vcpu);
4926         }
4927 #endif
4928
4929         if (enable_ept && !enable_unrestricted_guest)
4930                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4931
4932         vmcs_writel(CR0_READ_SHADOW, cr0);
4933         vmcs_writel(GUEST_CR0, hw_cr0);
4934         vcpu->arch.cr0 = cr0;
4935
4936         /* depends on vcpu->arch.cr0 to be set to a new value */
4937         vmx->emulation_required = emulation_required(vcpu);
4938 }
4939
4940 static int get_ept_level(struct kvm_vcpu *vcpu)
4941 {
4942         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4943                 return 5;
4944         return 4;
4945 }
4946
4947 static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
4948 {
4949         u64 eptp = VMX_EPTP_MT_WB;
4950
4951         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
4952
4953         if (enable_ept_ad_bits &&
4954             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
4955                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
4956         eptp |= (root_hpa & PAGE_MASK);
4957
4958         return eptp;
4959 }
4960
4961 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4962 {
4963         unsigned long guest_cr3;
4964         u64 eptp;
4965
4966         guest_cr3 = cr3;
4967         if (enable_ept) {
4968                 eptp = construct_eptp(vcpu, cr3);
4969                 vmcs_write64(EPT_POINTER, eptp);
4970                 if (enable_unrestricted_guest || is_paging(vcpu) ||
4971                     is_guest_mode(vcpu))
4972                         guest_cr3 = kvm_read_cr3(vcpu);
4973                 else
4974                         guest_cr3 = to_kvm_vmx(vcpu->kvm)->ept_identity_map_addr;
4975                 ept_load_pdptrs(vcpu);
4976         }
4977
4978         vmx_flush_tlb(vcpu, true);
4979         vmcs_writel(GUEST_CR3, guest_cr3);
4980 }
4981
4982 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4983 {
4984         /*
4985          * Pass through host's Machine Check Enable value to hw_cr4, which
4986          * is in force while we are in guest mode.  Do not let guests control
4987          * this bit, even if host CR4.MCE == 0.
4988          */
4989         unsigned long hw_cr4;
4990
4991         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
4992         if (enable_unrestricted_guest)
4993                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
4994         else if (to_vmx(vcpu)->rmode.vm86_active)
4995                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
4996         else
4997                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
4998
4999         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
5000                 if (cr4 & X86_CR4_UMIP) {
5001                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5002                                 SECONDARY_EXEC_DESC);
5003                         hw_cr4 &= ~X86_CR4_UMIP;
5004                 } else if (!is_guest_mode(vcpu) ||
5005                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
5006                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5007                                         SECONDARY_EXEC_DESC);
5008         }
5009
5010         if (cr4 & X86_CR4_VMXE) {
5011                 /*
5012                  * To use VMXON (and later other VMX instructions), a guest
5013                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
5014                  * So basically the check on whether to allow nested VMX
5015                  * is here.
5016                  */
5017                 if (!nested_vmx_allowed(vcpu))
5018                         return 1;
5019         }
5020
5021         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5022                 return 1;
5023
5024         vcpu->arch.cr4 = cr4;
5025
5026         if (!enable_unrestricted_guest) {
5027                 if (enable_ept) {
5028                         if (!is_paging(vcpu)) {
5029                                 hw_cr4 &= ~X86_CR4_PAE;
5030                                 hw_cr4 |= X86_CR4_PSE;
5031                         } else if (!(cr4 & X86_CR4_PAE)) {
5032                                 hw_cr4 &= ~X86_CR4_PAE;
5033                         }
5034                 }
5035
5036                 /*
5037                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
5038                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
5039                  * to be manually disabled when guest switches to non-paging
5040                  * mode.
5041                  *
5042                  * If !enable_unrestricted_guest, the CPU is always running
5043                  * with CR0.PG=1 and CR4 needs to be modified.
5044                  * If enable_unrestricted_guest, the CPU automatically
5045                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
5046                  */
5047                 if (!is_paging(vcpu))
5048                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
5049         }
5050
5051         vmcs_writel(CR4_READ_SHADOW, cr4);
5052         vmcs_writel(GUEST_CR4, hw_cr4);
5053         return 0;
5054 }
5055
5056 static void vmx_get_segment(struct kvm_vcpu *vcpu,
5057                             struct kvm_segment *var, int seg)
5058 {
5059         struct vcpu_vmx *vmx = to_vmx(vcpu);
5060         u32 ar;
5061
5062         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
5063                 *var = vmx->rmode.segs[seg];
5064                 if (seg == VCPU_SREG_TR
5065                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
5066                         return;
5067                 var->base = vmx_read_guest_seg_base(vmx, seg);
5068                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
5069                 return;
5070         }
5071         var->base = vmx_read_guest_seg_base(vmx, seg);
5072         var->limit = vmx_read_guest_seg_limit(vmx, seg);
5073         var->selector = vmx_read_guest_seg_selector(vmx, seg);
5074         ar = vmx_read_guest_seg_ar(vmx, seg);
5075         var->unusable = (ar >> 16) & 1;
5076         var->type = ar & 15;
5077         var->s = (ar >> 4) & 1;
5078         var->dpl = (ar >> 5) & 3;
5079         /*
5080          * Some userspaces do not preserve unusable property. Since usable
5081          * segment has to be present according to VMX spec we can use present
5082          * property to amend userspace bug by making unusable segment always
5083          * nonpresent. vmx_segment_access_rights() already marks nonpresent
5084          * segment as unusable.
5085          */
5086         var->present = !var->unusable;
5087         var->avl = (ar >> 12) & 1;
5088         var->l = (ar >> 13) & 1;
5089         var->db = (ar >> 14) & 1;
5090         var->g = (ar >> 15) & 1;
5091 }
5092
5093 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
5094 {
5095         struct kvm_segment s;
5096
5097         if (to_vmx(vcpu)->rmode.vm86_active) {
5098                 vmx_get_segment(vcpu, &s, seg);
5099                 return s.base;
5100         }
5101         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
5102 }
5103
5104 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
5105 {
5106         struct vcpu_vmx *vmx = to_vmx(vcpu);
5107
5108         if (unlikely(vmx->rmode.vm86_active))
5109                 return 0;
5110         else {
5111                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
5112                 return VMX_AR_DPL(ar);
5113         }
5114 }
5115
5116 static u32 vmx_segment_access_rights(struct kvm_segment *var)
5117 {
5118         u32 ar;
5119
5120         if (var->unusable || !var->present)
5121                 ar = 1 << 16;
5122         else {
5123                 ar = var->type & 15;
5124                 ar |= (var->s & 1) << 4;
5125                 ar |= (var->dpl & 3) << 5;
5126                 ar |= (var->present & 1) << 7;
5127                 ar |= (var->avl & 1) << 12;
5128                 ar |= (var->l & 1) << 13;
5129                 ar |= (var->db & 1) << 14;
5130                 ar |= (var->g & 1) << 15;
5131         }
5132
5133         return ar;
5134 }
5135
5136 static void vmx_set_segment(struct kvm_vcpu *vcpu,
5137                             struct kvm_segment *var, int seg)
5138 {
5139         struct vcpu_vmx *vmx = to_vmx(vcpu);
5140         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
5141
5142         vmx_segment_cache_clear(vmx);
5143
5144         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
5145                 vmx->rmode.segs[seg] = *var;
5146                 if (seg == VCPU_SREG_TR)
5147                         vmcs_write16(sf->selector, var->selector);
5148                 else if (var->s)
5149                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
5150                 goto out;
5151         }
5152
5153         vmcs_writel(sf->base, var->base);
5154         vmcs_write32(sf->limit, var->limit);
5155         vmcs_write16(sf->selector, var->selector);
5156
5157         /*
5158          *   Fix the "Accessed" bit in AR field of segment registers for older
5159          * qemu binaries.
5160          *   IA32 arch specifies that at the time of processor reset the
5161          * "Accessed" bit in the AR field of segment registers is 1. And qemu
5162          * is setting it to 0 in the userland code. This causes invalid guest
5163          * state vmexit when "unrestricted guest" mode is turned on.
5164          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
5165          * tree. Newer qemu binaries with that qemu fix would not need this
5166          * kvm hack.
5167          */
5168         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
5169                 var->type |= 0x1; /* Accessed */
5170
5171         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
5172
5173 out:
5174         vmx->emulation_required = emulation_required(vcpu);
5175 }
5176
5177 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5178 {
5179         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
5180
5181         *db = (ar >> 14) & 1;
5182         *l = (ar >> 13) & 1;
5183 }
5184
5185 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5186 {
5187         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
5188         dt->address = vmcs_readl(GUEST_IDTR_BASE);
5189 }
5190
5191 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5192 {
5193         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
5194         vmcs_writel(GUEST_IDTR_BASE, dt->address);
5195 }
5196
5197 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5198 {
5199         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
5200         dt->address = vmcs_readl(GUEST_GDTR_BASE);
5201 }
5202
5203 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
5204 {
5205         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
5206         vmcs_writel(GUEST_GDTR_BASE, dt->address);
5207 }
5208
5209 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
5210 {
5211         struct kvm_segment var;
5212         u32 ar;
5213
5214         vmx_get_segment(vcpu, &var, seg);
5215         var.dpl = 0x3;
5216         if (seg == VCPU_SREG_CS)
5217                 var.type = 0x3;
5218         ar = vmx_segment_access_rights(&var);
5219
5220         if (var.base != (var.selector << 4))
5221                 return false;
5222         if (var.limit != 0xffff)
5223                 return false;
5224         if (ar != 0xf3)
5225                 return false;
5226
5227         return true;
5228 }
5229
5230 static bool code_segment_valid(struct kvm_vcpu *vcpu)
5231 {
5232         struct kvm_segment cs;
5233         unsigned int cs_rpl;
5234
5235         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5236         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
5237
5238         if (cs.unusable)
5239                 return false;
5240         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
5241                 return false;
5242         if (!cs.s)
5243                 return false;
5244         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
5245                 if (cs.dpl > cs_rpl)
5246                         return false;
5247         } else {
5248                 if (cs.dpl != cs_rpl)
5249                         return false;
5250         }
5251         if (!cs.present)
5252                 return false;
5253
5254         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
5255         return true;
5256 }
5257
5258 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
5259 {
5260         struct kvm_segment ss;
5261         unsigned int ss_rpl;
5262
5263         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
5264         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
5265
5266         if (ss.unusable)
5267                 return true;
5268         if (ss.type != 3 && ss.type != 7)
5269                 return false;
5270         if (!ss.s)
5271                 return false;
5272         if (ss.dpl != ss_rpl) /* DPL != RPL */
5273                 return false;
5274         if (!ss.present)
5275                 return false;
5276
5277         return true;
5278 }
5279
5280 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
5281 {
5282         struct kvm_segment var;
5283         unsigned int rpl;
5284
5285         vmx_get_segment(vcpu, &var, seg);
5286         rpl = var.selector & SEGMENT_RPL_MASK;
5287
5288         if (var.unusable)
5289                 return true;
5290         if (!var.s)
5291                 return false;
5292         if (!var.present)
5293                 return false;
5294         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
5295                 if (var.dpl < rpl) /* DPL < RPL */
5296                         return false;
5297         }
5298
5299         /* TODO: Add other members to kvm_segment_field to allow checking for other access
5300          * rights flags
5301          */
5302         return true;
5303 }
5304
5305 static bool tr_valid(struct kvm_vcpu *vcpu)
5306 {
5307         struct kvm_segment tr;
5308
5309         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
5310
5311         if (tr.unusable)
5312                 return false;
5313         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
5314                 return false;
5315         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
5316                 return false;
5317         if (!tr.present)
5318                 return false;
5319
5320         return true;
5321 }
5322
5323 static bool ldtr_valid(struct kvm_vcpu *vcpu)
5324 {
5325         struct kvm_segment ldtr;
5326
5327         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
5328
5329         if (ldtr.unusable)
5330                 return true;
5331         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
5332                 return false;
5333         if (ldtr.type != 2)
5334                 return false;
5335         if (!ldtr.present)
5336                 return false;
5337
5338         return true;
5339 }
5340
5341 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
5342 {
5343         struct kvm_segment cs, ss;
5344
5345         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5346         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
5347
5348         return ((cs.selector & SEGMENT_RPL_MASK) ==
5349                  (ss.selector & SEGMENT_RPL_MASK));
5350 }
5351
5352 /*
5353  * Check if guest state is valid. Returns true if valid, false if
5354  * not.
5355  * We assume that registers are always usable
5356  */
5357 static bool guest_state_valid(struct kvm_vcpu *vcpu)
5358 {
5359         if (enable_unrestricted_guest)
5360                 return true;
5361
5362         /* real mode guest state checks */
5363         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5364                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
5365                         return false;
5366                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
5367                         return false;
5368                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
5369                         return false;
5370                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
5371                         return false;
5372                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
5373                         return false;
5374                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
5375                         return false;
5376         } else {
5377         /* protected mode guest state checks */
5378                 if (!cs_ss_rpl_check(vcpu))
5379                         return false;
5380                 if (!code_segment_valid(vcpu))
5381                         return false;
5382                 if (!stack_segment_valid(vcpu))
5383                         return false;
5384                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
5385                         return false;
5386                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
5387                         return false;
5388                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
5389                         return false;
5390                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
5391                         return false;
5392                 if (!tr_valid(vcpu))
5393                         return false;
5394                 if (!ldtr_valid(vcpu))
5395                         return false;
5396         }
5397         /* TODO:
5398          * - Add checks on RIP
5399          * - Add checks on RFLAGS
5400          */
5401
5402         return true;
5403 }
5404
5405 static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
5406 {
5407         return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
5408 }
5409
5410 static int init_rmode_tss(struct kvm *kvm)
5411 {
5412         gfn_t fn;
5413         u16 data = 0;
5414         int idx, r;
5415
5416         idx = srcu_read_lock(&kvm->srcu);
5417         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
5418         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5419         if (r < 0)
5420                 goto out;
5421         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
5422         r = kvm_write_guest_page(kvm, fn++, &data,
5423                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
5424         if (r < 0)
5425                 goto out;
5426         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
5427         if (r < 0)
5428                 goto out;
5429         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5430         if (r < 0)
5431                 goto out;
5432         data = ~0;
5433         r = kvm_write_guest_page(kvm, fn, &data,
5434                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
5435                                  sizeof(u8));
5436 out:
5437         srcu_read_unlock(&kvm->srcu, idx);
5438         return r;
5439 }
5440
5441 static int init_rmode_identity_map(struct kvm *kvm)
5442 {
5443         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
5444         int i, idx, r = 0;
5445         kvm_pfn_t identity_map_pfn;
5446         u32 tmp;
5447
5448         /* Protect kvm_vmx->ept_identity_pagetable_done. */
5449         mutex_lock(&kvm->slots_lock);
5450
5451         if (likely(kvm_vmx->ept_identity_pagetable_done))
5452                 goto out2;
5453
5454         if (!kvm_vmx->ept_identity_map_addr)
5455                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
5456         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
5457
5458         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
5459                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
5460         if (r < 0)
5461                 goto out2;
5462
5463         idx = srcu_read_lock(&kvm->srcu);
5464         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
5465         if (r < 0)
5466                 goto out;
5467         /* Set up identity-mapping pagetable for EPT in real mode */
5468         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
5469                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
5470                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
5471                 r = kvm_write_guest_page(kvm, identity_map_pfn,
5472                                 &tmp, i * sizeof(tmp), sizeof(tmp));
5473                 if (r < 0)
5474                         goto out;
5475         }
5476         kvm_vmx->ept_identity_pagetable_done = true;
5477
5478 out:
5479         srcu_read_unlock(&kvm->srcu, idx);
5480
5481 out2:
5482         mutex_unlock(&kvm->slots_lock);
5483         return r;
5484 }
5485
5486 static void seg_setup(int seg)
5487 {
5488         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
5489         unsigned int ar;
5490
5491         vmcs_write16(sf->selector, 0);
5492         vmcs_writel(sf->base, 0);
5493         vmcs_write32(sf->limit, 0xffff);
5494         ar = 0x93;
5495         if (seg == VCPU_SREG_CS)
5496                 ar |= 0x08; /* code segment */
5497
5498         vmcs_write32(sf->ar_bytes, ar);
5499 }
5500
5501 static int alloc_apic_access_page(struct kvm *kvm)
5502 {
5503         struct page *page;
5504         int r = 0;
5505
5506         mutex_lock(&kvm->slots_lock);
5507         if (kvm->arch.apic_access_page_done)
5508                 goto out;
5509         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
5510                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
5511         if (r)
5512                 goto out;
5513
5514         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
5515         if (is_error_page(page)) {
5516                 r = -EFAULT;
5517                 goto out;
5518         }
5519
5520         /*
5521          * Do not pin the page in memory, so that memory hot-unplug
5522          * is able to migrate it.
5523          */
5524         put_page(page);
5525         kvm->arch.apic_access_page_done = true;
5526 out:
5527         mutex_unlock(&kvm->slots_lock);
5528         return r;
5529 }
5530
5531 static int allocate_vpid(void)
5532 {
5533         int vpid;
5534
5535         if (!enable_vpid)
5536                 return 0;
5537         spin_lock(&vmx_vpid_lock);
5538         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
5539         if (vpid < VMX_NR_VPIDS)
5540                 __set_bit(vpid, vmx_vpid_bitmap);
5541         else
5542                 vpid = 0;
5543         spin_unlock(&vmx_vpid_lock);
5544         return vpid;
5545 }
5546
5547 static void free_vpid(int vpid)
5548 {
5549         if (!enable_vpid || vpid == 0)
5550                 return;
5551         spin_lock(&vmx_vpid_lock);
5552         __clear_bit(vpid, vmx_vpid_bitmap);
5553         spin_unlock(&vmx_vpid_lock);
5554 }
5555
5556 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
5557                                                           u32 msr, int type)
5558 {
5559         int f = sizeof(unsigned long);
5560
5561         if (!cpu_has_vmx_msr_bitmap())
5562                 return;
5563
5564         if (static_branch_unlikely(&enable_evmcs))
5565                 evmcs_touch_msr_bitmap();
5566
5567         /*
5568          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5569          * have the write-low and read-high bitmap offsets the wrong way round.
5570          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5571          */
5572         if (msr <= 0x1fff) {
5573                 if (type & MSR_TYPE_R)
5574                         /* read-low */
5575                         __clear_bit(msr, msr_bitmap + 0x000 / f);
5576
5577                 if (type & MSR_TYPE_W)
5578                         /* write-low */
5579                         __clear_bit(msr, msr_bitmap + 0x800 / f);
5580
5581         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5582                 msr &= 0x1fff;
5583                 if (type & MSR_TYPE_R)
5584                         /* read-high */
5585                         __clear_bit(msr, msr_bitmap + 0x400 / f);
5586
5587                 if (type & MSR_TYPE_W)
5588                         /* write-high */
5589                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
5590
5591         }
5592 }
5593
5594 static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
5595                                                          u32 msr, int type)
5596 {
5597         int f = sizeof(unsigned long);
5598
5599         if (!cpu_has_vmx_msr_bitmap())
5600                 return;
5601
5602         if (static_branch_unlikely(&enable_evmcs))
5603                 evmcs_touch_msr_bitmap();
5604
5605         /*
5606          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5607          * have the write-low and read-high bitmap offsets the wrong way round.
5608          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5609          */
5610         if (msr <= 0x1fff) {
5611                 if (type & MSR_TYPE_R)
5612                         /* read-low */
5613                         __set_bit(msr, msr_bitmap + 0x000 / f);
5614
5615                 if (type & MSR_TYPE_W)
5616                         /* write-low */
5617                         __set_bit(msr, msr_bitmap + 0x800 / f);
5618
5619         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5620                 msr &= 0x1fff;
5621                 if (type & MSR_TYPE_R)
5622                         /* read-high */
5623                         __set_bit(msr, msr_bitmap + 0x400 / f);
5624
5625                 if (type & MSR_TYPE_W)
5626                         /* write-high */
5627                         __set_bit(msr, msr_bitmap + 0xc00 / f);
5628
5629         }
5630 }
5631
5632 static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
5633                                                       u32 msr, int type, bool value)
5634 {
5635         if (value)
5636                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
5637         else
5638                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
5639 }
5640
5641 /*
5642  * If a msr is allowed by L0, we should check whether it is allowed by L1.
5643  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
5644  */
5645 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
5646                                                unsigned long *msr_bitmap_nested,
5647                                                u32 msr, int type)
5648 {
5649         int f = sizeof(unsigned long);
5650
5651         /*
5652          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5653          * have the write-low and read-high bitmap offsets the wrong way round.
5654          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5655          */
5656         if (msr <= 0x1fff) {
5657                 if (type & MSR_TYPE_R &&
5658                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
5659                         /* read-low */
5660                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
5661
5662                 if (type & MSR_TYPE_W &&
5663                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
5664                         /* write-low */
5665                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
5666
5667         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5668                 msr &= 0x1fff;
5669                 if (type & MSR_TYPE_R &&
5670                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
5671                         /* read-high */
5672                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
5673
5674                 if (type & MSR_TYPE_W &&
5675                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
5676                         /* write-high */
5677                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
5678
5679         }
5680 }
5681
5682 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
5683 {
5684         u8 mode = 0;
5685
5686         if (cpu_has_secondary_exec_ctrls() &&
5687             (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
5688              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
5689                 mode |= MSR_BITMAP_MODE_X2APIC;
5690                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
5691                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
5692         }
5693
5694         if (is_long_mode(vcpu))
5695                 mode |= MSR_BITMAP_MODE_LM;
5696
5697         return mode;
5698 }
5699
5700 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
5701
5702 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
5703                                          u8 mode)
5704 {
5705         int msr;
5706
5707         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
5708                 unsigned word = msr / BITS_PER_LONG;
5709                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
5710                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
5711         }
5712
5713         if (mode & MSR_BITMAP_MODE_X2APIC) {
5714                 /*
5715                  * TPR reads and writes can be virtualized even if virtual interrupt
5716                  * delivery is not in use.
5717                  */
5718                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
5719                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
5720                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
5721                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
5722                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
5723                 }
5724         }
5725 }
5726
5727 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
5728 {
5729         struct vcpu_vmx *vmx = to_vmx(vcpu);
5730         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
5731         u8 mode = vmx_msr_bitmap_mode(vcpu);
5732         u8 changed = mode ^ vmx->msr_bitmap_mode;
5733
5734         if (!changed)
5735                 return;
5736
5737         vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW,
5738                                   !(mode & MSR_BITMAP_MODE_LM));
5739
5740         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
5741                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
5742
5743         vmx->msr_bitmap_mode = mode;
5744 }
5745
5746 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
5747 {
5748         return enable_apicv;
5749 }
5750
5751 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5752 {
5753         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5754         gfn_t gfn;
5755
5756         /*
5757          * Don't need to mark the APIC access page dirty; it is never
5758          * written to by the CPU during APIC virtualization.
5759          */
5760
5761         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5762                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5763                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5764         }
5765
5766         if (nested_cpu_has_posted_intr(vmcs12)) {
5767                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5768                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5769         }
5770 }
5771
5772
5773 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
5774 {
5775         struct vcpu_vmx *vmx = to_vmx(vcpu);
5776         int max_irr;
5777         void *vapic_page;
5778         u16 status;
5779
5780         if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5781                 return;
5782
5783         vmx->nested.pi_pending = false;
5784         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5785                 return;
5786
5787         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5788         if (max_irr != 256) {
5789                 vapic_page = kmap(vmx->nested.virtual_apic_page);
5790                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
5791                         vapic_page, &max_irr);
5792                 kunmap(vmx->nested.virtual_apic_page);
5793
5794                 status = vmcs_read16(GUEST_INTR_STATUS);
5795                 if ((u8)max_irr > ((u8)status & 0xff)) {
5796                         status &= ~0xff;
5797                         status |= (u8)max_irr;
5798                         vmcs_write16(GUEST_INTR_STATUS, status);
5799                 }
5800         }
5801
5802         nested_mark_vmcs12_pages_dirty(vcpu);
5803 }
5804
5805 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5806                                                      bool nested)
5807 {
5808 #ifdef CONFIG_SMP
5809         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5810
5811         if (vcpu->mode == IN_GUEST_MODE) {
5812                 /*
5813                  * The vector of interrupt to be delivered to vcpu had
5814                  * been set in PIR before this function.
5815                  *
5816                  * Following cases will be reached in this block, and
5817                  * we always send a notification event in all cases as
5818                  * explained below.
5819                  *
5820                  * Case 1: vcpu keeps in non-root mode. Sending a
5821                  * notification event posts the interrupt to vcpu.
5822                  *
5823                  * Case 2: vcpu exits to root mode and is still
5824                  * runnable. PIR will be synced to vIRR before the
5825                  * next vcpu entry. Sending a notification event in
5826                  * this case has no effect, as vcpu is not in root
5827                  * mode.
5828                  *
5829                  * Case 3: vcpu exits to root mode and is blocked.
5830                  * vcpu_block() has already synced PIR to vIRR and
5831                  * never blocks vcpu if vIRR is not cleared. Therefore,
5832                  * a blocked vcpu here does not wait for any requested
5833                  * interrupts in PIR, and sending a notification event
5834                  * which has no effect is safe here.
5835                  */
5836
5837                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
5838                 return true;
5839         }
5840 #endif
5841         return false;
5842 }
5843
5844 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5845                                                 int vector)
5846 {
5847         struct vcpu_vmx *vmx = to_vmx(vcpu);
5848
5849         if (is_guest_mode(vcpu) &&
5850             vector == vmx->nested.posted_intr_nv) {
5851                 /*
5852                  * If a posted intr is not recognized by hardware,
5853                  * we will accomplish it in the next vmentry.
5854                  */
5855                 vmx->nested.pi_pending = true;
5856                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5857                 /* the PIR and ON have been set by L1. */
5858                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
5859                         kvm_vcpu_kick(vcpu);
5860                 return 0;
5861         }
5862         return -1;
5863 }
5864 /*
5865  * Send interrupt to vcpu via posted interrupt way.
5866  * 1. If target vcpu is running(non-root mode), send posted interrupt
5867  * notification to vcpu and hardware will sync PIR to vIRR atomically.
5868  * 2. If target vcpu isn't running(root mode), kick it to pick up the
5869  * interrupt from PIR in next vmentry.
5870  */
5871 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5872 {
5873         struct vcpu_vmx *vmx = to_vmx(vcpu);
5874         int r;
5875
5876         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5877         if (!r)
5878                 return;
5879
5880         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5881                 return;
5882
5883         /* If a previous notification has sent the IPI, nothing to do.  */
5884         if (pi_test_and_set_on(&vmx->pi_desc))
5885                 return;
5886
5887         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
5888                 kvm_vcpu_kick(vcpu);
5889 }
5890
5891 /*
5892  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5893  * will not change in the lifetime of the guest.
5894  * Note that host-state that does change is set elsewhere. E.g., host-state
5895  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5896  */
5897 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5898 {
5899         u32 low32, high32;
5900         unsigned long tmpl;
5901         struct desc_ptr dt;
5902         unsigned long cr0, cr3, cr4;
5903
5904         cr0 = read_cr0();
5905         WARN_ON(cr0 & X86_CR0_TS);
5906         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5907
5908         /*
5909          * Save the most likely value for this task's CR3 in the VMCS.
5910          * We can't use __get_current_cr3_fast() because we're not atomic.
5911          */
5912         cr3 = __read_cr3();
5913         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
5914         vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
5915
5916         /* Save the most likely value for this task's CR4 in the VMCS. */
5917         cr4 = cr4_read_shadow();
5918         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5919         vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
5920
5921         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5922 #ifdef CONFIG_X86_64
5923         /*
5924          * Load null selectors, so we can avoid reloading them in
5925          * __vmx_load_host_state(), in case userspace uses the null selectors
5926          * too (the expected case).
5927          */
5928         vmcs_write16(HOST_DS_SELECTOR, 0);
5929         vmcs_write16(HOST_ES_SELECTOR, 0);
5930 #else
5931         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5932         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5933 #endif
5934         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5935         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5936
5937         store_idt(&dt);
5938         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5939         vmx->host_idt_base = dt.address;
5940
5941         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5942
5943         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5944         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5945         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5946         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5947
5948         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5949                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5950                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5951         }
5952 }
5953
5954 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5955 {
5956         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5957         if (enable_ept)
5958                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5959         if (is_guest_mode(&vmx->vcpu))
5960                 vmx->vcpu.arch.cr4_guest_owned_bits &=
5961                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5962         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5963 }
5964
5965 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5966 {
5967         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5968
5969         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5970                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5971
5972         if (!enable_vnmi)
5973                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
5974
5975         /* Enable the preemption timer dynamically */
5976         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5977         return pin_based_exec_ctrl;
5978 }
5979
5980 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5981 {
5982         struct vcpu_vmx *vmx = to_vmx(vcpu);
5983
5984         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5985         if (cpu_has_secondary_exec_ctrls()) {
5986                 if (kvm_vcpu_apicv_active(vcpu))
5987                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5988                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
5989                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5990                 else
5991                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5992                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
5993                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5994         }
5995
5996         if (cpu_has_vmx_msr_bitmap())
5997                 vmx_update_msr_bitmap(vcpu);
5998 }
5999
6000 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
6001 {
6002         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
6003
6004         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
6005                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
6006
6007         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
6008                 exec_control &= ~CPU_BASED_TPR_SHADOW;
6009 #ifdef CONFIG_X86_64
6010                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
6011                                 CPU_BASED_CR8_LOAD_EXITING;
6012 #endif
6013         }
6014         if (!enable_ept)
6015                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
6016                                 CPU_BASED_CR3_LOAD_EXITING  |
6017                                 CPU_BASED_INVLPG_EXITING;
6018         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
6019                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
6020                                 CPU_BASED_MONITOR_EXITING);
6021         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
6022                 exec_control &= ~CPU_BASED_HLT_EXITING;
6023         return exec_control;
6024 }
6025
6026 static bool vmx_rdrand_supported(void)
6027 {
6028         return vmcs_config.cpu_based_2nd_exec_ctrl &
6029                 SECONDARY_EXEC_RDRAND_EXITING;
6030 }
6031
6032 static bool vmx_rdseed_supported(void)
6033 {
6034         return vmcs_config.cpu_based_2nd_exec_ctrl &
6035                 SECONDARY_EXEC_RDSEED_EXITING;
6036 }
6037
6038 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
6039 {
6040         struct kvm_vcpu *vcpu = &vmx->vcpu;
6041
6042         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
6043
6044         if (!cpu_need_virtualize_apic_accesses(vcpu))
6045                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6046         if (vmx->vpid == 0)
6047                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
6048         if (!enable_ept) {
6049                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
6050                 enable_unrestricted_guest = 0;
6051                 /* Enable INVPCID for non-ept guests may cause performance regression. */
6052                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6053         }
6054         if (!enable_unrestricted_guest)
6055                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
6056         if (kvm_pause_in_guest(vmx->vcpu.kvm))
6057                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
6058         if (!kvm_vcpu_apicv_active(vcpu))
6059                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
6060                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
6061         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6062
6063         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
6064          * in vmx_set_cr4.  */
6065         exec_control &= ~SECONDARY_EXEC_DESC;
6066
6067         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
6068            (handle_vmptrld).
6069            We can NOT enable shadow_vmcs here because we don't have yet
6070            a current VMCS12
6071         */
6072         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6073
6074         if (!enable_pml)
6075                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
6076
6077         if (vmx_xsaves_supported()) {
6078                 /* Exposing XSAVES only when XSAVE is exposed */
6079                 bool xsaves_enabled =
6080                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
6081                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
6082
6083                 if (!xsaves_enabled)
6084                         exec_control &= ~SECONDARY_EXEC_XSAVES;
6085
6086                 if (nested) {
6087                         if (xsaves_enabled)
6088                                 vmx->nested.msrs.secondary_ctls_high |=
6089                                         SECONDARY_EXEC_XSAVES;
6090                         else
6091                                 vmx->nested.msrs.secondary_ctls_high &=
6092                                         ~SECONDARY_EXEC_XSAVES;
6093                 }
6094         }
6095
6096         if (vmx_rdtscp_supported()) {
6097                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
6098                 if (!rdtscp_enabled)
6099                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
6100
6101                 if (nested) {
6102                         if (rdtscp_enabled)
6103                                 vmx->nested.msrs.secondary_ctls_high |=
6104                                         SECONDARY_EXEC_RDTSCP;
6105                         else
6106                                 vmx->nested.msrs.secondary_ctls_high &=
6107                                         ~SECONDARY_EXEC_RDTSCP;
6108                 }
6109         }
6110
6111         if (vmx_invpcid_supported()) {
6112                 /* Exposing INVPCID only when PCID is exposed */
6113                 bool invpcid_enabled =
6114                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
6115                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
6116
6117                 if (!invpcid_enabled) {
6118                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
6119                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
6120                 }
6121
6122                 if (nested) {
6123                         if (invpcid_enabled)
6124                                 vmx->nested.msrs.secondary_ctls_high |=
6125                                         SECONDARY_EXEC_ENABLE_INVPCID;
6126                         else
6127                                 vmx->nested.msrs.secondary_ctls_high &=
6128                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
6129                 }
6130         }
6131
6132         if (vmx_rdrand_supported()) {
6133                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
6134                 if (rdrand_enabled)
6135                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
6136
6137                 if (nested) {
6138                         if (rdrand_enabled)
6139                                 vmx->nested.msrs.secondary_ctls_high |=
6140                                         SECONDARY_EXEC_RDRAND_EXITING;
6141                         else
6142                                 vmx->nested.msrs.secondary_ctls_high &=
6143                                         ~SECONDARY_EXEC_RDRAND_EXITING;
6144                 }
6145         }
6146
6147         if (vmx_rdseed_supported()) {
6148                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
6149                 if (rdseed_enabled)
6150                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
6151
6152                 if (nested) {
6153                         if (rdseed_enabled)
6154                                 vmx->nested.msrs.secondary_ctls_high |=
6155                                         SECONDARY_EXEC_RDSEED_EXITING;
6156                         else
6157                                 vmx->nested.msrs.secondary_ctls_high &=
6158                                         ~SECONDARY_EXEC_RDSEED_EXITING;
6159                 }
6160         }
6161
6162         vmx->secondary_exec_control = exec_control;
6163 }
6164
6165 static void ept_set_mmio_spte_mask(void)
6166 {
6167         /*
6168          * EPT Misconfigurations can be generated if the value of bits 2:0
6169          * of an EPT paging-structure entry is 110b (write/execute).
6170          */
6171         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
6172                                    VMX_EPT_MISCONFIG_WX_VALUE);
6173 }
6174
6175 #define VMX_XSS_EXIT_BITMAP 0
6176 /*
6177  * Sets up the vmcs for emulated real mode.
6178  */
6179 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6180 {
6181 #ifdef CONFIG_X86_64
6182         unsigned long a;
6183 #endif
6184         int i;
6185
6186         if (enable_shadow_vmcs) {
6187                 /*
6188                  * At vCPU creation, "VMWRITE to any supported field
6189                  * in the VMCS" is supported, so use the more
6190                  * permissive vmx_vmread_bitmap to specify both read
6191                  * and write permissions for the shadow VMCS.
6192                  */
6193                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6194                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
6195         }
6196         if (cpu_has_vmx_msr_bitmap())
6197                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
6198
6199         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
6200
6201         /* Control */
6202         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6203         vmx->hv_deadline_tsc = -1;
6204
6205         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6206
6207         if (cpu_has_secondary_exec_ctrls()) {
6208                 vmx_compute_secondary_exec_control(vmx);
6209                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6210                              vmx->secondary_exec_control);
6211         }
6212
6213         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
6214                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
6215                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
6216                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
6217                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
6218
6219                 vmcs_write16(GUEST_INTR_STATUS, 0);
6220
6221                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
6222                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
6223         }
6224
6225         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
6226                 vmcs_write32(PLE_GAP, ple_gap);
6227                 vmx->ple_window = ple_window;
6228                 vmx->ple_window_dirty = true;
6229         }
6230
6231         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
6232         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6233         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
6234
6235         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
6236         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
6237         vmx_set_constant_host_state(vmx);
6238 #ifdef CONFIG_X86_64
6239         rdmsrl(MSR_FS_BASE, a);
6240         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
6241         rdmsrl(MSR_GS_BASE, a);
6242         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
6243 #else
6244         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
6245         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
6246 #endif
6247
6248         if (cpu_has_vmx_vmfunc())
6249                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
6250
6251         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
6252         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
6253         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
6254         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
6255         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6256
6257         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6258                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6259
6260         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6261                 u32 index = vmx_msr_index[i];
6262                 u32 data_low, data_high;
6263                 int j = vmx->nmsrs;
6264
6265                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6266                         continue;
6267                 if (wrmsr_safe(index, data_low, data_high) < 0)
6268                         continue;
6269                 vmx->guest_msrs[j].index = i;
6270                 vmx->guest_msrs[j].data = 0;
6271                 vmx->guest_msrs[j].mask = -1ull;
6272                 ++vmx->nmsrs;
6273         }
6274
6275         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
6276                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, vmx->arch_capabilities);
6277
6278         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6279
6280         /* 22.2.1, 20.8.1 */
6281         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
6282
6283         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
6284         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
6285
6286         set_cr4_guest_host_mask(vmx);
6287
6288         if (vmx_xsaves_supported())
6289                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
6290
6291         if (enable_pml) {
6292                 ASSERT(vmx->pml_pg);
6293                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
6294                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6295         }
6296 }
6297
6298 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
6299 {
6300         struct vcpu_vmx *vmx = to_vmx(vcpu);
6301         struct msr_data apic_base_msr;
6302         u64 cr0;
6303
6304         vmx->rmode.vm86_active = 0;
6305         vmx->spec_ctrl = 0;
6306
6307         vcpu->arch.microcode_version = 0x100000000ULL;
6308         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
6309         kvm_set_cr8(vcpu, 0);
6310
6311         if (!init_event) {
6312                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
6313                                      MSR_IA32_APICBASE_ENABLE;
6314                 if (kvm_vcpu_is_reset_bsp(vcpu))
6315                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
6316                 apic_base_msr.host_initiated = true;
6317                 kvm_set_apic_base(vcpu, &apic_base_msr);
6318         }
6319
6320         vmx_segment_cache_clear(vmx);
6321
6322         seg_setup(VCPU_SREG_CS);
6323         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
6324         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
6325
6326         seg_setup(VCPU_SREG_DS);
6327         seg_setup(VCPU_SREG_ES);
6328         seg_setup(VCPU_SREG_FS);
6329         seg_setup(VCPU_SREG_GS);
6330         seg_setup(VCPU_SREG_SS);
6331
6332         vmcs_write16(GUEST_TR_SELECTOR, 0);
6333         vmcs_writel(GUEST_TR_BASE, 0);
6334         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
6335         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
6336
6337         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
6338         vmcs_writel(GUEST_LDTR_BASE, 0);
6339         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
6340         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
6341
6342         if (!init_event) {
6343                 vmcs_write32(GUEST_SYSENTER_CS, 0);
6344                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
6345                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
6346                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
6347         }
6348
6349         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6350         kvm_rip_write(vcpu, 0xfff0);
6351
6352         vmcs_writel(GUEST_GDTR_BASE, 0);
6353         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
6354
6355         vmcs_writel(GUEST_IDTR_BASE, 0);
6356         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
6357
6358         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
6359         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
6360         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
6361         if (kvm_mpx_supported())
6362                 vmcs_write64(GUEST_BNDCFGS, 0);
6363
6364         setup_msrs(vmx);
6365
6366         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
6367
6368         if (cpu_has_vmx_tpr_shadow() && !init_event) {
6369                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
6370                 if (cpu_need_tpr_shadow(vcpu))
6371                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
6372                                      __pa(vcpu->arch.apic->regs));
6373                 vmcs_write32(TPR_THRESHOLD, 0);
6374         }
6375
6376         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6377
6378         if (vmx->vpid != 0)
6379                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6380
6381         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
6382         vmx->vcpu.arch.cr0 = cr0;
6383         vmx_set_cr0(vcpu, cr0); /* enter rmode */
6384         vmx_set_cr4(vcpu, 0);
6385         vmx_set_efer(vcpu, 0);
6386
6387         update_exception_bitmap(vcpu);
6388
6389         vpid_sync_context(vmx->vpid);
6390         if (init_event)
6391                 vmx_clear_hlt(vcpu);
6392 }
6393
6394 /*
6395  * In nested virtualization, check if L1 asked to exit on external interrupts.
6396  * For most existing hypervisors, this will always return true.
6397  */
6398 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
6399 {
6400         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
6401                 PIN_BASED_EXT_INTR_MASK;
6402 }
6403
6404 /*
6405  * In nested virtualization, check if L1 has set
6406  * VM_EXIT_ACK_INTR_ON_EXIT
6407  */
6408 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
6409 {
6410         return get_vmcs12(vcpu)->vm_exit_controls &
6411                 VM_EXIT_ACK_INTR_ON_EXIT;
6412 }
6413
6414 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
6415 {
6416         return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
6417 }
6418
6419 static void enable_irq_window(struct kvm_vcpu *vcpu)
6420 {
6421         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6422                       CPU_BASED_VIRTUAL_INTR_PENDING);
6423 }
6424
6425 static void enable_nmi_window(struct kvm_vcpu *vcpu)
6426 {
6427         if (!enable_vnmi ||
6428             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
6429                 enable_irq_window(vcpu);
6430                 return;
6431         }
6432
6433         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6434                       CPU_BASED_VIRTUAL_NMI_PENDING);
6435 }
6436
6437 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
6438 {
6439         struct vcpu_vmx *vmx = to_vmx(vcpu);
6440         uint32_t intr;
6441         int irq = vcpu->arch.interrupt.nr;
6442
6443         trace_kvm_inj_virq(irq);
6444
6445         ++vcpu->stat.irq_injections;
6446         if (vmx->rmode.vm86_active) {
6447                 int inc_eip = 0;
6448                 if (vcpu->arch.interrupt.soft)
6449                         inc_eip = vcpu->arch.event_exit_inst_len;
6450                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
6451                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6452                 return;
6453         }
6454         intr = irq | INTR_INFO_VALID_MASK;
6455         if (vcpu->arch.interrupt.soft) {
6456                 intr |= INTR_TYPE_SOFT_INTR;
6457                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6458                              vmx->vcpu.arch.event_exit_inst_len);
6459         } else
6460                 intr |= INTR_TYPE_EXT_INTR;
6461         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
6462
6463         vmx_clear_hlt(vcpu);
6464 }
6465
6466 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
6467 {
6468         struct vcpu_vmx *vmx = to_vmx(vcpu);
6469
6470         if (!enable_vnmi) {
6471                 /*
6472                  * Tracking the NMI-blocked state in software is built upon
6473                  * finding the next open IRQ window. This, in turn, depends on
6474                  * well-behaving guests: They have to keep IRQs disabled at
6475                  * least as long as the NMI handler runs. Otherwise we may
6476                  * cause NMI nesting, maybe breaking the guest. But as this is
6477                  * highly unlikely, we can live with the residual risk.
6478                  */
6479                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
6480                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
6481         }
6482
6483         ++vcpu->stat.nmi_injections;
6484         vmx->loaded_vmcs->nmi_known_unmasked = false;
6485
6486         if (vmx->rmode.vm86_active) {
6487                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
6488                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6489                 return;
6490         }
6491
6492         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6493                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
6494
6495         vmx_clear_hlt(vcpu);
6496 }
6497
6498 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
6499 {
6500         struct vcpu_vmx *vmx = to_vmx(vcpu);
6501         bool masked;
6502
6503         if (!enable_vnmi)
6504                 return vmx->loaded_vmcs->soft_vnmi_blocked;
6505         if (vmx->loaded_vmcs->nmi_known_unmasked)
6506                 return false;
6507         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
6508         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6509         return masked;
6510 }
6511
6512 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
6513 {
6514         struct vcpu_vmx *vmx = to_vmx(vcpu);
6515
6516         if (!enable_vnmi) {
6517                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
6518                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
6519                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
6520                 }
6521         } else {
6522                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6523                 if (masked)
6524                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6525                                       GUEST_INTR_STATE_NMI);
6526                 else
6527                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
6528                                         GUEST_INTR_STATE_NMI);
6529         }
6530 }
6531
6532 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
6533 {
6534         if (to_vmx(vcpu)->nested.nested_run_pending)
6535                 return 0;
6536
6537         if (!enable_vnmi &&
6538             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
6539                 return 0;
6540
6541         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6542                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
6543                    | GUEST_INTR_STATE_NMI));
6544 }
6545
6546 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
6547 {
6548         return (!to_vmx(vcpu)->nested.nested_run_pending &&
6549                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
6550                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6551                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
6552 }
6553
6554 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
6555 {
6556         int ret;
6557
6558         if (enable_unrestricted_guest)
6559                 return 0;
6560
6561         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
6562                                     PAGE_SIZE * 3);
6563         if (ret)
6564                 return ret;
6565         to_kvm_vmx(kvm)->tss_addr = addr;
6566         return init_rmode_tss(kvm);
6567 }
6568
6569 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
6570 {
6571         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
6572         return 0;
6573 }
6574
6575 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6576 {
6577         switch (vec) {
6578         case BP_VECTOR:
6579                 /*
6580                  * Update instruction length as we may reinject the exception
6581                  * from user space while in guest debugging mode.
6582                  */
6583                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
6584                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6585                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6586                         return false;
6587                 /* fall through */
6588         case DB_VECTOR:
6589                 if (vcpu->guest_debug &
6590                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6591                         return false;
6592                 /* fall through */
6593         case DE_VECTOR:
6594         case OF_VECTOR:
6595         case BR_VECTOR:
6596         case UD_VECTOR:
6597         case DF_VECTOR:
6598         case SS_VECTOR:
6599         case GP_VECTOR:
6600         case MF_VECTOR:
6601                 return true;
6602         break;
6603         }
6604         return false;
6605 }
6606
6607 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
6608                                   int vec, u32 err_code)
6609 {
6610         /*
6611          * Instruction with address size override prefix opcode 0x67
6612          * Cause the #SS fault with 0 error code in VM86 mode.
6613          */
6614         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
6615                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
6616                         if (vcpu->arch.halt_request) {
6617                                 vcpu->arch.halt_request = 0;
6618                                 return kvm_vcpu_halt(vcpu);
6619                         }
6620                         return 1;
6621                 }
6622                 return 0;
6623         }
6624
6625         /*
6626          * Forward all other exceptions that are valid in real mode.
6627          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
6628          *        the required debugging infrastructure rework.
6629          */
6630         kvm_queue_exception(vcpu, vec);
6631         return 1;
6632 }
6633
6634 /*
6635  * Trigger machine check on the host. We assume all the MSRs are already set up
6636  * by the CPU and that we still run on the same CPU as the MCE occurred on.
6637  * We pass a fake environment to the machine check handler because we want
6638  * the guest to be always treated like user space, no matter what context
6639  * it used internally.
6640  */
6641 static void kvm_machine_check(void)
6642 {
6643 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
6644         struct pt_regs regs = {
6645                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
6646                 .flags = X86_EFLAGS_IF,
6647         };
6648
6649         do_machine_check(&regs, 0);
6650 #endif
6651 }
6652
6653 static int handle_machine_check(struct kvm_vcpu *vcpu)
6654 {
6655         /* already handled by vcpu_run */
6656         return 1;
6657 }
6658
6659 static int handle_exception(struct kvm_vcpu *vcpu)
6660 {
6661         struct vcpu_vmx *vmx = to_vmx(vcpu);
6662         struct kvm_run *kvm_run = vcpu->run;
6663         u32 intr_info, ex_no, error_code;
6664         unsigned long cr2, rip, dr6;
6665         u32 vect_info;
6666         enum emulation_result er;
6667
6668         vect_info = vmx->idt_vectoring_info;
6669         intr_info = vmx->exit_intr_info;
6670
6671         if (is_machine_check(intr_info))
6672                 return handle_machine_check(vcpu);
6673
6674         if (is_nmi(intr_info))
6675                 return 1;  /* already handled by vmx_vcpu_run() */
6676
6677         if (is_invalid_opcode(intr_info))
6678                 return handle_ud(vcpu);
6679
6680         error_code = 0;
6681         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6682                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6683
6684         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
6685                 WARN_ON_ONCE(!enable_vmware_backdoor);
6686                 er = emulate_instruction(vcpu,
6687                         EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
6688                 if (er == EMULATE_USER_EXIT)
6689                         return 0;
6690                 else if (er != EMULATE_DONE)
6691                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
6692                 return 1;
6693         }
6694
6695         /*
6696          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
6697          * MMIO, it is better to report an internal error.
6698          * See the comments in vmx_handle_exit.
6699          */
6700         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
6701             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
6702                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6703                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
6704                 vcpu->run->internal.ndata = 3;
6705                 vcpu->run->internal.data[0] = vect_info;
6706                 vcpu->run->internal.data[1] = intr_info;
6707                 vcpu->run->internal.data[2] = error_code;
6708                 return 0;
6709         }
6710
6711         if (is_page_fault(intr_info)) {
6712                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
6713                 /* EPT won't cause page fault directly */
6714                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
6715                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
6716         }
6717
6718         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
6719
6720         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
6721                 return handle_rmode_exception(vcpu, ex_no, error_code);
6722
6723         switch (ex_no) {
6724         case AC_VECTOR:
6725                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
6726                 return 1;
6727         case DB_VECTOR:
6728                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
6729                 if (!(vcpu->guest_debug &
6730                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
6731                         vcpu->arch.dr6 &= ~15;
6732                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6733                         if (is_icebp(intr_info))
6734                                 skip_emulated_instruction(vcpu);
6735
6736                         kvm_queue_exception(vcpu, DB_VECTOR);
6737                         return 1;
6738                 }
6739                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
6740                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
6741                 /* fall through */
6742         case BP_VECTOR:
6743                 /*
6744                  * Update instruction length as we may reinject #BP from
6745                  * user space while in guest debugging mode. Reading it for
6746                  * #DB as well causes no harm, it is not used in that case.
6747                  */
6748                 vmx->vcpu.arch.event_exit_inst_len =
6749                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6750                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6751                 rip = kvm_rip_read(vcpu);
6752                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
6753                 kvm_run->debug.arch.exception = ex_no;
6754                 break;
6755         default:
6756                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
6757                 kvm_run->ex.exception = ex_no;
6758                 kvm_run->ex.error_code = error_code;
6759                 break;
6760         }
6761         return 0;
6762 }
6763
6764 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6765 {
6766         ++vcpu->stat.irq_exits;
6767         return 1;
6768 }
6769
6770 static int handle_triple_fault(struct kvm_vcpu *vcpu)
6771 {
6772         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6773         vcpu->mmio_needed = 0;
6774         return 0;
6775 }
6776
6777 static int handle_io(struct kvm_vcpu *vcpu)
6778 {
6779         unsigned long exit_qualification;
6780         int size, in, string;
6781         unsigned port;
6782
6783         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6784         string = (exit_qualification & 16) != 0;
6785
6786         ++vcpu->stat.io_exits;
6787
6788         if (string)
6789                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6790
6791         port = exit_qualification >> 16;
6792         size = (exit_qualification & 7) + 1;
6793         in = (exit_qualification & 8) != 0;
6794
6795         return kvm_fast_pio(vcpu, size, port, in);
6796 }
6797
6798 static void
6799 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6800 {
6801         /*
6802          * Patch in the VMCALL instruction:
6803          */
6804         hypercall[0] = 0x0f;
6805         hypercall[1] = 0x01;
6806         hypercall[2] = 0xc1;
6807 }
6808
6809 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
6810 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6811 {
6812         if (is_guest_mode(vcpu)) {
6813                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6814                 unsigned long orig_val = val;
6815
6816                 /*
6817                  * We get here when L2 changed cr0 in a way that did not change
6818                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
6819                  * but did change L0 shadowed bits. So we first calculate the
6820                  * effective cr0 value that L1 would like to write into the
6821                  * hardware. It consists of the L2-owned bits from the new
6822                  * value combined with the L1-owned bits from L1's guest_cr0.
6823                  */
6824                 val = (val & ~vmcs12->cr0_guest_host_mask) |
6825                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6826
6827                 if (!nested_guest_cr0_valid(vcpu, val))
6828                         return 1;
6829
6830                 if (kvm_set_cr0(vcpu, val))
6831                         return 1;
6832                 vmcs_writel(CR0_READ_SHADOW, orig_val);
6833                 return 0;
6834         } else {
6835                 if (to_vmx(vcpu)->nested.vmxon &&
6836                     !nested_host_cr0_valid(vcpu, val))
6837                         return 1;
6838
6839                 return kvm_set_cr0(vcpu, val);
6840         }
6841 }
6842
6843 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6844 {
6845         if (is_guest_mode(vcpu)) {
6846                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6847                 unsigned long orig_val = val;
6848
6849                 /* analogously to handle_set_cr0 */
6850                 val = (val & ~vmcs12->cr4_guest_host_mask) |
6851                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6852                 if (kvm_set_cr4(vcpu, val))
6853                         return 1;
6854                 vmcs_writel(CR4_READ_SHADOW, orig_val);
6855                 return 0;
6856         } else
6857                 return kvm_set_cr4(vcpu, val);
6858 }
6859
6860 static int handle_desc(struct kvm_vcpu *vcpu)
6861 {
6862         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
6863         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6864 }
6865
6866 static int handle_cr(struct kvm_vcpu *vcpu)
6867 {
6868         unsigned long exit_qualification, val;
6869         int cr;
6870         int reg;
6871         int err;
6872         int ret;
6873
6874         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6875         cr = exit_qualification & 15;
6876         reg = (exit_qualification >> 8) & 15;
6877         switch ((exit_qualification >> 4) & 3) {
6878         case 0: /* mov to cr */
6879                 val = kvm_register_readl(vcpu, reg);
6880                 trace_kvm_cr_write(cr, val);
6881                 switch (cr) {
6882                 case 0:
6883                         err = handle_set_cr0(vcpu, val);
6884                         return kvm_complete_insn_gp(vcpu, err);
6885                 case 3:
6886                         WARN_ON_ONCE(enable_unrestricted_guest);
6887                         err = kvm_set_cr3(vcpu, val);
6888                         return kvm_complete_insn_gp(vcpu, err);
6889                 case 4:
6890                         err = handle_set_cr4(vcpu, val);
6891                         return kvm_complete_insn_gp(vcpu, err);
6892                 case 8: {
6893                                 u8 cr8_prev = kvm_get_cr8(vcpu);
6894                                 u8 cr8 = (u8)val;
6895                                 err = kvm_set_cr8(vcpu, cr8);
6896                                 ret = kvm_complete_insn_gp(vcpu, err);
6897                                 if (lapic_in_kernel(vcpu))
6898                                         return ret;
6899                                 if (cr8_prev <= cr8)
6900                                         return ret;
6901                                 /*
6902                                  * TODO: we might be squashing a
6903                                  * KVM_GUESTDBG_SINGLESTEP-triggered
6904                                  * KVM_EXIT_DEBUG here.
6905                                  */
6906                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
6907                                 return 0;
6908                         }
6909                 }
6910                 break;
6911         case 2: /* clts */
6912                 WARN_ONCE(1, "Guest should always own CR0.TS");
6913                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
6914                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6915                 return kvm_skip_emulated_instruction(vcpu);
6916         case 1: /*mov from cr*/
6917                 switch (cr) {
6918                 case 3:
6919                         WARN_ON_ONCE(enable_unrestricted_guest);
6920                         val = kvm_read_cr3(vcpu);
6921                         kvm_register_write(vcpu, reg, val);
6922                         trace_kvm_cr_read(cr, val);
6923                         return kvm_skip_emulated_instruction(vcpu);
6924                 case 8:
6925                         val = kvm_get_cr8(vcpu);
6926                         kvm_register_write(vcpu, reg, val);
6927                         trace_kvm_cr_read(cr, val);
6928                         return kvm_skip_emulated_instruction(vcpu);
6929                 }
6930                 break;
6931         case 3: /* lmsw */
6932                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6933                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
6934                 kvm_lmsw(vcpu, val);
6935
6936                 return kvm_skip_emulated_instruction(vcpu);
6937         default:
6938                 break;
6939         }
6940         vcpu->run->exit_reason = 0;
6941         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6942                (int)(exit_qualification >> 4) & 3, cr);
6943         return 0;
6944 }
6945
6946 static int handle_dr(struct kvm_vcpu *vcpu)
6947 {
6948         unsigned long exit_qualification;
6949         int dr, dr7, reg;
6950
6951         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6952         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6953
6954         /* First, if DR does not exist, trigger UD */
6955         if (!kvm_require_dr(vcpu, dr))
6956                 return 1;
6957
6958         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
6959         if (!kvm_require_cpl(vcpu, 0))
6960                 return 1;
6961         dr7 = vmcs_readl(GUEST_DR7);
6962         if (dr7 & DR7_GD) {
6963                 /*
6964                  * As the vm-exit takes precedence over the debug trap, we
6965                  * need to emulate the latter, either for the host or the
6966                  * guest debugging itself.
6967                  */
6968                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6969                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6970                         vcpu->run->debug.arch.dr7 = dr7;
6971                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6972                         vcpu->run->debug.arch.exception = DB_VECTOR;
6973                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6974                         return 0;
6975                 } else {
6976                         vcpu->arch.dr6 &= ~15;
6977                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6978                         kvm_queue_exception(vcpu, DB_VECTOR);
6979                         return 1;
6980                 }
6981         }
6982
6983         if (vcpu->guest_debug == 0) {
6984                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6985                                 CPU_BASED_MOV_DR_EXITING);
6986
6987                 /*
6988                  * No more DR vmexits; force a reload of the debug registers
6989                  * and reenter on this instruction.  The next vmexit will
6990                  * retrieve the full state of the debug registers.
6991                  */
6992                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6993                 return 1;
6994         }
6995
6996         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6997         if (exit_qualification & TYPE_MOV_FROM_DR) {
6998                 unsigned long val;
6999
7000                 if (kvm_get_dr(vcpu, dr, &val))
7001                         return 1;
7002                 kvm_register_write(vcpu, reg, val);
7003         } else
7004                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
7005                         return 1;
7006
7007         return kvm_skip_emulated_instruction(vcpu);
7008 }
7009
7010 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
7011 {
7012         return vcpu->arch.dr6;
7013 }
7014
7015 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
7016 {
7017 }
7018
7019 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
7020 {
7021         get_debugreg(vcpu->arch.db[0], 0);
7022         get_debugreg(vcpu->arch.db[1], 1);
7023         get_debugreg(vcpu->arch.db[2], 2);
7024         get_debugreg(vcpu->arch.db[3], 3);
7025         get_debugreg(vcpu->arch.dr6, 6);
7026         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
7027
7028         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
7029         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
7030 }
7031
7032 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
7033 {
7034         vmcs_writel(GUEST_DR7, val);
7035 }
7036
7037 static int handle_cpuid(struct kvm_vcpu *vcpu)
7038 {
7039         return kvm_emulate_cpuid(vcpu);
7040 }
7041
7042 static int handle_rdmsr(struct kvm_vcpu *vcpu)
7043 {
7044         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
7045         struct msr_data msr_info;
7046
7047         msr_info.index = ecx;
7048         msr_info.host_initiated = false;
7049         if (vmx_get_msr(vcpu, &msr_info)) {
7050                 trace_kvm_msr_read_ex(ecx);
7051                 kvm_inject_gp(vcpu, 0);
7052                 return 1;
7053         }
7054
7055         trace_kvm_msr_read(ecx, msr_info.data);
7056
7057         /* FIXME: handling of bits 32:63 of rax, rdx */
7058         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
7059         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
7060         return kvm_skip_emulated_instruction(vcpu);
7061 }
7062
7063 static int handle_wrmsr(struct kvm_vcpu *vcpu)
7064 {
7065         struct msr_data msr;
7066         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
7067         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
7068                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
7069
7070         msr.data = data;
7071         msr.index = ecx;
7072         msr.host_initiated = false;
7073         if (kvm_set_msr(vcpu, &msr) != 0) {
7074                 trace_kvm_msr_write_ex(ecx, data);
7075                 kvm_inject_gp(vcpu, 0);
7076                 return 1;
7077         }
7078
7079         trace_kvm_msr_write(ecx, data);
7080         return kvm_skip_emulated_instruction(vcpu);
7081 }
7082
7083 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
7084 {
7085         kvm_apic_update_ppr(vcpu);
7086         return 1;
7087 }
7088
7089 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
7090 {
7091         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
7092                         CPU_BASED_VIRTUAL_INTR_PENDING);
7093
7094         kvm_make_request(KVM_REQ_EVENT, vcpu);
7095
7096         ++vcpu->stat.irq_window_exits;
7097         return 1;
7098 }
7099
7100 static int handle_halt(struct kvm_vcpu *vcpu)
7101 {
7102         return kvm_emulate_halt(vcpu);
7103 }
7104
7105 static int handle_vmcall(struct kvm_vcpu *vcpu)
7106 {
7107         return kvm_emulate_hypercall(vcpu);
7108 }
7109
7110 static int handle_invd(struct kvm_vcpu *vcpu)
7111 {
7112         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
7113 }
7114
7115 static int handle_invlpg(struct kvm_vcpu *vcpu)
7116 {
7117         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7118
7119         kvm_mmu_invlpg(vcpu, exit_qualification);
7120         return kvm_skip_emulated_instruction(vcpu);
7121 }
7122
7123 static int handle_rdpmc(struct kvm_vcpu *vcpu)
7124 {
7125         int err;
7126
7127         err = kvm_rdpmc(vcpu);
7128         return kvm_complete_insn_gp(vcpu, err);
7129 }
7130
7131 static int handle_wbinvd(struct kvm_vcpu *vcpu)
7132 {
7133         return kvm_emulate_wbinvd(vcpu);
7134 }
7135
7136 static int handle_xsetbv(struct kvm_vcpu *vcpu)
7137 {
7138         u64 new_bv = kvm_read_edx_eax(vcpu);
7139         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
7140
7141         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
7142                 return kvm_skip_emulated_instruction(vcpu);
7143         return 1;
7144 }
7145
7146 static int handle_xsaves(struct kvm_vcpu *vcpu)
7147 {
7148         kvm_skip_emulated_instruction(vcpu);
7149         WARN(1, "this should never happen\n");
7150         return 1;
7151 }
7152
7153 static int handle_xrstors(struct kvm_vcpu *vcpu)
7154 {
7155         kvm_skip_emulated_instruction(vcpu);
7156         WARN(1, "this should never happen\n");
7157         return 1;
7158 }
7159
7160 static int handle_apic_access(struct kvm_vcpu *vcpu)
7161 {
7162         if (likely(fasteoi)) {
7163                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7164                 int access_type, offset;
7165
7166                 access_type = exit_qualification & APIC_ACCESS_TYPE;
7167                 offset = exit_qualification & APIC_ACCESS_OFFSET;
7168                 /*
7169                  * Sane guest uses MOV to write EOI, with written value
7170                  * not cared. So make a short-circuit here by avoiding
7171                  * heavy instruction emulation.
7172                  */
7173                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
7174                     (offset == APIC_EOI)) {
7175                         kvm_lapic_set_eoi(vcpu);
7176                         return kvm_skip_emulated_instruction(vcpu);
7177                 }
7178         }
7179         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
7180 }
7181
7182 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
7183 {
7184         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7185         int vector = exit_qualification & 0xff;
7186
7187         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
7188         kvm_apic_set_eoi_accelerated(vcpu, vector);
7189         return 1;
7190 }
7191
7192 static int handle_apic_write(struct kvm_vcpu *vcpu)
7193 {
7194         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7195         u32 offset = exit_qualification & 0xfff;
7196
7197         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
7198         kvm_apic_write_nodecode(vcpu, offset);
7199         return 1;
7200 }
7201
7202 static int handle_task_switch(struct kvm_vcpu *vcpu)
7203 {
7204         struct vcpu_vmx *vmx = to_vmx(vcpu);
7205         unsigned long exit_qualification;
7206         bool has_error_code = false;
7207         u32 error_code = 0;
7208         u16 tss_selector;
7209         int reason, type, idt_v, idt_index;
7210
7211         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7212         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
7213         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
7214
7215         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7216
7217         reason = (u32)exit_qualification >> 30;
7218         if (reason == TASK_SWITCH_GATE && idt_v) {
7219                 switch (type) {
7220                 case INTR_TYPE_NMI_INTR:
7221                         vcpu->arch.nmi_injected = false;
7222                         vmx_set_nmi_mask(vcpu, true);
7223                         break;
7224                 case INTR_TYPE_EXT_INTR:
7225                 case INTR_TYPE_SOFT_INTR:
7226                         kvm_clear_interrupt_queue(vcpu);
7227                         break;
7228                 case INTR_TYPE_HARD_EXCEPTION:
7229                         if (vmx->idt_vectoring_info &
7230                             VECTORING_INFO_DELIVER_CODE_MASK) {
7231                                 has_error_code = true;
7232                                 error_code =
7233                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
7234                         }
7235                         /* fall through */
7236                 case INTR_TYPE_SOFT_EXCEPTION:
7237                         kvm_clear_exception_queue(vcpu);
7238                         break;
7239                 default:
7240                         break;
7241                 }
7242         }
7243         tss_selector = exit_qualification;
7244
7245         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
7246                        type != INTR_TYPE_EXT_INTR &&
7247                        type != INTR_TYPE_NMI_INTR))
7248                 skip_emulated_instruction(vcpu);
7249
7250         if (kvm_task_switch(vcpu, tss_selector,
7251                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
7252                             has_error_code, error_code) == EMULATE_FAIL) {
7253                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7254                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7255                 vcpu->run->internal.ndata = 0;
7256                 return 0;
7257         }
7258
7259         /*
7260          * TODO: What about debug traps on tss switch?
7261          *       Are we supposed to inject them and update dr6?
7262          */
7263
7264         return 1;
7265 }
7266
7267 static int handle_ept_violation(struct kvm_vcpu *vcpu)
7268 {
7269         unsigned long exit_qualification;
7270         gpa_t gpa;
7271         u64 error_code;
7272
7273         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7274
7275         /*
7276          * EPT violation happened while executing iret from NMI,
7277          * "blocked by NMI" bit has to be set before next VM entry.
7278          * There are errata that may cause this bit to not be set:
7279          * AAK134, BY25.
7280          */
7281         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7282                         enable_vnmi &&
7283                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7284                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
7285
7286         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
7287         trace_kvm_page_fault(gpa, exit_qualification);
7288
7289         /* Is it a read fault? */
7290         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
7291                      ? PFERR_USER_MASK : 0;
7292         /* Is it a write fault? */
7293         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
7294                       ? PFERR_WRITE_MASK : 0;
7295         /* Is it a fetch fault? */
7296         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
7297                       ? PFERR_FETCH_MASK : 0;
7298         /* ept page table entry is present? */
7299         error_code |= (exit_qualification &
7300                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
7301                         EPT_VIOLATION_EXECUTABLE))
7302                       ? PFERR_PRESENT_MASK : 0;
7303
7304         error_code |= (exit_qualification & 0x100) != 0 ?
7305                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
7306
7307         vcpu->arch.exit_qualification = exit_qualification;
7308         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
7309 }
7310
7311 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
7312 {
7313         gpa_t gpa;
7314
7315         /*
7316          * A nested guest cannot optimize MMIO vmexits, because we have an
7317          * nGPA here instead of the required GPA.
7318          */
7319         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
7320         if (!is_guest_mode(vcpu) &&
7321             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
7322                 trace_kvm_fast_mmio(gpa);
7323                 /*
7324                  * Doing kvm_skip_emulated_instruction() depends on undefined
7325                  * behavior: Intel's manual doesn't mandate
7326                  * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
7327                  * occurs and while on real hardware it was observed to be set,
7328                  * other hypervisors (namely Hyper-V) don't set it, we end up
7329                  * advancing IP with some random value. Disable fast mmio when
7330                  * running nested and keep it for real hardware in hope that
7331                  * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
7332                  */
7333                 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
7334                         return kvm_skip_emulated_instruction(vcpu);
7335                 else
7336                         return x86_emulate_instruction(vcpu, gpa, EMULTYPE_SKIP,
7337                                                        NULL, 0) == EMULATE_DONE;
7338         }
7339
7340         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
7341 }
7342
7343 static int handle_nmi_window(struct kvm_vcpu *vcpu)
7344 {
7345         WARN_ON_ONCE(!enable_vnmi);
7346         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
7347                         CPU_BASED_VIRTUAL_NMI_PENDING);
7348         ++vcpu->stat.nmi_window_exits;
7349         kvm_make_request(KVM_REQ_EVENT, vcpu);
7350
7351         return 1;
7352 }
7353
7354 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
7355 {
7356         struct vcpu_vmx *vmx = to_vmx(vcpu);
7357         enum emulation_result err = EMULATE_DONE;
7358         int ret = 1;
7359         u32 cpu_exec_ctrl;
7360         bool intr_window_requested;
7361         unsigned count = 130;
7362
7363         /*
7364          * We should never reach the point where we are emulating L2
7365          * due to invalid guest state as that means we incorrectly
7366          * allowed a nested VMEntry with an invalid vmcs12.
7367          */
7368         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
7369
7370         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7371         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
7372
7373         while (vmx->emulation_required && count-- != 0) {
7374                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
7375                         return handle_interrupt_window(&vmx->vcpu);
7376
7377                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
7378                         return 1;
7379
7380                 err = emulate_instruction(vcpu, 0);
7381
7382                 if (err == EMULATE_USER_EXIT) {
7383                         ++vcpu->stat.mmio_exits;
7384                         ret = 0;
7385                         goto out;
7386                 }
7387
7388                 if (err != EMULATE_DONE)
7389                         goto emulation_error;
7390
7391                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
7392                     vcpu->arch.exception.pending)
7393                         goto emulation_error;
7394
7395                 if (vcpu->arch.halt_request) {
7396                         vcpu->arch.halt_request = 0;
7397                         ret = kvm_vcpu_halt(vcpu);
7398                         goto out;
7399                 }
7400
7401                 if (signal_pending(current))
7402                         goto out;
7403                 if (need_resched())
7404                         schedule();
7405         }
7406
7407 out:
7408         return ret;
7409
7410 emulation_error:
7411         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7412         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7413         vcpu->run->internal.ndata = 0;
7414         return 0;
7415 }
7416
7417 static void grow_ple_window(struct kvm_vcpu *vcpu)
7418 {
7419         struct vcpu_vmx *vmx = to_vmx(vcpu);
7420         int old = vmx->ple_window;
7421
7422         vmx->ple_window = __grow_ple_window(old, ple_window,
7423                                             ple_window_grow,
7424                                             ple_window_max);
7425
7426         if (vmx->ple_window != old)
7427                 vmx->ple_window_dirty = true;
7428
7429         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
7430 }
7431
7432 static void shrink_ple_window(struct kvm_vcpu *vcpu)
7433 {
7434         struct vcpu_vmx *vmx = to_vmx(vcpu);
7435         int old = vmx->ple_window;
7436
7437         vmx->ple_window = __shrink_ple_window(old, ple_window,
7438                                               ple_window_shrink,
7439                                               ple_window);
7440
7441         if (vmx->ple_window != old)
7442                 vmx->ple_window_dirty = true;
7443
7444         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
7445 }
7446
7447 /*
7448  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
7449  */
7450 static void wakeup_handler(void)
7451 {
7452         struct kvm_vcpu *vcpu;
7453         int cpu = smp_processor_id();
7454
7455         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7456         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
7457                         blocked_vcpu_list) {
7458                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7459
7460                 if (pi_test_on(pi_desc) == 1)
7461                         kvm_vcpu_kick(vcpu);
7462         }
7463         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7464 }
7465
7466 static void vmx_enable_tdp(void)
7467 {
7468         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
7469                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
7470                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
7471                 0ull, VMX_EPT_EXECUTABLE_MASK,
7472                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
7473                 VMX_EPT_RWX_MASK, 0ull);
7474
7475         ept_set_mmio_spte_mask();
7476         kvm_enable_tdp();
7477 }
7478
7479 static __init int hardware_setup(void)
7480 {
7481         int r = -ENOMEM, i;
7482
7483         rdmsrl_safe(MSR_EFER, &host_efer);
7484
7485         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7486                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7487
7488         for (i = 0; i < VMX_BITMAP_NR; i++) {
7489                 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
7490                 if (!vmx_bitmap[i])
7491                         goto out;
7492         }
7493
7494         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
7495         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
7496
7497         if (setup_vmcs_config(&vmcs_config) < 0) {
7498                 r = -EIO;
7499                 goto out;
7500         }
7501
7502         if (boot_cpu_has(X86_FEATURE_NX))
7503                 kvm_enable_efer_bits(EFER_NX);
7504
7505         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7506                 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7507                 enable_vpid = 0;
7508
7509         if (!cpu_has_vmx_ept() ||
7510             !cpu_has_vmx_ept_4levels() ||
7511             !cpu_has_vmx_ept_mt_wb() ||
7512             !cpu_has_vmx_invept_global())
7513                 enable_ept = 0;
7514
7515         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7516                 enable_ept_ad_bits = 0;
7517
7518         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7519                 enable_unrestricted_guest = 0;
7520
7521         if (!cpu_has_vmx_flexpriority())
7522                 flexpriority_enabled = 0;
7523
7524         if (!cpu_has_virtual_nmis())
7525                 enable_vnmi = 0;
7526
7527         /*
7528          * set_apic_access_page_addr() is used to reload apic access
7529          * page upon invalidation.  No need to do anything if not
7530          * using the APIC_ACCESS_ADDR VMCS field.
7531          */
7532         if (!flexpriority_enabled)
7533                 kvm_x86_ops->set_apic_access_page_addr = NULL;
7534
7535         if (!cpu_has_vmx_tpr_shadow())
7536                 kvm_x86_ops->update_cr8_intercept = NULL;
7537
7538         if (enable_ept && !cpu_has_vmx_ept_2m_page())
7539                 kvm_disable_largepages();
7540
7541         if (!cpu_has_vmx_ple()) {
7542                 ple_gap = 0;
7543                 ple_window = 0;
7544                 ple_window_grow = 0;
7545                 ple_window_max = 0;
7546                 ple_window_shrink = 0;
7547         }
7548
7549         if (!cpu_has_vmx_apicv()) {
7550                 enable_apicv = 0;
7551                 kvm_x86_ops->sync_pir_to_irr = NULL;
7552         }
7553
7554         if (cpu_has_vmx_tsc_scaling()) {
7555                 kvm_has_tsc_control = true;
7556                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7557                 kvm_tsc_scaling_ratio_frac_bits = 48;
7558         }
7559
7560         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7561
7562         if (enable_ept)
7563                 vmx_enable_tdp();
7564         else
7565                 kvm_disable_tdp();
7566
7567         /*
7568          * Only enable PML when hardware supports PML feature, and both EPT
7569          * and EPT A/D bit features are enabled -- PML depends on them to work.
7570          */
7571         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7572                 enable_pml = 0;
7573
7574         if (!enable_pml) {
7575                 kvm_x86_ops->slot_enable_log_dirty = NULL;
7576                 kvm_x86_ops->slot_disable_log_dirty = NULL;
7577                 kvm_x86_ops->flush_log_dirty = NULL;
7578                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7579         }
7580
7581         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7582                 u64 vmx_msr;
7583
7584                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7585                 cpu_preemption_timer_multi =
7586                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7587         } else {
7588                 kvm_x86_ops->set_hv_timer = NULL;
7589                 kvm_x86_ops->cancel_hv_timer = NULL;
7590         }
7591
7592         if (!cpu_has_vmx_shadow_vmcs())
7593                 enable_shadow_vmcs = 0;
7594         if (enable_shadow_vmcs)
7595                 init_vmcs_shadow_fields();
7596
7597         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7598         nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv);
7599
7600         kvm_mce_cap_supported |= MCG_LMCE_P;
7601
7602         return alloc_kvm_area();
7603
7604 out:
7605         for (i = 0; i < VMX_BITMAP_NR; i++)
7606                 free_page((unsigned long)vmx_bitmap[i]);
7607
7608     return r;
7609 }
7610
7611 static __exit void hardware_unsetup(void)
7612 {
7613         int i;
7614
7615         for (i = 0; i < VMX_BITMAP_NR; i++)
7616                 free_page((unsigned long)vmx_bitmap[i]);
7617
7618         free_kvm_area();
7619 }
7620
7621 /*
7622  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
7623  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
7624  */
7625 static int handle_pause(struct kvm_vcpu *vcpu)
7626 {
7627         if (!kvm_pause_in_guest(vcpu->kvm))
7628                 grow_ple_window(vcpu);
7629
7630         /*
7631          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
7632          * VM-execution control is ignored if CPL > 0. OTOH, KVM
7633          * never set PAUSE_EXITING and just set PLE if supported,
7634          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
7635          */
7636         kvm_vcpu_on_spin(vcpu, true);
7637         return kvm_skip_emulated_instruction(vcpu);
7638 }
7639
7640 static int handle_nop(struct kvm_vcpu *vcpu)
7641 {
7642         return kvm_skip_emulated_instruction(vcpu);
7643 }
7644
7645 static int handle_mwait(struct kvm_vcpu *vcpu)
7646 {
7647         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
7648         return handle_nop(vcpu);
7649 }
7650
7651 static int handle_invalid_op(struct kvm_vcpu *vcpu)
7652 {
7653         kvm_queue_exception(vcpu, UD_VECTOR);
7654         return 1;
7655 }
7656
7657 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
7658 {
7659         return 1;
7660 }
7661
7662 static int handle_monitor(struct kvm_vcpu *vcpu)
7663 {
7664         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
7665         return handle_nop(vcpu);
7666 }
7667
7668 /*
7669  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7670  * set the success or error code of an emulated VMX instruction, as specified
7671  * by Vol 2B, VMX Instruction Reference, "Conventions".
7672  */
7673 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7674 {
7675         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7676                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7677                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7678 }
7679
7680 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7681 {
7682         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7683                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7684                             X86_EFLAGS_SF | X86_EFLAGS_OF))
7685                         | X86_EFLAGS_CF);
7686 }
7687
7688 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
7689                                         u32 vm_instruction_error)
7690 {
7691         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7692                 /*
7693                  * failValid writes the error number to the current VMCS, which
7694                  * can't be done there isn't a current VMCS.
7695                  */
7696                 nested_vmx_failInvalid(vcpu);
7697                 return;
7698         }
7699         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7700                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7701                             X86_EFLAGS_SF | X86_EFLAGS_OF))
7702                         | X86_EFLAGS_ZF);
7703         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7704         /*
7705          * We don't need to force a shadow sync because
7706          * VM_INSTRUCTION_ERROR is not shadowed
7707          */
7708 }
7709
7710 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7711 {
7712         /* TODO: not to reset guest simply here. */
7713         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7714         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
7715 }
7716
7717 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7718 {
7719         struct vcpu_vmx *vmx =
7720                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7721
7722         vmx->nested.preemption_timer_expired = true;
7723         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7724         kvm_vcpu_kick(&vmx->vcpu);
7725
7726         return HRTIMER_NORESTART;
7727 }
7728
7729 /*
7730  * Decode the memory-address operand of a vmx instruction, as recorded on an
7731  * exit caused by such an instruction (run by a guest hypervisor).
7732  * On success, returns 0. When the operand is invalid, returns 1 and throws
7733  * #UD or #GP.
7734  */
7735 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7736                                  unsigned long exit_qualification,
7737                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
7738 {
7739         gva_t off;
7740         bool exn;
7741         struct kvm_segment s;
7742
7743         /*
7744          * According to Vol. 3B, "Information for VM Exits Due to Instruction
7745          * Execution", on an exit, vmx_instruction_info holds most of the
7746          * addressing components of the operand. Only the displacement part
7747          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7748          * For how an actual address is calculated from all these components,
7749          * refer to Vol. 1, "Operand Addressing".
7750          */
7751         int  scaling = vmx_instruction_info & 3;
7752         int  addr_size = (vmx_instruction_info >> 7) & 7;
7753         bool is_reg = vmx_instruction_info & (1u << 10);
7754         int  seg_reg = (vmx_instruction_info >> 15) & 7;
7755         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
7756         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7757         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
7758         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
7759
7760         if (is_reg) {
7761                 kvm_queue_exception(vcpu, UD_VECTOR);
7762                 return 1;
7763         }
7764
7765         /* Addr = segment_base + offset */
7766         /* offset = base + [index * scale] + displacement */
7767         off = exit_qualification; /* holds the displacement */
7768         if (base_is_valid)
7769                 off += kvm_register_read(vcpu, base_reg);
7770         if (index_is_valid)
7771                 off += kvm_register_read(vcpu, index_reg)<<scaling;
7772         vmx_get_segment(vcpu, &s, seg_reg);
7773         *ret = s.base + off;
7774
7775         if (addr_size == 1) /* 32 bit */
7776                 *ret &= 0xffffffff;
7777
7778         /* Checks for #GP/#SS exceptions. */
7779         exn = false;
7780         if (is_long_mode(vcpu)) {
7781                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7782                  * non-canonical form. This is the only check on the memory
7783                  * destination for long mode!
7784                  */
7785                 exn = is_noncanonical_address(*ret, vcpu);
7786         } else if (is_protmode(vcpu)) {
7787                 /* Protected mode: apply checks for segment validity in the
7788                  * following order:
7789                  * - segment type check (#GP(0) may be thrown)
7790                  * - usability check (#GP(0)/#SS(0))
7791                  * - limit check (#GP(0)/#SS(0))
7792                  */
7793                 if (wr)
7794                         /* #GP(0) if the destination operand is located in a
7795                          * read-only data segment or any code segment.
7796                          */
7797                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
7798                 else
7799                         /* #GP(0) if the source operand is located in an
7800                          * execute-only code segment
7801                          */
7802                         exn = ((s.type & 0xa) == 8);
7803                 if (exn) {
7804                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7805                         return 1;
7806                 }
7807                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7808                  */
7809                 exn = (s.unusable != 0);
7810                 /* Protected mode: #GP(0)/#SS(0) if the memory
7811                  * operand is outside the segment limit.
7812                  */
7813                 exn = exn || (off + sizeof(u64) > s.limit);
7814         }
7815         if (exn) {
7816                 kvm_queue_exception_e(vcpu,
7817                                       seg_reg == VCPU_SREG_SS ?
7818                                                 SS_VECTOR : GP_VECTOR,
7819                                       0);
7820                 return 1;
7821         }
7822
7823         return 0;
7824 }
7825
7826 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
7827 {
7828         gva_t gva;
7829         struct x86_exception e;
7830
7831         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7832                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
7833                 return 1;
7834
7835         if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
7836                 kvm_inject_page_fault(vcpu, &e);
7837                 return 1;
7838         }
7839
7840         return 0;
7841 }
7842
7843 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7844 {
7845         struct vcpu_vmx *vmx = to_vmx(vcpu);
7846         struct vmcs *shadow_vmcs;
7847         int r;
7848
7849         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
7850         if (r < 0)
7851                 goto out_vmcs02;
7852
7853         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7854         if (!vmx->nested.cached_vmcs12)
7855                 goto out_cached_vmcs12;
7856
7857         if (enable_shadow_vmcs) {
7858                 shadow_vmcs = alloc_vmcs();
7859                 if (!shadow_vmcs)
7860                         goto out_shadow_vmcs;
7861                 /* mark vmcs as shadow */
7862                 shadow_vmcs->revision_id |= (1u << 31);
7863                 /* init shadow vmcs */
7864                 vmcs_clear(shadow_vmcs);
7865                 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7866         }
7867
7868         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7869                      HRTIMER_MODE_REL_PINNED);
7870         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7871
7872         vmx->nested.vmxon = true;
7873         return 0;
7874
7875 out_shadow_vmcs:
7876         kfree(vmx->nested.cached_vmcs12);
7877
7878 out_cached_vmcs12:
7879         free_loaded_vmcs(&vmx->nested.vmcs02);
7880
7881 out_vmcs02:
7882         return -ENOMEM;
7883 }
7884
7885 /*
7886  * Emulate the VMXON instruction.
7887  * Currently, we just remember that VMX is active, and do not save or even
7888  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7889  * do not currently need to store anything in that guest-allocated memory
7890  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7891  * argument is different from the VMXON pointer (which the spec says they do).
7892  */
7893 static int handle_vmon(struct kvm_vcpu *vcpu)
7894 {
7895         int ret;
7896         gpa_t vmptr;
7897         struct page *page;
7898         struct vcpu_vmx *vmx = to_vmx(vcpu);
7899         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7900                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7901
7902         /*
7903          * The Intel VMX Instruction Reference lists a bunch of bits that are
7904          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7905          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7906          * Otherwise, we should fail with #UD.  But most faulting conditions
7907          * have already been checked by hardware, prior to the VM-exit for
7908          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
7909          * that bit set to 1 in non-root mode.
7910          */
7911         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7912                 kvm_queue_exception(vcpu, UD_VECTOR);
7913                 return 1;
7914         }
7915
7916         /* CPL=0 must be checked manually. */
7917         if (vmx_get_cpl(vcpu)) {
7918                 kvm_queue_exception(vcpu, UD_VECTOR);
7919                 return 1;
7920         }
7921
7922         if (vmx->nested.vmxon) {
7923                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7924                 return kvm_skip_emulated_instruction(vcpu);
7925         }
7926
7927         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7928                         != VMXON_NEEDED_FEATURES) {
7929                 kvm_inject_gp(vcpu, 0);
7930                 return 1;
7931         }
7932
7933         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7934                 return 1;
7935
7936         /*
7937          * SDM 3: 24.11.5
7938          * The first 4 bytes of VMXON region contain the supported
7939          * VMCS revision identifier
7940          *
7941          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7942          * which replaces physical address width with 32
7943          */
7944         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7945                 nested_vmx_failInvalid(vcpu);
7946                 return kvm_skip_emulated_instruction(vcpu);
7947         }
7948
7949         page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7950         if (is_error_page(page)) {
7951                 nested_vmx_failInvalid(vcpu);
7952                 return kvm_skip_emulated_instruction(vcpu);
7953         }
7954         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7955                 kunmap(page);
7956                 kvm_release_page_clean(page);
7957                 nested_vmx_failInvalid(vcpu);
7958                 return kvm_skip_emulated_instruction(vcpu);
7959         }
7960         kunmap(page);
7961         kvm_release_page_clean(page);
7962
7963         vmx->nested.vmxon_ptr = vmptr;
7964         ret = enter_vmx_operation(vcpu);
7965         if (ret)
7966                 return ret;
7967
7968         nested_vmx_succeed(vcpu);
7969         return kvm_skip_emulated_instruction(vcpu);
7970 }
7971
7972 /*
7973  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7974  * for running VMX instructions (except VMXON, whose prerequisites are
7975  * slightly different). It also specifies what exception to inject otherwise.
7976  * Note that many of these exceptions have priority over VM exits, so they
7977  * don't have to be checked again here.
7978  */
7979 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7980 {
7981         if (vmx_get_cpl(vcpu)) {
7982                 kvm_queue_exception(vcpu, UD_VECTOR);
7983                 return 0;
7984         }
7985
7986         if (!to_vmx(vcpu)->nested.vmxon) {
7987                 kvm_queue_exception(vcpu, UD_VECTOR);
7988                 return 0;
7989         }
7990         return 1;
7991 }
7992
7993 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7994 {
7995         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7996         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7997 }
7998
7999 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
8000 {
8001         if (vmx->nested.current_vmptr == -1ull)
8002                 return;
8003
8004         if (enable_shadow_vmcs) {
8005                 /* copy to memory all shadowed fields in case
8006                    they were modified */
8007                 copy_shadow_to_vmcs12(vmx);
8008                 vmx->nested.sync_shadow_vmcs = false;
8009                 vmx_disable_shadow_vmcs(vmx);
8010         }
8011         vmx->nested.posted_intr_nv = -1;
8012
8013         /* Flush VMCS12 to guest memory */
8014         kvm_vcpu_write_guest_page(&vmx->vcpu,
8015                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
8016                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
8017
8018         vmx->nested.current_vmptr = -1ull;
8019 }
8020
8021 /*
8022  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
8023  * just stops using VMX.
8024  */
8025 static void free_nested(struct vcpu_vmx *vmx)
8026 {
8027         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
8028                 return;
8029
8030         vmx->nested.vmxon = false;
8031         vmx->nested.smm.vmxon = false;
8032         free_vpid(vmx->nested.vpid02);
8033         vmx->nested.posted_intr_nv = -1;
8034         vmx->nested.current_vmptr = -1ull;
8035         if (enable_shadow_vmcs) {
8036                 vmx_disable_shadow_vmcs(vmx);
8037                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
8038                 free_vmcs(vmx->vmcs01.shadow_vmcs);
8039                 vmx->vmcs01.shadow_vmcs = NULL;
8040         }
8041         kfree(vmx->nested.cached_vmcs12);
8042         /* Unpin physical memory we referred to in the vmcs02 */
8043         if (vmx->nested.apic_access_page) {
8044                 kvm_release_page_dirty(vmx->nested.apic_access_page);
8045                 vmx->nested.apic_access_page = NULL;
8046         }
8047         if (vmx->nested.virtual_apic_page) {
8048                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
8049                 vmx->nested.virtual_apic_page = NULL;
8050         }
8051         if (vmx->nested.pi_desc_page) {
8052                 kunmap(vmx->nested.pi_desc_page);
8053                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
8054                 vmx->nested.pi_desc_page = NULL;
8055                 vmx->nested.pi_desc = NULL;
8056         }
8057
8058         free_loaded_vmcs(&vmx->nested.vmcs02);
8059 }
8060
8061 /* Emulate the VMXOFF instruction */
8062 static int handle_vmoff(struct kvm_vcpu *vcpu)
8063 {
8064         if (!nested_vmx_check_permission(vcpu))
8065                 return 1;
8066         free_nested(to_vmx(vcpu));
8067         nested_vmx_succeed(vcpu);
8068         return kvm_skip_emulated_instruction(vcpu);
8069 }
8070
8071 /* Emulate the VMCLEAR instruction */
8072 static int handle_vmclear(struct kvm_vcpu *vcpu)
8073 {
8074         struct vcpu_vmx *vmx = to_vmx(vcpu);
8075         u32 zero = 0;
8076         gpa_t vmptr;
8077
8078         if (!nested_vmx_check_permission(vcpu))
8079                 return 1;
8080
8081         if (nested_vmx_get_vmptr(vcpu, &vmptr))
8082                 return 1;
8083
8084         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8085                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
8086                 return kvm_skip_emulated_instruction(vcpu);
8087         }
8088
8089         if (vmptr == vmx->nested.vmxon_ptr) {
8090                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
8091                 return kvm_skip_emulated_instruction(vcpu);
8092         }
8093
8094         if (vmptr == vmx->nested.current_vmptr)
8095                 nested_release_vmcs12(vmx);
8096
8097         kvm_vcpu_write_guest(vcpu,
8098                         vmptr + offsetof(struct vmcs12, launch_state),
8099                         &zero, sizeof(zero));
8100
8101         nested_vmx_succeed(vcpu);
8102         return kvm_skip_emulated_instruction(vcpu);
8103 }
8104
8105 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
8106
8107 /* Emulate the VMLAUNCH instruction */
8108 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
8109 {
8110         return nested_vmx_run(vcpu, true);
8111 }
8112
8113 /* Emulate the VMRESUME instruction */
8114 static int handle_vmresume(struct kvm_vcpu *vcpu)
8115 {
8116
8117         return nested_vmx_run(vcpu, false);
8118 }
8119
8120 /*
8121  * Read a vmcs12 field. Since these can have varying lengths and we return
8122  * one type, we chose the biggest type (u64) and zero-extend the return value
8123  * to that size. Note that the caller, handle_vmread, might need to use only
8124  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
8125  * 64-bit fields are to be returned).
8126  */
8127 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
8128                                   unsigned long field, u64 *ret)
8129 {
8130         short offset = vmcs_field_to_offset(field);
8131         char *p;
8132
8133         if (offset < 0)
8134                 return offset;
8135
8136         p = ((char *)(get_vmcs12(vcpu))) + offset;
8137
8138         switch (vmcs_field_width(field)) {
8139         case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
8140                 *ret = *((natural_width *)p);
8141                 return 0;
8142         case VMCS_FIELD_WIDTH_U16:
8143                 *ret = *((u16 *)p);
8144                 return 0;
8145         case VMCS_FIELD_WIDTH_U32:
8146                 *ret = *((u32 *)p);
8147                 return 0;
8148         case VMCS_FIELD_WIDTH_U64:
8149                 *ret = *((u64 *)p);
8150                 return 0;
8151         default:
8152                 WARN_ON(1);
8153                 return -ENOENT;
8154         }
8155 }
8156
8157
8158 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
8159                                    unsigned long field, u64 field_value){
8160         short offset = vmcs_field_to_offset(field);
8161         char *p = ((char *) get_vmcs12(vcpu)) + offset;
8162         if (offset < 0)
8163                 return offset;
8164
8165         switch (vmcs_field_width(field)) {
8166         case VMCS_FIELD_WIDTH_U16:
8167                 *(u16 *)p = field_value;
8168                 return 0;
8169         case VMCS_FIELD_WIDTH_U32:
8170                 *(u32 *)p = field_value;
8171                 return 0;
8172         case VMCS_FIELD_WIDTH_U64:
8173                 *(u64 *)p = field_value;
8174                 return 0;
8175         case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
8176                 *(natural_width *)p = field_value;
8177                 return 0;
8178         default:
8179                 WARN_ON(1);
8180                 return -ENOENT;
8181         }
8182
8183 }
8184
8185 /*
8186  * Copy the writable VMCS shadow fields back to the VMCS12, in case
8187  * they have been modified by the L1 guest. Note that the "read-only"
8188  * VM-exit information fields are actually writable if the vCPU is
8189  * configured to support "VMWRITE to any supported field in the VMCS."
8190  */
8191 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
8192 {
8193         const u16 *fields[] = {
8194                 shadow_read_write_fields,
8195                 shadow_read_only_fields
8196         };
8197         const int max_fields[] = {
8198                 max_shadow_read_write_fields,
8199                 max_shadow_read_only_fields
8200         };
8201         int i, q;
8202         unsigned long field;
8203         u64 field_value;
8204         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
8205
8206         preempt_disable();
8207
8208         vmcs_load(shadow_vmcs);
8209
8210         for (q = 0; q < ARRAY_SIZE(fields); q++) {
8211                 for (i = 0; i < max_fields[q]; i++) {
8212                         field = fields[q][i];
8213                         field_value = __vmcs_readl(field);
8214                         vmcs12_write_any(&vmx->vcpu, field, field_value);
8215                 }
8216                 /*
8217                  * Skip the VM-exit information fields if they are read-only.
8218                  */
8219                 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
8220                         break;
8221         }
8222
8223         vmcs_clear(shadow_vmcs);
8224         vmcs_load(vmx->loaded_vmcs->vmcs);
8225
8226         preempt_enable();
8227 }
8228
8229 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
8230 {
8231         const u16 *fields[] = {
8232                 shadow_read_write_fields,
8233                 shadow_read_only_fields
8234         };
8235         const int max_fields[] = {
8236                 max_shadow_read_write_fields,
8237                 max_shadow_read_only_fields
8238         };
8239         int i, q;
8240         unsigned long field;
8241         u64 field_value = 0;
8242         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
8243
8244         vmcs_load(shadow_vmcs);
8245
8246         for (q = 0; q < ARRAY_SIZE(fields); q++) {
8247                 for (i = 0; i < max_fields[q]; i++) {
8248                         field = fields[q][i];
8249                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
8250                         __vmcs_writel(field, field_value);
8251                 }
8252         }
8253
8254         vmcs_clear(shadow_vmcs);
8255         vmcs_load(vmx->loaded_vmcs->vmcs);
8256 }
8257
8258 /*
8259  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
8260  * used before) all generate the same failure when it is missing.
8261  */
8262 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
8263 {
8264         struct vcpu_vmx *vmx = to_vmx(vcpu);
8265         if (vmx->nested.current_vmptr == -1ull) {
8266                 nested_vmx_failInvalid(vcpu);
8267                 return 0;
8268         }
8269         return 1;
8270 }
8271
8272 static int handle_vmread(struct kvm_vcpu *vcpu)
8273 {
8274         unsigned long field;
8275         u64 field_value;
8276         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8277         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8278         gva_t gva = 0;
8279
8280         if (!nested_vmx_check_permission(vcpu))
8281                 return 1;
8282
8283         if (!nested_vmx_check_vmcs12(vcpu))
8284                 return kvm_skip_emulated_instruction(vcpu);
8285
8286         /* Decode instruction info and find the field to read */
8287         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
8288         /* Read the field, zero-extended to a u64 field_value */
8289         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
8290                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8291                 return kvm_skip_emulated_instruction(vcpu);
8292         }
8293         /*
8294          * Now copy part of this value to register or memory, as requested.
8295          * Note that the number of bits actually copied is 32 or 64 depending
8296          * on the guest's mode (32 or 64 bit), not on the given field's length.
8297          */
8298         if (vmx_instruction_info & (1u << 10)) {
8299                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
8300                         field_value);
8301         } else {
8302                 if (get_vmx_mem_address(vcpu, exit_qualification,
8303                                 vmx_instruction_info, true, &gva))
8304                         return 1;
8305                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
8306                 kvm_write_guest_virt_system(vcpu, gva, &field_value,
8307                                             (is_long_mode(vcpu) ? 8 : 4), NULL);
8308         }
8309
8310         nested_vmx_succeed(vcpu);
8311         return kvm_skip_emulated_instruction(vcpu);
8312 }
8313
8314
8315 static int handle_vmwrite(struct kvm_vcpu *vcpu)
8316 {
8317         unsigned long field;
8318         gva_t gva;
8319         struct vcpu_vmx *vmx = to_vmx(vcpu);
8320         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8321         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8322
8323         /* The value to write might be 32 or 64 bits, depending on L1's long
8324          * mode, and eventually we need to write that into a field of several
8325          * possible lengths. The code below first zero-extends the value to 64
8326          * bit (field_value), and then copies only the appropriate number of
8327          * bits into the vmcs12 field.
8328          */
8329         u64 field_value = 0;
8330         struct x86_exception e;
8331
8332         if (!nested_vmx_check_permission(vcpu))
8333                 return 1;
8334
8335         if (!nested_vmx_check_vmcs12(vcpu))
8336                 return kvm_skip_emulated_instruction(vcpu);
8337
8338         if (vmx_instruction_info & (1u << 10))
8339                 field_value = kvm_register_readl(vcpu,
8340                         (((vmx_instruction_info) >> 3) & 0xf));
8341         else {
8342                 if (get_vmx_mem_address(vcpu, exit_qualification,
8343                                 vmx_instruction_info, false, &gva))
8344                         return 1;
8345                 if (kvm_read_guest_virt(vcpu, gva, &field_value,
8346                                         (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
8347                         kvm_inject_page_fault(vcpu, &e);
8348                         return 1;
8349                 }
8350         }
8351
8352
8353         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
8354         /*
8355          * If the vCPU supports "VMWRITE to any supported field in the
8356          * VMCS," then the "read-only" fields are actually read/write.
8357          */
8358         if (vmcs_field_readonly(field) &&
8359             !nested_cpu_has_vmwrite_any_field(vcpu)) {
8360                 nested_vmx_failValid(vcpu,
8361                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
8362                 return kvm_skip_emulated_instruction(vcpu);
8363         }
8364
8365         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
8366                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
8367                 return kvm_skip_emulated_instruction(vcpu);
8368         }
8369
8370         switch (field) {
8371 #define SHADOW_FIELD_RW(x) case x:
8372 #include "vmx_shadow_fields.h"
8373                 /*
8374                  * The fields that can be updated by L1 without a vmexit are
8375                  * always updated in the vmcs02, the others go down the slow
8376                  * path of prepare_vmcs02.
8377                  */
8378                 break;
8379         default:
8380                 vmx->nested.dirty_vmcs12 = true;
8381                 break;
8382         }
8383
8384         nested_vmx_succeed(vcpu);
8385         return kvm_skip_emulated_instruction(vcpu);
8386 }
8387
8388 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
8389 {
8390         vmx->nested.current_vmptr = vmptr;
8391         if (enable_shadow_vmcs) {
8392                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
8393                               SECONDARY_EXEC_SHADOW_VMCS);
8394                 vmcs_write64(VMCS_LINK_POINTER,
8395                              __pa(vmx->vmcs01.shadow_vmcs));
8396                 vmx->nested.sync_shadow_vmcs = true;
8397         }
8398         vmx->nested.dirty_vmcs12 = true;
8399 }
8400
8401 /* Emulate the VMPTRLD instruction */
8402 static int handle_vmptrld(struct kvm_vcpu *vcpu)
8403 {
8404         struct vcpu_vmx *vmx = to_vmx(vcpu);
8405         gpa_t vmptr;
8406
8407         if (!nested_vmx_check_permission(vcpu))
8408                 return 1;
8409
8410         if (nested_vmx_get_vmptr(vcpu, &vmptr))
8411                 return 1;
8412
8413         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8414                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
8415                 return kvm_skip_emulated_instruction(vcpu);
8416         }
8417
8418         if (vmptr == vmx->nested.vmxon_ptr) {
8419                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
8420                 return kvm_skip_emulated_instruction(vcpu);
8421         }
8422
8423         if (vmx->nested.current_vmptr != vmptr) {
8424                 struct vmcs12 *new_vmcs12;
8425                 struct page *page;
8426                 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
8427                 if (is_error_page(page)) {
8428                         nested_vmx_failInvalid(vcpu);
8429                         return kvm_skip_emulated_instruction(vcpu);
8430                 }
8431                 new_vmcs12 = kmap(page);
8432                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
8433                         kunmap(page);
8434                         kvm_release_page_clean(page);
8435                         nested_vmx_failValid(vcpu,
8436                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
8437                         return kvm_skip_emulated_instruction(vcpu);
8438                 }
8439
8440                 nested_release_vmcs12(vmx);
8441                 /*
8442                  * Load VMCS12 from guest memory since it is not already
8443                  * cached.
8444                  */
8445                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
8446                 kunmap(page);
8447                 kvm_release_page_clean(page);
8448
8449                 set_current_vmptr(vmx, vmptr);
8450         }
8451
8452         nested_vmx_succeed(vcpu);
8453         return kvm_skip_emulated_instruction(vcpu);
8454 }
8455
8456 /* Emulate the VMPTRST instruction */
8457 static int handle_vmptrst(struct kvm_vcpu *vcpu)
8458 {
8459         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8460         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8461         gva_t vmcs_gva;
8462         struct x86_exception e;
8463
8464         if (!nested_vmx_check_permission(vcpu))
8465                 return 1;
8466
8467         if (get_vmx_mem_address(vcpu, exit_qualification,
8468                         vmx_instruction_info, true, &vmcs_gva))
8469                 return 1;
8470         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
8471         if (kvm_write_guest_virt_system(vcpu, vmcs_gva,
8472                                         (void *)&to_vmx(vcpu)->nested.current_vmptr,
8473                                         sizeof(u64), &e)) {
8474                 kvm_inject_page_fault(vcpu, &e);
8475                 return 1;
8476         }
8477         nested_vmx_succeed(vcpu);
8478         return kvm_skip_emulated_instruction(vcpu);
8479 }
8480
8481 /* Emulate the INVEPT instruction */
8482 static int handle_invept(struct kvm_vcpu *vcpu)
8483 {
8484         struct vcpu_vmx *vmx = to_vmx(vcpu);
8485         u32 vmx_instruction_info, types;
8486         unsigned long type;
8487         gva_t gva;
8488         struct x86_exception e;
8489         struct {
8490                 u64 eptp, gpa;
8491         } operand;
8492
8493         if (!(vmx->nested.msrs.secondary_ctls_high &
8494               SECONDARY_EXEC_ENABLE_EPT) ||
8495             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
8496                 kvm_queue_exception(vcpu, UD_VECTOR);
8497                 return 1;
8498         }
8499
8500         if (!nested_vmx_check_permission(vcpu))
8501                 return 1;
8502
8503         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8504         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
8505
8506         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
8507
8508         if (type >= 32 || !(types & (1 << type))) {
8509                 nested_vmx_failValid(vcpu,
8510                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8511                 return kvm_skip_emulated_instruction(vcpu);
8512         }
8513
8514         /* According to the Intel VMX instruction reference, the memory
8515          * operand is read even if it isn't needed (e.g., for type==global)
8516          */
8517         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8518                         vmx_instruction_info, false, &gva))
8519                 return 1;
8520         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
8521                 kvm_inject_page_fault(vcpu, &e);
8522                 return 1;
8523         }
8524
8525         switch (type) {
8526         case VMX_EPT_EXTENT_GLOBAL:
8527         /*
8528          * TODO: track mappings and invalidate
8529          * single context requests appropriately
8530          */
8531         case VMX_EPT_EXTENT_CONTEXT:
8532                 kvm_mmu_sync_roots(vcpu);
8533                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
8534                 nested_vmx_succeed(vcpu);
8535                 break;
8536         default:
8537                 BUG_ON(1);
8538                 break;
8539         }
8540
8541         return kvm_skip_emulated_instruction(vcpu);
8542 }
8543
8544 static int handle_invvpid(struct kvm_vcpu *vcpu)
8545 {
8546         struct vcpu_vmx *vmx = to_vmx(vcpu);
8547         u32 vmx_instruction_info;
8548         unsigned long type, types;
8549         gva_t gva;
8550         struct x86_exception e;
8551         struct {
8552                 u64 vpid;
8553                 u64 gla;
8554         } operand;
8555
8556         if (!(vmx->nested.msrs.secondary_ctls_high &
8557               SECONDARY_EXEC_ENABLE_VPID) ||
8558                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
8559                 kvm_queue_exception(vcpu, UD_VECTOR);
8560                 return 1;
8561         }
8562
8563         if (!nested_vmx_check_permission(vcpu))
8564                 return 1;
8565
8566         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8567         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
8568
8569         types = (vmx->nested.msrs.vpid_caps &
8570                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
8571
8572         if (type >= 32 || !(types & (1 << type))) {
8573                 nested_vmx_failValid(vcpu,
8574                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8575                 return kvm_skip_emulated_instruction(vcpu);
8576         }
8577
8578         /* according to the intel vmx instruction reference, the memory
8579          * operand is read even if it isn't needed (e.g., for type==global)
8580          */
8581         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8582                         vmx_instruction_info, false, &gva))
8583                 return 1;
8584         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
8585                 kvm_inject_page_fault(vcpu, &e);
8586                 return 1;
8587         }
8588         if (operand.vpid >> 16) {
8589                 nested_vmx_failValid(vcpu,
8590                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8591                 return kvm_skip_emulated_instruction(vcpu);
8592         }
8593
8594         switch (type) {
8595         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
8596                 if (!operand.vpid ||
8597                     is_noncanonical_address(operand.gla, vcpu)) {
8598                         nested_vmx_failValid(vcpu,
8599                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8600                         return kvm_skip_emulated_instruction(vcpu);
8601                 }
8602                 if (cpu_has_vmx_invvpid_individual_addr() &&
8603                     vmx->nested.vpid02) {
8604                         __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
8605                                 vmx->nested.vpid02, operand.gla);
8606                 } else
8607                         __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
8608                 break;
8609         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
8610         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
8611                 if (!operand.vpid) {
8612                         nested_vmx_failValid(vcpu,
8613                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8614                         return kvm_skip_emulated_instruction(vcpu);
8615                 }
8616                 __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
8617                 break;
8618         case VMX_VPID_EXTENT_ALL_CONTEXT:
8619                 __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
8620                 break;
8621         default:
8622                 WARN_ON_ONCE(1);
8623                 return kvm_skip_emulated_instruction(vcpu);
8624         }
8625
8626         nested_vmx_succeed(vcpu);
8627
8628         return kvm_skip_emulated_instruction(vcpu);
8629 }
8630
8631 static int handle_pml_full(struct kvm_vcpu *vcpu)
8632 {
8633         unsigned long exit_qualification;
8634
8635         trace_kvm_pml_full(vcpu->vcpu_id);
8636
8637         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8638
8639         /*
8640          * PML buffer FULL happened while executing iret from NMI,
8641          * "blocked by NMI" bit has to be set before next VM entry.
8642          */
8643         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
8644                         enable_vnmi &&
8645                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
8646                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8647                                 GUEST_INTR_STATE_NMI);
8648
8649         /*
8650          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8651          * here.., and there's no userspace involvement needed for PML.
8652          */
8653         return 1;
8654 }
8655
8656 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
8657 {
8658         kvm_lapic_expired_hv_timer(vcpu);
8659         return 1;
8660 }
8661
8662 static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8663 {
8664         struct vcpu_vmx *vmx = to_vmx(vcpu);
8665         int maxphyaddr = cpuid_maxphyaddr(vcpu);
8666
8667         /* Check for memory type validity */
8668         switch (address & VMX_EPTP_MT_MASK) {
8669         case VMX_EPTP_MT_UC:
8670                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
8671                         return false;
8672                 break;
8673         case VMX_EPTP_MT_WB:
8674                 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
8675                         return false;
8676                 break;
8677         default:
8678                 return false;
8679         }
8680
8681         /* only 4 levels page-walk length are valid */
8682         if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
8683                 return false;
8684
8685         /* Reserved bits should not be set */
8686         if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8687                 return false;
8688
8689         /* AD, if set, should be supported */
8690         if (address & VMX_EPTP_AD_ENABLE_BIT) {
8691                 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
8692                         return false;
8693         }
8694
8695         return true;
8696 }
8697
8698 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8699                                      struct vmcs12 *vmcs12)
8700 {
8701         u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8702         u64 address;
8703         bool accessed_dirty;
8704         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8705
8706         if (!nested_cpu_has_eptp_switching(vmcs12) ||
8707             !nested_cpu_has_ept(vmcs12))
8708                 return 1;
8709
8710         if (index >= VMFUNC_EPTP_ENTRIES)
8711                 return 1;
8712
8713
8714         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8715                                      &address, index * 8, 8))
8716                 return 1;
8717
8718         accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
8719
8720         /*
8721          * If the (L2) guest does a vmfunc to the currently
8722          * active ept pointer, we don't have to do anything else
8723          */
8724         if (vmcs12->ept_pointer != address) {
8725                 if (!valid_ept_address(vcpu, address))
8726                         return 1;
8727
8728                 kvm_mmu_unload(vcpu);
8729                 mmu->ept_ad = accessed_dirty;
8730                 mmu->base_role.ad_disabled = !accessed_dirty;
8731                 vmcs12->ept_pointer = address;
8732                 /*
8733                  * TODO: Check what's the correct approach in case
8734                  * mmu reload fails. Currently, we just let the next
8735                  * reload potentially fail
8736                  */
8737                 kvm_mmu_reload(vcpu);
8738         }
8739
8740         return 0;
8741 }
8742
8743 static int handle_vmfunc(struct kvm_vcpu *vcpu)
8744 {
8745         struct vcpu_vmx *vmx = to_vmx(vcpu);
8746         struct vmcs12 *vmcs12;
8747         u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8748
8749         /*
8750          * VMFUNC is only supported for nested guests, but we always enable the
8751          * secondary control for simplicity; for non-nested mode, fake that we
8752          * didn't by injecting #UD.
8753          */
8754         if (!is_guest_mode(vcpu)) {
8755                 kvm_queue_exception(vcpu, UD_VECTOR);
8756                 return 1;
8757         }
8758
8759         vmcs12 = get_vmcs12(vcpu);
8760         if ((vmcs12->vm_function_control & (1 << function)) == 0)
8761                 goto fail;
8762
8763         switch (function) {
8764         case 0:
8765                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8766                         goto fail;
8767                 break;
8768         default:
8769                 goto fail;
8770         }
8771         return kvm_skip_emulated_instruction(vcpu);
8772
8773 fail:
8774         nested_vmx_vmexit(vcpu, vmx->exit_reason,
8775                           vmcs_read32(VM_EXIT_INTR_INFO),
8776                           vmcs_readl(EXIT_QUALIFICATION));
8777         return 1;
8778 }
8779
8780 /*
8781  * The exit handlers return 1 if the exit was handled fully and guest execution
8782  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
8783  * to be done to userspace and return 0.
8784  */
8785 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
8786         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
8787         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
8788         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
8789         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
8790         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
8791         [EXIT_REASON_CR_ACCESS]               = handle_cr,
8792         [EXIT_REASON_DR_ACCESS]               = handle_dr,
8793         [EXIT_REASON_CPUID]                   = handle_cpuid,
8794         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
8795         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
8796         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
8797         [EXIT_REASON_HLT]                     = handle_halt,
8798         [EXIT_REASON_INVD]                    = handle_invd,
8799         [EXIT_REASON_INVLPG]                  = handle_invlpg,
8800         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
8801         [EXIT_REASON_VMCALL]                  = handle_vmcall,
8802         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
8803         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
8804         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
8805         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
8806         [EXIT_REASON_VMREAD]                  = handle_vmread,
8807         [EXIT_REASON_VMRESUME]                = handle_vmresume,
8808         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
8809         [EXIT_REASON_VMOFF]                   = handle_vmoff,
8810         [EXIT_REASON_VMON]                    = handle_vmon,
8811         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
8812         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
8813         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
8814         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
8815         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
8816         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
8817         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
8818         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
8819         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
8820         [EXIT_REASON_LDTR_TR]                 = handle_desc,
8821         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
8822         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
8823         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
8824         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
8825         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
8826         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
8827         [EXIT_REASON_INVEPT]                  = handle_invept,
8828         [EXIT_REASON_INVVPID]                 = handle_invvpid,
8829         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
8830         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
8831         [EXIT_REASON_XSAVES]                  = handle_xsaves,
8832         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
8833         [EXIT_REASON_PML_FULL]                = handle_pml_full,
8834         [EXIT_REASON_VMFUNC]                  = handle_vmfunc,
8835         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
8836 };
8837
8838 static const int kvm_vmx_max_exit_handlers =
8839         ARRAY_SIZE(kvm_vmx_exit_handlers);
8840
8841 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8842                                        struct vmcs12 *vmcs12)
8843 {
8844         unsigned long exit_qualification;
8845         gpa_t bitmap, last_bitmap;
8846         unsigned int port;
8847         int size;
8848         u8 b;
8849
8850         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8851                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8852
8853         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8854
8855         port = exit_qualification >> 16;
8856         size = (exit_qualification & 7) + 1;
8857
8858         last_bitmap = (gpa_t)-1;
8859         b = -1;
8860
8861         while (size > 0) {
8862                 if (port < 0x8000)
8863                         bitmap = vmcs12->io_bitmap_a;
8864                 else if (port < 0x10000)
8865                         bitmap = vmcs12->io_bitmap_b;
8866                 else
8867                         return true;
8868                 bitmap += (port & 0x7fff) / 8;
8869
8870                 if (last_bitmap != bitmap)
8871                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
8872                                 return true;
8873                 if (b & (1 << (port & 7)))
8874                         return true;
8875
8876                 port++;
8877                 size--;
8878                 last_bitmap = bitmap;
8879         }
8880
8881         return false;
8882 }
8883
8884 /*
8885  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8886  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8887  * disinterest in the current event (read or write a specific MSR) by using an
8888  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8889  */
8890 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8891         struct vmcs12 *vmcs12, u32 exit_reason)
8892 {
8893         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8894         gpa_t bitmap;
8895
8896         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
8897                 return true;
8898
8899         /*
8900          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8901          * for the four combinations of read/write and low/high MSR numbers.
8902          * First we need to figure out which of the four to use:
8903          */
8904         bitmap = vmcs12->msr_bitmap;
8905         if (exit_reason == EXIT_REASON_MSR_WRITE)
8906                 bitmap += 2048;
8907         if (msr_index >= 0xc0000000) {
8908                 msr_index -= 0xc0000000;
8909                 bitmap += 1024;
8910         }
8911
8912         /* Then read the msr_index'th bit from this bitmap: */
8913         if (msr_index < 1024*8) {
8914                 unsigned char b;
8915                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
8916                         return true;
8917                 return 1 & (b >> (msr_index & 7));
8918         } else
8919                 return true; /* let L1 handle the wrong parameter */
8920 }
8921
8922 /*
8923  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8924  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8925  * intercept (via guest_host_mask etc.) the current event.
8926  */
8927 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8928         struct vmcs12 *vmcs12)
8929 {
8930         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8931         int cr = exit_qualification & 15;
8932         int reg;
8933         unsigned long val;
8934
8935         switch ((exit_qualification >> 4) & 3) {
8936         case 0: /* mov to cr */
8937                 reg = (exit_qualification >> 8) & 15;
8938                 val = kvm_register_readl(vcpu, reg);
8939                 switch (cr) {
8940                 case 0:
8941                         if (vmcs12->cr0_guest_host_mask &
8942                             (val ^ vmcs12->cr0_read_shadow))
8943                                 return true;
8944                         break;
8945                 case 3:
8946                         if ((vmcs12->cr3_target_count >= 1 &&
8947                                         vmcs12->cr3_target_value0 == val) ||
8948                                 (vmcs12->cr3_target_count >= 2 &&
8949                                         vmcs12->cr3_target_value1 == val) ||
8950                                 (vmcs12->cr3_target_count >= 3 &&
8951                                         vmcs12->cr3_target_value2 == val) ||
8952                                 (vmcs12->cr3_target_count >= 4 &&
8953                                         vmcs12->cr3_target_value3 == val))
8954                                 return false;
8955                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
8956                                 return true;
8957                         break;
8958                 case 4:
8959                         if (vmcs12->cr4_guest_host_mask &
8960                             (vmcs12->cr4_read_shadow ^ val))
8961                                 return true;
8962                         break;
8963                 case 8:
8964                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
8965                                 return true;
8966                         break;
8967                 }
8968                 break;
8969         case 2: /* clts */
8970                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8971                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
8972                         return true;
8973                 break;
8974         case 1: /* mov from cr */
8975                 switch (cr) {
8976                 case 3:
8977                         if (vmcs12->cpu_based_vm_exec_control &
8978                             CPU_BASED_CR3_STORE_EXITING)
8979                                 return true;
8980                         break;
8981                 case 8:
8982                         if (vmcs12->cpu_based_vm_exec_control &
8983                             CPU_BASED_CR8_STORE_EXITING)
8984                                 return true;
8985                         break;
8986                 }
8987                 break;
8988         case 3: /* lmsw */
8989                 /*
8990                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8991                  * cr0. Other attempted changes are ignored, with no exit.
8992                  */
8993                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
8994                 if (vmcs12->cr0_guest_host_mask & 0xe &
8995                     (val ^ vmcs12->cr0_read_shadow))
8996                         return true;
8997                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8998                     !(vmcs12->cr0_read_shadow & 0x1) &&
8999                     (val & 0x1))
9000                         return true;
9001                 break;
9002         }
9003         return false;
9004 }
9005
9006 /*
9007  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
9008  * should handle it ourselves in L0 (and then continue L2). Only call this
9009  * when in is_guest_mode (L2).
9010  */
9011 static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
9012 {
9013         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9014         struct vcpu_vmx *vmx = to_vmx(vcpu);
9015         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9016
9017         if (vmx->nested.nested_run_pending)
9018                 return false;
9019
9020         if (unlikely(vmx->fail)) {
9021                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
9022                                     vmcs_read32(VM_INSTRUCTION_ERROR));
9023                 return true;
9024         }
9025
9026         /*
9027          * The host physical addresses of some pages of guest memory
9028          * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
9029          * Page). The CPU may write to these pages via their host
9030          * physical address while L2 is running, bypassing any
9031          * address-translation-based dirty tracking (e.g. EPT write
9032          * protection).
9033          *
9034          * Mark them dirty on every exit from L2 to prevent them from
9035          * getting out of sync with dirty tracking.
9036          */
9037         nested_mark_vmcs12_pages_dirty(vcpu);
9038
9039         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
9040                                 vmcs_readl(EXIT_QUALIFICATION),
9041                                 vmx->idt_vectoring_info,
9042                                 intr_info,
9043                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
9044                                 KVM_ISA_VMX);
9045
9046         switch (exit_reason) {
9047         case EXIT_REASON_EXCEPTION_NMI:
9048                 if (is_nmi(intr_info))
9049                         return false;
9050                 else if (is_page_fault(intr_info))
9051                         return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
9052                 else if (is_no_device(intr_info) &&
9053                          !(vmcs12->guest_cr0 & X86_CR0_TS))
9054                         return false;
9055                 else if (is_debug(intr_info) &&
9056                          vcpu->guest_debug &
9057                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
9058                         return false;
9059                 else if (is_breakpoint(intr_info) &&
9060                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
9061                         return false;
9062                 return vmcs12->exception_bitmap &
9063                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
9064         case EXIT_REASON_EXTERNAL_INTERRUPT:
9065                 return false;
9066         case EXIT_REASON_TRIPLE_FAULT:
9067                 return true;
9068         case EXIT_REASON_PENDING_INTERRUPT:
9069                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
9070         case EXIT_REASON_NMI_WINDOW:
9071                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
9072         case EXIT_REASON_TASK_SWITCH:
9073                 return true;
9074         case EXIT_REASON_CPUID:
9075                 return true;
9076         case EXIT_REASON_HLT:
9077                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
9078         case EXIT_REASON_INVD:
9079                 return true;
9080         case EXIT_REASON_INVLPG:
9081                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
9082         case EXIT_REASON_RDPMC:
9083                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
9084         case EXIT_REASON_RDRAND:
9085                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
9086         case EXIT_REASON_RDSEED:
9087                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
9088         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
9089                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
9090         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
9091         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
9092         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
9093         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
9094         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
9095         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
9096                 /*
9097                  * VMX instructions trap unconditionally. This allows L1 to
9098                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
9099                  */
9100                 return true;
9101         case EXIT_REASON_CR_ACCESS:
9102                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
9103         case EXIT_REASON_DR_ACCESS:
9104                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
9105         case EXIT_REASON_IO_INSTRUCTION:
9106                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
9107         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
9108                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
9109         case EXIT_REASON_MSR_READ:
9110         case EXIT_REASON_MSR_WRITE:
9111                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
9112         case EXIT_REASON_INVALID_STATE:
9113                 return true;
9114         case EXIT_REASON_MWAIT_INSTRUCTION:
9115                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
9116         case EXIT_REASON_MONITOR_TRAP_FLAG:
9117                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
9118         case EXIT_REASON_MONITOR_INSTRUCTION:
9119                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
9120         case EXIT_REASON_PAUSE_INSTRUCTION:
9121                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
9122                         nested_cpu_has2(vmcs12,
9123                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
9124         case EXIT_REASON_MCE_DURING_VMENTRY:
9125                 return false;
9126         case EXIT_REASON_TPR_BELOW_THRESHOLD:
9127                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
9128         case EXIT_REASON_APIC_ACCESS:
9129         case EXIT_REASON_APIC_WRITE:
9130         case EXIT_REASON_EOI_INDUCED:
9131                 /*
9132                  * The controls for "virtualize APIC accesses," "APIC-
9133                  * register virtualization," and "virtual-interrupt
9134                  * delivery" only come from vmcs12.
9135                  */
9136                 return true;
9137         case EXIT_REASON_EPT_VIOLATION:
9138                 /*
9139                  * L0 always deals with the EPT violation. If nested EPT is
9140                  * used, and the nested mmu code discovers that the address is
9141                  * missing in the guest EPT table (EPT12), the EPT violation
9142                  * will be injected with nested_ept_inject_page_fault()
9143                  */
9144                 return false;
9145         case EXIT_REASON_EPT_MISCONFIG:
9146                 /*
9147                  * L2 never uses directly L1's EPT, but rather L0's own EPT
9148                  * table (shadow on EPT) or a merged EPT table that L0 built
9149                  * (EPT on EPT). So any problems with the structure of the
9150                  * table is L0's fault.
9151                  */
9152                 return false;
9153         case EXIT_REASON_INVPCID:
9154                 return
9155                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
9156                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
9157         case EXIT_REASON_WBINVD:
9158                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
9159         case EXIT_REASON_XSETBV:
9160                 return true;
9161         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
9162                 /*
9163                  * This should never happen, since it is not possible to
9164                  * set XSS to a non-zero value---neither in L1 nor in L2.
9165                  * If if it were, XSS would have to be checked against
9166                  * the XSS exit bitmap in vmcs12.
9167                  */
9168                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
9169         case EXIT_REASON_PREEMPTION_TIMER:
9170                 return false;
9171         case EXIT_REASON_PML_FULL:
9172                 /* We emulate PML support to L1. */
9173                 return false;
9174         case EXIT_REASON_VMFUNC:
9175                 /* VM functions are emulated through L2->L0 vmexits. */
9176                 return false;
9177         default:
9178                 return true;
9179         }
9180 }
9181
9182 static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
9183 {
9184         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9185
9186         /*
9187          * At this point, the exit interruption info in exit_intr_info
9188          * is only valid for EXCEPTION_NMI exits.  For EXTERNAL_INTERRUPT
9189          * we need to query the in-kernel LAPIC.
9190          */
9191         WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
9192         if ((exit_intr_info &
9193              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
9194             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
9195                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9196                 vmcs12->vm_exit_intr_error_code =
9197                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
9198         }
9199
9200         nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
9201                           vmcs_readl(EXIT_QUALIFICATION));
9202         return 1;
9203 }
9204
9205 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
9206 {
9207         *info1 = vmcs_readl(EXIT_QUALIFICATION);
9208         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
9209 }
9210
9211 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
9212 {
9213         if (vmx->pml_pg) {
9214                 __free_page(vmx->pml_pg);
9215                 vmx->pml_pg = NULL;
9216         }
9217 }
9218
9219 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
9220 {
9221         struct vcpu_vmx *vmx = to_vmx(vcpu);
9222         u64 *pml_buf;
9223         u16 pml_idx;
9224
9225         pml_idx = vmcs_read16(GUEST_PML_INDEX);
9226
9227         /* Do nothing if PML buffer is empty */
9228         if (pml_idx == (PML_ENTITY_NUM - 1))
9229                 return;
9230
9231         /* PML index always points to next available PML buffer entity */
9232         if (pml_idx >= PML_ENTITY_NUM)
9233                 pml_idx = 0;
9234         else
9235                 pml_idx++;
9236
9237         pml_buf = page_address(vmx->pml_pg);
9238         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
9239                 u64 gpa;
9240
9241                 gpa = pml_buf[pml_idx];
9242                 WARN_ON(gpa & (PAGE_SIZE - 1));
9243                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
9244         }
9245
9246         /* reset PML index */
9247         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
9248 }
9249
9250 /*
9251  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
9252  * Called before reporting dirty_bitmap to userspace.
9253  */
9254 static void kvm_flush_pml_buffers(struct kvm *kvm)
9255 {
9256         int i;
9257         struct kvm_vcpu *vcpu;
9258         /*
9259          * We only need to kick vcpu out of guest mode here, as PML buffer
9260          * is flushed at beginning of all VMEXITs, and it's obvious that only
9261          * vcpus running in guest are possible to have unflushed GPAs in PML
9262          * buffer.
9263          */
9264         kvm_for_each_vcpu(i, vcpu, kvm)
9265                 kvm_vcpu_kick(vcpu);
9266 }
9267
9268 static void vmx_dump_sel(char *name, uint32_t sel)
9269 {
9270         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
9271                name, vmcs_read16(sel),
9272                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
9273                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
9274                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
9275 }
9276
9277 static void vmx_dump_dtsel(char *name, uint32_t limit)
9278 {
9279         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
9280                name, vmcs_read32(limit),
9281                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
9282 }
9283
9284 static void dump_vmcs(void)
9285 {
9286         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
9287         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
9288         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
9289         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
9290         u32 secondary_exec_control = 0;
9291         unsigned long cr4 = vmcs_readl(GUEST_CR4);
9292         u64 efer = vmcs_read64(GUEST_IA32_EFER);
9293         int i, n;
9294
9295         if (cpu_has_secondary_exec_ctrls())
9296                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9297
9298         pr_err("*** Guest State ***\n");
9299         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9300                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
9301                vmcs_readl(CR0_GUEST_HOST_MASK));
9302         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9303                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
9304         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
9305         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
9306             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
9307         {
9308                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
9309                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
9310                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
9311                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
9312         }
9313         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
9314                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
9315         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
9316                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
9317         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9318                vmcs_readl(GUEST_SYSENTER_ESP),
9319                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
9320         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
9321         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
9322         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
9323         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
9324         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
9325         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
9326         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
9327         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
9328         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
9329         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
9330         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
9331             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
9332                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
9333                        efer, vmcs_read64(GUEST_IA32_PAT));
9334         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
9335                vmcs_read64(GUEST_IA32_DEBUGCTL),
9336                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
9337         if (cpu_has_load_perf_global_ctrl &&
9338             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
9339                 pr_err("PerfGlobCtl = 0x%016llx\n",
9340                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
9341         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
9342                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
9343         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
9344                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
9345                vmcs_read32(GUEST_ACTIVITY_STATE));
9346         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
9347                 pr_err("InterruptStatus = %04x\n",
9348                        vmcs_read16(GUEST_INTR_STATUS));
9349
9350         pr_err("*** Host State ***\n");
9351         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
9352                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
9353         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
9354                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
9355                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
9356                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
9357                vmcs_read16(HOST_TR_SELECTOR));
9358         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
9359                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
9360                vmcs_readl(HOST_TR_BASE));
9361         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
9362                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
9363         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
9364                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
9365                vmcs_readl(HOST_CR4));
9366         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9367                vmcs_readl(HOST_IA32_SYSENTER_ESP),
9368                vmcs_read32(HOST_IA32_SYSENTER_CS),
9369                vmcs_readl(HOST_IA32_SYSENTER_EIP));
9370         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
9371                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
9372                        vmcs_read64(HOST_IA32_EFER),
9373                        vmcs_read64(HOST_IA32_PAT));
9374         if (cpu_has_load_perf_global_ctrl &&
9375             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
9376                 pr_err("PerfGlobCtl = 0x%016llx\n",
9377                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
9378
9379         pr_err("*** Control State ***\n");
9380         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
9381                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
9382         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
9383         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
9384                vmcs_read32(EXCEPTION_BITMAP),
9385                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
9386                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
9387         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
9388                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9389                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
9390                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
9391         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
9392                vmcs_read32(VM_EXIT_INTR_INFO),
9393                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
9394                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
9395         pr_err("        reason=%08x qualification=%016lx\n",
9396                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
9397         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
9398                vmcs_read32(IDT_VECTORING_INFO_FIELD),
9399                vmcs_read32(IDT_VECTORING_ERROR_CODE));
9400         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
9401         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
9402                 pr_err("TSC Multiplier = 0x%016llx\n",
9403                        vmcs_read64(TSC_MULTIPLIER));
9404         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
9405                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
9406         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
9407                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
9408         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
9409                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
9410         n = vmcs_read32(CR3_TARGET_COUNT);
9411         for (i = 0; i + 1 < n; i += 4)
9412                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
9413                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
9414                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
9415         if (i < n)
9416                 pr_err("CR3 target%u=%016lx\n",
9417                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
9418         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
9419                 pr_err("PLE Gap=%08x Window=%08x\n",
9420                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
9421         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
9422                 pr_err("Virtual processor ID = 0x%04x\n",
9423                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
9424 }
9425
9426 /*
9427  * The guest has exited.  See if we can fix it or if we need userspace
9428  * assistance.
9429  */
9430 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
9431 {
9432         struct vcpu_vmx *vmx = to_vmx(vcpu);
9433         u32 exit_reason = vmx->exit_reason;
9434         u32 vectoring_info = vmx->idt_vectoring_info;
9435
9436         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
9437
9438         /*
9439          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
9440          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
9441          * querying dirty_bitmap, we only need to kick all vcpus out of guest
9442          * mode as if vcpus is in root mode, the PML buffer must has been
9443          * flushed already.
9444          */
9445         if (enable_pml)
9446                 vmx_flush_pml_buffer(vcpu);
9447
9448         /* If guest state is invalid, start emulating */
9449         if (vmx->emulation_required)
9450                 return handle_invalid_guest_state(vcpu);
9451
9452         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
9453                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
9454
9455         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
9456                 dump_vmcs();
9457                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
9458                 vcpu->run->fail_entry.hardware_entry_failure_reason
9459                         = exit_reason;
9460                 return 0;
9461         }
9462
9463         if (unlikely(vmx->fail)) {
9464                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
9465                 vcpu->run->fail_entry.hardware_entry_failure_reason
9466                         = vmcs_read32(VM_INSTRUCTION_ERROR);
9467                 return 0;
9468         }
9469
9470         /*
9471          * Note:
9472          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
9473          * delivery event since it indicates guest is accessing MMIO.
9474          * The vm-exit can be triggered again after return to guest that
9475          * will cause infinite loop.
9476          */
9477         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
9478                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
9479                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
9480                         exit_reason != EXIT_REASON_PML_FULL &&
9481                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
9482                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9483                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
9484                 vcpu->run->internal.ndata = 3;
9485                 vcpu->run->internal.data[0] = vectoring_info;
9486                 vcpu->run->internal.data[1] = exit_reason;
9487                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
9488                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
9489                         vcpu->run->internal.ndata++;
9490                         vcpu->run->internal.data[3] =
9491                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9492                 }
9493                 return 0;
9494         }
9495
9496         if (unlikely(!enable_vnmi &&
9497                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
9498                 if (vmx_interrupt_allowed(vcpu)) {
9499                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
9500                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
9501                            vcpu->arch.nmi_pending) {
9502                         /*
9503                          * This CPU don't support us in finding the end of an
9504                          * NMI-blocked window if the guest runs with IRQs
9505                          * disabled. So we pull the trigger after 1 s of
9506                          * futile waiting, but inform the user about this.
9507                          */
9508                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
9509                                "state on VCPU %d after 1 s timeout\n",
9510                                __func__, vcpu->vcpu_id);
9511                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
9512                 }
9513         }
9514
9515         if (exit_reason < kvm_vmx_max_exit_handlers
9516             && kvm_vmx_exit_handlers[exit_reason])
9517                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
9518         else {
9519                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
9520                                 exit_reason);
9521                 kvm_queue_exception(vcpu, UD_VECTOR);
9522                 return 1;
9523         }
9524 }
9525
9526 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
9527 {
9528         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9529
9530         if (is_guest_mode(vcpu) &&
9531                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9532                 return;
9533
9534         if (irr == -1 || tpr < irr) {
9535                 vmcs_write32(TPR_THRESHOLD, 0);
9536                 return;
9537         }
9538
9539         vmcs_write32(TPR_THRESHOLD, irr);
9540 }
9541
9542 static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
9543 {
9544         u32 sec_exec_control;
9545
9546         if (!lapic_in_kernel(vcpu))
9547                 return;
9548
9549         /* Postpone execution until vmcs01 is the current VMCS. */
9550         if (is_guest_mode(vcpu)) {
9551                 to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
9552                 return;
9553         }
9554
9555         if (!cpu_need_tpr_shadow(vcpu))
9556                 return;
9557
9558         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9559         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9560                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
9561
9562         switch (kvm_get_apic_mode(vcpu)) {
9563         case LAPIC_MODE_INVALID:
9564                 WARN_ONCE(true, "Invalid local APIC state");
9565         case LAPIC_MODE_DISABLED:
9566                 break;
9567         case LAPIC_MODE_XAPIC:
9568                 if (flexpriority_enabled) {
9569                         sec_exec_control |=
9570                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9571                         vmx_flush_tlb(vcpu, true);
9572                 }
9573                 break;
9574         case LAPIC_MODE_X2APIC:
9575                 if (cpu_has_vmx_virtualize_x2apic_mode())
9576                         sec_exec_control |=
9577                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
9578                 break;
9579         }
9580         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
9581
9582         vmx_update_msr_bitmap(vcpu);
9583 }
9584
9585 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
9586 {
9587         if (!is_guest_mode(vcpu)) {
9588                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
9589                 vmx_flush_tlb(vcpu, true);
9590         }
9591 }
9592
9593 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
9594 {
9595         u16 status;
9596         u8 old;
9597
9598         if (max_isr == -1)
9599                 max_isr = 0;
9600
9601         status = vmcs_read16(GUEST_INTR_STATUS);
9602         old = status >> 8;
9603         if (max_isr != old) {
9604                 status &= 0xff;
9605                 status |= max_isr << 8;
9606                 vmcs_write16(GUEST_INTR_STATUS, status);
9607         }
9608 }
9609
9610 static void vmx_set_rvi(int vector)
9611 {
9612         u16 status;
9613         u8 old;
9614
9615         if (vector == -1)
9616                 vector = 0;
9617
9618         status = vmcs_read16(GUEST_INTR_STATUS);
9619         old = (u8)status & 0xff;
9620         if ((u8)vector != old) {
9621                 status &= ~0xff;
9622                 status |= (u8)vector;
9623                 vmcs_write16(GUEST_INTR_STATUS, status);
9624         }
9625 }
9626
9627 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
9628 {
9629         /*
9630          * When running L2, updating RVI is only relevant when
9631          * vmcs12 virtual-interrupt-delivery enabled.
9632          * However, it can be enabled only when L1 also
9633          * intercepts external-interrupts and in that case
9634          * we should not update vmcs02 RVI but instead intercept
9635          * interrupt. Therefore, do nothing when running L2.
9636          */
9637         if (!is_guest_mode(vcpu))
9638                 vmx_set_rvi(max_irr);
9639 }
9640
9641 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
9642 {
9643         struct vcpu_vmx *vmx = to_vmx(vcpu);
9644         int max_irr;
9645         bool max_irr_updated;
9646
9647         WARN_ON(!vcpu->arch.apicv_active);
9648         if (pi_test_on(&vmx->pi_desc)) {
9649                 pi_clear_on(&vmx->pi_desc);
9650                 /*
9651                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9652                  * But on x86 this is just a compiler barrier anyway.
9653                  */
9654                 smp_mb__after_atomic();
9655                 max_irr_updated =
9656                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
9657
9658                 /*
9659                  * If we are running L2 and L1 has a new pending interrupt
9660                  * which can be injected, we should re-evaluate
9661                  * what should be done with this new L1 interrupt.
9662                  * If L1 intercepts external-interrupts, we should
9663                  * exit from L2 to L1. Otherwise, interrupt should be
9664                  * delivered directly to L2.
9665                  */
9666                 if (is_guest_mode(vcpu) && max_irr_updated) {
9667                         if (nested_exit_on_intr(vcpu))
9668                                 kvm_vcpu_exiting_guest_mode(vcpu);
9669                         else
9670                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9671                 }
9672         } else {
9673                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9674         }
9675         vmx_hwapic_irr_update(vcpu, max_irr);
9676         return max_irr;
9677 }
9678
9679 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
9680 {
9681         if (!kvm_vcpu_apicv_active(vcpu))
9682                 return;
9683
9684         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9685         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9686         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9687         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9688 }
9689
9690 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9691 {
9692         struct vcpu_vmx *vmx = to_vmx(vcpu);
9693
9694         pi_clear_on(&vmx->pi_desc);
9695         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9696 }
9697
9698 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
9699 {
9700         u32 exit_intr_info = 0;
9701         u16 basic_exit_reason = (u16)vmx->exit_reason;
9702
9703         if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9704               || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
9705                 return;
9706
9707         if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9708                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9709         vmx->exit_intr_info = exit_intr_info;
9710
9711         /* if exit due to PF check for async PF */
9712         if (is_page_fault(exit_intr_info))
9713                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9714
9715         /* Handle machine checks before interrupts are enabled */
9716         if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9717             is_machine_check(exit_intr_info))
9718                 kvm_machine_check();
9719
9720         /* We need to handle NMIs before interrupts are enabled */
9721         if (is_nmi(exit_intr_info)) {
9722                 kvm_before_interrupt(&vmx->vcpu);
9723                 asm("int $2");
9724                 kvm_after_interrupt(&vmx->vcpu);
9725         }
9726 }
9727
9728 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9729 {
9730         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9731
9732         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9733                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9734                 unsigned int vector;
9735                 unsigned long entry;
9736                 gate_desc *desc;
9737                 struct vcpu_vmx *vmx = to_vmx(vcpu);
9738 #ifdef CONFIG_X86_64
9739                 unsigned long tmp;
9740 #endif
9741
9742                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
9743                 desc = (gate_desc *)vmx->host_idt_base + vector;
9744                 entry = gate_offset(desc);
9745                 asm volatile(
9746 #ifdef CONFIG_X86_64
9747                         "mov %%" _ASM_SP ", %[sp]\n\t"
9748                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9749                         "push $%c[ss]\n\t"
9750                         "push %[sp]\n\t"
9751 #endif
9752                         "pushf\n\t"
9753                         __ASM_SIZE(push) " $%c[cs]\n\t"
9754                         CALL_NOSPEC
9755                         :
9756 #ifdef CONFIG_X86_64
9757                         [sp]"=&r"(tmp),
9758 #endif
9759                         ASM_CALL_CONSTRAINT
9760                         :
9761                         THUNK_TARGET(entry),
9762                         [ss]"i"(__KERNEL_DS),
9763                         [cs]"i"(__KERNEL_CS)
9764                         );
9765         }
9766 }
9767 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
9768
9769 static bool vmx_has_emulated_msr(int index)
9770 {
9771         switch (index) {
9772         case MSR_IA32_SMBASE:
9773                 /*
9774                  * We cannot do SMM unless we can run the guest in big
9775                  * real mode.
9776                  */
9777                 return enable_unrestricted_guest || emulate_invalid_guest_state;
9778         case MSR_AMD64_VIRT_SPEC_CTRL:
9779                 /* This is AMD only.  */
9780                 return false;
9781         default:
9782                 return true;
9783         }
9784 }
9785
9786 static bool vmx_mpx_supported(void)
9787 {
9788         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9789                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9790 }
9791
9792 static bool vmx_xsaves_supported(void)
9793 {
9794         return vmcs_config.cpu_based_2nd_exec_ctrl &
9795                 SECONDARY_EXEC_XSAVES;
9796 }
9797
9798 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9799 {
9800         u32 exit_intr_info;
9801         bool unblock_nmi;
9802         u8 vector;
9803         bool idtv_info_valid;
9804
9805         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9806
9807         if (enable_vnmi) {
9808                 if (vmx->loaded_vmcs->nmi_known_unmasked)
9809                         return;
9810                 /*
9811                  * Can't use vmx->exit_intr_info since we're not sure what
9812                  * the exit reason is.
9813                  */
9814                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9815                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9816                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9817                 /*
9818                  * SDM 3: 27.7.1.2 (September 2008)
9819                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
9820                  * a guest IRET fault.
9821                  * SDM 3: 23.2.2 (September 2008)
9822                  * Bit 12 is undefined in any of the following cases:
9823                  *  If the VM exit sets the valid bit in the IDT-vectoring
9824                  *   information field.
9825                  *  If the VM exit is due to a double fault.
9826                  */
9827                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9828                     vector != DF_VECTOR && !idtv_info_valid)
9829                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9830                                       GUEST_INTR_STATE_NMI);
9831                 else
9832                         vmx->loaded_vmcs->nmi_known_unmasked =
9833                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9834                                   & GUEST_INTR_STATE_NMI);
9835         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
9836                 vmx->loaded_vmcs->vnmi_blocked_time +=
9837                         ktime_to_ns(ktime_sub(ktime_get(),
9838                                               vmx->loaded_vmcs->entry_time));
9839 }
9840
9841 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
9842                                       u32 idt_vectoring_info,
9843                                       int instr_len_field,
9844                                       int error_code_field)
9845 {
9846         u8 vector;
9847         int type;
9848         bool idtv_info_valid;
9849
9850         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
9851
9852         vcpu->arch.nmi_injected = false;
9853         kvm_clear_exception_queue(vcpu);
9854         kvm_clear_interrupt_queue(vcpu);
9855
9856         if (!idtv_info_valid)
9857                 return;
9858
9859         kvm_make_request(KVM_REQ_EVENT, vcpu);
9860
9861         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9862         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
9863
9864         switch (type) {
9865         case INTR_TYPE_NMI_INTR:
9866                 vcpu->arch.nmi_injected = true;
9867                 /*
9868                  * SDM 3: 27.7.1.2 (September 2008)
9869                  * Clear bit "block by NMI" before VM entry if a NMI
9870                  * delivery faulted.
9871                  */
9872                 vmx_set_nmi_mask(vcpu, false);
9873                 break;
9874         case INTR_TYPE_SOFT_EXCEPTION:
9875                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9876                 /* fall through */
9877         case INTR_TYPE_HARD_EXCEPTION:
9878                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
9879                         u32 err = vmcs_read32(error_code_field);
9880                         kvm_requeue_exception_e(vcpu, vector, err);
9881                 } else
9882                         kvm_requeue_exception(vcpu, vector);
9883                 break;
9884         case INTR_TYPE_SOFT_INTR:
9885                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
9886                 /* fall through */
9887         case INTR_TYPE_EXT_INTR:
9888                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
9889                 break;
9890         default:
9891                 break;
9892         }
9893 }
9894
9895 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9896 {
9897         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
9898                                   VM_EXIT_INSTRUCTION_LEN,
9899                                   IDT_VECTORING_ERROR_CODE);
9900 }
9901
9902 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9903 {
9904         __vmx_complete_interrupts(vcpu,
9905                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9906                                   VM_ENTRY_INSTRUCTION_LEN,
9907                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
9908
9909         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9910 }
9911
9912 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9913 {
9914         int i, nr_msrs;
9915         struct perf_guest_switch_msr *msrs;
9916
9917         msrs = perf_guest_get_msrs(&nr_msrs);
9918
9919         if (!msrs)
9920                 return;
9921
9922         for (i = 0; i < nr_msrs; i++)
9923                 if (msrs[i].host == msrs[i].guest)
9924                         clear_atomic_switch_msr(vmx, msrs[i].msr);
9925                 else
9926                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9927                                         msrs[i].host);
9928 }
9929
9930 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
9931 {
9932         struct vcpu_vmx *vmx = to_vmx(vcpu);
9933         u64 tscl;
9934         u32 delta_tsc;
9935
9936         if (vmx->hv_deadline_tsc == -1)
9937                 return;
9938
9939         tscl = rdtsc();
9940         if (vmx->hv_deadline_tsc > tscl)
9941                 /* sure to be 32 bit only because checked on set_hv_timer */
9942                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9943                         cpu_preemption_timer_multi);
9944         else
9945                 delta_tsc = 0;
9946
9947         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9948 }
9949
9950 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
9951 {
9952         struct vcpu_vmx *vmx = to_vmx(vcpu);
9953         unsigned long cr3, cr4, evmcs_rsp;
9954
9955         /* Record the guest's net vcpu time for enforced NMI injections. */
9956         if (unlikely(!enable_vnmi &&
9957                      vmx->loaded_vmcs->soft_vnmi_blocked))
9958                 vmx->loaded_vmcs->entry_time = ktime_get();
9959
9960         /* Don't enter VMX if guest state is invalid, let the exit handler
9961            start emulation until we arrive back to a valid state */
9962         if (vmx->emulation_required)
9963                 return;
9964
9965         if (vmx->ple_window_dirty) {
9966                 vmx->ple_window_dirty = false;
9967                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9968         }
9969
9970         if (vmx->nested.sync_shadow_vmcs) {
9971                 copy_vmcs12_to_shadow(vmx);
9972                 vmx->nested.sync_shadow_vmcs = false;
9973         }
9974
9975         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9976                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9977         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9978                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9979
9980         cr3 = __get_current_cr3_fast();
9981         if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
9982                 vmcs_writel(HOST_CR3, cr3);
9983                 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
9984         }
9985
9986         cr4 = cr4_read_shadow();
9987         if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
9988                 vmcs_writel(HOST_CR4, cr4);
9989                 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
9990         }
9991
9992         /* When single-stepping over STI and MOV SS, we must clear the
9993          * corresponding interruptibility bits in the guest state. Otherwise
9994          * vmentry fails as it then expects bit 14 (BS) in pending debug
9995          * exceptions being set, but that's not correct for the guest debugging
9996          * case. */
9997         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9998                 vmx_set_interrupt_shadow(vcpu, 0);
9999
10000         if (static_cpu_has(X86_FEATURE_PKU) &&
10001             kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
10002             vcpu->arch.pkru != vmx->host_pkru)
10003                 __write_pkru(vcpu->arch.pkru);
10004
10005         atomic_switch_perf_msrs(vmx);
10006
10007         vmx_arm_hv_timer(vcpu);
10008
10009         /*
10010          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
10011          * it's non-zero. Since vmentry is serialising on affected CPUs, there
10012          * is no need to worry about the conditional branch over the wrmsr
10013          * being speculatively taken.
10014          */
10015         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
10016
10017         vmx->__launched = vmx->loaded_vmcs->launched;
10018
10019         evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
10020                 (unsigned long)&current_evmcs->host_rsp : 0;
10021
10022         asm(
10023                 /* Store host registers */
10024                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
10025                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
10026                 "push %%" _ASM_CX " \n\t"
10027                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
10028                 "je 1f \n\t"
10029                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
10030                 /* Avoid VMWRITE when Enlightened VMCS is in use */
10031                 "test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
10032                 "jz 2f \n\t"
10033                 "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
10034                 "jmp 1f \n\t"
10035                 "2: \n\t"
10036                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
10037                 "1: \n\t"
10038                 /* Reload cr2 if changed */
10039                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
10040                 "mov %%cr2, %%" _ASM_DX " \n\t"
10041                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
10042                 "je 3f \n\t"
10043                 "mov %%" _ASM_AX", %%cr2 \n\t"
10044                 "3: \n\t"
10045                 /* Check if vmlaunch of vmresume is needed */
10046                 "cmpl $0, %c[launched](%0) \n\t"
10047                 /* Load guest registers.  Don't clobber flags. */
10048                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
10049                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
10050                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
10051                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
10052                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
10053                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
10054 #ifdef CONFIG_X86_64
10055                 "mov %c[r8](%0),  %%r8  \n\t"
10056                 "mov %c[r9](%0),  %%r9  \n\t"
10057                 "mov %c[r10](%0), %%r10 \n\t"
10058                 "mov %c[r11](%0), %%r11 \n\t"
10059                 "mov %c[r12](%0), %%r12 \n\t"
10060                 "mov %c[r13](%0), %%r13 \n\t"
10061                 "mov %c[r14](%0), %%r14 \n\t"
10062                 "mov %c[r15](%0), %%r15 \n\t"
10063 #endif
10064                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
10065
10066                 /* Enter guest mode */
10067                 "jne 1f \n\t"
10068                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
10069                 "jmp 2f \n\t"
10070                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
10071                 "2: "
10072                 /* Save guest registers, load host registers, keep flags */
10073                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
10074                 "pop %0 \n\t"
10075                 "setbe %c[fail](%0)\n\t"
10076                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
10077                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
10078                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
10079                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
10080                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
10081                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
10082                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
10083 #ifdef CONFIG_X86_64
10084                 "mov %%r8,  %c[r8](%0) \n\t"
10085                 "mov %%r9,  %c[r9](%0) \n\t"
10086                 "mov %%r10, %c[r10](%0) \n\t"
10087                 "mov %%r11, %c[r11](%0) \n\t"
10088                 "mov %%r12, %c[r12](%0) \n\t"
10089                 "mov %%r13, %c[r13](%0) \n\t"
10090                 "mov %%r14, %c[r14](%0) \n\t"
10091                 "mov %%r15, %c[r15](%0) \n\t"
10092                 "xor %%r8d,  %%r8d \n\t"
10093                 "xor %%r9d,  %%r9d \n\t"
10094                 "xor %%r10d, %%r10d \n\t"
10095                 "xor %%r11d, %%r11d \n\t"
10096                 "xor %%r12d, %%r12d \n\t"
10097                 "xor %%r13d, %%r13d \n\t"
10098                 "xor %%r14d, %%r14d \n\t"
10099                 "xor %%r15d, %%r15d \n\t"
10100 #endif
10101                 "mov %%cr2, %%" _ASM_AX "   \n\t"
10102                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
10103
10104                 "xor %%eax, %%eax \n\t"
10105                 "xor %%ebx, %%ebx \n\t"
10106                 "xor %%esi, %%esi \n\t"
10107                 "xor %%edi, %%edi \n\t"
10108                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
10109                 ".pushsection .rodata \n\t"
10110                 ".global vmx_return \n\t"
10111                 "vmx_return: " _ASM_PTR " 2b \n\t"
10112                 ".popsection"
10113               : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
10114                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
10115                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
10116                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
10117                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
10118                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
10119                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
10120                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
10121                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
10122                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
10123                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
10124 #ifdef CONFIG_X86_64
10125                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
10126                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
10127                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
10128                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
10129                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
10130                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
10131                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
10132                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
10133 #endif
10134                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
10135                 [wordsize]"i"(sizeof(ulong))
10136               : "cc", "memory"
10137 #ifdef CONFIG_X86_64
10138                 , "rax", "rbx", "rdi"
10139                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
10140 #else
10141                 , "eax", "ebx", "edi"
10142 #endif
10143               );
10144
10145         /*
10146          * We do not use IBRS in the kernel. If this vCPU has used the
10147          * SPEC_CTRL MSR it may have left it on; save the value and
10148          * turn it off. This is much more efficient than blindly adding
10149          * it to the atomic save/restore list. Especially as the former
10150          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
10151          *
10152          * For non-nested case:
10153          * If the L01 MSR bitmap does not intercept the MSR, then we need to
10154          * save it.
10155          *
10156          * For nested case:
10157          * If the L02 MSR bitmap does not intercept the MSR, then we need to
10158          * save it.
10159          */
10160         if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
10161                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
10162
10163         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
10164
10165         /* Eliminate branch target predictions from guest mode */
10166         vmexit_fill_RSB();
10167
10168         /* All fields are clean at this point */
10169         if (static_branch_unlikely(&enable_evmcs))
10170                 current_evmcs->hv_clean_fields |=
10171                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
10172
10173         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
10174         if (vmx->host_debugctlmsr)
10175                 update_debugctlmsr(vmx->host_debugctlmsr);
10176
10177 #ifndef CONFIG_X86_64
10178         /*
10179          * The sysexit path does not restore ds/es, so we must set them to
10180          * a reasonable value ourselves.
10181          *
10182          * We can't defer this to vmx_load_host_state() since that function
10183          * may be executed in interrupt context, which saves and restore segments
10184          * around it, nullifying its effect.
10185          */
10186         loadsegment(ds, __USER_DS);
10187         loadsegment(es, __USER_DS);
10188 #endif
10189
10190         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
10191                                   | (1 << VCPU_EXREG_RFLAGS)
10192                                   | (1 << VCPU_EXREG_PDPTR)
10193                                   | (1 << VCPU_EXREG_SEGMENTS)
10194                                   | (1 << VCPU_EXREG_CR3));
10195         vcpu->arch.regs_dirty = 0;
10196
10197         /*
10198          * eager fpu is enabled if PKEY is supported and CR4 is switched
10199          * back on host, so it is safe to read guest PKRU from current
10200          * XSAVE.
10201          */
10202         if (static_cpu_has(X86_FEATURE_PKU) &&
10203             kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
10204                 vcpu->arch.pkru = __read_pkru();
10205                 if (vcpu->arch.pkru != vmx->host_pkru)
10206                         __write_pkru(vmx->host_pkru);
10207         }
10208
10209         vmx->nested.nested_run_pending = 0;
10210         vmx->idt_vectoring_info = 0;
10211
10212         vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
10213         if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
10214                 return;
10215
10216         vmx->loaded_vmcs->launched = 1;
10217         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
10218
10219         vmx_complete_atomic_exit(vmx);
10220         vmx_recover_nmi_blocking(vmx);
10221         vmx_complete_interrupts(vmx);
10222 }
10223 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
10224
10225 static struct kvm *vmx_vm_alloc(void)
10226 {
10227         struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
10228         return &kvm_vmx->kvm;
10229 }
10230
10231 static void vmx_vm_free(struct kvm *kvm)
10232 {
10233         vfree(to_kvm_vmx(kvm));
10234 }
10235
10236 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
10237 {
10238         struct vcpu_vmx *vmx = to_vmx(vcpu);
10239         int cpu;
10240
10241         if (vmx->loaded_vmcs == vmcs)
10242                 return;
10243
10244         cpu = get_cpu();
10245         vmx->loaded_vmcs = vmcs;
10246         vmx_vcpu_put(vcpu);
10247         vmx_vcpu_load(vcpu, cpu);
10248         put_cpu();
10249 }
10250
10251 /*
10252  * Ensure that the current vmcs of the logical processor is the
10253  * vmcs01 of the vcpu before calling free_nested().
10254  */
10255 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
10256 {
10257        struct vcpu_vmx *vmx = to_vmx(vcpu);
10258
10259        vcpu_load(vcpu);
10260        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10261        free_nested(vmx);
10262        vcpu_put(vcpu);
10263 }
10264
10265 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
10266 {
10267         struct vcpu_vmx *vmx = to_vmx(vcpu);
10268
10269         if (enable_pml)
10270                 vmx_destroy_pml_buffer(vmx);
10271         free_vpid(vmx->vpid);
10272         leave_guest_mode(vcpu);
10273         vmx_free_vcpu_nested(vcpu);
10274         free_loaded_vmcs(vmx->loaded_vmcs);
10275         kfree(vmx->guest_msrs);
10276         kvm_vcpu_uninit(vcpu);
10277         kmem_cache_free(kvm_vcpu_cache, vmx);
10278 }
10279
10280 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
10281 {
10282         int err;
10283         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
10284         unsigned long *msr_bitmap;
10285         int cpu;
10286
10287         if (!vmx)
10288                 return ERR_PTR(-ENOMEM);
10289
10290         vmx->vpid = allocate_vpid();
10291
10292         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
10293         if (err)
10294                 goto free_vcpu;
10295
10296         err = -ENOMEM;
10297
10298         /*
10299          * If PML is turned on, failure on enabling PML just results in failure
10300          * of creating the vcpu, therefore we can simplify PML logic (by
10301          * avoiding dealing with cases, such as enabling PML partially on vcpus
10302          * for the guest, etc.
10303          */
10304         if (enable_pml) {
10305                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
10306                 if (!vmx->pml_pg)
10307                         goto uninit_vcpu;
10308         }
10309
10310         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
10311         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
10312                      > PAGE_SIZE);
10313
10314         if (!vmx->guest_msrs)
10315                 goto free_pml;
10316
10317         err = alloc_loaded_vmcs(&vmx->vmcs01);
10318         if (err < 0)
10319                 goto free_msrs;
10320
10321         msr_bitmap = vmx->vmcs01.msr_bitmap;
10322         vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
10323         vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
10324         vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
10325         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
10326         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
10327         vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
10328         vmx->msr_bitmap_mode = 0;
10329
10330         vmx->loaded_vmcs = &vmx->vmcs01;
10331         cpu = get_cpu();
10332         vmx_vcpu_load(&vmx->vcpu, cpu);
10333         vmx->vcpu.cpu = cpu;
10334         vmx_vcpu_setup(vmx);
10335         vmx_vcpu_put(&vmx->vcpu);
10336         put_cpu();
10337         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
10338                 err = alloc_apic_access_page(kvm);
10339                 if (err)
10340                         goto free_vmcs;
10341         }
10342
10343         if (enable_ept && !enable_unrestricted_guest) {
10344                 err = init_rmode_identity_map(kvm);
10345                 if (err)
10346                         goto free_vmcs;
10347         }
10348
10349         if (nested) {
10350                 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
10351                                            kvm_vcpu_apicv_active(&vmx->vcpu));
10352                 vmx->nested.vpid02 = allocate_vpid();
10353         }
10354
10355         vmx->nested.posted_intr_nv = -1;
10356         vmx->nested.current_vmptr = -1ull;
10357
10358         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
10359
10360         /*
10361          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
10362          * or POSTED_INTR_WAKEUP_VECTOR.
10363          */
10364         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
10365         vmx->pi_desc.sn = 1;
10366
10367         return &vmx->vcpu;
10368
10369 free_vmcs:
10370         free_vpid(vmx->nested.vpid02);
10371         free_loaded_vmcs(vmx->loaded_vmcs);
10372 free_msrs:
10373         kfree(vmx->guest_msrs);
10374 free_pml:
10375         vmx_destroy_pml_buffer(vmx);
10376 uninit_vcpu:
10377         kvm_vcpu_uninit(&vmx->vcpu);
10378 free_vcpu:
10379         free_vpid(vmx->vpid);
10380         kmem_cache_free(kvm_vcpu_cache, vmx);
10381         return ERR_PTR(err);
10382 }
10383
10384 static int vmx_vm_init(struct kvm *kvm)
10385 {
10386         if (!ple_gap)
10387                 kvm->arch.pause_in_guest = true;
10388         return 0;
10389 }
10390
10391 static void __init vmx_check_processor_compat(void *rtn)
10392 {
10393         struct vmcs_config vmcs_conf;
10394
10395         *(int *)rtn = 0;
10396         if (setup_vmcs_config(&vmcs_conf) < 0)
10397                 *(int *)rtn = -EIO;
10398         nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv);
10399         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
10400                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
10401                                 smp_processor_id());
10402                 *(int *)rtn = -EIO;
10403         }
10404 }
10405
10406 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
10407 {
10408         u8 cache;
10409         u64 ipat = 0;
10410
10411         /* For VT-d and EPT combination
10412          * 1. MMIO: always map as UC
10413          * 2. EPT with VT-d:
10414          *   a. VT-d without snooping control feature: can't guarantee the
10415          *      result, try to trust guest.
10416          *   b. VT-d with snooping control feature: snooping control feature of
10417          *      VT-d engine can guarantee the cache correctness. Just set it
10418          *      to WB to keep consistent with host. So the same as item 3.
10419          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
10420          *    consistent with host MTRR
10421          */
10422         if (is_mmio) {
10423                 cache = MTRR_TYPE_UNCACHABLE;
10424                 goto exit;
10425         }
10426
10427         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
10428                 ipat = VMX_EPT_IPAT_BIT;
10429                 cache = MTRR_TYPE_WRBACK;
10430                 goto exit;
10431         }
10432
10433         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
10434                 ipat = VMX_EPT_IPAT_BIT;
10435                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
10436                         cache = MTRR_TYPE_WRBACK;
10437                 else
10438                         cache = MTRR_TYPE_UNCACHABLE;
10439                 goto exit;
10440         }
10441
10442         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
10443
10444 exit:
10445         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
10446 }
10447
10448 static int vmx_get_lpage_level(void)
10449 {
10450         if (enable_ept && !cpu_has_vmx_ept_1g_page())
10451                 return PT_DIRECTORY_LEVEL;
10452         else
10453                 /* For shadow and EPT supported 1GB page */
10454                 return PT_PDPE_LEVEL;
10455 }
10456
10457 static void vmcs_set_secondary_exec_control(u32 new_ctl)
10458 {
10459         /*
10460          * These bits in the secondary execution controls field
10461          * are dynamic, the others are mostly based on the hypervisor
10462          * architecture and the guest's CPUID.  Do not touch the
10463          * dynamic bits.
10464          */
10465         u32 mask =
10466                 SECONDARY_EXEC_SHADOW_VMCS |
10467                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
10468                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10469                 SECONDARY_EXEC_DESC;
10470
10471         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
10472
10473         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
10474                      (new_ctl & ~mask) | (cur_ctl & mask));
10475 }
10476
10477 /*
10478  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
10479  * (indicating "allowed-1") if they are supported in the guest's CPUID.
10480  */
10481 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
10482 {
10483         struct vcpu_vmx *vmx = to_vmx(vcpu);
10484         struct kvm_cpuid_entry2 *entry;
10485
10486         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
10487         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
10488
10489 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
10490         if (entry && (entry->_reg & (_cpuid_mask)))                     \
10491                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
10492 } while (0)
10493
10494         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
10495         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
10496         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
10497         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
10498         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
10499         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
10500         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
10501         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
10502         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
10503         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
10504         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
10505         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
10506         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
10507         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
10508         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
10509
10510         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
10511         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
10512         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
10513         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
10514         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
10515         cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
10516
10517 #undef cr4_fixed1_update
10518 }
10519
10520 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
10521 {
10522         struct vcpu_vmx *vmx = to_vmx(vcpu);
10523
10524         if (cpu_has_secondary_exec_ctrls()) {
10525                 vmx_compute_secondary_exec_control(vmx);
10526                 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
10527         }
10528
10529         if (nested_vmx_allowed(vcpu))
10530                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
10531                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
10532         else
10533                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
10534                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
10535
10536         if (nested_vmx_allowed(vcpu))
10537                 nested_vmx_cr_fixed1_bits_update(vcpu);
10538 }
10539
10540 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
10541 {
10542         if (func == 1 && nested)
10543                 entry->ecx |= bit(X86_FEATURE_VMX);
10544 }
10545
10546 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
10547                 struct x86_exception *fault)
10548 {
10549         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10550         struct vcpu_vmx *vmx = to_vmx(vcpu);
10551         u32 exit_reason;
10552         unsigned long exit_qualification = vcpu->arch.exit_qualification;
10553
10554         if (vmx->nested.pml_full) {
10555                 exit_reason = EXIT_REASON_PML_FULL;
10556                 vmx->nested.pml_full = false;
10557                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
10558         } else if (fault->error_code & PFERR_RSVD_MASK)
10559                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
10560         else
10561                 exit_reason = EXIT_REASON_EPT_VIOLATION;
10562
10563         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
10564         vmcs12->guest_physical_address = fault->address;
10565 }
10566
10567 static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
10568 {
10569         return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
10570 }
10571
10572 /* Callbacks for nested_ept_init_mmu_context: */
10573
10574 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
10575 {
10576         /* return the page table to be shadowed - in our case, EPT12 */
10577         return get_vmcs12(vcpu)->ept_pointer;
10578 }
10579
10580 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
10581 {
10582         WARN_ON(mmu_is_nested(vcpu));
10583         if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
10584                 return 1;
10585
10586         kvm_mmu_unload(vcpu);
10587         kvm_init_shadow_ept_mmu(vcpu,
10588                         to_vmx(vcpu)->nested.msrs.ept_caps &
10589                         VMX_EPT_EXECUTE_ONLY_BIT,
10590                         nested_ept_ad_enabled(vcpu));
10591         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
10592         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
10593         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
10594
10595         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
10596         return 0;
10597 }
10598
10599 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
10600 {
10601         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
10602 }
10603
10604 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
10605                                             u16 error_code)
10606 {
10607         bool inequality, bit;
10608
10609         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
10610         inequality =
10611                 (error_code & vmcs12->page_fault_error_code_mask) !=
10612                  vmcs12->page_fault_error_code_match;
10613         return inequality ^ bit;
10614 }
10615
10616 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
10617                 struct x86_exception *fault)
10618 {
10619         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10620
10621         WARN_ON(!is_guest_mode(vcpu));
10622
10623         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
10624                 !to_vmx(vcpu)->nested.nested_run_pending) {
10625                 vmcs12->vm_exit_intr_error_code = fault->error_code;
10626                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10627                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
10628                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
10629                                   fault->address);
10630         } else {
10631                 kvm_inject_page_fault(vcpu, fault);
10632         }
10633 }
10634
10635 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
10636                                                  struct vmcs12 *vmcs12);
10637
10638 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
10639                                         struct vmcs12 *vmcs12)
10640 {
10641         struct vcpu_vmx *vmx = to_vmx(vcpu);
10642         struct page *page;
10643         u64 hpa;
10644
10645         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10646                 /*
10647                  * Translate L1 physical address to host physical
10648                  * address for vmcs02. Keep the page pinned, so this
10649                  * physical address remains valid. We keep a reference
10650                  * to it so we can release it later.
10651                  */
10652                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
10653                         kvm_release_page_dirty(vmx->nested.apic_access_page);
10654                         vmx->nested.apic_access_page = NULL;
10655                 }
10656                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
10657                 /*
10658                  * If translation failed, no matter: This feature asks
10659                  * to exit when accessing the given address, and if it
10660                  * can never be accessed, this feature won't do
10661                  * anything anyway.
10662                  */
10663                 if (!is_error_page(page)) {
10664                         vmx->nested.apic_access_page = page;
10665                         hpa = page_to_phys(vmx->nested.apic_access_page);
10666                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
10667                 } else {
10668                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
10669                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10670                 }
10671         }
10672
10673         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
10674                 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
10675                         kvm_release_page_dirty(vmx->nested.virtual_apic_page);
10676                         vmx->nested.virtual_apic_page = NULL;
10677                 }
10678                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
10679
10680                 /*
10681                  * If translation failed, VM entry will fail because
10682                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
10683                  * Failing the vm entry is _not_ what the processor
10684                  * does but it's basically the only possibility we
10685                  * have.  We could still enter the guest if CR8 load
10686                  * exits are enabled, CR8 store exits are enabled, and
10687                  * virtualize APIC access is disabled; in this case
10688                  * the processor would never use the TPR shadow and we
10689                  * could simply clear the bit from the execution
10690                  * control.  But such a configuration is useless, so
10691                  * let's keep the code simple.
10692                  */
10693                 if (!is_error_page(page)) {
10694                         vmx->nested.virtual_apic_page = page;
10695                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
10696                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
10697                 }
10698         }
10699
10700         if (nested_cpu_has_posted_intr(vmcs12)) {
10701                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
10702                         kunmap(vmx->nested.pi_desc_page);
10703                         kvm_release_page_dirty(vmx->nested.pi_desc_page);
10704                         vmx->nested.pi_desc_page = NULL;
10705                 }
10706                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
10707                 if (is_error_page(page))
10708                         return;
10709                 vmx->nested.pi_desc_page = page;
10710                 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
10711                 vmx->nested.pi_desc =
10712                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
10713                         (unsigned long)(vmcs12->posted_intr_desc_addr &
10714                         (PAGE_SIZE - 1)));
10715                 vmcs_write64(POSTED_INTR_DESC_ADDR,
10716                         page_to_phys(vmx->nested.pi_desc_page) +
10717                         (unsigned long)(vmcs12->posted_intr_desc_addr &
10718                         (PAGE_SIZE - 1)));
10719         }
10720         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
10721                 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
10722                               CPU_BASED_USE_MSR_BITMAPS);
10723         else
10724                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
10725                                 CPU_BASED_USE_MSR_BITMAPS);
10726 }
10727
10728 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
10729 {
10730         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
10731         struct vcpu_vmx *vmx = to_vmx(vcpu);
10732
10733         if (vcpu->arch.virtual_tsc_khz == 0)
10734                 return;
10735
10736         /* Make sure short timeouts reliably trigger an immediate vmexit.
10737          * hrtimer_start does not guarantee this. */
10738         if (preemption_timeout <= 1) {
10739                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
10740                 return;
10741         }
10742
10743         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10744         preemption_timeout *= 1000000;
10745         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
10746         hrtimer_start(&vmx->nested.preemption_timer,
10747                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
10748 }
10749
10750 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
10751                                                struct vmcs12 *vmcs12)
10752 {
10753         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10754                 return 0;
10755
10756         if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
10757             !page_address_valid(vcpu, vmcs12->io_bitmap_b))
10758                 return -EINVAL;
10759
10760         return 0;
10761 }
10762
10763 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
10764                                                 struct vmcs12 *vmcs12)
10765 {
10766         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10767                 return 0;
10768
10769         if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
10770                 return -EINVAL;
10771
10772         return 0;
10773 }
10774
10775 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10776                                                 struct vmcs12 *vmcs12)
10777 {
10778         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10779                 return 0;
10780
10781         if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10782                 return -EINVAL;
10783
10784         return 0;
10785 }
10786
10787 /*
10788  * Merge L0's and L1's MSR bitmap, return false to indicate that
10789  * we do not use the hardware.
10790  */
10791 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
10792                                                  struct vmcs12 *vmcs12)
10793 {
10794         int msr;
10795         struct page *page;
10796         unsigned long *msr_bitmap_l1;
10797         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
10798         /*
10799          * pred_cmd & spec_ctrl are trying to verify two things:
10800          *
10801          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
10802          *    ensures that we do not accidentally generate an L02 MSR bitmap
10803          *    from the L12 MSR bitmap that is too permissive.
10804          * 2. That L1 or L2s have actually used the MSR. This avoids
10805          *    unnecessarily merging of the bitmap if the MSR is unused. This
10806          *    works properly because we only update the L01 MSR bitmap lazily.
10807          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
10808          *    updated to reflect this when L1 (or its L2s) actually write to
10809          *    the MSR.
10810          */
10811         bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
10812         bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
10813
10814         /* Nothing to do if the MSR bitmap is not in use.  */
10815         if (!cpu_has_vmx_msr_bitmap() ||
10816             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10817                 return false;
10818
10819         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10820             !pred_cmd && !spec_ctrl)
10821                 return false;
10822
10823         page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10824         if (is_error_page(page))
10825                 return false;
10826
10827         msr_bitmap_l1 = (unsigned long *)kmap(page);
10828         if (nested_cpu_has_apic_reg_virt(vmcs12)) {
10829                 /*
10830                  * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
10831                  * just lets the processor take the value from the virtual-APIC page;
10832                  * take those 256 bits directly from the L1 bitmap.
10833                  */
10834                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
10835                         unsigned word = msr / BITS_PER_LONG;
10836                         msr_bitmap_l0[word] = msr_bitmap_l1[word];
10837                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
10838                 }
10839         } else {
10840                 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
10841                         unsigned word = msr / BITS_PER_LONG;
10842                         msr_bitmap_l0[word] = ~0;
10843                         msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
10844                 }
10845         }
10846
10847         nested_vmx_disable_intercept_for_msr(
10848                 msr_bitmap_l1, msr_bitmap_l0,
10849                 X2APIC_MSR(APIC_TASKPRI),
10850                 MSR_TYPE_W);
10851
10852         if (nested_cpu_has_vid(vmcs12)) {
10853                 nested_vmx_disable_intercept_for_msr(
10854                         msr_bitmap_l1, msr_bitmap_l0,
10855                         X2APIC_MSR(APIC_EOI),
10856                         MSR_TYPE_W);
10857                 nested_vmx_disable_intercept_for_msr(
10858                         msr_bitmap_l1, msr_bitmap_l0,
10859                         X2APIC_MSR(APIC_SELF_IPI),
10860                         MSR_TYPE_W);
10861         }
10862
10863         if (spec_ctrl)
10864                 nested_vmx_disable_intercept_for_msr(
10865                                         msr_bitmap_l1, msr_bitmap_l0,
10866                                         MSR_IA32_SPEC_CTRL,
10867                                         MSR_TYPE_R | MSR_TYPE_W);
10868
10869         if (pred_cmd)
10870                 nested_vmx_disable_intercept_for_msr(
10871                                         msr_bitmap_l1, msr_bitmap_l0,
10872                                         MSR_IA32_PRED_CMD,
10873                                         MSR_TYPE_W);
10874
10875         kunmap(page);
10876         kvm_release_page_clean(page);
10877
10878         return true;
10879 }
10880
10881 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
10882                                           struct vmcs12 *vmcs12)
10883 {
10884         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
10885             !page_address_valid(vcpu, vmcs12->apic_access_addr))
10886                 return -EINVAL;
10887         else
10888                 return 0;
10889 }
10890
10891 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10892                                            struct vmcs12 *vmcs12)
10893 {
10894         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10895             !nested_cpu_has_apic_reg_virt(vmcs12) &&
10896             !nested_cpu_has_vid(vmcs12) &&
10897             !nested_cpu_has_posted_intr(vmcs12))
10898                 return 0;
10899
10900         /*
10901          * If virtualize x2apic mode is enabled,
10902          * virtualize apic access must be disabled.
10903          */
10904         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10905             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
10906                 return -EINVAL;
10907
10908         /*
10909          * If virtual interrupt delivery is enabled,
10910          * we must exit on external interrupts.
10911          */
10912         if (nested_cpu_has_vid(vmcs12) &&
10913            !nested_exit_on_intr(vcpu))
10914                 return -EINVAL;
10915
10916         /*
10917          * bits 15:8 should be zero in posted_intr_nv,
10918          * the descriptor address has been already checked
10919          * in nested_get_vmcs12_pages.
10920          */
10921         if (nested_cpu_has_posted_intr(vmcs12) &&
10922            (!nested_cpu_has_vid(vmcs12) ||
10923             !nested_exit_intr_ack_set(vcpu) ||
10924             vmcs12->posted_intr_nv & 0xff00))
10925                 return -EINVAL;
10926
10927         /* tpr shadow is needed by all apicv features. */
10928         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10929                 return -EINVAL;
10930
10931         return 0;
10932 }
10933
10934 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10935                                        unsigned long count_field,
10936                                        unsigned long addr_field)
10937 {
10938         int maxphyaddr;
10939         u64 count, addr;
10940
10941         if (vmcs12_read_any(vcpu, count_field, &count) ||
10942             vmcs12_read_any(vcpu, addr_field, &addr)) {
10943                 WARN_ON(1);
10944                 return -EINVAL;
10945         }
10946         if (count == 0)
10947                 return 0;
10948         maxphyaddr = cpuid_maxphyaddr(vcpu);
10949         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10950             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
10951                 pr_debug_ratelimited(
10952                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10953                         addr_field, maxphyaddr, count, addr);
10954                 return -EINVAL;
10955         }
10956         return 0;
10957 }
10958
10959 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10960                                                 struct vmcs12 *vmcs12)
10961 {
10962         if (vmcs12->vm_exit_msr_load_count == 0 &&
10963             vmcs12->vm_exit_msr_store_count == 0 &&
10964             vmcs12->vm_entry_msr_load_count == 0)
10965                 return 0; /* Fast path */
10966         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
10967                                         VM_EXIT_MSR_LOAD_ADDR) ||
10968             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
10969                                         VM_EXIT_MSR_STORE_ADDR) ||
10970             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
10971                                         VM_ENTRY_MSR_LOAD_ADDR))
10972                 return -EINVAL;
10973         return 0;
10974 }
10975
10976 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10977                                          struct vmcs12 *vmcs12)
10978 {
10979         u64 address = vmcs12->pml_address;
10980         int maxphyaddr = cpuid_maxphyaddr(vcpu);
10981
10982         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10983                 if (!nested_cpu_has_ept(vmcs12) ||
10984                     !IS_ALIGNED(address, 4096)  ||
10985                     address >> maxphyaddr)
10986                         return -EINVAL;
10987         }
10988
10989         return 0;
10990 }
10991
10992 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10993                                        struct vmx_msr_entry *e)
10994 {
10995         /* x2APIC MSR accesses are not allowed */
10996         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
10997                 return -EINVAL;
10998         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10999             e->index == MSR_IA32_UCODE_REV)
11000                 return -EINVAL;
11001         if (e->reserved != 0)
11002                 return -EINVAL;
11003         return 0;
11004 }
11005
11006 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
11007                                      struct vmx_msr_entry *e)
11008 {
11009         if (e->index == MSR_FS_BASE ||
11010             e->index == MSR_GS_BASE ||
11011             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
11012             nested_vmx_msr_check_common(vcpu, e))
11013                 return -EINVAL;
11014         return 0;
11015 }
11016
11017 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
11018                                       struct vmx_msr_entry *e)
11019 {
11020         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
11021             nested_vmx_msr_check_common(vcpu, e))
11022                 return -EINVAL;
11023         return 0;
11024 }
11025
11026 /*
11027  * Load guest's/host's msr at nested entry/exit.
11028  * return 0 for success, entry index for failure.
11029  */
11030 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
11031 {
11032         u32 i;
11033         struct vmx_msr_entry e;
11034         struct msr_data msr;
11035
11036         msr.host_initiated = false;
11037         for (i = 0; i < count; i++) {
11038                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
11039                                         &e, sizeof(e))) {
11040                         pr_debug_ratelimited(
11041                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
11042                                 __func__, i, gpa + i * sizeof(e));
11043                         goto fail;
11044                 }
11045                 if (nested_vmx_load_msr_check(vcpu, &e)) {
11046                         pr_debug_ratelimited(
11047                                 "%s check failed (%u, 0x%x, 0x%x)\n",
11048                                 __func__, i, e.index, e.reserved);
11049                         goto fail;
11050                 }
11051                 msr.index = e.index;
11052                 msr.data = e.value;
11053                 if (kvm_set_msr(vcpu, &msr)) {
11054                         pr_debug_ratelimited(
11055                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
11056                                 __func__, i, e.index, e.value);
11057                         goto fail;
11058                 }
11059         }
11060         return 0;
11061 fail:
11062         return i + 1;
11063 }
11064
11065 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
11066 {
11067         u32 i;
11068         struct vmx_msr_entry e;
11069
11070         for (i = 0; i < count; i++) {
11071                 struct msr_data msr_info;
11072                 if (kvm_vcpu_read_guest(vcpu,
11073                                         gpa + i * sizeof(e),
11074                                         &e, 2 * sizeof(u32))) {
11075                         pr_debug_ratelimited(
11076                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
11077                                 __func__, i, gpa + i * sizeof(e));
11078                         return -EINVAL;
11079                 }
11080                 if (nested_vmx_store_msr_check(vcpu, &e)) {
11081                         pr_debug_ratelimited(
11082                                 "%s check failed (%u, 0x%x, 0x%x)\n",
11083                                 __func__, i, e.index, e.reserved);
11084                         return -EINVAL;
11085                 }
11086                 msr_info.host_initiated = false;
11087                 msr_info.index = e.index;
11088                 if (kvm_get_msr(vcpu, &msr_info)) {
11089                         pr_debug_ratelimited(
11090                                 "%s cannot read MSR (%u, 0x%x)\n",
11091                                 __func__, i, e.index);
11092                         return -EINVAL;
11093                 }
11094                 if (kvm_vcpu_write_guest(vcpu,
11095                                          gpa + i * sizeof(e) +
11096                                              offsetof(struct vmx_msr_entry, value),
11097                                          &msr_info.data, sizeof(msr_info.data))) {
11098                         pr_debug_ratelimited(
11099                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
11100                                 __func__, i, e.index, msr_info.data);
11101                         return -EINVAL;
11102                 }
11103         }
11104         return 0;
11105 }
11106
11107 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
11108 {
11109         unsigned long invalid_mask;
11110
11111         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
11112         return (val & invalid_mask) == 0;
11113 }
11114
11115 /*
11116  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
11117  * emulating VM entry into a guest with EPT enabled.
11118  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
11119  * is assigned to entry_failure_code on failure.
11120  */
11121 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
11122                                u32 *entry_failure_code)
11123 {
11124         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
11125                 if (!nested_cr3_valid(vcpu, cr3)) {
11126                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
11127                         return 1;
11128                 }
11129
11130                 /*
11131                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
11132                  * must not be dereferenced.
11133                  */
11134                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
11135                     !nested_ept) {
11136                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
11137                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
11138                                 return 1;
11139                         }
11140                 }
11141
11142                 vcpu->arch.cr3 = cr3;
11143                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
11144         }
11145
11146         kvm_mmu_reset_context(vcpu);
11147         return 0;
11148 }
11149
11150 static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11151 {
11152         struct vcpu_vmx *vmx = to_vmx(vcpu);
11153
11154         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
11155         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
11156         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
11157         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
11158         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
11159         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
11160         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
11161         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
11162         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
11163         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
11164         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
11165         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
11166         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
11167         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
11168         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
11169         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
11170         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
11171         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
11172         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
11173         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
11174         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
11175         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
11176         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
11177         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
11178         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
11179         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
11180         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
11181         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
11182         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
11183         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
11184         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
11185
11186         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
11187         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
11188                 vmcs12->guest_pending_dbg_exceptions);
11189         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
11190         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
11191
11192         if (nested_cpu_has_xsaves(vmcs12))
11193                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
11194         vmcs_write64(VMCS_LINK_POINTER, -1ull);
11195
11196         if (cpu_has_vmx_posted_intr())
11197                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
11198
11199         /*
11200          * Whether page-faults are trapped is determined by a combination of
11201          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
11202          * If enable_ept, L0 doesn't care about page faults and we should
11203          * set all of these to L1's desires. However, if !enable_ept, L0 does
11204          * care about (at least some) page faults, and because it is not easy
11205          * (if at all possible?) to merge L0 and L1's desires, we simply ask
11206          * to exit on each and every L2 page fault. This is done by setting
11207          * MASK=MATCH=0 and (see below) EB.PF=1.
11208          * Note that below we don't need special code to set EB.PF beyond the
11209          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
11210          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
11211          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
11212          */
11213         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
11214                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
11215         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
11216                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
11217
11218         /* All VMFUNCs are currently emulated through L0 vmexits.  */
11219         if (cpu_has_vmx_vmfunc())
11220                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
11221
11222         if (cpu_has_vmx_apicv()) {
11223                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
11224                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
11225                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
11226                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
11227         }
11228
11229         /*
11230          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
11231          * Some constant fields are set here by vmx_set_constant_host_state().
11232          * Other fields are different per CPU, and will be set later when
11233          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
11234          */
11235         vmx_set_constant_host_state(vmx);
11236
11237         /*
11238          * Set the MSR load/store lists to match L0's settings.
11239          */
11240         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
11241         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11242         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
11243         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11244         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
11245
11246         set_cr4_guest_host_mask(vmx);
11247
11248         if (vmx_mpx_supported())
11249                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
11250
11251         if (enable_vpid) {
11252                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
11253                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
11254                 else
11255                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
11256         }
11257
11258         /*
11259          * L1 may access the L2's PDPTR, so save them to construct vmcs12
11260          */
11261         if (enable_ept) {
11262                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
11263                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
11264                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
11265                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
11266         }
11267
11268         if (cpu_has_vmx_msr_bitmap())
11269                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
11270 }
11271
11272 /*
11273  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
11274  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
11275  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
11276  * guest in a way that will both be appropriate to L1's requests, and our
11277  * needs. In addition to modifying the active vmcs (which is vmcs02), this
11278  * function also has additional necessary side-effects, like setting various
11279  * vcpu->arch fields.
11280  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
11281  * is assigned to entry_failure_code on failure.
11282  */
11283 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11284                           u32 *entry_failure_code)
11285 {
11286         struct vcpu_vmx *vmx = to_vmx(vcpu);
11287         u32 exec_control, vmcs12_exec_ctrl;
11288
11289         if (vmx->nested.dirty_vmcs12) {
11290                 prepare_vmcs02_full(vcpu, vmcs12);
11291                 vmx->nested.dirty_vmcs12 = false;
11292         }
11293
11294         /*
11295          * First, the fields that are shadowed.  This must be kept in sync
11296          * with vmx_shadow_fields.h.
11297          */
11298
11299         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
11300         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
11301         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
11302         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
11303         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
11304
11305         /*
11306          * Not in vmcs02: GUEST_PML_INDEX, HOST_FS_SELECTOR, HOST_GS_SELECTOR,
11307          * HOST_FS_BASE, HOST_GS_BASE.
11308          */
11309
11310         if (vmx->nested.nested_run_pending &&
11311             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
11312                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
11313                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
11314         } else {
11315                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
11316                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
11317         }
11318         if (vmx->nested.nested_run_pending) {
11319                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
11320                              vmcs12->vm_entry_intr_info_field);
11321                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
11322                              vmcs12->vm_entry_exception_error_code);
11323                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
11324                              vmcs12->vm_entry_instruction_len);
11325                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
11326                              vmcs12->guest_interruptibility_info);
11327                 vmx->loaded_vmcs->nmi_known_unmasked =
11328                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
11329         } else {
11330                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
11331         }
11332         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
11333
11334         exec_control = vmcs12->pin_based_vm_exec_control;
11335
11336         /* Preemption timer setting is only taken from vmcs01.  */
11337         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
11338         exec_control |= vmcs_config.pin_based_exec_ctrl;
11339         if (vmx->hv_deadline_tsc == -1)
11340                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
11341
11342         /* Posted interrupts setting is only taken from vmcs12.  */
11343         if (nested_cpu_has_posted_intr(vmcs12)) {
11344                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
11345                 vmx->nested.pi_pending = false;
11346         } else {
11347                 exec_control &= ~PIN_BASED_POSTED_INTR;
11348         }
11349
11350         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
11351
11352         vmx->nested.preemption_timer_expired = false;
11353         if (nested_cpu_has_preemption_timer(vmcs12))
11354                 vmx_start_preemption_timer(vcpu);
11355
11356         if (cpu_has_secondary_exec_ctrls()) {
11357                 exec_control = vmx->secondary_exec_control;
11358
11359                 /* Take the following fields only from vmcs12 */
11360                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
11361                                   SECONDARY_EXEC_ENABLE_INVPCID |
11362                                   SECONDARY_EXEC_RDTSCP |
11363                                   SECONDARY_EXEC_XSAVES |
11364                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
11365                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
11366                                   SECONDARY_EXEC_ENABLE_VMFUNC);
11367                 if (nested_cpu_has(vmcs12,
11368                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
11369                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
11370                                 ~SECONDARY_EXEC_ENABLE_PML;
11371                         exec_control |= vmcs12_exec_ctrl;
11372                 }
11373
11374                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
11375                         vmcs_write16(GUEST_INTR_STATUS,
11376                                 vmcs12->guest_intr_status);
11377
11378                 /*
11379                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
11380                  * nested_get_vmcs12_pages will either fix it up or
11381                  * remove the VM execution control.
11382                  */
11383                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
11384                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
11385
11386                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
11387         }
11388
11389         /*
11390          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
11391          * entry, but only if the current (host) sp changed from the value
11392          * we wrote last (vmx->host_rsp). This cache is no longer relevant
11393          * if we switch vmcs, and rather than hold a separate cache per vmcs,
11394          * here we just force the write to happen on entry.
11395          */
11396         vmx->host_rsp = 0;
11397
11398         exec_control = vmx_exec_control(vmx); /* L0's desires */
11399         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
11400         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
11401         exec_control &= ~CPU_BASED_TPR_SHADOW;
11402         exec_control |= vmcs12->cpu_based_vm_exec_control;
11403
11404         /*
11405          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
11406          * nested_get_vmcs12_pages can't fix it up, the illegal value
11407          * will result in a VM entry failure.
11408          */
11409         if (exec_control & CPU_BASED_TPR_SHADOW) {
11410                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
11411                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
11412         } else {
11413 #ifdef CONFIG_X86_64
11414                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
11415                                 CPU_BASED_CR8_STORE_EXITING;
11416 #endif
11417         }
11418
11419         /*
11420          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
11421          * for I/O port accesses.
11422          */
11423         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
11424         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
11425
11426         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
11427
11428         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
11429          * bitwise-or of what L1 wants to trap for L2, and what we want to
11430          * trap. Note that CR0.TS also needs updating - we do this later.
11431          */
11432         update_exception_bitmap(vcpu);
11433         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
11434         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
11435
11436         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
11437          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
11438          * bits are further modified by vmx_set_efer() below.
11439          */
11440         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
11441
11442         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
11443          * emulated by vmx_set_efer(), below.
11444          */
11445         vm_entry_controls_init(vmx, 
11446                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
11447                         ~VM_ENTRY_IA32E_MODE) |
11448                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
11449
11450         if (vmx->nested.nested_run_pending &&
11451             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
11452                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
11453                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
11454         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
11455                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
11456         }
11457
11458         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11459
11460         if (kvm_has_tsc_control)
11461                 decache_tsc_multiplier(vmx);
11462
11463         if (enable_vpid) {
11464                 /*
11465                  * There is no direct mapping between vpid02 and vpid12, the
11466                  * vpid02 is per-vCPU for L0 and reused while the value of
11467                  * vpid12 is changed w/ one invvpid during nested vmentry.
11468                  * The vpid12 is allocated by L1 for L2, so it will not
11469                  * influence global bitmap(for vpid01 and vpid02 allocation)
11470                  * even if spawn a lot of nested vCPUs.
11471                  */
11472                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
11473                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
11474                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
11475                                 __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
11476                         }
11477                 } else {
11478                         vmx_flush_tlb(vcpu, true);
11479                 }
11480         }
11481
11482         if (enable_pml) {
11483                 /*
11484                  * Conceptually we want to copy the PML address and index from
11485                  * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
11486                  * since we always flush the log on each vmexit, this happens
11487                  * to be equivalent to simply resetting the fields in vmcs02.
11488                  */
11489                 ASSERT(vmx->pml_pg);
11490                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
11491                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
11492         }
11493
11494         if (nested_cpu_has_ept(vmcs12)) {
11495                 if (nested_ept_init_mmu_context(vcpu)) {
11496                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
11497                         return 1;
11498                 }
11499         } else if (nested_cpu_has2(vmcs12,
11500                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11501                 vmx_flush_tlb(vcpu, true);
11502         }
11503
11504         /*
11505          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
11506          * bits which we consider mandatory enabled.
11507          * The CR0_READ_SHADOW is what L2 should have expected to read given
11508          * the specifications by L1; It's not enough to take
11509          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
11510          * have more bits than L1 expected.
11511          */
11512         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
11513         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
11514
11515         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
11516         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
11517
11518         if (vmx->nested.nested_run_pending &&
11519             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
11520                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
11521         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
11522                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11523         else
11524                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11525         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
11526         vmx_set_efer(vcpu, vcpu->arch.efer);
11527
11528         /*
11529          * Guest state is invalid and unrestricted guest is disabled,
11530          * which means L1 attempted VMEntry to L2 with invalid state.
11531          * Fail the VMEntry.
11532          */
11533         if (vmx->emulation_required) {
11534                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
11535                 return 1;
11536         }
11537
11538         /* Shadow page tables on either EPT or shadow page tables. */
11539         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
11540                                 entry_failure_code))
11541                 return 1;
11542
11543         if (!enable_ept)
11544                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
11545
11546         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
11547         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
11548         return 0;
11549 }
11550
11551 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
11552 {
11553         if (!nested_cpu_has_nmi_exiting(vmcs12) &&
11554             nested_cpu_has_virtual_nmis(vmcs12))
11555                 return -EINVAL;
11556
11557         if (!nested_cpu_has_virtual_nmis(vmcs12) &&
11558             nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
11559                 return -EINVAL;
11560
11561         return 0;
11562 }
11563
11564 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11565 {
11566         struct vcpu_vmx *vmx = to_vmx(vcpu);
11567
11568         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
11569             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
11570                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11571
11572         if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
11573                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11574
11575         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
11576                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11577
11578         if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
11579                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11580
11581         if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
11582                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11583
11584         if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
11585                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11586
11587         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
11588                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11589
11590         if (nested_vmx_check_pml_controls(vcpu, vmcs12))
11591                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11592
11593         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
11594                                 vmx->nested.msrs.procbased_ctls_low,
11595                                 vmx->nested.msrs.procbased_ctls_high) ||
11596             (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
11597              !vmx_control_verify(vmcs12->secondary_vm_exec_control,
11598                                  vmx->nested.msrs.secondary_ctls_low,
11599                                  vmx->nested.msrs.secondary_ctls_high)) ||
11600             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
11601                                 vmx->nested.msrs.pinbased_ctls_low,
11602                                 vmx->nested.msrs.pinbased_ctls_high) ||
11603             !vmx_control_verify(vmcs12->vm_exit_controls,
11604                                 vmx->nested.msrs.exit_ctls_low,
11605                                 vmx->nested.msrs.exit_ctls_high) ||
11606             !vmx_control_verify(vmcs12->vm_entry_controls,
11607                                 vmx->nested.msrs.entry_ctls_low,
11608                                 vmx->nested.msrs.entry_ctls_high))
11609                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11610
11611         if (nested_vmx_check_nmi_controls(vmcs12))
11612                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11613
11614         if (nested_cpu_has_vmfunc(vmcs12)) {
11615                 if (vmcs12->vm_function_control &
11616                     ~vmx->nested.msrs.vmfunc_controls)
11617                         return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11618
11619                 if (nested_cpu_has_eptp_switching(vmcs12)) {
11620                         if (!nested_cpu_has_ept(vmcs12) ||
11621                             !page_address_valid(vcpu, vmcs12->eptp_list_address))
11622                                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11623                 }
11624         }
11625
11626         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
11627                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11628
11629         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
11630             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
11631             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
11632                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
11633
11634         /*
11635          * From the Intel SDM, volume 3:
11636          * Fields relevant to VM-entry event injection must be set properly.
11637          * These fields are the VM-entry interruption-information field, the
11638          * VM-entry exception error code, and the VM-entry instruction length.
11639          */
11640         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
11641                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
11642                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
11643                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
11644                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
11645                 bool should_have_error_code;
11646                 bool urg = nested_cpu_has2(vmcs12,
11647                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
11648                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
11649
11650                 /* VM-entry interruption-info field: interruption type */
11651                 if (intr_type == INTR_TYPE_RESERVED ||
11652                     (intr_type == INTR_TYPE_OTHER_EVENT &&
11653                      !nested_cpu_supports_monitor_trap_flag(vcpu)))
11654                         return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11655
11656                 /* VM-entry interruption-info field: vector */
11657                 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
11658                     (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
11659                     (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
11660                         return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11661
11662                 /* VM-entry interruption-info field: deliver error code */
11663                 should_have_error_code =
11664                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
11665                         x86_exception_has_error_code(vector);
11666                 if (has_error_code != should_have_error_code)
11667                         return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11668
11669                 /* VM-entry exception error code */
11670                 if (has_error_code &&
11671                     vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
11672                         return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11673
11674                 /* VM-entry interruption-info field: reserved bits */
11675                 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
11676                         return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11677
11678                 /* VM-entry instruction length */
11679                 switch (intr_type) {
11680                 case INTR_TYPE_SOFT_EXCEPTION:
11681                 case INTR_TYPE_SOFT_INTR:
11682                 case INTR_TYPE_PRIV_SW_EXCEPTION:
11683                         if ((vmcs12->vm_entry_instruction_len > 15) ||
11684                             (vmcs12->vm_entry_instruction_len == 0 &&
11685                              !nested_cpu_has_zero_length_injection(vcpu)))
11686                                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11687                 }
11688         }
11689
11690         return 0;
11691 }
11692
11693 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11694                                   u32 *exit_qual)
11695 {
11696         bool ia32e;
11697
11698         *exit_qual = ENTRY_FAIL_DEFAULT;
11699
11700         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
11701             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
11702                 return 1;
11703
11704         if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
11705             vmcs12->vmcs_link_pointer != -1ull) {
11706                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
11707                 return 1;
11708         }
11709
11710         /*
11711          * If the load IA32_EFER VM-entry control is 1, the following checks
11712          * are performed on the field for the IA32_EFER MSR:
11713          * - Bits reserved in the IA32_EFER MSR must be 0.
11714          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
11715          *   the IA-32e mode guest VM-exit control. It must also be identical
11716          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
11717          *   CR0.PG) is 1.
11718          */
11719         if (to_vmx(vcpu)->nested.nested_run_pending &&
11720             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
11721                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
11722                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
11723                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
11724                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
11725                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
11726                         return 1;
11727         }
11728
11729         /*
11730          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
11731          * IA32_EFER MSR must be 0 in the field for that register. In addition,
11732          * the values of the LMA and LME bits in the field must each be that of
11733          * the host address-space size VM-exit control.
11734          */
11735         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
11736                 ia32e = (vmcs12->vm_exit_controls &
11737                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
11738                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
11739                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
11740                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
11741                         return 1;
11742         }
11743
11744         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
11745                 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
11746                 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
11747                         return 1;
11748
11749         return 0;
11750 }
11751
11752 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu)
11753 {
11754         struct vcpu_vmx *vmx = to_vmx(vcpu);
11755         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
11756         u32 msr_entry_idx;
11757         u32 exit_qual;
11758         int r;
11759
11760         enter_guest_mode(vcpu);
11761
11762         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
11763                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11764
11765         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
11766         vmx_segment_cache_clear(vmx);
11767
11768         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
11769                 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
11770
11771         r = EXIT_REASON_INVALID_STATE;
11772         if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
11773                 goto fail;
11774
11775         nested_get_vmcs12_pages(vcpu, vmcs12);
11776
11777         r = EXIT_REASON_MSR_LOAD_FAIL;
11778         msr_entry_idx = nested_vmx_load_msr(vcpu,
11779                                             vmcs12->vm_entry_msr_load_addr,
11780                                             vmcs12->vm_entry_msr_load_count);
11781         if (msr_entry_idx)
11782                 goto fail;
11783
11784         /*
11785          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
11786          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
11787          * returned as far as L1 is concerned. It will only return (and set
11788          * the success flag) when L2 exits (see nested_vmx_vmexit()).
11789          */
11790         return 0;
11791
11792 fail:
11793         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
11794                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
11795         leave_guest_mode(vcpu);
11796         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11797         nested_vmx_entry_failure(vcpu, vmcs12, r, exit_qual);
11798         return 1;
11799 }
11800
11801 /*
11802  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
11803  * for running an L2 nested guest.
11804  */
11805 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
11806 {
11807         struct vmcs12 *vmcs12;
11808         struct vcpu_vmx *vmx = to_vmx(vcpu);
11809         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
11810         u32 exit_qual;
11811         int ret;
11812
11813         if (!nested_vmx_check_permission(vcpu))
11814                 return 1;
11815
11816         if (!nested_vmx_check_vmcs12(vcpu))
11817                 goto out;
11818
11819         vmcs12 = get_vmcs12(vcpu);
11820
11821         if (enable_shadow_vmcs)
11822                 copy_shadow_to_vmcs12(vmx);
11823
11824         /*
11825          * The nested entry process starts with enforcing various prerequisites
11826          * on vmcs12 as required by the Intel SDM, and act appropriately when
11827          * they fail: As the SDM explains, some conditions should cause the
11828          * instruction to fail, while others will cause the instruction to seem
11829          * to succeed, but return an EXIT_REASON_INVALID_STATE.
11830          * To speed up the normal (success) code path, we should avoid checking
11831          * for misconfigurations which will anyway be caught by the processor
11832          * when using the merged vmcs02.
11833          */
11834         if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
11835                 nested_vmx_failValid(vcpu,
11836                                      VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
11837                 goto out;
11838         }
11839
11840         if (vmcs12->launch_state == launch) {
11841                 nested_vmx_failValid(vcpu,
11842                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
11843                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
11844                 goto out;
11845         }
11846
11847         ret = check_vmentry_prereqs(vcpu, vmcs12);
11848         if (ret) {
11849                 nested_vmx_failValid(vcpu, ret);
11850                 goto out;
11851         }
11852
11853         /*
11854          * After this point, the trap flag no longer triggers a singlestep trap
11855          * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
11856          * This is not 100% correct; for performance reasons, we delegate most
11857          * of the checks on host state to the processor.  If those fail,
11858          * the singlestep trap is missed.
11859          */
11860         skip_emulated_instruction(vcpu);
11861
11862         ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
11863         if (ret) {
11864                 nested_vmx_entry_failure(vcpu, vmcs12,
11865                                          EXIT_REASON_INVALID_STATE, exit_qual);
11866                 return 1;
11867         }
11868
11869         /*
11870          * We're finally done with prerequisite checking, and can start with
11871          * the nested entry.
11872          */
11873
11874         vmx->nested.nested_run_pending = 1;
11875         ret = enter_vmx_non_root_mode(vcpu);
11876         if (ret) {
11877                 vmx->nested.nested_run_pending = 0;
11878                 return ret;
11879         }
11880
11881         /*
11882          * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken
11883          * by event injection, halt vcpu.
11884          */
11885         if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
11886             !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK)) {
11887                 vmx->nested.nested_run_pending = 0;
11888                 return kvm_vcpu_halt(vcpu);
11889         }
11890         return 1;
11891
11892 out:
11893         return kvm_skip_emulated_instruction(vcpu);
11894 }
11895
11896 /*
11897  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11898  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11899  * This function returns the new value we should put in vmcs12.guest_cr0.
11900  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11901  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11902  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11903  *     didn't trap the bit, because if L1 did, so would L0).
11904  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11905  *     been modified by L2, and L1 knows it. So just leave the old value of
11906  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11907  *     isn't relevant, because if L0 traps this bit it can set it to anything.
11908  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11909  *     changed these bits, and therefore they need to be updated, but L0
11910  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11911  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11912  */
11913 static inline unsigned long
11914 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11915 {
11916         return
11917         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
11918         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
11919         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
11920                         vcpu->arch.cr0_guest_owned_bits));
11921 }
11922
11923 static inline unsigned long
11924 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11925 {
11926         return
11927         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
11928         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
11929         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
11930                         vcpu->arch.cr4_guest_owned_bits));
11931 }
11932
11933 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
11934                                        struct vmcs12 *vmcs12)
11935 {
11936         u32 idt_vectoring;
11937         unsigned int nr;
11938
11939         if (vcpu->arch.exception.injected) {
11940                 nr = vcpu->arch.exception.nr;
11941                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11942
11943                 if (kvm_exception_is_soft(nr)) {
11944                         vmcs12->vm_exit_instruction_len =
11945                                 vcpu->arch.event_exit_inst_len;
11946                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11947                 } else
11948                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11949
11950                 if (vcpu->arch.exception.has_error_code) {
11951                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11952                         vmcs12->idt_vectoring_error_code =
11953                                 vcpu->arch.exception.error_code;
11954                 }
11955
11956                 vmcs12->idt_vectoring_info_field = idt_vectoring;
11957         } else if (vcpu->arch.nmi_injected) {
11958                 vmcs12->idt_vectoring_info_field =
11959                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
11960         } else if (vcpu->arch.interrupt.injected) {
11961                 nr = vcpu->arch.interrupt.nr;
11962                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11963
11964                 if (vcpu->arch.interrupt.soft) {
11965                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
11966                         vmcs12->vm_entry_instruction_len =
11967                                 vcpu->arch.event_exit_inst_len;
11968                 } else
11969                         idt_vectoring |= INTR_TYPE_EXT_INTR;
11970
11971                 vmcs12->idt_vectoring_info_field = idt_vectoring;
11972         }
11973 }
11974
11975 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11976 {
11977         struct vcpu_vmx *vmx = to_vmx(vcpu);
11978         unsigned long exit_qual;
11979         bool block_nested_events =
11980             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
11981
11982         if (vcpu->arch.exception.pending &&
11983                 nested_vmx_check_exception(vcpu, &exit_qual)) {
11984                 if (block_nested_events)
11985                         return -EBUSY;
11986                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
11987                 return 0;
11988         }
11989
11990         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11991             vmx->nested.preemption_timer_expired) {
11992                 if (block_nested_events)
11993                         return -EBUSY;
11994                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11995                 return 0;
11996         }
11997
11998         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
11999                 if (block_nested_events)
12000                         return -EBUSY;
12001                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
12002                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
12003                                   INTR_INFO_VALID_MASK, 0);
12004                 /*
12005                  * The NMI-triggered VM exit counts as injection:
12006                  * clear this one and block further NMIs.
12007                  */
12008                 vcpu->arch.nmi_pending = 0;
12009                 vmx_set_nmi_mask(vcpu, true);
12010                 return 0;
12011         }
12012
12013         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
12014             nested_exit_on_intr(vcpu)) {
12015                 if (block_nested_events)
12016                         return -EBUSY;
12017                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
12018                 return 0;
12019         }
12020
12021         vmx_complete_nested_posted_interrupt(vcpu);
12022         return 0;
12023 }
12024
12025 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
12026 {
12027         ktime_t remaining =
12028                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
12029         u64 value;
12030
12031         if (ktime_to_ns(remaining) <= 0)
12032                 return 0;
12033
12034         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
12035         do_div(value, 1000000);
12036         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
12037 }
12038
12039 /*
12040  * Update the guest state fields of vmcs12 to reflect changes that
12041  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
12042  * VM-entry controls is also updated, since this is really a guest
12043  * state bit.)
12044  */
12045 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
12046 {
12047         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
12048         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
12049
12050         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
12051         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
12052         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
12053
12054         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
12055         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
12056         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
12057         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
12058         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
12059         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
12060         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
12061         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
12062         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
12063         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
12064         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
12065         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
12066         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
12067         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
12068         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
12069         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
12070         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
12071         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
12072         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
12073         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
12074         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
12075         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
12076         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
12077         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
12078         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
12079         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
12080         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
12081         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
12082         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
12083         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
12084         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
12085         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
12086         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
12087         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
12088         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
12089         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
12090
12091         vmcs12->guest_interruptibility_info =
12092                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
12093         vmcs12->guest_pending_dbg_exceptions =
12094                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
12095         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
12096                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
12097         else
12098                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
12099
12100         if (nested_cpu_has_preemption_timer(vmcs12)) {
12101                 if (vmcs12->vm_exit_controls &
12102                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
12103                         vmcs12->vmx_preemption_timer_value =
12104                                 vmx_get_preemption_timer_value(vcpu);
12105                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
12106         }
12107
12108         /*
12109          * In some cases (usually, nested EPT), L2 is allowed to change its
12110          * own CR3 without exiting. If it has changed it, we must keep it.
12111          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
12112          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
12113          *
12114          * Additionally, restore L2's PDPTR to vmcs12.
12115          */
12116         if (enable_ept) {
12117                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
12118                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
12119                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
12120                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
12121                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
12122         }
12123
12124         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
12125
12126         if (nested_cpu_has_vid(vmcs12))
12127                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
12128
12129         vmcs12->vm_entry_controls =
12130                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
12131                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
12132
12133         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
12134                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
12135                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
12136         }
12137
12138         /* TODO: These cannot have changed unless we have MSR bitmaps and
12139          * the relevant bit asks not to trap the change */
12140         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
12141                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
12142         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
12143                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
12144         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
12145         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
12146         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
12147         if (kvm_mpx_supported())
12148                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
12149 }
12150
12151 /*
12152  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
12153  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
12154  * and this function updates it to reflect the changes to the guest state while
12155  * L2 was running (and perhaps made some exits which were handled directly by L0
12156  * without going back to L1), and to reflect the exit reason.
12157  * Note that we do not have to copy here all VMCS fields, just those that
12158  * could have changed by the L2 guest or the exit - i.e., the guest-state and
12159  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
12160  * which already writes to vmcs12 directly.
12161  */
12162 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
12163                            u32 exit_reason, u32 exit_intr_info,
12164                            unsigned long exit_qualification)
12165 {
12166         /* update guest state fields: */
12167         sync_vmcs12(vcpu, vmcs12);
12168
12169         /* update exit information fields: */
12170
12171         vmcs12->vm_exit_reason = exit_reason;
12172         vmcs12->exit_qualification = exit_qualification;
12173         vmcs12->vm_exit_intr_info = exit_intr_info;
12174
12175         vmcs12->idt_vectoring_info_field = 0;
12176         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
12177         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
12178
12179         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
12180                 vmcs12->launch_state = 1;
12181
12182                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
12183                  * instead of reading the real value. */
12184                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
12185
12186                 /*
12187                  * Transfer the event that L0 or L1 may wanted to inject into
12188                  * L2 to IDT_VECTORING_INFO_FIELD.
12189                  */
12190                 vmcs12_save_pending_event(vcpu, vmcs12);
12191         }
12192
12193         /*
12194          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
12195          * preserved above and would only end up incorrectly in L1.
12196          */
12197         vcpu->arch.nmi_injected = false;
12198         kvm_clear_exception_queue(vcpu);
12199         kvm_clear_interrupt_queue(vcpu);
12200 }
12201
12202 static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
12203                         struct vmcs12 *vmcs12)
12204 {
12205         u32 entry_failure_code;
12206
12207         nested_ept_uninit_mmu_context(vcpu);
12208
12209         /*
12210          * Only PDPTE load can fail as the value of cr3 was checked on entry and
12211          * couldn't have changed.
12212          */
12213         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
12214                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
12215
12216         if (!enable_ept)
12217                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
12218 }
12219
12220 /*
12221  * A part of what we need to when the nested L2 guest exits and we want to
12222  * run its L1 parent, is to reset L1's guest state to the host state specified
12223  * in vmcs12.
12224  * This function is to be called not only on normal nested exit, but also on
12225  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
12226  * Failures During or After Loading Guest State").
12227  * This function should be called when the active VMCS is L1's (vmcs01).
12228  */
12229 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
12230                                    struct vmcs12 *vmcs12)
12231 {
12232         struct kvm_segment seg;
12233
12234         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
12235                 vcpu->arch.efer = vmcs12->host_ia32_efer;
12236         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
12237                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
12238         else
12239                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
12240         vmx_set_efer(vcpu, vcpu->arch.efer);
12241
12242         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
12243         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
12244         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
12245         /*
12246          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
12247          * actually changed, because vmx_set_cr0 refers to efer set above.
12248          *
12249          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
12250          * (KVM doesn't change it);
12251          */
12252         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
12253         vmx_set_cr0(vcpu, vmcs12->host_cr0);
12254
12255         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
12256         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
12257         vmx_set_cr4(vcpu, vmcs12->host_cr4);
12258
12259         load_vmcs12_mmu_host_state(vcpu, vmcs12);
12260
12261         /*
12262          * If vmcs01 don't use VPID, CPU flushes TLB on every
12263          * VMEntry/VMExit. Thus, no need to flush TLB.
12264          *
12265          * If vmcs12 uses VPID, TLB entries populated by L2 are
12266          * tagged with vmx->nested.vpid02 while L1 entries are tagged
12267          * with vmx->vpid. Thus, no need to flush TLB.
12268          *
12269          * Therefore, flush TLB only in case vmcs01 uses VPID and
12270          * vmcs12 don't use VPID as in this case L1 & L2 TLB entries
12271          * are both tagged with vmx->vpid.
12272          */
12273         if (enable_vpid &&
12274             !(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02)) {
12275                 vmx_flush_tlb(vcpu, true);
12276         }
12277
12278         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
12279         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
12280         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
12281         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
12282         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
12283         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
12284         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
12285
12286         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
12287         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
12288                 vmcs_write64(GUEST_BNDCFGS, 0);
12289
12290         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
12291                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
12292                 vcpu->arch.pat = vmcs12->host_ia32_pat;
12293         }
12294         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
12295                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
12296                         vmcs12->host_ia32_perf_global_ctrl);
12297
12298         /* Set L1 segment info according to Intel SDM
12299             27.5.2 Loading Host Segment and Descriptor-Table Registers */
12300         seg = (struct kvm_segment) {
12301                 .base = 0,
12302                 .limit = 0xFFFFFFFF,
12303                 .selector = vmcs12->host_cs_selector,
12304                 .type = 11,
12305                 .present = 1,
12306                 .s = 1,
12307                 .g = 1
12308         };
12309         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
12310                 seg.l = 1;
12311         else
12312                 seg.db = 1;
12313         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
12314         seg = (struct kvm_segment) {
12315                 .base = 0,
12316                 .limit = 0xFFFFFFFF,
12317                 .type = 3,
12318                 .present = 1,
12319                 .s = 1,
12320                 .db = 1,
12321                 .g = 1
12322         };
12323         seg.selector = vmcs12->host_ds_selector;
12324         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
12325         seg.selector = vmcs12->host_es_selector;
12326         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
12327         seg.selector = vmcs12->host_ss_selector;
12328         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
12329         seg.selector = vmcs12->host_fs_selector;
12330         seg.base = vmcs12->host_fs_base;
12331         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
12332         seg.selector = vmcs12->host_gs_selector;
12333         seg.base = vmcs12->host_gs_base;
12334         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
12335         seg = (struct kvm_segment) {
12336                 .base = vmcs12->host_tr_base,
12337                 .limit = 0x67,
12338                 .selector = vmcs12->host_tr_selector,
12339                 .type = 11,
12340                 .present = 1
12341         };
12342         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
12343
12344         kvm_set_dr(vcpu, 7, 0x400);
12345         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
12346
12347         if (cpu_has_vmx_msr_bitmap())
12348                 vmx_update_msr_bitmap(vcpu);
12349
12350         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
12351                                 vmcs12->vm_exit_msr_load_count))
12352                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
12353 }
12354
12355 /*
12356  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
12357  * and modify vmcs12 to make it see what it would expect to see there if
12358  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
12359  */
12360 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
12361                               u32 exit_intr_info,
12362                               unsigned long exit_qualification)
12363 {
12364         struct vcpu_vmx *vmx = to_vmx(vcpu);
12365         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12366
12367         /* trying to cancel vmlaunch/vmresume is a bug */
12368         WARN_ON_ONCE(vmx->nested.nested_run_pending);
12369
12370         /*
12371          * The only expected VM-instruction error is "VM entry with
12372          * invalid control field(s)." Anything else indicates a
12373          * problem with L0.
12374          */
12375         WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
12376                                    VMXERR_ENTRY_INVALID_CONTROL_FIELD));
12377
12378         leave_guest_mode(vcpu);
12379
12380         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
12381                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
12382
12383         if (likely(!vmx->fail)) {
12384                 if (exit_reason == -1)
12385                         sync_vmcs12(vcpu, vmcs12);
12386                 else
12387                         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
12388                                        exit_qualification);
12389
12390                 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
12391                                          vmcs12->vm_exit_msr_store_count))
12392                         nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
12393         }
12394
12395         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
12396         vm_entry_controls_reset_shadow(vmx);
12397         vm_exit_controls_reset_shadow(vmx);
12398         vmx_segment_cache_clear(vmx);
12399
12400         /* Update any VMCS fields that might have changed while L2 ran */
12401         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
12402         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
12403         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
12404         if (vmx->hv_deadline_tsc == -1)
12405                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
12406                                 PIN_BASED_VMX_PREEMPTION_TIMER);
12407         else
12408                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
12409                               PIN_BASED_VMX_PREEMPTION_TIMER);
12410         if (kvm_has_tsc_control)
12411                 decache_tsc_multiplier(vmx);
12412
12413         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
12414                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
12415                 vmx_set_virtual_apic_mode(vcpu);
12416         } else if (!nested_cpu_has_ept(vmcs12) &&
12417                    nested_cpu_has2(vmcs12,
12418                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
12419                 vmx_flush_tlb(vcpu, true);
12420         }
12421
12422         /* This is needed for same reason as it was needed in prepare_vmcs02 */
12423         vmx->host_rsp = 0;
12424
12425         /* Unpin physical memory we referred to in vmcs02 */
12426         if (vmx->nested.apic_access_page) {
12427                 kvm_release_page_dirty(vmx->nested.apic_access_page);
12428                 vmx->nested.apic_access_page = NULL;
12429         }
12430         if (vmx->nested.virtual_apic_page) {
12431                 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
12432                 vmx->nested.virtual_apic_page = NULL;
12433         }
12434         if (vmx->nested.pi_desc_page) {
12435                 kunmap(vmx->nested.pi_desc_page);
12436                 kvm_release_page_dirty(vmx->nested.pi_desc_page);
12437                 vmx->nested.pi_desc_page = NULL;
12438                 vmx->nested.pi_desc = NULL;
12439         }
12440
12441         /*
12442          * We are now running in L2, mmu_notifier will force to reload the
12443          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
12444          */
12445         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
12446
12447         if (enable_shadow_vmcs && exit_reason != -1)
12448                 vmx->nested.sync_shadow_vmcs = true;
12449
12450         /* in case we halted in L2 */
12451         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12452
12453         if (likely(!vmx->fail)) {
12454                 /*
12455                  * TODO: SDM says that with acknowledge interrupt on
12456                  * exit, bit 31 of the VM-exit interrupt information
12457                  * (valid interrupt) is always set to 1 on
12458                  * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
12459                  * need kvm_cpu_has_interrupt().  See the commit
12460                  * message for details.
12461                  */
12462                 if (nested_exit_intr_ack_set(vcpu) &&
12463                     exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
12464                     kvm_cpu_has_interrupt(vcpu)) {
12465                         int irq = kvm_cpu_get_interrupt(vcpu);
12466                         WARN_ON(irq < 0);
12467                         vmcs12->vm_exit_intr_info = irq |
12468                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
12469                 }
12470
12471                 if (exit_reason != -1)
12472                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
12473                                                        vmcs12->exit_qualification,
12474                                                        vmcs12->idt_vectoring_info_field,
12475                                                        vmcs12->vm_exit_intr_info,
12476                                                        vmcs12->vm_exit_intr_error_code,
12477                                                        KVM_ISA_VMX);
12478
12479                 load_vmcs12_host_state(vcpu, vmcs12);
12480
12481                 return;
12482         }
12483         
12484         /*
12485          * After an early L2 VM-entry failure, we're now back
12486          * in L1 which thinks it just finished a VMLAUNCH or
12487          * VMRESUME instruction, so we need to set the failure
12488          * flag and the VM-instruction error field of the VMCS
12489          * accordingly.
12490          */
12491         nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
12492
12493         load_vmcs12_mmu_host_state(vcpu, vmcs12);
12494
12495         /*
12496          * The emulated instruction was already skipped in
12497          * nested_vmx_run, but the updated RIP was never
12498          * written back to the vmcs01.
12499          */
12500         skip_emulated_instruction(vcpu);
12501         vmx->fail = 0;
12502 }
12503
12504 /*
12505  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
12506  */
12507 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
12508 {
12509         if (is_guest_mode(vcpu)) {
12510                 to_vmx(vcpu)->nested.nested_run_pending = 0;
12511                 nested_vmx_vmexit(vcpu, -1, 0, 0);
12512         }
12513         free_nested(to_vmx(vcpu));
12514 }
12515
12516 /*
12517  * L1's failure to enter L2 is a subset of a normal exit, as explained in
12518  * 23.7 "VM-entry failures during or after loading guest state" (this also
12519  * lists the acceptable exit-reason and exit-qualification parameters).
12520  * It should only be called before L2 actually succeeded to run, and when
12521  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
12522  */
12523 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
12524                         struct vmcs12 *vmcs12,
12525                         u32 reason, unsigned long qualification)
12526 {
12527         load_vmcs12_host_state(vcpu, vmcs12);
12528         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
12529         vmcs12->exit_qualification = qualification;
12530         nested_vmx_succeed(vcpu);
12531         if (enable_shadow_vmcs)
12532                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
12533 }
12534
12535 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
12536                                struct x86_instruction_info *info,
12537                                enum x86_intercept_stage stage)
12538 {
12539         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12540         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
12541
12542         /*
12543          * RDPID causes #UD if disabled through secondary execution controls.
12544          * Because it is marked as EmulateOnUD, we need to intercept it here.
12545          */
12546         if (info->intercept == x86_intercept_rdtscp &&
12547             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
12548                 ctxt->exception.vector = UD_VECTOR;
12549                 ctxt->exception.error_code_valid = false;
12550                 return X86EMUL_PROPAGATE_FAULT;
12551         }
12552
12553         /* TODO: check more intercepts... */
12554         return X86EMUL_CONTINUE;
12555 }
12556
12557 #ifdef CONFIG_X86_64
12558 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
12559 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
12560                                   u64 divisor, u64 *result)
12561 {
12562         u64 low = a << shift, high = a >> (64 - shift);
12563
12564         /* To avoid the overflow on divq */
12565         if (high >= divisor)
12566                 return 1;
12567
12568         /* Low hold the result, high hold rem which is discarded */
12569         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
12570             "rm" (divisor), "0" (low), "1" (high));
12571         *result = low;
12572
12573         return 0;
12574 }
12575
12576 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
12577 {
12578         struct vcpu_vmx *vmx;
12579         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
12580
12581         if (kvm_mwait_in_guest(vcpu->kvm))
12582                 return -EOPNOTSUPP;
12583
12584         vmx = to_vmx(vcpu);
12585         tscl = rdtsc();
12586         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
12587         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
12588         lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
12589
12590         if (delta_tsc > lapic_timer_advance_cycles)
12591                 delta_tsc -= lapic_timer_advance_cycles;
12592         else
12593                 delta_tsc = 0;
12594
12595         /* Convert to host delta tsc if tsc scaling is enabled */
12596         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
12597                         u64_shl_div_u64(delta_tsc,
12598                                 kvm_tsc_scaling_ratio_frac_bits,
12599                                 vcpu->arch.tsc_scaling_ratio,
12600                                 &delta_tsc))
12601                 return -ERANGE;
12602
12603         /*
12604          * If the delta tsc can't fit in the 32 bit after the multi shift,
12605          * we can't use the preemption timer.
12606          * It's possible that it fits on later vmentries, but checking
12607          * on every vmentry is costly so we just use an hrtimer.
12608          */
12609         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
12610                 return -ERANGE;
12611
12612         vmx->hv_deadline_tsc = tscl + delta_tsc;
12613         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
12614                         PIN_BASED_VMX_PREEMPTION_TIMER);
12615
12616         return delta_tsc == 0;
12617 }
12618
12619 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
12620 {
12621         struct vcpu_vmx *vmx = to_vmx(vcpu);
12622         vmx->hv_deadline_tsc = -1;
12623         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
12624                         PIN_BASED_VMX_PREEMPTION_TIMER);
12625 }
12626 #endif
12627
12628 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
12629 {
12630         if (!kvm_pause_in_guest(vcpu->kvm))
12631                 shrink_ple_window(vcpu);
12632 }
12633
12634 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
12635                                      struct kvm_memory_slot *slot)
12636 {
12637         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
12638         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
12639 }
12640
12641 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
12642                                        struct kvm_memory_slot *slot)
12643 {
12644         kvm_mmu_slot_set_dirty(kvm, slot);
12645 }
12646
12647 static void vmx_flush_log_dirty(struct kvm *kvm)
12648 {
12649         kvm_flush_pml_buffers(kvm);
12650 }
12651
12652 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
12653 {
12654         struct vmcs12 *vmcs12;
12655         struct vcpu_vmx *vmx = to_vmx(vcpu);
12656         gpa_t gpa;
12657         struct page *page = NULL;
12658         u64 *pml_address;
12659
12660         if (is_guest_mode(vcpu)) {
12661                 WARN_ON_ONCE(vmx->nested.pml_full);
12662
12663                 /*
12664                  * Check if PML is enabled for the nested guest.
12665                  * Whether eptp bit 6 is set is already checked
12666                  * as part of A/D emulation.
12667                  */
12668                 vmcs12 = get_vmcs12(vcpu);
12669                 if (!nested_cpu_has_pml(vmcs12))
12670                         return 0;
12671
12672                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
12673                         vmx->nested.pml_full = true;
12674                         return 1;
12675                 }
12676
12677                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
12678
12679                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
12680                 if (is_error_page(page))
12681                         return 0;
12682
12683                 pml_address = kmap(page);
12684                 pml_address[vmcs12->guest_pml_index--] = gpa;
12685                 kunmap(page);
12686                 kvm_release_page_clean(page);
12687         }
12688
12689         return 0;
12690 }
12691
12692 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
12693                                            struct kvm_memory_slot *memslot,
12694                                            gfn_t offset, unsigned long mask)
12695 {
12696         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
12697 }
12698
12699 static void __pi_post_block(struct kvm_vcpu *vcpu)
12700 {
12701         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
12702         struct pi_desc old, new;
12703         unsigned int dest;
12704
12705         do {
12706                 old.control = new.control = pi_desc->control;
12707                 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
12708                      "Wakeup handler not enabled while the VCPU is blocked\n");
12709
12710                 dest = cpu_physical_id(vcpu->cpu);
12711
12712                 if (x2apic_enabled())
12713                         new.ndst = dest;
12714                 else
12715                         new.ndst = (dest << 8) & 0xFF00;
12716
12717                 /* set 'NV' to 'notification vector' */
12718                 new.nv = POSTED_INTR_VECTOR;
12719         } while (cmpxchg64(&pi_desc->control, old.control,
12720                            new.control) != old.control);
12721
12722         if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
12723                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12724                 list_del(&vcpu->blocked_vcpu_list);
12725                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12726                 vcpu->pre_pcpu = -1;
12727         }
12728 }
12729
12730 /*
12731  * This routine does the following things for vCPU which is going
12732  * to be blocked if VT-d PI is enabled.
12733  * - Store the vCPU to the wakeup list, so when interrupts happen
12734  *   we can find the right vCPU to wake up.
12735  * - Change the Posted-interrupt descriptor as below:
12736  *      'NDST' <-- vcpu->pre_pcpu
12737  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
12738  * - If 'ON' is set during this process, which means at least one
12739  *   interrupt is posted for this vCPU, we cannot block it, in
12740  *   this case, return 1, otherwise, return 0.
12741  *
12742  */
12743 static int pi_pre_block(struct kvm_vcpu *vcpu)
12744 {
12745         unsigned int dest;
12746         struct pi_desc old, new;
12747         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
12748
12749         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
12750                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
12751                 !kvm_vcpu_apicv_active(vcpu))
12752                 return 0;
12753
12754         WARN_ON(irqs_disabled());
12755         local_irq_disable();
12756         if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
12757                 vcpu->pre_pcpu = vcpu->cpu;
12758                 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12759                 list_add_tail(&vcpu->blocked_vcpu_list,
12760                               &per_cpu(blocked_vcpu_on_cpu,
12761                                        vcpu->pre_pcpu));
12762                 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12763         }
12764
12765         do {
12766                 old.control = new.control = pi_desc->control;
12767
12768                 WARN((pi_desc->sn == 1),
12769                      "Warning: SN field of posted-interrupts "
12770                      "is set before blocking\n");
12771
12772                 /*
12773                  * Since vCPU can be preempted during this process,
12774                  * vcpu->cpu could be different with pre_pcpu, we
12775                  * need to set pre_pcpu as the destination of wakeup
12776                  * notification event, then we can find the right vCPU
12777                  * to wakeup in wakeup handler if interrupts happen
12778                  * when the vCPU is in blocked state.
12779                  */
12780                 dest = cpu_physical_id(vcpu->pre_pcpu);
12781
12782                 if (x2apic_enabled())
12783                         new.ndst = dest;
12784                 else
12785                         new.ndst = (dest << 8) & 0xFF00;
12786
12787                 /* set 'NV' to 'wakeup vector' */
12788                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
12789         } while (cmpxchg64(&pi_desc->control, old.control,
12790                            new.control) != old.control);
12791
12792         /* We should not block the vCPU if an interrupt is posted for it.  */
12793         if (pi_test_on(pi_desc) == 1)
12794                 __pi_post_block(vcpu);
12795
12796         local_irq_enable();
12797         return (vcpu->pre_pcpu == -1);
12798 }
12799
12800 static int vmx_pre_block(struct kvm_vcpu *vcpu)
12801 {
12802         if (pi_pre_block(vcpu))
12803                 return 1;
12804
12805         if (kvm_lapic_hv_timer_in_use(vcpu))
12806                 kvm_lapic_switch_to_sw_timer(vcpu);
12807
12808         return 0;
12809 }
12810
12811 static void pi_post_block(struct kvm_vcpu *vcpu)
12812 {
12813         if (vcpu->pre_pcpu == -1)
12814                 return;
12815
12816         WARN_ON(irqs_disabled());
12817         local_irq_disable();
12818         __pi_post_block(vcpu);
12819         local_irq_enable();
12820 }
12821
12822 static void vmx_post_block(struct kvm_vcpu *vcpu)
12823 {
12824         if (kvm_x86_ops->set_hv_timer)
12825                 kvm_lapic_switch_to_hv_timer(vcpu);
12826
12827         pi_post_block(vcpu);
12828 }
12829
12830 /*
12831  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
12832  *
12833  * @kvm: kvm
12834  * @host_irq: host irq of the interrupt
12835  * @guest_irq: gsi of the interrupt
12836  * @set: set or unset PI
12837  * returns 0 on success, < 0 on failure
12838  */
12839 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
12840                               uint32_t guest_irq, bool set)
12841 {
12842         struct kvm_kernel_irq_routing_entry *e;
12843         struct kvm_irq_routing_table *irq_rt;
12844         struct kvm_lapic_irq irq;
12845         struct kvm_vcpu *vcpu;
12846         struct vcpu_data vcpu_info;
12847         int idx, ret = 0;
12848
12849         if (!kvm_arch_has_assigned_device(kvm) ||
12850                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
12851                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
12852                 return 0;
12853
12854         idx = srcu_read_lock(&kvm->irq_srcu);
12855         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
12856         if (guest_irq >= irq_rt->nr_rt_entries ||
12857             hlist_empty(&irq_rt->map[guest_irq])) {
12858                 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
12859                              guest_irq, irq_rt->nr_rt_entries);
12860                 goto out;
12861         }
12862
12863         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
12864                 if (e->type != KVM_IRQ_ROUTING_MSI)
12865                         continue;
12866                 /*
12867                  * VT-d PI cannot support posting multicast/broadcast
12868                  * interrupts to a vCPU, we still use interrupt remapping
12869                  * for these kind of interrupts.
12870                  *
12871                  * For lowest-priority interrupts, we only support
12872                  * those with single CPU as the destination, e.g. user
12873                  * configures the interrupts via /proc/irq or uses
12874                  * irqbalance to make the interrupts single-CPU.
12875                  *
12876                  * We will support full lowest-priority interrupt later.
12877                  */
12878
12879                 kvm_set_msi_irq(kvm, e, &irq);
12880                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
12881                         /*
12882                          * Make sure the IRTE is in remapped mode if
12883                          * we don't handle it in posted mode.
12884                          */
12885                         ret = irq_set_vcpu_affinity(host_irq, NULL);
12886                         if (ret < 0) {
12887                                 printk(KERN_INFO
12888                                    "failed to back to remapped mode, irq: %u\n",
12889                                    host_irq);
12890                                 goto out;
12891                         }
12892
12893                         continue;
12894                 }
12895
12896                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
12897                 vcpu_info.vector = irq.vector;
12898
12899                 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
12900                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
12901
12902                 if (set)
12903                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
12904                 else
12905                         ret = irq_set_vcpu_affinity(host_irq, NULL);
12906
12907                 if (ret < 0) {
12908                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
12909                                         __func__);
12910                         goto out;
12911                 }
12912         }
12913
12914         ret = 0;
12915 out:
12916         srcu_read_unlock(&kvm->irq_srcu, idx);
12917         return ret;
12918 }
12919
12920 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
12921 {
12922         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
12923                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
12924                         FEATURE_CONTROL_LMCE;
12925         else
12926                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
12927                         ~FEATURE_CONTROL_LMCE;
12928 }
12929
12930 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
12931 {
12932         /* we need a nested vmexit to enter SMM, postpone if run is pending */
12933         if (to_vmx(vcpu)->nested.nested_run_pending)
12934                 return 0;
12935         return 1;
12936 }
12937
12938 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
12939 {
12940         struct vcpu_vmx *vmx = to_vmx(vcpu);
12941
12942         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
12943         if (vmx->nested.smm.guest_mode)
12944                 nested_vmx_vmexit(vcpu, -1, 0, 0);
12945
12946         vmx->nested.smm.vmxon = vmx->nested.vmxon;
12947         vmx->nested.vmxon = false;
12948         vmx_clear_hlt(vcpu);
12949         return 0;
12950 }
12951
12952 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
12953 {
12954         struct vcpu_vmx *vmx = to_vmx(vcpu);
12955         int ret;
12956
12957         if (vmx->nested.smm.vmxon) {
12958                 vmx->nested.vmxon = true;
12959                 vmx->nested.smm.vmxon = false;
12960         }
12961
12962         if (vmx->nested.smm.guest_mode) {
12963                 vcpu->arch.hflags &= ~HF_SMM_MASK;
12964                 ret = enter_vmx_non_root_mode(vcpu);
12965                 vcpu->arch.hflags |= HF_SMM_MASK;
12966                 if (ret)
12967                         return ret;
12968
12969                 vmx->nested.smm.guest_mode = false;
12970         }
12971         return 0;
12972 }
12973
12974 static int enable_smi_window(struct kvm_vcpu *vcpu)
12975 {
12976         return 0;
12977 }
12978
12979 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
12980         .cpu_has_kvm_support = cpu_has_kvm_support,
12981         .disabled_by_bios = vmx_disabled_by_bios,
12982         .hardware_setup = hardware_setup,
12983         .hardware_unsetup = hardware_unsetup,
12984         .check_processor_compatibility = vmx_check_processor_compat,
12985         .hardware_enable = hardware_enable,
12986         .hardware_disable = hardware_disable,
12987         .cpu_has_accelerated_tpr = report_flexpriority,
12988         .has_emulated_msr = vmx_has_emulated_msr,
12989
12990         .vm_init = vmx_vm_init,
12991         .vm_alloc = vmx_vm_alloc,
12992         .vm_free = vmx_vm_free,
12993
12994         .vcpu_create = vmx_create_vcpu,
12995         .vcpu_free = vmx_free_vcpu,
12996         .vcpu_reset = vmx_vcpu_reset,
12997
12998         .prepare_guest_switch = vmx_save_host_state,
12999         .vcpu_load = vmx_vcpu_load,
13000         .vcpu_put = vmx_vcpu_put,
13001
13002         .update_bp_intercept = update_exception_bitmap,
13003         .get_msr_feature = vmx_get_msr_feature,
13004         .get_msr = vmx_get_msr,
13005         .set_msr = vmx_set_msr,
13006         .get_segment_base = vmx_get_segment_base,
13007         .get_segment = vmx_get_segment,
13008         .set_segment = vmx_set_segment,
13009         .get_cpl = vmx_get_cpl,
13010         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
13011         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
13012         .decache_cr3 = vmx_decache_cr3,
13013         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
13014         .set_cr0 = vmx_set_cr0,
13015         .set_cr3 = vmx_set_cr3,
13016         .set_cr4 = vmx_set_cr4,
13017         .set_efer = vmx_set_efer,
13018         .get_idt = vmx_get_idt,
13019         .set_idt = vmx_set_idt,
13020         .get_gdt = vmx_get_gdt,
13021         .set_gdt = vmx_set_gdt,
13022         .get_dr6 = vmx_get_dr6,
13023         .set_dr6 = vmx_set_dr6,
13024         .set_dr7 = vmx_set_dr7,
13025         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
13026         .cache_reg = vmx_cache_reg,
13027         .get_rflags = vmx_get_rflags,
13028         .set_rflags = vmx_set_rflags,
13029
13030         .tlb_flush = vmx_flush_tlb,
13031
13032         .run = vmx_vcpu_run,
13033         .handle_exit = vmx_handle_exit,
13034         .skip_emulated_instruction = skip_emulated_instruction,
13035         .set_interrupt_shadow = vmx_set_interrupt_shadow,
13036         .get_interrupt_shadow = vmx_get_interrupt_shadow,
13037         .patch_hypercall = vmx_patch_hypercall,
13038         .set_irq = vmx_inject_irq,
13039         .set_nmi = vmx_inject_nmi,
13040         .queue_exception = vmx_queue_exception,
13041         .cancel_injection = vmx_cancel_injection,
13042         .interrupt_allowed = vmx_interrupt_allowed,
13043         .nmi_allowed = vmx_nmi_allowed,
13044         .get_nmi_mask = vmx_get_nmi_mask,
13045         .set_nmi_mask = vmx_set_nmi_mask,
13046         .enable_nmi_window = enable_nmi_window,
13047         .enable_irq_window = enable_irq_window,
13048         .update_cr8_intercept = update_cr8_intercept,
13049         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
13050         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
13051         .get_enable_apicv = vmx_get_enable_apicv,
13052         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
13053         .load_eoi_exitmap = vmx_load_eoi_exitmap,
13054         .apicv_post_state_restore = vmx_apicv_post_state_restore,
13055         .hwapic_irr_update = vmx_hwapic_irr_update,
13056         .hwapic_isr_update = vmx_hwapic_isr_update,
13057         .sync_pir_to_irr = vmx_sync_pir_to_irr,
13058         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
13059
13060         .set_tss_addr = vmx_set_tss_addr,
13061         .set_identity_map_addr = vmx_set_identity_map_addr,
13062         .get_tdp_level = get_ept_level,
13063         .get_mt_mask = vmx_get_mt_mask,
13064
13065         .get_exit_info = vmx_get_exit_info,
13066
13067         .get_lpage_level = vmx_get_lpage_level,
13068
13069         .cpuid_update = vmx_cpuid_update,
13070
13071         .rdtscp_supported = vmx_rdtscp_supported,
13072         .invpcid_supported = vmx_invpcid_supported,
13073
13074         .set_supported_cpuid = vmx_set_supported_cpuid,
13075
13076         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
13077
13078         .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
13079         .write_tsc_offset = vmx_write_tsc_offset,
13080
13081         .set_tdp_cr3 = vmx_set_cr3,
13082
13083         .check_intercept = vmx_check_intercept,
13084         .handle_external_intr = vmx_handle_external_intr,
13085         .mpx_supported = vmx_mpx_supported,
13086         .xsaves_supported = vmx_xsaves_supported,
13087         .umip_emulated = vmx_umip_emulated,
13088
13089         .check_nested_events = vmx_check_nested_events,
13090
13091         .sched_in = vmx_sched_in,
13092
13093         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
13094         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
13095         .flush_log_dirty = vmx_flush_log_dirty,
13096         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
13097         .write_log_dirty = vmx_write_pml_buffer,
13098
13099         .pre_block = vmx_pre_block,
13100         .post_block = vmx_post_block,
13101
13102         .pmu_ops = &intel_pmu_ops,
13103
13104         .update_pi_irte = vmx_update_pi_irte,
13105
13106 #ifdef CONFIG_X86_64
13107         .set_hv_timer = vmx_set_hv_timer,
13108         .cancel_hv_timer = vmx_cancel_hv_timer,
13109 #endif
13110
13111         .setup_mce = vmx_setup_mce,
13112
13113         .smi_allowed = vmx_smi_allowed,
13114         .pre_enter_smm = vmx_pre_enter_smm,
13115         .pre_leave_smm = vmx_pre_leave_smm,
13116         .enable_smi_window = enable_smi_window,
13117 };
13118
13119 static int __init vmx_init(void)
13120 {
13121         int r;
13122
13123 #if IS_ENABLED(CONFIG_HYPERV)
13124         /*
13125          * Enlightened VMCS usage should be recommended and the host needs
13126          * to support eVMCS v1 or above. We can also disable eVMCS support
13127          * with module parameter.
13128          */
13129         if (enlightened_vmcs &&
13130             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
13131             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
13132             KVM_EVMCS_VERSION) {
13133                 int cpu;
13134
13135                 /* Check that we have assist pages on all online CPUs */
13136                 for_each_online_cpu(cpu) {
13137                         if (!hv_get_vp_assist_page(cpu)) {
13138                                 enlightened_vmcs = false;
13139                                 break;
13140                         }
13141                 }
13142
13143                 if (enlightened_vmcs) {
13144                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
13145                         static_branch_enable(&enable_evmcs);
13146                 }
13147         } else {
13148                 enlightened_vmcs = false;
13149         }
13150 #endif
13151
13152         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
13153                      __alignof__(struct vcpu_vmx), THIS_MODULE);
13154         if (r)
13155                 return r;
13156
13157 #ifdef CONFIG_KEXEC_CORE
13158         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
13159                            crash_vmclear_local_loaded_vmcss);
13160 #endif
13161         vmx_check_vmcs12_offsets();
13162
13163         return 0;
13164 }
13165
13166 static void __exit vmx_exit(void)
13167 {
13168 #ifdef CONFIG_KEXEC_CORE
13169         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
13170         synchronize_rcu();
13171 #endif
13172
13173         kvm_exit();
13174
13175 #if IS_ENABLED(CONFIG_HYPERV)
13176         if (static_branch_unlikely(&enable_evmcs)) {
13177                 int cpu;
13178                 struct hv_vp_assist_page *vp_ap;
13179                 /*
13180                  * Reset everything to support using non-enlightened VMCS
13181                  * access later (e.g. when we reload the module with
13182                  * enlightened_vmcs=0)
13183                  */
13184                 for_each_online_cpu(cpu) {
13185                         vp_ap = hv_get_vp_assist_page(cpu);
13186
13187                         if (!vp_ap)
13188                                 continue;
13189
13190                         vp_ap->current_nested_vmcs = 0;
13191                         vp_ap->enlighten_vmentry = 0;
13192                 }
13193
13194                 static_branch_disable(&enable_evmcs);
13195         }
13196 #endif
13197 }
13198
13199 module_init(vmx_init)
13200 module_exit(vmx_exit)