]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/vmx.c
Merge tag 'gcc-plugins-v4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/frame.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/mmu_context.h>
53
54 #include "trace.h"
55 #include "pmu.h"
56
57 #define __ex(x) __kvm_handle_fault_on_reboot(x)
58 #define __ex_clear(x, reg) \
59         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
60
61 MODULE_AUTHOR("Qumranet");
62 MODULE_LICENSE("GPL");
63
64 static const struct x86_cpu_id vmx_cpu_id[] = {
65         X86_FEATURE_MATCH(X86_FEATURE_VMX),
66         {}
67 };
68 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
69
70 static bool __read_mostly enable_vpid = 1;
71 module_param_named(vpid, enable_vpid, bool, 0444);
72
73 static bool __read_mostly flexpriority_enabled = 1;
74 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
75
76 static bool __read_mostly enable_ept = 1;
77 module_param_named(ept, enable_ept, bool, S_IRUGO);
78
79 static bool __read_mostly enable_unrestricted_guest = 1;
80 module_param_named(unrestricted_guest,
81                         enable_unrestricted_guest, bool, S_IRUGO);
82
83 static bool __read_mostly enable_ept_ad_bits = 1;
84 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
85
86 static bool __read_mostly emulate_invalid_guest_state = true;
87 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
88
89 static bool __read_mostly fasteoi = 1;
90 module_param(fasteoi, bool, S_IRUGO);
91
92 static bool __read_mostly enable_apicv = 1;
93 module_param(enable_apicv, bool, S_IRUGO);
94
95 static bool __read_mostly enable_shadow_vmcs = 1;
96 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
97 /*
98  * If nested=1, nested virtualization is supported, i.e., guests may use
99  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
100  * use VMX instructions.
101  */
102 static bool __read_mostly nested = 0;
103 module_param(nested, bool, S_IRUGO);
104
105 static u64 __read_mostly host_xss;
106
107 static bool __read_mostly enable_pml = 1;
108 module_param_named(pml, enable_pml, bool, S_IRUGO);
109
110 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
111
112 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
113 static int __read_mostly cpu_preemption_timer_multi;
114 static bool __read_mostly enable_preemption_timer = 1;
115 #ifdef CONFIG_X86_64
116 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
117 #endif
118
119 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
120 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
121 #define KVM_VM_CR0_ALWAYS_ON                                            \
122         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
123 #define KVM_CR4_GUEST_OWNED_BITS                                      \
124         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
125          | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
126
127 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
128 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
129
130 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
131
132 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
133
134 /*
135  * Hyper-V requires all of these, so mark them as supported even though
136  * they are just treated the same as all-context.
137  */
138 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
139         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
140         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
141         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
142         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
143
144 /*
145  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
146  * ple_gap:    upper bound on the amount of time between two successive
147  *             executions of PAUSE in a loop. Also indicate if ple enabled.
148  *             According to test, this time is usually smaller than 128 cycles.
149  * ple_window: upper bound on the amount of time a guest is allowed to execute
150  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
151  *             less than 2^12 cycles
152  * Time is measured based on a counter that runs at the same rate as the TSC,
153  * refer SDM volume 3b section 21.6.13 & 22.1.3.
154  */
155 #define KVM_VMX_DEFAULT_PLE_GAP           128
156 #define KVM_VMX_DEFAULT_PLE_WINDOW        4096
157 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
158 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
159 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
160                 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
161
162 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
163 module_param(ple_gap, int, S_IRUGO);
164
165 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, int, S_IRUGO);
167
168 /* Default doubles per-vcpu window every exit. */
169 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, int, S_IRUGO);
171
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, int, S_IRUGO);
175
176 /* Default is to compute the maximum so we can never overflow. */
177 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, int, S_IRUGO);
180
181 extern const ulong vmx_return;
182
183 #define NR_AUTOLOAD_MSRS 8
184 #define VMCS02_POOL_SIZE 1
185
186 struct vmcs {
187         u32 revision_id;
188         u32 abort;
189         char data[0];
190 };
191
192 /*
193  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
194  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
195  * loaded on this CPU (so we can clear them if the CPU goes down).
196  */
197 struct loaded_vmcs {
198         struct vmcs *vmcs;
199         struct vmcs *shadow_vmcs;
200         int cpu;
201         int launched;
202         struct list_head loaded_vmcss_on_cpu_link;
203 };
204
205 struct shared_msr_entry {
206         unsigned index;
207         u64 data;
208         u64 mask;
209 };
210
211 /*
212  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
213  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
214  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
215  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
216  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
217  * More than one of these structures may exist, if L1 runs multiple L2 guests.
218  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
219  * underlying hardware which will be used to run L2.
220  * This structure is packed to ensure that its layout is identical across
221  * machines (necessary for live migration).
222  * If there are changes in this struct, VMCS12_REVISION must be changed.
223  */
224 typedef u64 natural_width;
225 struct __packed vmcs12 {
226         /* According to the Intel spec, a VMCS region must start with the
227          * following two fields. Then follow implementation-specific data.
228          */
229         u32 revision_id;
230         u32 abort;
231
232         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
233         u32 padding[7]; /* room for future expansion */
234
235         u64 io_bitmap_a;
236         u64 io_bitmap_b;
237         u64 msr_bitmap;
238         u64 vm_exit_msr_store_addr;
239         u64 vm_exit_msr_load_addr;
240         u64 vm_entry_msr_load_addr;
241         u64 tsc_offset;
242         u64 virtual_apic_page_addr;
243         u64 apic_access_addr;
244         u64 posted_intr_desc_addr;
245         u64 ept_pointer;
246         u64 eoi_exit_bitmap0;
247         u64 eoi_exit_bitmap1;
248         u64 eoi_exit_bitmap2;
249         u64 eoi_exit_bitmap3;
250         u64 xss_exit_bitmap;
251         u64 guest_physical_address;
252         u64 vmcs_link_pointer;
253         u64 pml_address;
254         u64 guest_ia32_debugctl;
255         u64 guest_ia32_pat;
256         u64 guest_ia32_efer;
257         u64 guest_ia32_perf_global_ctrl;
258         u64 guest_pdptr0;
259         u64 guest_pdptr1;
260         u64 guest_pdptr2;
261         u64 guest_pdptr3;
262         u64 guest_bndcfgs;
263         u64 host_ia32_pat;
264         u64 host_ia32_efer;
265         u64 host_ia32_perf_global_ctrl;
266         u64 padding64[8]; /* room for future expansion */
267         /*
268          * To allow migration of L1 (complete with its L2 guests) between
269          * machines of different natural widths (32 or 64 bit), we cannot have
270          * unsigned long fields with no explict size. We use u64 (aliased
271          * natural_width) instead. Luckily, x86 is little-endian.
272          */
273         natural_width cr0_guest_host_mask;
274         natural_width cr4_guest_host_mask;
275         natural_width cr0_read_shadow;
276         natural_width cr4_read_shadow;
277         natural_width cr3_target_value0;
278         natural_width cr3_target_value1;
279         natural_width cr3_target_value2;
280         natural_width cr3_target_value3;
281         natural_width exit_qualification;
282         natural_width guest_linear_address;
283         natural_width guest_cr0;
284         natural_width guest_cr3;
285         natural_width guest_cr4;
286         natural_width guest_es_base;
287         natural_width guest_cs_base;
288         natural_width guest_ss_base;
289         natural_width guest_ds_base;
290         natural_width guest_fs_base;
291         natural_width guest_gs_base;
292         natural_width guest_ldtr_base;
293         natural_width guest_tr_base;
294         natural_width guest_gdtr_base;
295         natural_width guest_idtr_base;
296         natural_width guest_dr7;
297         natural_width guest_rsp;
298         natural_width guest_rip;
299         natural_width guest_rflags;
300         natural_width guest_pending_dbg_exceptions;
301         natural_width guest_sysenter_esp;
302         natural_width guest_sysenter_eip;
303         natural_width host_cr0;
304         natural_width host_cr3;
305         natural_width host_cr4;
306         natural_width host_fs_base;
307         natural_width host_gs_base;
308         natural_width host_tr_base;
309         natural_width host_gdtr_base;
310         natural_width host_idtr_base;
311         natural_width host_ia32_sysenter_esp;
312         natural_width host_ia32_sysenter_eip;
313         natural_width host_rsp;
314         natural_width host_rip;
315         natural_width paddingl[8]; /* room for future expansion */
316         u32 pin_based_vm_exec_control;
317         u32 cpu_based_vm_exec_control;
318         u32 exception_bitmap;
319         u32 page_fault_error_code_mask;
320         u32 page_fault_error_code_match;
321         u32 cr3_target_count;
322         u32 vm_exit_controls;
323         u32 vm_exit_msr_store_count;
324         u32 vm_exit_msr_load_count;
325         u32 vm_entry_controls;
326         u32 vm_entry_msr_load_count;
327         u32 vm_entry_intr_info_field;
328         u32 vm_entry_exception_error_code;
329         u32 vm_entry_instruction_len;
330         u32 tpr_threshold;
331         u32 secondary_vm_exec_control;
332         u32 vm_instruction_error;
333         u32 vm_exit_reason;
334         u32 vm_exit_intr_info;
335         u32 vm_exit_intr_error_code;
336         u32 idt_vectoring_info_field;
337         u32 idt_vectoring_error_code;
338         u32 vm_exit_instruction_len;
339         u32 vmx_instruction_info;
340         u32 guest_es_limit;
341         u32 guest_cs_limit;
342         u32 guest_ss_limit;
343         u32 guest_ds_limit;
344         u32 guest_fs_limit;
345         u32 guest_gs_limit;
346         u32 guest_ldtr_limit;
347         u32 guest_tr_limit;
348         u32 guest_gdtr_limit;
349         u32 guest_idtr_limit;
350         u32 guest_es_ar_bytes;
351         u32 guest_cs_ar_bytes;
352         u32 guest_ss_ar_bytes;
353         u32 guest_ds_ar_bytes;
354         u32 guest_fs_ar_bytes;
355         u32 guest_gs_ar_bytes;
356         u32 guest_ldtr_ar_bytes;
357         u32 guest_tr_ar_bytes;
358         u32 guest_interruptibility_info;
359         u32 guest_activity_state;
360         u32 guest_sysenter_cs;
361         u32 host_ia32_sysenter_cs;
362         u32 vmx_preemption_timer_value;
363         u32 padding32[7]; /* room for future expansion */
364         u16 virtual_processor_id;
365         u16 posted_intr_nv;
366         u16 guest_es_selector;
367         u16 guest_cs_selector;
368         u16 guest_ss_selector;
369         u16 guest_ds_selector;
370         u16 guest_fs_selector;
371         u16 guest_gs_selector;
372         u16 guest_ldtr_selector;
373         u16 guest_tr_selector;
374         u16 guest_intr_status;
375         u16 guest_pml_index;
376         u16 host_es_selector;
377         u16 host_cs_selector;
378         u16 host_ss_selector;
379         u16 host_ds_selector;
380         u16 host_fs_selector;
381         u16 host_gs_selector;
382         u16 host_tr_selector;
383 };
384
385 /*
386  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
387  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
388  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
389  */
390 #define VMCS12_REVISION 0x11e57ed0
391
392 /*
393  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
394  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
395  * current implementation, 4K are reserved to avoid future complications.
396  */
397 #define VMCS12_SIZE 0x1000
398
399 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
400 struct vmcs02_list {
401         struct list_head list;
402         gpa_t vmptr;
403         struct loaded_vmcs vmcs02;
404 };
405
406 /*
407  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
408  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
409  */
410 struct nested_vmx {
411         /* Has the level1 guest done vmxon? */
412         bool vmxon;
413         gpa_t vmxon_ptr;
414         bool pml_full;
415
416         /* The guest-physical address of the current VMCS L1 keeps for L2 */
417         gpa_t current_vmptr;
418         /* The host-usable pointer to the above */
419         struct page *current_vmcs12_page;
420         struct vmcs12 *current_vmcs12;
421         /*
422          * Cache of the guest's VMCS, existing outside of guest memory.
423          * Loaded from guest memory during VMPTRLD. Flushed to guest
424          * memory during VMXOFF, VMCLEAR, VMPTRLD.
425          */
426         struct vmcs12 *cached_vmcs12;
427         /*
428          * Indicates if the shadow vmcs must be updated with the
429          * data hold by vmcs12
430          */
431         bool sync_shadow_vmcs;
432
433         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
434         struct list_head vmcs02_pool;
435         int vmcs02_num;
436         bool change_vmcs01_virtual_x2apic_mode;
437         /* L2 must run next, and mustn't decide to exit to L1. */
438         bool nested_run_pending;
439         /*
440          * Guest pages referred to in vmcs02 with host-physical pointers, so
441          * we must keep them pinned while L2 runs.
442          */
443         struct page *apic_access_page;
444         struct page *virtual_apic_page;
445         struct page *pi_desc_page;
446         struct pi_desc *pi_desc;
447         bool pi_pending;
448         u16 posted_intr_nv;
449
450         unsigned long *msr_bitmap;
451
452         struct hrtimer preemption_timer;
453         bool preemption_timer_expired;
454
455         /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
456         u64 vmcs01_debugctl;
457
458         u16 vpid02;
459         u16 last_vpid;
460
461         /*
462          * We only store the "true" versions of the VMX capability MSRs. We
463          * generate the "non-true" versions by setting the must-be-1 bits
464          * according to the SDM.
465          */
466         u32 nested_vmx_procbased_ctls_low;
467         u32 nested_vmx_procbased_ctls_high;
468         u32 nested_vmx_secondary_ctls_low;
469         u32 nested_vmx_secondary_ctls_high;
470         u32 nested_vmx_pinbased_ctls_low;
471         u32 nested_vmx_pinbased_ctls_high;
472         u32 nested_vmx_exit_ctls_low;
473         u32 nested_vmx_exit_ctls_high;
474         u32 nested_vmx_entry_ctls_low;
475         u32 nested_vmx_entry_ctls_high;
476         u32 nested_vmx_misc_low;
477         u32 nested_vmx_misc_high;
478         u32 nested_vmx_ept_caps;
479         u32 nested_vmx_vpid_caps;
480         u64 nested_vmx_basic;
481         u64 nested_vmx_cr0_fixed0;
482         u64 nested_vmx_cr0_fixed1;
483         u64 nested_vmx_cr4_fixed0;
484         u64 nested_vmx_cr4_fixed1;
485         u64 nested_vmx_vmcs_enum;
486 };
487
488 #define POSTED_INTR_ON  0
489 #define POSTED_INTR_SN  1
490
491 /* Posted-Interrupt Descriptor */
492 struct pi_desc {
493         u32 pir[8];     /* Posted interrupt requested */
494         union {
495                 struct {
496                                 /* bit 256 - Outstanding Notification */
497                         u16     on      : 1,
498                                 /* bit 257 - Suppress Notification */
499                                 sn      : 1,
500                                 /* bit 271:258 - Reserved */
501                                 rsvd_1  : 14;
502                                 /* bit 279:272 - Notification Vector */
503                         u8      nv;
504                                 /* bit 287:280 - Reserved */
505                         u8      rsvd_2;
506                                 /* bit 319:288 - Notification Destination */
507                         u32     ndst;
508                 };
509                 u64 control;
510         };
511         u32 rsvd[6];
512 } __aligned(64);
513
514 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
515 {
516         return test_and_set_bit(POSTED_INTR_ON,
517                         (unsigned long *)&pi_desc->control);
518 }
519
520 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
521 {
522         return test_and_clear_bit(POSTED_INTR_ON,
523                         (unsigned long *)&pi_desc->control);
524 }
525
526 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
527 {
528         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
529 }
530
531 static inline void pi_clear_sn(struct pi_desc *pi_desc)
532 {
533         return clear_bit(POSTED_INTR_SN,
534                         (unsigned long *)&pi_desc->control);
535 }
536
537 static inline void pi_set_sn(struct pi_desc *pi_desc)
538 {
539         return set_bit(POSTED_INTR_SN,
540                         (unsigned long *)&pi_desc->control);
541 }
542
543 static inline void pi_clear_on(struct pi_desc *pi_desc)
544 {
545         clear_bit(POSTED_INTR_ON,
546                   (unsigned long *)&pi_desc->control);
547 }
548
549 static inline int pi_test_on(struct pi_desc *pi_desc)
550 {
551         return test_bit(POSTED_INTR_ON,
552                         (unsigned long *)&pi_desc->control);
553 }
554
555 static inline int pi_test_sn(struct pi_desc *pi_desc)
556 {
557         return test_bit(POSTED_INTR_SN,
558                         (unsigned long *)&pi_desc->control);
559 }
560
561 struct vcpu_vmx {
562         struct kvm_vcpu       vcpu;
563         unsigned long         host_rsp;
564         u8                    fail;
565         bool                  nmi_known_unmasked;
566         u32                   exit_intr_info;
567         u32                   idt_vectoring_info;
568         ulong                 rflags;
569         struct shared_msr_entry *guest_msrs;
570         int                   nmsrs;
571         int                   save_nmsrs;
572         unsigned long         host_idt_base;
573 #ifdef CONFIG_X86_64
574         u64                   msr_host_kernel_gs_base;
575         u64                   msr_guest_kernel_gs_base;
576 #endif
577         u32 vm_entry_controls_shadow;
578         u32 vm_exit_controls_shadow;
579         /*
580          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
581          * non-nested (L1) guest, it always points to vmcs01. For a nested
582          * guest (L2), it points to a different VMCS.
583          */
584         struct loaded_vmcs    vmcs01;
585         struct loaded_vmcs   *loaded_vmcs;
586         bool                  __launched; /* temporary, used in vmx_vcpu_run */
587         struct msr_autoload {
588                 unsigned nr;
589                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
590                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
591         } msr_autoload;
592         struct {
593                 int           loaded;
594                 u16           fs_sel, gs_sel, ldt_sel;
595 #ifdef CONFIG_X86_64
596                 u16           ds_sel, es_sel;
597 #endif
598                 int           gs_ldt_reload_needed;
599                 int           fs_reload_needed;
600                 u64           msr_host_bndcfgs;
601                 unsigned long vmcs_host_cr3;    /* May not match real cr3 */
602                 unsigned long vmcs_host_cr4;    /* May not match real cr4 */
603         } host_state;
604         struct {
605                 int vm86_active;
606                 ulong save_rflags;
607                 struct kvm_segment segs[8];
608         } rmode;
609         struct {
610                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
611                 struct kvm_save_segment {
612                         u16 selector;
613                         unsigned long base;
614                         u32 limit;
615                         u32 ar;
616                 } seg[8];
617         } segment_cache;
618         int vpid;
619         bool emulation_required;
620
621         u32 exit_reason;
622
623         /* Posted interrupt descriptor */
624         struct pi_desc pi_desc;
625
626         /* Support for a guest hypervisor (nested VMX) */
627         struct nested_vmx nested;
628
629         /* Dynamic PLE window. */
630         int ple_window;
631         bool ple_window_dirty;
632
633         /* Support for PML */
634 #define PML_ENTITY_NUM          512
635         struct page *pml_pg;
636
637         /* apic deadline value in host tsc */
638         u64 hv_deadline_tsc;
639
640         u64 current_tsc_ratio;
641
642         bool guest_pkru_valid;
643         u32 guest_pkru;
644         u32 host_pkru;
645
646         /*
647          * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
648          * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
649          * in msr_ia32_feature_control_valid_bits.
650          */
651         u64 msr_ia32_feature_control;
652         u64 msr_ia32_feature_control_valid_bits;
653 };
654
655 enum segment_cache_field {
656         SEG_FIELD_SEL = 0,
657         SEG_FIELD_BASE = 1,
658         SEG_FIELD_LIMIT = 2,
659         SEG_FIELD_AR = 3,
660
661         SEG_FIELD_NR = 4
662 };
663
664 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
665 {
666         return container_of(vcpu, struct vcpu_vmx, vcpu);
667 }
668
669 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
670 {
671         return &(to_vmx(vcpu)->pi_desc);
672 }
673
674 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
675 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
676 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
677                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
678
679
680 static unsigned long shadow_read_only_fields[] = {
681         /*
682          * We do NOT shadow fields that are modified when L0
683          * traps and emulates any vmx instruction (e.g. VMPTRLD,
684          * VMXON...) executed by L1.
685          * For example, VM_INSTRUCTION_ERROR is read
686          * by L1 if a vmx instruction fails (part of the error path).
687          * Note the code assumes this logic. If for some reason
688          * we start shadowing these fields then we need to
689          * force a shadow sync when L0 emulates vmx instructions
690          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
691          * by nested_vmx_failValid)
692          */
693         VM_EXIT_REASON,
694         VM_EXIT_INTR_INFO,
695         VM_EXIT_INSTRUCTION_LEN,
696         IDT_VECTORING_INFO_FIELD,
697         IDT_VECTORING_ERROR_CODE,
698         VM_EXIT_INTR_ERROR_CODE,
699         EXIT_QUALIFICATION,
700         GUEST_LINEAR_ADDRESS,
701         GUEST_PHYSICAL_ADDRESS
702 };
703 static int max_shadow_read_only_fields =
704         ARRAY_SIZE(shadow_read_only_fields);
705
706 static unsigned long shadow_read_write_fields[] = {
707         TPR_THRESHOLD,
708         GUEST_RIP,
709         GUEST_RSP,
710         GUEST_CR0,
711         GUEST_CR3,
712         GUEST_CR4,
713         GUEST_INTERRUPTIBILITY_INFO,
714         GUEST_RFLAGS,
715         GUEST_CS_SELECTOR,
716         GUEST_CS_AR_BYTES,
717         GUEST_CS_LIMIT,
718         GUEST_CS_BASE,
719         GUEST_ES_BASE,
720         GUEST_BNDCFGS,
721         CR0_GUEST_HOST_MASK,
722         CR0_READ_SHADOW,
723         CR4_READ_SHADOW,
724         TSC_OFFSET,
725         EXCEPTION_BITMAP,
726         CPU_BASED_VM_EXEC_CONTROL,
727         VM_ENTRY_EXCEPTION_ERROR_CODE,
728         VM_ENTRY_INTR_INFO_FIELD,
729         VM_ENTRY_INSTRUCTION_LEN,
730         VM_ENTRY_EXCEPTION_ERROR_CODE,
731         HOST_FS_BASE,
732         HOST_GS_BASE,
733         HOST_FS_SELECTOR,
734         HOST_GS_SELECTOR
735 };
736 static int max_shadow_read_write_fields =
737         ARRAY_SIZE(shadow_read_write_fields);
738
739 static const unsigned short vmcs_field_to_offset_table[] = {
740         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
741         FIELD(POSTED_INTR_NV, posted_intr_nv),
742         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
743         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
744         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
745         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
746         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
747         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
748         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
749         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
750         FIELD(GUEST_INTR_STATUS, guest_intr_status),
751         FIELD(GUEST_PML_INDEX, guest_pml_index),
752         FIELD(HOST_ES_SELECTOR, host_es_selector),
753         FIELD(HOST_CS_SELECTOR, host_cs_selector),
754         FIELD(HOST_SS_SELECTOR, host_ss_selector),
755         FIELD(HOST_DS_SELECTOR, host_ds_selector),
756         FIELD(HOST_FS_SELECTOR, host_fs_selector),
757         FIELD(HOST_GS_SELECTOR, host_gs_selector),
758         FIELD(HOST_TR_SELECTOR, host_tr_selector),
759         FIELD64(IO_BITMAP_A, io_bitmap_a),
760         FIELD64(IO_BITMAP_B, io_bitmap_b),
761         FIELD64(MSR_BITMAP, msr_bitmap),
762         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
763         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
764         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
765         FIELD64(TSC_OFFSET, tsc_offset),
766         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
767         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
768         FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
769         FIELD64(EPT_POINTER, ept_pointer),
770         FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771         FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772         FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773         FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
774         FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
775         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
776         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
777         FIELD64(PML_ADDRESS, pml_address),
778         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
779         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
780         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
781         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
782         FIELD64(GUEST_PDPTR0, guest_pdptr0),
783         FIELD64(GUEST_PDPTR1, guest_pdptr1),
784         FIELD64(GUEST_PDPTR2, guest_pdptr2),
785         FIELD64(GUEST_PDPTR3, guest_pdptr3),
786         FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
787         FIELD64(HOST_IA32_PAT, host_ia32_pat),
788         FIELD64(HOST_IA32_EFER, host_ia32_efer),
789         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
790         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
791         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
792         FIELD(EXCEPTION_BITMAP, exception_bitmap),
793         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
794         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
795         FIELD(CR3_TARGET_COUNT, cr3_target_count),
796         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
797         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
798         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
799         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
800         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
801         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
802         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
803         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
804         FIELD(TPR_THRESHOLD, tpr_threshold),
805         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
806         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
807         FIELD(VM_EXIT_REASON, vm_exit_reason),
808         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
809         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
810         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
811         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
812         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
813         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
814         FIELD(GUEST_ES_LIMIT, guest_es_limit),
815         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
816         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
817         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
818         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
819         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
820         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
821         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
822         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
823         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
824         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
825         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
826         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
827         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
828         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
829         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
830         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
831         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
832         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
833         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
834         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
835         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
836         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
837         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
838         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
839         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
840         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
841         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
842         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
843         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
844         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
845         FIELD(EXIT_QUALIFICATION, exit_qualification),
846         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
847         FIELD(GUEST_CR0, guest_cr0),
848         FIELD(GUEST_CR3, guest_cr3),
849         FIELD(GUEST_CR4, guest_cr4),
850         FIELD(GUEST_ES_BASE, guest_es_base),
851         FIELD(GUEST_CS_BASE, guest_cs_base),
852         FIELD(GUEST_SS_BASE, guest_ss_base),
853         FIELD(GUEST_DS_BASE, guest_ds_base),
854         FIELD(GUEST_FS_BASE, guest_fs_base),
855         FIELD(GUEST_GS_BASE, guest_gs_base),
856         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
857         FIELD(GUEST_TR_BASE, guest_tr_base),
858         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
859         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
860         FIELD(GUEST_DR7, guest_dr7),
861         FIELD(GUEST_RSP, guest_rsp),
862         FIELD(GUEST_RIP, guest_rip),
863         FIELD(GUEST_RFLAGS, guest_rflags),
864         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
865         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
866         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
867         FIELD(HOST_CR0, host_cr0),
868         FIELD(HOST_CR3, host_cr3),
869         FIELD(HOST_CR4, host_cr4),
870         FIELD(HOST_FS_BASE, host_fs_base),
871         FIELD(HOST_GS_BASE, host_gs_base),
872         FIELD(HOST_TR_BASE, host_tr_base),
873         FIELD(HOST_GDTR_BASE, host_gdtr_base),
874         FIELD(HOST_IDTR_BASE, host_idtr_base),
875         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
876         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
877         FIELD(HOST_RSP, host_rsp),
878         FIELD(HOST_RIP, host_rip),
879 };
880
881 static inline short vmcs_field_to_offset(unsigned long field)
882 {
883         BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
884
885         if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
886             vmcs_field_to_offset_table[field] == 0)
887                 return -ENOENT;
888
889         return vmcs_field_to_offset_table[field];
890 }
891
892 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
893 {
894         return to_vmx(vcpu)->nested.cached_vmcs12;
895 }
896
897 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
898 {
899         struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
900         if (is_error_page(page))
901                 return NULL;
902
903         return page;
904 }
905
906 static void nested_release_page(struct page *page)
907 {
908         kvm_release_page_dirty(page);
909 }
910
911 static void nested_release_page_clean(struct page *page)
912 {
913         kvm_release_page_clean(page);
914 }
915
916 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
917 static u64 construct_eptp(unsigned long root_hpa);
918 static bool vmx_xsaves_supported(void);
919 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
920 static void vmx_set_segment(struct kvm_vcpu *vcpu,
921                             struct kvm_segment *var, int seg);
922 static void vmx_get_segment(struct kvm_vcpu *vcpu,
923                             struct kvm_segment *var, int seg);
924 static bool guest_state_valid(struct kvm_vcpu *vcpu);
925 static u32 vmx_segment_access_rights(struct kvm_segment *var);
926 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
927 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
928 static int alloc_identity_pagetable(struct kvm *kvm);
929
930 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
931 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
932 /*
933  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
934  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
935  */
936 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
937
938 /*
939  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
940  * can find which vCPU should be waken up.
941  */
942 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
943 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
944
945 enum {
946         VMX_IO_BITMAP_A,
947         VMX_IO_BITMAP_B,
948         VMX_MSR_BITMAP_LEGACY,
949         VMX_MSR_BITMAP_LONGMODE,
950         VMX_MSR_BITMAP_LEGACY_X2APIC_APICV,
951         VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV,
952         VMX_MSR_BITMAP_LEGACY_X2APIC,
953         VMX_MSR_BITMAP_LONGMODE_X2APIC,
954         VMX_VMREAD_BITMAP,
955         VMX_VMWRITE_BITMAP,
956         VMX_BITMAP_NR
957 };
958
959 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
960
961 #define vmx_io_bitmap_a                      (vmx_bitmap[VMX_IO_BITMAP_A])
962 #define vmx_io_bitmap_b                      (vmx_bitmap[VMX_IO_BITMAP_B])
963 #define vmx_msr_bitmap_legacy                (vmx_bitmap[VMX_MSR_BITMAP_LEGACY])
964 #define vmx_msr_bitmap_longmode              (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE])
965 #define vmx_msr_bitmap_legacy_x2apic_apicv   (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC_APICV])
966 #define vmx_msr_bitmap_longmode_x2apic_apicv (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC_APICV])
967 #define vmx_msr_bitmap_legacy_x2apic         (vmx_bitmap[VMX_MSR_BITMAP_LEGACY_X2APIC])
968 #define vmx_msr_bitmap_longmode_x2apic       (vmx_bitmap[VMX_MSR_BITMAP_LONGMODE_X2APIC])
969 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
970 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
971
972 static bool cpu_has_load_ia32_efer;
973 static bool cpu_has_load_perf_global_ctrl;
974
975 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
976 static DEFINE_SPINLOCK(vmx_vpid_lock);
977
978 static struct vmcs_config {
979         int size;
980         int order;
981         u32 basic_cap;
982         u32 revision_id;
983         u32 pin_based_exec_ctrl;
984         u32 cpu_based_exec_ctrl;
985         u32 cpu_based_2nd_exec_ctrl;
986         u32 vmexit_ctrl;
987         u32 vmentry_ctrl;
988 } vmcs_config;
989
990 static struct vmx_capability {
991         u32 ept;
992         u32 vpid;
993 } vmx_capability;
994
995 #define VMX_SEGMENT_FIELD(seg)                                  \
996         [VCPU_SREG_##seg] = {                                   \
997                 .selector = GUEST_##seg##_SELECTOR,             \
998                 .base = GUEST_##seg##_BASE,                     \
999                 .limit = GUEST_##seg##_LIMIT,                   \
1000                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
1001         }
1002
1003 static const struct kvm_vmx_segment_field {
1004         unsigned selector;
1005         unsigned base;
1006         unsigned limit;
1007         unsigned ar_bytes;
1008 } kvm_vmx_segment_fields[] = {
1009         VMX_SEGMENT_FIELD(CS),
1010         VMX_SEGMENT_FIELD(DS),
1011         VMX_SEGMENT_FIELD(ES),
1012         VMX_SEGMENT_FIELD(FS),
1013         VMX_SEGMENT_FIELD(GS),
1014         VMX_SEGMENT_FIELD(SS),
1015         VMX_SEGMENT_FIELD(TR),
1016         VMX_SEGMENT_FIELD(LDTR),
1017 };
1018
1019 static u64 host_efer;
1020
1021 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1022
1023 /*
1024  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1025  * away by decrementing the array size.
1026  */
1027 static const u32 vmx_msr_index[] = {
1028 #ifdef CONFIG_X86_64
1029         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1030 #endif
1031         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1032 };
1033
1034 static inline bool is_exception_n(u32 intr_info, u8 vector)
1035 {
1036         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1037                              INTR_INFO_VALID_MASK)) ==
1038                 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1039 }
1040
1041 static inline bool is_debug(u32 intr_info)
1042 {
1043         return is_exception_n(intr_info, DB_VECTOR);
1044 }
1045
1046 static inline bool is_breakpoint(u32 intr_info)
1047 {
1048         return is_exception_n(intr_info, BP_VECTOR);
1049 }
1050
1051 static inline bool is_page_fault(u32 intr_info)
1052 {
1053         return is_exception_n(intr_info, PF_VECTOR);
1054 }
1055
1056 static inline bool is_no_device(u32 intr_info)
1057 {
1058         return is_exception_n(intr_info, NM_VECTOR);
1059 }
1060
1061 static inline bool is_invalid_opcode(u32 intr_info)
1062 {
1063         return is_exception_n(intr_info, UD_VECTOR);
1064 }
1065
1066 static inline bool is_external_interrupt(u32 intr_info)
1067 {
1068         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1069                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1070 }
1071
1072 static inline bool is_machine_check(u32 intr_info)
1073 {
1074         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1075                              INTR_INFO_VALID_MASK)) ==
1076                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1077 }
1078
1079 static inline bool cpu_has_vmx_msr_bitmap(void)
1080 {
1081         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1082 }
1083
1084 static inline bool cpu_has_vmx_tpr_shadow(void)
1085 {
1086         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1087 }
1088
1089 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1090 {
1091         return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1092 }
1093
1094 static inline bool cpu_has_secondary_exec_ctrls(void)
1095 {
1096         return vmcs_config.cpu_based_exec_ctrl &
1097                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1098 }
1099
1100 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1101 {
1102         return vmcs_config.cpu_based_2nd_exec_ctrl &
1103                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1104 }
1105
1106 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1107 {
1108         return vmcs_config.cpu_based_2nd_exec_ctrl &
1109                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1110 }
1111
1112 static inline bool cpu_has_vmx_apic_register_virt(void)
1113 {
1114         return vmcs_config.cpu_based_2nd_exec_ctrl &
1115                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1116 }
1117
1118 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1119 {
1120         return vmcs_config.cpu_based_2nd_exec_ctrl &
1121                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1122 }
1123
1124 /*
1125  * Comment's format: document - errata name - stepping - processor name.
1126  * Refer from
1127  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1128  */
1129 static u32 vmx_preemption_cpu_tfms[] = {
1130 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
1131 0x000206E6,
1132 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1133 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1134 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1135 0x00020652,
1136 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1137 0x00020655,
1138 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1139 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1140 /*
1141  * 320767.pdf - AAP86  - B1 -
1142  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1143  */
1144 0x000106E5,
1145 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1146 0x000106A0,
1147 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1148 0x000106A1,
1149 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1150 0x000106A4,
1151  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1152  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1153  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1154 0x000106A5,
1155 };
1156
1157 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1158 {
1159         u32 eax = cpuid_eax(0x00000001), i;
1160
1161         /* Clear the reserved bits */
1162         eax &= ~(0x3U << 14 | 0xfU << 28);
1163         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1164                 if (eax == vmx_preemption_cpu_tfms[i])
1165                         return true;
1166
1167         return false;
1168 }
1169
1170 static inline bool cpu_has_vmx_preemption_timer(void)
1171 {
1172         return vmcs_config.pin_based_exec_ctrl &
1173                 PIN_BASED_VMX_PREEMPTION_TIMER;
1174 }
1175
1176 static inline bool cpu_has_vmx_posted_intr(void)
1177 {
1178         return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1179                 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1180 }
1181
1182 static inline bool cpu_has_vmx_apicv(void)
1183 {
1184         return cpu_has_vmx_apic_register_virt() &&
1185                 cpu_has_vmx_virtual_intr_delivery() &&
1186                 cpu_has_vmx_posted_intr();
1187 }
1188
1189 static inline bool cpu_has_vmx_flexpriority(void)
1190 {
1191         return cpu_has_vmx_tpr_shadow() &&
1192                 cpu_has_vmx_virtualize_apic_accesses();
1193 }
1194
1195 static inline bool cpu_has_vmx_ept_execute_only(void)
1196 {
1197         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1198 }
1199
1200 static inline bool cpu_has_vmx_ept_2m_page(void)
1201 {
1202         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1203 }
1204
1205 static inline bool cpu_has_vmx_ept_1g_page(void)
1206 {
1207         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1208 }
1209
1210 static inline bool cpu_has_vmx_ept_4levels(void)
1211 {
1212         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1213 }
1214
1215 static inline bool cpu_has_vmx_ept_ad_bits(void)
1216 {
1217         return vmx_capability.ept & VMX_EPT_AD_BIT;
1218 }
1219
1220 static inline bool cpu_has_vmx_invept_context(void)
1221 {
1222         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1223 }
1224
1225 static inline bool cpu_has_vmx_invept_global(void)
1226 {
1227         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1228 }
1229
1230 static inline bool cpu_has_vmx_invvpid_single(void)
1231 {
1232         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1233 }
1234
1235 static inline bool cpu_has_vmx_invvpid_global(void)
1236 {
1237         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1238 }
1239
1240 static inline bool cpu_has_vmx_invvpid(void)
1241 {
1242         return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1243 }
1244
1245 static inline bool cpu_has_vmx_ept(void)
1246 {
1247         return vmcs_config.cpu_based_2nd_exec_ctrl &
1248                 SECONDARY_EXEC_ENABLE_EPT;
1249 }
1250
1251 static inline bool cpu_has_vmx_unrestricted_guest(void)
1252 {
1253         return vmcs_config.cpu_based_2nd_exec_ctrl &
1254                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1255 }
1256
1257 static inline bool cpu_has_vmx_ple(void)
1258 {
1259         return vmcs_config.cpu_based_2nd_exec_ctrl &
1260                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1261 }
1262
1263 static inline bool cpu_has_vmx_basic_inout(void)
1264 {
1265         return  (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1266 }
1267
1268 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1269 {
1270         return flexpriority_enabled && lapic_in_kernel(vcpu);
1271 }
1272
1273 static inline bool cpu_has_vmx_vpid(void)
1274 {
1275         return vmcs_config.cpu_based_2nd_exec_ctrl &
1276                 SECONDARY_EXEC_ENABLE_VPID;
1277 }
1278
1279 static inline bool cpu_has_vmx_rdtscp(void)
1280 {
1281         return vmcs_config.cpu_based_2nd_exec_ctrl &
1282                 SECONDARY_EXEC_RDTSCP;
1283 }
1284
1285 static inline bool cpu_has_vmx_invpcid(void)
1286 {
1287         return vmcs_config.cpu_based_2nd_exec_ctrl &
1288                 SECONDARY_EXEC_ENABLE_INVPCID;
1289 }
1290
1291 static inline bool cpu_has_vmx_wbinvd_exit(void)
1292 {
1293         return vmcs_config.cpu_based_2nd_exec_ctrl &
1294                 SECONDARY_EXEC_WBINVD_EXITING;
1295 }
1296
1297 static inline bool cpu_has_vmx_shadow_vmcs(void)
1298 {
1299         u64 vmx_msr;
1300         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1301         /* check if the cpu supports writing r/o exit information fields */
1302         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1303                 return false;
1304
1305         return vmcs_config.cpu_based_2nd_exec_ctrl &
1306                 SECONDARY_EXEC_SHADOW_VMCS;
1307 }
1308
1309 static inline bool cpu_has_vmx_pml(void)
1310 {
1311         return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1312 }
1313
1314 static inline bool cpu_has_vmx_tsc_scaling(void)
1315 {
1316         return vmcs_config.cpu_based_2nd_exec_ctrl &
1317                 SECONDARY_EXEC_TSC_SCALING;
1318 }
1319
1320 static inline bool report_flexpriority(void)
1321 {
1322         return flexpriority_enabled;
1323 }
1324
1325 static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1326 {
1327         return vmx_misc_cr3_count(to_vmx(vcpu)->nested.nested_vmx_misc_low);
1328 }
1329
1330 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1331 {
1332         return vmcs12->cpu_based_vm_exec_control & bit;
1333 }
1334
1335 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1336 {
1337         return (vmcs12->cpu_based_vm_exec_control &
1338                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1339                 (vmcs12->secondary_vm_exec_control & bit);
1340 }
1341
1342 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1343 {
1344         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1345 }
1346
1347 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1348 {
1349         return vmcs12->pin_based_vm_exec_control &
1350                 PIN_BASED_VMX_PREEMPTION_TIMER;
1351 }
1352
1353 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1354 {
1355         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1356 }
1357
1358 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1359 {
1360         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1361                 vmx_xsaves_supported();
1362 }
1363
1364 static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1365 {
1366         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1367 }
1368
1369 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1370 {
1371         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1372 }
1373
1374 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1375 {
1376         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1377 }
1378
1379 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1380 {
1381         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1382 }
1383
1384 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1385 {
1386         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1387 }
1388
1389 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1390 {
1391         return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1392 }
1393
1394 static inline bool is_nmi(u32 intr_info)
1395 {
1396         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1397                 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1398 }
1399
1400 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1401                               u32 exit_intr_info,
1402                               unsigned long exit_qualification);
1403 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1404                         struct vmcs12 *vmcs12,
1405                         u32 reason, unsigned long qualification);
1406
1407 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1408 {
1409         int i;
1410
1411         for (i = 0; i < vmx->nmsrs; ++i)
1412                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1413                         return i;
1414         return -1;
1415 }
1416
1417 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1418 {
1419     struct {
1420         u64 vpid : 16;
1421         u64 rsvd : 48;
1422         u64 gva;
1423     } operand = { vpid, 0, gva };
1424
1425     asm volatile (__ex(ASM_VMX_INVVPID)
1426                   /* CF==1 or ZF==1 --> rc = -1 */
1427                   "; ja 1f ; ud2 ; 1:"
1428                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1429 }
1430
1431 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1432 {
1433         struct {
1434                 u64 eptp, gpa;
1435         } operand = {eptp, gpa};
1436
1437         asm volatile (__ex(ASM_VMX_INVEPT)
1438                         /* CF==1 or ZF==1 --> rc = -1 */
1439                         "; ja 1f ; ud2 ; 1:\n"
1440                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1441 }
1442
1443 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1444 {
1445         int i;
1446
1447         i = __find_msr_index(vmx, msr);
1448         if (i >= 0)
1449                 return &vmx->guest_msrs[i];
1450         return NULL;
1451 }
1452
1453 static void vmcs_clear(struct vmcs *vmcs)
1454 {
1455         u64 phys_addr = __pa(vmcs);
1456         u8 error;
1457
1458         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1459                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1460                       : "cc", "memory");
1461         if (error)
1462                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1463                        vmcs, phys_addr);
1464 }
1465
1466 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1467 {
1468         vmcs_clear(loaded_vmcs->vmcs);
1469         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1470                 vmcs_clear(loaded_vmcs->shadow_vmcs);
1471         loaded_vmcs->cpu = -1;
1472         loaded_vmcs->launched = 0;
1473 }
1474
1475 static void vmcs_load(struct vmcs *vmcs)
1476 {
1477         u64 phys_addr = __pa(vmcs);
1478         u8 error;
1479
1480         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1481                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1482                         : "cc", "memory");
1483         if (error)
1484                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1485                        vmcs, phys_addr);
1486 }
1487
1488 #ifdef CONFIG_KEXEC_CORE
1489 /*
1490  * This bitmap is used to indicate whether the vmclear
1491  * operation is enabled on all cpus. All disabled by
1492  * default.
1493  */
1494 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1495
1496 static inline void crash_enable_local_vmclear(int cpu)
1497 {
1498         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1499 }
1500
1501 static inline void crash_disable_local_vmclear(int cpu)
1502 {
1503         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1504 }
1505
1506 static inline int crash_local_vmclear_enabled(int cpu)
1507 {
1508         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1509 }
1510
1511 static void crash_vmclear_local_loaded_vmcss(void)
1512 {
1513         int cpu = raw_smp_processor_id();
1514         struct loaded_vmcs *v;
1515
1516         if (!crash_local_vmclear_enabled(cpu))
1517                 return;
1518
1519         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1520                             loaded_vmcss_on_cpu_link)
1521                 vmcs_clear(v->vmcs);
1522 }
1523 #else
1524 static inline void crash_enable_local_vmclear(int cpu) { }
1525 static inline void crash_disable_local_vmclear(int cpu) { }
1526 #endif /* CONFIG_KEXEC_CORE */
1527
1528 static void __loaded_vmcs_clear(void *arg)
1529 {
1530         struct loaded_vmcs *loaded_vmcs = arg;
1531         int cpu = raw_smp_processor_id();
1532
1533         if (loaded_vmcs->cpu != cpu)
1534                 return; /* vcpu migration can race with cpu offline */
1535         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1536                 per_cpu(current_vmcs, cpu) = NULL;
1537         crash_disable_local_vmclear(cpu);
1538         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1539
1540         /*
1541          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1542          * is before setting loaded_vmcs->vcpu to -1 which is done in
1543          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1544          * then adds the vmcs into percpu list before it is deleted.
1545          */
1546         smp_wmb();
1547
1548         loaded_vmcs_init(loaded_vmcs);
1549         crash_enable_local_vmclear(cpu);
1550 }
1551
1552 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1553 {
1554         int cpu = loaded_vmcs->cpu;
1555
1556         if (cpu != -1)
1557                 smp_call_function_single(cpu,
1558                          __loaded_vmcs_clear, loaded_vmcs, 1);
1559 }
1560
1561 static inline void vpid_sync_vcpu_single(int vpid)
1562 {
1563         if (vpid == 0)
1564                 return;
1565
1566         if (cpu_has_vmx_invvpid_single())
1567                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1568 }
1569
1570 static inline void vpid_sync_vcpu_global(void)
1571 {
1572         if (cpu_has_vmx_invvpid_global())
1573                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1574 }
1575
1576 static inline void vpid_sync_context(int vpid)
1577 {
1578         if (cpu_has_vmx_invvpid_single())
1579                 vpid_sync_vcpu_single(vpid);
1580         else
1581                 vpid_sync_vcpu_global();
1582 }
1583
1584 static inline void ept_sync_global(void)
1585 {
1586         if (cpu_has_vmx_invept_global())
1587                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1588 }
1589
1590 static inline void ept_sync_context(u64 eptp)
1591 {
1592         if (enable_ept) {
1593                 if (cpu_has_vmx_invept_context())
1594                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1595                 else
1596                         ept_sync_global();
1597         }
1598 }
1599
1600 static __always_inline void vmcs_check16(unsigned long field)
1601 {
1602         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1603                          "16-bit accessor invalid for 64-bit field");
1604         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1605                          "16-bit accessor invalid for 64-bit high field");
1606         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1607                          "16-bit accessor invalid for 32-bit high field");
1608         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1609                          "16-bit accessor invalid for natural width field");
1610 }
1611
1612 static __always_inline void vmcs_check32(unsigned long field)
1613 {
1614         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1615                          "32-bit accessor invalid for 16-bit field");
1616         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1617                          "32-bit accessor invalid for natural width field");
1618 }
1619
1620 static __always_inline void vmcs_check64(unsigned long field)
1621 {
1622         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1623                          "64-bit accessor invalid for 16-bit field");
1624         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1625                          "64-bit accessor invalid for 64-bit high field");
1626         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1627                          "64-bit accessor invalid for 32-bit field");
1628         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1629                          "64-bit accessor invalid for natural width field");
1630 }
1631
1632 static __always_inline void vmcs_checkl(unsigned long field)
1633 {
1634         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1635                          "Natural width accessor invalid for 16-bit field");
1636         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1637                          "Natural width accessor invalid for 64-bit field");
1638         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1639                          "Natural width accessor invalid for 64-bit high field");
1640         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1641                          "Natural width accessor invalid for 32-bit field");
1642 }
1643
1644 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1645 {
1646         unsigned long value;
1647
1648         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1649                       : "=a"(value) : "d"(field) : "cc");
1650         return value;
1651 }
1652
1653 static __always_inline u16 vmcs_read16(unsigned long field)
1654 {
1655         vmcs_check16(field);
1656         return __vmcs_readl(field);
1657 }
1658
1659 static __always_inline u32 vmcs_read32(unsigned long field)
1660 {
1661         vmcs_check32(field);
1662         return __vmcs_readl(field);
1663 }
1664
1665 static __always_inline u64 vmcs_read64(unsigned long field)
1666 {
1667         vmcs_check64(field);
1668 #ifdef CONFIG_X86_64
1669         return __vmcs_readl(field);
1670 #else
1671         return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1672 #endif
1673 }
1674
1675 static __always_inline unsigned long vmcs_readl(unsigned long field)
1676 {
1677         vmcs_checkl(field);
1678         return __vmcs_readl(field);
1679 }
1680
1681 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1682 {
1683         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1684                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1685         dump_stack();
1686 }
1687
1688 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1689 {
1690         u8 error;
1691
1692         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1693                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1694         if (unlikely(error))
1695                 vmwrite_error(field, value);
1696 }
1697
1698 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1699 {
1700         vmcs_check16(field);
1701         __vmcs_writel(field, value);
1702 }
1703
1704 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1705 {
1706         vmcs_check32(field);
1707         __vmcs_writel(field, value);
1708 }
1709
1710 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1711 {
1712         vmcs_check64(field);
1713         __vmcs_writel(field, value);
1714 #ifndef CONFIG_X86_64
1715         asm volatile ("");
1716         __vmcs_writel(field+1, value >> 32);
1717 #endif
1718 }
1719
1720 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1721 {
1722         vmcs_checkl(field);
1723         __vmcs_writel(field, value);
1724 }
1725
1726 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1727 {
1728         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1729                          "vmcs_clear_bits does not support 64-bit fields");
1730         __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1731 }
1732
1733 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1734 {
1735         BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1736                          "vmcs_set_bits does not support 64-bit fields");
1737         __vmcs_writel(field, __vmcs_readl(field) | mask);
1738 }
1739
1740 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1741 {
1742         vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1743 }
1744
1745 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1746 {
1747         vmcs_write32(VM_ENTRY_CONTROLS, val);
1748         vmx->vm_entry_controls_shadow = val;
1749 }
1750
1751 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1752 {
1753         if (vmx->vm_entry_controls_shadow != val)
1754                 vm_entry_controls_init(vmx, val);
1755 }
1756
1757 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1758 {
1759         return vmx->vm_entry_controls_shadow;
1760 }
1761
1762
1763 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1764 {
1765         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1766 }
1767
1768 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1769 {
1770         vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1771 }
1772
1773 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1774 {
1775         vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1776 }
1777
1778 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1779 {
1780         vmcs_write32(VM_EXIT_CONTROLS, val);
1781         vmx->vm_exit_controls_shadow = val;
1782 }
1783
1784 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1785 {
1786         if (vmx->vm_exit_controls_shadow != val)
1787                 vm_exit_controls_init(vmx, val);
1788 }
1789
1790 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1791 {
1792         return vmx->vm_exit_controls_shadow;
1793 }
1794
1795
1796 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1797 {
1798         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1799 }
1800
1801 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1802 {
1803         vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1804 }
1805
1806 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1807 {
1808         vmx->segment_cache.bitmask = 0;
1809 }
1810
1811 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1812                                        unsigned field)
1813 {
1814         bool ret;
1815         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1816
1817         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1818                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1819                 vmx->segment_cache.bitmask = 0;
1820         }
1821         ret = vmx->segment_cache.bitmask & mask;
1822         vmx->segment_cache.bitmask |= mask;
1823         return ret;
1824 }
1825
1826 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1827 {
1828         u16 *p = &vmx->segment_cache.seg[seg].selector;
1829
1830         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1831                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1832         return *p;
1833 }
1834
1835 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1836 {
1837         ulong *p = &vmx->segment_cache.seg[seg].base;
1838
1839         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1840                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1841         return *p;
1842 }
1843
1844 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1845 {
1846         u32 *p = &vmx->segment_cache.seg[seg].limit;
1847
1848         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1849                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1850         return *p;
1851 }
1852
1853 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1854 {
1855         u32 *p = &vmx->segment_cache.seg[seg].ar;
1856
1857         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1858                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1859         return *p;
1860 }
1861
1862 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1863 {
1864         u32 eb;
1865
1866         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1867              (1u << DB_VECTOR) | (1u << AC_VECTOR);
1868         if ((vcpu->guest_debug &
1869              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1870             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1871                 eb |= 1u << BP_VECTOR;
1872         if (to_vmx(vcpu)->rmode.vm86_active)
1873                 eb = ~0;
1874         if (enable_ept)
1875                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1876
1877         /* When we are running a nested L2 guest and L1 specified for it a
1878          * certain exception bitmap, we must trap the same exceptions and pass
1879          * them to L1. When running L2, we will only handle the exceptions
1880          * specified above if L1 did not want them.
1881          */
1882         if (is_guest_mode(vcpu))
1883                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1884
1885         vmcs_write32(EXCEPTION_BITMAP, eb);
1886 }
1887
1888 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1889                 unsigned long entry, unsigned long exit)
1890 {
1891         vm_entry_controls_clearbit(vmx, entry);
1892         vm_exit_controls_clearbit(vmx, exit);
1893 }
1894
1895 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1896 {
1897         unsigned i;
1898         struct msr_autoload *m = &vmx->msr_autoload;
1899
1900         switch (msr) {
1901         case MSR_EFER:
1902                 if (cpu_has_load_ia32_efer) {
1903                         clear_atomic_switch_msr_special(vmx,
1904                                         VM_ENTRY_LOAD_IA32_EFER,
1905                                         VM_EXIT_LOAD_IA32_EFER);
1906                         return;
1907                 }
1908                 break;
1909         case MSR_CORE_PERF_GLOBAL_CTRL:
1910                 if (cpu_has_load_perf_global_ctrl) {
1911                         clear_atomic_switch_msr_special(vmx,
1912                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1913                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1914                         return;
1915                 }
1916                 break;
1917         }
1918
1919         for (i = 0; i < m->nr; ++i)
1920                 if (m->guest[i].index == msr)
1921                         break;
1922
1923         if (i == m->nr)
1924                 return;
1925         --m->nr;
1926         m->guest[i] = m->guest[m->nr];
1927         m->host[i] = m->host[m->nr];
1928         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1929         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1930 }
1931
1932 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1933                 unsigned long entry, unsigned long exit,
1934                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1935                 u64 guest_val, u64 host_val)
1936 {
1937         vmcs_write64(guest_val_vmcs, guest_val);
1938         vmcs_write64(host_val_vmcs, host_val);
1939         vm_entry_controls_setbit(vmx, entry);
1940         vm_exit_controls_setbit(vmx, exit);
1941 }
1942
1943 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1944                                   u64 guest_val, u64 host_val)
1945 {
1946         unsigned i;
1947         struct msr_autoload *m = &vmx->msr_autoload;
1948
1949         switch (msr) {
1950         case MSR_EFER:
1951                 if (cpu_has_load_ia32_efer) {
1952                         add_atomic_switch_msr_special(vmx,
1953                                         VM_ENTRY_LOAD_IA32_EFER,
1954                                         VM_EXIT_LOAD_IA32_EFER,
1955                                         GUEST_IA32_EFER,
1956                                         HOST_IA32_EFER,
1957                                         guest_val, host_val);
1958                         return;
1959                 }
1960                 break;
1961         case MSR_CORE_PERF_GLOBAL_CTRL:
1962                 if (cpu_has_load_perf_global_ctrl) {
1963                         add_atomic_switch_msr_special(vmx,
1964                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1965                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1966                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1967                                         HOST_IA32_PERF_GLOBAL_CTRL,
1968                                         guest_val, host_val);
1969                         return;
1970                 }
1971                 break;
1972         case MSR_IA32_PEBS_ENABLE:
1973                 /* PEBS needs a quiescent period after being disabled (to write
1974                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
1975                  * provide that period, so a CPU could write host's record into
1976                  * guest's memory.
1977                  */
1978                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1979         }
1980
1981         for (i = 0; i < m->nr; ++i)
1982                 if (m->guest[i].index == msr)
1983                         break;
1984
1985         if (i == NR_AUTOLOAD_MSRS) {
1986                 printk_once(KERN_WARNING "Not enough msr switch entries. "
1987                                 "Can't add msr %x\n", msr);
1988                 return;
1989         } else if (i == m->nr) {
1990                 ++m->nr;
1991                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1992                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1993         }
1994
1995         m->guest[i].index = msr;
1996         m->guest[i].value = guest_val;
1997         m->host[i].index = msr;
1998         m->host[i].value = host_val;
1999 }
2000
2001 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2002 {
2003         u64 guest_efer = vmx->vcpu.arch.efer;
2004         u64 ignore_bits = 0;
2005
2006         if (!enable_ept) {
2007                 /*
2008                  * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
2009                  * host CPUID is more efficient than testing guest CPUID
2010                  * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
2011                  */
2012                 if (boot_cpu_has(X86_FEATURE_SMEP))
2013                         guest_efer |= EFER_NX;
2014                 else if (!(guest_efer & EFER_NX))
2015                         ignore_bits |= EFER_NX;
2016         }
2017
2018         /*
2019          * LMA and LME handled by hardware; SCE meaningless outside long mode.
2020          */
2021         ignore_bits |= EFER_SCE;
2022 #ifdef CONFIG_X86_64
2023         ignore_bits |= EFER_LMA | EFER_LME;
2024         /* SCE is meaningful only in long mode on Intel */
2025         if (guest_efer & EFER_LMA)
2026                 ignore_bits &= ~(u64)EFER_SCE;
2027 #endif
2028
2029         clear_atomic_switch_msr(vmx, MSR_EFER);
2030
2031         /*
2032          * On EPT, we can't emulate NX, so we must switch EFER atomically.
2033          * On CPUs that support "load IA32_EFER", always switch EFER
2034          * atomically, since it's faster than switching it manually.
2035          */
2036         if (cpu_has_load_ia32_efer ||
2037             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2038                 if (!(guest_efer & EFER_LMA))
2039                         guest_efer &= ~EFER_LME;
2040                 if (guest_efer != host_efer)
2041                         add_atomic_switch_msr(vmx, MSR_EFER,
2042                                               guest_efer, host_efer);
2043                 return false;
2044         } else {
2045                 guest_efer &= ~ignore_bits;
2046                 guest_efer |= host_efer & ignore_bits;
2047
2048                 vmx->guest_msrs[efer_offset].data = guest_efer;
2049                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2050
2051                 return true;
2052         }
2053 }
2054
2055 #ifdef CONFIG_X86_32
2056 /*
2057  * On 32-bit kernels, VM exits still load the FS and GS bases from the
2058  * VMCS rather than the segment table.  KVM uses this helper to figure
2059  * out the current bases to poke them into the VMCS before entry.
2060  */
2061 static unsigned long segment_base(u16 selector)
2062 {
2063         struct desc_struct *table;
2064         unsigned long v;
2065
2066         if (!(selector & ~SEGMENT_RPL_MASK))
2067                 return 0;
2068
2069         table = get_current_gdt_ro();
2070
2071         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2072                 u16 ldt_selector = kvm_read_ldt();
2073
2074                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2075                         return 0;
2076
2077                 table = (struct desc_struct *)segment_base(ldt_selector);
2078         }
2079         v = get_desc_base(&table[selector >> 3]);
2080         return v;
2081 }
2082 #endif
2083
2084 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2085 {
2086         struct vcpu_vmx *vmx = to_vmx(vcpu);
2087         int i;
2088
2089         if (vmx->host_state.loaded)
2090                 return;
2091
2092         vmx->host_state.loaded = 1;
2093         /*
2094          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2095          * allow segment selectors with cpl > 0 or ti == 1.
2096          */
2097         vmx->host_state.ldt_sel = kvm_read_ldt();
2098         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2099         savesegment(fs, vmx->host_state.fs_sel);
2100         if (!(vmx->host_state.fs_sel & 7)) {
2101                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2102                 vmx->host_state.fs_reload_needed = 0;
2103         } else {
2104                 vmcs_write16(HOST_FS_SELECTOR, 0);
2105                 vmx->host_state.fs_reload_needed = 1;
2106         }
2107         savesegment(gs, vmx->host_state.gs_sel);
2108         if (!(vmx->host_state.gs_sel & 7))
2109                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2110         else {
2111                 vmcs_write16(HOST_GS_SELECTOR, 0);
2112                 vmx->host_state.gs_ldt_reload_needed = 1;
2113         }
2114
2115 #ifdef CONFIG_X86_64
2116         savesegment(ds, vmx->host_state.ds_sel);
2117         savesegment(es, vmx->host_state.es_sel);
2118 #endif
2119
2120 #ifdef CONFIG_X86_64
2121         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2122         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2123 #else
2124         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2125         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2126 #endif
2127
2128 #ifdef CONFIG_X86_64
2129         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2130         if (is_long_mode(&vmx->vcpu))
2131                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2132 #endif
2133         if (boot_cpu_has(X86_FEATURE_MPX))
2134                 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2135         for (i = 0; i < vmx->save_nmsrs; ++i)
2136                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2137                                    vmx->guest_msrs[i].data,
2138                                    vmx->guest_msrs[i].mask);
2139 }
2140
2141 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2142 {
2143         if (!vmx->host_state.loaded)
2144                 return;
2145
2146         ++vmx->vcpu.stat.host_state_reload;
2147         vmx->host_state.loaded = 0;
2148 #ifdef CONFIG_X86_64
2149         if (is_long_mode(&vmx->vcpu))
2150                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2151 #endif
2152         if (vmx->host_state.gs_ldt_reload_needed) {
2153                 kvm_load_ldt(vmx->host_state.ldt_sel);
2154 #ifdef CONFIG_X86_64
2155                 load_gs_index(vmx->host_state.gs_sel);
2156 #else
2157                 loadsegment(gs, vmx->host_state.gs_sel);
2158 #endif
2159         }
2160         if (vmx->host_state.fs_reload_needed)
2161                 loadsegment(fs, vmx->host_state.fs_sel);
2162 #ifdef CONFIG_X86_64
2163         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2164                 loadsegment(ds, vmx->host_state.ds_sel);
2165                 loadsegment(es, vmx->host_state.es_sel);
2166         }
2167 #endif
2168         invalidate_tss_limit();
2169 #ifdef CONFIG_X86_64
2170         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2171 #endif
2172         if (vmx->host_state.msr_host_bndcfgs)
2173                 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2174         load_fixmap_gdt(raw_smp_processor_id());
2175 }
2176
2177 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2178 {
2179         preempt_disable();
2180         __vmx_load_host_state(vmx);
2181         preempt_enable();
2182 }
2183
2184 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2185 {
2186         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2187         struct pi_desc old, new;
2188         unsigned int dest;
2189
2190         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2191                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2192                 !kvm_vcpu_apicv_active(vcpu))
2193                 return;
2194
2195         do {
2196                 old.control = new.control = pi_desc->control;
2197
2198                 /*
2199                  * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2200                  * are two possible cases:
2201                  * 1. After running 'pre_block', context switch
2202                  *    happened. For this case, 'sn' was set in
2203                  *    vmx_vcpu_put(), so we need to clear it here.
2204                  * 2. After running 'pre_block', we were blocked,
2205                  *    and woken up by some other guy. For this case,
2206                  *    we don't need to do anything, 'pi_post_block'
2207                  *    will do everything for us. However, we cannot
2208                  *    check whether it is case #1 or case #2 here
2209                  *    (maybe, not needed), so we also clear sn here,
2210                  *    I think it is not a big deal.
2211                  */
2212                 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2213                         if (vcpu->cpu != cpu) {
2214                                 dest = cpu_physical_id(cpu);
2215
2216                                 if (x2apic_enabled())
2217                                         new.ndst = dest;
2218                                 else
2219                                         new.ndst = (dest << 8) & 0xFF00;
2220                         }
2221
2222                         /* set 'NV' to 'notification vector' */
2223                         new.nv = POSTED_INTR_VECTOR;
2224                 }
2225
2226                 /* Allow posting non-urgent interrupts */
2227                 new.sn = 0;
2228         } while (cmpxchg(&pi_desc->control, old.control,
2229                         new.control) != old.control);
2230 }
2231
2232 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2233 {
2234         vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2235         vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2236 }
2237
2238 /*
2239  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2240  * vcpu mutex is already taken.
2241  */
2242 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2243 {
2244         struct vcpu_vmx *vmx = to_vmx(vcpu);
2245         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2246
2247         if (!already_loaded) {
2248                 loaded_vmcs_clear(vmx->loaded_vmcs);
2249                 local_irq_disable();
2250                 crash_disable_local_vmclear(cpu);
2251
2252                 /*
2253                  * Read loaded_vmcs->cpu should be before fetching
2254                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
2255                  * See the comments in __loaded_vmcs_clear().
2256                  */
2257                 smp_rmb();
2258
2259                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2260                          &per_cpu(loaded_vmcss_on_cpu, cpu));
2261                 crash_enable_local_vmclear(cpu);
2262                 local_irq_enable();
2263         }
2264
2265         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2266                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2267                 vmcs_load(vmx->loaded_vmcs->vmcs);
2268         }
2269
2270         if (!already_loaded) {
2271                 void *gdt = get_current_gdt_ro();
2272                 unsigned long sysenter_esp;
2273
2274                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2275
2276                 /*
2277                  * Linux uses per-cpu TSS and GDT, so set these when switching
2278                  * processors.  See 22.2.4.
2279                  */
2280                 vmcs_writel(HOST_TR_BASE,
2281                             (unsigned long)this_cpu_ptr(&cpu_tss));
2282                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
2283
2284                 /*
2285                  * VM exits change the host TR limit to 0x67 after a VM
2286                  * exit.  This is okay, since 0x67 covers everything except
2287                  * the IO bitmap and have have code to handle the IO bitmap
2288                  * being lost after a VM exit.
2289                  */
2290                 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2291
2292                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2293                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2294
2295                 vmx->loaded_vmcs->cpu = cpu;
2296         }
2297
2298         /* Setup TSC multiplier */
2299         if (kvm_has_tsc_control &&
2300             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2301                 decache_tsc_multiplier(vmx);
2302
2303         vmx_vcpu_pi_load(vcpu, cpu);
2304         vmx->host_pkru = read_pkru();
2305 }
2306
2307 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2308 {
2309         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2310
2311         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2312                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2313                 !kvm_vcpu_apicv_active(vcpu))
2314                 return;
2315
2316         /* Set SN when the vCPU is preempted */
2317         if (vcpu->preempted)
2318                 pi_set_sn(pi_desc);
2319 }
2320
2321 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2322 {
2323         vmx_vcpu_pi_put(vcpu);
2324
2325         __vmx_load_host_state(to_vmx(vcpu));
2326 }
2327
2328 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2329
2330 /*
2331  * Return the cr0 value that a nested guest would read. This is a combination
2332  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2333  * its hypervisor (cr0_read_shadow).
2334  */
2335 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2336 {
2337         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2338                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2339 }
2340 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2341 {
2342         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2343                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2344 }
2345
2346 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2347 {
2348         unsigned long rflags, save_rflags;
2349
2350         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2351                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2352                 rflags = vmcs_readl(GUEST_RFLAGS);
2353                 if (to_vmx(vcpu)->rmode.vm86_active) {
2354                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2355                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2356                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2357                 }
2358                 to_vmx(vcpu)->rflags = rflags;
2359         }
2360         return to_vmx(vcpu)->rflags;
2361 }
2362
2363 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2364 {
2365         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2366         to_vmx(vcpu)->rflags = rflags;
2367         if (to_vmx(vcpu)->rmode.vm86_active) {
2368                 to_vmx(vcpu)->rmode.save_rflags = rflags;
2369                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2370         }
2371         vmcs_writel(GUEST_RFLAGS, rflags);
2372 }
2373
2374 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2375 {
2376         return to_vmx(vcpu)->guest_pkru;
2377 }
2378
2379 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2380 {
2381         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2382         int ret = 0;
2383
2384         if (interruptibility & GUEST_INTR_STATE_STI)
2385                 ret |= KVM_X86_SHADOW_INT_STI;
2386         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2387                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2388
2389         return ret;
2390 }
2391
2392 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2393 {
2394         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2395         u32 interruptibility = interruptibility_old;
2396
2397         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2398
2399         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2400                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2401         else if (mask & KVM_X86_SHADOW_INT_STI)
2402                 interruptibility |= GUEST_INTR_STATE_STI;
2403
2404         if ((interruptibility != interruptibility_old))
2405                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2406 }
2407
2408 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2409 {
2410         unsigned long rip;
2411
2412         rip = kvm_rip_read(vcpu);
2413         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2414         kvm_rip_write(vcpu, rip);
2415
2416         /* skipping an emulated instruction also counts */
2417         vmx_set_interrupt_shadow(vcpu, 0);
2418 }
2419
2420 /*
2421  * KVM wants to inject page-faults which it got to the guest. This function
2422  * checks whether in a nested guest, we need to inject them to L1 or L2.
2423  */
2424 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2425 {
2426         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2427
2428         if (!(vmcs12->exception_bitmap & (1u << nr)))
2429                 return 0;
2430
2431         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2432                           vmcs_read32(VM_EXIT_INTR_INFO),
2433                           vmcs_readl(EXIT_QUALIFICATION));
2434         return 1;
2435 }
2436
2437 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2438                                 bool has_error_code, u32 error_code,
2439                                 bool reinject)
2440 {
2441         struct vcpu_vmx *vmx = to_vmx(vcpu);
2442         u32 intr_info = nr | INTR_INFO_VALID_MASK;
2443
2444         if (!reinject && is_guest_mode(vcpu) &&
2445             nested_vmx_check_exception(vcpu, nr))
2446                 return;
2447
2448         if (has_error_code) {
2449                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2450                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2451         }
2452
2453         if (vmx->rmode.vm86_active) {
2454                 int inc_eip = 0;
2455                 if (kvm_exception_is_soft(nr))
2456                         inc_eip = vcpu->arch.event_exit_inst_len;
2457                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2458                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2459                 return;
2460         }
2461
2462         if (kvm_exception_is_soft(nr)) {
2463                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2464                              vmx->vcpu.arch.event_exit_inst_len);
2465                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2466         } else
2467                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2468
2469         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2470 }
2471
2472 static bool vmx_rdtscp_supported(void)
2473 {
2474         return cpu_has_vmx_rdtscp();
2475 }
2476
2477 static bool vmx_invpcid_supported(void)
2478 {
2479         return cpu_has_vmx_invpcid() && enable_ept;
2480 }
2481
2482 /*
2483  * Swap MSR entry in host/guest MSR entry array.
2484  */
2485 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2486 {
2487         struct shared_msr_entry tmp;
2488
2489         tmp = vmx->guest_msrs[to];
2490         vmx->guest_msrs[to] = vmx->guest_msrs[from];
2491         vmx->guest_msrs[from] = tmp;
2492 }
2493
2494 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2495 {
2496         unsigned long *msr_bitmap;
2497
2498         if (is_guest_mode(vcpu))
2499                 msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2500         else if (cpu_has_secondary_exec_ctrls() &&
2501                  (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2502                   SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2503                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) {
2504                         if (is_long_mode(vcpu))
2505                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic_apicv;
2506                         else
2507                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic_apicv;
2508                 } else {
2509                         if (is_long_mode(vcpu))
2510                                 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2511                         else
2512                                 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2513                 }
2514         } else {
2515                 if (is_long_mode(vcpu))
2516                         msr_bitmap = vmx_msr_bitmap_longmode;
2517                 else
2518                         msr_bitmap = vmx_msr_bitmap_legacy;
2519         }
2520
2521         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2522 }
2523
2524 /*
2525  * Set up the vmcs to automatically save and restore system
2526  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2527  * mode, as fiddling with msrs is very expensive.
2528  */
2529 static void setup_msrs(struct vcpu_vmx *vmx)
2530 {
2531         int save_nmsrs, index;
2532
2533         save_nmsrs = 0;
2534 #ifdef CONFIG_X86_64
2535         if (is_long_mode(&vmx->vcpu)) {
2536                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2537                 if (index >= 0)
2538                         move_msr_up(vmx, index, save_nmsrs++);
2539                 index = __find_msr_index(vmx, MSR_LSTAR);
2540                 if (index >= 0)
2541                         move_msr_up(vmx, index, save_nmsrs++);
2542                 index = __find_msr_index(vmx, MSR_CSTAR);
2543                 if (index >= 0)
2544                         move_msr_up(vmx, index, save_nmsrs++);
2545                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2546                 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2547                         move_msr_up(vmx, index, save_nmsrs++);
2548                 /*
2549                  * MSR_STAR is only needed on long mode guests, and only
2550                  * if efer.sce is enabled.
2551                  */
2552                 index = __find_msr_index(vmx, MSR_STAR);
2553                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2554                         move_msr_up(vmx, index, save_nmsrs++);
2555         }
2556 #endif
2557         index = __find_msr_index(vmx, MSR_EFER);
2558         if (index >= 0 && update_transition_efer(vmx, index))
2559                 move_msr_up(vmx, index, save_nmsrs++);
2560
2561         vmx->save_nmsrs = save_nmsrs;
2562
2563         if (cpu_has_vmx_msr_bitmap())
2564                 vmx_set_msr_bitmap(&vmx->vcpu);
2565 }
2566
2567 /*
2568  * reads and returns guest's timestamp counter "register"
2569  * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2570  * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2571  */
2572 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2573 {
2574         u64 host_tsc, tsc_offset;
2575
2576         host_tsc = rdtsc();
2577         tsc_offset = vmcs_read64(TSC_OFFSET);
2578         return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2579 }
2580
2581 /*
2582  * writes 'offset' into guest's timestamp counter offset register
2583  */
2584 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2585 {
2586         if (is_guest_mode(vcpu)) {
2587                 /*
2588                  * We're here if L1 chose not to trap WRMSR to TSC. According
2589                  * to the spec, this should set L1's TSC; The offset that L1
2590                  * set for L2 remains unchanged, and still needs to be added
2591                  * to the newly set TSC to get L2's TSC.
2592                  */
2593                 struct vmcs12 *vmcs12;
2594                 /* recalculate vmcs02.TSC_OFFSET: */
2595                 vmcs12 = get_vmcs12(vcpu);
2596                 vmcs_write64(TSC_OFFSET, offset +
2597                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2598                          vmcs12->tsc_offset : 0));
2599         } else {
2600                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2601                                            vmcs_read64(TSC_OFFSET), offset);
2602                 vmcs_write64(TSC_OFFSET, offset);
2603         }
2604 }
2605
2606 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2607 {
2608         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2609         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2610 }
2611
2612 /*
2613  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2614  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2615  * all guests if the "nested" module option is off, and can also be disabled
2616  * for a single guest by disabling its VMX cpuid bit.
2617  */
2618 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2619 {
2620         return nested && guest_cpuid_has_vmx(vcpu);
2621 }
2622
2623 /*
2624  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2625  * returned for the various VMX controls MSRs when nested VMX is enabled.
2626  * The same values should also be used to verify that vmcs12 control fields are
2627  * valid during nested entry from L1 to L2.
2628  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2629  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2630  * bit in the high half is on if the corresponding bit in the control field
2631  * may be on. See also vmx_control_verify().
2632  */
2633 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2634 {
2635         /*
2636          * Note that as a general rule, the high half of the MSRs (bits in
2637          * the control fields which may be 1) should be initialized by the
2638          * intersection of the underlying hardware's MSR (i.e., features which
2639          * can be supported) and the list of features we want to expose -
2640          * because they are known to be properly supported in our code.
2641          * Also, usually, the low half of the MSRs (bits which must be 1) can
2642          * be set to 0, meaning that L1 may turn off any of these bits. The
2643          * reason is that if one of these bits is necessary, it will appear
2644          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2645          * fields of vmcs01 and vmcs02, will turn these bits off - and
2646          * nested_vmx_exit_handled() will not pass related exits to L1.
2647          * These rules have exceptions below.
2648          */
2649
2650         /* pin-based controls */
2651         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2652                 vmx->nested.nested_vmx_pinbased_ctls_low,
2653                 vmx->nested.nested_vmx_pinbased_ctls_high);
2654         vmx->nested.nested_vmx_pinbased_ctls_low |=
2655                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2656         vmx->nested.nested_vmx_pinbased_ctls_high &=
2657                 PIN_BASED_EXT_INTR_MASK |
2658                 PIN_BASED_NMI_EXITING |
2659                 PIN_BASED_VIRTUAL_NMIS;
2660         vmx->nested.nested_vmx_pinbased_ctls_high |=
2661                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2662                 PIN_BASED_VMX_PREEMPTION_TIMER;
2663         if (kvm_vcpu_apicv_active(&vmx->vcpu))
2664                 vmx->nested.nested_vmx_pinbased_ctls_high |=
2665                         PIN_BASED_POSTED_INTR;
2666
2667         /* exit controls */
2668         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2669                 vmx->nested.nested_vmx_exit_ctls_low,
2670                 vmx->nested.nested_vmx_exit_ctls_high);
2671         vmx->nested.nested_vmx_exit_ctls_low =
2672                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2673
2674         vmx->nested.nested_vmx_exit_ctls_high &=
2675 #ifdef CONFIG_X86_64
2676                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2677 #endif
2678                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2679         vmx->nested.nested_vmx_exit_ctls_high |=
2680                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2681                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2682                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2683
2684         if (kvm_mpx_supported())
2685                 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2686
2687         /* We support free control of debug control saving. */
2688         vmx->nested.nested_vmx_exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2689
2690         /* entry controls */
2691         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2692                 vmx->nested.nested_vmx_entry_ctls_low,
2693                 vmx->nested.nested_vmx_entry_ctls_high);
2694         vmx->nested.nested_vmx_entry_ctls_low =
2695                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2696         vmx->nested.nested_vmx_entry_ctls_high &=
2697 #ifdef CONFIG_X86_64
2698                 VM_ENTRY_IA32E_MODE |
2699 #endif
2700                 VM_ENTRY_LOAD_IA32_PAT;
2701         vmx->nested.nested_vmx_entry_ctls_high |=
2702                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2703         if (kvm_mpx_supported())
2704                 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2705
2706         /* We support free control of debug control loading. */
2707         vmx->nested.nested_vmx_entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2708
2709         /* cpu-based controls */
2710         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2711                 vmx->nested.nested_vmx_procbased_ctls_low,
2712                 vmx->nested.nested_vmx_procbased_ctls_high);
2713         vmx->nested.nested_vmx_procbased_ctls_low =
2714                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2715         vmx->nested.nested_vmx_procbased_ctls_high &=
2716                 CPU_BASED_VIRTUAL_INTR_PENDING |
2717                 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2718                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2719                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2720                 CPU_BASED_CR3_STORE_EXITING |
2721 #ifdef CONFIG_X86_64
2722                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2723 #endif
2724                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2725                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2726                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2727                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2728                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2729         /*
2730          * We can allow some features even when not supported by the
2731          * hardware. For example, L1 can specify an MSR bitmap - and we
2732          * can use it to avoid exits to L1 - even when L0 runs L2
2733          * without MSR bitmaps.
2734          */
2735         vmx->nested.nested_vmx_procbased_ctls_high |=
2736                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2737                 CPU_BASED_USE_MSR_BITMAPS;
2738
2739         /* We support free control of CR3 access interception. */
2740         vmx->nested.nested_vmx_procbased_ctls_low &=
2741                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2742
2743         /* secondary cpu-based controls */
2744         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2745                 vmx->nested.nested_vmx_secondary_ctls_low,
2746                 vmx->nested.nested_vmx_secondary_ctls_high);
2747         vmx->nested.nested_vmx_secondary_ctls_low = 0;
2748         vmx->nested.nested_vmx_secondary_ctls_high &=
2749                 SECONDARY_EXEC_RDRAND | SECONDARY_EXEC_RDSEED |
2750                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2751                 SECONDARY_EXEC_RDTSCP |
2752                 SECONDARY_EXEC_DESC |
2753                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2754                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2755                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2756                 SECONDARY_EXEC_WBINVD_EXITING |
2757                 SECONDARY_EXEC_XSAVES;
2758
2759         if (enable_ept) {
2760                 /* nested EPT: emulate EPT also to L1 */
2761                 vmx->nested.nested_vmx_secondary_ctls_high |=
2762                         SECONDARY_EXEC_ENABLE_EPT;
2763                 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2764                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2765                 if (cpu_has_vmx_ept_execute_only())
2766                         vmx->nested.nested_vmx_ept_caps |=
2767                                 VMX_EPT_EXECUTE_ONLY_BIT;
2768                 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2769                 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2770                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
2771                         VMX_EPT_1GB_PAGE_BIT;
2772                 if (enable_ept_ad_bits) {
2773                         vmx->nested.nested_vmx_secondary_ctls_high |=
2774                                 SECONDARY_EXEC_ENABLE_PML;
2775                        vmx->nested.nested_vmx_ept_caps |= VMX_EPT_AD_BIT;
2776                 }
2777         } else
2778                 vmx->nested.nested_vmx_ept_caps = 0;
2779
2780         /*
2781          * Old versions of KVM use the single-context version without
2782          * checking for support, so declare that it is supported even
2783          * though it is treated as global context.  The alternative is
2784          * not failing the single-context invvpid, and it is worse.
2785          */
2786         if (enable_vpid) {
2787                 vmx->nested.nested_vmx_secondary_ctls_high |=
2788                         SECONDARY_EXEC_ENABLE_VPID;
2789                 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2790                         VMX_VPID_EXTENT_SUPPORTED_MASK;
2791         } else
2792                 vmx->nested.nested_vmx_vpid_caps = 0;
2793
2794         if (enable_unrestricted_guest)
2795                 vmx->nested.nested_vmx_secondary_ctls_high |=
2796                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
2797
2798         /* miscellaneous data */
2799         rdmsr(MSR_IA32_VMX_MISC,
2800                 vmx->nested.nested_vmx_misc_low,
2801                 vmx->nested.nested_vmx_misc_high);
2802         vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2803         vmx->nested.nested_vmx_misc_low |=
2804                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2805                 VMX_MISC_ACTIVITY_HLT;
2806         vmx->nested.nested_vmx_misc_high = 0;
2807
2808         /*
2809          * This MSR reports some information about VMX support. We
2810          * should return information about the VMX we emulate for the
2811          * guest, and the VMCS structure we give it - not about the
2812          * VMX support of the underlying hardware.
2813          */
2814         vmx->nested.nested_vmx_basic =
2815                 VMCS12_REVISION |
2816                 VMX_BASIC_TRUE_CTLS |
2817                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2818                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2819
2820         if (cpu_has_vmx_basic_inout())
2821                 vmx->nested.nested_vmx_basic |= VMX_BASIC_INOUT;
2822
2823         /*
2824          * These MSRs specify bits which the guest must keep fixed on
2825          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2826          * We picked the standard core2 setting.
2827          */
2828 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2829 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
2830         vmx->nested.nested_vmx_cr0_fixed0 = VMXON_CR0_ALWAYSON;
2831         vmx->nested.nested_vmx_cr4_fixed0 = VMXON_CR4_ALWAYSON;
2832
2833         /* These MSRs specify bits which the guest must keep fixed off. */
2834         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, vmx->nested.nested_vmx_cr0_fixed1);
2835         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, vmx->nested.nested_vmx_cr4_fixed1);
2836
2837         /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2838         vmx->nested.nested_vmx_vmcs_enum = 0x2e;
2839 }
2840
2841 /*
2842  * if fixed0[i] == 1: val[i] must be 1
2843  * if fixed1[i] == 0: val[i] must be 0
2844  */
2845 static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
2846 {
2847         return ((val & fixed1) | fixed0) == val;
2848 }
2849
2850 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2851 {
2852         return fixed_bits_valid(control, low, high);
2853 }
2854
2855 static inline u64 vmx_control_msr(u32 low, u32 high)
2856 {
2857         return low | ((u64)high << 32);
2858 }
2859
2860 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
2861 {
2862         superset &= mask;
2863         subset &= mask;
2864
2865         return (superset | subset) == superset;
2866 }
2867
2868 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
2869 {
2870         const u64 feature_and_reserved =
2871                 /* feature (except bit 48; see below) */
2872                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
2873                 /* reserved */
2874                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
2875         u64 vmx_basic = vmx->nested.nested_vmx_basic;
2876
2877         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
2878                 return -EINVAL;
2879
2880         /*
2881          * KVM does not emulate a version of VMX that constrains physical
2882          * addresses of VMX structures (e.g. VMCS) to 32-bits.
2883          */
2884         if (data & BIT_ULL(48))
2885                 return -EINVAL;
2886
2887         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
2888             vmx_basic_vmcs_revision_id(data))
2889                 return -EINVAL;
2890
2891         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
2892                 return -EINVAL;
2893
2894         vmx->nested.nested_vmx_basic = data;
2895         return 0;
2896 }
2897
2898 static int
2899 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2900 {
2901         u64 supported;
2902         u32 *lowp, *highp;
2903
2904         switch (msr_index) {
2905         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2906                 lowp = &vmx->nested.nested_vmx_pinbased_ctls_low;
2907                 highp = &vmx->nested.nested_vmx_pinbased_ctls_high;
2908                 break;
2909         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2910                 lowp = &vmx->nested.nested_vmx_procbased_ctls_low;
2911                 highp = &vmx->nested.nested_vmx_procbased_ctls_high;
2912                 break;
2913         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2914                 lowp = &vmx->nested.nested_vmx_exit_ctls_low;
2915                 highp = &vmx->nested.nested_vmx_exit_ctls_high;
2916                 break;
2917         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2918                 lowp = &vmx->nested.nested_vmx_entry_ctls_low;
2919                 highp = &vmx->nested.nested_vmx_entry_ctls_high;
2920                 break;
2921         case MSR_IA32_VMX_PROCBASED_CTLS2:
2922                 lowp = &vmx->nested.nested_vmx_secondary_ctls_low;
2923                 highp = &vmx->nested.nested_vmx_secondary_ctls_high;
2924                 break;
2925         default:
2926                 BUG();
2927         }
2928
2929         supported = vmx_control_msr(*lowp, *highp);
2930
2931         /* Check must-be-1 bits are still 1. */
2932         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
2933                 return -EINVAL;
2934
2935         /* Check must-be-0 bits are still 0. */
2936         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
2937                 return -EINVAL;
2938
2939         *lowp = data;
2940         *highp = data >> 32;
2941         return 0;
2942 }
2943
2944 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
2945 {
2946         const u64 feature_and_reserved_bits =
2947                 /* feature */
2948                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
2949                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
2950                 /* reserved */
2951                 GENMASK_ULL(13, 9) | BIT_ULL(31);
2952         u64 vmx_misc;
2953
2954         vmx_misc = vmx_control_msr(vmx->nested.nested_vmx_misc_low,
2955                                    vmx->nested.nested_vmx_misc_high);
2956
2957         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
2958                 return -EINVAL;
2959
2960         if ((vmx->nested.nested_vmx_pinbased_ctls_high &
2961              PIN_BASED_VMX_PREEMPTION_TIMER) &&
2962             vmx_misc_preemption_timer_rate(data) !=
2963             vmx_misc_preemption_timer_rate(vmx_misc))
2964                 return -EINVAL;
2965
2966         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
2967                 return -EINVAL;
2968
2969         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
2970                 return -EINVAL;
2971
2972         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
2973                 return -EINVAL;
2974
2975         vmx->nested.nested_vmx_misc_low = data;
2976         vmx->nested.nested_vmx_misc_high = data >> 32;
2977         return 0;
2978 }
2979
2980 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
2981 {
2982         u64 vmx_ept_vpid_cap;
2983
2984         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.nested_vmx_ept_caps,
2985                                            vmx->nested.nested_vmx_vpid_caps);
2986
2987         /* Every bit is either reserved or a feature bit. */
2988         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
2989                 return -EINVAL;
2990
2991         vmx->nested.nested_vmx_ept_caps = data;
2992         vmx->nested.nested_vmx_vpid_caps = data >> 32;
2993         return 0;
2994 }
2995
2996 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
2997 {
2998         u64 *msr;
2999
3000         switch (msr_index) {
3001         case MSR_IA32_VMX_CR0_FIXED0:
3002                 msr = &vmx->nested.nested_vmx_cr0_fixed0;
3003                 break;
3004         case MSR_IA32_VMX_CR4_FIXED0:
3005                 msr = &vmx->nested.nested_vmx_cr4_fixed0;
3006                 break;
3007         default:
3008                 BUG();
3009         }
3010
3011         /*
3012          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3013          * must be 1 in the restored value.
3014          */
3015         if (!is_bitwise_subset(data, *msr, -1ULL))
3016                 return -EINVAL;
3017
3018         *msr = data;
3019         return 0;
3020 }
3021
3022 /*
3023  * Called when userspace is restoring VMX MSRs.
3024  *
3025  * Returns 0 on success, non-0 otherwise.
3026  */
3027 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
3028 {
3029         struct vcpu_vmx *vmx = to_vmx(vcpu);
3030
3031         switch (msr_index) {
3032         case MSR_IA32_VMX_BASIC:
3033                 return vmx_restore_vmx_basic(vmx, data);
3034         case MSR_IA32_VMX_PINBASED_CTLS:
3035         case MSR_IA32_VMX_PROCBASED_CTLS:
3036         case MSR_IA32_VMX_EXIT_CTLS:
3037         case MSR_IA32_VMX_ENTRY_CTLS:
3038                 /*
3039                  * The "non-true" VMX capability MSRs are generated from the
3040                  * "true" MSRs, so we do not support restoring them directly.
3041                  *
3042                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3043                  * should restore the "true" MSRs with the must-be-1 bits
3044                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3045                  * DEFAULT SETTINGS".
3046                  */
3047                 return -EINVAL;
3048         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3049         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3050         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3051         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3052         case MSR_IA32_VMX_PROCBASED_CTLS2:
3053                 return vmx_restore_control_msr(vmx, msr_index, data);
3054         case MSR_IA32_VMX_MISC:
3055                 return vmx_restore_vmx_misc(vmx, data);
3056         case MSR_IA32_VMX_CR0_FIXED0:
3057         case MSR_IA32_VMX_CR4_FIXED0:
3058                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3059         case MSR_IA32_VMX_CR0_FIXED1:
3060         case MSR_IA32_VMX_CR4_FIXED1:
3061                 /*
3062                  * These MSRs are generated based on the vCPU's CPUID, so we
3063                  * do not support restoring them directly.
3064                  */
3065                 return -EINVAL;
3066         case MSR_IA32_VMX_EPT_VPID_CAP:
3067                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3068         case MSR_IA32_VMX_VMCS_ENUM:
3069                 vmx->nested.nested_vmx_vmcs_enum = data;
3070                 return 0;
3071         default:
3072                 /*
3073                  * The rest of the VMX capability MSRs do not support restore.
3074                  */
3075                 return -EINVAL;
3076         }
3077 }
3078
3079 /* Returns 0 on success, non-0 otherwise. */
3080 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
3081 {
3082         struct vcpu_vmx *vmx = to_vmx(vcpu);
3083
3084         switch (msr_index) {
3085         case MSR_IA32_VMX_BASIC:
3086                 *pdata = vmx->nested.nested_vmx_basic;
3087                 break;
3088         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3089         case MSR_IA32_VMX_PINBASED_CTLS:
3090                 *pdata = vmx_control_msr(
3091                         vmx->nested.nested_vmx_pinbased_ctls_low,
3092                         vmx->nested.nested_vmx_pinbased_ctls_high);
3093                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3094                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3095                 break;
3096         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3097         case MSR_IA32_VMX_PROCBASED_CTLS:
3098                 *pdata = vmx_control_msr(
3099                         vmx->nested.nested_vmx_procbased_ctls_low,
3100                         vmx->nested.nested_vmx_procbased_ctls_high);
3101                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3102                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
3103                 break;
3104         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3105         case MSR_IA32_VMX_EXIT_CTLS:
3106                 *pdata = vmx_control_msr(
3107                         vmx->nested.nested_vmx_exit_ctls_low,
3108                         vmx->nested.nested_vmx_exit_ctls_high);
3109                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3110                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
3111                 break;
3112         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3113         case MSR_IA32_VMX_ENTRY_CTLS:
3114                 *pdata = vmx_control_msr(
3115                         vmx->nested.nested_vmx_entry_ctls_low,
3116                         vmx->nested.nested_vmx_entry_ctls_high);
3117                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3118                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
3119                 break;
3120         case MSR_IA32_VMX_MISC:
3121                 *pdata = vmx_control_msr(
3122                         vmx->nested.nested_vmx_misc_low,
3123                         vmx->nested.nested_vmx_misc_high);
3124                 break;
3125         case MSR_IA32_VMX_CR0_FIXED0:
3126                 *pdata = vmx->nested.nested_vmx_cr0_fixed0;
3127                 break;
3128         case MSR_IA32_VMX_CR0_FIXED1:
3129                 *pdata = vmx->nested.nested_vmx_cr0_fixed1;
3130                 break;
3131         case MSR_IA32_VMX_CR4_FIXED0:
3132                 *pdata = vmx->nested.nested_vmx_cr4_fixed0;
3133                 break;
3134         case MSR_IA32_VMX_CR4_FIXED1:
3135                 *pdata = vmx->nested.nested_vmx_cr4_fixed1;
3136                 break;
3137         case MSR_IA32_VMX_VMCS_ENUM:
3138                 *pdata = vmx->nested.nested_vmx_vmcs_enum;
3139                 break;
3140         case MSR_IA32_VMX_PROCBASED_CTLS2:
3141                 *pdata = vmx_control_msr(
3142                         vmx->nested.nested_vmx_secondary_ctls_low,
3143                         vmx->nested.nested_vmx_secondary_ctls_high);
3144                 break;
3145         case MSR_IA32_VMX_EPT_VPID_CAP:
3146                 *pdata = vmx->nested.nested_vmx_ept_caps |
3147                         ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
3148                 break;
3149         default:
3150                 return 1;
3151         }
3152
3153         return 0;
3154 }
3155
3156 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3157                                                  uint64_t val)
3158 {
3159         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3160
3161         return !(val & ~valid_bits);
3162 }
3163
3164 /*
3165  * Reads an msr value (of 'msr_index') into 'pdata'.
3166  * Returns 0 on success, non-0 otherwise.
3167  * Assumes vcpu_load() was already called.
3168  */
3169 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3170 {
3171         struct shared_msr_entry *msr;
3172
3173         switch (msr_info->index) {
3174 #ifdef CONFIG_X86_64
3175         case MSR_FS_BASE:
3176                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3177                 break;
3178         case MSR_GS_BASE:
3179                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3180                 break;
3181         case MSR_KERNEL_GS_BASE:
3182                 vmx_load_host_state(to_vmx(vcpu));
3183                 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3184                 break;
3185 #endif
3186         case MSR_EFER:
3187                 return kvm_get_msr_common(vcpu, msr_info);
3188         case MSR_IA32_TSC:
3189                 msr_info->data = guest_read_tsc(vcpu);
3190                 break;
3191         case MSR_IA32_SYSENTER_CS:
3192                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3193                 break;
3194         case MSR_IA32_SYSENTER_EIP:
3195                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3196                 break;
3197         case MSR_IA32_SYSENTER_ESP:
3198                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3199                 break;
3200         case MSR_IA32_BNDCFGS:
3201                 if (!kvm_mpx_supported())
3202                         return 1;
3203                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3204                 break;
3205         case MSR_IA32_MCG_EXT_CTL:
3206                 if (!msr_info->host_initiated &&
3207                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3208                       FEATURE_CONTROL_LMCE))
3209                         return 1;
3210                 msr_info->data = vcpu->arch.mcg_ext_ctl;
3211                 break;
3212         case MSR_IA32_FEATURE_CONTROL:
3213                 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3214                 break;
3215         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3216                 if (!nested_vmx_allowed(vcpu))
3217                         return 1;
3218                 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3219         case MSR_IA32_XSS:
3220                 if (!vmx_xsaves_supported())
3221                         return 1;
3222                 msr_info->data = vcpu->arch.ia32_xss;
3223                 break;
3224         case MSR_TSC_AUX:
3225                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3226                         return 1;
3227                 /* Otherwise falls through */
3228         default:
3229                 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3230                 if (msr) {
3231                         msr_info->data = msr->data;
3232                         break;
3233                 }
3234                 return kvm_get_msr_common(vcpu, msr_info);
3235         }
3236
3237         return 0;
3238 }
3239
3240 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3241
3242 /*
3243  * Writes msr value into into the appropriate "register".
3244  * Returns 0 on success, non-0 otherwise.
3245  * Assumes vcpu_load() was already called.
3246  */
3247 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3248 {
3249         struct vcpu_vmx *vmx = to_vmx(vcpu);
3250         struct shared_msr_entry *msr;
3251         int ret = 0;
3252         u32 msr_index = msr_info->index;
3253         u64 data = msr_info->data;
3254
3255         switch (msr_index) {
3256         case MSR_EFER:
3257                 ret = kvm_set_msr_common(vcpu, msr_info);
3258                 break;
3259 #ifdef CONFIG_X86_64
3260         case MSR_FS_BASE:
3261                 vmx_segment_cache_clear(vmx);
3262                 vmcs_writel(GUEST_FS_BASE, data);
3263                 break;
3264         case MSR_GS_BASE:
3265                 vmx_segment_cache_clear(vmx);
3266                 vmcs_writel(GUEST_GS_BASE, data);
3267                 break;
3268         case MSR_KERNEL_GS_BASE:
3269                 vmx_load_host_state(vmx);
3270                 vmx->msr_guest_kernel_gs_base = data;
3271                 break;
3272 #endif
3273         case MSR_IA32_SYSENTER_CS:
3274                 vmcs_write32(GUEST_SYSENTER_CS, data);
3275                 break;
3276         case MSR_IA32_SYSENTER_EIP:
3277                 vmcs_writel(GUEST_SYSENTER_EIP, data);
3278                 break;
3279         case MSR_IA32_SYSENTER_ESP:
3280                 vmcs_writel(GUEST_SYSENTER_ESP, data);
3281                 break;
3282         case MSR_IA32_BNDCFGS:
3283                 if (!kvm_mpx_supported())
3284                         return 1;
3285                 vmcs_write64(GUEST_BNDCFGS, data);
3286                 break;
3287         case MSR_IA32_TSC:
3288                 kvm_write_tsc(vcpu, msr_info);
3289                 break;
3290         case MSR_IA32_CR_PAT:
3291                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3292                         if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3293                                 return 1;
3294                         vmcs_write64(GUEST_IA32_PAT, data);
3295                         vcpu->arch.pat = data;
3296                         break;
3297                 }
3298                 ret = kvm_set_msr_common(vcpu, msr_info);
3299                 break;
3300         case MSR_IA32_TSC_ADJUST:
3301                 ret = kvm_set_msr_common(vcpu, msr_info);
3302                 break;
3303         case MSR_IA32_MCG_EXT_CTL:
3304                 if ((!msr_info->host_initiated &&
3305                      !(to_vmx(vcpu)->msr_ia32_feature_control &
3306                        FEATURE_CONTROL_LMCE)) ||
3307                     (data & ~MCG_EXT_CTL_LMCE_EN))
3308                         return 1;
3309                 vcpu->arch.mcg_ext_ctl = data;
3310                 break;
3311         case MSR_IA32_FEATURE_CONTROL:
3312                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3313                     (to_vmx(vcpu)->msr_ia32_feature_control &
3314                      FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3315                         return 1;
3316                 vmx->msr_ia32_feature_control = data;
3317                 if (msr_info->host_initiated && data == 0)
3318                         vmx_leave_nested(vcpu);
3319                 break;
3320         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3321                 if (!msr_info->host_initiated)
3322                         return 1; /* they are read-only */
3323                 if (!nested_vmx_allowed(vcpu))
3324                         return 1;
3325                 return vmx_set_vmx_msr(vcpu, msr_index, data);
3326         case MSR_IA32_XSS:
3327                 if (!vmx_xsaves_supported())
3328                         return 1;
3329                 /*
3330                  * The only supported bit as of Skylake is bit 8, but
3331                  * it is not supported on KVM.
3332                  */
3333                 if (data != 0)
3334                         return 1;
3335                 vcpu->arch.ia32_xss = data;
3336                 if (vcpu->arch.ia32_xss != host_xss)
3337                         add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3338                                 vcpu->arch.ia32_xss, host_xss);
3339                 else
3340                         clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3341                 break;
3342         case MSR_TSC_AUX:
3343                 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3344                         return 1;
3345                 /* Check reserved bit, higher 32 bits should be zero */
3346                 if ((data >> 32) != 0)
3347                         return 1;
3348                 /* Otherwise falls through */
3349         default:
3350                 msr = find_msr_entry(vmx, msr_index);
3351                 if (msr) {
3352                         u64 old_msr_data = msr->data;
3353                         msr->data = data;
3354                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3355                                 preempt_disable();
3356                                 ret = kvm_set_shared_msr(msr->index, msr->data,
3357                                                          msr->mask);
3358                                 preempt_enable();
3359                                 if (ret)
3360                                         msr->data = old_msr_data;
3361                         }
3362                         break;
3363                 }
3364                 ret = kvm_set_msr_common(vcpu, msr_info);
3365         }
3366
3367         return ret;
3368 }
3369
3370 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3371 {
3372         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3373         switch (reg) {
3374         case VCPU_REGS_RSP:
3375                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3376                 break;
3377         case VCPU_REGS_RIP:
3378                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3379                 break;
3380         case VCPU_EXREG_PDPTR:
3381                 if (enable_ept)
3382                         ept_save_pdptrs(vcpu);
3383                 break;
3384         default:
3385                 break;
3386         }
3387 }
3388
3389 static __init int cpu_has_kvm_support(void)
3390 {
3391         return cpu_has_vmx();
3392 }
3393
3394 static __init int vmx_disabled_by_bios(void)
3395 {
3396         u64 msr;
3397
3398         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3399         if (msr & FEATURE_CONTROL_LOCKED) {
3400                 /* launched w/ TXT and VMX disabled */
3401                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3402                         && tboot_enabled())
3403                         return 1;
3404                 /* launched w/o TXT and VMX only enabled w/ TXT */
3405                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3406                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3407                         && !tboot_enabled()) {
3408                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3409                                 "activate TXT before enabling KVM\n");
3410                         return 1;
3411                 }
3412                 /* launched w/o TXT and VMX disabled */
3413                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3414                         && !tboot_enabled())
3415                         return 1;
3416         }
3417
3418         return 0;
3419 }
3420
3421 static void kvm_cpu_vmxon(u64 addr)
3422 {
3423         cr4_set_bits(X86_CR4_VMXE);
3424         intel_pt_handle_vmx(1);
3425
3426         asm volatile (ASM_VMX_VMXON_RAX
3427                         : : "a"(&addr), "m"(addr)
3428                         : "memory", "cc");
3429 }
3430
3431 static int hardware_enable(void)
3432 {
3433         int cpu = raw_smp_processor_id();
3434         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3435         u64 old, test_bits;
3436
3437         if (cr4_read_shadow() & X86_CR4_VMXE)
3438                 return -EBUSY;
3439
3440         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3441         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3442         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3443
3444         /*
3445          * Now we can enable the vmclear operation in kdump
3446          * since the loaded_vmcss_on_cpu list on this cpu
3447          * has been initialized.
3448          *
3449          * Though the cpu is not in VMX operation now, there
3450          * is no problem to enable the vmclear operation
3451          * for the loaded_vmcss_on_cpu list is empty!
3452          */
3453         crash_enable_local_vmclear(cpu);
3454
3455         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3456
3457         test_bits = FEATURE_CONTROL_LOCKED;
3458         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3459         if (tboot_enabled())
3460                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3461
3462         if ((old & test_bits) != test_bits) {
3463                 /* enable and lock */
3464                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3465         }
3466         kvm_cpu_vmxon(phys_addr);
3467         ept_sync_global();
3468
3469         return 0;
3470 }
3471
3472 static void vmclear_local_loaded_vmcss(void)
3473 {
3474         int cpu = raw_smp_processor_id();
3475         struct loaded_vmcs *v, *n;
3476
3477         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3478                                  loaded_vmcss_on_cpu_link)
3479                 __loaded_vmcs_clear(v);
3480 }
3481
3482
3483 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3484  * tricks.
3485  */
3486 static void kvm_cpu_vmxoff(void)
3487 {
3488         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3489
3490         intel_pt_handle_vmx(0);
3491         cr4_clear_bits(X86_CR4_VMXE);
3492 }
3493
3494 static void hardware_disable(void)
3495 {
3496         vmclear_local_loaded_vmcss();
3497         kvm_cpu_vmxoff();
3498 }
3499
3500 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3501                                       u32 msr, u32 *result)
3502 {
3503         u32 vmx_msr_low, vmx_msr_high;
3504         u32 ctl = ctl_min | ctl_opt;
3505
3506         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3507
3508         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3509         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3510
3511         /* Ensure minimum (required) set of control bits are supported. */
3512         if (ctl_min & ~ctl)
3513                 return -EIO;
3514
3515         *result = ctl;
3516         return 0;
3517 }
3518
3519 static __init bool allow_1_setting(u32 msr, u32 ctl)
3520 {
3521         u32 vmx_msr_low, vmx_msr_high;
3522
3523         rdmsr(msr, vmx_msr_low, vmx_msr_high);
3524         return vmx_msr_high & ctl;
3525 }
3526
3527 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3528 {
3529         u32 vmx_msr_low, vmx_msr_high;
3530         u32 min, opt, min2, opt2;
3531         u32 _pin_based_exec_control = 0;
3532         u32 _cpu_based_exec_control = 0;
3533         u32 _cpu_based_2nd_exec_control = 0;
3534         u32 _vmexit_control = 0;
3535         u32 _vmentry_control = 0;
3536
3537         min = CPU_BASED_HLT_EXITING |
3538 #ifdef CONFIG_X86_64
3539               CPU_BASED_CR8_LOAD_EXITING |
3540               CPU_BASED_CR8_STORE_EXITING |
3541 #endif
3542               CPU_BASED_CR3_LOAD_EXITING |
3543               CPU_BASED_CR3_STORE_EXITING |
3544               CPU_BASED_USE_IO_BITMAPS |
3545               CPU_BASED_MOV_DR_EXITING |
3546               CPU_BASED_USE_TSC_OFFSETING |
3547               CPU_BASED_INVLPG_EXITING |
3548               CPU_BASED_RDPMC_EXITING;
3549
3550         if (!kvm_mwait_in_guest())
3551                 min |= CPU_BASED_MWAIT_EXITING |
3552                         CPU_BASED_MONITOR_EXITING;
3553
3554         opt = CPU_BASED_TPR_SHADOW |
3555               CPU_BASED_USE_MSR_BITMAPS |
3556               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3557         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3558                                 &_cpu_based_exec_control) < 0)
3559                 return -EIO;
3560 #ifdef CONFIG_X86_64
3561         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3562                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3563                                            ~CPU_BASED_CR8_STORE_EXITING;
3564 #endif
3565         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3566                 min2 = 0;
3567                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3568                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3569                         SECONDARY_EXEC_WBINVD_EXITING |
3570                         SECONDARY_EXEC_ENABLE_VPID |
3571                         SECONDARY_EXEC_ENABLE_EPT |
3572                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
3573                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3574                         SECONDARY_EXEC_RDTSCP |
3575                         SECONDARY_EXEC_ENABLE_INVPCID |
3576                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
3577                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3578                         SECONDARY_EXEC_SHADOW_VMCS |
3579                         SECONDARY_EXEC_XSAVES |
3580                         SECONDARY_EXEC_ENABLE_PML |
3581                         SECONDARY_EXEC_TSC_SCALING;
3582                 if (adjust_vmx_controls(min2, opt2,
3583                                         MSR_IA32_VMX_PROCBASED_CTLS2,
3584                                         &_cpu_based_2nd_exec_control) < 0)
3585                         return -EIO;
3586         }
3587 #ifndef CONFIG_X86_64
3588         if (!(_cpu_based_2nd_exec_control &
3589                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3590                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3591 #endif
3592
3593         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3594                 _cpu_based_2nd_exec_control &= ~(
3595                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3596                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3597                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3598
3599         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3600                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3601                    enabled */
3602                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3603                                              CPU_BASED_CR3_STORE_EXITING |
3604                                              CPU_BASED_INVLPG_EXITING);
3605                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3606                       vmx_capability.ept, vmx_capability.vpid);
3607         }
3608
3609         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3610 #ifdef CONFIG_X86_64
3611         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3612 #endif
3613         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3614                 VM_EXIT_CLEAR_BNDCFGS;
3615         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3616                                 &_vmexit_control) < 0)
3617                 return -EIO;
3618
3619         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
3620                 PIN_BASED_VIRTUAL_NMIS;
3621         opt = PIN_BASED_POSTED_INTR | PIN_BASED_VMX_PREEMPTION_TIMER;
3622         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3623                                 &_pin_based_exec_control) < 0)
3624                 return -EIO;
3625
3626         if (cpu_has_broken_vmx_preemption_timer())
3627                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3628         if (!(_cpu_based_2nd_exec_control &
3629                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3630                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3631
3632         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3633         opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3634         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3635                                 &_vmentry_control) < 0)
3636                 return -EIO;
3637
3638         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3639
3640         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3641         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3642                 return -EIO;
3643
3644 #ifdef CONFIG_X86_64
3645         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3646         if (vmx_msr_high & (1u<<16))
3647                 return -EIO;
3648 #endif
3649
3650         /* Require Write-Back (WB) memory type for VMCS accesses. */
3651         if (((vmx_msr_high >> 18) & 15) != 6)
3652                 return -EIO;
3653
3654         vmcs_conf->size = vmx_msr_high & 0x1fff;
3655         vmcs_conf->order = get_order(vmcs_conf->size);
3656         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3657         vmcs_conf->revision_id = vmx_msr_low;
3658
3659         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3660         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3661         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3662         vmcs_conf->vmexit_ctrl         = _vmexit_control;
3663         vmcs_conf->vmentry_ctrl        = _vmentry_control;
3664
3665         cpu_has_load_ia32_efer =
3666                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3667                                 VM_ENTRY_LOAD_IA32_EFER)
3668                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3669                                    VM_EXIT_LOAD_IA32_EFER);
3670
3671         cpu_has_load_perf_global_ctrl =
3672                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3673                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3674                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3675                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3676
3677         /*
3678          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3679          * but due to errata below it can't be used. Workaround is to use
3680          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3681          *
3682          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3683          *
3684          * AAK155             (model 26)
3685          * AAP115             (model 30)
3686          * AAT100             (model 37)
3687          * BC86,AAY89,BD102   (model 44)
3688          * BA97               (model 46)
3689          *
3690          */
3691         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3692                 switch (boot_cpu_data.x86_model) {
3693                 case 26:
3694                 case 30:
3695                 case 37:
3696                 case 44:
3697                 case 46:
3698                         cpu_has_load_perf_global_ctrl = false;
3699                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3700                                         "does not work properly. Using workaround\n");
3701                         break;
3702                 default:
3703                         break;
3704                 }
3705         }
3706
3707         if (boot_cpu_has(X86_FEATURE_XSAVES))
3708                 rdmsrl(MSR_IA32_XSS, host_xss);
3709
3710         return 0;
3711 }
3712
3713 static struct vmcs *alloc_vmcs_cpu(int cpu)
3714 {
3715         int node = cpu_to_node(cpu);
3716         struct page *pages;
3717         struct vmcs *vmcs;
3718
3719         pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3720         if (!pages)
3721                 return NULL;
3722         vmcs = page_address(pages);
3723         memset(vmcs, 0, vmcs_config.size);
3724         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3725         return vmcs;
3726 }
3727
3728 static struct vmcs *alloc_vmcs(void)
3729 {
3730         return alloc_vmcs_cpu(raw_smp_processor_id());
3731 }
3732
3733 static void free_vmcs(struct vmcs *vmcs)
3734 {
3735         free_pages((unsigned long)vmcs, vmcs_config.order);
3736 }
3737
3738 /*
3739  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3740  */
3741 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3742 {
3743         if (!loaded_vmcs->vmcs)
3744                 return;
3745         loaded_vmcs_clear(loaded_vmcs);
3746         free_vmcs(loaded_vmcs->vmcs);
3747         loaded_vmcs->vmcs = NULL;
3748         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3749 }
3750
3751 static void free_kvm_area(void)
3752 {
3753         int cpu;
3754
3755         for_each_possible_cpu(cpu) {
3756                 free_vmcs(per_cpu(vmxarea, cpu));
3757                 per_cpu(vmxarea, cpu) = NULL;
3758         }
3759 }
3760
3761 static void init_vmcs_shadow_fields(void)
3762 {
3763         int i, j;
3764
3765         /* No checks for read only fields yet */
3766
3767         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3768                 switch (shadow_read_write_fields[i]) {
3769                 case GUEST_BNDCFGS:
3770                         if (!kvm_mpx_supported())
3771                                 continue;
3772                         break;
3773                 default:
3774                         break;
3775                 }
3776
3777                 if (j < i)
3778                         shadow_read_write_fields[j] =
3779                                 shadow_read_write_fields[i];
3780                 j++;
3781         }
3782         max_shadow_read_write_fields = j;
3783
3784         /* shadowed fields guest access without vmexit */
3785         for (i = 0; i < max_shadow_read_write_fields; i++) {
3786                 clear_bit(shadow_read_write_fields[i],
3787                           vmx_vmwrite_bitmap);
3788                 clear_bit(shadow_read_write_fields[i],
3789                           vmx_vmread_bitmap);
3790         }
3791         for (i = 0; i < max_shadow_read_only_fields; i++)
3792                 clear_bit(shadow_read_only_fields[i],
3793                           vmx_vmread_bitmap);
3794 }
3795
3796 static __init int alloc_kvm_area(void)
3797 {
3798         int cpu;
3799
3800         for_each_possible_cpu(cpu) {
3801                 struct vmcs *vmcs;
3802
3803                 vmcs = alloc_vmcs_cpu(cpu);
3804                 if (!vmcs) {
3805                         free_kvm_area();
3806                         return -ENOMEM;
3807                 }
3808
3809                 per_cpu(vmxarea, cpu) = vmcs;
3810         }
3811         return 0;
3812 }
3813
3814 static bool emulation_required(struct kvm_vcpu *vcpu)
3815 {
3816         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3817 }
3818
3819 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3820                 struct kvm_segment *save)
3821 {
3822         if (!emulate_invalid_guest_state) {
3823                 /*
3824                  * CS and SS RPL should be equal during guest entry according
3825                  * to VMX spec, but in reality it is not always so. Since vcpu
3826                  * is in the middle of the transition from real mode to
3827                  * protected mode it is safe to assume that RPL 0 is a good
3828                  * default value.
3829                  */
3830                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3831                         save->selector &= ~SEGMENT_RPL_MASK;
3832                 save->dpl = save->selector & SEGMENT_RPL_MASK;
3833                 save->s = 1;
3834         }
3835         vmx_set_segment(vcpu, save, seg);
3836 }
3837
3838 static void enter_pmode(struct kvm_vcpu *vcpu)
3839 {
3840         unsigned long flags;
3841         struct vcpu_vmx *vmx = to_vmx(vcpu);
3842
3843         /*
3844          * Update real mode segment cache. It may be not up-to-date if sement
3845          * register was written while vcpu was in a guest mode.
3846          */
3847         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3848         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3849         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3850         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3851         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3852         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3853
3854         vmx->rmode.vm86_active = 0;
3855
3856         vmx_segment_cache_clear(vmx);
3857
3858         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3859
3860         flags = vmcs_readl(GUEST_RFLAGS);
3861         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3862         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3863         vmcs_writel(GUEST_RFLAGS, flags);
3864
3865         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3866                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3867
3868         update_exception_bitmap(vcpu);
3869
3870         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3871         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3872         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3873         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3874         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3875         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3876 }
3877
3878 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3879 {
3880         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3881         struct kvm_segment var = *save;
3882
3883         var.dpl = 0x3;
3884         if (seg == VCPU_SREG_CS)
3885                 var.type = 0x3;
3886
3887         if (!emulate_invalid_guest_state) {
3888                 var.selector = var.base >> 4;
3889                 var.base = var.base & 0xffff0;
3890                 var.limit = 0xffff;
3891                 var.g = 0;
3892                 var.db = 0;
3893                 var.present = 1;
3894                 var.s = 1;
3895                 var.l = 0;
3896                 var.unusable = 0;
3897                 var.type = 0x3;
3898                 var.avl = 0;
3899                 if (save->base & 0xf)
3900                         printk_once(KERN_WARNING "kvm: segment base is not "
3901                                         "paragraph aligned when entering "
3902                                         "protected mode (seg=%d)", seg);
3903         }
3904
3905         vmcs_write16(sf->selector, var.selector);
3906         vmcs_writel(sf->base, var.base);
3907         vmcs_write32(sf->limit, var.limit);
3908         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3909 }
3910
3911 static void enter_rmode(struct kvm_vcpu *vcpu)
3912 {
3913         unsigned long flags;
3914         struct vcpu_vmx *vmx = to_vmx(vcpu);
3915
3916         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3917         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3918         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3919         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3920         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3921         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3922         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3923
3924         vmx->rmode.vm86_active = 1;
3925
3926         /*
3927          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3928          * vcpu. Warn the user that an update is overdue.
3929          */
3930         if (!vcpu->kvm->arch.tss_addr)
3931                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3932                              "called before entering vcpu\n");
3933
3934         vmx_segment_cache_clear(vmx);
3935
3936         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3937         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3938         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3939
3940         flags = vmcs_readl(GUEST_RFLAGS);
3941         vmx->rmode.save_rflags = flags;
3942
3943         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3944
3945         vmcs_writel(GUEST_RFLAGS, flags);
3946         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3947         update_exception_bitmap(vcpu);
3948
3949         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3950         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3951         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3952         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3953         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3954         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3955
3956         kvm_mmu_reset_context(vcpu);
3957 }
3958
3959 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3960 {
3961         struct vcpu_vmx *vmx = to_vmx(vcpu);
3962         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3963
3964         if (!msr)
3965                 return;
3966
3967         /*
3968          * Force kernel_gs_base reloading before EFER changes, as control
3969          * of this msr depends on is_long_mode().
3970          */
3971         vmx_load_host_state(to_vmx(vcpu));
3972         vcpu->arch.efer = efer;
3973         if (efer & EFER_LMA) {
3974                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3975                 msr->data = efer;
3976         } else {
3977                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3978
3979                 msr->data = efer & ~EFER_LME;
3980         }
3981         setup_msrs(vmx);
3982 }
3983
3984 #ifdef CONFIG_X86_64
3985
3986 static void enter_lmode(struct kvm_vcpu *vcpu)
3987 {
3988         u32 guest_tr_ar;
3989
3990         vmx_segment_cache_clear(to_vmx(vcpu));
3991
3992         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3993         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3994                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3995                                      __func__);
3996                 vmcs_write32(GUEST_TR_AR_BYTES,
3997                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3998                              | VMX_AR_TYPE_BUSY_64_TSS);
3999         }
4000         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
4001 }
4002
4003 static void exit_lmode(struct kvm_vcpu *vcpu)
4004 {
4005         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
4006         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
4007 }
4008
4009 #endif
4010
4011 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
4012 {
4013         if (enable_ept) {
4014                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4015                         return;
4016                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
4017         } else {
4018                 vpid_sync_context(vpid);
4019         }
4020 }
4021
4022 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
4023 {
4024         __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
4025 }
4026
4027 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
4028 {
4029         if (enable_ept)
4030                 vmx_flush_tlb(vcpu);
4031 }
4032
4033 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4034 {
4035         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4036
4037         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4038         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4039 }
4040
4041 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4042 {
4043         if (enable_ept && is_paging(vcpu))
4044                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4045         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4046 }
4047
4048 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
4049 {
4050         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4051
4052         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4053         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
4054 }
4055
4056 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4057 {
4058         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4059
4060         if (!test_bit(VCPU_EXREG_PDPTR,
4061                       (unsigned long *)&vcpu->arch.regs_dirty))
4062                 return;
4063
4064         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4065                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4066                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4067                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4068                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4069         }
4070 }
4071
4072 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4073 {
4074         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4075
4076         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4077                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4078                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4079                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4080                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4081         }
4082
4083         __set_bit(VCPU_EXREG_PDPTR,
4084                   (unsigned long *)&vcpu->arch.regs_avail);
4085         __set_bit(VCPU_EXREG_PDPTR,
4086                   (unsigned long *)&vcpu->arch.regs_dirty);
4087 }
4088
4089 static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4090 {
4091         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4092         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4093         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4094
4095         if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
4096                 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4097             nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4098                 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4099
4100         return fixed_bits_valid(val, fixed0, fixed1);
4101 }
4102
4103 static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4104 {
4105         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed0;
4106         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr0_fixed1;
4107
4108         return fixed_bits_valid(val, fixed0, fixed1);
4109 }
4110
4111 static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4112 {
4113         u64 fixed0 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed0;
4114         u64 fixed1 = to_vmx(vcpu)->nested.nested_vmx_cr4_fixed1;
4115
4116         return fixed_bits_valid(val, fixed0, fixed1);
4117 }
4118
4119 /* No difference in the restrictions on guest and host CR4 in VMX operation. */
4120 #define nested_guest_cr4_valid  nested_cr4_valid
4121 #define nested_host_cr4_valid   nested_cr4_valid
4122
4123 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4124
4125 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4126                                         unsigned long cr0,
4127                                         struct kvm_vcpu *vcpu)
4128 {
4129         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4130                 vmx_decache_cr3(vcpu);
4131         if (!(cr0 & X86_CR0_PG)) {
4132                 /* From paging/starting to nonpaging */
4133                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4134                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4135                              (CPU_BASED_CR3_LOAD_EXITING |
4136                               CPU_BASED_CR3_STORE_EXITING));
4137                 vcpu->arch.cr0 = cr0;
4138                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4139         } else if (!is_paging(vcpu)) {
4140                 /* From nonpaging to paging */
4141                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4142                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4143                              ~(CPU_BASED_CR3_LOAD_EXITING |
4144                                CPU_BASED_CR3_STORE_EXITING));
4145                 vcpu->arch.cr0 = cr0;
4146                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4147         }
4148
4149         if (!(cr0 & X86_CR0_WP))
4150                 *hw_cr0 &= ~X86_CR0_WP;
4151 }
4152
4153 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4154 {
4155         struct vcpu_vmx *vmx = to_vmx(vcpu);
4156         unsigned long hw_cr0;
4157
4158         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4159         if (enable_unrestricted_guest)
4160                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4161         else {
4162                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4163
4164                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4165                         enter_pmode(vcpu);
4166
4167                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4168                         enter_rmode(vcpu);
4169         }
4170
4171 #ifdef CONFIG_X86_64
4172         if (vcpu->arch.efer & EFER_LME) {
4173                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4174                         enter_lmode(vcpu);
4175                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4176                         exit_lmode(vcpu);
4177         }
4178 #endif
4179
4180         if (enable_ept)
4181                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4182
4183         vmcs_writel(CR0_READ_SHADOW, cr0);
4184         vmcs_writel(GUEST_CR0, hw_cr0);
4185         vcpu->arch.cr0 = cr0;
4186
4187         /* depends on vcpu->arch.cr0 to be set to a new value */
4188         vmx->emulation_required = emulation_required(vcpu);
4189 }
4190
4191 static u64 construct_eptp(unsigned long root_hpa)
4192 {
4193         u64 eptp;
4194
4195         /* TODO write the value reading from MSR */
4196         eptp = VMX_EPT_DEFAULT_MT |
4197                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4198         if (enable_ept_ad_bits)
4199                 eptp |= VMX_EPT_AD_ENABLE_BIT;
4200         eptp |= (root_hpa & PAGE_MASK);
4201
4202         return eptp;
4203 }
4204
4205 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4206 {
4207         unsigned long guest_cr3;
4208         u64 eptp;
4209
4210         guest_cr3 = cr3;
4211         if (enable_ept) {
4212                 eptp = construct_eptp(cr3);
4213                 vmcs_write64(EPT_POINTER, eptp);
4214                 if (is_paging(vcpu) || is_guest_mode(vcpu))
4215                         guest_cr3 = kvm_read_cr3(vcpu);
4216                 else
4217                         guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4218                 ept_load_pdptrs(vcpu);
4219         }
4220
4221         vmx_flush_tlb(vcpu);
4222         vmcs_writel(GUEST_CR3, guest_cr3);
4223 }
4224
4225 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4226 {
4227         /*
4228          * Pass through host's Machine Check Enable value to hw_cr4, which
4229          * is in force while we are in guest mode.  Do not let guests control
4230          * this bit, even if host CR4.MCE == 0.
4231          */
4232         unsigned long hw_cr4 =
4233                 (cr4_read_shadow() & X86_CR4_MCE) |
4234                 (cr4 & ~X86_CR4_MCE) |
4235                 (to_vmx(vcpu)->rmode.vm86_active ?
4236                  KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4237
4238         if (cr4 & X86_CR4_VMXE) {
4239                 /*
4240                  * To use VMXON (and later other VMX instructions), a guest
4241                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
4242                  * So basically the check on whether to allow nested VMX
4243                  * is here.
4244                  */
4245                 if (!nested_vmx_allowed(vcpu))
4246                         return 1;
4247         }
4248
4249         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
4250                 return 1;
4251
4252         vcpu->arch.cr4 = cr4;
4253         if (enable_ept) {
4254                 if (!is_paging(vcpu)) {
4255                         hw_cr4 &= ~X86_CR4_PAE;
4256                         hw_cr4 |= X86_CR4_PSE;
4257                 } else if (!(cr4 & X86_CR4_PAE)) {
4258                         hw_cr4 &= ~X86_CR4_PAE;
4259                 }
4260         }
4261
4262         if (!enable_unrestricted_guest && !is_paging(vcpu))
4263                 /*
4264                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4265                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4266                  * to be manually disabled when guest switches to non-paging
4267                  * mode.
4268                  *
4269                  * If !enable_unrestricted_guest, the CPU is always running
4270                  * with CR0.PG=1 and CR4 needs to be modified.
4271                  * If enable_unrestricted_guest, the CPU automatically
4272                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4273                  */
4274                 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4275
4276         vmcs_writel(CR4_READ_SHADOW, cr4);
4277         vmcs_writel(GUEST_CR4, hw_cr4);
4278         return 0;
4279 }
4280
4281 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4282                             struct kvm_segment *var, int seg)
4283 {
4284         struct vcpu_vmx *vmx = to_vmx(vcpu);
4285         u32 ar;
4286
4287         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4288                 *var = vmx->rmode.segs[seg];
4289                 if (seg == VCPU_SREG_TR
4290                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4291                         return;
4292                 var->base = vmx_read_guest_seg_base(vmx, seg);
4293                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4294                 return;
4295         }
4296         var->base = vmx_read_guest_seg_base(vmx, seg);
4297         var->limit = vmx_read_guest_seg_limit(vmx, seg);
4298         var->selector = vmx_read_guest_seg_selector(vmx, seg);
4299         ar = vmx_read_guest_seg_ar(vmx, seg);
4300         var->unusable = (ar >> 16) & 1;
4301         var->type = ar & 15;
4302         var->s = (ar >> 4) & 1;
4303         var->dpl = (ar >> 5) & 3;
4304         /*
4305          * Some userspaces do not preserve unusable property. Since usable
4306          * segment has to be present according to VMX spec we can use present
4307          * property to amend userspace bug by making unusable segment always
4308          * nonpresent. vmx_segment_access_rights() already marks nonpresent
4309          * segment as unusable.
4310          */
4311         var->present = !var->unusable;
4312         var->avl = (ar >> 12) & 1;
4313         var->l = (ar >> 13) & 1;
4314         var->db = (ar >> 14) & 1;
4315         var->g = (ar >> 15) & 1;
4316 }
4317
4318 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4319 {
4320         struct kvm_segment s;
4321
4322         if (to_vmx(vcpu)->rmode.vm86_active) {
4323                 vmx_get_segment(vcpu, &s, seg);
4324                 return s.base;
4325         }
4326         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4327 }
4328
4329 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4330 {
4331         struct vcpu_vmx *vmx = to_vmx(vcpu);
4332
4333         if (unlikely(vmx->rmode.vm86_active))
4334                 return 0;
4335         else {
4336                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4337                 return VMX_AR_DPL(ar);
4338         }
4339 }
4340
4341 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4342 {
4343         u32 ar;
4344
4345         if (var->unusable || !var->present)
4346                 ar = 1 << 16;
4347         else {
4348                 ar = var->type & 15;
4349                 ar |= (var->s & 1) << 4;
4350                 ar |= (var->dpl & 3) << 5;
4351                 ar |= (var->present & 1) << 7;
4352                 ar |= (var->avl & 1) << 12;
4353                 ar |= (var->l & 1) << 13;
4354                 ar |= (var->db & 1) << 14;
4355                 ar |= (var->g & 1) << 15;
4356         }
4357
4358         return ar;
4359 }
4360
4361 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4362                             struct kvm_segment *var, int seg)
4363 {
4364         struct vcpu_vmx *vmx = to_vmx(vcpu);
4365         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4366
4367         vmx_segment_cache_clear(vmx);
4368
4369         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4370                 vmx->rmode.segs[seg] = *var;
4371                 if (seg == VCPU_SREG_TR)
4372                         vmcs_write16(sf->selector, var->selector);
4373                 else if (var->s)
4374                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4375                 goto out;
4376         }
4377
4378         vmcs_writel(sf->base, var->base);
4379         vmcs_write32(sf->limit, var->limit);
4380         vmcs_write16(sf->selector, var->selector);
4381
4382         /*
4383          *   Fix the "Accessed" bit in AR field of segment registers for older
4384          * qemu binaries.
4385          *   IA32 arch specifies that at the time of processor reset the
4386          * "Accessed" bit in the AR field of segment registers is 1. And qemu
4387          * is setting it to 0 in the userland code. This causes invalid guest
4388          * state vmexit when "unrestricted guest" mode is turned on.
4389          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4390          * tree. Newer qemu binaries with that qemu fix would not need this
4391          * kvm hack.
4392          */
4393         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4394                 var->type |= 0x1; /* Accessed */
4395
4396         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4397
4398 out:
4399         vmx->emulation_required = emulation_required(vcpu);
4400 }
4401
4402 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4403 {
4404         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4405
4406         *db = (ar >> 14) & 1;
4407         *l = (ar >> 13) & 1;
4408 }
4409
4410 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4411 {
4412         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4413         dt->address = vmcs_readl(GUEST_IDTR_BASE);
4414 }
4415
4416 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4417 {
4418         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4419         vmcs_writel(GUEST_IDTR_BASE, dt->address);
4420 }
4421
4422 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4423 {
4424         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4425         dt->address = vmcs_readl(GUEST_GDTR_BASE);
4426 }
4427
4428 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4429 {
4430         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4431         vmcs_writel(GUEST_GDTR_BASE, dt->address);
4432 }
4433
4434 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4435 {
4436         struct kvm_segment var;
4437         u32 ar;
4438
4439         vmx_get_segment(vcpu, &var, seg);
4440         var.dpl = 0x3;
4441         if (seg == VCPU_SREG_CS)
4442                 var.type = 0x3;
4443         ar = vmx_segment_access_rights(&var);
4444
4445         if (var.base != (var.selector << 4))
4446                 return false;
4447         if (var.limit != 0xffff)
4448                 return false;
4449         if (ar != 0xf3)
4450                 return false;
4451
4452         return true;
4453 }
4454
4455 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4456 {
4457         struct kvm_segment cs;
4458         unsigned int cs_rpl;
4459
4460         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4461         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4462
4463         if (cs.unusable)
4464                 return false;
4465         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4466                 return false;
4467         if (!cs.s)
4468                 return false;
4469         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4470                 if (cs.dpl > cs_rpl)
4471                         return false;
4472         } else {
4473                 if (cs.dpl != cs_rpl)
4474                         return false;
4475         }
4476         if (!cs.present)
4477                 return false;
4478
4479         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4480         return true;
4481 }
4482
4483 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4484 {
4485         struct kvm_segment ss;
4486         unsigned int ss_rpl;
4487
4488         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4489         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4490
4491         if (ss.unusable)
4492                 return true;
4493         if (ss.type != 3 && ss.type != 7)
4494                 return false;
4495         if (!ss.s)
4496                 return false;
4497         if (ss.dpl != ss_rpl) /* DPL != RPL */
4498                 return false;
4499         if (!ss.present)
4500                 return false;
4501
4502         return true;
4503 }
4504
4505 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4506 {
4507         struct kvm_segment var;
4508         unsigned int rpl;
4509
4510         vmx_get_segment(vcpu, &var, seg);
4511         rpl = var.selector & SEGMENT_RPL_MASK;
4512
4513         if (var.unusable)
4514                 return true;
4515         if (!var.s)
4516                 return false;
4517         if (!var.present)
4518                 return false;
4519         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4520                 if (var.dpl < rpl) /* DPL < RPL */
4521                         return false;
4522         }
4523
4524         /* TODO: Add other members to kvm_segment_field to allow checking for other access
4525          * rights flags
4526          */
4527         return true;
4528 }
4529
4530 static bool tr_valid(struct kvm_vcpu *vcpu)
4531 {
4532         struct kvm_segment tr;
4533
4534         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4535
4536         if (tr.unusable)
4537                 return false;
4538         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4539                 return false;
4540         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4541                 return false;
4542         if (!tr.present)
4543                 return false;
4544
4545         return true;
4546 }
4547
4548 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4549 {
4550         struct kvm_segment ldtr;
4551
4552         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4553
4554         if (ldtr.unusable)
4555                 return true;
4556         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4557                 return false;
4558         if (ldtr.type != 2)
4559                 return false;
4560         if (!ldtr.present)
4561                 return false;
4562
4563         return true;
4564 }
4565
4566 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4567 {
4568         struct kvm_segment cs, ss;
4569
4570         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4571         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4572
4573         return ((cs.selector & SEGMENT_RPL_MASK) ==
4574                  (ss.selector & SEGMENT_RPL_MASK));
4575 }
4576
4577 /*
4578  * Check if guest state is valid. Returns true if valid, false if
4579  * not.
4580  * We assume that registers are always usable
4581  */
4582 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4583 {
4584         if (enable_unrestricted_guest)
4585                 return true;
4586
4587         /* real mode guest state checks */
4588         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4589                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4590                         return false;
4591                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4592                         return false;
4593                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4594                         return false;
4595                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4596                         return false;
4597                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4598                         return false;
4599                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4600                         return false;
4601         } else {
4602         /* protected mode guest state checks */
4603                 if (!cs_ss_rpl_check(vcpu))
4604                         return false;
4605                 if (!code_segment_valid(vcpu))
4606                         return false;
4607                 if (!stack_segment_valid(vcpu))
4608                         return false;
4609                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4610                         return false;
4611                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4612                         return false;
4613                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4614                         return false;
4615                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4616                         return false;
4617                 if (!tr_valid(vcpu))
4618                         return false;
4619                 if (!ldtr_valid(vcpu))
4620                         return false;
4621         }
4622         /* TODO:
4623          * - Add checks on RIP
4624          * - Add checks on RFLAGS
4625          */
4626
4627         return true;
4628 }
4629
4630 static int init_rmode_tss(struct kvm *kvm)
4631 {
4632         gfn_t fn;
4633         u16 data = 0;
4634         int idx, r;
4635
4636         idx = srcu_read_lock(&kvm->srcu);
4637         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4638         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4639         if (r < 0)
4640                 goto out;
4641         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4642         r = kvm_write_guest_page(kvm, fn++, &data,
4643                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
4644         if (r < 0)
4645                 goto out;
4646         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4647         if (r < 0)
4648                 goto out;
4649         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4650         if (r < 0)
4651                 goto out;
4652         data = ~0;
4653         r = kvm_write_guest_page(kvm, fn, &data,
4654                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4655                                  sizeof(u8));
4656 out:
4657         srcu_read_unlock(&kvm->srcu, idx);
4658         return r;
4659 }
4660
4661 static int init_rmode_identity_map(struct kvm *kvm)
4662 {
4663         int i, idx, r = 0;
4664         kvm_pfn_t identity_map_pfn;
4665         u32 tmp;
4666
4667         if (!enable_ept)
4668                 return 0;
4669
4670         /* Protect kvm->arch.ept_identity_pagetable_done. */
4671         mutex_lock(&kvm->slots_lock);
4672
4673         if (likely(kvm->arch.ept_identity_pagetable_done))
4674                 goto out2;
4675
4676         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4677
4678         r = alloc_identity_pagetable(kvm);
4679         if (r < 0)
4680                 goto out2;
4681
4682         idx = srcu_read_lock(&kvm->srcu);
4683         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4684         if (r < 0)
4685                 goto out;
4686         /* Set up identity-mapping pagetable for EPT in real mode */
4687         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4688                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4689                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4690                 r = kvm_write_guest_page(kvm, identity_map_pfn,
4691                                 &tmp, i * sizeof(tmp), sizeof(tmp));
4692                 if (r < 0)
4693                         goto out;
4694         }
4695         kvm->arch.ept_identity_pagetable_done = true;
4696
4697 out:
4698         srcu_read_unlock(&kvm->srcu, idx);
4699
4700 out2:
4701         mutex_unlock(&kvm->slots_lock);
4702         return r;
4703 }
4704
4705 static void seg_setup(int seg)
4706 {
4707         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4708         unsigned int ar;
4709
4710         vmcs_write16(sf->selector, 0);
4711         vmcs_writel(sf->base, 0);
4712         vmcs_write32(sf->limit, 0xffff);
4713         ar = 0x93;
4714         if (seg == VCPU_SREG_CS)
4715                 ar |= 0x08; /* code segment */
4716
4717         vmcs_write32(sf->ar_bytes, ar);
4718 }
4719
4720 static int alloc_apic_access_page(struct kvm *kvm)
4721 {
4722         struct page *page;
4723         int r = 0;
4724
4725         mutex_lock(&kvm->slots_lock);
4726         if (kvm->arch.apic_access_page_done)
4727                 goto out;
4728         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4729                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4730         if (r)
4731                 goto out;
4732
4733         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4734         if (is_error_page(page)) {
4735                 r = -EFAULT;
4736                 goto out;
4737         }
4738
4739         /*
4740          * Do not pin the page in memory, so that memory hot-unplug
4741          * is able to migrate it.
4742          */
4743         put_page(page);
4744         kvm->arch.apic_access_page_done = true;
4745 out:
4746         mutex_unlock(&kvm->slots_lock);
4747         return r;
4748 }
4749
4750 static int alloc_identity_pagetable(struct kvm *kvm)
4751 {
4752         /* Called with kvm->slots_lock held. */
4753
4754         int r = 0;
4755
4756         BUG_ON(kvm->arch.ept_identity_pagetable_done);
4757
4758         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4759                                     kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4760
4761         return r;
4762 }
4763
4764 static int allocate_vpid(void)
4765 {
4766         int vpid;
4767
4768         if (!enable_vpid)
4769                 return 0;
4770         spin_lock(&vmx_vpid_lock);
4771         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4772         if (vpid < VMX_NR_VPIDS)
4773                 __set_bit(vpid, vmx_vpid_bitmap);
4774         else
4775                 vpid = 0;
4776         spin_unlock(&vmx_vpid_lock);
4777         return vpid;
4778 }
4779
4780 static void free_vpid(int vpid)
4781 {
4782         if (!enable_vpid || vpid == 0)
4783                 return;
4784         spin_lock(&vmx_vpid_lock);
4785         __clear_bit(vpid, vmx_vpid_bitmap);
4786         spin_unlock(&vmx_vpid_lock);
4787 }
4788
4789 #define MSR_TYPE_R      1
4790 #define MSR_TYPE_W      2
4791 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4792                                                 u32 msr, int type)
4793 {
4794         int f = sizeof(unsigned long);
4795
4796         if (!cpu_has_vmx_msr_bitmap())
4797                 return;
4798
4799         /*
4800          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4801          * have the write-low and read-high bitmap offsets the wrong way round.
4802          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4803          */
4804         if (msr <= 0x1fff) {
4805                 if (type & MSR_TYPE_R)
4806                         /* read-low */
4807                         __clear_bit(msr, msr_bitmap + 0x000 / f);
4808
4809                 if (type & MSR_TYPE_W)
4810                         /* write-low */
4811                         __clear_bit(msr, msr_bitmap + 0x800 / f);
4812
4813         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4814                 msr &= 0x1fff;
4815                 if (type & MSR_TYPE_R)
4816                         /* read-high */
4817                         __clear_bit(msr, msr_bitmap + 0x400 / f);
4818
4819                 if (type & MSR_TYPE_W)
4820                         /* write-high */
4821                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
4822
4823         }
4824 }
4825
4826 /*
4827  * If a msr is allowed by L0, we should check whether it is allowed by L1.
4828  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4829  */
4830 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4831                                                unsigned long *msr_bitmap_nested,
4832                                                u32 msr, int type)
4833 {
4834         int f = sizeof(unsigned long);
4835
4836         if (!cpu_has_vmx_msr_bitmap()) {
4837                 WARN_ON(1);
4838                 return;
4839         }
4840
4841         /*
4842          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4843          * have the write-low and read-high bitmap offsets the wrong way round.
4844          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4845          */
4846         if (msr <= 0x1fff) {
4847                 if (type & MSR_TYPE_R &&
4848                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4849                         /* read-low */
4850                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4851
4852                 if (type & MSR_TYPE_W &&
4853                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4854                         /* write-low */
4855                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4856
4857         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4858                 msr &= 0x1fff;
4859                 if (type & MSR_TYPE_R &&
4860                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4861                         /* read-high */
4862                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4863
4864                 if (type & MSR_TYPE_W &&
4865                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4866                         /* write-high */
4867                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4868
4869         }
4870 }
4871
4872 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4873 {
4874         if (!longmode_only)
4875                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4876                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4877         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4878                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4879 }
4880
4881 static void vmx_disable_intercept_msr_x2apic(u32 msr, int type, bool apicv_active)
4882 {
4883         if (apicv_active) {
4884                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic_apicv,
4885                                 msr, type);
4886                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic_apicv,
4887                                 msr, type);
4888         } else {
4889                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4890                                 msr, type);
4891                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4892                                 msr, type);
4893         }
4894 }
4895
4896 static bool vmx_get_enable_apicv(void)
4897 {
4898         return enable_apicv;
4899 }
4900
4901 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4902 {
4903         struct vcpu_vmx *vmx = to_vmx(vcpu);
4904         int max_irr;
4905         void *vapic_page;
4906         u16 status;
4907
4908         if (vmx->nested.pi_desc &&
4909             vmx->nested.pi_pending) {
4910                 vmx->nested.pi_pending = false;
4911                 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4912                         return;
4913
4914                 max_irr = find_last_bit(
4915                         (unsigned long *)vmx->nested.pi_desc->pir, 256);
4916
4917                 if (max_irr == 256)
4918                         return;
4919
4920                 vapic_page = kmap(vmx->nested.virtual_apic_page);
4921                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4922                 kunmap(vmx->nested.virtual_apic_page);
4923
4924                 status = vmcs_read16(GUEST_INTR_STATUS);
4925                 if ((u8)max_irr > ((u8)status & 0xff)) {
4926                         status &= ~0xff;
4927                         status |= (u8)max_irr;
4928                         vmcs_write16(GUEST_INTR_STATUS, status);
4929                 }
4930         }
4931 }
4932
4933 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4934 {
4935 #ifdef CONFIG_SMP
4936         if (vcpu->mode == IN_GUEST_MODE) {
4937                 struct vcpu_vmx *vmx = to_vmx(vcpu);
4938
4939                 /*
4940                  * Currently, we don't support urgent interrupt,
4941                  * all interrupts are recognized as non-urgent
4942                  * interrupt, so we cannot post interrupts when
4943                  * 'SN' is set.
4944                  *
4945                  * If the vcpu is in guest mode, it means it is
4946                  * running instead of being scheduled out and
4947                  * waiting in the run queue, and that's the only
4948                  * case when 'SN' is set currently, warning if
4949                  * 'SN' is set.
4950                  */
4951                 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4952
4953                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4954                                 POSTED_INTR_VECTOR);
4955                 return true;
4956         }
4957 #endif
4958         return false;
4959 }
4960
4961 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4962                                                 int vector)
4963 {
4964         struct vcpu_vmx *vmx = to_vmx(vcpu);
4965
4966         if (is_guest_mode(vcpu) &&
4967             vector == vmx->nested.posted_intr_nv) {
4968                 /* the PIR and ON have been set by L1. */
4969                 kvm_vcpu_trigger_posted_interrupt(vcpu);
4970                 /*
4971                  * If a posted intr is not recognized by hardware,
4972                  * we will accomplish it in the next vmentry.
4973                  */
4974                 vmx->nested.pi_pending = true;
4975                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4976                 return 0;
4977         }
4978         return -1;
4979 }
4980 /*
4981  * Send interrupt to vcpu via posted interrupt way.
4982  * 1. If target vcpu is running(non-root mode), send posted interrupt
4983  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4984  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4985  * interrupt from PIR in next vmentry.
4986  */
4987 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4988 {
4989         struct vcpu_vmx *vmx = to_vmx(vcpu);
4990         int r;
4991
4992         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4993         if (!r)
4994                 return;
4995
4996         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4997                 return;
4998
4999         /* If a previous notification has sent the IPI, nothing to do.  */
5000         if (pi_test_and_set_on(&vmx->pi_desc))
5001                 return;
5002
5003         if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
5004                 kvm_vcpu_kick(vcpu);
5005 }
5006
5007 /*
5008  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5009  * will not change in the lifetime of the guest.
5010  * Note that host-state that does change is set elsewhere. E.g., host-state
5011  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5012  */
5013 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5014 {
5015         u32 low32, high32;
5016         unsigned long tmpl;
5017         struct desc_ptr dt;
5018         unsigned long cr0, cr3, cr4;
5019
5020         cr0 = read_cr0();
5021         WARN_ON(cr0 & X86_CR0_TS);
5022         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
5023
5024         /*
5025          * Save the most likely value for this task's CR3 in the VMCS.
5026          * We can't use __get_current_cr3_fast() because we're not atomic.
5027          */
5028         cr3 = __read_cr3();
5029         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
5030         vmx->host_state.vmcs_host_cr3 = cr3;
5031
5032         /* Save the most likely value for this task's CR4 in the VMCS. */
5033         cr4 = cr4_read_shadow();
5034         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
5035         vmx->host_state.vmcs_host_cr4 = cr4;
5036
5037         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
5038 #ifdef CONFIG_X86_64
5039         /*
5040          * Load null selectors, so we can avoid reloading them in
5041          * __vmx_load_host_state(), in case userspace uses the null selectors
5042          * too (the expected case).
5043          */
5044         vmcs_write16(HOST_DS_SELECTOR, 0);
5045         vmcs_write16(HOST_ES_SELECTOR, 0);
5046 #else
5047         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5048         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5049 #endif
5050         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
5051         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
5052
5053         native_store_idt(&dt);
5054         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
5055         vmx->host_idt_base = dt.address;
5056
5057         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5058
5059         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5060         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5061         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5062         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
5063
5064         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5065                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5066                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5067         }
5068 }
5069
5070 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5071 {
5072         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5073         if (enable_ept)
5074                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5075         if (is_guest_mode(&vmx->vcpu))
5076                 vmx->vcpu.arch.cr4_guest_owned_bits &=
5077                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5078         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5079 }
5080
5081 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5082 {
5083         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5084
5085         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5086                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5087         /* Enable the preemption timer dynamically */
5088         pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5089         return pin_based_exec_ctrl;
5090 }
5091
5092 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5093 {
5094         struct vcpu_vmx *vmx = to_vmx(vcpu);
5095
5096         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5097         if (cpu_has_secondary_exec_ctrls()) {
5098                 if (kvm_vcpu_apicv_active(vcpu))
5099                         vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5100                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
5101                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5102                 else
5103                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5104                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
5105                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5106         }
5107
5108         if (cpu_has_vmx_msr_bitmap())
5109                 vmx_set_msr_bitmap(vcpu);
5110 }
5111
5112 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5113 {
5114         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5115
5116         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5117                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5118
5119         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5120                 exec_control &= ~CPU_BASED_TPR_SHADOW;
5121 #ifdef CONFIG_X86_64
5122                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5123                                 CPU_BASED_CR8_LOAD_EXITING;
5124 #endif
5125         }
5126         if (!enable_ept)
5127                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5128                                 CPU_BASED_CR3_LOAD_EXITING  |
5129                                 CPU_BASED_INVLPG_EXITING;
5130         return exec_control;
5131 }
5132
5133 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5134 {
5135         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5136         if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5137                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5138         if (vmx->vpid == 0)
5139                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5140         if (!enable_ept) {
5141                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5142                 enable_unrestricted_guest = 0;
5143                 /* Enable INVPCID for non-ept guests may cause performance regression. */
5144                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5145         }
5146         if (!enable_unrestricted_guest)
5147                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5148         if (!ple_gap)
5149                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5150         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5151                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5152                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5153         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5154         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5155            (handle_vmptrld).
5156            We can NOT enable shadow_vmcs here because we don't have yet
5157            a current VMCS12
5158         */
5159         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5160
5161         if (!enable_pml)
5162                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5163
5164         return exec_control;
5165 }
5166
5167 static void ept_set_mmio_spte_mask(void)
5168 {
5169         /*
5170          * EPT Misconfigurations can be generated if the value of bits 2:0
5171          * of an EPT paging-structure entry is 110b (write/execute).
5172          */
5173         kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE);
5174 }
5175
5176 #define VMX_XSS_EXIT_BITMAP 0
5177 /*
5178  * Sets up the vmcs for emulated real mode.
5179  */
5180 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5181 {
5182 #ifdef CONFIG_X86_64
5183         unsigned long a;
5184 #endif
5185         int i;
5186
5187         /* I/O */
5188         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5189         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5190
5191         if (enable_shadow_vmcs) {
5192                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5193                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5194         }
5195         if (cpu_has_vmx_msr_bitmap())
5196                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5197
5198         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5199
5200         /* Control */
5201         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5202         vmx->hv_deadline_tsc = -1;
5203
5204         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5205
5206         if (cpu_has_secondary_exec_ctrls()) {
5207                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5208                                 vmx_secondary_exec_control(vmx));
5209         }
5210
5211         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5212                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5213                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5214                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5215                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5216
5217                 vmcs_write16(GUEST_INTR_STATUS, 0);
5218
5219                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5220                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5221         }
5222
5223         if (ple_gap) {
5224                 vmcs_write32(PLE_GAP, ple_gap);
5225                 vmx->ple_window = ple_window;
5226                 vmx->ple_window_dirty = true;
5227         }
5228
5229         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5230         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5231         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5232
5233         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5234         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5235         vmx_set_constant_host_state(vmx);
5236 #ifdef CONFIG_X86_64
5237         rdmsrl(MSR_FS_BASE, a);
5238         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5239         rdmsrl(MSR_GS_BASE, a);
5240         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5241 #else
5242         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5243         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5244 #endif
5245
5246         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5247         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5248         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5249         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5250         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5251
5252         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5253                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5254
5255         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5256                 u32 index = vmx_msr_index[i];
5257                 u32 data_low, data_high;
5258                 int j = vmx->nmsrs;
5259
5260                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5261                         continue;
5262                 if (wrmsr_safe(index, data_low, data_high) < 0)
5263                         continue;
5264                 vmx->guest_msrs[j].index = i;
5265                 vmx->guest_msrs[j].data = 0;
5266                 vmx->guest_msrs[j].mask = -1ull;
5267                 ++vmx->nmsrs;
5268         }
5269
5270
5271         vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5272
5273         /* 22.2.1, 20.8.1 */
5274         vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5275
5276         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
5277         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
5278
5279         set_cr4_guest_host_mask(vmx);
5280
5281         if (vmx_xsaves_supported())
5282                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5283
5284         if (enable_pml) {
5285                 ASSERT(vmx->pml_pg);
5286                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5287                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5288         }
5289
5290         return 0;
5291 }
5292
5293 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5294 {
5295         struct vcpu_vmx *vmx = to_vmx(vcpu);
5296         struct msr_data apic_base_msr;
5297         u64 cr0;
5298
5299         vmx->rmode.vm86_active = 0;
5300
5301         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5302         kvm_set_cr8(vcpu, 0);
5303
5304         if (!init_event) {
5305                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5306                                      MSR_IA32_APICBASE_ENABLE;
5307                 if (kvm_vcpu_is_reset_bsp(vcpu))
5308                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5309                 apic_base_msr.host_initiated = true;
5310                 kvm_set_apic_base(vcpu, &apic_base_msr);
5311         }
5312
5313         vmx_segment_cache_clear(vmx);
5314
5315         seg_setup(VCPU_SREG_CS);
5316         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5317         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5318
5319         seg_setup(VCPU_SREG_DS);
5320         seg_setup(VCPU_SREG_ES);
5321         seg_setup(VCPU_SREG_FS);
5322         seg_setup(VCPU_SREG_GS);
5323         seg_setup(VCPU_SREG_SS);
5324
5325         vmcs_write16(GUEST_TR_SELECTOR, 0);
5326         vmcs_writel(GUEST_TR_BASE, 0);
5327         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5328         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5329
5330         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5331         vmcs_writel(GUEST_LDTR_BASE, 0);
5332         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5333         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5334
5335         if (!init_event) {
5336                 vmcs_write32(GUEST_SYSENTER_CS, 0);
5337                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5338                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5339                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5340         }
5341
5342         vmcs_writel(GUEST_RFLAGS, 0x02);
5343         kvm_rip_write(vcpu, 0xfff0);
5344
5345         vmcs_writel(GUEST_GDTR_BASE, 0);
5346         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5347
5348         vmcs_writel(GUEST_IDTR_BASE, 0);
5349         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5350
5351         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5352         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5353         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5354
5355         setup_msrs(vmx);
5356
5357         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5358
5359         if (cpu_has_vmx_tpr_shadow() && !init_event) {
5360                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5361                 if (cpu_need_tpr_shadow(vcpu))
5362                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5363                                      __pa(vcpu->arch.apic->regs));
5364                 vmcs_write32(TPR_THRESHOLD, 0);
5365         }
5366
5367         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5368
5369         if (kvm_vcpu_apicv_active(vcpu))
5370                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5371
5372         if (vmx->vpid != 0)
5373                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5374
5375         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5376         vmx->vcpu.arch.cr0 = cr0;
5377         vmx_set_cr0(vcpu, cr0); /* enter rmode */
5378         vmx_set_cr4(vcpu, 0);
5379         vmx_set_efer(vcpu, 0);
5380
5381         update_exception_bitmap(vcpu);
5382
5383         vpid_sync_context(vmx->vpid);
5384 }
5385
5386 /*
5387  * In nested virtualization, check if L1 asked to exit on external interrupts.
5388  * For most existing hypervisors, this will always return true.
5389  */
5390 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5391 {
5392         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5393                 PIN_BASED_EXT_INTR_MASK;
5394 }
5395
5396 /*
5397  * In nested virtualization, check if L1 has set
5398  * VM_EXIT_ACK_INTR_ON_EXIT
5399  */
5400 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5401 {
5402         return get_vmcs12(vcpu)->vm_exit_controls &
5403                 VM_EXIT_ACK_INTR_ON_EXIT;
5404 }
5405
5406 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5407 {
5408         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5409                 PIN_BASED_NMI_EXITING;
5410 }
5411
5412 static void enable_irq_window(struct kvm_vcpu *vcpu)
5413 {
5414         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5415                       CPU_BASED_VIRTUAL_INTR_PENDING);
5416 }
5417
5418 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5419 {
5420         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5421                 enable_irq_window(vcpu);
5422                 return;
5423         }
5424
5425         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
5426                       CPU_BASED_VIRTUAL_NMI_PENDING);
5427 }
5428
5429 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5430 {
5431         struct vcpu_vmx *vmx = to_vmx(vcpu);
5432         uint32_t intr;
5433         int irq = vcpu->arch.interrupt.nr;
5434
5435         trace_kvm_inj_virq(irq);
5436
5437         ++vcpu->stat.irq_injections;
5438         if (vmx->rmode.vm86_active) {
5439                 int inc_eip = 0;
5440                 if (vcpu->arch.interrupt.soft)
5441                         inc_eip = vcpu->arch.event_exit_inst_len;
5442                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5443                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5444                 return;
5445         }
5446         intr = irq | INTR_INFO_VALID_MASK;
5447         if (vcpu->arch.interrupt.soft) {
5448                 intr |= INTR_TYPE_SOFT_INTR;
5449                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5450                              vmx->vcpu.arch.event_exit_inst_len);
5451         } else
5452                 intr |= INTR_TYPE_EXT_INTR;
5453         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5454 }
5455
5456 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5457 {
5458         struct vcpu_vmx *vmx = to_vmx(vcpu);
5459
5460         if (!is_guest_mode(vcpu)) {
5461                 ++vcpu->stat.nmi_injections;
5462                 vmx->nmi_known_unmasked = false;
5463         }
5464
5465         if (vmx->rmode.vm86_active) {
5466                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5467                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5468                 return;
5469         }
5470
5471         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5472                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5473 }
5474
5475 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5476 {
5477         if (to_vmx(vcpu)->nmi_known_unmasked)
5478                 return false;
5479         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5480 }
5481
5482 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5483 {
5484         struct vcpu_vmx *vmx = to_vmx(vcpu);
5485
5486         vmx->nmi_known_unmasked = !masked;
5487         if (masked)
5488                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5489                               GUEST_INTR_STATE_NMI);
5490         else
5491                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5492                                 GUEST_INTR_STATE_NMI);
5493 }
5494
5495 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5496 {
5497         if (to_vmx(vcpu)->nested.nested_run_pending)
5498                 return 0;
5499
5500         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5501                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5502                    | GUEST_INTR_STATE_NMI));
5503 }
5504
5505 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5506 {
5507         return (!to_vmx(vcpu)->nested.nested_run_pending &&
5508                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5509                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5510                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5511 }
5512
5513 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5514 {
5515         int ret;
5516
5517         ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5518                                     PAGE_SIZE * 3);
5519         if (ret)
5520                 return ret;
5521         kvm->arch.tss_addr = addr;
5522         return init_rmode_tss(kvm);
5523 }
5524
5525 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5526 {
5527         switch (vec) {
5528         case BP_VECTOR:
5529                 /*
5530                  * Update instruction length as we may reinject the exception
5531                  * from user space while in guest debugging mode.
5532                  */
5533                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5534                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5535                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5536                         return false;
5537                 /* fall through */
5538         case DB_VECTOR:
5539                 if (vcpu->guest_debug &
5540                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5541                         return false;
5542                 /* fall through */
5543         case DE_VECTOR:
5544         case OF_VECTOR:
5545         case BR_VECTOR:
5546         case UD_VECTOR:
5547         case DF_VECTOR:
5548         case SS_VECTOR:
5549         case GP_VECTOR:
5550         case MF_VECTOR:
5551                 return true;
5552         break;
5553         }
5554         return false;
5555 }
5556
5557 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5558                                   int vec, u32 err_code)
5559 {
5560         /*
5561          * Instruction with address size override prefix opcode 0x67
5562          * Cause the #SS fault with 0 error code in VM86 mode.
5563          */
5564         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5565                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5566                         if (vcpu->arch.halt_request) {
5567                                 vcpu->arch.halt_request = 0;
5568                                 return kvm_vcpu_halt(vcpu);
5569                         }
5570                         return 1;
5571                 }
5572                 return 0;
5573         }
5574
5575         /*
5576          * Forward all other exceptions that are valid in real mode.
5577          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5578          *        the required debugging infrastructure rework.
5579          */
5580         kvm_queue_exception(vcpu, vec);
5581         return 1;
5582 }
5583
5584 /*
5585  * Trigger machine check on the host. We assume all the MSRs are already set up
5586  * by the CPU and that we still run on the same CPU as the MCE occurred on.
5587  * We pass a fake environment to the machine check handler because we want
5588  * the guest to be always treated like user space, no matter what context
5589  * it used internally.
5590  */
5591 static void kvm_machine_check(void)
5592 {
5593 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5594         struct pt_regs regs = {
5595                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5596                 .flags = X86_EFLAGS_IF,
5597         };
5598
5599         do_machine_check(&regs, 0);
5600 #endif
5601 }
5602
5603 static int handle_machine_check(struct kvm_vcpu *vcpu)
5604 {
5605         /* already handled by vcpu_run */
5606         return 1;
5607 }
5608
5609 static int handle_exception(struct kvm_vcpu *vcpu)
5610 {
5611         struct vcpu_vmx *vmx = to_vmx(vcpu);
5612         struct kvm_run *kvm_run = vcpu->run;
5613         u32 intr_info, ex_no, error_code;
5614         unsigned long cr2, rip, dr6;
5615         u32 vect_info;
5616         enum emulation_result er;
5617
5618         vect_info = vmx->idt_vectoring_info;
5619         intr_info = vmx->exit_intr_info;
5620
5621         if (is_machine_check(intr_info))
5622                 return handle_machine_check(vcpu);
5623
5624         if (is_nmi(intr_info))
5625                 return 1;  /* already handled by vmx_vcpu_run() */
5626
5627         if (is_invalid_opcode(intr_info)) {
5628                 if (is_guest_mode(vcpu)) {
5629                         kvm_queue_exception(vcpu, UD_VECTOR);
5630                         return 1;
5631                 }
5632                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5633                 if (er != EMULATE_DONE)
5634                         kvm_queue_exception(vcpu, UD_VECTOR);
5635                 return 1;
5636         }
5637
5638         error_code = 0;
5639         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5640                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5641
5642         /*
5643          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5644          * MMIO, it is better to report an internal error.
5645          * See the comments in vmx_handle_exit.
5646          */
5647         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5648             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5649                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5650                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5651                 vcpu->run->internal.ndata = 3;
5652                 vcpu->run->internal.data[0] = vect_info;
5653                 vcpu->run->internal.data[1] = intr_info;
5654                 vcpu->run->internal.data[2] = error_code;
5655                 return 0;
5656         }
5657
5658         if (is_page_fault(intr_info)) {
5659                 /* EPT won't cause page fault directly */
5660                 BUG_ON(enable_ept);
5661                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5662                 trace_kvm_page_fault(cr2, error_code);
5663
5664                 if (kvm_event_needs_reinjection(vcpu))
5665                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
5666                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5667         }
5668
5669         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5670
5671         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5672                 return handle_rmode_exception(vcpu, ex_no, error_code);
5673
5674         switch (ex_no) {
5675         case AC_VECTOR:
5676                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5677                 return 1;
5678         case DB_VECTOR:
5679                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5680                 if (!(vcpu->guest_debug &
5681                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5682                         vcpu->arch.dr6 &= ~15;
5683                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5684                         if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5685                                 skip_emulated_instruction(vcpu);
5686
5687                         kvm_queue_exception(vcpu, DB_VECTOR);
5688                         return 1;
5689                 }
5690                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5691                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5692                 /* fall through */
5693         case BP_VECTOR:
5694                 /*
5695                  * Update instruction length as we may reinject #BP from
5696                  * user space while in guest debugging mode. Reading it for
5697                  * #DB as well causes no harm, it is not used in that case.
5698                  */
5699                 vmx->vcpu.arch.event_exit_inst_len =
5700                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5701                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5702                 rip = kvm_rip_read(vcpu);
5703                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5704                 kvm_run->debug.arch.exception = ex_no;
5705                 break;
5706         default:
5707                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5708                 kvm_run->ex.exception = ex_no;
5709                 kvm_run->ex.error_code = error_code;
5710                 break;
5711         }
5712         return 0;
5713 }
5714
5715 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5716 {
5717         ++vcpu->stat.irq_exits;
5718         return 1;
5719 }
5720
5721 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5722 {
5723         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5724         return 0;
5725 }
5726
5727 static int handle_io(struct kvm_vcpu *vcpu)
5728 {
5729         unsigned long exit_qualification;
5730         int size, in, string, ret;
5731         unsigned port;
5732
5733         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5734         string = (exit_qualification & 16) != 0;
5735         in = (exit_qualification & 8) != 0;
5736
5737         ++vcpu->stat.io_exits;
5738
5739         if (string || in)
5740                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5741
5742         port = exit_qualification >> 16;
5743         size = (exit_qualification & 7) + 1;
5744
5745         ret = kvm_skip_emulated_instruction(vcpu);
5746
5747         /*
5748          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
5749          * KVM_EXIT_DEBUG here.
5750          */
5751         return kvm_fast_pio_out(vcpu, size, port) && ret;
5752 }
5753
5754 static void
5755 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5756 {
5757         /*
5758          * Patch in the VMCALL instruction:
5759          */
5760         hypercall[0] = 0x0f;
5761         hypercall[1] = 0x01;
5762         hypercall[2] = 0xc1;
5763 }
5764
5765 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5766 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5767 {
5768         if (is_guest_mode(vcpu)) {
5769                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5770                 unsigned long orig_val = val;
5771
5772                 /*
5773                  * We get here when L2 changed cr0 in a way that did not change
5774                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5775                  * but did change L0 shadowed bits. So we first calculate the
5776                  * effective cr0 value that L1 would like to write into the
5777                  * hardware. It consists of the L2-owned bits from the new
5778                  * value combined with the L1-owned bits from L1's guest_cr0.
5779                  */
5780                 val = (val & ~vmcs12->cr0_guest_host_mask) |
5781                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5782
5783                 if (!nested_guest_cr0_valid(vcpu, val))
5784                         return 1;
5785
5786                 if (kvm_set_cr0(vcpu, val))
5787                         return 1;
5788                 vmcs_writel(CR0_READ_SHADOW, orig_val);
5789                 return 0;
5790         } else {
5791                 if (to_vmx(vcpu)->nested.vmxon &&
5792                     !nested_host_cr0_valid(vcpu, val))
5793                         return 1;
5794
5795                 return kvm_set_cr0(vcpu, val);
5796         }
5797 }
5798
5799 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5800 {
5801         if (is_guest_mode(vcpu)) {
5802                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5803                 unsigned long orig_val = val;
5804
5805                 /* analogously to handle_set_cr0 */
5806                 val = (val & ~vmcs12->cr4_guest_host_mask) |
5807                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5808                 if (kvm_set_cr4(vcpu, val))
5809                         return 1;
5810                 vmcs_writel(CR4_READ_SHADOW, orig_val);
5811                 return 0;
5812         } else
5813                 return kvm_set_cr4(vcpu, val);
5814 }
5815
5816 static int handle_cr(struct kvm_vcpu *vcpu)
5817 {
5818         unsigned long exit_qualification, val;
5819         int cr;
5820         int reg;
5821         int err;
5822         int ret;
5823
5824         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5825         cr = exit_qualification & 15;
5826         reg = (exit_qualification >> 8) & 15;
5827         switch ((exit_qualification >> 4) & 3) {
5828         case 0: /* mov to cr */
5829                 val = kvm_register_readl(vcpu, reg);
5830                 trace_kvm_cr_write(cr, val);
5831                 switch (cr) {
5832                 case 0:
5833                         err = handle_set_cr0(vcpu, val);
5834                         return kvm_complete_insn_gp(vcpu, err);
5835                 case 3:
5836                         err = kvm_set_cr3(vcpu, val);
5837                         return kvm_complete_insn_gp(vcpu, err);
5838                 case 4:
5839                         err = handle_set_cr4(vcpu, val);
5840                         return kvm_complete_insn_gp(vcpu, err);
5841                 case 8: {
5842                                 u8 cr8_prev = kvm_get_cr8(vcpu);
5843                                 u8 cr8 = (u8)val;
5844                                 err = kvm_set_cr8(vcpu, cr8);
5845                                 ret = kvm_complete_insn_gp(vcpu, err);
5846                                 if (lapic_in_kernel(vcpu))
5847                                         return ret;
5848                                 if (cr8_prev <= cr8)
5849                                         return ret;
5850                                 /*
5851                                  * TODO: we might be squashing a
5852                                  * KVM_GUESTDBG_SINGLESTEP-triggered
5853                                  * KVM_EXIT_DEBUG here.
5854                                  */
5855                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5856                                 return 0;
5857                         }
5858                 }
5859                 break;
5860         case 2: /* clts */
5861                 WARN_ONCE(1, "Guest should always own CR0.TS");
5862                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5863                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5864                 return kvm_skip_emulated_instruction(vcpu);
5865         case 1: /*mov from cr*/
5866                 switch (cr) {
5867                 case 3:
5868                         val = kvm_read_cr3(vcpu);
5869                         kvm_register_write(vcpu, reg, val);
5870                         trace_kvm_cr_read(cr, val);
5871                         return kvm_skip_emulated_instruction(vcpu);
5872                 case 8:
5873                         val = kvm_get_cr8(vcpu);
5874                         kvm_register_write(vcpu, reg, val);
5875                         trace_kvm_cr_read(cr, val);
5876                         return kvm_skip_emulated_instruction(vcpu);
5877                 }
5878                 break;
5879         case 3: /* lmsw */
5880                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5881                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5882                 kvm_lmsw(vcpu, val);
5883
5884                 return kvm_skip_emulated_instruction(vcpu);
5885         default:
5886                 break;
5887         }
5888         vcpu->run->exit_reason = 0;
5889         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5890                (int)(exit_qualification >> 4) & 3, cr);
5891         return 0;
5892 }
5893
5894 static int handle_dr(struct kvm_vcpu *vcpu)
5895 {
5896         unsigned long exit_qualification;
5897         int dr, dr7, reg;
5898
5899         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5900         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5901
5902         /* First, if DR does not exist, trigger UD */
5903         if (!kvm_require_dr(vcpu, dr))
5904                 return 1;
5905
5906         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5907         if (!kvm_require_cpl(vcpu, 0))
5908                 return 1;
5909         dr7 = vmcs_readl(GUEST_DR7);
5910         if (dr7 & DR7_GD) {
5911                 /*
5912                  * As the vm-exit takes precedence over the debug trap, we
5913                  * need to emulate the latter, either for the host or the
5914                  * guest debugging itself.
5915                  */
5916                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5917                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5918                         vcpu->run->debug.arch.dr7 = dr7;
5919                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5920                         vcpu->run->debug.arch.exception = DB_VECTOR;
5921                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5922                         return 0;
5923                 } else {
5924                         vcpu->arch.dr6 &= ~15;
5925                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5926                         kvm_queue_exception(vcpu, DB_VECTOR);
5927                         return 1;
5928                 }
5929         }
5930
5931         if (vcpu->guest_debug == 0) {
5932                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5933                                 CPU_BASED_MOV_DR_EXITING);
5934
5935                 /*
5936                  * No more DR vmexits; force a reload of the debug registers
5937                  * and reenter on this instruction.  The next vmexit will
5938                  * retrieve the full state of the debug registers.
5939                  */
5940                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5941                 return 1;
5942         }
5943
5944         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5945         if (exit_qualification & TYPE_MOV_FROM_DR) {
5946                 unsigned long val;
5947
5948                 if (kvm_get_dr(vcpu, dr, &val))
5949                         return 1;
5950                 kvm_register_write(vcpu, reg, val);
5951         } else
5952                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5953                         return 1;
5954
5955         return kvm_skip_emulated_instruction(vcpu);
5956 }
5957
5958 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5959 {
5960         return vcpu->arch.dr6;
5961 }
5962
5963 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5964 {
5965 }
5966
5967 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5968 {
5969         get_debugreg(vcpu->arch.db[0], 0);
5970         get_debugreg(vcpu->arch.db[1], 1);
5971         get_debugreg(vcpu->arch.db[2], 2);
5972         get_debugreg(vcpu->arch.db[3], 3);
5973         get_debugreg(vcpu->arch.dr6, 6);
5974         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5975
5976         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5977         vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
5978 }
5979
5980 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5981 {
5982         vmcs_writel(GUEST_DR7, val);
5983 }
5984
5985 static int handle_cpuid(struct kvm_vcpu *vcpu)
5986 {
5987         return kvm_emulate_cpuid(vcpu);
5988 }
5989
5990 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5991 {
5992         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5993         struct msr_data msr_info;
5994
5995         msr_info.index = ecx;
5996         msr_info.host_initiated = false;
5997         if (vmx_get_msr(vcpu, &msr_info)) {
5998                 trace_kvm_msr_read_ex(ecx);
5999                 kvm_inject_gp(vcpu, 0);
6000                 return 1;
6001         }
6002
6003         trace_kvm_msr_read(ecx, msr_info.data);
6004
6005         /* FIXME: handling of bits 32:63 of rax, rdx */
6006         vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6007         vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6008         return kvm_skip_emulated_instruction(vcpu);
6009 }
6010
6011 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6012 {
6013         struct msr_data msr;
6014         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6015         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6016                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6017
6018         msr.data = data;
6019         msr.index = ecx;
6020         msr.host_initiated = false;
6021         if (kvm_set_msr(vcpu, &msr) != 0) {
6022                 trace_kvm_msr_write_ex(ecx, data);
6023                 kvm_inject_gp(vcpu, 0);
6024                 return 1;
6025         }
6026
6027         trace_kvm_msr_write(ecx, data);
6028         return kvm_skip_emulated_instruction(vcpu);
6029 }
6030
6031 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6032 {
6033         kvm_apic_update_ppr(vcpu);
6034         return 1;
6035 }
6036
6037 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6038 {
6039         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6040                         CPU_BASED_VIRTUAL_INTR_PENDING);
6041
6042         kvm_make_request(KVM_REQ_EVENT, vcpu);
6043
6044         ++vcpu->stat.irq_window_exits;
6045         return 1;
6046 }
6047
6048 static int handle_halt(struct kvm_vcpu *vcpu)
6049 {
6050         return kvm_emulate_halt(vcpu);
6051 }
6052
6053 static int handle_vmcall(struct kvm_vcpu *vcpu)
6054 {
6055         return kvm_emulate_hypercall(vcpu);
6056 }
6057
6058 static int handle_invd(struct kvm_vcpu *vcpu)
6059 {
6060         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6061 }
6062
6063 static int handle_invlpg(struct kvm_vcpu *vcpu)
6064 {
6065         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6066
6067         kvm_mmu_invlpg(vcpu, exit_qualification);
6068         return kvm_skip_emulated_instruction(vcpu);
6069 }
6070
6071 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6072 {
6073         int err;
6074
6075         err = kvm_rdpmc(vcpu);
6076         return kvm_complete_insn_gp(vcpu, err);
6077 }
6078
6079 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6080 {
6081         return kvm_emulate_wbinvd(vcpu);
6082 }
6083
6084 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6085 {
6086         u64 new_bv = kvm_read_edx_eax(vcpu);
6087         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6088
6089         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6090                 return kvm_skip_emulated_instruction(vcpu);
6091         return 1;
6092 }
6093
6094 static int handle_xsaves(struct kvm_vcpu *vcpu)
6095 {
6096         kvm_skip_emulated_instruction(vcpu);
6097         WARN(1, "this should never happen\n");
6098         return 1;
6099 }
6100
6101 static int handle_xrstors(struct kvm_vcpu *vcpu)
6102 {
6103         kvm_skip_emulated_instruction(vcpu);
6104         WARN(1, "this should never happen\n");
6105         return 1;
6106 }
6107
6108 static int handle_apic_access(struct kvm_vcpu *vcpu)
6109 {
6110         if (likely(fasteoi)) {
6111                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6112                 int access_type, offset;
6113
6114                 access_type = exit_qualification & APIC_ACCESS_TYPE;
6115                 offset = exit_qualification & APIC_ACCESS_OFFSET;
6116                 /*
6117                  * Sane guest uses MOV to write EOI, with written value
6118                  * not cared. So make a short-circuit here by avoiding
6119                  * heavy instruction emulation.
6120                  */
6121                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6122                     (offset == APIC_EOI)) {
6123                         kvm_lapic_set_eoi(vcpu);
6124                         return kvm_skip_emulated_instruction(vcpu);
6125                 }
6126         }
6127         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6128 }
6129
6130 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6131 {
6132         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6133         int vector = exit_qualification & 0xff;
6134
6135         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6136         kvm_apic_set_eoi_accelerated(vcpu, vector);
6137         return 1;
6138 }
6139
6140 static int handle_apic_write(struct kvm_vcpu *vcpu)
6141 {
6142         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6143         u32 offset = exit_qualification & 0xfff;
6144
6145         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6146         kvm_apic_write_nodecode(vcpu, offset);
6147         return 1;
6148 }
6149
6150 static int handle_task_switch(struct kvm_vcpu *vcpu)
6151 {
6152         struct vcpu_vmx *vmx = to_vmx(vcpu);
6153         unsigned long exit_qualification;
6154         bool has_error_code = false;
6155         u32 error_code = 0;
6156         u16 tss_selector;
6157         int reason, type, idt_v, idt_index;
6158
6159         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6160         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6161         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6162
6163         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6164
6165         reason = (u32)exit_qualification >> 30;
6166         if (reason == TASK_SWITCH_GATE && idt_v) {
6167                 switch (type) {
6168                 case INTR_TYPE_NMI_INTR:
6169                         vcpu->arch.nmi_injected = false;
6170                         vmx_set_nmi_mask(vcpu, true);
6171                         break;
6172                 case INTR_TYPE_EXT_INTR:
6173                 case INTR_TYPE_SOFT_INTR:
6174                         kvm_clear_interrupt_queue(vcpu);
6175                         break;
6176                 case INTR_TYPE_HARD_EXCEPTION:
6177                         if (vmx->idt_vectoring_info &
6178                             VECTORING_INFO_DELIVER_CODE_MASK) {
6179                                 has_error_code = true;
6180                                 error_code =
6181                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
6182                         }
6183                         /* fall through */
6184                 case INTR_TYPE_SOFT_EXCEPTION:
6185                         kvm_clear_exception_queue(vcpu);
6186                         break;
6187                 default:
6188                         break;
6189                 }
6190         }
6191         tss_selector = exit_qualification;
6192
6193         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6194                        type != INTR_TYPE_EXT_INTR &&
6195                        type != INTR_TYPE_NMI_INTR))
6196                 skip_emulated_instruction(vcpu);
6197
6198         if (kvm_task_switch(vcpu, tss_selector,
6199                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6200                             has_error_code, error_code) == EMULATE_FAIL) {
6201                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6202                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6203                 vcpu->run->internal.ndata = 0;
6204                 return 0;
6205         }
6206
6207         /*
6208          * TODO: What about debug traps on tss switch?
6209          *       Are we supposed to inject them and update dr6?
6210          */
6211
6212         return 1;
6213 }
6214
6215 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6216 {
6217         unsigned long exit_qualification;
6218         gpa_t gpa;
6219         u32 error_code;
6220
6221         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6222
6223         if (is_guest_mode(vcpu)
6224             && !(exit_qualification & EPT_VIOLATION_GVA_TRANSLATED)) {
6225                 /*
6226                  * Fix up exit_qualification according to whether guest
6227                  * page table accesses are reads or writes.
6228                  */
6229                 u64 eptp = nested_ept_get_cr3(vcpu);
6230                 if (!(eptp & VMX_EPT_AD_ENABLE_BIT))
6231                         exit_qualification &= ~EPT_VIOLATION_ACC_WRITE;
6232         }
6233
6234         /*
6235          * EPT violation happened while executing iret from NMI,
6236          * "blocked by NMI" bit has to be set before next VM entry.
6237          * There are errata that may cause this bit to not be set:
6238          * AAK134, BY25.
6239          */
6240         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6241                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6242                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6243
6244         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6245         trace_kvm_page_fault(gpa, exit_qualification);
6246
6247         /* Is it a read fault? */
6248         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
6249                      ? PFERR_USER_MASK : 0;
6250         /* Is it a write fault? */
6251         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
6252                       ? PFERR_WRITE_MASK : 0;
6253         /* Is it a fetch fault? */
6254         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
6255                       ? PFERR_FETCH_MASK : 0;
6256         /* ept page table entry is present? */
6257         error_code |= (exit_qualification &
6258                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
6259                         EPT_VIOLATION_EXECUTABLE))
6260                       ? PFERR_PRESENT_MASK : 0;
6261
6262         vcpu->arch.gpa_available = true;
6263         vcpu->arch.exit_qualification = exit_qualification;
6264
6265         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6266 }
6267
6268 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6269 {
6270         int ret;
6271         gpa_t gpa;
6272
6273         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6274         if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6275                 trace_kvm_fast_mmio(gpa);
6276                 return kvm_skip_emulated_instruction(vcpu);
6277         }
6278
6279         ret = handle_mmio_page_fault(vcpu, gpa, true);
6280         vcpu->arch.gpa_available = true;
6281         if (likely(ret == RET_MMIO_PF_EMULATE))
6282                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6283                                               EMULATE_DONE;
6284
6285         if (unlikely(ret == RET_MMIO_PF_INVALID))
6286                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6287
6288         if (unlikely(ret == RET_MMIO_PF_RETRY))
6289                 return 1;
6290
6291         /* It is the real ept misconfig */
6292         WARN_ON(1);
6293
6294         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6295         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6296
6297         return 0;
6298 }
6299
6300 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6301 {
6302         vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6303                         CPU_BASED_VIRTUAL_NMI_PENDING);
6304         ++vcpu->stat.nmi_window_exits;
6305         kvm_make_request(KVM_REQ_EVENT, vcpu);
6306
6307         return 1;
6308 }
6309
6310 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6311 {
6312         struct vcpu_vmx *vmx = to_vmx(vcpu);
6313         enum emulation_result err = EMULATE_DONE;
6314         int ret = 1;
6315         u32 cpu_exec_ctrl;
6316         bool intr_window_requested;
6317         unsigned count = 130;
6318
6319         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6320         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6321
6322         while (vmx->emulation_required && count-- != 0) {
6323                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6324                         return handle_interrupt_window(&vmx->vcpu);
6325
6326                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
6327                         return 1;
6328
6329                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6330
6331                 if (err == EMULATE_USER_EXIT) {
6332                         ++vcpu->stat.mmio_exits;
6333                         ret = 0;
6334                         goto out;
6335                 }
6336
6337                 if (err != EMULATE_DONE) {
6338                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6339                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6340                         vcpu->run->internal.ndata = 0;
6341                         return 0;
6342                 }
6343
6344                 if (vcpu->arch.halt_request) {
6345                         vcpu->arch.halt_request = 0;
6346                         ret = kvm_vcpu_halt(vcpu);
6347                         goto out;
6348                 }
6349
6350                 if (signal_pending(current))
6351                         goto out;
6352                 if (need_resched())
6353                         schedule();
6354         }
6355
6356 out:
6357         return ret;
6358 }
6359
6360 static int __grow_ple_window(int val)
6361 {
6362         if (ple_window_grow < 1)
6363                 return ple_window;
6364
6365         val = min(val, ple_window_actual_max);
6366
6367         if (ple_window_grow < ple_window)
6368                 val *= ple_window_grow;
6369         else
6370                 val += ple_window_grow;
6371
6372         return val;
6373 }
6374
6375 static int __shrink_ple_window(int val, int modifier, int minimum)
6376 {
6377         if (modifier < 1)
6378                 return ple_window;
6379
6380         if (modifier < ple_window)
6381                 val /= modifier;
6382         else
6383                 val -= modifier;
6384
6385         return max(val, minimum);
6386 }
6387
6388 static void grow_ple_window(struct kvm_vcpu *vcpu)
6389 {
6390         struct vcpu_vmx *vmx = to_vmx(vcpu);
6391         int old = vmx->ple_window;
6392
6393         vmx->ple_window = __grow_ple_window(old);
6394
6395         if (vmx->ple_window != old)
6396                 vmx->ple_window_dirty = true;
6397
6398         trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6399 }
6400
6401 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6402 {
6403         struct vcpu_vmx *vmx = to_vmx(vcpu);
6404         int old = vmx->ple_window;
6405
6406         vmx->ple_window = __shrink_ple_window(old,
6407                                               ple_window_shrink, ple_window);
6408
6409         if (vmx->ple_window != old)
6410                 vmx->ple_window_dirty = true;
6411
6412         trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6413 }
6414
6415 /*
6416  * ple_window_actual_max is computed to be one grow_ple_window() below
6417  * ple_window_max. (See __grow_ple_window for the reason.)
6418  * This prevents overflows, because ple_window_max is int.
6419  * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6420  * this process.
6421  * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6422  */
6423 static void update_ple_window_actual_max(void)
6424 {
6425         ple_window_actual_max =
6426                         __shrink_ple_window(max(ple_window_max, ple_window),
6427                                             ple_window_grow, INT_MIN);
6428 }
6429
6430 /*
6431  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6432  */
6433 static void wakeup_handler(void)
6434 {
6435         struct kvm_vcpu *vcpu;
6436         int cpu = smp_processor_id();
6437
6438         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6439         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6440                         blocked_vcpu_list) {
6441                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6442
6443                 if (pi_test_on(pi_desc) == 1)
6444                         kvm_vcpu_kick(vcpu);
6445         }
6446         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6447 }
6448
6449 void vmx_enable_tdp(void)
6450 {
6451         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6452                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
6453                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
6454                 0ull, VMX_EPT_EXECUTABLE_MASK,
6455                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
6456                 enable_ept_ad_bits ? 0ull : VMX_EPT_RWX_MASK);
6457
6458         ept_set_mmio_spte_mask();
6459         kvm_enable_tdp();
6460 }
6461
6462 static __init int hardware_setup(void)
6463 {
6464         int r = -ENOMEM, i, msr;
6465
6466         rdmsrl_safe(MSR_EFER, &host_efer);
6467
6468         for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6469                 kvm_define_shared_msr(i, vmx_msr_index[i]);
6470
6471         for (i = 0; i < VMX_BITMAP_NR; i++) {
6472                 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
6473                 if (!vmx_bitmap[i])
6474                         goto out;
6475         }
6476
6477         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6478         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6479         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6480
6481         /*
6482          * Allow direct access to the PC debug port (it is often used for I/O
6483          * delays, but the vmexits simply slow things down).
6484          */
6485         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6486         clear_bit(0x80, vmx_io_bitmap_a);
6487
6488         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6489
6490         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6491         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6492
6493         if (setup_vmcs_config(&vmcs_config) < 0) {
6494                 r = -EIO;
6495                 goto out;
6496         }
6497
6498         if (boot_cpu_has(X86_FEATURE_NX))
6499                 kvm_enable_efer_bits(EFER_NX);
6500
6501         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6502                 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6503                 enable_vpid = 0;
6504
6505         if (!cpu_has_vmx_shadow_vmcs())
6506                 enable_shadow_vmcs = 0;
6507         if (enable_shadow_vmcs)
6508                 init_vmcs_shadow_fields();
6509
6510         if (!cpu_has_vmx_ept() ||
6511             !cpu_has_vmx_ept_4levels()) {
6512                 enable_ept = 0;
6513                 enable_unrestricted_guest = 0;
6514                 enable_ept_ad_bits = 0;
6515         }
6516
6517         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
6518                 enable_ept_ad_bits = 0;
6519
6520         if (!cpu_has_vmx_unrestricted_guest())
6521                 enable_unrestricted_guest = 0;
6522
6523         if (!cpu_has_vmx_flexpriority())
6524                 flexpriority_enabled = 0;
6525
6526         /*
6527          * set_apic_access_page_addr() is used to reload apic access
6528          * page upon invalidation.  No need to do anything if not
6529          * using the APIC_ACCESS_ADDR VMCS field.
6530          */
6531         if (!flexpriority_enabled)
6532                 kvm_x86_ops->set_apic_access_page_addr = NULL;
6533
6534         if (!cpu_has_vmx_tpr_shadow())
6535                 kvm_x86_ops->update_cr8_intercept = NULL;
6536
6537         if (enable_ept && !cpu_has_vmx_ept_2m_page())
6538                 kvm_disable_largepages();
6539
6540         if (!cpu_has_vmx_ple())
6541                 ple_gap = 0;
6542
6543         if (!cpu_has_vmx_apicv()) {
6544                 enable_apicv = 0;
6545                 kvm_x86_ops->sync_pir_to_irr = NULL;
6546         }
6547
6548         if (cpu_has_vmx_tsc_scaling()) {
6549                 kvm_has_tsc_control = true;
6550                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6551                 kvm_tsc_scaling_ratio_frac_bits = 48;
6552         }
6553
6554         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6555         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6556         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6557         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6558         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6559         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6560         vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6561
6562         memcpy(vmx_msr_bitmap_legacy_x2apic_apicv,
6563                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6564         memcpy(vmx_msr_bitmap_longmode_x2apic_apicv,
6565                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6566         memcpy(vmx_msr_bitmap_legacy_x2apic,
6567                         vmx_msr_bitmap_legacy, PAGE_SIZE);
6568         memcpy(vmx_msr_bitmap_longmode_x2apic,
6569                         vmx_msr_bitmap_longmode, PAGE_SIZE);
6570
6571         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6572
6573         for (msr = 0x800; msr <= 0x8ff; msr++) {
6574                 if (msr == 0x839 /* TMCCT */)
6575                         continue;
6576                 vmx_disable_intercept_msr_x2apic(msr, MSR_TYPE_R, true);
6577         }
6578
6579         /*
6580          * TPR reads and writes can be virtualized even if virtual interrupt
6581          * delivery is not in use.
6582          */
6583         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_W, true);
6584         vmx_disable_intercept_msr_x2apic(0x808, MSR_TYPE_R | MSR_TYPE_W, false);
6585
6586         /* EOI */
6587         vmx_disable_intercept_msr_x2apic(0x80b, MSR_TYPE_W, true);
6588         /* SELF-IPI */
6589         vmx_disable_intercept_msr_x2apic(0x83f, MSR_TYPE_W, true);
6590
6591         if (enable_ept)
6592                 vmx_enable_tdp();
6593         else
6594                 kvm_disable_tdp();
6595
6596         update_ple_window_actual_max();
6597
6598         /*
6599          * Only enable PML when hardware supports PML feature, and both EPT
6600          * and EPT A/D bit features are enabled -- PML depends on them to work.
6601          */
6602         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6603                 enable_pml = 0;
6604
6605         if (!enable_pml) {
6606                 kvm_x86_ops->slot_enable_log_dirty = NULL;
6607                 kvm_x86_ops->slot_disable_log_dirty = NULL;
6608                 kvm_x86_ops->flush_log_dirty = NULL;
6609                 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6610         }
6611
6612         if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6613                 u64 vmx_msr;
6614
6615                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6616                 cpu_preemption_timer_multi =
6617                          vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6618         } else {
6619                 kvm_x86_ops->set_hv_timer = NULL;
6620                 kvm_x86_ops->cancel_hv_timer = NULL;
6621         }
6622
6623         kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6624
6625         kvm_mce_cap_supported |= MCG_LMCE_P;
6626
6627         return alloc_kvm_area();
6628
6629 out:
6630         for (i = 0; i < VMX_BITMAP_NR; i++)
6631                 free_page((unsigned long)vmx_bitmap[i]);
6632
6633     return r;
6634 }
6635
6636 static __exit void hardware_unsetup(void)
6637 {
6638         int i;
6639
6640         for (i = 0; i < VMX_BITMAP_NR; i++)
6641                 free_page((unsigned long)vmx_bitmap[i]);
6642
6643         free_kvm_area();
6644 }
6645
6646 /*
6647  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6648  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6649  */
6650 static int handle_pause(struct kvm_vcpu *vcpu)
6651 {
6652         if (ple_gap)
6653                 grow_ple_window(vcpu);
6654
6655         kvm_vcpu_on_spin(vcpu);
6656         return kvm_skip_emulated_instruction(vcpu);
6657 }
6658
6659 static int handle_nop(struct kvm_vcpu *vcpu)
6660 {
6661         return kvm_skip_emulated_instruction(vcpu);
6662 }
6663
6664 static int handle_mwait(struct kvm_vcpu *vcpu)
6665 {
6666         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6667         return handle_nop(vcpu);
6668 }
6669
6670 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6671 {
6672         return 1;
6673 }
6674
6675 static int handle_monitor(struct kvm_vcpu *vcpu)
6676 {
6677         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6678         return handle_nop(vcpu);
6679 }
6680
6681 /*
6682  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6683  * We could reuse a single VMCS for all the L2 guests, but we also want the
6684  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6685  * allows keeping them loaded on the processor, and in the future will allow
6686  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6687  * every entry if they never change.
6688  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6689  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6690  *
6691  * The following functions allocate and free a vmcs02 in this pool.
6692  */
6693
6694 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6695 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6696 {
6697         struct vmcs02_list *item;
6698         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6699                 if (item->vmptr == vmx->nested.current_vmptr) {
6700                         list_move(&item->list, &vmx->nested.vmcs02_pool);
6701                         return &item->vmcs02;
6702                 }
6703
6704         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6705                 /* Recycle the least recently used VMCS. */
6706                 item = list_last_entry(&vmx->nested.vmcs02_pool,
6707                                        struct vmcs02_list, list);
6708                 item->vmptr = vmx->nested.current_vmptr;
6709                 list_move(&item->list, &vmx->nested.vmcs02_pool);
6710                 return &item->vmcs02;
6711         }
6712
6713         /* Create a new VMCS */
6714         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6715         if (!item)
6716                 return NULL;
6717         item->vmcs02.vmcs = alloc_vmcs();
6718         item->vmcs02.shadow_vmcs = NULL;
6719         if (!item->vmcs02.vmcs) {
6720                 kfree(item);
6721                 return NULL;
6722         }
6723         loaded_vmcs_init(&item->vmcs02);
6724         item->vmptr = vmx->nested.current_vmptr;
6725         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6726         vmx->nested.vmcs02_num++;
6727         return &item->vmcs02;
6728 }
6729
6730 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6731 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6732 {
6733         struct vmcs02_list *item;
6734         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6735                 if (item->vmptr == vmptr) {
6736                         free_loaded_vmcs(&item->vmcs02);
6737                         list_del(&item->list);
6738                         kfree(item);
6739                         vmx->nested.vmcs02_num--;
6740                         return;
6741                 }
6742 }
6743
6744 /*
6745  * Free all VMCSs saved for this vcpu, except the one pointed by
6746  * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6747  * must be &vmx->vmcs01.
6748  */
6749 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6750 {
6751         struct vmcs02_list *item, *n;
6752
6753         WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6754         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6755                 /*
6756                  * Something will leak if the above WARN triggers.  Better than
6757                  * a use-after-free.
6758                  */
6759                 if (vmx->loaded_vmcs == &item->vmcs02)
6760                         continue;
6761
6762                 free_loaded_vmcs(&item->vmcs02);
6763                 list_del(&item->list);
6764                 kfree(item);
6765                 vmx->nested.vmcs02_num--;
6766         }
6767 }
6768
6769 /*
6770  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6771  * set the success or error code of an emulated VMX instruction, as specified
6772  * by Vol 2B, VMX Instruction Reference, "Conventions".
6773  */
6774 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6775 {
6776         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6777                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6778                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6779 }
6780
6781 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6782 {
6783         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6784                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6785                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6786                         | X86_EFLAGS_CF);
6787 }
6788
6789 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6790                                         u32 vm_instruction_error)
6791 {
6792         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6793                 /*
6794                  * failValid writes the error number to the current VMCS, which
6795                  * can't be done there isn't a current VMCS.
6796                  */
6797                 nested_vmx_failInvalid(vcpu);
6798                 return;
6799         }
6800         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6801                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6802                             X86_EFLAGS_SF | X86_EFLAGS_OF))
6803                         | X86_EFLAGS_ZF);
6804         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6805         /*
6806          * We don't need to force a shadow sync because
6807          * VM_INSTRUCTION_ERROR is not shadowed
6808          */
6809 }
6810
6811 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6812 {
6813         /* TODO: not to reset guest simply here. */
6814         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6815         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6816 }
6817
6818 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6819 {
6820         struct vcpu_vmx *vmx =
6821                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6822
6823         vmx->nested.preemption_timer_expired = true;
6824         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6825         kvm_vcpu_kick(&vmx->vcpu);
6826
6827         return HRTIMER_NORESTART;
6828 }
6829
6830 /*
6831  * Decode the memory-address operand of a vmx instruction, as recorded on an
6832  * exit caused by such an instruction (run by a guest hypervisor).
6833  * On success, returns 0. When the operand is invalid, returns 1 and throws
6834  * #UD or #GP.
6835  */
6836 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6837                                  unsigned long exit_qualification,
6838                                  u32 vmx_instruction_info, bool wr, gva_t *ret)
6839 {
6840         gva_t off;
6841         bool exn;
6842         struct kvm_segment s;
6843
6844         /*
6845          * According to Vol. 3B, "Information for VM Exits Due to Instruction
6846          * Execution", on an exit, vmx_instruction_info holds most of the
6847          * addressing components of the operand. Only the displacement part
6848          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6849          * For how an actual address is calculated from all these components,
6850          * refer to Vol. 1, "Operand Addressing".
6851          */
6852         int  scaling = vmx_instruction_info & 3;
6853         int  addr_size = (vmx_instruction_info >> 7) & 7;
6854         bool is_reg = vmx_instruction_info & (1u << 10);
6855         int  seg_reg = (vmx_instruction_info >> 15) & 7;
6856         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6857         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6858         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6859         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6860
6861         if (is_reg) {
6862                 kvm_queue_exception(vcpu, UD_VECTOR);
6863                 return 1;
6864         }
6865
6866         /* Addr = segment_base + offset */
6867         /* offset = base + [index * scale] + displacement */
6868         off = exit_qualification; /* holds the displacement */
6869         if (base_is_valid)
6870                 off += kvm_register_read(vcpu, base_reg);
6871         if (index_is_valid)
6872                 off += kvm_register_read(vcpu, index_reg)<<scaling;
6873         vmx_get_segment(vcpu, &s, seg_reg);
6874         *ret = s.base + off;
6875
6876         if (addr_size == 1) /* 32 bit */
6877                 *ret &= 0xffffffff;
6878
6879         /* Checks for #GP/#SS exceptions. */
6880         exn = false;
6881         if (is_long_mode(vcpu)) {
6882                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6883                  * non-canonical form. This is the only check on the memory
6884                  * destination for long mode!
6885                  */
6886                 exn = is_noncanonical_address(*ret);
6887         } else if (is_protmode(vcpu)) {
6888                 /* Protected mode: apply checks for segment validity in the
6889                  * following order:
6890                  * - segment type check (#GP(0) may be thrown)
6891                  * - usability check (#GP(0)/#SS(0))
6892                  * - limit check (#GP(0)/#SS(0))
6893                  */
6894                 if (wr)
6895                         /* #GP(0) if the destination operand is located in a
6896                          * read-only data segment or any code segment.
6897                          */
6898                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
6899                 else
6900                         /* #GP(0) if the source operand is located in an
6901                          * execute-only code segment
6902                          */
6903                         exn = ((s.type & 0xa) == 8);
6904                 if (exn) {
6905                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6906                         return 1;
6907                 }
6908                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6909                  */
6910                 exn = (s.unusable != 0);
6911                 /* Protected mode: #GP(0)/#SS(0) if the memory
6912                  * operand is outside the segment limit.
6913                  */
6914                 exn = exn || (off + sizeof(u64) > s.limit);
6915         }
6916         if (exn) {
6917                 kvm_queue_exception_e(vcpu,
6918                                       seg_reg == VCPU_SREG_SS ?
6919                                                 SS_VECTOR : GP_VECTOR,
6920                                       0);
6921                 return 1;
6922         }
6923
6924         return 0;
6925 }
6926
6927 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
6928 {
6929         gva_t gva;
6930         struct x86_exception e;
6931
6932         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6933                         vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6934                 return 1;
6935
6936         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
6937                                 sizeof(*vmpointer), &e)) {
6938                 kvm_inject_page_fault(vcpu, &e);
6939                 return 1;
6940         }
6941
6942         return 0;
6943 }
6944
6945 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
6946 {
6947         struct vcpu_vmx *vmx = to_vmx(vcpu);
6948         struct vmcs *shadow_vmcs;
6949
6950         if (cpu_has_vmx_msr_bitmap()) {
6951                 vmx->nested.msr_bitmap =
6952                                 (unsigned long *)__get_free_page(GFP_KERNEL);
6953                 if (!vmx->nested.msr_bitmap)
6954                         goto out_msr_bitmap;
6955         }
6956
6957         vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
6958         if (!vmx->nested.cached_vmcs12)
6959                 goto out_cached_vmcs12;
6960
6961         if (enable_shadow_vmcs) {
6962                 shadow_vmcs = alloc_vmcs();
6963                 if (!shadow_vmcs)
6964                         goto out_shadow_vmcs;
6965                 /* mark vmcs as shadow */
6966                 shadow_vmcs->revision_id |= (1u << 31);
6967                 /* init shadow vmcs */
6968                 vmcs_clear(shadow_vmcs);
6969                 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
6970         }
6971
6972         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6973         vmx->nested.vmcs02_num = 0;
6974
6975         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6976                      HRTIMER_MODE_REL_PINNED);
6977         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6978
6979         vmx->nested.vmxon = true;
6980         return 0;
6981
6982 out_shadow_vmcs:
6983         kfree(vmx->nested.cached_vmcs12);
6984
6985 out_cached_vmcs12:
6986         free_page((unsigned long)vmx->nested.msr_bitmap);
6987
6988 out_msr_bitmap:
6989         return -ENOMEM;
6990 }
6991
6992 /*
6993  * Emulate the VMXON instruction.
6994  * Currently, we just remember that VMX is active, and do not save or even
6995  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6996  * do not currently need to store anything in that guest-allocated memory
6997  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6998  * argument is different from the VMXON pointer (which the spec says they do).
6999  */
7000 static int handle_vmon(struct kvm_vcpu *vcpu)
7001 {
7002         int ret;
7003         gpa_t vmptr;
7004         struct page *page;
7005         struct vcpu_vmx *vmx = to_vmx(vcpu);
7006         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7007                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7008
7009         /*
7010          * The Intel VMX Instruction Reference lists a bunch of bits that are
7011          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7012          * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7013          * Otherwise, we should fail with #UD.  But most faulting conditions
7014          * have already been checked by hardware, prior to the VM-exit for
7015          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
7016          * that bit set to 1 in non-root mode.
7017          */
7018         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
7019                 kvm_queue_exception(vcpu, UD_VECTOR);
7020                 return 1;
7021         }
7022
7023         if (vmx->nested.vmxon) {
7024                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7025                 return kvm_skip_emulated_instruction(vcpu);
7026         }
7027
7028         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7029                         != VMXON_NEEDED_FEATURES) {
7030                 kvm_inject_gp(vcpu, 0);
7031                 return 1;
7032         }
7033
7034         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7035                 return 1;
7036
7037         /*
7038          * SDM 3: 24.11.5
7039          * The first 4 bytes of VMXON region contain the supported
7040          * VMCS revision identifier
7041          *
7042          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7043          * which replaces physical address width with 32
7044          */
7045         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7046                 nested_vmx_failInvalid(vcpu);
7047                 return kvm_skip_emulated_instruction(vcpu);
7048         }
7049
7050         page = nested_get_page(vcpu, vmptr);
7051         if (page == NULL) {
7052                 nested_vmx_failInvalid(vcpu);
7053                 return kvm_skip_emulated_instruction(vcpu);
7054         }
7055         if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7056                 kunmap(page);
7057                 nested_release_page_clean(page);
7058                 nested_vmx_failInvalid(vcpu);
7059                 return kvm_skip_emulated_instruction(vcpu);
7060         }
7061         kunmap(page);
7062         nested_release_page_clean(page);
7063
7064         vmx->nested.vmxon_ptr = vmptr;
7065         ret = enter_vmx_operation(vcpu);
7066         if (ret)
7067                 return ret;
7068
7069         nested_vmx_succeed(vcpu);
7070         return kvm_skip_emulated_instruction(vcpu);
7071 }
7072
7073 /*
7074  * Intel's VMX Instruction Reference specifies a common set of prerequisites
7075  * for running VMX instructions (except VMXON, whose prerequisites are
7076  * slightly different). It also specifies what exception to inject otherwise.
7077  * Note that many of these exceptions have priority over VM exits, so they
7078  * don't have to be checked again here.
7079  */
7080 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7081 {
7082         if (!to_vmx(vcpu)->nested.vmxon) {
7083                 kvm_queue_exception(vcpu, UD_VECTOR);
7084                 return 0;
7085         }
7086         return 1;
7087 }
7088
7089 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7090 {
7091         if (vmx->nested.current_vmptr == -1ull)
7092                 return;
7093
7094         /* current_vmptr and current_vmcs12 are always set/reset together */
7095         if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7096                 return;
7097
7098         if (enable_shadow_vmcs) {
7099                 /* copy to memory all shadowed fields in case
7100                    they were modified */
7101                 copy_shadow_to_vmcs12(vmx);
7102                 vmx->nested.sync_shadow_vmcs = false;
7103                 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7104                                 SECONDARY_EXEC_SHADOW_VMCS);
7105                 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7106         }
7107         vmx->nested.posted_intr_nv = -1;
7108
7109         /* Flush VMCS12 to guest memory */
7110         memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7111                VMCS12_SIZE);
7112
7113         kunmap(vmx->nested.current_vmcs12_page);
7114         nested_release_page(vmx->nested.current_vmcs12_page);
7115         vmx->nested.current_vmptr = -1ull;
7116         vmx->nested.current_vmcs12 = NULL;
7117 }
7118
7119 /*
7120  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7121  * just stops using VMX.
7122  */
7123 static void free_nested(struct vcpu_vmx *vmx)
7124 {
7125         if (!vmx->nested.vmxon)
7126                 return;
7127
7128         vmx->nested.vmxon = false;
7129         free_vpid(vmx->nested.vpid02);
7130         nested_release_vmcs12(vmx);
7131         if (vmx->nested.msr_bitmap) {
7132                 free_page((unsigned long)vmx->nested.msr_bitmap);
7133                 vmx->nested.msr_bitmap = NULL;
7134         }
7135         if (enable_shadow_vmcs) {
7136                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7137                 free_vmcs(vmx->vmcs01.shadow_vmcs);
7138                 vmx->vmcs01.shadow_vmcs = NULL;
7139         }
7140         kfree(vmx->nested.cached_vmcs12);
7141         /* Unpin physical memory we referred to in current vmcs02 */
7142         if (vmx->nested.apic_access_page) {
7143                 nested_release_page(vmx->nested.apic_access_page);
7144                 vmx->nested.apic_access_page = NULL;
7145         }
7146         if (vmx->nested.virtual_apic_page) {
7147                 nested_release_page(vmx->nested.virtual_apic_page);
7148                 vmx->nested.virtual_apic_page = NULL;
7149         }
7150         if (vmx->nested.pi_desc_page) {
7151                 kunmap(vmx->nested.pi_desc_page);
7152                 nested_release_page(vmx->nested.pi_desc_page);
7153                 vmx->nested.pi_desc_page = NULL;
7154                 vmx->nested.pi_desc = NULL;
7155         }
7156
7157         nested_free_all_saved_vmcss(vmx);
7158 }
7159
7160 /* Emulate the VMXOFF instruction */
7161 static int handle_vmoff(struct kvm_vcpu *vcpu)
7162 {
7163         if (!nested_vmx_check_permission(vcpu))
7164                 return 1;
7165         free_nested(to_vmx(vcpu));
7166         nested_vmx_succeed(vcpu);
7167         return kvm_skip_emulated_instruction(vcpu);
7168 }
7169
7170 /* Emulate the VMCLEAR instruction */
7171 static int handle_vmclear(struct kvm_vcpu *vcpu)
7172 {
7173         struct vcpu_vmx *vmx = to_vmx(vcpu);
7174         u32 zero = 0;
7175         gpa_t vmptr;
7176
7177         if (!nested_vmx_check_permission(vcpu))
7178                 return 1;
7179
7180         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7181                 return 1;
7182
7183         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7184                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7185                 return kvm_skip_emulated_instruction(vcpu);
7186         }
7187
7188         if (vmptr == vmx->nested.vmxon_ptr) {
7189                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7190                 return kvm_skip_emulated_instruction(vcpu);
7191         }
7192
7193         if (vmptr == vmx->nested.current_vmptr)
7194                 nested_release_vmcs12(vmx);
7195
7196         kvm_vcpu_write_guest(vcpu,
7197                         vmptr + offsetof(struct vmcs12, launch_state),
7198                         &zero, sizeof(zero));
7199
7200         nested_free_vmcs02(vmx, vmptr);
7201
7202         nested_vmx_succeed(vcpu);
7203         return kvm_skip_emulated_instruction(vcpu);
7204 }
7205
7206 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7207
7208 /* Emulate the VMLAUNCH instruction */
7209 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7210 {
7211         return nested_vmx_run(vcpu, true);
7212 }
7213
7214 /* Emulate the VMRESUME instruction */
7215 static int handle_vmresume(struct kvm_vcpu *vcpu)
7216 {
7217
7218         return nested_vmx_run(vcpu, false);
7219 }
7220
7221 enum vmcs_field_type {
7222         VMCS_FIELD_TYPE_U16 = 0,
7223         VMCS_FIELD_TYPE_U64 = 1,
7224         VMCS_FIELD_TYPE_U32 = 2,
7225         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7226 };
7227
7228 static inline int vmcs_field_type(unsigned long field)
7229 {
7230         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
7231                 return VMCS_FIELD_TYPE_U32;
7232         return (field >> 13) & 0x3 ;
7233 }
7234
7235 static inline int vmcs_field_readonly(unsigned long field)
7236 {
7237         return (((field >> 10) & 0x3) == 1);
7238 }
7239
7240 /*
7241  * Read a vmcs12 field. Since these can have varying lengths and we return
7242  * one type, we chose the biggest type (u64) and zero-extend the return value
7243  * to that size. Note that the caller, handle_vmread, might need to use only
7244  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7245  * 64-bit fields are to be returned).
7246  */
7247 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7248                                   unsigned long field, u64 *ret)
7249 {
7250         short offset = vmcs_field_to_offset(field);
7251         char *p;
7252
7253         if (offset < 0)
7254                 return offset;
7255
7256         p = ((char *)(get_vmcs12(vcpu))) + offset;
7257
7258         switch (vmcs_field_type(field)) {
7259         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7260                 *ret = *((natural_width *)p);
7261                 return 0;
7262         case VMCS_FIELD_TYPE_U16:
7263                 *ret = *((u16 *)p);
7264                 return 0;
7265         case VMCS_FIELD_TYPE_U32:
7266                 *ret = *((u32 *)p);
7267                 return 0;
7268         case VMCS_FIELD_TYPE_U64:
7269                 *ret = *((u64 *)p);
7270                 return 0;
7271         default:
7272                 WARN_ON(1);
7273                 return -ENOENT;
7274         }
7275 }
7276
7277
7278 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7279                                    unsigned long field, u64 field_value){
7280         short offset = vmcs_field_to_offset(field);
7281         char *p = ((char *) get_vmcs12(vcpu)) + offset;
7282         if (offset < 0)
7283                 return offset;
7284
7285         switch (vmcs_field_type(field)) {
7286         case VMCS_FIELD_TYPE_U16:
7287                 *(u16 *)p = field_value;
7288                 return 0;
7289         case VMCS_FIELD_TYPE_U32:
7290                 *(u32 *)p = field_value;
7291                 return 0;
7292         case VMCS_FIELD_TYPE_U64:
7293                 *(u64 *)p = field_value;
7294                 return 0;
7295         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7296                 *(natural_width *)p = field_value;
7297                 return 0;
7298         default:
7299                 WARN_ON(1);
7300                 return -ENOENT;
7301         }
7302
7303 }
7304
7305 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7306 {
7307         int i;
7308         unsigned long field;
7309         u64 field_value;
7310         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7311         const unsigned long *fields = shadow_read_write_fields;
7312         const int num_fields = max_shadow_read_write_fields;
7313
7314         preempt_disable();
7315
7316         vmcs_load(shadow_vmcs);
7317
7318         for (i = 0; i < num_fields; i++) {
7319                 field = fields[i];
7320                 switch (vmcs_field_type(field)) {
7321                 case VMCS_FIELD_TYPE_U16:
7322                         field_value = vmcs_read16(field);
7323                         break;
7324                 case VMCS_FIELD_TYPE_U32:
7325                         field_value = vmcs_read32(field);
7326                         break;
7327                 case VMCS_FIELD_TYPE_U64:
7328                         field_value = vmcs_read64(field);
7329                         break;
7330                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7331                         field_value = vmcs_readl(field);
7332                         break;
7333                 default:
7334                         WARN_ON(1);
7335                         continue;
7336                 }
7337                 vmcs12_write_any(&vmx->vcpu, field, field_value);
7338         }
7339
7340         vmcs_clear(shadow_vmcs);
7341         vmcs_load(vmx->loaded_vmcs->vmcs);
7342
7343         preempt_enable();
7344 }
7345
7346 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7347 {
7348         const unsigned long *fields[] = {
7349                 shadow_read_write_fields,
7350                 shadow_read_only_fields
7351         };
7352         const int max_fields[] = {
7353                 max_shadow_read_write_fields,
7354                 max_shadow_read_only_fields
7355         };
7356         int i, q;
7357         unsigned long field;
7358         u64 field_value = 0;
7359         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7360
7361         vmcs_load(shadow_vmcs);
7362
7363         for (q = 0; q < ARRAY_SIZE(fields); q++) {
7364                 for (i = 0; i < max_fields[q]; i++) {
7365                         field = fields[q][i];
7366                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
7367
7368                         switch (vmcs_field_type(field)) {
7369                         case VMCS_FIELD_TYPE_U16:
7370                                 vmcs_write16(field, (u16)field_value);
7371                                 break;
7372                         case VMCS_FIELD_TYPE_U32:
7373                                 vmcs_write32(field, (u32)field_value);
7374                                 break;
7375                         case VMCS_FIELD_TYPE_U64:
7376                                 vmcs_write64(field, (u64)field_value);
7377                                 break;
7378                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7379                                 vmcs_writel(field, (long)field_value);
7380                                 break;
7381                         default:
7382                                 WARN_ON(1);
7383                                 break;
7384                         }
7385                 }
7386         }
7387
7388         vmcs_clear(shadow_vmcs);
7389         vmcs_load(vmx->loaded_vmcs->vmcs);
7390 }
7391
7392 /*
7393  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7394  * used before) all generate the same failure when it is missing.
7395  */
7396 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7397 {
7398         struct vcpu_vmx *vmx = to_vmx(vcpu);
7399         if (vmx->nested.current_vmptr == -1ull) {
7400                 nested_vmx_failInvalid(vcpu);
7401                 return 0;
7402         }
7403         return 1;
7404 }
7405
7406 static int handle_vmread(struct kvm_vcpu *vcpu)
7407 {
7408         unsigned long field;
7409         u64 field_value;
7410         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7411         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7412         gva_t gva = 0;
7413
7414         if (!nested_vmx_check_permission(vcpu))
7415                 return 1;
7416
7417         if (!nested_vmx_check_vmcs12(vcpu))
7418                 return kvm_skip_emulated_instruction(vcpu);
7419
7420         /* Decode instruction info and find the field to read */
7421         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7422         /* Read the field, zero-extended to a u64 field_value */
7423         if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7424                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7425                 return kvm_skip_emulated_instruction(vcpu);
7426         }
7427         /*
7428          * Now copy part of this value to register or memory, as requested.
7429          * Note that the number of bits actually copied is 32 or 64 depending
7430          * on the guest's mode (32 or 64 bit), not on the given field's length.
7431          */
7432         if (vmx_instruction_info & (1u << 10)) {
7433                 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7434                         field_value);
7435         } else {
7436                 if (get_vmx_mem_address(vcpu, exit_qualification,
7437                                 vmx_instruction_info, true, &gva))
7438                         return 1;
7439                 /* _system ok, as hardware has verified cpl=0 */
7440                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7441                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7442         }
7443
7444         nested_vmx_succeed(vcpu);
7445         return kvm_skip_emulated_instruction(vcpu);
7446 }
7447
7448
7449 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7450 {
7451         unsigned long field;
7452         gva_t gva;
7453         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7454         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7455         /* The value to write might be 32 or 64 bits, depending on L1's long
7456          * mode, and eventually we need to write that into a field of several
7457          * possible lengths. The code below first zero-extends the value to 64
7458          * bit (field_value), and then copies only the appropriate number of
7459          * bits into the vmcs12 field.
7460          */
7461         u64 field_value = 0;
7462         struct x86_exception e;
7463
7464         if (!nested_vmx_check_permission(vcpu))
7465                 return 1;
7466
7467         if (!nested_vmx_check_vmcs12(vcpu))
7468                 return kvm_skip_emulated_instruction(vcpu);
7469
7470         if (vmx_instruction_info & (1u << 10))
7471                 field_value = kvm_register_readl(vcpu,
7472                         (((vmx_instruction_info) >> 3) & 0xf));
7473         else {
7474                 if (get_vmx_mem_address(vcpu, exit_qualification,
7475                                 vmx_instruction_info, false, &gva))
7476                         return 1;
7477                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7478                            &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7479                         kvm_inject_page_fault(vcpu, &e);
7480                         return 1;
7481                 }
7482         }
7483
7484
7485         field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7486         if (vmcs_field_readonly(field)) {
7487                 nested_vmx_failValid(vcpu,
7488                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7489                 return kvm_skip_emulated_instruction(vcpu);
7490         }
7491
7492         if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7493                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7494                 return kvm_skip_emulated_instruction(vcpu);
7495         }
7496
7497         nested_vmx_succeed(vcpu);
7498         return kvm_skip_emulated_instruction(vcpu);
7499 }
7500
7501 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
7502 {
7503         vmx->nested.current_vmptr = vmptr;
7504         if (enable_shadow_vmcs) {
7505                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7506                               SECONDARY_EXEC_SHADOW_VMCS);
7507                 vmcs_write64(VMCS_LINK_POINTER,
7508                              __pa(vmx->vmcs01.shadow_vmcs));
7509                 vmx->nested.sync_shadow_vmcs = true;
7510         }
7511 }
7512
7513 /* Emulate the VMPTRLD instruction */
7514 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7515 {
7516         struct vcpu_vmx *vmx = to_vmx(vcpu);
7517         gpa_t vmptr;
7518
7519         if (!nested_vmx_check_permission(vcpu))
7520                 return 1;
7521
7522         if (nested_vmx_get_vmptr(vcpu, &vmptr))
7523                 return 1;
7524
7525         if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7526                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
7527                 return kvm_skip_emulated_instruction(vcpu);
7528         }
7529
7530         if (vmptr == vmx->nested.vmxon_ptr) {
7531                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
7532                 return kvm_skip_emulated_instruction(vcpu);
7533         }
7534
7535         if (vmx->nested.current_vmptr != vmptr) {
7536                 struct vmcs12 *new_vmcs12;
7537                 struct page *page;
7538                 page = nested_get_page(vcpu, vmptr);
7539                 if (page == NULL) {
7540                         nested_vmx_failInvalid(vcpu);
7541                         return kvm_skip_emulated_instruction(vcpu);
7542                 }
7543                 new_vmcs12 = kmap(page);
7544                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7545                         kunmap(page);
7546                         nested_release_page_clean(page);
7547                         nested_vmx_failValid(vcpu,
7548                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7549                         return kvm_skip_emulated_instruction(vcpu);
7550                 }
7551
7552                 nested_release_vmcs12(vmx);
7553                 vmx->nested.current_vmcs12 = new_vmcs12;
7554                 vmx->nested.current_vmcs12_page = page;
7555                 /*
7556                  * Load VMCS12 from guest memory since it is not already
7557                  * cached.
7558                  */
7559                 memcpy(vmx->nested.cached_vmcs12,
7560                        vmx->nested.current_vmcs12, VMCS12_SIZE);
7561                 set_current_vmptr(vmx, vmptr);
7562         }
7563
7564         nested_vmx_succeed(vcpu);
7565         return kvm_skip_emulated_instruction(vcpu);
7566 }
7567
7568 /* Emulate the VMPTRST instruction */
7569 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7570 {
7571         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7572         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7573         gva_t vmcs_gva;
7574         struct x86_exception e;
7575
7576         if (!nested_vmx_check_permission(vcpu))
7577                 return 1;
7578
7579         if (get_vmx_mem_address(vcpu, exit_qualification,
7580                         vmx_instruction_info, true, &vmcs_gva))
7581                 return 1;
7582         /* ok to use *_system, as hardware has verified cpl=0 */
7583         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7584                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
7585                                  sizeof(u64), &e)) {
7586                 kvm_inject_page_fault(vcpu, &e);
7587                 return 1;
7588         }
7589         nested_vmx_succeed(vcpu);
7590         return kvm_skip_emulated_instruction(vcpu);
7591 }
7592
7593 /* Emulate the INVEPT instruction */
7594 static int handle_invept(struct kvm_vcpu *vcpu)
7595 {
7596         struct vcpu_vmx *vmx = to_vmx(vcpu);
7597         u32 vmx_instruction_info, types;
7598         unsigned long type;
7599         gva_t gva;
7600         struct x86_exception e;
7601         struct {
7602                 u64 eptp, gpa;
7603         } operand;
7604
7605         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7606               SECONDARY_EXEC_ENABLE_EPT) ||
7607             !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7608                 kvm_queue_exception(vcpu, UD_VECTOR);
7609                 return 1;
7610         }
7611
7612         if (!nested_vmx_check_permission(vcpu))
7613                 return 1;
7614
7615         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7616         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7617
7618         types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7619
7620         if (type >= 32 || !(types & (1 << type))) {
7621                 nested_vmx_failValid(vcpu,
7622                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7623                 return kvm_skip_emulated_instruction(vcpu);
7624         }
7625
7626         /* According to the Intel VMX instruction reference, the memory
7627          * operand is read even if it isn't needed (e.g., for type==global)
7628          */
7629         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7630                         vmx_instruction_info, false, &gva))
7631                 return 1;
7632         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7633                                 sizeof(operand), &e)) {
7634                 kvm_inject_page_fault(vcpu, &e);
7635                 return 1;
7636         }
7637
7638         switch (type) {
7639         case VMX_EPT_EXTENT_GLOBAL:
7640         /*
7641          * TODO: track mappings and invalidate
7642          * single context requests appropriately
7643          */
7644         case VMX_EPT_EXTENT_CONTEXT:
7645                 kvm_mmu_sync_roots(vcpu);
7646                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7647                 nested_vmx_succeed(vcpu);
7648                 break;
7649         default:
7650                 BUG_ON(1);
7651                 break;
7652         }
7653
7654         return kvm_skip_emulated_instruction(vcpu);
7655 }
7656
7657 static int handle_invvpid(struct kvm_vcpu *vcpu)
7658 {
7659         struct vcpu_vmx *vmx = to_vmx(vcpu);
7660         u32 vmx_instruction_info;
7661         unsigned long type, types;
7662         gva_t gva;
7663         struct x86_exception e;
7664         int vpid;
7665
7666         if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7667               SECONDARY_EXEC_ENABLE_VPID) ||
7668                         !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7669                 kvm_queue_exception(vcpu, UD_VECTOR);
7670                 return 1;
7671         }
7672
7673         if (!nested_vmx_check_permission(vcpu))
7674                 return 1;
7675
7676         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7677         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7678
7679         types = (vmx->nested.nested_vmx_vpid_caps &
7680                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7681
7682         if (type >= 32 || !(types & (1 << type))) {
7683                 nested_vmx_failValid(vcpu,
7684                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7685                 return kvm_skip_emulated_instruction(vcpu);
7686         }
7687
7688         /* according to the intel vmx instruction reference, the memory
7689          * operand is read even if it isn't needed (e.g., for type==global)
7690          */
7691         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7692                         vmx_instruction_info, false, &gva))
7693                 return 1;
7694         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7695                                 sizeof(u32), &e)) {
7696                 kvm_inject_page_fault(vcpu, &e);
7697                 return 1;
7698         }
7699
7700         switch (type) {
7701         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7702         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7703         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7704                 if (!vpid) {
7705                         nested_vmx_failValid(vcpu,
7706                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7707                         return kvm_skip_emulated_instruction(vcpu);
7708                 }
7709                 break;
7710         case VMX_VPID_EXTENT_ALL_CONTEXT:
7711                 break;
7712         default:
7713                 WARN_ON_ONCE(1);
7714                 return kvm_skip_emulated_instruction(vcpu);
7715         }
7716
7717         __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7718         nested_vmx_succeed(vcpu);
7719
7720         return kvm_skip_emulated_instruction(vcpu);
7721 }
7722
7723 static int handle_pml_full(struct kvm_vcpu *vcpu)
7724 {
7725         unsigned long exit_qualification;
7726
7727         trace_kvm_pml_full(vcpu->vcpu_id);
7728
7729         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7730
7731         /*
7732          * PML buffer FULL happened while executing iret from NMI,
7733          * "blocked by NMI" bit has to be set before next VM entry.
7734          */
7735         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7736                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7737                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7738                                 GUEST_INTR_STATE_NMI);
7739
7740         /*
7741          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7742          * here.., and there's no userspace involvement needed for PML.
7743          */
7744         return 1;
7745 }
7746
7747 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7748 {
7749         kvm_lapic_expired_hv_timer(vcpu);
7750         return 1;
7751 }
7752
7753 /*
7754  * The exit handlers return 1 if the exit was handled fully and guest execution
7755  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7756  * to be done to userspace and return 0.
7757  */
7758 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7759         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7760         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7761         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7762         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7763         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7764         [EXIT_REASON_CR_ACCESS]               = handle_cr,
7765         [EXIT_REASON_DR_ACCESS]               = handle_dr,
7766         [EXIT_REASON_CPUID]                   = handle_cpuid,
7767         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7768         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7769         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7770         [EXIT_REASON_HLT]                     = handle_halt,
7771         [EXIT_REASON_INVD]                    = handle_invd,
7772         [EXIT_REASON_INVLPG]                  = handle_invlpg,
7773         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7774         [EXIT_REASON_VMCALL]                  = handle_vmcall,
7775         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7776         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7777         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7778         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7779         [EXIT_REASON_VMREAD]                  = handle_vmread,
7780         [EXIT_REASON_VMRESUME]                = handle_vmresume,
7781         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7782         [EXIT_REASON_VMOFF]                   = handle_vmoff,
7783         [EXIT_REASON_VMON]                    = handle_vmon,
7784         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7785         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7786         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7787         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7788         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7789         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7790         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7791         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7792         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7793         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7794         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7795         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7796         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7797         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7798         [EXIT_REASON_INVEPT]                  = handle_invept,
7799         [EXIT_REASON_INVVPID]                 = handle_invvpid,
7800         [EXIT_REASON_XSAVES]                  = handle_xsaves,
7801         [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7802         [EXIT_REASON_PML_FULL]                = handle_pml_full,
7803         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
7804 };
7805
7806 static const int kvm_vmx_max_exit_handlers =
7807         ARRAY_SIZE(kvm_vmx_exit_handlers);
7808
7809 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7810                                        struct vmcs12 *vmcs12)
7811 {
7812         unsigned long exit_qualification;
7813         gpa_t bitmap, last_bitmap;
7814         unsigned int port;
7815         int size;
7816         u8 b;
7817
7818         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7819                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7820
7821         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7822
7823         port = exit_qualification >> 16;
7824         size = (exit_qualification & 7) + 1;
7825
7826         last_bitmap = (gpa_t)-1;
7827         b = -1;
7828
7829         while (size > 0) {
7830                 if (port < 0x8000)
7831                         bitmap = vmcs12->io_bitmap_a;
7832                 else if (port < 0x10000)
7833                         bitmap = vmcs12->io_bitmap_b;
7834                 else
7835                         return true;
7836                 bitmap += (port & 0x7fff) / 8;
7837
7838                 if (last_bitmap != bitmap)
7839                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7840                                 return true;
7841                 if (b & (1 << (port & 7)))
7842                         return true;
7843
7844                 port++;
7845                 size--;
7846                 last_bitmap = bitmap;
7847         }
7848
7849         return false;
7850 }
7851
7852 /*
7853  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7854  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7855  * disinterest in the current event (read or write a specific MSR) by using an
7856  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7857  */
7858 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7859         struct vmcs12 *vmcs12, u32 exit_reason)
7860 {
7861         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7862         gpa_t bitmap;
7863
7864         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7865                 return true;
7866
7867         /*
7868          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7869          * for the four combinations of read/write and low/high MSR numbers.
7870          * First we need to figure out which of the four to use:
7871          */
7872         bitmap = vmcs12->msr_bitmap;
7873         if (exit_reason == EXIT_REASON_MSR_WRITE)
7874                 bitmap += 2048;
7875         if (msr_index >= 0xc0000000) {
7876                 msr_index -= 0xc0000000;
7877                 bitmap += 1024;
7878         }
7879
7880         /* Then read the msr_index'th bit from this bitmap: */
7881         if (msr_index < 1024*8) {
7882                 unsigned char b;
7883                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7884                         return true;
7885                 return 1 & (b >> (msr_index & 7));
7886         } else
7887                 return true; /* let L1 handle the wrong parameter */
7888 }
7889
7890 /*
7891  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7892  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7893  * intercept (via guest_host_mask etc.) the current event.
7894  */
7895 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7896         struct vmcs12 *vmcs12)
7897 {
7898         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7899         int cr = exit_qualification & 15;
7900         int reg;
7901         unsigned long val;
7902
7903         switch ((exit_qualification >> 4) & 3) {
7904         case 0: /* mov to cr */
7905                 reg = (exit_qualification >> 8) & 15;
7906                 val = kvm_register_readl(vcpu, reg);
7907                 switch (cr) {
7908                 case 0:
7909                         if (vmcs12->cr0_guest_host_mask &
7910                             (val ^ vmcs12->cr0_read_shadow))
7911                                 return true;
7912                         break;
7913                 case 3:
7914                         if ((vmcs12->cr3_target_count >= 1 &&
7915                                         vmcs12->cr3_target_value0 == val) ||
7916                                 (vmcs12->cr3_target_count >= 2 &&
7917                                         vmcs12->cr3_target_value1 == val) ||
7918                                 (vmcs12->cr3_target_count >= 3 &&
7919                                         vmcs12->cr3_target_value2 == val) ||
7920                                 (vmcs12->cr3_target_count >= 4 &&
7921                                         vmcs12->cr3_target_value3 == val))
7922                                 return false;
7923                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7924                                 return true;
7925                         break;
7926                 case 4:
7927                         if (vmcs12->cr4_guest_host_mask &
7928                             (vmcs12->cr4_read_shadow ^ val))
7929                                 return true;
7930                         break;
7931                 case 8:
7932                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7933                                 return true;
7934                         break;
7935                 }
7936                 break;
7937         case 2: /* clts */
7938                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7939                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
7940                         return true;
7941                 break;
7942         case 1: /* mov from cr */
7943                 switch (cr) {
7944                 case 3:
7945                         if (vmcs12->cpu_based_vm_exec_control &
7946                             CPU_BASED_CR3_STORE_EXITING)
7947                                 return true;
7948                         break;
7949                 case 8:
7950                         if (vmcs12->cpu_based_vm_exec_control &
7951                             CPU_BASED_CR8_STORE_EXITING)
7952                                 return true;
7953                         break;
7954                 }
7955                 break;
7956         case 3: /* lmsw */
7957                 /*
7958                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7959                  * cr0. Other attempted changes are ignored, with no exit.
7960                  */
7961                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
7962                 if (vmcs12->cr0_guest_host_mask & 0xe &
7963                     (val ^ vmcs12->cr0_read_shadow))
7964                         return true;
7965                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7966                     !(vmcs12->cr0_read_shadow & 0x1) &&
7967                     (val & 0x1))
7968                         return true;
7969                 break;
7970         }
7971         return false;
7972 }
7973
7974 /*
7975  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7976  * should handle it ourselves in L0 (and then continue L2). Only call this
7977  * when in is_guest_mode (L2).
7978  */
7979 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7980 {
7981         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7982         struct vcpu_vmx *vmx = to_vmx(vcpu);
7983         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7984         u32 exit_reason = vmx->exit_reason;
7985
7986         trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7987                                 vmcs_readl(EXIT_QUALIFICATION),
7988                                 vmx->idt_vectoring_info,
7989                                 intr_info,
7990                                 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7991                                 KVM_ISA_VMX);
7992
7993         if (vmx->nested.nested_run_pending)
7994                 return false;
7995
7996         if (unlikely(vmx->fail)) {
7997                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7998                                     vmcs_read32(VM_INSTRUCTION_ERROR));
7999                 return true;
8000         }
8001
8002         switch (exit_reason) {
8003         case EXIT_REASON_EXCEPTION_NMI:
8004                 if (is_nmi(intr_info))
8005                         return false;
8006                 else if (is_page_fault(intr_info))
8007                         return enable_ept;
8008                 else if (is_no_device(intr_info) &&
8009                          !(vmcs12->guest_cr0 & X86_CR0_TS))
8010                         return false;
8011                 else if (is_debug(intr_info) &&
8012                          vcpu->guest_debug &
8013                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8014                         return false;
8015                 else if (is_breakpoint(intr_info) &&
8016                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8017                         return false;
8018                 return vmcs12->exception_bitmap &
8019                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8020         case EXIT_REASON_EXTERNAL_INTERRUPT:
8021                 return false;
8022         case EXIT_REASON_TRIPLE_FAULT:
8023                 return true;
8024         case EXIT_REASON_PENDING_INTERRUPT:
8025                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8026         case EXIT_REASON_NMI_WINDOW:
8027                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8028         case EXIT_REASON_TASK_SWITCH:
8029                 return true;
8030         case EXIT_REASON_CPUID:
8031                 return true;
8032         case EXIT_REASON_HLT:
8033                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8034         case EXIT_REASON_INVD:
8035                 return true;
8036         case EXIT_REASON_INVLPG:
8037                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8038         case EXIT_REASON_RDPMC:
8039                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8040         case EXIT_REASON_RDRAND:
8041                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND);
8042         case EXIT_REASON_RDSEED:
8043                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED);
8044         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8045                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8046         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8047         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8048         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8049         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8050         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8051         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8052                 /*
8053                  * VMX instructions trap unconditionally. This allows L1 to
8054                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
8055                  */
8056                 return true;
8057         case EXIT_REASON_CR_ACCESS:
8058                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8059         case EXIT_REASON_DR_ACCESS:
8060                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8061         case EXIT_REASON_IO_INSTRUCTION:
8062                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8063         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8064                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
8065         case EXIT_REASON_MSR_READ:
8066         case EXIT_REASON_MSR_WRITE:
8067                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8068         case EXIT_REASON_INVALID_STATE:
8069                 return true;
8070         case EXIT_REASON_MWAIT_INSTRUCTION:
8071                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8072         case EXIT_REASON_MONITOR_TRAP_FLAG:
8073                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8074         case EXIT_REASON_MONITOR_INSTRUCTION:
8075                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8076         case EXIT_REASON_PAUSE_INSTRUCTION:
8077                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8078                         nested_cpu_has2(vmcs12,
8079                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8080         case EXIT_REASON_MCE_DURING_VMENTRY:
8081                 return false;
8082         case EXIT_REASON_TPR_BELOW_THRESHOLD:
8083                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8084         case EXIT_REASON_APIC_ACCESS:
8085                 return nested_cpu_has2(vmcs12,
8086                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8087         case EXIT_REASON_APIC_WRITE:
8088         case EXIT_REASON_EOI_INDUCED:
8089                 /* apic_write and eoi_induced should exit unconditionally. */
8090                 return true;
8091         case EXIT_REASON_EPT_VIOLATION:
8092                 /*
8093                  * L0 always deals with the EPT violation. If nested EPT is
8094                  * used, and the nested mmu code discovers that the address is
8095                  * missing in the guest EPT table (EPT12), the EPT violation
8096                  * will be injected with nested_ept_inject_page_fault()
8097                  */
8098                 return false;
8099         case EXIT_REASON_EPT_MISCONFIG:
8100                 /*
8101                  * L2 never uses directly L1's EPT, but rather L0's own EPT
8102                  * table (shadow on EPT) or a merged EPT table that L0 built
8103                  * (EPT on EPT). So any problems with the structure of the
8104                  * table is L0's fault.
8105                  */
8106                 return false;
8107         case EXIT_REASON_WBINVD:
8108                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8109         case EXIT_REASON_XSETBV:
8110                 return true;
8111         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8112                 /*
8113                  * This should never happen, since it is not possible to
8114                  * set XSS to a non-zero value---neither in L1 nor in L2.
8115                  * If if it were, XSS would have to be checked against
8116                  * the XSS exit bitmap in vmcs12.
8117                  */
8118                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8119         case EXIT_REASON_PREEMPTION_TIMER:
8120                 return false;
8121         case EXIT_REASON_PML_FULL:
8122                 /* We emulate PML support to L1. */
8123                 return false;
8124         default:
8125                 return true;
8126         }
8127 }
8128
8129 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8130 {
8131         *info1 = vmcs_readl(EXIT_QUALIFICATION);
8132         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8133 }
8134
8135 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8136 {
8137         if (vmx->pml_pg) {
8138                 __free_page(vmx->pml_pg);
8139                 vmx->pml_pg = NULL;
8140         }
8141 }
8142
8143 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8144 {
8145         struct vcpu_vmx *vmx = to_vmx(vcpu);
8146         u64 *pml_buf;
8147         u16 pml_idx;
8148
8149         pml_idx = vmcs_read16(GUEST_PML_INDEX);
8150
8151         /* Do nothing if PML buffer is empty */
8152         if (pml_idx == (PML_ENTITY_NUM - 1))
8153                 return;
8154
8155         /* PML index always points to next available PML buffer entity */
8156         if (pml_idx >= PML_ENTITY_NUM)
8157                 pml_idx = 0;
8158         else
8159                 pml_idx++;
8160
8161         pml_buf = page_address(vmx->pml_pg);
8162         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8163                 u64 gpa;
8164
8165                 gpa = pml_buf[pml_idx];
8166                 WARN_ON(gpa & (PAGE_SIZE - 1));
8167                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8168         }
8169
8170         /* reset PML index */
8171         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8172 }
8173
8174 /*
8175  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8176  * Called before reporting dirty_bitmap to userspace.
8177  */
8178 static void kvm_flush_pml_buffers(struct kvm *kvm)
8179 {
8180         int i;
8181         struct kvm_vcpu *vcpu;
8182         /*
8183          * We only need to kick vcpu out of guest mode here, as PML buffer
8184          * is flushed at beginning of all VMEXITs, and it's obvious that only
8185          * vcpus running in guest are possible to have unflushed GPAs in PML
8186          * buffer.
8187          */
8188         kvm_for_each_vcpu(i, vcpu, kvm)
8189                 kvm_vcpu_kick(vcpu);
8190 }
8191
8192 static void vmx_dump_sel(char *name, uint32_t sel)
8193 {
8194         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8195                name, vmcs_read16(sel),
8196                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8197                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8198                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8199 }
8200
8201 static void vmx_dump_dtsel(char *name, uint32_t limit)
8202 {
8203         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8204                name, vmcs_read32(limit),
8205                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8206 }
8207
8208 static void dump_vmcs(void)
8209 {
8210         u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8211         u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8212         u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8213         u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8214         u32 secondary_exec_control = 0;
8215         unsigned long cr4 = vmcs_readl(GUEST_CR4);
8216         u64 efer = vmcs_read64(GUEST_IA32_EFER);
8217         int i, n;
8218
8219         if (cpu_has_secondary_exec_ctrls())
8220                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8221
8222         pr_err("*** Guest State ***\n");
8223         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8224                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8225                vmcs_readl(CR0_GUEST_HOST_MASK));
8226         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8227                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8228         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8229         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8230             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8231         {
8232                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8233                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8234                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8235                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8236         }
8237         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8238                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8239         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8240                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8241         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8242                vmcs_readl(GUEST_SYSENTER_ESP),
8243                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8244         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8245         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8246         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8247         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8248         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8249         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8250         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8251         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8252         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8253         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8254         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8255             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8256                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8257                        efer, vmcs_read64(GUEST_IA32_PAT));
8258         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8259                vmcs_read64(GUEST_IA32_DEBUGCTL),
8260                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8261         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8262                 pr_err("PerfGlobCtl = 0x%016llx\n",
8263                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8264         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8265                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8266         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8267                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8268                vmcs_read32(GUEST_ACTIVITY_STATE));
8269         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8270                 pr_err("InterruptStatus = %04x\n",
8271                        vmcs_read16(GUEST_INTR_STATUS));
8272
8273         pr_err("*** Host State ***\n");
8274         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8275                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8276         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8277                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8278                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8279                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8280                vmcs_read16(HOST_TR_SELECTOR));
8281         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8282                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8283                vmcs_readl(HOST_TR_BASE));
8284         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8285                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8286         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8287                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8288                vmcs_readl(HOST_CR4));
8289         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8290                vmcs_readl(HOST_IA32_SYSENTER_ESP),
8291                vmcs_read32(HOST_IA32_SYSENTER_CS),
8292                vmcs_readl(HOST_IA32_SYSENTER_EIP));
8293         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8294                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8295                        vmcs_read64(HOST_IA32_EFER),
8296                        vmcs_read64(HOST_IA32_PAT));
8297         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8298                 pr_err("PerfGlobCtl = 0x%016llx\n",
8299                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8300
8301         pr_err("*** Control State ***\n");
8302         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8303                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8304         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8305         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8306                vmcs_read32(EXCEPTION_BITMAP),
8307                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8308                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8309         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8310                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8311                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8312                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8313         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8314                vmcs_read32(VM_EXIT_INTR_INFO),
8315                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8316                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8317         pr_err("        reason=%08x qualification=%016lx\n",
8318                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8319         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8320                vmcs_read32(IDT_VECTORING_INFO_FIELD),
8321                vmcs_read32(IDT_VECTORING_ERROR_CODE));
8322         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8323         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8324                 pr_err("TSC Multiplier = 0x%016llx\n",
8325                        vmcs_read64(TSC_MULTIPLIER));
8326         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8327                 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8328         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8329                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8330         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8331                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8332         n = vmcs_read32(CR3_TARGET_COUNT);
8333         for (i = 0; i + 1 < n; i += 4)
8334                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8335                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8336                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8337         if (i < n)
8338                 pr_err("CR3 target%u=%016lx\n",
8339                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8340         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8341                 pr_err("PLE Gap=%08x Window=%08x\n",
8342                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8343         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8344                 pr_err("Virtual processor ID = 0x%04x\n",
8345                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
8346 }
8347
8348 /*
8349  * The guest has exited.  See if we can fix it or if we need userspace
8350  * assistance.
8351  */
8352 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8353 {
8354         struct vcpu_vmx *vmx = to_vmx(vcpu);
8355         u32 exit_reason = vmx->exit_reason;
8356         u32 vectoring_info = vmx->idt_vectoring_info;
8357
8358         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8359         vcpu->arch.gpa_available = false;
8360
8361         /*
8362          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8363          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8364          * querying dirty_bitmap, we only need to kick all vcpus out of guest
8365          * mode as if vcpus is in root mode, the PML buffer must has been
8366          * flushed already.
8367          */
8368         if (enable_pml)
8369                 vmx_flush_pml_buffer(vcpu);
8370
8371         /* If guest state is invalid, start emulating */
8372         if (vmx->emulation_required)
8373                 return handle_invalid_guest_state(vcpu);
8374
8375         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8376                 nested_vmx_vmexit(vcpu, exit_reason,
8377                                   vmcs_read32(VM_EXIT_INTR_INFO),
8378                                   vmcs_readl(EXIT_QUALIFICATION));
8379                 return 1;
8380         }
8381
8382         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8383                 dump_vmcs();
8384                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8385                 vcpu->run->fail_entry.hardware_entry_failure_reason
8386                         = exit_reason;
8387                 return 0;
8388         }
8389
8390         if (unlikely(vmx->fail)) {
8391                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8392                 vcpu->run->fail_entry.hardware_entry_failure_reason
8393                         = vmcs_read32(VM_INSTRUCTION_ERROR);
8394                 return 0;
8395         }
8396
8397         /*
8398          * Note:
8399          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8400          * delivery event since it indicates guest is accessing MMIO.
8401          * The vm-exit can be triggered again after return to guest that
8402          * will cause infinite loop.
8403          */
8404         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8405                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8406                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
8407                         exit_reason != EXIT_REASON_PML_FULL &&
8408                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
8409                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8410                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8411                 vcpu->run->internal.ndata = 2;
8412                 vcpu->run->internal.data[0] = vectoring_info;
8413                 vcpu->run->internal.data[1] = exit_reason;
8414                 return 0;
8415         }
8416
8417         if (exit_reason < kvm_vmx_max_exit_handlers
8418             && kvm_vmx_exit_handlers[exit_reason])
8419                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8420         else {
8421                 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
8422                                 exit_reason);
8423                 kvm_queue_exception(vcpu, UD_VECTOR);
8424                 return 1;
8425         }
8426 }
8427
8428 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8429 {
8430         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8431
8432         if (is_guest_mode(vcpu) &&
8433                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8434                 return;
8435
8436         if (irr == -1 || tpr < irr) {
8437                 vmcs_write32(TPR_THRESHOLD, 0);
8438                 return;
8439         }
8440
8441         vmcs_write32(TPR_THRESHOLD, irr);
8442 }
8443
8444 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8445 {
8446         u32 sec_exec_control;
8447
8448         /* Postpone execution until vmcs01 is the current VMCS. */
8449         if (is_guest_mode(vcpu)) {
8450                 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8451                 return;
8452         }
8453
8454         if (!cpu_has_vmx_virtualize_x2apic_mode())
8455                 return;
8456
8457         if (!cpu_need_tpr_shadow(vcpu))
8458                 return;
8459
8460         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8461
8462         if (set) {
8463                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8464                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8465         } else {
8466                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8467                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8468                 vmx_flush_tlb_ept_only(vcpu);
8469         }
8470         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8471
8472         vmx_set_msr_bitmap(vcpu);
8473 }
8474
8475 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8476 {
8477         struct vcpu_vmx *vmx = to_vmx(vcpu);
8478
8479         /*
8480          * Currently we do not handle the nested case where L2 has an
8481          * APIC access page of its own; that page is still pinned.
8482          * Hence, we skip the case where the VCPU is in guest mode _and_
8483          * L1 prepared an APIC access page for L2.
8484          *
8485          * For the case where L1 and L2 share the same APIC access page
8486          * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8487          * in the vmcs12), this function will only update either the vmcs01
8488          * or the vmcs02.  If the former, the vmcs02 will be updated by
8489          * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8490          * the next L2->L1 exit.
8491          */
8492         if (!is_guest_mode(vcpu) ||
8493             !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8494                              SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8495                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8496                 vmx_flush_tlb_ept_only(vcpu);
8497         }
8498 }
8499
8500 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8501 {
8502         u16 status;
8503         u8 old;
8504
8505         if (max_isr == -1)
8506                 max_isr = 0;
8507
8508         status = vmcs_read16(GUEST_INTR_STATUS);
8509         old = status >> 8;
8510         if (max_isr != old) {
8511                 status &= 0xff;
8512                 status |= max_isr << 8;
8513                 vmcs_write16(GUEST_INTR_STATUS, status);
8514         }
8515 }
8516
8517 static void vmx_set_rvi(int vector)
8518 {
8519         u16 status;
8520         u8 old;
8521
8522         if (vector == -1)
8523                 vector = 0;
8524
8525         status = vmcs_read16(GUEST_INTR_STATUS);
8526         old = (u8)status & 0xff;
8527         if ((u8)vector != old) {
8528                 status &= ~0xff;
8529                 status |= (u8)vector;
8530                 vmcs_write16(GUEST_INTR_STATUS, status);
8531         }
8532 }
8533
8534 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8535 {
8536         if (!is_guest_mode(vcpu)) {
8537                 vmx_set_rvi(max_irr);
8538                 return;
8539         }
8540
8541         if (max_irr == -1)
8542                 return;
8543
8544         /*
8545          * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8546          * handles it.
8547          */
8548         if (nested_exit_on_intr(vcpu))
8549                 return;
8550
8551         /*
8552          * Else, fall back to pre-APICv interrupt injection since L2
8553          * is run without virtual interrupt delivery.
8554          */
8555         if (!kvm_event_needs_reinjection(vcpu) &&
8556             vmx_interrupt_allowed(vcpu)) {
8557                 kvm_queue_interrupt(vcpu, max_irr, false);
8558                 vmx_inject_irq(vcpu);
8559         }
8560 }
8561
8562 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
8563 {
8564         struct vcpu_vmx *vmx = to_vmx(vcpu);
8565         int max_irr;
8566
8567         WARN_ON(!vcpu->arch.apicv_active);
8568         if (pi_test_on(&vmx->pi_desc)) {
8569                 pi_clear_on(&vmx->pi_desc);
8570                 /*
8571                  * IOMMU can write to PIR.ON, so the barrier matters even on UP.
8572                  * But on x86 this is just a compiler barrier anyway.
8573                  */
8574                 smp_mb__after_atomic();
8575                 max_irr = kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
8576         } else {
8577                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8578         }
8579         vmx_hwapic_irr_update(vcpu, max_irr);
8580         return max_irr;
8581 }
8582
8583 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8584 {
8585         if (!kvm_vcpu_apicv_active(vcpu))
8586                 return;
8587
8588         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8589         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8590         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8591         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8592 }
8593
8594 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
8595 {
8596         struct vcpu_vmx *vmx = to_vmx(vcpu);
8597
8598         pi_clear_on(&vmx->pi_desc);
8599         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
8600 }
8601
8602 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8603 {
8604         u32 exit_intr_info;
8605
8606         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8607               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8608                 return;
8609
8610         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8611         exit_intr_info = vmx->exit_intr_info;
8612
8613         /* Handle machine checks before interrupts are enabled */
8614         if (is_machine_check(exit_intr_info))
8615                 kvm_machine_check();
8616
8617         /* We need to handle NMIs before interrupts are enabled */
8618         if (is_nmi(exit_intr_info)) {
8619                 kvm_before_handle_nmi(&vmx->vcpu);
8620                 asm("int $2");
8621                 kvm_after_handle_nmi(&vmx->vcpu);
8622         }
8623 }
8624
8625 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8626 {
8627         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8628         register void *__sp asm(_ASM_SP);
8629
8630         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8631                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8632                 unsigned int vector;
8633                 unsigned long entry;
8634                 gate_desc *desc;
8635                 struct vcpu_vmx *vmx = to_vmx(vcpu);
8636 #ifdef CONFIG_X86_64
8637                 unsigned long tmp;
8638 #endif
8639
8640                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8641                 desc = (gate_desc *)vmx->host_idt_base + vector;
8642                 entry = gate_offset(*desc);
8643                 asm volatile(
8644 #ifdef CONFIG_X86_64
8645                         "mov %%" _ASM_SP ", %[sp]\n\t"
8646                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8647                         "push $%c[ss]\n\t"
8648                         "push %[sp]\n\t"
8649 #endif
8650                         "pushf\n\t"
8651                         __ASM_SIZE(push) " $%c[cs]\n\t"
8652                         "call *%[entry]\n\t"
8653                         :
8654 #ifdef CONFIG_X86_64
8655                         [sp]"=&r"(tmp),
8656 #endif
8657                         "+r"(__sp)
8658                         :
8659                         [entry]"r"(entry),
8660                         [ss]"i"(__KERNEL_DS),
8661                         [cs]"i"(__KERNEL_CS)
8662                         );
8663         }
8664 }
8665 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
8666
8667 static bool vmx_has_high_real_mode_segbase(void)
8668 {
8669         return enable_unrestricted_guest || emulate_invalid_guest_state;
8670 }
8671
8672 static bool vmx_mpx_supported(void)
8673 {
8674         return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8675                 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8676 }
8677
8678 static bool vmx_xsaves_supported(void)
8679 {
8680         return vmcs_config.cpu_based_2nd_exec_ctrl &
8681                 SECONDARY_EXEC_XSAVES;
8682 }
8683
8684 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8685 {
8686         u32 exit_intr_info;
8687         bool unblock_nmi;
8688         u8 vector;
8689         bool idtv_info_valid;
8690
8691         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8692
8693         if (vmx->nmi_known_unmasked)
8694                 return;
8695         /*
8696          * Can't use vmx->exit_intr_info since we're not sure what
8697          * the exit reason is.
8698          */
8699         exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8700         unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8701         vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8702         /*
8703          * SDM 3: 27.7.1.2 (September 2008)
8704          * Re-set bit "block by NMI" before VM entry if vmexit caused by
8705          * a guest IRET fault.
8706          * SDM 3: 23.2.2 (September 2008)
8707          * Bit 12 is undefined in any of the following cases:
8708          *  If the VM exit sets the valid bit in the IDT-vectoring
8709          *   information field.
8710          *  If the VM exit is due to a double fault.
8711          */
8712         if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8713             vector != DF_VECTOR && !idtv_info_valid)
8714                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8715                               GUEST_INTR_STATE_NMI);
8716         else
8717                 vmx->nmi_known_unmasked =
8718                         !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8719                           & GUEST_INTR_STATE_NMI);
8720 }
8721
8722 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8723                                       u32 idt_vectoring_info,
8724                                       int instr_len_field,
8725                                       int error_code_field)
8726 {
8727         u8 vector;
8728         int type;
8729         bool idtv_info_valid;
8730
8731         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8732
8733         vcpu->arch.nmi_injected = false;
8734         kvm_clear_exception_queue(vcpu);
8735         kvm_clear_interrupt_queue(vcpu);
8736
8737         if (!idtv_info_valid)
8738                 return;
8739
8740         kvm_make_request(KVM_REQ_EVENT, vcpu);
8741
8742         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8743         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8744
8745         switch (type) {
8746         case INTR_TYPE_NMI_INTR:
8747                 vcpu->arch.nmi_injected = true;
8748                 /*
8749                  * SDM 3: 27.7.1.2 (September 2008)
8750                  * Clear bit "block by NMI" before VM entry if a NMI
8751                  * delivery faulted.
8752                  */
8753                 vmx_set_nmi_mask(vcpu, false);
8754                 break;
8755         case INTR_TYPE_SOFT_EXCEPTION:
8756                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8757                 /* fall through */
8758         case INTR_TYPE_HARD_EXCEPTION:
8759                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8760                         u32 err = vmcs_read32(error_code_field);
8761                         kvm_requeue_exception_e(vcpu, vector, err);
8762                 } else
8763                         kvm_requeue_exception(vcpu, vector);
8764                 break;
8765         case INTR_TYPE_SOFT_INTR:
8766                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8767                 /* fall through */
8768         case INTR_TYPE_EXT_INTR:
8769                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8770                 break;
8771         default:
8772                 break;
8773         }
8774 }
8775
8776 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8777 {
8778         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8779                                   VM_EXIT_INSTRUCTION_LEN,
8780                                   IDT_VECTORING_ERROR_CODE);
8781 }
8782
8783 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8784 {
8785         __vmx_complete_interrupts(vcpu,
8786                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8787                                   VM_ENTRY_INSTRUCTION_LEN,
8788                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
8789
8790         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8791 }
8792
8793 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8794 {
8795         int i, nr_msrs;
8796         struct perf_guest_switch_msr *msrs;
8797
8798         msrs = perf_guest_get_msrs(&nr_msrs);
8799
8800         if (!msrs)
8801                 return;
8802
8803         for (i = 0; i < nr_msrs; i++)
8804                 if (msrs[i].host == msrs[i].guest)
8805                         clear_atomic_switch_msr(vmx, msrs[i].msr);
8806                 else
8807                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8808                                         msrs[i].host);
8809 }
8810
8811 static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8812 {
8813         struct vcpu_vmx *vmx = to_vmx(vcpu);
8814         u64 tscl;
8815         u32 delta_tsc;
8816
8817         if (vmx->hv_deadline_tsc == -1)
8818                 return;
8819
8820         tscl = rdtsc();
8821         if (vmx->hv_deadline_tsc > tscl)
8822                 /* sure to be 32 bit only because checked on set_hv_timer */
8823                 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8824                         cpu_preemption_timer_multi);
8825         else
8826                 delta_tsc = 0;
8827
8828         vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8829 }
8830
8831 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8832 {
8833         struct vcpu_vmx *vmx = to_vmx(vcpu);
8834         unsigned long debugctlmsr, cr3, cr4;
8835
8836         /* Don't enter VMX if guest state is invalid, let the exit handler
8837            start emulation until we arrive back to a valid state */
8838         if (vmx->emulation_required)
8839                 return;
8840
8841         if (vmx->ple_window_dirty) {
8842                 vmx->ple_window_dirty = false;
8843                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8844         }
8845
8846         if (vmx->nested.sync_shadow_vmcs) {
8847                 copy_vmcs12_to_shadow(vmx);
8848                 vmx->nested.sync_shadow_vmcs = false;
8849         }
8850
8851         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8852                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8853         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8854                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8855
8856         cr3 = __get_current_cr3_fast();
8857         if (unlikely(cr3 != vmx->host_state.vmcs_host_cr3)) {
8858                 vmcs_writel(HOST_CR3, cr3);
8859                 vmx->host_state.vmcs_host_cr3 = cr3;
8860         }
8861
8862         cr4 = cr4_read_shadow();
8863         if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8864                 vmcs_writel(HOST_CR4, cr4);
8865                 vmx->host_state.vmcs_host_cr4 = cr4;
8866         }
8867
8868         /* When single-stepping over STI and MOV SS, we must clear the
8869          * corresponding interruptibility bits in the guest state. Otherwise
8870          * vmentry fails as it then expects bit 14 (BS) in pending debug
8871          * exceptions being set, but that's not correct for the guest debugging
8872          * case. */
8873         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8874                 vmx_set_interrupt_shadow(vcpu, 0);
8875
8876         if (vmx->guest_pkru_valid)
8877                 __write_pkru(vmx->guest_pkru);
8878
8879         atomic_switch_perf_msrs(vmx);
8880         debugctlmsr = get_debugctlmsr();
8881
8882         vmx_arm_hv_timer(vcpu);
8883
8884         vmx->__launched = vmx->loaded_vmcs->launched;
8885         asm(
8886                 /* Store host registers */
8887                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8888                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8889                 "push %%" _ASM_CX " \n\t"
8890                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8891                 "je 1f \n\t"
8892                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8893                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8894                 "1: \n\t"
8895                 /* Reload cr2 if changed */
8896                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8897                 "mov %%cr2, %%" _ASM_DX " \n\t"
8898                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8899                 "je 2f \n\t"
8900                 "mov %%" _ASM_AX", %%cr2 \n\t"
8901                 "2: \n\t"
8902                 /* Check if vmlaunch of vmresume is needed */
8903                 "cmpl $0, %c[launched](%0) \n\t"
8904                 /* Load guest registers.  Don't clobber flags. */
8905                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8906                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8907                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8908                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8909                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8910                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8911 #ifdef CONFIG_X86_64
8912                 "mov %c[r8](%0),  %%r8  \n\t"
8913                 "mov %c[r9](%0),  %%r9  \n\t"
8914                 "mov %c[r10](%0), %%r10 \n\t"
8915                 "mov %c[r11](%0), %%r11 \n\t"
8916                 "mov %c[r12](%0), %%r12 \n\t"
8917                 "mov %c[r13](%0), %%r13 \n\t"
8918                 "mov %c[r14](%0), %%r14 \n\t"
8919                 "mov %c[r15](%0), %%r15 \n\t"
8920 #endif
8921                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8922
8923                 /* Enter guest mode */
8924                 "jne 1f \n\t"
8925                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8926                 "jmp 2f \n\t"
8927                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8928                 "2: "
8929                 /* Save guest registers, load host registers, keep flags */
8930                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8931                 "pop %0 \n\t"
8932                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8933                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8934                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8935                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8936                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8937                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8938                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8939 #ifdef CONFIG_X86_64
8940                 "mov %%r8,  %c[r8](%0) \n\t"
8941                 "mov %%r9,  %c[r9](%0) \n\t"
8942                 "mov %%r10, %c[r10](%0) \n\t"
8943                 "mov %%r11, %c[r11](%0) \n\t"
8944                 "mov %%r12, %c[r12](%0) \n\t"
8945                 "mov %%r13, %c[r13](%0) \n\t"
8946                 "mov %%r14, %c[r14](%0) \n\t"
8947                 "mov %%r15, %c[r15](%0) \n\t"
8948 #endif
8949                 "mov %%cr2, %%" _ASM_AX "   \n\t"
8950                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8951
8952                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8953                 "setbe %c[fail](%0) \n\t"
8954                 ".pushsection .rodata \n\t"
8955                 ".global vmx_return \n\t"
8956                 "vmx_return: " _ASM_PTR " 2b \n\t"
8957                 ".popsection"
8958               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8959                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8960                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8961                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8962                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8963                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8964                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8965                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8966                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8967                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8968                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8969 #ifdef CONFIG_X86_64
8970                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8971                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8972                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8973                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8974                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8975                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8976                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8977                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8978 #endif
8979                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8980                 [wordsize]"i"(sizeof(ulong))
8981               : "cc", "memory"
8982 #ifdef CONFIG_X86_64
8983                 , "rax", "rbx", "rdi", "rsi"
8984                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8985 #else
8986                 , "eax", "ebx", "edi", "esi"
8987 #endif
8988               );
8989
8990         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8991         if (debugctlmsr)
8992                 update_debugctlmsr(debugctlmsr);
8993
8994 #ifndef CONFIG_X86_64
8995         /*
8996          * The sysexit path does not restore ds/es, so we must set them to
8997          * a reasonable value ourselves.
8998          *
8999          * We can't defer this to vmx_load_host_state() since that function
9000          * may be executed in interrupt context, which saves and restore segments
9001          * around it, nullifying its effect.
9002          */
9003         loadsegment(ds, __USER_DS);
9004         loadsegment(es, __USER_DS);
9005 #endif
9006
9007         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9008                                   | (1 << VCPU_EXREG_RFLAGS)
9009                                   | (1 << VCPU_EXREG_PDPTR)
9010                                   | (1 << VCPU_EXREG_SEGMENTS)
9011                                   | (1 << VCPU_EXREG_CR3));
9012         vcpu->arch.regs_dirty = 0;
9013
9014         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9015
9016         vmx->loaded_vmcs->launched = 1;
9017
9018         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9019
9020         /*
9021          * eager fpu is enabled if PKEY is supported and CR4 is switched
9022          * back on host, so it is safe to read guest PKRU from current
9023          * XSAVE.
9024          */
9025         if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9026                 vmx->guest_pkru = __read_pkru();
9027                 if (vmx->guest_pkru != vmx->host_pkru) {
9028                         vmx->guest_pkru_valid = true;
9029                         __write_pkru(vmx->host_pkru);
9030                 } else
9031                         vmx->guest_pkru_valid = false;
9032         }
9033
9034         /*
9035          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9036          * we did not inject a still-pending event to L1 now because of
9037          * nested_run_pending, we need to re-enable this bit.
9038          */
9039         if (vmx->nested.nested_run_pending)
9040                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9041
9042         vmx->nested.nested_run_pending = 0;
9043
9044         vmx_complete_atomic_exit(vmx);
9045         vmx_recover_nmi_blocking(vmx);
9046         vmx_complete_interrupts(vmx);
9047 }
9048 STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
9049
9050 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
9051 {
9052         struct vcpu_vmx *vmx = to_vmx(vcpu);
9053         int cpu;
9054
9055         if (vmx->loaded_vmcs == vmcs)
9056                 return;
9057
9058         cpu = get_cpu();
9059         vmx->loaded_vmcs = vmcs;
9060         vmx_vcpu_put(vcpu);
9061         vmx_vcpu_load(vcpu, cpu);
9062         vcpu->cpu = cpu;
9063         put_cpu();
9064 }
9065
9066 /*
9067  * Ensure that the current vmcs of the logical processor is the
9068  * vmcs01 of the vcpu before calling free_nested().
9069  */
9070 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9071 {
9072        struct vcpu_vmx *vmx = to_vmx(vcpu);
9073        int r;
9074
9075        r = vcpu_load(vcpu);
9076        BUG_ON(r);
9077        vmx_switch_vmcs(vcpu, &vmx->vmcs01);
9078        free_nested(vmx);
9079        vcpu_put(vcpu);
9080 }
9081
9082 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9083 {
9084         struct vcpu_vmx *vmx = to_vmx(vcpu);
9085
9086         if (enable_pml)
9087                 vmx_destroy_pml_buffer(vmx);
9088         free_vpid(vmx->vpid);
9089         leave_guest_mode(vcpu);
9090         vmx_free_vcpu_nested(vcpu);
9091         free_loaded_vmcs(vmx->loaded_vmcs);
9092         kfree(vmx->guest_msrs);
9093         kvm_vcpu_uninit(vcpu);
9094         kmem_cache_free(kvm_vcpu_cache, vmx);
9095 }
9096
9097 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9098 {
9099         int err;
9100         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9101         int cpu;
9102
9103         if (!vmx)
9104                 return ERR_PTR(-ENOMEM);
9105
9106         vmx->vpid = allocate_vpid();
9107
9108         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9109         if (err)
9110                 goto free_vcpu;
9111
9112         err = -ENOMEM;
9113
9114         /*
9115          * If PML is turned on, failure on enabling PML just results in failure
9116          * of creating the vcpu, therefore we can simplify PML logic (by
9117          * avoiding dealing with cases, such as enabling PML partially on vcpus
9118          * for the guest, etc.
9119          */
9120         if (enable_pml) {
9121                 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9122                 if (!vmx->pml_pg)
9123                         goto uninit_vcpu;
9124         }
9125
9126         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9127         BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9128                      > PAGE_SIZE);
9129
9130         if (!vmx->guest_msrs)
9131                 goto free_pml;
9132
9133         vmx->loaded_vmcs = &vmx->vmcs01;
9134         vmx->loaded_vmcs->vmcs = alloc_vmcs();
9135         vmx->loaded_vmcs->shadow_vmcs = NULL;
9136         if (!vmx->loaded_vmcs->vmcs)
9137                 goto free_msrs;
9138         loaded_vmcs_init(vmx->loaded_vmcs);
9139
9140         cpu = get_cpu();
9141         vmx_vcpu_load(&vmx->vcpu, cpu);
9142         vmx->vcpu.cpu = cpu;
9143         err = vmx_vcpu_setup(vmx);
9144         vmx_vcpu_put(&vmx->vcpu);
9145         put_cpu();
9146         if (err)
9147                 goto free_vmcs;
9148         if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9149                 err = alloc_apic_access_page(kvm);
9150                 if (err)
9151                         goto free_vmcs;
9152         }
9153
9154         if (enable_ept) {
9155                 if (!kvm->arch.ept_identity_map_addr)
9156                         kvm->arch.ept_identity_map_addr =
9157                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9158                 err = init_rmode_identity_map(kvm);
9159                 if (err)
9160                         goto free_vmcs;
9161         }
9162
9163         if (nested) {
9164                 nested_vmx_setup_ctls_msrs(vmx);
9165                 vmx->nested.vpid02 = allocate_vpid();
9166         }
9167
9168         vmx->nested.posted_intr_nv = -1;
9169         vmx->nested.current_vmptr = -1ull;
9170         vmx->nested.current_vmcs12 = NULL;
9171
9172         vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9173
9174         return &vmx->vcpu;
9175
9176 free_vmcs:
9177         free_vpid(vmx->nested.vpid02);
9178         free_loaded_vmcs(vmx->loaded_vmcs);
9179 free_msrs:
9180         kfree(vmx->guest_msrs);
9181 free_pml:
9182         vmx_destroy_pml_buffer(vmx);
9183 uninit_vcpu:
9184         kvm_vcpu_uninit(&vmx->vcpu);
9185 free_vcpu:
9186         free_vpid(vmx->vpid);
9187         kmem_cache_free(kvm_vcpu_cache, vmx);
9188         return ERR_PTR(err);
9189 }
9190
9191 static void __init vmx_check_processor_compat(void *rtn)
9192 {
9193         struct vmcs_config vmcs_conf;
9194
9195         *(int *)rtn = 0;
9196         if (setup_vmcs_config(&vmcs_conf) < 0)
9197                 *(int *)rtn = -EIO;
9198         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9199                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9200                                 smp_processor_id());
9201                 *(int *)rtn = -EIO;
9202         }
9203 }
9204
9205 static int get_ept_level(void)
9206 {
9207         return VMX_EPT_DEFAULT_GAW + 1;
9208 }
9209
9210 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9211 {
9212         u8 cache;
9213         u64 ipat = 0;
9214
9215         /* For VT-d and EPT combination
9216          * 1. MMIO: always map as UC
9217          * 2. EPT with VT-d:
9218          *   a. VT-d without snooping control feature: can't guarantee the
9219          *      result, try to trust guest.
9220          *   b. VT-d with snooping control feature: snooping control feature of
9221          *      VT-d engine can guarantee the cache correctness. Just set it
9222          *      to WB to keep consistent with host. So the same as item 3.
9223          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9224          *    consistent with host MTRR
9225          */
9226         if (is_mmio) {
9227                 cache = MTRR_TYPE_UNCACHABLE;
9228                 goto exit;
9229         }
9230
9231         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9232                 ipat = VMX_EPT_IPAT_BIT;
9233                 cache = MTRR_TYPE_WRBACK;
9234                 goto exit;
9235         }
9236
9237         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9238                 ipat = VMX_EPT_IPAT_BIT;
9239                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9240                         cache = MTRR_TYPE_WRBACK;
9241                 else
9242                         cache = MTRR_TYPE_UNCACHABLE;
9243                 goto exit;
9244         }
9245
9246         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9247
9248 exit:
9249         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9250 }
9251
9252 static int vmx_get_lpage_level(void)
9253 {
9254         if (enable_ept && !cpu_has_vmx_ept_1g_page())
9255                 return PT_DIRECTORY_LEVEL;
9256         else
9257                 /* For shadow and EPT supported 1GB page */
9258                 return PT_PDPE_LEVEL;
9259 }
9260
9261 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9262 {
9263         /*
9264          * These bits in the secondary execution controls field
9265          * are dynamic, the others are mostly based on the hypervisor
9266          * architecture and the guest's CPUID.  Do not touch the
9267          * dynamic bits.
9268          */
9269         u32 mask =
9270                 SECONDARY_EXEC_SHADOW_VMCS |
9271                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9272                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9273
9274         u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9275
9276         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9277                      (new_ctl & ~mask) | (cur_ctl & mask));
9278 }
9279
9280 /*
9281  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
9282  * (indicating "allowed-1") if they are supported in the guest's CPUID.
9283  */
9284 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
9285 {
9286         struct vcpu_vmx *vmx = to_vmx(vcpu);
9287         struct kvm_cpuid_entry2 *entry;
9288
9289         vmx->nested.nested_vmx_cr0_fixed1 = 0xffffffff;
9290         vmx->nested.nested_vmx_cr4_fixed1 = X86_CR4_PCE;
9291
9292 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
9293         if (entry && (entry->_reg & (_cpuid_mask)))                     \
9294                 vmx->nested.nested_vmx_cr4_fixed1 |= (_cr4_mask);       \
9295 } while (0)
9296
9297         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
9298         cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
9299         cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
9300         cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
9301         cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
9302         cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
9303         cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
9304         cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
9305         cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
9306         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
9307         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
9308         cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
9309         cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
9310         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
9311         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
9312
9313         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9314         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
9315         cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
9316         cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
9317         cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
9318         /* TODO: Use X86_CR4_UMIP and X86_FEATURE_UMIP macros */
9319         cr4_fixed1_update(bit(11),            ecx, bit(2));
9320
9321 #undef cr4_fixed1_update
9322 }
9323
9324 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9325 {
9326         struct kvm_cpuid_entry2 *best;
9327         struct vcpu_vmx *vmx = to_vmx(vcpu);
9328         u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9329
9330         if (vmx_rdtscp_supported()) {
9331                 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9332                 if (!rdtscp_enabled)
9333                         secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9334
9335                 if (nested) {
9336                         if (rdtscp_enabled)
9337                                 vmx->nested.nested_vmx_secondary_ctls_high |=
9338                                         SECONDARY_EXEC_RDTSCP;
9339                         else
9340                                 vmx->nested.nested_vmx_secondary_ctls_high &=
9341                                         ~SECONDARY_EXEC_RDTSCP;
9342                 }
9343         }
9344
9345         /* Exposing INVPCID only when PCID is exposed */
9346         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9347         if (vmx_invpcid_supported() &&
9348             (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9349             !guest_cpuid_has_pcid(vcpu))) {
9350                 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9351
9352                 if (best)
9353                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
9354         }
9355
9356         if (cpu_has_secondary_exec_ctrls())
9357                 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9358
9359         if (nested_vmx_allowed(vcpu))
9360                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9361                         FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9362         else
9363                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9364                         ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9365
9366         if (nested_vmx_allowed(vcpu))
9367                 nested_vmx_cr_fixed1_bits_update(vcpu);
9368 }
9369
9370 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9371 {
9372         if (func == 1 && nested)
9373                 entry->ecx |= bit(X86_FEATURE_VMX);
9374 }
9375
9376 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9377                 struct x86_exception *fault)
9378 {
9379         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9380         struct vcpu_vmx *vmx = to_vmx(vcpu);
9381         u32 exit_reason;
9382         unsigned long exit_qualification = vcpu->arch.exit_qualification;
9383
9384         if (vmx->nested.pml_full) {
9385                 exit_reason = EXIT_REASON_PML_FULL;
9386                 vmx->nested.pml_full = false;
9387                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
9388         } else if (fault->error_code & PFERR_RSVD_MASK)
9389                 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9390         else
9391                 exit_reason = EXIT_REASON_EPT_VIOLATION;
9392
9393         nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
9394         vmcs12->guest_physical_address = fault->address;
9395 }
9396
9397 /* Callbacks for nested_ept_init_mmu_context: */
9398
9399 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9400 {
9401         /* return the page table to be shadowed - in our case, EPT12 */
9402         return get_vmcs12(vcpu)->ept_pointer;
9403 }
9404
9405 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9406 {
9407         u64 eptp;
9408
9409         WARN_ON(mmu_is_nested(vcpu));
9410         eptp = nested_ept_get_cr3(vcpu);
9411         if ((eptp & VMX_EPT_AD_ENABLE_BIT) && !enable_ept_ad_bits)
9412                 return 1;
9413
9414         kvm_mmu_unload(vcpu);
9415         kvm_init_shadow_ept_mmu(vcpu,
9416                         to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9417                         VMX_EPT_EXECUTE_ONLY_BIT,
9418                         eptp & VMX_EPT_AD_ENABLE_BIT);
9419         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9420         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9421         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9422
9423         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9424         return 0;
9425 }
9426
9427 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9428 {
9429         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9430 }
9431
9432 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9433                                             u16 error_code)
9434 {
9435         bool inequality, bit;
9436
9437         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9438         inequality =
9439                 (error_code & vmcs12->page_fault_error_code_mask) !=
9440                  vmcs12->page_fault_error_code_match;
9441         return inequality ^ bit;
9442 }
9443
9444 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9445                 struct x86_exception *fault)
9446 {
9447         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9448
9449         WARN_ON(!is_guest_mode(vcpu));
9450
9451         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9452                 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9453                                   vmcs_read32(VM_EXIT_INTR_INFO),
9454                                   vmcs_readl(EXIT_QUALIFICATION));
9455         else
9456                 kvm_inject_page_fault(vcpu, fault);
9457 }
9458
9459 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9460                                                struct vmcs12 *vmcs12);
9461
9462 static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9463                                         struct vmcs12 *vmcs12)
9464 {
9465         struct vcpu_vmx *vmx = to_vmx(vcpu);
9466         u64 hpa;
9467
9468         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9469                 /*
9470                  * Translate L1 physical address to host physical
9471                  * address for vmcs02. Keep the page pinned, so this
9472                  * physical address remains valid. We keep a reference
9473                  * to it so we can release it later.
9474                  */
9475                 if (vmx->nested.apic_access_page) /* shouldn't happen */
9476                         nested_release_page(vmx->nested.apic_access_page);
9477                 vmx->nested.apic_access_page =
9478                         nested_get_page(vcpu, vmcs12->apic_access_addr);
9479                 /*
9480                  * If translation failed, no matter: This feature asks
9481                  * to exit when accessing the given address, and if it
9482                  * can never be accessed, this feature won't do
9483                  * anything anyway.
9484                  */
9485                 if (vmx->nested.apic_access_page) {
9486                         hpa = page_to_phys(vmx->nested.apic_access_page);
9487                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
9488                 } else {
9489                         vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
9490                                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9491                 }
9492         } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9493                    cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9494                 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
9495                               SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
9496                 kvm_vcpu_reload_apic_access_page(vcpu);
9497         }
9498
9499         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9500                 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9501                         nested_release_page(vmx->nested.virtual_apic_page);
9502                 vmx->nested.virtual_apic_page =
9503                         nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9504
9505                 /*
9506                  * If translation failed, VM entry will fail because
9507                  * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
9508                  * Failing the vm entry is _not_ what the processor
9509                  * does but it's basically the only possibility we
9510                  * have.  We could still enter the guest if CR8 load
9511                  * exits are enabled, CR8 store exits are enabled, and
9512                  * virtualize APIC access is disabled; in this case
9513                  * the processor would never use the TPR shadow and we
9514                  * could simply clear the bit from the execution
9515                  * control.  But such a configuration is useless, so
9516                  * let's keep the code simple.
9517                  */
9518                 if (vmx->nested.virtual_apic_page) {
9519                         hpa = page_to_phys(vmx->nested.virtual_apic_page);
9520                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
9521                 }
9522         }
9523
9524         if (nested_cpu_has_posted_intr(vmcs12)) {
9525                 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9526                         kunmap(vmx->nested.pi_desc_page);
9527                         nested_release_page(vmx->nested.pi_desc_page);
9528                 }
9529                 vmx->nested.pi_desc_page =
9530                         nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9531                 vmx->nested.pi_desc =
9532                         (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9533                 if (!vmx->nested.pi_desc) {
9534                         nested_release_page_clean(vmx->nested.pi_desc_page);
9535                         return;
9536                 }
9537                 vmx->nested.pi_desc =
9538                         (struct pi_desc *)((void *)vmx->nested.pi_desc +
9539                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9540                         (PAGE_SIZE - 1)));
9541                 vmcs_write64(POSTED_INTR_DESC_ADDR,
9542                         page_to_phys(vmx->nested.pi_desc_page) +
9543                         (unsigned long)(vmcs12->posted_intr_desc_addr &
9544                         (PAGE_SIZE - 1)));
9545         }
9546         if (cpu_has_vmx_msr_bitmap() &&
9547             nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS) &&
9548             nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9549                 ;
9550         else
9551                 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
9552                                 CPU_BASED_USE_MSR_BITMAPS);
9553 }
9554
9555 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9556 {
9557         u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9558         struct vcpu_vmx *vmx = to_vmx(vcpu);
9559
9560         if (vcpu->arch.virtual_tsc_khz == 0)
9561                 return;
9562
9563         /* Make sure short timeouts reliably trigger an immediate vmexit.
9564          * hrtimer_start does not guarantee this. */
9565         if (preemption_timeout <= 1) {
9566                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9567                 return;
9568         }
9569
9570         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9571         preemption_timeout *= 1000000;
9572         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9573         hrtimer_start(&vmx->nested.preemption_timer,
9574                       ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9575 }
9576
9577 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9578                                                 struct vmcs12 *vmcs12)
9579 {
9580         int maxphyaddr;
9581         u64 addr;
9582
9583         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9584                 return 0;
9585
9586         if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9587                 WARN_ON(1);
9588                 return -EINVAL;
9589         }
9590         maxphyaddr = cpuid_maxphyaddr(vcpu);
9591
9592         if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9593            ((addr + PAGE_SIZE) >> maxphyaddr))
9594                 return -EINVAL;
9595
9596         return 0;
9597 }
9598
9599 /*
9600  * Merge L0's and L1's MSR bitmap, return false to indicate that
9601  * we do not use the hardware.
9602  */
9603 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9604                                                struct vmcs12 *vmcs12)
9605 {
9606         int msr;
9607         struct page *page;
9608         unsigned long *msr_bitmap_l1;
9609         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9610
9611         /* This shortcut is ok because we support only x2APIC MSRs so far. */
9612         if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9613                 return false;
9614
9615         page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9616         if (!page)
9617                 return false;
9618         msr_bitmap_l1 = (unsigned long *)kmap(page);
9619
9620         memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9621
9622         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9623                 if (nested_cpu_has_apic_reg_virt(vmcs12))
9624                         for (msr = 0x800; msr <= 0x8ff; msr++)
9625                                 nested_vmx_disable_intercept_for_msr(
9626                                         msr_bitmap_l1, msr_bitmap_l0,
9627                                         msr, MSR_TYPE_R);
9628
9629                 nested_vmx_disable_intercept_for_msr(
9630                                 msr_bitmap_l1, msr_bitmap_l0,
9631                                 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9632                                 MSR_TYPE_R | MSR_TYPE_W);
9633
9634                 if (nested_cpu_has_vid(vmcs12)) {
9635                         nested_vmx_disable_intercept_for_msr(
9636                                 msr_bitmap_l1, msr_bitmap_l0,
9637                                 APIC_BASE_MSR + (APIC_EOI >> 4),
9638                                 MSR_TYPE_W);
9639                         nested_vmx_disable_intercept_for_msr(
9640                                 msr_bitmap_l1, msr_bitmap_l0,
9641                                 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9642                                 MSR_TYPE_W);
9643                 }
9644         }
9645         kunmap(page);
9646         nested_release_page_clean(page);
9647
9648         return true;
9649 }
9650
9651 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9652                                            struct vmcs12 *vmcs12)
9653 {
9654         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9655             !nested_cpu_has_apic_reg_virt(vmcs12) &&
9656             !nested_cpu_has_vid(vmcs12) &&
9657             !nested_cpu_has_posted_intr(vmcs12))
9658                 return 0;
9659
9660         /*
9661          * If virtualize x2apic mode is enabled,
9662          * virtualize apic access must be disabled.
9663          */
9664         if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9665             nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9666                 return -EINVAL;
9667
9668         /*
9669          * If virtual interrupt delivery is enabled,
9670          * we must exit on external interrupts.
9671          */
9672         if (nested_cpu_has_vid(vmcs12) &&
9673            !nested_exit_on_intr(vcpu))
9674                 return -EINVAL;
9675
9676         /*
9677          * bits 15:8 should be zero in posted_intr_nv,
9678          * the descriptor address has been already checked
9679          * in nested_get_vmcs12_pages.
9680          */
9681         if (nested_cpu_has_posted_intr(vmcs12) &&
9682            (!nested_cpu_has_vid(vmcs12) ||
9683             !nested_exit_intr_ack_set(vcpu) ||
9684             vmcs12->posted_intr_nv & 0xff00))
9685                 return -EINVAL;
9686
9687         /* tpr shadow is needed by all apicv features. */
9688         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9689                 return -EINVAL;
9690
9691         return 0;
9692 }
9693
9694 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9695                                        unsigned long count_field,
9696                                        unsigned long addr_field)
9697 {
9698         int maxphyaddr;
9699         u64 count, addr;
9700
9701         if (vmcs12_read_any(vcpu, count_field, &count) ||
9702             vmcs12_read_any(vcpu, addr_field, &addr)) {
9703                 WARN_ON(1);
9704                 return -EINVAL;
9705         }
9706         if (count == 0)
9707                 return 0;
9708         maxphyaddr = cpuid_maxphyaddr(vcpu);
9709         if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9710             (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9711                 pr_debug_ratelimited(
9712                         "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9713                         addr_field, maxphyaddr, count, addr);
9714                 return -EINVAL;
9715         }
9716         return 0;
9717 }
9718
9719 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9720                                                 struct vmcs12 *vmcs12)
9721 {
9722         if (vmcs12->vm_exit_msr_load_count == 0 &&
9723             vmcs12->vm_exit_msr_store_count == 0 &&
9724             vmcs12->vm_entry_msr_load_count == 0)
9725                 return 0; /* Fast path */
9726         if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9727                                         VM_EXIT_MSR_LOAD_ADDR) ||
9728             nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9729                                         VM_EXIT_MSR_STORE_ADDR) ||
9730             nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9731                                         VM_ENTRY_MSR_LOAD_ADDR))
9732                 return -EINVAL;
9733         return 0;
9734 }
9735
9736 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
9737                                          struct vmcs12 *vmcs12)
9738 {
9739         u64 address = vmcs12->pml_address;
9740         int maxphyaddr = cpuid_maxphyaddr(vcpu);
9741
9742         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
9743                 if (!nested_cpu_has_ept(vmcs12) ||
9744                     !IS_ALIGNED(address, 4096)  ||
9745                     address >> maxphyaddr)
9746                         return -EINVAL;
9747         }
9748
9749         return 0;
9750 }
9751
9752 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9753                                        struct vmx_msr_entry *e)
9754 {
9755         /* x2APIC MSR accesses are not allowed */
9756         if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9757                 return -EINVAL;
9758         if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9759             e->index == MSR_IA32_UCODE_REV)
9760                 return -EINVAL;
9761         if (e->reserved != 0)
9762                 return -EINVAL;
9763         return 0;
9764 }
9765
9766 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9767                                      struct vmx_msr_entry *e)
9768 {
9769         if (e->index == MSR_FS_BASE ||
9770             e->index == MSR_GS_BASE ||
9771             e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9772             nested_vmx_msr_check_common(vcpu, e))
9773                 return -EINVAL;
9774         return 0;
9775 }
9776
9777 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9778                                       struct vmx_msr_entry *e)
9779 {
9780         if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9781             nested_vmx_msr_check_common(vcpu, e))
9782                 return -EINVAL;
9783         return 0;
9784 }
9785
9786 /*
9787  * Load guest's/host's msr at nested entry/exit.
9788  * return 0 for success, entry index for failure.
9789  */
9790 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9791 {
9792         u32 i;
9793         struct vmx_msr_entry e;
9794         struct msr_data msr;
9795
9796         msr.host_initiated = false;
9797         for (i = 0; i < count; i++) {
9798                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9799                                         &e, sizeof(e))) {
9800                         pr_debug_ratelimited(
9801                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9802                                 __func__, i, gpa + i * sizeof(e));
9803                         goto fail;
9804                 }
9805                 if (nested_vmx_load_msr_check(vcpu, &e)) {
9806                         pr_debug_ratelimited(
9807                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9808                                 __func__, i, e.index, e.reserved);
9809                         goto fail;
9810                 }
9811                 msr.index = e.index;
9812                 msr.data = e.value;
9813                 if (kvm_set_msr(vcpu, &msr)) {
9814                         pr_debug_ratelimited(
9815                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9816                                 __func__, i, e.index, e.value);
9817                         goto fail;
9818                 }
9819         }
9820         return 0;
9821 fail:
9822         return i + 1;
9823 }
9824
9825 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9826 {
9827         u32 i;
9828         struct vmx_msr_entry e;
9829
9830         for (i = 0; i < count; i++) {
9831                 struct msr_data msr_info;
9832                 if (kvm_vcpu_read_guest(vcpu,
9833                                         gpa + i * sizeof(e),
9834                                         &e, 2 * sizeof(u32))) {
9835                         pr_debug_ratelimited(
9836                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9837                                 __func__, i, gpa + i * sizeof(e));
9838                         return -EINVAL;
9839                 }
9840                 if (nested_vmx_store_msr_check(vcpu, &e)) {
9841                         pr_debug_ratelimited(
9842                                 "%s check failed (%u, 0x%x, 0x%x)\n",
9843                                 __func__, i, e.index, e.reserved);
9844                         return -EINVAL;
9845                 }
9846                 msr_info.host_initiated = false;
9847                 msr_info.index = e.index;
9848                 if (kvm_get_msr(vcpu, &msr_info)) {
9849                         pr_debug_ratelimited(
9850                                 "%s cannot read MSR (%u, 0x%x)\n",
9851                                 __func__, i, e.index);
9852                         return -EINVAL;
9853                 }
9854                 if (kvm_vcpu_write_guest(vcpu,
9855                                          gpa + i * sizeof(e) +
9856                                              offsetof(struct vmx_msr_entry, value),
9857                                          &msr_info.data, sizeof(msr_info.data))) {
9858                         pr_debug_ratelimited(
9859                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9860                                 __func__, i, e.index, msr_info.data);
9861                         return -EINVAL;
9862                 }
9863         }
9864         return 0;
9865 }
9866
9867 static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
9868 {
9869         unsigned long invalid_mask;
9870
9871         invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
9872         return (val & invalid_mask) == 0;
9873 }
9874
9875 /*
9876  * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
9877  * emulating VM entry into a guest with EPT enabled.
9878  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9879  * is assigned to entry_failure_code on failure.
9880  */
9881 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
9882                                u32 *entry_failure_code)
9883 {
9884         if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
9885                 if (!nested_cr3_valid(vcpu, cr3)) {
9886                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
9887                         return 1;
9888                 }
9889
9890                 /*
9891                  * If PAE paging and EPT are both on, CR3 is not used by the CPU and
9892                  * must not be dereferenced.
9893                  */
9894                 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
9895                     !nested_ept) {
9896                         if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
9897                                 *entry_failure_code = ENTRY_FAIL_PDPTE;
9898                                 return 1;
9899                         }
9900                 }
9901
9902                 vcpu->arch.cr3 = cr3;
9903                 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
9904         }
9905
9906         kvm_mmu_reset_context(vcpu);
9907         return 0;
9908 }
9909
9910 /*
9911  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9912  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9913  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9914  * guest in a way that will both be appropriate to L1's requests, and our
9915  * needs. In addition to modifying the active vmcs (which is vmcs02), this
9916  * function also has additional necessary side-effects, like setting various
9917  * vcpu->arch fields.
9918  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
9919  * is assigned to entry_failure_code on failure.
9920  */
9921 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
9922                           bool from_vmentry, u32 *entry_failure_code)
9923 {
9924         struct vcpu_vmx *vmx = to_vmx(vcpu);
9925         u32 exec_control, vmcs12_exec_ctrl;
9926
9927         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9928         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9929         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9930         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9931         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9932         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9933         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9934         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9935         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9936         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9937         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9938         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9939         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9940         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9941         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9942         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9943         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9944         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9945         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9946         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9947         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9948         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9949         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9950         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9951         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9952         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9953         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9954         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9955         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9956         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9957         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9958         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9959         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9960         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9961         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9962         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9963
9964         if (from_vmentry &&
9965             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
9966                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9967                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9968         } else {
9969                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9970                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9971         }
9972         if (from_vmentry) {
9973                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9974                              vmcs12->vm_entry_intr_info_field);
9975                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9976                              vmcs12->vm_entry_exception_error_code);
9977                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9978                              vmcs12->vm_entry_instruction_len);
9979                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9980                              vmcs12->guest_interruptibility_info);
9981         } else {
9982                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9983         }
9984         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9985         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9986         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9987                 vmcs12->guest_pending_dbg_exceptions);
9988         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9989         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9990
9991         if (nested_cpu_has_xsaves(vmcs12))
9992                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9993         vmcs_write64(VMCS_LINK_POINTER, -1ull);
9994
9995         exec_control = vmcs12->pin_based_vm_exec_control;
9996
9997         /* Preemption timer setting is only taken from vmcs01.  */
9998         exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9999         exec_control |= vmcs_config.pin_based_exec_ctrl;
10000         if (vmx->hv_deadline_tsc == -1)
10001                 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
10002
10003         /* Posted interrupts setting is only taken from vmcs12.  */
10004         if (nested_cpu_has_posted_intr(vmcs12)) {
10005                 /*
10006                  * Note that we use L0's vector here and in
10007                  * vmx_deliver_nested_posted_interrupt.
10008                  */
10009                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
10010                 vmx->nested.pi_pending = false;
10011                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
10012         } else {
10013                 exec_control &= ~PIN_BASED_POSTED_INTR;
10014         }
10015
10016         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
10017
10018         vmx->nested.preemption_timer_expired = false;
10019         if (nested_cpu_has_preemption_timer(vmcs12))
10020                 vmx_start_preemption_timer(vcpu);
10021
10022         /*
10023          * Whether page-faults are trapped is determined by a combination of
10024          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10025          * If enable_ept, L0 doesn't care about page faults and we should
10026          * set all of these to L1's desires. However, if !enable_ept, L0 does
10027          * care about (at least some) page faults, and because it is not easy
10028          * (if at all possible?) to merge L0 and L1's desires, we simply ask
10029          * to exit on each and every L2 page fault. This is done by setting
10030          * MASK=MATCH=0 and (see below) EB.PF=1.
10031          * Note that below we don't need special code to set EB.PF beyond the
10032          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10033          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10034          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10035          *
10036          * A problem with this approach (when !enable_ept) is that L1 may be
10037          * injected with more page faults than it asked for. This could have
10038          * caused problems, but in practice existing hypervisors don't care.
10039          * To fix this, we will need to emulate the PFEC checking (on the L1
10040          * page tables), using walk_addr(), when injecting PFs to L1.
10041          */
10042         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10043                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10044         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10045                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10046
10047         if (cpu_has_secondary_exec_ctrls()) {
10048                 exec_control = vmx_secondary_exec_control(vmx);
10049
10050                 /* Take the following fields only from vmcs12 */
10051                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10052                                   SECONDARY_EXEC_RDTSCP |
10053                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10054                                   SECONDARY_EXEC_APIC_REGISTER_VIRT);
10055                 if (nested_cpu_has(vmcs12,
10056                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
10057                         vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
10058                                 ~SECONDARY_EXEC_ENABLE_PML;
10059                         exec_control |= vmcs12_exec_ctrl;
10060                 }
10061
10062                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10063                         vmcs_write64(EOI_EXIT_BITMAP0,
10064                                 vmcs12->eoi_exit_bitmap0);
10065                         vmcs_write64(EOI_EXIT_BITMAP1,
10066                                 vmcs12->eoi_exit_bitmap1);
10067                         vmcs_write64(EOI_EXIT_BITMAP2,
10068                                 vmcs12->eoi_exit_bitmap2);
10069                         vmcs_write64(EOI_EXIT_BITMAP3,
10070                                 vmcs12->eoi_exit_bitmap3);
10071                         vmcs_write16(GUEST_INTR_STATUS,
10072                                 vmcs12->guest_intr_status);
10073                 }
10074
10075                 /*
10076                  * Write an illegal value to APIC_ACCESS_ADDR. Later,
10077                  * nested_get_vmcs12_pages will either fix it up or
10078                  * remove the VM execution control.
10079                  */
10080                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
10081                         vmcs_write64(APIC_ACCESS_ADDR, -1ull);
10082
10083                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10084         }
10085
10086
10087         /*
10088          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10089          * Some constant fields are set here by vmx_set_constant_host_state().
10090          * Other fields are different per CPU, and will be set later when
10091          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10092          */
10093         vmx_set_constant_host_state(vmx);
10094
10095         /*
10096          * Set the MSR load/store lists to match L0's settings.
10097          */
10098         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10099         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10100         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10101         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10102         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10103
10104         /*
10105          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10106          * entry, but only if the current (host) sp changed from the value
10107          * we wrote last (vmx->host_rsp). This cache is no longer relevant
10108          * if we switch vmcs, and rather than hold a separate cache per vmcs,
10109          * here we just force the write to happen on entry.
10110          */
10111         vmx->host_rsp = 0;
10112
10113         exec_control = vmx_exec_control(vmx); /* L0's desires */
10114         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10115         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10116         exec_control &= ~CPU_BASED_TPR_SHADOW;
10117         exec_control |= vmcs12->cpu_based_vm_exec_control;
10118
10119         /*
10120          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
10121          * nested_get_vmcs12_pages can't fix it up, the illegal value
10122          * will result in a VM entry failure.
10123          */
10124         if (exec_control & CPU_BASED_TPR_SHADOW) {
10125                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
10126                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10127         }
10128
10129         /*
10130          * Merging of IO bitmap not currently supported.
10131          * Rather, exit every time.
10132          */
10133         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10134         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10135
10136         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10137
10138         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10139          * bitwise-or of what L1 wants to trap for L2, and what we want to
10140          * trap. Note that CR0.TS also needs updating - we do this later.
10141          */
10142         update_exception_bitmap(vcpu);
10143         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10144         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10145
10146         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10147          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10148          * bits are further modified by vmx_set_efer() below.
10149          */
10150         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10151
10152         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10153          * emulated by vmx_set_efer(), below.
10154          */
10155         vm_entry_controls_init(vmx, 
10156                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10157                         ~VM_ENTRY_IA32E_MODE) |
10158                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10159
10160         if (from_vmentry &&
10161             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
10162                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10163                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10164         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
10165                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10166         }
10167
10168         set_cr4_guest_host_mask(vmx);
10169
10170         if (from_vmentry &&
10171             vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10172                 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10173
10174         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10175                 vmcs_write64(TSC_OFFSET,
10176                         vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10177         else
10178                 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10179         if (kvm_has_tsc_control)
10180                 decache_tsc_multiplier(vmx);
10181
10182         if (enable_vpid) {
10183                 /*
10184                  * There is no direct mapping between vpid02 and vpid12, the
10185                  * vpid02 is per-vCPU for L0 and reused while the value of
10186                  * vpid12 is changed w/ one invvpid during nested vmentry.
10187                  * The vpid12 is allocated by L1 for L2, so it will not
10188                  * influence global bitmap(for vpid01 and vpid02 allocation)
10189                  * even if spawn a lot of nested vCPUs.
10190                  */
10191                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10192                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10193                         if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10194                                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10195                                 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10196                         }
10197                 } else {
10198                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10199                         vmx_flush_tlb(vcpu);
10200                 }
10201
10202         }
10203
10204         if (enable_pml) {
10205                 /*
10206                  * Conceptually we want to copy the PML address and index from
10207                  * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10208                  * since we always flush the log on each vmexit, this happens
10209                  * to be equivalent to simply resetting the fields in vmcs02.
10210                  */
10211                 ASSERT(vmx->pml_pg);
10212                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10213                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10214         }
10215
10216         if (nested_cpu_has_ept(vmcs12)) {
10217                 if (nested_ept_init_mmu_context(vcpu)) {
10218                         *entry_failure_code = ENTRY_FAIL_DEFAULT;
10219                         return 1;
10220                 }
10221         } else if (nested_cpu_has2(vmcs12,
10222                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10223                 vmx_flush_tlb_ept_only(vcpu);
10224         }
10225
10226         /*
10227          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
10228          * bits which we consider mandatory enabled.
10229          * The CR0_READ_SHADOW is what L2 should have expected to read given
10230          * the specifications by L1; It's not enough to take
10231          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10232          * have more bits than L1 expected.
10233          */
10234         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10235         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10236
10237         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10238         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10239
10240         if (from_vmentry &&
10241             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
10242                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10243         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10244                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10245         else
10246                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10247         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10248         vmx_set_efer(vcpu, vcpu->arch.efer);
10249
10250         /* Shadow page tables on either EPT or shadow page tables. */
10251         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
10252                                 entry_failure_code))
10253                 return 1;
10254
10255         if (!enable_ept)
10256                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10257
10258         /*
10259          * L1 may access the L2's PDPTR, so save them to construct vmcs12
10260          */
10261         if (enable_ept) {
10262                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10263                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10264                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10265                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10266         }
10267
10268         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10269         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10270         return 0;
10271 }
10272
10273 static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10274 {
10275         struct vcpu_vmx *vmx = to_vmx(vcpu);
10276
10277         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10278             vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
10279                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10280
10281         if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
10282                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10283
10284         if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
10285                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10286
10287         if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
10288                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10289
10290         if (nested_vmx_check_pml_controls(vcpu, vmcs12))
10291                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10292
10293         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10294                                 vmx->nested.nested_vmx_procbased_ctls_low,
10295                                 vmx->nested.nested_vmx_procbased_ctls_high) ||
10296             (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
10297              !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10298                                  vmx->nested.nested_vmx_secondary_ctls_low,
10299                                  vmx->nested.nested_vmx_secondary_ctls_high)) ||
10300             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10301                                 vmx->nested.nested_vmx_pinbased_ctls_low,
10302                                 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10303             !vmx_control_verify(vmcs12->vm_exit_controls,
10304                                 vmx->nested.nested_vmx_exit_ctls_low,
10305                                 vmx->nested.nested_vmx_exit_ctls_high) ||
10306             !vmx_control_verify(vmcs12->vm_entry_controls,
10307                                 vmx->nested.nested_vmx_entry_ctls_low,
10308                                 vmx->nested.nested_vmx_entry_ctls_high))
10309                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10310
10311         if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
10312                 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
10313
10314         if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
10315             !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
10316             !nested_cr3_valid(vcpu, vmcs12->host_cr3))
10317                 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
10318
10319         return 0;
10320 }
10321
10322 static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10323                                   u32 *exit_qual)
10324 {
10325         bool ia32e;
10326
10327         *exit_qual = ENTRY_FAIL_DEFAULT;
10328
10329         if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10330             !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
10331                 return 1;
10332
10333         if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
10334             vmcs12->vmcs_link_pointer != -1ull) {
10335                 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
10336                 return 1;
10337         }
10338
10339         /*
10340          * If the load IA32_EFER VM-entry control is 1, the following checks
10341          * are performed on the field for the IA32_EFER MSR:
10342          * - Bits reserved in the IA32_EFER MSR must be 0.
10343          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10344          *   the IA-32e mode guest VM-exit control. It must also be identical
10345          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10346          *   CR0.PG) is 1.
10347          */
10348         if (to_vmx(vcpu)->nested.nested_run_pending &&
10349             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
10350                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10351                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10352                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10353                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10354                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
10355                         return 1;
10356         }
10357
10358         /*
10359          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10360          * IA32_EFER MSR must be 0 in the field for that register. In addition,
10361          * the values of the LMA and LME bits in the field must each be that of
10362          * the host address-space size VM-exit control.
10363          */
10364         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10365                 ia32e = (vmcs12->vm_exit_controls &
10366                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10367                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10368                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10369                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
10370                         return 1;
10371         }
10372
10373         return 0;
10374 }
10375
10376 static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
10377 {
10378         struct vcpu_vmx *vmx = to_vmx(vcpu);
10379         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10380         struct loaded_vmcs *vmcs02;
10381         u32 msr_entry_idx;
10382         u32 exit_qual;
10383
10384         vmcs02 = nested_get_current_vmcs02(vmx);
10385         if (!vmcs02)
10386                 return -ENOMEM;
10387
10388         enter_guest_mode(vcpu);
10389
10390         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10391                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10392
10393         vmx_switch_vmcs(vcpu, vmcs02);
10394         vmx_segment_cache_clear(vmx);
10395
10396         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual)) {
10397                 leave_guest_mode(vcpu);
10398                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10399                 nested_vmx_entry_failure(vcpu, vmcs12,
10400                                          EXIT_REASON_INVALID_STATE, exit_qual);
10401                 return 1;
10402         }
10403
10404         nested_get_vmcs12_pages(vcpu, vmcs12);
10405
10406         msr_entry_idx = nested_vmx_load_msr(vcpu,
10407                                             vmcs12->vm_entry_msr_load_addr,
10408                                             vmcs12->vm_entry_msr_load_count);
10409         if (msr_entry_idx) {
10410                 leave_guest_mode(vcpu);
10411                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10412                 nested_vmx_entry_failure(vcpu, vmcs12,
10413                                 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10414                 return 1;
10415         }
10416
10417         vmcs12->launch_state = 1;
10418
10419         /*
10420          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10421          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10422          * returned as far as L1 is concerned. It will only return (and set
10423          * the success flag) when L2 exits (see nested_vmx_vmexit()).
10424          */
10425         return 0;
10426 }
10427
10428 /*
10429  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10430  * for running an L2 nested guest.
10431  */
10432 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10433 {
10434         struct vmcs12 *vmcs12;
10435         struct vcpu_vmx *vmx = to_vmx(vcpu);
10436         u32 exit_qual;
10437         int ret;
10438
10439         if (!nested_vmx_check_permission(vcpu))
10440                 return 1;
10441
10442         if (!nested_vmx_check_vmcs12(vcpu))
10443                 goto out;
10444
10445         vmcs12 = get_vmcs12(vcpu);
10446
10447         if (enable_shadow_vmcs)
10448                 copy_shadow_to_vmcs12(vmx);
10449
10450         /*
10451          * The nested entry process starts with enforcing various prerequisites
10452          * on vmcs12 as required by the Intel SDM, and act appropriately when
10453          * they fail: As the SDM explains, some conditions should cause the
10454          * instruction to fail, while others will cause the instruction to seem
10455          * to succeed, but return an EXIT_REASON_INVALID_STATE.
10456          * To speed up the normal (success) code path, we should avoid checking
10457          * for misconfigurations which will anyway be caught by the processor
10458          * when using the merged vmcs02.
10459          */
10460         if (vmcs12->launch_state == launch) {
10461                 nested_vmx_failValid(vcpu,
10462                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10463                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10464                 goto out;
10465         }
10466
10467         ret = check_vmentry_prereqs(vcpu, vmcs12);
10468         if (ret) {
10469                 nested_vmx_failValid(vcpu, ret);
10470                 goto out;
10471         }
10472
10473         /*
10474          * After this point, the trap flag no longer triggers a singlestep trap
10475          * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
10476          * This is not 100% correct; for performance reasons, we delegate most
10477          * of the checks on host state to the processor.  If those fail,
10478          * the singlestep trap is missed.
10479          */
10480         skip_emulated_instruction(vcpu);
10481
10482         ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
10483         if (ret) {
10484                 nested_vmx_entry_failure(vcpu, vmcs12,
10485                                          EXIT_REASON_INVALID_STATE, exit_qual);
10486                 return 1;
10487         }
10488
10489         /*
10490          * We're finally done with prerequisite checking, and can start with
10491          * the nested entry.
10492          */
10493
10494         ret = enter_vmx_non_root_mode(vcpu, true);
10495         if (ret)
10496                 return ret;
10497
10498         if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10499                 return kvm_vcpu_halt(vcpu);
10500
10501         vmx->nested.nested_run_pending = 1;
10502
10503         return 1;
10504
10505 out:
10506         return kvm_skip_emulated_instruction(vcpu);
10507 }
10508
10509 /*
10510  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10511  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10512  * This function returns the new value we should put in vmcs12.guest_cr0.
10513  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10514  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10515  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10516  *     didn't trap the bit, because if L1 did, so would L0).
10517  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10518  *     been modified by L2, and L1 knows it. So just leave the old value of
10519  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10520  *     isn't relevant, because if L0 traps this bit it can set it to anything.
10521  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10522  *     changed these bits, and therefore they need to be updated, but L0
10523  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10524  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10525  */
10526 static inline unsigned long
10527 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10528 {
10529         return
10530         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10531         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10532         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10533                         vcpu->arch.cr0_guest_owned_bits));
10534 }
10535
10536 static inline unsigned long
10537 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10538 {
10539         return
10540         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10541         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10542         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10543                         vcpu->arch.cr4_guest_owned_bits));
10544 }
10545
10546 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10547                                        struct vmcs12 *vmcs12)
10548 {
10549         u32 idt_vectoring;
10550         unsigned int nr;
10551
10552         if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10553                 nr = vcpu->arch.exception.nr;
10554                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10555
10556                 if (kvm_exception_is_soft(nr)) {
10557                         vmcs12->vm_exit_instruction_len =
10558                                 vcpu->arch.event_exit_inst_len;
10559                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10560                 } else
10561                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10562
10563                 if (vcpu->arch.exception.has_error_code) {
10564                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10565                         vmcs12->idt_vectoring_error_code =
10566                                 vcpu->arch.exception.error_code;
10567                 }
10568
10569                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10570         } else if (vcpu->arch.nmi_injected) {
10571                 vmcs12->idt_vectoring_info_field =
10572                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10573         } else if (vcpu->arch.interrupt.pending) {
10574                 nr = vcpu->arch.interrupt.nr;
10575                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10576
10577                 if (vcpu->arch.interrupt.soft) {
10578                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
10579                         vmcs12->vm_entry_instruction_len =
10580                                 vcpu->arch.event_exit_inst_len;
10581                 } else
10582                         idt_vectoring |= INTR_TYPE_EXT_INTR;
10583
10584                 vmcs12->idt_vectoring_info_field = idt_vectoring;
10585         }
10586 }
10587
10588 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10589 {
10590         struct vcpu_vmx *vmx = to_vmx(vcpu);
10591
10592         if (vcpu->arch.exception.pending ||
10593                 vcpu->arch.nmi_injected ||
10594                 vcpu->arch.interrupt.pending)
10595                 return -EBUSY;
10596
10597         if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10598             vmx->nested.preemption_timer_expired) {
10599                 if (vmx->nested.nested_run_pending)
10600                         return -EBUSY;
10601                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10602                 return 0;
10603         }
10604
10605         if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10606                 if (vmx->nested.nested_run_pending)
10607                         return -EBUSY;
10608                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10609                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
10610                                   INTR_INFO_VALID_MASK, 0);
10611                 /*
10612                  * The NMI-triggered VM exit counts as injection:
10613                  * clear this one and block further NMIs.
10614                  */
10615                 vcpu->arch.nmi_pending = 0;
10616                 vmx_set_nmi_mask(vcpu, true);
10617                 return 0;
10618         }
10619
10620         if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10621             nested_exit_on_intr(vcpu)) {
10622                 if (vmx->nested.nested_run_pending)
10623                         return -EBUSY;
10624                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10625                 return 0;
10626         }
10627
10628         vmx_complete_nested_posted_interrupt(vcpu);
10629         return 0;
10630 }
10631
10632 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10633 {
10634         ktime_t remaining =
10635                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10636         u64 value;
10637
10638         if (ktime_to_ns(remaining) <= 0)
10639                 return 0;
10640
10641         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10642         do_div(value, 1000000);
10643         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10644 }
10645
10646 /*
10647  * Update the guest state fields of vmcs12 to reflect changes that
10648  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
10649  * VM-entry controls is also updated, since this is really a guest
10650  * state bit.)
10651  */
10652 static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10653 {
10654         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10655         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10656
10657         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10658         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10659         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10660
10661         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10662         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10663         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10664         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10665         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10666         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10667         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10668         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10669         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10670         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10671         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10672         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10673         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10674         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10675         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10676         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10677         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10678         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10679         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10680         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10681         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10682         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10683         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10684         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10685         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10686         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10687         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10688         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10689         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10690         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10691         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10692         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10693         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10694         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10695         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10696         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10697
10698         vmcs12->guest_interruptibility_info =
10699                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10700         vmcs12->guest_pending_dbg_exceptions =
10701                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10702         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10703                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10704         else
10705                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10706
10707         if (nested_cpu_has_preemption_timer(vmcs12)) {
10708                 if (vmcs12->vm_exit_controls &
10709                     VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10710                         vmcs12->vmx_preemption_timer_value =
10711                                 vmx_get_preemption_timer_value(vcpu);
10712                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10713         }
10714
10715         /*
10716          * In some cases (usually, nested EPT), L2 is allowed to change its
10717          * own CR3 without exiting. If it has changed it, we must keep it.
10718          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10719          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10720          *
10721          * Additionally, restore L2's PDPTR to vmcs12.
10722          */
10723         if (enable_ept) {
10724                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10725                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10726                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10727                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10728                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10729         }
10730
10731         if (nested_cpu_has_ept(vmcs12))
10732                 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10733
10734         if (nested_cpu_has_vid(vmcs12))
10735                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10736
10737         vmcs12->vm_entry_controls =
10738                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10739                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10740
10741         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10742                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10743                 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10744         }
10745
10746         /* TODO: These cannot have changed unless we have MSR bitmaps and
10747          * the relevant bit asks not to trap the change */
10748         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10749                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10750         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10751                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10752         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10753         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10754         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10755         if (kvm_mpx_supported())
10756                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10757         if (nested_cpu_has_xsaves(vmcs12))
10758                 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10759 }
10760
10761 /*
10762  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10763  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10764  * and this function updates it to reflect the changes to the guest state while
10765  * L2 was running (and perhaps made some exits which were handled directly by L0
10766  * without going back to L1), and to reflect the exit reason.
10767  * Note that we do not have to copy here all VMCS fields, just those that
10768  * could have changed by the L2 guest or the exit - i.e., the guest-state and
10769  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10770  * which already writes to vmcs12 directly.
10771  */
10772 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10773                            u32 exit_reason, u32 exit_intr_info,
10774                            unsigned long exit_qualification)
10775 {
10776         /* update guest state fields: */
10777         sync_vmcs12(vcpu, vmcs12);
10778
10779         /* update exit information fields: */
10780
10781         vmcs12->vm_exit_reason = exit_reason;
10782         vmcs12->exit_qualification = exit_qualification;
10783
10784         vmcs12->vm_exit_intr_info = exit_intr_info;
10785         if ((vmcs12->vm_exit_intr_info &
10786              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10787             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10788                 vmcs12->vm_exit_intr_error_code =
10789                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10790         vmcs12->idt_vectoring_info_field = 0;
10791         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10792         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10793
10794         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10795                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10796                  * instead of reading the real value. */
10797                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10798
10799                 /*
10800                  * Transfer the event that L0 or L1 may wanted to inject into
10801                  * L2 to IDT_VECTORING_INFO_FIELD.
10802                  */
10803                 vmcs12_save_pending_event(vcpu, vmcs12);
10804         }
10805
10806         /*
10807          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10808          * preserved above and would only end up incorrectly in L1.
10809          */
10810         vcpu->arch.nmi_injected = false;
10811         kvm_clear_exception_queue(vcpu);
10812         kvm_clear_interrupt_queue(vcpu);
10813 }
10814
10815 /*
10816  * A part of what we need to when the nested L2 guest exits and we want to
10817  * run its L1 parent, is to reset L1's guest state to the host state specified
10818  * in vmcs12.
10819  * This function is to be called not only on normal nested exit, but also on
10820  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10821  * Failures During or After Loading Guest State").
10822  * This function should be called when the active VMCS is L1's (vmcs01).
10823  */
10824 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10825                                    struct vmcs12 *vmcs12)
10826 {
10827         struct kvm_segment seg;
10828         u32 entry_failure_code;
10829
10830         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10831                 vcpu->arch.efer = vmcs12->host_ia32_efer;
10832         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10833                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10834         else
10835                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10836         vmx_set_efer(vcpu, vcpu->arch.efer);
10837
10838         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10839         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10840         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10841         /*
10842          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10843          * actually changed, because vmx_set_cr0 refers to efer set above.
10844          *
10845          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
10846          * (KVM doesn't change it);
10847          */
10848         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
10849         vmx_set_cr0(vcpu, vmcs12->host_cr0);
10850
10851         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
10852         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10853         kvm_set_cr4(vcpu, vmcs12->host_cr4);
10854
10855         nested_ept_uninit_mmu_context(vcpu);
10856
10857         /*
10858          * Only PDPTE load can fail as the value of cr3 was checked on entry and
10859          * couldn't have changed.
10860          */
10861         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
10862                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
10863
10864         if (!enable_ept)
10865                 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10866
10867         if (enable_vpid) {
10868                 /*
10869                  * Trivially support vpid by letting L2s share their parent
10870                  * L1's vpid. TODO: move to a more elaborate solution, giving
10871                  * each L2 its own vpid and exposing the vpid feature to L1.
10872                  */
10873                 vmx_flush_tlb(vcpu);
10874         }
10875
10876
10877         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10878         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10879         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10880         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10881         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10882
10883         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10884         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10885                 vmcs_write64(GUEST_BNDCFGS, 0);
10886
10887         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10888                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10889                 vcpu->arch.pat = vmcs12->host_ia32_pat;
10890         }
10891         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10892                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10893                         vmcs12->host_ia32_perf_global_ctrl);
10894
10895         /* Set L1 segment info according to Intel SDM
10896             27.5.2 Loading Host Segment and Descriptor-Table Registers */
10897         seg = (struct kvm_segment) {
10898                 .base = 0,
10899                 .limit = 0xFFFFFFFF,
10900                 .selector = vmcs12->host_cs_selector,
10901                 .type = 11,
10902                 .present = 1,
10903                 .s = 1,
10904                 .g = 1
10905         };
10906         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10907                 seg.l = 1;
10908         else
10909                 seg.db = 1;
10910         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10911         seg = (struct kvm_segment) {
10912                 .base = 0,
10913                 .limit = 0xFFFFFFFF,
10914                 .type = 3,
10915                 .present = 1,
10916                 .s = 1,
10917                 .db = 1,
10918                 .g = 1
10919         };
10920         seg.selector = vmcs12->host_ds_selector;
10921         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10922         seg.selector = vmcs12->host_es_selector;
10923         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10924         seg.selector = vmcs12->host_ss_selector;
10925         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10926         seg.selector = vmcs12->host_fs_selector;
10927         seg.base = vmcs12->host_fs_base;
10928         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10929         seg.selector = vmcs12->host_gs_selector;
10930         seg.base = vmcs12->host_gs_base;
10931         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10932         seg = (struct kvm_segment) {
10933                 .base = vmcs12->host_tr_base,
10934                 .limit = 0x67,
10935                 .selector = vmcs12->host_tr_selector,
10936                 .type = 11,
10937                 .present = 1
10938         };
10939         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10940
10941         kvm_set_dr(vcpu, 7, 0x400);
10942         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10943
10944         if (cpu_has_vmx_msr_bitmap())
10945                 vmx_set_msr_bitmap(vcpu);
10946
10947         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10948                                 vmcs12->vm_exit_msr_load_count))
10949                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10950 }
10951
10952 /*
10953  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10954  * and modify vmcs12 to make it see what it would expect to see there if
10955  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10956  */
10957 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10958                               u32 exit_intr_info,
10959                               unsigned long exit_qualification)
10960 {
10961         struct vcpu_vmx *vmx = to_vmx(vcpu);
10962         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10963         u32 vm_inst_error = 0;
10964
10965         /* trying to cancel vmlaunch/vmresume is a bug */
10966         WARN_ON_ONCE(vmx->nested.nested_run_pending);
10967
10968         leave_guest_mode(vcpu);
10969         prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10970                        exit_qualification);
10971
10972         if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10973                                  vmcs12->vm_exit_msr_store_count))
10974                 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10975
10976         if (unlikely(vmx->fail))
10977                 vm_inst_error = vmcs_read32(VM_INSTRUCTION_ERROR);
10978
10979         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
10980
10981         if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10982             && nested_exit_intr_ack_set(vcpu)) {
10983                 int irq = kvm_cpu_get_interrupt(vcpu);
10984                 WARN_ON(irq < 0);
10985                 vmcs12->vm_exit_intr_info = irq |
10986                         INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10987         }
10988
10989         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10990                                        vmcs12->exit_qualification,
10991                                        vmcs12->idt_vectoring_info_field,
10992                                        vmcs12->vm_exit_intr_info,
10993                                        vmcs12->vm_exit_intr_error_code,
10994                                        KVM_ISA_VMX);
10995
10996         vm_entry_controls_reset_shadow(vmx);
10997         vm_exit_controls_reset_shadow(vmx);
10998         vmx_segment_cache_clear(vmx);
10999
11000         /* if no vmcs02 cache requested, remove the one we used */
11001         if (VMCS02_POOL_SIZE == 0)
11002                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
11003
11004         load_vmcs12_host_state(vcpu, vmcs12);
11005
11006         /* Update any VMCS fields that might have changed while L2 ran */
11007         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11008         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
11009         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11010         if (vmx->hv_deadline_tsc == -1)
11011                 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11012                                 PIN_BASED_VMX_PREEMPTION_TIMER);
11013         else
11014                 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11015                               PIN_BASED_VMX_PREEMPTION_TIMER);
11016         if (kvm_has_tsc_control)
11017                 decache_tsc_multiplier(vmx);
11018
11019         if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
11020                 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
11021                 vmx_set_virtual_x2apic_mode(vcpu,
11022                                 vcpu->arch.apic_base & X2APIC_ENABLE);
11023         } else if (!nested_cpu_has_ept(vmcs12) &&
11024                    nested_cpu_has2(vmcs12,
11025                                    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
11026                 vmx_flush_tlb_ept_only(vcpu);
11027         }
11028
11029         /* This is needed for same reason as it was needed in prepare_vmcs02 */
11030         vmx->host_rsp = 0;
11031
11032         /* Unpin physical memory we referred to in vmcs02 */
11033         if (vmx->nested.apic_access_page) {
11034                 nested_release_page(vmx->nested.apic_access_page);
11035                 vmx->nested.apic_access_page = NULL;
11036         }
11037         if (vmx->nested.virtual_apic_page) {
11038                 nested_release_page(vmx->nested.virtual_apic_page);
11039                 vmx->nested.virtual_apic_page = NULL;
11040         }
11041         if (vmx->nested.pi_desc_page) {
11042                 kunmap(vmx->nested.pi_desc_page);
11043                 nested_release_page(vmx->nested.pi_desc_page);
11044                 vmx->nested.pi_desc_page = NULL;
11045                 vmx->nested.pi_desc = NULL;
11046         }
11047
11048         /*
11049          * We are now running in L2, mmu_notifier will force to reload the
11050          * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
11051          */
11052         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
11053
11054         /*
11055          * Exiting from L2 to L1, we're now back to L1 which thinks it just
11056          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
11057          * success or failure flag accordingly.
11058          */
11059         if (unlikely(vmx->fail)) {
11060                 vmx->fail = 0;
11061                 nested_vmx_failValid(vcpu, vm_inst_error);
11062         } else
11063                 nested_vmx_succeed(vcpu);
11064         if (enable_shadow_vmcs)
11065                 vmx->nested.sync_shadow_vmcs = true;
11066
11067         /* in case we halted in L2 */
11068         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11069 }
11070
11071 /*
11072  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
11073  */
11074 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
11075 {
11076         if (is_guest_mode(vcpu)) {
11077                 to_vmx(vcpu)->nested.nested_run_pending = 0;
11078                 nested_vmx_vmexit(vcpu, -1, 0, 0);
11079         }
11080         free_nested(to_vmx(vcpu));
11081 }
11082
11083 /*
11084  * L1's failure to enter L2 is a subset of a normal exit, as explained in
11085  * 23.7 "VM-entry failures during or after loading guest state" (this also
11086  * lists the acceptable exit-reason and exit-qualification parameters).
11087  * It should only be called before L2 actually succeeded to run, and when
11088  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11089  */
11090 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11091                         struct vmcs12 *vmcs12,
11092                         u32 reason, unsigned long qualification)
11093 {
11094         load_vmcs12_host_state(vcpu, vmcs12);
11095         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11096         vmcs12->exit_qualification = qualification;
11097         nested_vmx_succeed(vcpu);
11098         if (enable_shadow_vmcs)
11099                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11100 }
11101
11102 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11103                                struct x86_instruction_info *info,
11104                                enum x86_intercept_stage stage)
11105 {
11106         return X86EMUL_CONTINUE;
11107 }
11108
11109 #ifdef CONFIG_X86_64
11110 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
11111 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11112                                   u64 divisor, u64 *result)
11113 {
11114         u64 low = a << shift, high = a >> (64 - shift);
11115
11116         /* To avoid the overflow on divq */
11117         if (high >= divisor)
11118                 return 1;
11119
11120         /* Low hold the result, high hold rem which is discarded */
11121         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11122             "rm" (divisor), "0" (low), "1" (high));
11123         *result = low;
11124
11125         return 0;
11126 }
11127
11128 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11129 {
11130         struct vcpu_vmx *vmx = to_vmx(vcpu);
11131         u64 tscl = rdtsc();
11132         u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11133         u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11134
11135         /* Convert to host delta tsc if tsc scaling is enabled */
11136         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11137                         u64_shl_div_u64(delta_tsc,
11138                                 kvm_tsc_scaling_ratio_frac_bits,
11139                                 vcpu->arch.tsc_scaling_ratio,
11140                                 &delta_tsc))
11141                 return -ERANGE;
11142
11143         /*
11144          * If the delta tsc can't fit in the 32 bit after the multi shift,
11145          * we can't use the preemption timer.
11146          * It's possible that it fits on later vmentries, but checking
11147          * on every vmentry is costly so we just use an hrtimer.
11148          */
11149         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11150                 return -ERANGE;
11151
11152         vmx->hv_deadline_tsc = tscl + delta_tsc;
11153         vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11154                         PIN_BASED_VMX_PREEMPTION_TIMER);
11155         return 0;
11156 }
11157
11158 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11159 {
11160         struct vcpu_vmx *vmx = to_vmx(vcpu);
11161         vmx->hv_deadline_tsc = -1;
11162         vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11163                         PIN_BASED_VMX_PREEMPTION_TIMER);
11164 }
11165 #endif
11166
11167 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11168 {
11169         if (ple_gap)
11170                 shrink_ple_window(vcpu);
11171 }
11172
11173 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11174                                      struct kvm_memory_slot *slot)
11175 {
11176         kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11177         kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11178 }
11179
11180 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11181                                        struct kvm_memory_slot *slot)
11182 {
11183         kvm_mmu_slot_set_dirty(kvm, slot);
11184 }
11185
11186 static void vmx_flush_log_dirty(struct kvm *kvm)
11187 {
11188         kvm_flush_pml_buffers(kvm);
11189 }
11190
11191 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
11192 {
11193         struct vmcs12 *vmcs12;
11194         struct vcpu_vmx *vmx = to_vmx(vcpu);
11195         gpa_t gpa;
11196         struct page *page = NULL;
11197         u64 *pml_address;
11198
11199         if (is_guest_mode(vcpu)) {
11200                 WARN_ON_ONCE(vmx->nested.pml_full);
11201
11202                 /*
11203                  * Check if PML is enabled for the nested guest.
11204                  * Whether eptp bit 6 is set is already checked
11205                  * as part of A/D emulation.
11206                  */
11207                 vmcs12 = get_vmcs12(vcpu);
11208                 if (!nested_cpu_has_pml(vmcs12))
11209                         return 0;
11210
11211                 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
11212                         vmx->nested.pml_full = true;
11213                         return 1;
11214                 }
11215
11216                 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
11217
11218                 page = nested_get_page(vcpu, vmcs12->pml_address);
11219                 if (!page)
11220                         return 0;
11221
11222                 pml_address = kmap(page);
11223                 pml_address[vmcs12->guest_pml_index--] = gpa;
11224                 kunmap(page);
11225                 nested_release_page_clean(page);
11226         }
11227
11228         return 0;
11229 }
11230
11231 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11232                                            struct kvm_memory_slot *memslot,
11233                                            gfn_t offset, unsigned long mask)
11234 {
11235         kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11236 }
11237
11238 /*
11239  * This routine does the following things for vCPU which is going
11240  * to be blocked if VT-d PI is enabled.
11241  * - Store the vCPU to the wakeup list, so when interrupts happen
11242  *   we can find the right vCPU to wake up.
11243  * - Change the Posted-interrupt descriptor as below:
11244  *      'NDST' <-- vcpu->pre_pcpu
11245  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11246  * - If 'ON' is set during this process, which means at least one
11247  *   interrupt is posted for this vCPU, we cannot block it, in
11248  *   this case, return 1, otherwise, return 0.
11249  *
11250  */
11251 static int pi_pre_block(struct kvm_vcpu *vcpu)
11252 {
11253         unsigned long flags;
11254         unsigned int dest;
11255         struct pi_desc old, new;
11256         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11257
11258         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11259                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11260                 !kvm_vcpu_apicv_active(vcpu))
11261                 return 0;
11262
11263         vcpu->pre_pcpu = vcpu->cpu;
11264         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11265                           vcpu->pre_pcpu), flags);
11266         list_add_tail(&vcpu->blocked_vcpu_list,
11267                       &per_cpu(blocked_vcpu_on_cpu,
11268                       vcpu->pre_pcpu));
11269         spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
11270                                vcpu->pre_pcpu), flags);
11271
11272         do {
11273                 old.control = new.control = pi_desc->control;
11274
11275                 /*
11276                  * We should not block the vCPU if
11277                  * an interrupt is posted for it.
11278                  */
11279                 if (pi_test_on(pi_desc) == 1) {
11280                         spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
11281                                           vcpu->pre_pcpu), flags);
11282                         list_del(&vcpu->blocked_vcpu_list);
11283                         spin_unlock_irqrestore(
11284                                         &per_cpu(blocked_vcpu_on_cpu_lock,
11285                                         vcpu->pre_pcpu), flags);
11286                         vcpu->pre_pcpu = -1;
11287
11288                         return 1;
11289                 }
11290
11291                 WARN((pi_desc->sn == 1),
11292                      "Warning: SN field of posted-interrupts "
11293                      "is set before blocking\n");
11294
11295                 /*
11296                  * Since vCPU can be preempted during this process,
11297                  * vcpu->cpu could be different with pre_pcpu, we
11298                  * need to set pre_pcpu as the destination of wakeup
11299                  * notification event, then we can find the right vCPU
11300                  * to wakeup in wakeup handler if interrupts happen
11301                  * when the vCPU is in blocked state.
11302                  */
11303                 dest = cpu_physical_id(vcpu->pre_pcpu);
11304
11305                 if (x2apic_enabled())
11306                         new.ndst = dest;
11307                 else
11308                         new.ndst = (dest << 8) & 0xFF00;
11309
11310                 /* set 'NV' to 'wakeup vector' */
11311                 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11312         } while (cmpxchg(&pi_desc->control, old.control,
11313                         new.control) != old.control);
11314
11315         return 0;
11316 }
11317
11318 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11319 {
11320         if (pi_pre_block(vcpu))
11321                 return 1;
11322
11323         if (kvm_lapic_hv_timer_in_use(vcpu))
11324                 kvm_lapic_switch_to_sw_timer(vcpu);
11325
11326         return 0;
11327 }
11328
11329 static void pi_post_block(struct kvm_vcpu *vcpu)
11330 {
11331         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11332         struct pi_desc old, new;
11333         unsigned int dest;
11334         unsigned long flags;
11335
11336         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11337                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11338                 !kvm_vcpu_apicv_active(vcpu))
11339                 return;
11340
11341         do {
11342                 old.control = new.control = pi_desc->control;
11343
11344                 dest = cpu_physical_id(vcpu->cpu);
11345
11346                 if (x2apic_enabled())
11347                         new.ndst = dest;
11348                 else
11349                         new.ndst = (dest << 8) & 0xFF00;
11350
11351                 /* Allow posting non-urgent interrupts */
11352                 new.sn = 0;
11353
11354                 /* set 'NV' to 'notification vector' */
11355                 new.nv = POSTED_INTR_VECTOR;
11356         } while (cmpxchg(&pi_desc->control, old.control,
11357                         new.control) != old.control);
11358
11359         if(vcpu->pre_pcpu != -1) {
11360                 spin_lock_irqsave(
11361                         &per_cpu(blocked_vcpu_on_cpu_lock,
11362                         vcpu->pre_pcpu), flags);
11363                 list_del(&vcpu->blocked_vcpu_list);
11364                 spin_unlock_irqrestore(
11365                         &per_cpu(blocked_vcpu_on_cpu_lock,
11366                         vcpu->pre_pcpu), flags);
11367                 vcpu->pre_pcpu = -1;
11368         }
11369 }
11370
11371 static void vmx_post_block(struct kvm_vcpu *vcpu)
11372 {
11373         if (kvm_x86_ops->set_hv_timer)
11374                 kvm_lapic_switch_to_hv_timer(vcpu);
11375
11376         pi_post_block(vcpu);
11377 }
11378
11379 /*
11380  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11381  *
11382  * @kvm: kvm
11383  * @host_irq: host irq of the interrupt
11384  * @guest_irq: gsi of the interrupt
11385  * @set: set or unset PI
11386  * returns 0 on success, < 0 on failure
11387  */
11388 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11389                               uint32_t guest_irq, bool set)
11390 {
11391         struct kvm_kernel_irq_routing_entry *e;
11392         struct kvm_irq_routing_table *irq_rt;
11393         struct kvm_lapic_irq irq;
11394         struct kvm_vcpu *vcpu;
11395         struct vcpu_data vcpu_info;
11396         int idx, ret = -EINVAL;
11397
11398         if (!kvm_arch_has_assigned_device(kvm) ||
11399                 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11400                 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11401                 return 0;
11402
11403         idx = srcu_read_lock(&kvm->irq_srcu);
11404         irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11405         BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11406
11407         hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11408                 if (e->type != KVM_IRQ_ROUTING_MSI)
11409                         continue;
11410                 /*
11411                  * VT-d PI cannot support posting multicast/broadcast
11412                  * interrupts to a vCPU, we still use interrupt remapping
11413                  * for these kind of interrupts.
11414                  *
11415                  * For lowest-priority interrupts, we only support
11416                  * those with single CPU as the destination, e.g. user
11417                  * configures the interrupts via /proc/irq or uses
11418                  * irqbalance to make the interrupts single-CPU.
11419                  *
11420                  * We will support full lowest-priority interrupt later.
11421                  */
11422
11423                 kvm_set_msi_irq(kvm, e, &irq);
11424                 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11425                         /*
11426                          * Make sure the IRTE is in remapped mode if
11427                          * we don't handle it in posted mode.
11428                          */
11429                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11430                         if (ret < 0) {
11431                                 printk(KERN_INFO
11432                                    "failed to back to remapped mode, irq: %u\n",
11433                                    host_irq);
11434                                 goto out;
11435                         }
11436
11437                         continue;
11438                 }
11439
11440                 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11441                 vcpu_info.vector = irq.vector;
11442
11443                 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11444                                 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11445
11446                 if (set)
11447                         ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11448                 else {
11449                         /* suppress notification event before unposting */
11450                         pi_set_sn(vcpu_to_pi_desc(vcpu));
11451                         ret = irq_set_vcpu_affinity(host_irq, NULL);
11452                         pi_clear_sn(vcpu_to_pi_desc(vcpu));
11453                 }
11454
11455                 if (ret < 0) {
11456                         printk(KERN_INFO "%s: failed to update PI IRTE\n",
11457                                         __func__);
11458                         goto out;
11459                 }
11460         }
11461
11462         ret = 0;
11463 out:
11464         srcu_read_unlock(&kvm->irq_srcu, idx);
11465         return ret;
11466 }
11467
11468 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11469 {
11470         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11471                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11472                         FEATURE_CONTROL_LMCE;
11473         else
11474                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11475                         ~FEATURE_CONTROL_LMCE;
11476 }
11477
11478 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11479         .cpu_has_kvm_support = cpu_has_kvm_support,
11480         .disabled_by_bios = vmx_disabled_by_bios,
11481         .hardware_setup = hardware_setup,
11482         .hardware_unsetup = hardware_unsetup,
11483         .check_processor_compatibility = vmx_check_processor_compat,
11484         .hardware_enable = hardware_enable,
11485         .hardware_disable = hardware_disable,
11486         .cpu_has_accelerated_tpr = report_flexpriority,
11487         .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11488
11489         .vcpu_create = vmx_create_vcpu,
11490         .vcpu_free = vmx_free_vcpu,
11491         .vcpu_reset = vmx_vcpu_reset,
11492
11493         .prepare_guest_switch = vmx_save_host_state,
11494         .vcpu_load = vmx_vcpu_load,
11495         .vcpu_put = vmx_vcpu_put,
11496
11497         .update_bp_intercept = update_exception_bitmap,
11498         .get_msr = vmx_get_msr,
11499         .set_msr = vmx_set_msr,
11500         .get_segment_base = vmx_get_segment_base,
11501         .get_segment = vmx_get_segment,
11502         .set_segment = vmx_set_segment,
11503         .get_cpl = vmx_get_cpl,
11504         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11505         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11506         .decache_cr3 = vmx_decache_cr3,
11507         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11508         .set_cr0 = vmx_set_cr0,
11509         .set_cr3 = vmx_set_cr3,
11510         .set_cr4 = vmx_set_cr4,
11511         .set_efer = vmx_set_efer,
11512         .get_idt = vmx_get_idt,
11513         .set_idt = vmx_set_idt,
11514         .get_gdt = vmx_get_gdt,
11515         .set_gdt = vmx_set_gdt,
11516         .get_dr6 = vmx_get_dr6,
11517         .set_dr6 = vmx_set_dr6,
11518         .set_dr7 = vmx_set_dr7,
11519         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11520         .cache_reg = vmx_cache_reg,
11521         .get_rflags = vmx_get_rflags,
11522         .set_rflags = vmx_set_rflags,
11523
11524         .get_pkru = vmx_get_pkru,
11525
11526         .tlb_flush = vmx_flush_tlb,
11527
11528         .run = vmx_vcpu_run,
11529         .handle_exit = vmx_handle_exit,
11530         .skip_emulated_instruction = skip_emulated_instruction,
11531         .set_interrupt_shadow = vmx_set_interrupt_shadow,
11532         .get_interrupt_shadow = vmx_get_interrupt_shadow,
11533         .patch_hypercall = vmx_patch_hypercall,
11534         .set_irq = vmx_inject_irq,
11535         .set_nmi = vmx_inject_nmi,
11536         .queue_exception = vmx_queue_exception,
11537         .cancel_injection = vmx_cancel_injection,
11538         .interrupt_allowed = vmx_interrupt_allowed,
11539         .nmi_allowed = vmx_nmi_allowed,
11540         .get_nmi_mask = vmx_get_nmi_mask,
11541         .set_nmi_mask = vmx_set_nmi_mask,
11542         .enable_nmi_window = enable_nmi_window,
11543         .enable_irq_window = enable_irq_window,
11544         .update_cr8_intercept = update_cr8_intercept,
11545         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11546         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11547         .get_enable_apicv = vmx_get_enable_apicv,
11548         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11549         .load_eoi_exitmap = vmx_load_eoi_exitmap,
11550         .apicv_post_state_restore = vmx_apicv_post_state_restore,
11551         .hwapic_irr_update = vmx_hwapic_irr_update,
11552         .hwapic_isr_update = vmx_hwapic_isr_update,
11553         .sync_pir_to_irr = vmx_sync_pir_to_irr,
11554         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11555
11556         .set_tss_addr = vmx_set_tss_addr,
11557         .get_tdp_level = get_ept_level,
11558         .get_mt_mask = vmx_get_mt_mask,
11559
11560         .get_exit_info = vmx_get_exit_info,
11561
11562         .get_lpage_level = vmx_get_lpage_level,
11563
11564         .cpuid_update = vmx_cpuid_update,
11565
11566         .rdtscp_supported = vmx_rdtscp_supported,
11567         .invpcid_supported = vmx_invpcid_supported,
11568
11569         .set_supported_cpuid = vmx_set_supported_cpuid,
11570
11571         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11572
11573         .write_tsc_offset = vmx_write_tsc_offset,
11574
11575         .set_tdp_cr3 = vmx_set_cr3,
11576
11577         .check_intercept = vmx_check_intercept,
11578         .handle_external_intr = vmx_handle_external_intr,
11579         .mpx_supported = vmx_mpx_supported,
11580         .xsaves_supported = vmx_xsaves_supported,
11581
11582         .check_nested_events = vmx_check_nested_events,
11583
11584         .sched_in = vmx_sched_in,
11585
11586         .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11587         .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11588         .flush_log_dirty = vmx_flush_log_dirty,
11589         .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11590         .write_log_dirty = vmx_write_pml_buffer,
11591
11592         .pre_block = vmx_pre_block,
11593         .post_block = vmx_post_block,
11594
11595         .pmu_ops = &intel_pmu_ops,
11596
11597         .update_pi_irte = vmx_update_pi_irte,
11598
11599 #ifdef CONFIG_X86_64
11600         .set_hv_timer = vmx_set_hv_timer,
11601         .cancel_hv_timer = vmx_cancel_hv_timer,
11602 #endif
11603
11604         .setup_mce = vmx_setup_mce,
11605 };
11606
11607 static int __init vmx_init(void)
11608 {
11609         int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11610                      __alignof__(struct vcpu_vmx), THIS_MODULE);
11611         if (r)
11612                 return r;
11613
11614 #ifdef CONFIG_KEXEC_CORE
11615         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11616                            crash_vmclear_local_loaded_vmcss);
11617 #endif
11618
11619         return 0;
11620 }
11621
11622 static void __exit vmx_exit(void)
11623 {
11624 #ifdef CONFIG_KEXEC_CORE
11625         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11626         synchronize_rcu();
11627 #endif
11628
11629         kvm_exit();
11630 }
11631
11632 module_init(vmx_init)
11633 module_exit(vmx_exit)