]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
0435b653f58389941ff88cb59fe3d199bb63bef6
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
35 #include <linux/fs.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
53
54 #define CREATE_TRACE_POINTS
55 #include "trace.h"
56
57 #include <asm/debugreg.h>
58 #include <asm/msr.h>
59 #include <asm/desc.h>
60 #include <asm/mtrr.h>
61 #include <asm/mce.h>
62 #include <asm/i387.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/xcr.h>
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 bool kvm_has_tsc_control;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
104 u32  kvm_max_guest_tsc_khz;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
106
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm = 250;
109 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
110
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns = 0;
113 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
114
115 static bool backwards_tsc_observed = false;
116
117 #define KVM_NR_SHARED_MSRS 16
118
119 struct kvm_shared_msrs_global {
120         int nr;
121         u32 msrs[KVM_NR_SHARED_MSRS];
122 };
123
124 struct kvm_shared_msrs {
125         struct user_return_notifier urn;
126         bool registered;
127         struct kvm_shared_msr_values {
128                 u64 host;
129                 u64 curr;
130         } values[KVM_NR_SHARED_MSRS];
131 };
132
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
134 static struct kvm_shared_msrs __percpu *shared_msrs;
135
136 struct kvm_stats_debugfs_item debugfs_entries[] = {
137         { "pf_fixed", VCPU_STAT(pf_fixed) },
138         { "pf_guest", VCPU_STAT(pf_guest) },
139         { "tlb_flush", VCPU_STAT(tlb_flush) },
140         { "invlpg", VCPU_STAT(invlpg) },
141         { "exits", VCPU_STAT(exits) },
142         { "io_exits", VCPU_STAT(io_exits) },
143         { "mmio_exits", VCPU_STAT(mmio_exits) },
144         { "signal_exits", VCPU_STAT(signal_exits) },
145         { "irq_window", VCPU_STAT(irq_window_exits) },
146         { "nmi_window", VCPU_STAT(nmi_window_exits) },
147         { "halt_exits", VCPU_STAT(halt_exits) },
148         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
149         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
150         { "hypercalls", VCPU_STAT(hypercalls) },
151         { "request_irq", VCPU_STAT(request_irq_exits) },
152         { "irq_exits", VCPU_STAT(irq_exits) },
153         { "host_state_reload", VCPU_STAT(host_state_reload) },
154         { "efer_reload", VCPU_STAT(efer_reload) },
155         { "fpu_reload", VCPU_STAT(fpu_reload) },
156         { "insn_emulation", VCPU_STAT(insn_emulation) },
157         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
158         { "irq_injections", VCPU_STAT(irq_injections) },
159         { "nmi_injections", VCPU_STAT(nmi_injections) },
160         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
161         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
162         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
163         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
164         { "mmu_flooded", VM_STAT(mmu_flooded) },
165         { "mmu_recycled", VM_STAT(mmu_recycled) },
166         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
167         { "mmu_unsync", VM_STAT(mmu_unsync) },
168         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
169         { "largepages", VM_STAT(lpages) },
170         { NULL }
171 };
172
173 u64 __read_mostly host_xcr0;
174
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
176
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
178 {
179         int i;
180         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
181                 vcpu->arch.apf.gfns[i] = ~0;
182 }
183
184 static void kvm_on_user_return(struct user_return_notifier *urn)
185 {
186         unsigned slot;
187         struct kvm_shared_msrs *locals
188                 = container_of(urn, struct kvm_shared_msrs, urn);
189         struct kvm_shared_msr_values *values;
190
191         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
192                 values = &locals->values[slot];
193                 if (values->host != values->curr) {
194                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
195                         values->curr = values->host;
196                 }
197         }
198         locals->registered = false;
199         user_return_notifier_unregister(urn);
200 }
201
202 static void shared_msr_update(unsigned slot, u32 msr)
203 {
204         u64 value;
205         unsigned int cpu = smp_processor_id();
206         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
207
208         /* only read, and nobody should modify it at this time,
209          * so don't need lock */
210         if (slot >= shared_msrs_global.nr) {
211                 printk(KERN_ERR "kvm: invalid MSR slot!");
212                 return;
213         }
214         rdmsrl_safe(msr, &value);
215         smsr->values[slot].host = value;
216         smsr->values[slot].curr = value;
217 }
218
219 void kvm_define_shared_msr(unsigned slot, u32 msr)
220 {
221         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
222         if (slot >= shared_msrs_global.nr)
223                 shared_msrs_global.nr = slot + 1;
224         shared_msrs_global.msrs[slot] = msr;
225         /* we need ensured the shared_msr_global have been updated */
226         smp_wmb();
227 }
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
229
230 static void kvm_shared_msr_cpu_online(void)
231 {
232         unsigned i;
233
234         for (i = 0; i < shared_msrs_global.nr; ++i)
235                 shared_msr_update(i, shared_msrs_global.msrs[i]);
236 }
237
238 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
239 {
240         unsigned int cpu = smp_processor_id();
241         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
242         int err;
243
244         if (((value ^ smsr->values[slot].curr) & mask) == 0)
245                 return 0;
246         smsr->values[slot].curr = value;
247         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
248         if (err)
249                 return 1;
250
251         if (!smsr->registered) {
252                 smsr->urn.on_user_return = kvm_on_user_return;
253                 user_return_notifier_register(&smsr->urn);
254                 smsr->registered = true;
255         }
256         return 0;
257 }
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
259
260 static void drop_user_return_notifiers(void)
261 {
262         unsigned int cpu = smp_processor_id();
263         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
264
265         if (smsr->registered)
266                 kvm_on_user_return(&smsr->urn);
267 }
268
269 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
270 {
271         return vcpu->arch.apic_base;
272 }
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
274
275 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
276 {
277         u64 old_state = vcpu->arch.apic_base &
278                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
279         u64 new_state = msr_info->data &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
282                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
283
284         if (!msr_info->host_initiated &&
285             ((msr_info->data & reserved_bits) != 0 ||
286              new_state == X2APIC_ENABLE ||
287              (new_state == MSR_IA32_APICBASE_ENABLE &&
288               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
289              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
290               old_state == 0)))
291                 return 1;
292
293         kvm_lapic_set_base(vcpu, msr_info->data);
294         return 0;
295 }
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
297
298 asmlinkage __visible void kvm_spurious_fault(void)
299 {
300         /* Fault while not rebooting.  We want the trace. */
301         BUG();
302 }
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
304
305 #define EXCPT_BENIGN            0
306 #define EXCPT_CONTRIBUTORY      1
307 #define EXCPT_PF                2
308
309 static int exception_class(int vector)
310 {
311         switch (vector) {
312         case PF_VECTOR:
313                 return EXCPT_PF;
314         case DE_VECTOR:
315         case TS_VECTOR:
316         case NP_VECTOR:
317         case SS_VECTOR:
318         case GP_VECTOR:
319                 return EXCPT_CONTRIBUTORY;
320         default:
321                 break;
322         }
323         return EXCPT_BENIGN;
324 }
325
326 #define EXCPT_FAULT             0
327 #define EXCPT_TRAP              1
328 #define EXCPT_ABORT             2
329 #define EXCPT_INTERRUPT         3
330
331 static int exception_type(int vector)
332 {
333         unsigned int mask;
334
335         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
336                 return EXCPT_INTERRUPT;
337
338         mask = 1 << vector;
339
340         /* #DB is trap, as instruction watchpoints are handled elsewhere */
341         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
342                 return EXCPT_TRAP;
343
344         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
345                 return EXCPT_ABORT;
346
347         /* Reserved exceptions will result in fault */
348         return EXCPT_FAULT;
349 }
350
351 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
352                 unsigned nr, bool has_error, u32 error_code,
353                 bool reinject)
354 {
355         u32 prev_nr;
356         int class1, class2;
357
358         kvm_make_request(KVM_REQ_EVENT, vcpu);
359
360         if (!vcpu->arch.exception.pending) {
361         queue:
362                 if (has_error && !is_protmode(vcpu))
363                         has_error = false;
364                 vcpu->arch.exception.pending = true;
365                 vcpu->arch.exception.has_error_code = has_error;
366                 vcpu->arch.exception.nr = nr;
367                 vcpu->arch.exception.error_code = error_code;
368                 vcpu->arch.exception.reinject = reinject;
369                 return;
370         }
371
372         /* to check exception */
373         prev_nr = vcpu->arch.exception.nr;
374         if (prev_nr == DF_VECTOR) {
375                 /* triple fault -> shutdown */
376                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
377                 return;
378         }
379         class1 = exception_class(prev_nr);
380         class2 = exception_class(nr);
381         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
382                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
383                 /* generate double fault per SDM Table 5-5 */
384                 vcpu->arch.exception.pending = true;
385                 vcpu->arch.exception.has_error_code = true;
386                 vcpu->arch.exception.nr = DF_VECTOR;
387                 vcpu->arch.exception.error_code = 0;
388         } else
389                 /* replace previous exception with a new one in a hope
390                    that instruction re-execution will regenerate lost
391                    exception */
392                 goto queue;
393 }
394
395 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
396 {
397         kvm_multiple_exception(vcpu, nr, false, 0, false);
398 }
399 EXPORT_SYMBOL_GPL(kvm_queue_exception);
400
401 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
402 {
403         kvm_multiple_exception(vcpu, nr, false, 0, true);
404 }
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
406
407 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
408 {
409         if (err)
410                 kvm_inject_gp(vcpu, 0);
411         else
412                 kvm_x86_ops->skip_emulated_instruction(vcpu);
413 }
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
415
416 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
417 {
418         ++vcpu->stat.pf_guest;
419         vcpu->arch.cr2 = fault->address;
420         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
421 }
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
423
424 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
425 {
426         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
427                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
428         else
429                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
430
431         return fault->nested_page_fault;
432 }
433
434 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
435 {
436         atomic_inc(&vcpu->arch.nmi_queued);
437         kvm_make_request(KVM_REQ_NMI, vcpu);
438 }
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
440
441 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
442 {
443         kvm_multiple_exception(vcpu, nr, true, error_code, false);
444 }
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
446
447 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
448 {
449         kvm_multiple_exception(vcpu, nr, true, error_code, true);
450 }
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
452
453 /*
454  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
455  * a #GP and return false.
456  */
457 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
458 {
459         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
460                 return true;
461         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
462         return false;
463 }
464 EXPORT_SYMBOL_GPL(kvm_require_cpl);
465
466 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
467 {
468         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
469                 return true;
470
471         kvm_queue_exception(vcpu, UD_VECTOR);
472         return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_dr);
475
476 /*
477  * This function will be used to read from the physical memory of the currently
478  * running guest. The difference to kvm_read_guest_page is that this function
479  * can read from guest physical or from the guest's guest physical memory.
480  */
481 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
482                             gfn_t ngfn, void *data, int offset, int len,
483                             u32 access)
484 {
485         struct x86_exception exception;
486         gfn_t real_gfn;
487         gpa_t ngpa;
488
489         ngpa     = gfn_to_gpa(ngfn);
490         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
491         if (real_gfn == UNMAPPED_GVA)
492                 return -EFAULT;
493
494         real_gfn = gpa_to_gfn(real_gfn);
495
496         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
497 }
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
499
500 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
501                                void *data, int offset, int len, u32 access)
502 {
503         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
504                                        data, offset, len, access);
505 }
506
507 /*
508  * Load the pae pdptrs.  Return true is they are all valid.
509  */
510 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
511 {
512         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
513         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
514         int i;
515         int ret;
516         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
517
518         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
519                                       offset * sizeof(u64), sizeof(pdpte),
520                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
521         if (ret < 0) {
522                 ret = 0;
523                 goto out;
524         }
525         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
526                 if (is_present_gpte(pdpte[i]) &&
527                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
528                         ret = 0;
529                         goto out;
530                 }
531         }
532         ret = 1;
533
534         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
535         __set_bit(VCPU_EXREG_PDPTR,
536                   (unsigned long *)&vcpu->arch.regs_avail);
537         __set_bit(VCPU_EXREG_PDPTR,
538                   (unsigned long *)&vcpu->arch.regs_dirty);
539 out:
540
541         return ret;
542 }
543 EXPORT_SYMBOL_GPL(load_pdptrs);
544
545 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
546 {
547         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
548         bool changed = true;
549         int offset;
550         gfn_t gfn;
551         int r;
552
553         if (is_long_mode(vcpu) || !is_pae(vcpu))
554                 return false;
555
556         if (!test_bit(VCPU_EXREG_PDPTR,
557                       (unsigned long *)&vcpu->arch.regs_avail))
558                 return true;
559
560         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
561         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
562         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
563                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
564         if (r < 0)
565                 goto out;
566         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
567 out:
568
569         return changed;
570 }
571
572 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
573 {
574         unsigned long old_cr0 = kvm_read_cr0(vcpu);
575         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
576                                     X86_CR0_CD | X86_CR0_NW;
577
578         cr0 |= X86_CR0_ET;
579
580 #ifdef CONFIG_X86_64
581         if (cr0 & 0xffffffff00000000UL)
582                 return 1;
583 #endif
584
585         cr0 &= ~CR0_RESERVED_BITS;
586
587         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
588                 return 1;
589
590         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
591                 return 1;
592
593         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
594 #ifdef CONFIG_X86_64
595                 if ((vcpu->arch.efer & EFER_LME)) {
596                         int cs_db, cs_l;
597
598                         if (!is_pae(vcpu))
599                                 return 1;
600                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
601                         if (cs_l)
602                                 return 1;
603                 } else
604 #endif
605                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
606                                                  kvm_read_cr3(vcpu)))
607                         return 1;
608         }
609
610         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
611                 return 1;
612
613         kvm_x86_ops->set_cr0(vcpu, cr0);
614
615         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
616                 kvm_clear_async_pf_completion_queue(vcpu);
617                 kvm_async_pf_hash_reset(vcpu);
618         }
619
620         if ((cr0 ^ old_cr0) & update_bits)
621                 kvm_mmu_reset_context(vcpu);
622         return 0;
623 }
624 EXPORT_SYMBOL_GPL(kvm_set_cr0);
625
626 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
627 {
628         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
629 }
630 EXPORT_SYMBOL_GPL(kvm_lmsw);
631
632 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
633 {
634         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
635                         !vcpu->guest_xcr0_loaded) {
636                 /* kvm_set_xcr() also depends on this */
637                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
638                 vcpu->guest_xcr0_loaded = 1;
639         }
640 }
641
642 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
643 {
644         if (vcpu->guest_xcr0_loaded) {
645                 if (vcpu->arch.xcr0 != host_xcr0)
646                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
647                 vcpu->guest_xcr0_loaded = 0;
648         }
649 }
650
651 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
652 {
653         u64 xcr0 = xcr;
654         u64 old_xcr0 = vcpu->arch.xcr0;
655         u64 valid_bits;
656
657         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
658         if (index != XCR_XFEATURE_ENABLED_MASK)
659                 return 1;
660         if (!(xcr0 & XSTATE_FP))
661                 return 1;
662         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
663                 return 1;
664
665         /*
666          * Do not allow the guest to set bits that we do not support
667          * saving.  However, xcr0 bit 0 is always set, even if the
668          * emulated CPU does not support XSAVE (see fx_init).
669          */
670         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
671         if (xcr0 & ~valid_bits)
672                 return 1;
673
674         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
675                 return 1;
676
677         if (xcr0 & XSTATE_AVX512) {
678                 if (!(xcr0 & XSTATE_YMM))
679                         return 1;
680                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
681                         return 1;
682         }
683         kvm_put_guest_xcr0(vcpu);
684         vcpu->arch.xcr0 = xcr0;
685
686         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
687                 kvm_update_cpuid(vcpu);
688         return 0;
689 }
690
691 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
692 {
693         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
694             __kvm_set_xcr(vcpu, index, xcr)) {
695                 kvm_inject_gp(vcpu, 0);
696                 return 1;
697         }
698         return 0;
699 }
700 EXPORT_SYMBOL_GPL(kvm_set_xcr);
701
702 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
703 {
704         unsigned long old_cr4 = kvm_read_cr4(vcpu);
705         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
706                                    X86_CR4_PAE | X86_CR4_SMEP;
707         if (cr4 & CR4_RESERVED_BITS)
708                 return 1;
709
710         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
711                 return 1;
712
713         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
714                 return 1;
715
716         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
717                 return 1;
718
719         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
720                 return 1;
721
722         if (is_long_mode(vcpu)) {
723                 if (!(cr4 & X86_CR4_PAE))
724                         return 1;
725         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
726                    && ((cr4 ^ old_cr4) & pdptr_bits)
727                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
728                                    kvm_read_cr3(vcpu)))
729                 return 1;
730
731         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
732                 if (!guest_cpuid_has_pcid(vcpu))
733                         return 1;
734
735                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
737                         return 1;
738         }
739
740         if (kvm_x86_ops->set_cr4(vcpu, cr4))
741                 return 1;
742
743         if (((cr4 ^ old_cr4) & pdptr_bits) ||
744             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
745                 kvm_mmu_reset_context(vcpu);
746
747         if ((cr4 ^ old_cr4) & X86_CR4_SMAP)
748                 update_permission_bitmask(vcpu, vcpu->arch.walk_mmu, false);
749
750         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
751                 kvm_update_cpuid(vcpu);
752
753         return 0;
754 }
755 EXPORT_SYMBOL_GPL(kvm_set_cr4);
756
757 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
758 {
759 #ifdef CONFIG_X86_64
760         cr3 &= ~CR3_PCID_INVD;
761 #endif
762
763         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
764                 kvm_mmu_sync_roots(vcpu);
765                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
766                 return 0;
767         }
768
769         if (is_long_mode(vcpu)) {
770                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
771                         return 1;
772         } else if (is_pae(vcpu) && is_paging(vcpu) &&
773                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
774                 return 1;
775
776         vcpu->arch.cr3 = cr3;
777         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
778         kvm_mmu_new_cr3(vcpu);
779         return 0;
780 }
781 EXPORT_SYMBOL_GPL(kvm_set_cr3);
782
783 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
784 {
785         if (cr8 & CR8_RESERVED_BITS)
786                 return 1;
787         if (irqchip_in_kernel(vcpu->kvm))
788                 kvm_lapic_set_tpr(vcpu, cr8);
789         else
790                 vcpu->arch.cr8 = cr8;
791         return 0;
792 }
793 EXPORT_SYMBOL_GPL(kvm_set_cr8);
794
795 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
796 {
797         if (irqchip_in_kernel(vcpu->kvm))
798                 return kvm_lapic_get_cr8(vcpu);
799         else
800                 return vcpu->arch.cr8;
801 }
802 EXPORT_SYMBOL_GPL(kvm_get_cr8);
803
804 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
805 {
806         int i;
807
808         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
809                 for (i = 0; i < KVM_NR_DB_REGS; i++)
810                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
811                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
812         }
813 }
814
815 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
816 {
817         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
818                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
819 }
820
821 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
822 {
823         unsigned long dr7;
824
825         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
826                 dr7 = vcpu->arch.guest_debug_dr7;
827         else
828                 dr7 = vcpu->arch.dr7;
829         kvm_x86_ops->set_dr7(vcpu, dr7);
830         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
831         if (dr7 & DR7_BP_EN_MASK)
832                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
833 }
834
835 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
836 {
837         u64 fixed = DR6_FIXED_1;
838
839         if (!guest_cpuid_has_rtm(vcpu))
840                 fixed |= DR6_RTM;
841         return fixed;
842 }
843
844 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
845 {
846         switch (dr) {
847         case 0 ... 3:
848                 vcpu->arch.db[dr] = val;
849                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
850                         vcpu->arch.eff_db[dr] = val;
851                 break;
852         case 4:
853                 /* fall through */
854         case 6:
855                 if (val & 0xffffffff00000000ULL)
856                         return -1; /* #GP */
857                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
858                 kvm_update_dr6(vcpu);
859                 break;
860         case 5:
861                 /* fall through */
862         default: /* 7 */
863                 if (val & 0xffffffff00000000ULL)
864                         return -1; /* #GP */
865                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
866                 kvm_update_dr7(vcpu);
867                 break;
868         }
869
870         return 0;
871 }
872
873 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
874 {
875         if (__kvm_set_dr(vcpu, dr, val)) {
876                 kvm_inject_gp(vcpu, 0);
877                 return 1;
878         }
879         return 0;
880 }
881 EXPORT_SYMBOL_GPL(kvm_set_dr);
882
883 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
884 {
885         switch (dr) {
886         case 0 ... 3:
887                 *val = vcpu->arch.db[dr];
888                 break;
889         case 4:
890                 /* fall through */
891         case 6:
892                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
893                         *val = vcpu->arch.dr6;
894                 else
895                         *val = kvm_x86_ops->get_dr6(vcpu);
896                 break;
897         case 5:
898                 /* fall through */
899         default: /* 7 */
900                 *val = vcpu->arch.dr7;
901                 break;
902         }
903         return 0;
904 }
905 EXPORT_SYMBOL_GPL(kvm_get_dr);
906
907 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
908 {
909         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
910         u64 data;
911         int err;
912
913         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
914         if (err)
915                 return err;
916         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
917         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
918         return err;
919 }
920 EXPORT_SYMBOL_GPL(kvm_rdpmc);
921
922 /*
923  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
924  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
925  *
926  * This list is modified at module load time to reflect the
927  * capabilities of the host cpu. This capabilities test skips MSRs that are
928  * kvm-specific. Those are put in the beginning of the list.
929  */
930
931 #define KVM_SAVE_MSRS_BEGIN     12
932 static u32 msrs_to_save[] = {
933         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
934         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
935         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
936         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
937         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
938         MSR_KVM_PV_EOI_EN,
939         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
940         MSR_STAR,
941 #ifdef CONFIG_X86_64
942         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
943 #endif
944         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
945         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
946 };
947
948 static unsigned num_msrs_to_save;
949
950 static const u32 emulated_msrs[] = {
951         MSR_IA32_TSC_ADJUST,
952         MSR_IA32_TSCDEADLINE,
953         MSR_IA32_MISC_ENABLE,
954         MSR_IA32_MCG_STATUS,
955         MSR_IA32_MCG_CTL,
956 };
957
958 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
959 {
960         if (efer & efer_reserved_bits)
961                 return false;
962
963         if (efer & EFER_FFXSR) {
964                 struct kvm_cpuid_entry2 *feat;
965
966                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
967                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
968                         return false;
969         }
970
971         if (efer & EFER_SVME) {
972                 struct kvm_cpuid_entry2 *feat;
973
974                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
975                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
976                         return false;
977         }
978
979         return true;
980 }
981 EXPORT_SYMBOL_GPL(kvm_valid_efer);
982
983 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
984 {
985         u64 old_efer = vcpu->arch.efer;
986
987         if (!kvm_valid_efer(vcpu, efer))
988                 return 1;
989
990         if (is_paging(vcpu)
991             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
992                 return 1;
993
994         efer &= ~EFER_LMA;
995         efer |= vcpu->arch.efer & EFER_LMA;
996
997         kvm_x86_ops->set_efer(vcpu, efer);
998
999         /* Update reserved bits */
1000         if ((efer ^ old_efer) & EFER_NX)
1001                 kvm_mmu_reset_context(vcpu);
1002
1003         return 0;
1004 }
1005
1006 void kvm_enable_efer_bits(u64 mask)
1007 {
1008        efer_reserved_bits &= ~mask;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1011
1012 /*
1013  * Writes msr value into into the appropriate "register".
1014  * Returns 0 on success, non-0 otherwise.
1015  * Assumes vcpu_load() was already called.
1016  */
1017 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1018 {
1019         switch (msr->index) {
1020         case MSR_FS_BASE:
1021         case MSR_GS_BASE:
1022         case MSR_KERNEL_GS_BASE:
1023         case MSR_CSTAR:
1024         case MSR_LSTAR:
1025                 if (is_noncanonical_address(msr->data))
1026                         return 1;
1027                 break;
1028         case MSR_IA32_SYSENTER_EIP:
1029         case MSR_IA32_SYSENTER_ESP:
1030                 /*
1031                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1032                  * non-canonical address is written on Intel but not on
1033                  * AMD (which ignores the top 32-bits, because it does
1034                  * not implement 64-bit SYSENTER).
1035                  *
1036                  * 64-bit code should hence be able to write a non-canonical
1037                  * value on AMD.  Making the address canonical ensures that
1038                  * vmentry does not fail on Intel after writing a non-canonical
1039                  * value, and that something deterministic happens if the guest
1040                  * invokes 64-bit SYSENTER.
1041                  */
1042                 msr->data = get_canonical(msr->data);
1043         }
1044         return kvm_x86_ops->set_msr(vcpu, msr);
1045 }
1046 EXPORT_SYMBOL_GPL(kvm_set_msr);
1047
1048 /*
1049  * Adapt set_msr() to msr_io()'s calling convention
1050  */
1051 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1052 {
1053         struct msr_data msr;
1054
1055         msr.data = *data;
1056         msr.index = index;
1057         msr.host_initiated = true;
1058         return kvm_set_msr(vcpu, &msr);
1059 }
1060
1061 #ifdef CONFIG_X86_64
1062 struct pvclock_gtod_data {
1063         seqcount_t      seq;
1064
1065         struct { /* extract of a clocksource struct */
1066                 int vclock_mode;
1067                 cycle_t cycle_last;
1068                 cycle_t mask;
1069                 u32     mult;
1070                 u32     shift;
1071         } clock;
1072
1073         u64             boot_ns;
1074         u64             nsec_base;
1075 };
1076
1077 static struct pvclock_gtod_data pvclock_gtod_data;
1078
1079 static void update_pvclock_gtod(struct timekeeper *tk)
1080 {
1081         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1082         u64 boot_ns;
1083
1084         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1085
1086         write_seqcount_begin(&vdata->seq);
1087
1088         /* copy pvclock gtod data */
1089         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1090         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1091         vdata->clock.mask               = tk->tkr_mono.mask;
1092         vdata->clock.mult               = tk->tkr_mono.mult;
1093         vdata->clock.shift              = tk->tkr_mono.shift;
1094
1095         vdata->boot_ns                  = boot_ns;
1096         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1097
1098         write_seqcount_end(&vdata->seq);
1099 }
1100 #endif
1101
1102 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1103 {
1104         /*
1105          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1106          * vcpu_enter_guest.  This function is only called from
1107          * the physical CPU that is running vcpu.
1108          */
1109         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1110 }
1111
1112 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1113 {
1114         int version;
1115         int r;
1116         struct pvclock_wall_clock wc;
1117         struct timespec boot;
1118
1119         if (!wall_clock)
1120                 return;
1121
1122         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1123         if (r)
1124                 return;
1125
1126         if (version & 1)
1127                 ++version;  /* first time write, random junk */
1128
1129         ++version;
1130
1131         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1132
1133         /*
1134          * The guest calculates current wall clock time by adding
1135          * system time (updated by kvm_guest_time_update below) to the
1136          * wall clock specified here.  guest system time equals host
1137          * system time for us, thus we must fill in host boot time here.
1138          */
1139         getboottime(&boot);
1140
1141         if (kvm->arch.kvmclock_offset) {
1142                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1143                 boot = timespec_sub(boot, ts);
1144         }
1145         wc.sec = boot.tv_sec;
1146         wc.nsec = boot.tv_nsec;
1147         wc.version = version;
1148
1149         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1150
1151         version++;
1152         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1153 }
1154
1155 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1156 {
1157         uint32_t quotient, remainder;
1158
1159         /* Don't try to replace with do_div(), this one calculates
1160          * "(dividend << 32) / divisor" */
1161         __asm__ ( "divl %4"
1162                   : "=a" (quotient), "=d" (remainder)
1163                   : "0" (0), "1" (dividend), "r" (divisor) );
1164         return quotient;
1165 }
1166
1167 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1168                                s8 *pshift, u32 *pmultiplier)
1169 {
1170         uint64_t scaled64;
1171         int32_t  shift = 0;
1172         uint64_t tps64;
1173         uint32_t tps32;
1174
1175         tps64 = base_khz * 1000LL;
1176         scaled64 = scaled_khz * 1000LL;
1177         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1178                 tps64 >>= 1;
1179                 shift--;
1180         }
1181
1182         tps32 = (uint32_t)tps64;
1183         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1184                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1185                         scaled64 >>= 1;
1186                 else
1187                         tps32 <<= 1;
1188                 shift++;
1189         }
1190
1191         *pshift = shift;
1192         *pmultiplier = div_frac(scaled64, tps32);
1193
1194         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1195                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1196 }
1197
1198 static inline u64 get_kernel_ns(void)
1199 {
1200         return ktime_get_boot_ns();
1201 }
1202
1203 #ifdef CONFIG_X86_64
1204 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1205 #endif
1206
1207 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1208 static unsigned long max_tsc_khz;
1209
1210 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1211 {
1212         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1213                                    vcpu->arch.virtual_tsc_shift);
1214 }
1215
1216 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1217 {
1218         u64 v = (u64)khz * (1000000 + ppm);
1219         do_div(v, 1000000);
1220         return v;
1221 }
1222
1223 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1224 {
1225         u32 thresh_lo, thresh_hi;
1226         int use_scaling = 0;
1227
1228         /* tsc_khz can be zero if TSC calibration fails */
1229         if (this_tsc_khz == 0)
1230                 return;
1231
1232         /* Compute a scale to convert nanoseconds in TSC cycles */
1233         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1234                            &vcpu->arch.virtual_tsc_shift,
1235                            &vcpu->arch.virtual_tsc_mult);
1236         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1237
1238         /*
1239          * Compute the variation in TSC rate which is acceptable
1240          * within the range of tolerance and decide if the
1241          * rate being applied is within that bounds of the hardware
1242          * rate.  If so, no scaling or compensation need be done.
1243          */
1244         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1245         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1246         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1247                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1248                 use_scaling = 1;
1249         }
1250         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1251 }
1252
1253 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1254 {
1255         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1256                                       vcpu->arch.virtual_tsc_mult,
1257                                       vcpu->arch.virtual_tsc_shift);
1258         tsc += vcpu->arch.this_tsc_write;
1259         return tsc;
1260 }
1261
1262 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1263 {
1264 #ifdef CONFIG_X86_64
1265         bool vcpus_matched;
1266         struct kvm_arch *ka = &vcpu->kvm->arch;
1267         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1268
1269         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1270                          atomic_read(&vcpu->kvm->online_vcpus));
1271
1272         /*
1273          * Once the masterclock is enabled, always perform request in
1274          * order to update it.
1275          *
1276          * In order to enable masterclock, the host clocksource must be TSC
1277          * and the vcpus need to have matched TSCs.  When that happens,
1278          * perform request to enable masterclock.
1279          */
1280         if (ka->use_master_clock ||
1281             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1282                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1283
1284         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1285                             atomic_read(&vcpu->kvm->online_vcpus),
1286                             ka->use_master_clock, gtod->clock.vclock_mode);
1287 #endif
1288 }
1289
1290 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1291 {
1292         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1293         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1294 }
1295
1296 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1297 {
1298         struct kvm *kvm = vcpu->kvm;
1299         u64 offset, ns, elapsed;
1300         unsigned long flags;
1301         s64 usdiff;
1302         bool matched;
1303         bool already_matched;
1304         u64 data = msr->data;
1305
1306         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1307         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1308         ns = get_kernel_ns();
1309         elapsed = ns - kvm->arch.last_tsc_nsec;
1310
1311         if (vcpu->arch.virtual_tsc_khz) {
1312                 int faulted = 0;
1313
1314                 /* n.b - signed multiplication and division required */
1315                 usdiff = data - kvm->arch.last_tsc_write;
1316 #ifdef CONFIG_X86_64
1317                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1318 #else
1319                 /* do_div() only does unsigned */
1320                 asm("1: idivl %[divisor]\n"
1321                     "2: xor %%edx, %%edx\n"
1322                     "   movl $0, %[faulted]\n"
1323                     "3:\n"
1324                     ".section .fixup,\"ax\"\n"
1325                     "4: movl $1, %[faulted]\n"
1326                     "   jmp  3b\n"
1327                     ".previous\n"
1328
1329                 _ASM_EXTABLE(1b, 4b)
1330
1331                 : "=A"(usdiff), [faulted] "=r" (faulted)
1332                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1333
1334 #endif
1335                 do_div(elapsed, 1000);
1336                 usdiff -= elapsed;
1337                 if (usdiff < 0)
1338                         usdiff = -usdiff;
1339
1340                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1341                 if (faulted)
1342                         usdiff = USEC_PER_SEC;
1343         } else
1344                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1345
1346         /*
1347          * Special case: TSC write with a small delta (1 second) of virtual
1348          * cycle time against real time is interpreted as an attempt to
1349          * synchronize the CPU.
1350          *
1351          * For a reliable TSC, we can match TSC offsets, and for an unstable
1352          * TSC, we add elapsed time in this computation.  We could let the
1353          * compensation code attempt to catch up if we fall behind, but
1354          * it's better to try to match offsets from the beginning.
1355          */
1356         if (usdiff < USEC_PER_SEC &&
1357             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1358                 if (!check_tsc_unstable()) {
1359                         offset = kvm->arch.cur_tsc_offset;
1360                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1361                 } else {
1362                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1363                         data += delta;
1364                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1365                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1366                 }
1367                 matched = true;
1368                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1369         } else {
1370                 /*
1371                  * We split periods of matched TSC writes into generations.
1372                  * For each generation, we track the original measured
1373                  * nanosecond time, offset, and write, so if TSCs are in
1374                  * sync, we can match exact offset, and if not, we can match
1375                  * exact software computation in compute_guest_tsc()
1376                  *
1377                  * These values are tracked in kvm->arch.cur_xxx variables.
1378                  */
1379                 kvm->arch.cur_tsc_generation++;
1380                 kvm->arch.cur_tsc_nsec = ns;
1381                 kvm->arch.cur_tsc_write = data;
1382                 kvm->arch.cur_tsc_offset = offset;
1383                 matched = false;
1384                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1385                          kvm->arch.cur_tsc_generation, data);
1386         }
1387
1388         /*
1389          * We also track th most recent recorded KHZ, write and time to
1390          * allow the matching interval to be extended at each write.
1391          */
1392         kvm->arch.last_tsc_nsec = ns;
1393         kvm->arch.last_tsc_write = data;
1394         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1395
1396         vcpu->arch.last_guest_tsc = data;
1397
1398         /* Keep track of which generation this VCPU has synchronized to */
1399         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1400         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1401         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1402
1403         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1404                 update_ia32_tsc_adjust_msr(vcpu, offset);
1405         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1406         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1407
1408         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1409         if (!matched) {
1410                 kvm->arch.nr_vcpus_matched_tsc = 0;
1411         } else if (!already_matched) {
1412                 kvm->arch.nr_vcpus_matched_tsc++;
1413         }
1414
1415         kvm_track_tsc_matching(vcpu);
1416         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1417 }
1418
1419 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1420
1421 #ifdef CONFIG_X86_64
1422
1423 static cycle_t read_tsc(void)
1424 {
1425         cycle_t ret;
1426         u64 last;
1427
1428         /*
1429          * Empirically, a fence (of type that depends on the CPU)
1430          * before rdtsc is enough to ensure that rdtsc is ordered
1431          * with respect to loads.  The various CPU manuals are unclear
1432          * as to whether rdtsc can be reordered with later loads,
1433          * but no one has ever seen it happen.
1434          */
1435         rdtsc_barrier();
1436         ret = (cycle_t)vget_cycles();
1437
1438         last = pvclock_gtod_data.clock.cycle_last;
1439
1440         if (likely(ret >= last))
1441                 return ret;
1442
1443         /*
1444          * GCC likes to generate cmov here, but this branch is extremely
1445          * predictable (it's just a funciton of time and the likely is
1446          * very likely) and there's a data dependence, so force GCC
1447          * to generate a branch instead.  I don't barrier() because
1448          * we don't actually need a barrier, and if this function
1449          * ever gets inlined it will generate worse code.
1450          */
1451         asm volatile ("");
1452         return last;
1453 }
1454
1455 static inline u64 vgettsc(cycle_t *cycle_now)
1456 {
1457         long v;
1458         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1459
1460         *cycle_now = read_tsc();
1461
1462         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1463         return v * gtod->clock.mult;
1464 }
1465
1466 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1467 {
1468         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1469         unsigned long seq;
1470         int mode;
1471         u64 ns;
1472
1473         do {
1474                 seq = read_seqcount_begin(&gtod->seq);
1475                 mode = gtod->clock.vclock_mode;
1476                 ns = gtod->nsec_base;
1477                 ns += vgettsc(cycle_now);
1478                 ns >>= gtod->clock.shift;
1479                 ns += gtod->boot_ns;
1480         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1481         *t = ns;
1482
1483         return mode;
1484 }
1485
1486 /* returns true if host is using tsc clocksource */
1487 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1488 {
1489         /* checked again under seqlock below */
1490         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1491                 return false;
1492
1493         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1494 }
1495 #endif
1496
1497 /*
1498  *
1499  * Assuming a stable TSC across physical CPUS, and a stable TSC
1500  * across virtual CPUs, the following condition is possible.
1501  * Each numbered line represents an event visible to both
1502  * CPUs at the next numbered event.
1503  *
1504  * "timespecX" represents host monotonic time. "tscX" represents
1505  * RDTSC value.
1506  *
1507  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1508  *
1509  * 1.  read timespec0,tsc0
1510  * 2.                                   | timespec1 = timespec0 + N
1511  *                                      | tsc1 = tsc0 + M
1512  * 3. transition to guest               | transition to guest
1513  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1514  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1515  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1516  *
1517  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1518  *
1519  *      - ret0 < ret1
1520  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1521  *              ...
1522  *      - 0 < N - M => M < N
1523  *
1524  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1525  * always the case (the difference between two distinct xtime instances
1526  * might be smaller then the difference between corresponding TSC reads,
1527  * when updating guest vcpus pvclock areas).
1528  *
1529  * To avoid that problem, do not allow visibility of distinct
1530  * system_timestamp/tsc_timestamp values simultaneously: use a master
1531  * copy of host monotonic time values. Update that master copy
1532  * in lockstep.
1533  *
1534  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1535  *
1536  */
1537
1538 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1539 {
1540 #ifdef CONFIG_X86_64
1541         struct kvm_arch *ka = &kvm->arch;
1542         int vclock_mode;
1543         bool host_tsc_clocksource, vcpus_matched;
1544
1545         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1546                         atomic_read(&kvm->online_vcpus));
1547
1548         /*
1549          * If the host uses TSC clock, then passthrough TSC as stable
1550          * to the guest.
1551          */
1552         host_tsc_clocksource = kvm_get_time_and_clockread(
1553                                         &ka->master_kernel_ns,
1554                                         &ka->master_cycle_now);
1555
1556         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1557                                 && !backwards_tsc_observed
1558                                 && !ka->boot_vcpu_runs_old_kvmclock;
1559
1560         if (ka->use_master_clock)
1561                 atomic_set(&kvm_guest_has_master_clock, 1);
1562
1563         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1564         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1565                                         vcpus_matched);
1566 #endif
1567 }
1568
1569 static void kvm_gen_update_masterclock(struct kvm *kvm)
1570 {
1571 #ifdef CONFIG_X86_64
1572         int i;
1573         struct kvm_vcpu *vcpu;
1574         struct kvm_arch *ka = &kvm->arch;
1575
1576         spin_lock(&ka->pvclock_gtod_sync_lock);
1577         kvm_make_mclock_inprogress_request(kvm);
1578         /* no guest entries from this point */
1579         pvclock_update_vm_gtod_copy(kvm);
1580
1581         kvm_for_each_vcpu(i, vcpu, kvm)
1582                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1583
1584         /* guest entries allowed */
1585         kvm_for_each_vcpu(i, vcpu, kvm)
1586                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1587
1588         spin_unlock(&ka->pvclock_gtod_sync_lock);
1589 #endif
1590 }
1591
1592 static int kvm_guest_time_update(struct kvm_vcpu *v)
1593 {
1594         unsigned long flags, this_tsc_khz;
1595         struct kvm_vcpu_arch *vcpu = &v->arch;
1596         struct kvm_arch *ka = &v->kvm->arch;
1597         s64 kernel_ns;
1598         u64 tsc_timestamp, host_tsc;
1599         struct pvclock_vcpu_time_info guest_hv_clock;
1600         u8 pvclock_flags;
1601         bool use_master_clock;
1602
1603         kernel_ns = 0;
1604         host_tsc = 0;
1605
1606         /*
1607          * If the host uses TSC clock, then passthrough TSC as stable
1608          * to the guest.
1609          */
1610         spin_lock(&ka->pvclock_gtod_sync_lock);
1611         use_master_clock = ka->use_master_clock;
1612         if (use_master_clock) {
1613                 host_tsc = ka->master_cycle_now;
1614                 kernel_ns = ka->master_kernel_ns;
1615         }
1616         spin_unlock(&ka->pvclock_gtod_sync_lock);
1617
1618         /* Keep irq disabled to prevent changes to the clock */
1619         local_irq_save(flags);
1620         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1621         if (unlikely(this_tsc_khz == 0)) {
1622                 local_irq_restore(flags);
1623                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1624                 return 1;
1625         }
1626         if (!use_master_clock) {
1627                 host_tsc = native_read_tsc();
1628                 kernel_ns = get_kernel_ns();
1629         }
1630
1631         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1632
1633         /*
1634          * We may have to catch up the TSC to match elapsed wall clock
1635          * time for two reasons, even if kvmclock is used.
1636          *   1) CPU could have been running below the maximum TSC rate
1637          *   2) Broken TSC compensation resets the base at each VCPU
1638          *      entry to avoid unknown leaps of TSC even when running
1639          *      again on the same CPU.  This may cause apparent elapsed
1640          *      time to disappear, and the guest to stand still or run
1641          *      very slowly.
1642          */
1643         if (vcpu->tsc_catchup) {
1644                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1645                 if (tsc > tsc_timestamp) {
1646                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1647                         tsc_timestamp = tsc;
1648                 }
1649         }
1650
1651         local_irq_restore(flags);
1652
1653         if (!vcpu->pv_time_enabled)
1654                 return 0;
1655
1656         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1657                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1658                                    &vcpu->hv_clock.tsc_shift,
1659                                    &vcpu->hv_clock.tsc_to_system_mul);
1660                 vcpu->hw_tsc_khz = this_tsc_khz;
1661         }
1662
1663         /* With all the info we got, fill in the values */
1664         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1665         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1666         vcpu->last_guest_tsc = tsc_timestamp;
1667
1668         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1669                 &guest_hv_clock, sizeof(guest_hv_clock))))
1670                 return 0;
1671
1672         /* This VCPU is paused, but it's legal for a guest to read another
1673          * VCPU's kvmclock, so we really have to follow the specification where
1674          * it says that version is odd if data is being modified, and even after
1675          * it is consistent.
1676          *
1677          * Version field updates must be kept separate.  This is because
1678          * kvm_write_guest_cached might use a "rep movs" instruction, and
1679          * writes within a string instruction are weakly ordered.  So there
1680          * are three writes overall.
1681          *
1682          * As a small optimization, only write the version field in the first
1683          * and third write.  The vcpu->pv_time cache is still valid, because the
1684          * version field is the first in the struct.
1685          */
1686         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1687
1688         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1689         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1690                                 &vcpu->hv_clock,
1691                                 sizeof(vcpu->hv_clock.version));
1692
1693         smp_wmb();
1694
1695         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1696         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1697
1698         if (vcpu->pvclock_set_guest_stopped_request) {
1699                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1700                 vcpu->pvclock_set_guest_stopped_request = false;
1701         }
1702
1703         /* If the host uses TSC clocksource, then it is stable */
1704         if (use_master_clock)
1705                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1706
1707         vcpu->hv_clock.flags = pvclock_flags;
1708
1709         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1710
1711         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1712                                 &vcpu->hv_clock,
1713                                 sizeof(vcpu->hv_clock));
1714
1715         smp_wmb();
1716
1717         vcpu->hv_clock.version++;
1718         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1719                                 &vcpu->hv_clock,
1720                                 sizeof(vcpu->hv_clock.version));
1721         return 0;
1722 }
1723
1724 /*
1725  * kvmclock updates which are isolated to a given vcpu, such as
1726  * vcpu->cpu migration, should not allow system_timestamp from
1727  * the rest of the vcpus to remain static. Otherwise ntp frequency
1728  * correction applies to one vcpu's system_timestamp but not
1729  * the others.
1730  *
1731  * So in those cases, request a kvmclock update for all vcpus.
1732  * We need to rate-limit these requests though, as they can
1733  * considerably slow guests that have a large number of vcpus.
1734  * The time for a remote vcpu to update its kvmclock is bound
1735  * by the delay we use to rate-limit the updates.
1736  */
1737
1738 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1739
1740 static void kvmclock_update_fn(struct work_struct *work)
1741 {
1742         int i;
1743         struct delayed_work *dwork = to_delayed_work(work);
1744         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1745                                            kvmclock_update_work);
1746         struct kvm *kvm = container_of(ka, struct kvm, arch);
1747         struct kvm_vcpu *vcpu;
1748
1749         kvm_for_each_vcpu(i, vcpu, kvm) {
1750                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1751                 kvm_vcpu_kick(vcpu);
1752         }
1753 }
1754
1755 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1756 {
1757         struct kvm *kvm = v->kvm;
1758
1759         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1760         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1761                                         KVMCLOCK_UPDATE_DELAY);
1762 }
1763
1764 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1765
1766 static void kvmclock_sync_fn(struct work_struct *work)
1767 {
1768         struct delayed_work *dwork = to_delayed_work(work);
1769         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1770                                            kvmclock_sync_work);
1771         struct kvm *kvm = container_of(ka, struct kvm, arch);
1772
1773         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1774         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1775                                         KVMCLOCK_SYNC_PERIOD);
1776 }
1777
1778 static bool msr_mtrr_valid(unsigned msr)
1779 {
1780         switch (msr) {
1781         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1782         case MSR_MTRRfix64K_00000:
1783         case MSR_MTRRfix16K_80000:
1784         case MSR_MTRRfix16K_A0000:
1785         case MSR_MTRRfix4K_C0000:
1786         case MSR_MTRRfix4K_C8000:
1787         case MSR_MTRRfix4K_D0000:
1788         case MSR_MTRRfix4K_D8000:
1789         case MSR_MTRRfix4K_E0000:
1790         case MSR_MTRRfix4K_E8000:
1791         case MSR_MTRRfix4K_F0000:
1792         case MSR_MTRRfix4K_F8000:
1793         case MSR_MTRRdefType:
1794         case MSR_IA32_CR_PAT:
1795                 return true;
1796         case 0x2f8:
1797                 return true;
1798         }
1799         return false;
1800 }
1801
1802 static bool valid_pat_type(unsigned t)
1803 {
1804         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1805 }
1806
1807 static bool valid_mtrr_type(unsigned t)
1808 {
1809         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1810 }
1811
1812 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1813 {
1814         int i;
1815         u64 mask;
1816
1817         if (!msr_mtrr_valid(msr))
1818                 return false;
1819
1820         if (msr == MSR_IA32_CR_PAT) {
1821                 for (i = 0; i < 8; i++)
1822                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1823                                 return false;
1824                 return true;
1825         } else if (msr == MSR_MTRRdefType) {
1826                 if (data & ~0xcff)
1827                         return false;
1828                 return valid_mtrr_type(data & 0xff);
1829         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1830                 for (i = 0; i < 8 ; i++)
1831                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1832                                 return false;
1833                 return true;
1834         }
1835
1836         /* variable MTRRs */
1837         WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
1838
1839         mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
1840         if ((msr & 1) == 0) {
1841                 /* MTRR base */
1842                 if (!valid_mtrr_type(data & 0xff))
1843                         return false;
1844                 mask |= 0xf00;
1845         } else
1846                 /* MTRR mask */
1847                 mask |= 0x7ff;
1848         if (data & mask) {
1849                 kvm_inject_gp(vcpu, 0);
1850                 return false;
1851         }
1852
1853         return true;
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
1856
1857 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1858 {
1859         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1860
1861         if (!kvm_mtrr_valid(vcpu, msr, data))
1862                 return 1;
1863
1864         if (msr == MSR_MTRRdefType) {
1865                 vcpu->arch.mtrr_state.def_type = data;
1866                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1867         } else if (msr == MSR_MTRRfix64K_00000)
1868                 p[0] = data;
1869         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1870                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1871         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1872                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1873         else if (msr == MSR_IA32_CR_PAT)
1874                 vcpu->arch.pat = data;
1875         else {  /* Variable MTRRs */
1876                 int idx, is_mtrr_mask;
1877                 u64 *pt;
1878
1879                 idx = (msr - 0x200) / 2;
1880                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1881                 if (!is_mtrr_mask)
1882                         pt =
1883                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1884                 else
1885                         pt =
1886                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1887                 *pt = data;
1888         }
1889
1890         kvm_mmu_reset_context(vcpu);
1891         return 0;
1892 }
1893
1894 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1895 {
1896         u64 mcg_cap = vcpu->arch.mcg_cap;
1897         unsigned bank_num = mcg_cap & 0xff;
1898
1899         switch (msr) {
1900         case MSR_IA32_MCG_STATUS:
1901                 vcpu->arch.mcg_status = data;
1902                 break;
1903         case MSR_IA32_MCG_CTL:
1904                 if (!(mcg_cap & MCG_CTL_P))
1905                         return 1;
1906                 if (data != 0 && data != ~(u64)0)
1907                         return -1;
1908                 vcpu->arch.mcg_ctl = data;
1909                 break;
1910         default:
1911                 if (msr >= MSR_IA32_MC0_CTL &&
1912                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1913                         u32 offset = msr - MSR_IA32_MC0_CTL;
1914                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1915                          * some Linux kernels though clear bit 10 in bank 4 to
1916                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1917                          * this to avoid an uncatched #GP in the guest
1918                          */
1919                         if ((offset & 0x3) == 0 &&
1920                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1921                                 return -1;
1922                         vcpu->arch.mce_banks[offset] = data;
1923                         break;
1924                 }
1925                 return 1;
1926         }
1927         return 0;
1928 }
1929
1930 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1931 {
1932         struct kvm *kvm = vcpu->kvm;
1933         int lm = is_long_mode(vcpu);
1934         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1935                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1936         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1937                 : kvm->arch.xen_hvm_config.blob_size_32;
1938         u32 page_num = data & ~PAGE_MASK;
1939         u64 page_addr = data & PAGE_MASK;
1940         u8 *page;
1941         int r;
1942
1943         r = -E2BIG;
1944         if (page_num >= blob_size)
1945                 goto out;
1946         r = -ENOMEM;
1947         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1948         if (IS_ERR(page)) {
1949                 r = PTR_ERR(page);
1950                 goto out;
1951         }
1952         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1953                 goto out_free;
1954         r = 0;
1955 out_free:
1956         kfree(page);
1957 out:
1958         return r;
1959 }
1960
1961 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1962 {
1963         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1964 }
1965
1966 static bool kvm_hv_msr_partition_wide(u32 msr)
1967 {
1968         bool r = false;
1969         switch (msr) {
1970         case HV_X64_MSR_GUEST_OS_ID:
1971         case HV_X64_MSR_HYPERCALL:
1972         case HV_X64_MSR_REFERENCE_TSC:
1973         case HV_X64_MSR_TIME_REF_COUNT:
1974                 r = true;
1975                 break;
1976         }
1977
1978         return r;
1979 }
1980
1981 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1982 {
1983         struct kvm *kvm = vcpu->kvm;
1984
1985         switch (msr) {
1986         case HV_X64_MSR_GUEST_OS_ID:
1987                 kvm->arch.hv_guest_os_id = data;
1988                 /* setting guest os id to zero disables hypercall page */
1989                 if (!kvm->arch.hv_guest_os_id)
1990                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1991                 break;
1992         case HV_X64_MSR_HYPERCALL: {
1993                 u64 gfn;
1994                 unsigned long addr;
1995                 u8 instructions[4];
1996
1997                 /* if guest os id is not set hypercall should remain disabled */
1998                 if (!kvm->arch.hv_guest_os_id)
1999                         break;
2000                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
2001                         kvm->arch.hv_hypercall = data;
2002                         break;
2003                 }
2004                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
2005                 addr = gfn_to_hva(kvm, gfn);
2006                 if (kvm_is_error_hva(addr))
2007                         return 1;
2008                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
2009                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
2010                 if (__copy_to_user((void __user *)addr, instructions, 4))
2011                         return 1;
2012                 kvm->arch.hv_hypercall = data;
2013                 mark_page_dirty(kvm, gfn);
2014                 break;
2015         }
2016         case HV_X64_MSR_REFERENCE_TSC: {
2017                 u64 gfn;
2018                 HV_REFERENCE_TSC_PAGE tsc_ref;
2019                 memset(&tsc_ref, 0, sizeof(tsc_ref));
2020                 kvm->arch.hv_tsc_page = data;
2021                 if (!(data & HV_X64_MSR_TSC_REFERENCE_ENABLE))
2022                         break;
2023                 gfn = data >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
2024                 if (kvm_write_guest(kvm, gfn << HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT,
2025                         &tsc_ref, sizeof(tsc_ref)))
2026                         return 1;
2027                 mark_page_dirty(kvm, gfn);
2028                 break;
2029         }
2030         default:
2031                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2032                             "data 0x%llx\n", msr, data);
2033                 return 1;
2034         }
2035         return 0;
2036 }
2037
2038 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
2039 {
2040         switch (msr) {
2041         case HV_X64_MSR_APIC_ASSIST_PAGE: {
2042                 u64 gfn;
2043                 unsigned long addr;
2044
2045                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
2046                         vcpu->arch.hv_vapic = data;
2047                         if (kvm_lapic_enable_pv_eoi(vcpu, 0))
2048                                 return 1;
2049                         break;
2050                 }
2051                 gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
2052                 addr = gfn_to_hva(vcpu->kvm, gfn);
2053                 if (kvm_is_error_hva(addr))
2054                         return 1;
2055                 if (__clear_user((void __user *)addr, PAGE_SIZE))
2056                         return 1;
2057                 vcpu->arch.hv_vapic = data;
2058                 mark_page_dirty(vcpu->kvm, gfn);
2059                 if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
2060                         return 1;
2061                 break;
2062         }
2063         case HV_X64_MSR_EOI:
2064                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
2065         case HV_X64_MSR_ICR:
2066                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
2067         case HV_X64_MSR_TPR:
2068                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
2069         default:
2070                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
2071                             "data 0x%llx\n", msr, data);
2072                 return 1;
2073         }
2074
2075         return 0;
2076 }
2077
2078 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2079 {
2080         gpa_t gpa = data & ~0x3f;
2081
2082         /* Bits 2:5 are reserved, Should be zero */
2083         if (data & 0x3c)
2084                 return 1;
2085
2086         vcpu->arch.apf.msr_val = data;
2087
2088         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2089                 kvm_clear_async_pf_completion_queue(vcpu);
2090                 kvm_async_pf_hash_reset(vcpu);
2091                 return 0;
2092         }
2093
2094         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2095                                         sizeof(u32)))
2096                 return 1;
2097
2098         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2099         kvm_async_pf_wakeup_all(vcpu);
2100         return 0;
2101 }
2102
2103 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2104 {
2105         vcpu->arch.pv_time_enabled = false;
2106 }
2107
2108 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2109 {
2110         u64 delta;
2111
2112         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2113                 return;
2114
2115         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2116         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2117         vcpu->arch.st.accum_steal = delta;
2118 }
2119
2120 static void record_steal_time(struct kvm_vcpu *vcpu)
2121 {
2122         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2123                 return;
2124
2125         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2126                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2127                 return;
2128
2129         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2130         vcpu->arch.st.steal.version += 2;
2131         vcpu->arch.st.accum_steal = 0;
2132
2133         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2134                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2135 }
2136
2137 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2138 {
2139         bool pr = false;
2140         u32 msr = msr_info->index;
2141         u64 data = msr_info->data;
2142
2143         switch (msr) {
2144         case MSR_AMD64_NB_CFG:
2145         case MSR_IA32_UCODE_REV:
2146         case MSR_IA32_UCODE_WRITE:
2147         case MSR_VM_HSAVE_PA:
2148         case MSR_AMD64_PATCH_LOADER:
2149         case MSR_AMD64_BU_CFG2:
2150                 break;
2151
2152         case MSR_EFER:
2153                 return set_efer(vcpu, data);
2154         case MSR_K7_HWCR:
2155                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2156                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2157                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2158                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2159                 if (data != 0) {
2160                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2161                                     data);
2162                         return 1;
2163                 }
2164                 break;
2165         case MSR_FAM10H_MMIO_CONF_BASE:
2166                 if (data != 0) {
2167                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2168                                     "0x%llx\n", data);
2169                         return 1;
2170                 }
2171                 break;
2172         case MSR_IA32_DEBUGCTLMSR:
2173                 if (!data) {
2174                         /* We support the non-activated case already */
2175                         break;
2176                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2177                         /* Values other than LBR and BTF are vendor-specific,
2178                            thus reserved and should throw a #GP */
2179                         return 1;
2180                 }
2181                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2182                             __func__, data);
2183                 break;
2184         case 0x200 ... 0x2ff:
2185                 return set_msr_mtrr(vcpu, msr, data);
2186         case MSR_IA32_APICBASE:
2187                 return kvm_set_apic_base(vcpu, msr_info);
2188         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2189                 return kvm_x2apic_msr_write(vcpu, msr, data);
2190         case MSR_IA32_TSCDEADLINE:
2191                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2192                 break;
2193         case MSR_IA32_TSC_ADJUST:
2194                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2195                         if (!msr_info->host_initiated) {
2196                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2197                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2198                         }
2199                         vcpu->arch.ia32_tsc_adjust_msr = data;
2200                 }
2201                 break;
2202         case MSR_IA32_MISC_ENABLE:
2203                 vcpu->arch.ia32_misc_enable_msr = data;
2204                 break;
2205         case MSR_KVM_WALL_CLOCK_NEW:
2206         case MSR_KVM_WALL_CLOCK:
2207                 vcpu->kvm->arch.wall_clock = data;
2208                 kvm_write_wall_clock(vcpu->kvm, data);
2209                 break;
2210         case MSR_KVM_SYSTEM_TIME_NEW:
2211         case MSR_KVM_SYSTEM_TIME: {
2212                 u64 gpa_offset;
2213                 struct kvm_arch *ka = &vcpu->kvm->arch;
2214
2215                 kvmclock_reset(vcpu);
2216
2217                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2218                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2219
2220                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2221                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2222                                         &vcpu->requests);
2223
2224                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2225                 }
2226
2227                 vcpu->arch.time = data;
2228                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2229
2230                 /* we verify if the enable bit is set... */
2231                 if (!(data & 1))
2232                         break;
2233
2234                 gpa_offset = data & ~(PAGE_MASK | 1);
2235
2236                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2237                      &vcpu->arch.pv_time, data & ~1ULL,
2238                      sizeof(struct pvclock_vcpu_time_info)))
2239                         vcpu->arch.pv_time_enabled = false;
2240                 else
2241                         vcpu->arch.pv_time_enabled = true;
2242
2243                 break;
2244         }
2245         case MSR_KVM_ASYNC_PF_EN:
2246                 if (kvm_pv_enable_async_pf(vcpu, data))
2247                         return 1;
2248                 break;
2249         case MSR_KVM_STEAL_TIME:
2250
2251                 if (unlikely(!sched_info_on()))
2252                         return 1;
2253
2254                 if (data & KVM_STEAL_RESERVED_MASK)
2255                         return 1;
2256
2257                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2258                                                 data & KVM_STEAL_VALID_BITS,
2259                                                 sizeof(struct kvm_steal_time)))
2260                         return 1;
2261
2262                 vcpu->arch.st.msr_val = data;
2263
2264                 if (!(data & KVM_MSR_ENABLED))
2265                         break;
2266
2267                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2268
2269                 preempt_disable();
2270                 accumulate_steal_time(vcpu);
2271                 preempt_enable();
2272
2273                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2274
2275                 break;
2276         case MSR_KVM_PV_EOI_EN:
2277                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2278                         return 1;
2279                 break;
2280
2281         case MSR_IA32_MCG_CTL:
2282         case MSR_IA32_MCG_STATUS:
2283         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2284                 return set_msr_mce(vcpu, msr, data);
2285
2286         /* Performance counters are not protected by a CPUID bit,
2287          * so we should check all of them in the generic path for the sake of
2288          * cross vendor migration.
2289          * Writing a zero into the event select MSRs disables them,
2290          * which we perfectly emulate ;-). Any other value should be at least
2291          * reported, some guests depend on them.
2292          */
2293         case MSR_K7_EVNTSEL0:
2294         case MSR_K7_EVNTSEL1:
2295         case MSR_K7_EVNTSEL2:
2296         case MSR_K7_EVNTSEL3:
2297                 if (data != 0)
2298                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2299                                     "0x%x data 0x%llx\n", msr, data);
2300                 break;
2301         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2302          * so we ignore writes to make it happy.
2303          */
2304         case MSR_K7_PERFCTR0:
2305         case MSR_K7_PERFCTR1:
2306         case MSR_K7_PERFCTR2:
2307         case MSR_K7_PERFCTR3:
2308                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2309                             "0x%x data 0x%llx\n", msr, data);
2310                 break;
2311         case MSR_P6_PERFCTR0:
2312         case MSR_P6_PERFCTR1:
2313                 pr = true;
2314         case MSR_P6_EVNTSEL0:
2315         case MSR_P6_EVNTSEL1:
2316                 if (kvm_pmu_msr(vcpu, msr))
2317                         return kvm_pmu_set_msr(vcpu, msr_info);
2318
2319                 if (pr || data != 0)
2320                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2321                                     "0x%x data 0x%llx\n", msr, data);
2322                 break;
2323         case MSR_K7_CLK_CTL:
2324                 /*
2325                  * Ignore all writes to this no longer documented MSR.
2326                  * Writes are only relevant for old K7 processors,
2327                  * all pre-dating SVM, but a recommended workaround from
2328                  * AMD for these chips. It is possible to specify the
2329                  * affected processor models on the command line, hence
2330                  * the need to ignore the workaround.
2331                  */
2332                 break;
2333         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2334                 if (kvm_hv_msr_partition_wide(msr)) {
2335                         int r;
2336                         mutex_lock(&vcpu->kvm->lock);
2337                         r = set_msr_hyperv_pw(vcpu, msr, data);
2338                         mutex_unlock(&vcpu->kvm->lock);
2339                         return r;
2340                 } else
2341                         return set_msr_hyperv(vcpu, msr, data);
2342                 break;
2343         case MSR_IA32_BBL_CR_CTL3:
2344                 /* Drop writes to this legacy MSR -- see rdmsr
2345                  * counterpart for further detail.
2346                  */
2347                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2348                 break;
2349         case MSR_AMD64_OSVW_ID_LENGTH:
2350                 if (!guest_cpuid_has_osvw(vcpu))
2351                         return 1;
2352                 vcpu->arch.osvw.length = data;
2353                 break;
2354         case MSR_AMD64_OSVW_STATUS:
2355                 if (!guest_cpuid_has_osvw(vcpu))
2356                         return 1;
2357                 vcpu->arch.osvw.status = data;
2358                 break;
2359         default:
2360                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2361                         return xen_hvm_config(vcpu, data);
2362                 if (kvm_pmu_msr(vcpu, msr))
2363                         return kvm_pmu_set_msr(vcpu, msr_info);
2364                 if (!ignore_msrs) {
2365                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2366                                     msr, data);
2367                         return 1;
2368                 } else {
2369                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2370                                     msr, data);
2371                         break;
2372                 }
2373         }
2374         return 0;
2375 }
2376 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2377
2378
2379 /*
2380  * Reads an msr value (of 'msr_index') into 'pdata'.
2381  * Returns 0 on success, non-0 otherwise.
2382  * Assumes vcpu_load() was already called.
2383  */
2384 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2385 {
2386         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_get_msr);
2389
2390 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2391 {
2392         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2393
2394         if (!msr_mtrr_valid(msr))
2395                 return 1;
2396
2397         if (msr == MSR_MTRRdefType)
2398                 *pdata = vcpu->arch.mtrr_state.def_type +
2399                          (vcpu->arch.mtrr_state.enabled << 10);
2400         else if (msr == MSR_MTRRfix64K_00000)
2401                 *pdata = p[0];
2402         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2403                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2404         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2405                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2406         else if (msr == MSR_IA32_CR_PAT)
2407                 *pdata = vcpu->arch.pat;
2408         else {  /* Variable MTRRs */
2409                 int idx, is_mtrr_mask;
2410                 u64 *pt;
2411
2412                 idx = (msr - 0x200) / 2;
2413                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2414                 if (!is_mtrr_mask)
2415                         pt =
2416                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2417                 else
2418                         pt =
2419                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2420                 *pdata = *pt;
2421         }
2422
2423         return 0;
2424 }
2425
2426 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2427 {
2428         u64 data;
2429         u64 mcg_cap = vcpu->arch.mcg_cap;
2430         unsigned bank_num = mcg_cap & 0xff;
2431
2432         switch (msr) {
2433         case MSR_IA32_P5_MC_ADDR:
2434         case MSR_IA32_P5_MC_TYPE:
2435                 data = 0;
2436                 break;
2437         case MSR_IA32_MCG_CAP:
2438                 data = vcpu->arch.mcg_cap;
2439                 break;
2440         case MSR_IA32_MCG_CTL:
2441                 if (!(mcg_cap & MCG_CTL_P))
2442                         return 1;
2443                 data = vcpu->arch.mcg_ctl;
2444                 break;
2445         case MSR_IA32_MCG_STATUS:
2446                 data = vcpu->arch.mcg_status;
2447                 break;
2448         default:
2449                 if (msr >= MSR_IA32_MC0_CTL &&
2450                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2451                         u32 offset = msr - MSR_IA32_MC0_CTL;
2452                         data = vcpu->arch.mce_banks[offset];
2453                         break;
2454                 }
2455                 return 1;
2456         }
2457         *pdata = data;
2458         return 0;
2459 }
2460
2461 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2462 {
2463         u64 data = 0;
2464         struct kvm *kvm = vcpu->kvm;
2465
2466         switch (msr) {
2467         case HV_X64_MSR_GUEST_OS_ID:
2468                 data = kvm->arch.hv_guest_os_id;
2469                 break;
2470         case HV_X64_MSR_HYPERCALL:
2471                 data = kvm->arch.hv_hypercall;
2472                 break;
2473         case HV_X64_MSR_TIME_REF_COUNT: {
2474                 data =
2475                      div_u64(get_kernel_ns() + kvm->arch.kvmclock_offset, 100);
2476                 break;
2477         }
2478         case HV_X64_MSR_REFERENCE_TSC:
2479                 data = kvm->arch.hv_tsc_page;
2480                 break;
2481         default:
2482                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2483                 return 1;
2484         }
2485
2486         *pdata = data;
2487         return 0;
2488 }
2489
2490 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2491 {
2492         u64 data = 0;
2493
2494         switch (msr) {
2495         case HV_X64_MSR_VP_INDEX: {
2496                 int r;
2497                 struct kvm_vcpu *v;
2498                 kvm_for_each_vcpu(r, v, vcpu->kvm) {
2499                         if (v == vcpu) {
2500                                 data = r;
2501                                 break;
2502                         }
2503                 }
2504                 break;
2505         }
2506         case HV_X64_MSR_EOI:
2507                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2508         case HV_X64_MSR_ICR:
2509                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2510         case HV_X64_MSR_TPR:
2511                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2512         case HV_X64_MSR_APIC_ASSIST_PAGE:
2513                 data = vcpu->arch.hv_vapic;
2514                 break;
2515         default:
2516                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2517                 return 1;
2518         }
2519         *pdata = data;
2520         return 0;
2521 }
2522
2523 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2524 {
2525         u64 data;
2526
2527         switch (msr) {
2528         case MSR_IA32_PLATFORM_ID:
2529         case MSR_IA32_EBL_CR_POWERON:
2530         case MSR_IA32_DEBUGCTLMSR:
2531         case MSR_IA32_LASTBRANCHFROMIP:
2532         case MSR_IA32_LASTBRANCHTOIP:
2533         case MSR_IA32_LASTINTFROMIP:
2534         case MSR_IA32_LASTINTTOIP:
2535         case MSR_K8_SYSCFG:
2536         case MSR_K7_HWCR:
2537         case MSR_VM_HSAVE_PA:
2538         case MSR_K7_EVNTSEL0:
2539         case MSR_K7_EVNTSEL1:
2540         case MSR_K7_EVNTSEL2:
2541         case MSR_K7_EVNTSEL3:
2542         case MSR_K7_PERFCTR0:
2543         case MSR_K7_PERFCTR1:
2544         case MSR_K7_PERFCTR2:
2545         case MSR_K7_PERFCTR3:
2546         case MSR_K8_INT_PENDING_MSG:
2547         case MSR_AMD64_NB_CFG:
2548         case MSR_FAM10H_MMIO_CONF_BASE:
2549         case MSR_AMD64_BU_CFG2:
2550                 data = 0;
2551                 break;
2552         case MSR_P6_PERFCTR0:
2553         case MSR_P6_PERFCTR1:
2554         case MSR_P6_EVNTSEL0:
2555         case MSR_P6_EVNTSEL1:
2556                 if (kvm_pmu_msr(vcpu, msr))
2557                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2558                 data = 0;
2559                 break;
2560         case MSR_IA32_UCODE_REV:
2561                 data = 0x100000000ULL;
2562                 break;
2563         case MSR_MTRRcap:
2564                 data = 0x500 | KVM_NR_VAR_MTRR;
2565                 break;
2566         case 0x200 ... 0x2ff:
2567                 return get_msr_mtrr(vcpu, msr, pdata);
2568         case 0xcd: /* fsb frequency */
2569                 data = 3;
2570                 break;
2571                 /*
2572                  * MSR_EBC_FREQUENCY_ID
2573                  * Conservative value valid for even the basic CPU models.
2574                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2575                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2576                  * and 266MHz for model 3, or 4. Set Core Clock
2577                  * Frequency to System Bus Frequency Ratio to 1 (bits
2578                  * 31:24) even though these are only valid for CPU
2579                  * models > 2, however guests may end up dividing or
2580                  * multiplying by zero otherwise.
2581                  */
2582         case MSR_EBC_FREQUENCY_ID:
2583                 data = 1 << 24;
2584                 break;
2585         case MSR_IA32_APICBASE:
2586                 data = kvm_get_apic_base(vcpu);
2587                 break;
2588         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2589                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2590                 break;
2591         case MSR_IA32_TSCDEADLINE:
2592                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2593                 break;
2594         case MSR_IA32_TSC_ADJUST:
2595                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2596                 break;
2597         case MSR_IA32_MISC_ENABLE:
2598                 data = vcpu->arch.ia32_misc_enable_msr;
2599                 break;
2600         case MSR_IA32_PERF_STATUS:
2601                 /* TSC increment by tick */
2602                 data = 1000ULL;
2603                 /* CPU multiplier */
2604                 data |= (((uint64_t)4ULL) << 40);
2605                 break;
2606         case MSR_EFER:
2607                 data = vcpu->arch.efer;
2608                 break;
2609         case MSR_KVM_WALL_CLOCK:
2610         case MSR_KVM_WALL_CLOCK_NEW:
2611                 data = vcpu->kvm->arch.wall_clock;
2612                 break;
2613         case MSR_KVM_SYSTEM_TIME:
2614         case MSR_KVM_SYSTEM_TIME_NEW:
2615                 data = vcpu->arch.time;
2616                 break;
2617         case MSR_KVM_ASYNC_PF_EN:
2618                 data = vcpu->arch.apf.msr_val;
2619                 break;
2620         case MSR_KVM_STEAL_TIME:
2621                 data = vcpu->arch.st.msr_val;
2622                 break;
2623         case MSR_KVM_PV_EOI_EN:
2624                 data = vcpu->arch.pv_eoi.msr_val;
2625                 break;
2626         case MSR_IA32_P5_MC_ADDR:
2627         case MSR_IA32_P5_MC_TYPE:
2628         case MSR_IA32_MCG_CAP:
2629         case MSR_IA32_MCG_CTL:
2630         case MSR_IA32_MCG_STATUS:
2631         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2632                 return get_msr_mce(vcpu, msr, pdata);
2633         case MSR_K7_CLK_CTL:
2634                 /*
2635                  * Provide expected ramp-up count for K7. All other
2636                  * are set to zero, indicating minimum divisors for
2637                  * every field.
2638                  *
2639                  * This prevents guest kernels on AMD host with CPU
2640                  * type 6, model 8 and higher from exploding due to
2641                  * the rdmsr failing.
2642                  */
2643                 data = 0x20000000;
2644                 break;
2645         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2646                 if (kvm_hv_msr_partition_wide(msr)) {
2647                         int r;
2648                         mutex_lock(&vcpu->kvm->lock);
2649                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2650                         mutex_unlock(&vcpu->kvm->lock);
2651                         return r;
2652                 } else
2653                         return get_msr_hyperv(vcpu, msr, pdata);
2654                 break;
2655         case MSR_IA32_BBL_CR_CTL3:
2656                 /* This legacy MSR exists but isn't fully documented in current
2657                  * silicon.  It is however accessed by winxp in very narrow
2658                  * scenarios where it sets bit #19, itself documented as
2659                  * a "reserved" bit.  Best effort attempt to source coherent
2660                  * read data here should the balance of the register be
2661                  * interpreted by the guest:
2662                  *
2663                  * L2 cache control register 3: 64GB range, 256KB size,
2664                  * enabled, latency 0x1, configured
2665                  */
2666                 data = 0xbe702111;
2667                 break;
2668         case MSR_AMD64_OSVW_ID_LENGTH:
2669                 if (!guest_cpuid_has_osvw(vcpu))
2670                         return 1;
2671                 data = vcpu->arch.osvw.length;
2672                 break;
2673         case MSR_AMD64_OSVW_STATUS:
2674                 if (!guest_cpuid_has_osvw(vcpu))
2675                         return 1;
2676                 data = vcpu->arch.osvw.status;
2677                 break;
2678         default:
2679                 if (kvm_pmu_msr(vcpu, msr))
2680                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2681                 if (!ignore_msrs) {
2682                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2683                         return 1;
2684                 } else {
2685                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2686                         data = 0;
2687                 }
2688                 break;
2689         }
2690         *pdata = data;
2691         return 0;
2692 }
2693 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2694
2695 /*
2696  * Read or write a bunch of msrs. All parameters are kernel addresses.
2697  *
2698  * @return number of msrs set successfully.
2699  */
2700 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2701                     struct kvm_msr_entry *entries,
2702                     int (*do_msr)(struct kvm_vcpu *vcpu,
2703                                   unsigned index, u64 *data))
2704 {
2705         int i, idx;
2706
2707         idx = srcu_read_lock(&vcpu->kvm->srcu);
2708         for (i = 0; i < msrs->nmsrs; ++i)
2709                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2710                         break;
2711         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2712
2713         return i;
2714 }
2715
2716 /*
2717  * Read or write a bunch of msrs. Parameters are user addresses.
2718  *
2719  * @return number of msrs set successfully.
2720  */
2721 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2722                   int (*do_msr)(struct kvm_vcpu *vcpu,
2723                                 unsigned index, u64 *data),
2724                   int writeback)
2725 {
2726         struct kvm_msrs msrs;
2727         struct kvm_msr_entry *entries;
2728         int r, n;
2729         unsigned size;
2730
2731         r = -EFAULT;
2732         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2733                 goto out;
2734
2735         r = -E2BIG;
2736         if (msrs.nmsrs >= MAX_IO_MSRS)
2737                 goto out;
2738
2739         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2740         entries = memdup_user(user_msrs->entries, size);
2741         if (IS_ERR(entries)) {
2742                 r = PTR_ERR(entries);
2743                 goto out;
2744         }
2745
2746         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2747         if (r < 0)
2748                 goto out_free;
2749
2750         r = -EFAULT;
2751         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2752                 goto out_free;
2753
2754         r = n;
2755
2756 out_free:
2757         kfree(entries);
2758 out:
2759         return r;
2760 }
2761
2762 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2763 {
2764         int r;
2765
2766         switch (ext) {
2767         case KVM_CAP_IRQCHIP:
2768         case KVM_CAP_HLT:
2769         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2770         case KVM_CAP_SET_TSS_ADDR:
2771         case KVM_CAP_EXT_CPUID:
2772         case KVM_CAP_EXT_EMUL_CPUID:
2773         case KVM_CAP_CLOCKSOURCE:
2774         case KVM_CAP_PIT:
2775         case KVM_CAP_NOP_IO_DELAY:
2776         case KVM_CAP_MP_STATE:
2777         case KVM_CAP_SYNC_MMU:
2778         case KVM_CAP_USER_NMI:
2779         case KVM_CAP_REINJECT_CONTROL:
2780         case KVM_CAP_IRQ_INJECT_STATUS:
2781         case KVM_CAP_IOEVENTFD:
2782         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2783         case KVM_CAP_PIT2:
2784         case KVM_CAP_PIT_STATE2:
2785         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2786         case KVM_CAP_XEN_HVM:
2787         case KVM_CAP_ADJUST_CLOCK:
2788         case KVM_CAP_VCPU_EVENTS:
2789         case KVM_CAP_HYPERV:
2790         case KVM_CAP_HYPERV_VAPIC:
2791         case KVM_CAP_HYPERV_SPIN:
2792         case KVM_CAP_PCI_SEGMENT:
2793         case KVM_CAP_DEBUGREGS:
2794         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2795         case KVM_CAP_XSAVE:
2796         case KVM_CAP_ASYNC_PF:
2797         case KVM_CAP_GET_TSC_KHZ:
2798         case KVM_CAP_KVMCLOCK_CTRL:
2799         case KVM_CAP_READONLY_MEM:
2800         case KVM_CAP_HYPERV_TIME:
2801         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2802         case KVM_CAP_TSC_DEADLINE_TIMER:
2803         case KVM_CAP_ENABLE_CAP_VM:
2804         case KVM_CAP_DISABLE_QUIRKS:
2805 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2806         case KVM_CAP_ASSIGN_DEV_IRQ:
2807         case KVM_CAP_PCI_2_3:
2808 #endif
2809                 r = 1;
2810                 break;
2811         case KVM_CAP_COALESCED_MMIO:
2812                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2813                 break;
2814         case KVM_CAP_VAPIC:
2815                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2816                 break;
2817         case KVM_CAP_NR_VCPUS:
2818                 r = KVM_SOFT_MAX_VCPUS;
2819                 break;
2820         case KVM_CAP_MAX_VCPUS:
2821                 r = KVM_MAX_VCPUS;
2822                 break;
2823         case KVM_CAP_NR_MEMSLOTS:
2824                 r = KVM_USER_MEM_SLOTS;
2825                 break;
2826         case KVM_CAP_PV_MMU:    /* obsolete */
2827                 r = 0;
2828                 break;
2829 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2830         case KVM_CAP_IOMMU:
2831                 r = iommu_present(&pci_bus_type);
2832                 break;
2833 #endif
2834         case KVM_CAP_MCE:
2835                 r = KVM_MAX_MCE_BANKS;
2836                 break;
2837         case KVM_CAP_XCRS:
2838                 r = cpu_has_xsave;
2839                 break;
2840         case KVM_CAP_TSC_CONTROL:
2841                 r = kvm_has_tsc_control;
2842                 break;
2843         default:
2844                 r = 0;
2845                 break;
2846         }
2847         return r;
2848
2849 }
2850
2851 long kvm_arch_dev_ioctl(struct file *filp,
2852                         unsigned int ioctl, unsigned long arg)
2853 {
2854         void __user *argp = (void __user *)arg;
2855         long r;
2856
2857         switch (ioctl) {
2858         case KVM_GET_MSR_INDEX_LIST: {
2859                 struct kvm_msr_list __user *user_msr_list = argp;
2860                 struct kvm_msr_list msr_list;
2861                 unsigned n;
2862
2863                 r = -EFAULT;
2864                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2865                         goto out;
2866                 n = msr_list.nmsrs;
2867                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2868                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2869                         goto out;
2870                 r = -E2BIG;
2871                 if (n < msr_list.nmsrs)
2872                         goto out;
2873                 r = -EFAULT;
2874                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2875                                  num_msrs_to_save * sizeof(u32)))
2876                         goto out;
2877                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2878                                  &emulated_msrs,
2879                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2880                         goto out;
2881                 r = 0;
2882                 break;
2883         }
2884         case KVM_GET_SUPPORTED_CPUID:
2885         case KVM_GET_EMULATED_CPUID: {
2886                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2887                 struct kvm_cpuid2 cpuid;
2888
2889                 r = -EFAULT;
2890                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2891                         goto out;
2892
2893                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2894                                             ioctl);
2895                 if (r)
2896                         goto out;
2897
2898                 r = -EFAULT;
2899                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2900                         goto out;
2901                 r = 0;
2902                 break;
2903         }
2904         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2905                 u64 mce_cap;
2906
2907                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2908                 r = -EFAULT;
2909                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2910                         goto out;
2911                 r = 0;
2912                 break;
2913         }
2914         default:
2915                 r = -EINVAL;
2916         }
2917 out:
2918         return r;
2919 }
2920
2921 static void wbinvd_ipi(void *garbage)
2922 {
2923         wbinvd();
2924 }
2925
2926 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2927 {
2928         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2929 }
2930
2931 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2932 {
2933         /* Address WBINVD may be executed by guest */
2934         if (need_emulate_wbinvd(vcpu)) {
2935                 if (kvm_x86_ops->has_wbinvd_exit())
2936                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2937                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2938                         smp_call_function_single(vcpu->cpu,
2939                                         wbinvd_ipi, NULL, 1);
2940         }
2941
2942         kvm_x86_ops->vcpu_load(vcpu, cpu);
2943
2944         /* Apply any externally detected TSC adjustments (due to suspend) */
2945         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2946                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2947                 vcpu->arch.tsc_offset_adjustment = 0;
2948                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2949         }
2950
2951         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2952                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2953                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2954                 if (tsc_delta < 0)
2955                         mark_tsc_unstable("KVM discovered backwards TSC");
2956                 if (check_tsc_unstable()) {
2957                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2958                                                 vcpu->arch.last_guest_tsc);
2959                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2960                         vcpu->arch.tsc_catchup = 1;
2961                 }
2962                 /*
2963                  * On a host with synchronized TSC, there is no need to update
2964                  * kvmclock on vcpu->cpu migration
2965                  */
2966                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2967                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2968                 if (vcpu->cpu != cpu)
2969                         kvm_migrate_timers(vcpu);
2970                 vcpu->cpu = cpu;
2971         }
2972
2973         accumulate_steal_time(vcpu);
2974         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2975 }
2976
2977 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2978 {
2979         kvm_x86_ops->vcpu_put(vcpu);
2980         kvm_put_guest_fpu(vcpu);
2981         vcpu->arch.last_host_tsc = native_read_tsc();
2982 }
2983
2984 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2985                                     struct kvm_lapic_state *s)
2986 {
2987         kvm_x86_ops->sync_pir_to_irr(vcpu);
2988         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2989
2990         return 0;
2991 }
2992
2993 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2994                                     struct kvm_lapic_state *s)
2995 {
2996         kvm_apic_post_state_restore(vcpu, s);
2997         update_cr8_intercept(vcpu);
2998
2999         return 0;
3000 }
3001
3002 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3003                                     struct kvm_interrupt *irq)
3004 {
3005         if (irq->irq >= KVM_NR_INTERRUPTS)
3006                 return -EINVAL;
3007         if (irqchip_in_kernel(vcpu->kvm))
3008                 return -ENXIO;
3009
3010         kvm_queue_interrupt(vcpu, irq->irq, false);
3011         kvm_make_request(KVM_REQ_EVENT, vcpu);
3012
3013         return 0;
3014 }
3015
3016 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3017 {
3018         kvm_inject_nmi(vcpu);
3019
3020         return 0;
3021 }
3022
3023 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3024                                            struct kvm_tpr_access_ctl *tac)
3025 {
3026         if (tac->flags)
3027                 return -EINVAL;
3028         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3029         return 0;
3030 }
3031
3032 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3033                                         u64 mcg_cap)
3034 {
3035         int r;
3036         unsigned bank_num = mcg_cap & 0xff, bank;
3037
3038         r = -EINVAL;
3039         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3040                 goto out;
3041         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
3042                 goto out;
3043         r = 0;
3044         vcpu->arch.mcg_cap = mcg_cap;
3045         /* Init IA32_MCG_CTL to all 1s */
3046         if (mcg_cap & MCG_CTL_P)
3047                 vcpu->arch.mcg_ctl = ~(u64)0;
3048         /* Init IA32_MCi_CTL to all 1s */
3049         for (bank = 0; bank < bank_num; bank++)
3050                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3051 out:
3052         return r;
3053 }
3054
3055 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3056                                       struct kvm_x86_mce *mce)
3057 {
3058         u64 mcg_cap = vcpu->arch.mcg_cap;
3059         unsigned bank_num = mcg_cap & 0xff;
3060         u64 *banks = vcpu->arch.mce_banks;
3061
3062         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3063                 return -EINVAL;
3064         /*
3065          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3066          * reporting is disabled
3067          */
3068         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3069             vcpu->arch.mcg_ctl != ~(u64)0)
3070                 return 0;
3071         banks += 4 * mce->bank;
3072         /*
3073          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3074          * reporting is disabled for the bank
3075          */
3076         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3077                 return 0;
3078         if (mce->status & MCI_STATUS_UC) {
3079                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3080                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3081                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3082                         return 0;
3083                 }
3084                 if (banks[1] & MCI_STATUS_VAL)
3085                         mce->status |= MCI_STATUS_OVER;
3086                 banks[2] = mce->addr;
3087                 banks[3] = mce->misc;
3088                 vcpu->arch.mcg_status = mce->mcg_status;
3089                 banks[1] = mce->status;
3090                 kvm_queue_exception(vcpu, MC_VECTOR);
3091         } else if (!(banks[1] & MCI_STATUS_VAL)
3092                    || !(banks[1] & MCI_STATUS_UC)) {
3093                 if (banks[1] & MCI_STATUS_VAL)
3094                         mce->status |= MCI_STATUS_OVER;
3095                 banks[2] = mce->addr;
3096                 banks[3] = mce->misc;
3097                 banks[1] = mce->status;
3098         } else
3099                 banks[1] |= MCI_STATUS_OVER;
3100         return 0;
3101 }
3102
3103 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3104                                                struct kvm_vcpu_events *events)
3105 {
3106         process_nmi(vcpu);
3107         events->exception.injected =
3108                 vcpu->arch.exception.pending &&
3109                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3110         events->exception.nr = vcpu->arch.exception.nr;
3111         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3112         events->exception.pad = 0;
3113         events->exception.error_code = vcpu->arch.exception.error_code;
3114
3115         events->interrupt.injected =
3116                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3117         events->interrupt.nr = vcpu->arch.interrupt.nr;
3118         events->interrupt.soft = 0;
3119         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3120
3121         events->nmi.injected = vcpu->arch.nmi_injected;
3122         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3123         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3124         events->nmi.pad = 0;
3125
3126         events->sipi_vector = 0; /* never valid when reporting to user space */
3127
3128         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3129                          | KVM_VCPUEVENT_VALID_SHADOW);
3130         memset(&events->reserved, 0, sizeof(events->reserved));
3131 }
3132
3133 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3134                                               struct kvm_vcpu_events *events)
3135 {
3136         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3137                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3138                               | KVM_VCPUEVENT_VALID_SHADOW))
3139                 return -EINVAL;
3140
3141         process_nmi(vcpu);
3142         vcpu->arch.exception.pending = events->exception.injected;
3143         vcpu->arch.exception.nr = events->exception.nr;
3144         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3145         vcpu->arch.exception.error_code = events->exception.error_code;
3146
3147         vcpu->arch.interrupt.pending = events->interrupt.injected;
3148         vcpu->arch.interrupt.nr = events->interrupt.nr;
3149         vcpu->arch.interrupt.soft = events->interrupt.soft;
3150         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3151                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3152                                                   events->interrupt.shadow);
3153
3154         vcpu->arch.nmi_injected = events->nmi.injected;
3155         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3156                 vcpu->arch.nmi_pending = events->nmi.pending;
3157         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3158
3159         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3160             kvm_vcpu_has_lapic(vcpu))
3161                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3162
3163         kvm_make_request(KVM_REQ_EVENT, vcpu);
3164
3165         return 0;
3166 }
3167
3168 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3169                                              struct kvm_debugregs *dbgregs)
3170 {
3171         unsigned long val;
3172
3173         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3174         kvm_get_dr(vcpu, 6, &val);
3175         dbgregs->dr6 = val;
3176         dbgregs->dr7 = vcpu->arch.dr7;
3177         dbgregs->flags = 0;
3178         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3179 }
3180
3181 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3182                                             struct kvm_debugregs *dbgregs)
3183 {
3184         if (dbgregs->flags)
3185                 return -EINVAL;
3186
3187         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3188         kvm_update_dr0123(vcpu);
3189         vcpu->arch.dr6 = dbgregs->dr6;
3190         kvm_update_dr6(vcpu);
3191         vcpu->arch.dr7 = dbgregs->dr7;
3192         kvm_update_dr7(vcpu);
3193
3194         return 0;
3195 }
3196
3197 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3198
3199 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3200 {
3201         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3202         u64 xstate_bv = xsave->xsave_hdr.xstate_bv;
3203         u64 valid;
3204
3205         /*
3206          * Copy legacy XSAVE area, to avoid complications with CPUID
3207          * leaves 0 and 1 in the loop below.
3208          */
3209         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3210
3211         /* Set XSTATE_BV */
3212         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3213
3214         /*
3215          * Copy each region from the possibly compacted offset to the
3216          * non-compacted offset.
3217          */
3218         valid = xstate_bv & ~XSTATE_FPSSE;
3219         while (valid) {
3220                 u64 feature = valid & -valid;
3221                 int index = fls64(feature) - 1;
3222                 void *src = get_xsave_addr(xsave, feature);
3223
3224                 if (src) {
3225                         u32 size, offset, ecx, edx;
3226                         cpuid_count(XSTATE_CPUID, index,
3227                                     &size, &offset, &ecx, &edx);
3228                         memcpy(dest + offset, src, size);
3229                 }
3230
3231                 valid -= feature;
3232         }
3233 }
3234
3235 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3236 {
3237         struct xsave_struct *xsave = &vcpu->arch.guest_fpu.state->xsave;
3238         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3239         u64 valid;
3240
3241         /*
3242          * Copy legacy XSAVE area, to avoid complications with CPUID
3243          * leaves 0 and 1 in the loop below.
3244          */
3245         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3246
3247         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3248         xsave->xsave_hdr.xstate_bv = xstate_bv;
3249         if (cpu_has_xsaves)
3250                 xsave->xsave_hdr.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3251
3252         /*
3253          * Copy each region from the non-compacted offset to the
3254          * possibly compacted offset.
3255          */
3256         valid = xstate_bv & ~XSTATE_FPSSE;
3257         while (valid) {
3258                 u64 feature = valid & -valid;
3259                 int index = fls64(feature) - 1;
3260                 void *dest = get_xsave_addr(xsave, feature);
3261
3262                 if (dest) {
3263                         u32 size, offset, ecx, edx;
3264                         cpuid_count(XSTATE_CPUID, index,
3265                                     &size, &offset, &ecx, &edx);
3266                         memcpy(dest, src + offset, size);
3267                 } else
3268                         WARN_ON_ONCE(1);
3269
3270                 valid -= feature;
3271         }
3272 }
3273
3274 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3275                                          struct kvm_xsave *guest_xsave)
3276 {
3277         if (cpu_has_xsave) {
3278                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3279                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3280         } else {
3281                 memcpy(guest_xsave->region,
3282                         &vcpu->arch.guest_fpu.state->fxsave,
3283                         sizeof(struct i387_fxsave_struct));
3284                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3285                         XSTATE_FPSSE;
3286         }
3287 }
3288
3289 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3290                                         struct kvm_xsave *guest_xsave)
3291 {
3292         u64 xstate_bv =
3293                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3294
3295         if (cpu_has_xsave) {
3296                 /*
3297                  * Here we allow setting states that are not present in
3298                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3299                  * with old userspace.
3300                  */
3301                 if (xstate_bv & ~kvm_supported_xcr0())
3302                         return -EINVAL;
3303                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3304         } else {
3305                 if (xstate_bv & ~XSTATE_FPSSE)
3306                         return -EINVAL;
3307                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3308                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3309         }
3310         return 0;
3311 }
3312
3313 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3314                                         struct kvm_xcrs *guest_xcrs)
3315 {
3316         if (!cpu_has_xsave) {
3317                 guest_xcrs->nr_xcrs = 0;
3318                 return;
3319         }
3320
3321         guest_xcrs->nr_xcrs = 1;
3322         guest_xcrs->flags = 0;
3323         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3324         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3325 }
3326
3327 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3328                                        struct kvm_xcrs *guest_xcrs)
3329 {
3330         int i, r = 0;
3331
3332         if (!cpu_has_xsave)
3333                 return -EINVAL;
3334
3335         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3336                 return -EINVAL;
3337
3338         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3339                 /* Only support XCR0 currently */
3340                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3341                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3342                                 guest_xcrs->xcrs[i].value);
3343                         break;
3344                 }
3345         if (r)
3346                 r = -EINVAL;
3347         return r;
3348 }
3349
3350 /*
3351  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3352  * stopped by the hypervisor.  This function will be called from the host only.
3353  * EINVAL is returned when the host attempts to set the flag for a guest that
3354  * does not support pv clocks.
3355  */
3356 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3357 {
3358         if (!vcpu->arch.pv_time_enabled)
3359                 return -EINVAL;
3360         vcpu->arch.pvclock_set_guest_stopped_request = true;
3361         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3362         return 0;
3363 }
3364
3365 long kvm_arch_vcpu_ioctl(struct file *filp,
3366                          unsigned int ioctl, unsigned long arg)
3367 {
3368         struct kvm_vcpu *vcpu = filp->private_data;
3369         void __user *argp = (void __user *)arg;
3370         int r;
3371         union {
3372                 struct kvm_lapic_state *lapic;
3373                 struct kvm_xsave *xsave;
3374                 struct kvm_xcrs *xcrs;
3375                 void *buffer;
3376         } u;
3377
3378         u.buffer = NULL;
3379         switch (ioctl) {
3380         case KVM_GET_LAPIC: {
3381                 r = -EINVAL;
3382                 if (!vcpu->arch.apic)
3383                         goto out;
3384                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3385
3386                 r = -ENOMEM;
3387                 if (!u.lapic)
3388                         goto out;
3389                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3390                 if (r)
3391                         goto out;
3392                 r = -EFAULT;
3393                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3394                         goto out;
3395                 r = 0;
3396                 break;
3397         }
3398         case KVM_SET_LAPIC: {
3399                 r = -EINVAL;
3400                 if (!vcpu->arch.apic)
3401                         goto out;
3402                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3403                 if (IS_ERR(u.lapic))
3404                         return PTR_ERR(u.lapic);
3405
3406                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3407                 break;
3408         }
3409         case KVM_INTERRUPT: {
3410                 struct kvm_interrupt irq;
3411
3412                 r = -EFAULT;
3413                 if (copy_from_user(&irq, argp, sizeof irq))
3414                         goto out;
3415                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3416                 break;
3417         }
3418         case KVM_NMI: {
3419                 r = kvm_vcpu_ioctl_nmi(vcpu);
3420                 break;
3421         }
3422         case KVM_SET_CPUID: {
3423                 struct kvm_cpuid __user *cpuid_arg = argp;
3424                 struct kvm_cpuid cpuid;
3425
3426                 r = -EFAULT;
3427                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3428                         goto out;
3429                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3430                 break;
3431         }
3432         case KVM_SET_CPUID2: {
3433                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3434                 struct kvm_cpuid2 cpuid;
3435
3436                 r = -EFAULT;
3437                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3438                         goto out;
3439                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3440                                               cpuid_arg->entries);
3441                 break;
3442         }
3443         case KVM_GET_CPUID2: {
3444                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3445                 struct kvm_cpuid2 cpuid;
3446
3447                 r = -EFAULT;
3448                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3449                         goto out;
3450                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3451                                               cpuid_arg->entries);
3452                 if (r)
3453                         goto out;
3454                 r = -EFAULT;
3455                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3456                         goto out;
3457                 r = 0;
3458                 break;
3459         }
3460         case KVM_GET_MSRS:
3461                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3462                 break;
3463         case KVM_SET_MSRS:
3464                 r = msr_io(vcpu, argp, do_set_msr, 0);
3465                 break;
3466         case KVM_TPR_ACCESS_REPORTING: {
3467                 struct kvm_tpr_access_ctl tac;
3468
3469                 r = -EFAULT;
3470                 if (copy_from_user(&tac, argp, sizeof tac))
3471                         goto out;
3472                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3473                 if (r)
3474                         goto out;
3475                 r = -EFAULT;
3476                 if (copy_to_user(argp, &tac, sizeof tac))
3477                         goto out;
3478                 r = 0;
3479                 break;
3480         };
3481         case KVM_SET_VAPIC_ADDR: {
3482                 struct kvm_vapic_addr va;
3483
3484                 r = -EINVAL;
3485                 if (!irqchip_in_kernel(vcpu->kvm))
3486                         goto out;
3487                 r = -EFAULT;
3488                 if (copy_from_user(&va, argp, sizeof va))
3489                         goto out;
3490                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3491                 break;
3492         }
3493         case KVM_X86_SETUP_MCE: {
3494                 u64 mcg_cap;
3495
3496                 r = -EFAULT;
3497                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3498                         goto out;
3499                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3500                 break;
3501         }
3502         case KVM_X86_SET_MCE: {
3503                 struct kvm_x86_mce mce;
3504
3505                 r = -EFAULT;
3506                 if (copy_from_user(&mce, argp, sizeof mce))
3507                         goto out;
3508                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3509                 break;
3510         }
3511         case KVM_GET_VCPU_EVENTS: {
3512                 struct kvm_vcpu_events events;
3513
3514                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3515
3516                 r = -EFAULT;
3517                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3518                         break;
3519                 r = 0;
3520                 break;
3521         }
3522         case KVM_SET_VCPU_EVENTS: {
3523                 struct kvm_vcpu_events events;
3524
3525                 r = -EFAULT;
3526                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3527                         break;
3528
3529                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3530                 break;
3531         }
3532         case KVM_GET_DEBUGREGS: {
3533                 struct kvm_debugregs dbgregs;
3534
3535                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3536
3537                 r = -EFAULT;
3538                 if (copy_to_user(argp, &dbgregs,
3539                                  sizeof(struct kvm_debugregs)))
3540                         break;
3541                 r = 0;
3542                 break;
3543         }
3544         case KVM_SET_DEBUGREGS: {
3545                 struct kvm_debugregs dbgregs;
3546
3547                 r = -EFAULT;
3548                 if (copy_from_user(&dbgregs, argp,
3549                                    sizeof(struct kvm_debugregs)))
3550                         break;
3551
3552                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3553                 break;
3554         }
3555         case KVM_GET_XSAVE: {
3556                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3557                 r = -ENOMEM;
3558                 if (!u.xsave)
3559                         break;
3560
3561                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3562
3563                 r = -EFAULT;
3564                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3565                         break;
3566                 r = 0;
3567                 break;
3568         }
3569         case KVM_SET_XSAVE: {
3570                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3571                 if (IS_ERR(u.xsave))
3572                         return PTR_ERR(u.xsave);
3573
3574                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3575                 break;
3576         }
3577         case KVM_GET_XCRS: {
3578                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3579                 r = -ENOMEM;
3580                 if (!u.xcrs)
3581                         break;
3582
3583                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3584
3585                 r = -EFAULT;
3586                 if (copy_to_user(argp, u.xcrs,
3587                                  sizeof(struct kvm_xcrs)))
3588                         break;
3589                 r = 0;
3590                 break;
3591         }
3592         case KVM_SET_XCRS: {
3593                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3594                 if (IS_ERR(u.xcrs))
3595                         return PTR_ERR(u.xcrs);
3596
3597                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3598                 break;
3599         }
3600         case KVM_SET_TSC_KHZ: {
3601                 u32 user_tsc_khz;
3602
3603                 r = -EINVAL;
3604                 user_tsc_khz = (u32)arg;
3605
3606                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3607                         goto out;
3608
3609                 if (user_tsc_khz == 0)
3610                         user_tsc_khz = tsc_khz;
3611
3612                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3613
3614                 r = 0;
3615                 goto out;
3616         }
3617         case KVM_GET_TSC_KHZ: {
3618                 r = vcpu->arch.virtual_tsc_khz;
3619                 goto out;
3620         }
3621         case KVM_KVMCLOCK_CTRL: {
3622                 r = kvm_set_guest_paused(vcpu);
3623                 goto out;
3624         }
3625         default:
3626                 r = -EINVAL;
3627         }
3628 out:
3629         kfree(u.buffer);
3630         return r;
3631 }
3632
3633 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3634 {
3635         return VM_FAULT_SIGBUS;
3636 }
3637
3638 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3639 {
3640         int ret;
3641
3642         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3643                 return -EINVAL;
3644         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3645         return ret;
3646 }
3647
3648 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3649                                               u64 ident_addr)
3650 {
3651         kvm->arch.ept_identity_map_addr = ident_addr;
3652         return 0;
3653 }
3654
3655 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3656                                           u32 kvm_nr_mmu_pages)
3657 {
3658         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3659                 return -EINVAL;
3660
3661         mutex_lock(&kvm->slots_lock);
3662
3663         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3664         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3665
3666         mutex_unlock(&kvm->slots_lock);
3667         return 0;
3668 }
3669
3670 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3671 {
3672         return kvm->arch.n_max_mmu_pages;
3673 }
3674
3675 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3676 {
3677         int r;
3678
3679         r = 0;
3680         switch (chip->chip_id) {
3681         case KVM_IRQCHIP_PIC_MASTER:
3682                 memcpy(&chip->chip.pic,
3683                         &pic_irqchip(kvm)->pics[0],
3684                         sizeof(struct kvm_pic_state));
3685                 break;
3686         case KVM_IRQCHIP_PIC_SLAVE:
3687                 memcpy(&chip->chip.pic,
3688                         &pic_irqchip(kvm)->pics[1],
3689                         sizeof(struct kvm_pic_state));
3690                 break;
3691         case KVM_IRQCHIP_IOAPIC:
3692                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3693                 break;
3694         default:
3695                 r = -EINVAL;
3696                 break;
3697         }
3698         return r;
3699 }
3700
3701 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3702 {
3703         int r;
3704
3705         r = 0;
3706         switch (chip->chip_id) {
3707         case KVM_IRQCHIP_PIC_MASTER:
3708                 spin_lock(&pic_irqchip(kvm)->lock);
3709                 memcpy(&pic_irqchip(kvm)->pics[0],
3710                         &chip->chip.pic,
3711                         sizeof(struct kvm_pic_state));
3712                 spin_unlock(&pic_irqchip(kvm)->lock);
3713                 break;
3714         case KVM_IRQCHIP_PIC_SLAVE:
3715                 spin_lock(&pic_irqchip(kvm)->lock);
3716                 memcpy(&pic_irqchip(kvm)->pics[1],
3717                         &chip->chip.pic,
3718                         sizeof(struct kvm_pic_state));
3719                 spin_unlock(&pic_irqchip(kvm)->lock);
3720                 break;
3721         case KVM_IRQCHIP_IOAPIC:
3722                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3723                 break;
3724         default:
3725                 r = -EINVAL;
3726                 break;
3727         }
3728         kvm_pic_update_irq(pic_irqchip(kvm));
3729         return r;
3730 }
3731
3732 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3733 {
3734         int r = 0;
3735
3736         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3737         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3738         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3739         return r;
3740 }
3741
3742 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3743 {
3744         int r = 0;
3745
3746         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3747         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3748         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3749         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3750         return r;
3751 }
3752
3753 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3754 {
3755         int r = 0;
3756
3757         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3758         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3759                 sizeof(ps->channels));
3760         ps->flags = kvm->arch.vpit->pit_state.flags;
3761         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3762         memset(&ps->reserved, 0, sizeof(ps->reserved));
3763         return r;
3764 }
3765
3766 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3767 {
3768         int r = 0, start = 0;
3769         u32 prev_legacy, cur_legacy;
3770         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3771         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3772         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3773         if (!prev_legacy && cur_legacy)
3774                 start = 1;
3775         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3776                sizeof(kvm->arch.vpit->pit_state.channels));
3777         kvm->arch.vpit->pit_state.flags = ps->flags;
3778         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3779         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3780         return r;
3781 }
3782
3783 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3784                                  struct kvm_reinject_control *control)
3785 {
3786         if (!kvm->arch.vpit)
3787                 return -ENXIO;
3788         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3789         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3790         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3791         return 0;
3792 }
3793
3794 /**
3795  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3796  * @kvm: kvm instance
3797  * @log: slot id and address to which we copy the log
3798  *
3799  * Steps 1-4 below provide general overview of dirty page logging. See
3800  * kvm_get_dirty_log_protect() function description for additional details.
3801  *
3802  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3803  * always flush the TLB (step 4) even if previous step failed  and the dirty
3804  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3805  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3806  * writes will be marked dirty for next log read.
3807  *
3808  *   1. Take a snapshot of the bit and clear it if needed.
3809  *   2. Write protect the corresponding page.
3810  *   3. Copy the snapshot to the userspace.
3811  *   4. Flush TLB's if needed.
3812  */
3813 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3814 {
3815         bool is_dirty = false;
3816         int r;
3817
3818         mutex_lock(&kvm->slots_lock);
3819
3820         /*
3821          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3822          */
3823         if (kvm_x86_ops->flush_log_dirty)
3824                 kvm_x86_ops->flush_log_dirty(kvm);
3825
3826         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3827
3828         /*
3829          * All the TLBs can be flushed out of mmu lock, see the comments in
3830          * kvm_mmu_slot_remove_write_access().
3831          */
3832         lockdep_assert_held(&kvm->slots_lock);
3833         if (is_dirty)
3834                 kvm_flush_remote_tlbs(kvm);
3835
3836         mutex_unlock(&kvm->slots_lock);
3837         return r;
3838 }
3839
3840 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3841                         bool line_status)
3842 {
3843         if (!irqchip_in_kernel(kvm))
3844                 return -ENXIO;
3845
3846         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3847                                         irq_event->irq, irq_event->level,
3848                                         line_status);
3849         return 0;
3850 }
3851
3852 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3853                                    struct kvm_enable_cap *cap)
3854 {
3855         int r;
3856
3857         if (cap->flags)
3858                 return -EINVAL;
3859
3860         switch (cap->cap) {
3861         case KVM_CAP_DISABLE_QUIRKS:
3862                 kvm->arch.disabled_quirks = cap->args[0];
3863                 r = 0;
3864                 break;
3865         default:
3866                 r = -EINVAL;
3867                 break;
3868         }
3869         return r;
3870 }
3871
3872 long kvm_arch_vm_ioctl(struct file *filp,
3873                        unsigned int ioctl, unsigned long arg)
3874 {
3875         struct kvm *kvm = filp->private_data;
3876         void __user *argp = (void __user *)arg;
3877         int r = -ENOTTY;
3878         /*
3879          * This union makes it completely explicit to gcc-3.x
3880          * that these two variables' stack usage should be
3881          * combined, not added together.
3882          */
3883         union {
3884                 struct kvm_pit_state ps;
3885                 struct kvm_pit_state2 ps2;
3886                 struct kvm_pit_config pit_config;
3887         } u;
3888
3889         switch (ioctl) {
3890         case KVM_SET_TSS_ADDR:
3891                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3892                 break;
3893         case KVM_SET_IDENTITY_MAP_ADDR: {
3894                 u64 ident_addr;
3895
3896                 r = -EFAULT;
3897                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3898                         goto out;
3899                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3900                 break;
3901         }
3902         case KVM_SET_NR_MMU_PAGES:
3903                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3904                 break;
3905         case KVM_GET_NR_MMU_PAGES:
3906                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3907                 break;
3908         case KVM_CREATE_IRQCHIP: {
3909                 struct kvm_pic *vpic;
3910
3911                 mutex_lock(&kvm->lock);
3912                 r = -EEXIST;
3913                 if (kvm->arch.vpic)
3914                         goto create_irqchip_unlock;
3915                 r = -EINVAL;
3916                 if (atomic_read(&kvm->online_vcpus))
3917                         goto create_irqchip_unlock;
3918                 r = -ENOMEM;
3919                 vpic = kvm_create_pic(kvm);
3920                 if (vpic) {
3921                         r = kvm_ioapic_init(kvm);
3922                         if (r) {
3923                                 mutex_lock(&kvm->slots_lock);
3924                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3925                                                           &vpic->dev_master);
3926                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3927                                                           &vpic->dev_slave);
3928                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3929                                                           &vpic->dev_eclr);
3930                                 mutex_unlock(&kvm->slots_lock);
3931                                 kfree(vpic);
3932                                 goto create_irqchip_unlock;
3933                         }
3934                 } else
3935                         goto create_irqchip_unlock;
3936                 smp_wmb();
3937                 kvm->arch.vpic = vpic;
3938                 smp_wmb();
3939                 r = kvm_setup_default_irq_routing(kvm);
3940                 if (r) {
3941                         mutex_lock(&kvm->slots_lock);
3942                         mutex_lock(&kvm->irq_lock);
3943                         kvm_ioapic_destroy(kvm);
3944                         kvm_destroy_pic(kvm);
3945                         mutex_unlock(&kvm->irq_lock);
3946                         mutex_unlock(&kvm->slots_lock);
3947                 }
3948         create_irqchip_unlock:
3949                 mutex_unlock(&kvm->lock);
3950                 break;
3951         }
3952         case KVM_CREATE_PIT:
3953                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3954                 goto create_pit;
3955         case KVM_CREATE_PIT2:
3956                 r = -EFAULT;
3957                 if (copy_from_user(&u.pit_config, argp,
3958                                    sizeof(struct kvm_pit_config)))
3959                         goto out;
3960         create_pit:
3961                 mutex_lock(&kvm->slots_lock);
3962                 r = -EEXIST;
3963                 if (kvm->arch.vpit)
3964                         goto create_pit_unlock;
3965                 r = -ENOMEM;
3966                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3967                 if (kvm->arch.vpit)
3968                         r = 0;
3969         create_pit_unlock:
3970                 mutex_unlock(&kvm->slots_lock);
3971                 break;
3972         case KVM_GET_IRQCHIP: {
3973                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3974                 struct kvm_irqchip *chip;
3975
3976                 chip = memdup_user(argp, sizeof(*chip));
3977                 if (IS_ERR(chip)) {
3978                         r = PTR_ERR(chip);
3979                         goto out;
3980                 }
3981
3982                 r = -ENXIO;
3983                 if (!irqchip_in_kernel(kvm))
3984                         goto get_irqchip_out;
3985                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3986                 if (r)
3987                         goto get_irqchip_out;
3988                 r = -EFAULT;
3989                 if (copy_to_user(argp, chip, sizeof *chip))
3990                         goto get_irqchip_out;
3991                 r = 0;
3992         get_irqchip_out:
3993                 kfree(chip);
3994                 break;
3995         }
3996         case KVM_SET_IRQCHIP: {
3997                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3998                 struct kvm_irqchip *chip;
3999
4000                 chip = memdup_user(argp, sizeof(*chip));
4001                 if (IS_ERR(chip)) {
4002                         r = PTR_ERR(chip);
4003                         goto out;
4004                 }
4005
4006                 r = -ENXIO;
4007                 if (!irqchip_in_kernel(kvm))
4008                         goto set_irqchip_out;
4009                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4010                 if (r)
4011                         goto set_irqchip_out;
4012                 r = 0;
4013         set_irqchip_out:
4014                 kfree(chip);
4015                 break;
4016         }
4017         case KVM_GET_PIT: {
4018                 r = -EFAULT;
4019                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4020                         goto out;
4021                 r = -ENXIO;
4022                 if (!kvm->arch.vpit)
4023                         goto out;
4024                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4025                 if (r)
4026                         goto out;
4027                 r = -EFAULT;
4028                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4029                         goto out;
4030                 r = 0;
4031                 break;
4032         }
4033         case KVM_SET_PIT: {
4034                 r = -EFAULT;
4035                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4036                         goto out;
4037                 r = -ENXIO;
4038                 if (!kvm->arch.vpit)
4039                         goto out;
4040                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4041                 break;
4042         }
4043         case KVM_GET_PIT2: {
4044                 r = -ENXIO;
4045                 if (!kvm->arch.vpit)
4046                         goto out;
4047                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4048                 if (r)
4049                         goto out;
4050                 r = -EFAULT;
4051                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4052                         goto out;
4053                 r = 0;
4054                 break;
4055         }
4056         case KVM_SET_PIT2: {
4057                 r = -EFAULT;
4058                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4059                         goto out;
4060                 r = -ENXIO;
4061                 if (!kvm->arch.vpit)
4062                         goto out;
4063                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4064                 break;
4065         }
4066         case KVM_REINJECT_CONTROL: {
4067                 struct kvm_reinject_control control;
4068                 r =  -EFAULT;
4069                 if (copy_from_user(&control, argp, sizeof(control)))
4070                         goto out;
4071                 r = kvm_vm_ioctl_reinject(kvm, &control);
4072                 break;
4073         }
4074         case KVM_XEN_HVM_CONFIG: {
4075                 r = -EFAULT;
4076                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4077                                    sizeof(struct kvm_xen_hvm_config)))
4078                         goto out;
4079                 r = -EINVAL;
4080                 if (kvm->arch.xen_hvm_config.flags)
4081                         goto out;
4082                 r = 0;
4083                 break;
4084         }
4085         case KVM_SET_CLOCK: {
4086                 struct kvm_clock_data user_ns;
4087                 u64 now_ns;
4088                 s64 delta;
4089
4090                 r = -EFAULT;
4091                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4092                         goto out;
4093
4094                 r = -EINVAL;
4095                 if (user_ns.flags)
4096                         goto out;
4097
4098                 r = 0;
4099                 local_irq_disable();
4100                 now_ns = get_kernel_ns();
4101                 delta = user_ns.clock - now_ns;
4102                 local_irq_enable();
4103                 kvm->arch.kvmclock_offset = delta;
4104                 kvm_gen_update_masterclock(kvm);
4105                 break;
4106         }
4107         case KVM_GET_CLOCK: {
4108                 struct kvm_clock_data user_ns;
4109                 u64 now_ns;
4110
4111                 local_irq_disable();
4112                 now_ns = get_kernel_ns();
4113                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4114                 local_irq_enable();
4115                 user_ns.flags = 0;
4116                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4117
4118                 r = -EFAULT;
4119                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4120                         goto out;
4121                 r = 0;
4122                 break;
4123         }
4124         case KVM_ENABLE_CAP: {
4125                 struct kvm_enable_cap cap;
4126
4127                 r = -EFAULT;
4128                 if (copy_from_user(&cap, argp, sizeof(cap)))
4129                         goto out;
4130                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4131                 break;
4132         }
4133         default:
4134                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4135         }
4136 out:
4137         return r;
4138 }
4139
4140 static void kvm_init_msr_list(void)
4141 {
4142         u32 dummy[2];
4143         unsigned i, j;
4144
4145         /* skip the first msrs in the list. KVM-specific */
4146         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
4147                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4148                         continue;
4149
4150                 /*
4151                  * Even MSRs that are valid in the host may not be exposed
4152                  * to the guests in some cases.  We could work around this
4153                  * in VMX with the generic MSR save/load machinery, but it
4154                  * is not really worthwhile since it will really only
4155                  * happen with nested virtualization.
4156                  */
4157                 switch (msrs_to_save[i]) {
4158                 case MSR_IA32_BNDCFGS:
4159                         if (!kvm_x86_ops->mpx_supported())
4160                                 continue;
4161                         break;
4162                 default:
4163                         break;
4164                 }
4165
4166                 if (j < i)
4167                         msrs_to_save[j] = msrs_to_save[i];
4168                 j++;
4169         }
4170         num_msrs_to_save = j;
4171 }
4172
4173 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4174                            const void *v)
4175 {
4176         int handled = 0;
4177         int n;
4178
4179         do {
4180                 n = min(len, 8);
4181                 if (!(vcpu->arch.apic &&
4182                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4183                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4184                         break;
4185                 handled += n;
4186                 addr += n;
4187                 len -= n;
4188                 v += n;
4189         } while (len);
4190
4191         return handled;
4192 }
4193
4194 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4195 {
4196         int handled = 0;
4197         int n;
4198
4199         do {
4200                 n = min(len, 8);
4201                 if (!(vcpu->arch.apic &&
4202                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4203                                          addr, n, v))
4204                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4205                         break;
4206                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4207                 handled += n;
4208                 addr += n;
4209                 len -= n;
4210                 v += n;
4211         } while (len);
4212
4213         return handled;
4214 }
4215
4216 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4217                         struct kvm_segment *var, int seg)
4218 {
4219         kvm_x86_ops->set_segment(vcpu, var, seg);
4220 }
4221
4222 void kvm_get_segment(struct kvm_vcpu *vcpu,
4223                      struct kvm_segment *var, int seg)
4224 {
4225         kvm_x86_ops->get_segment(vcpu, var, seg);
4226 }
4227
4228 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4229                            struct x86_exception *exception)
4230 {
4231         gpa_t t_gpa;
4232
4233         BUG_ON(!mmu_is_nested(vcpu));
4234
4235         /* NPT walks are always user-walks */
4236         access |= PFERR_USER_MASK;
4237         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4238
4239         return t_gpa;
4240 }
4241
4242 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4243                               struct x86_exception *exception)
4244 {
4245         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4246         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4247 }
4248
4249  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4250                                 struct x86_exception *exception)
4251 {
4252         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4253         access |= PFERR_FETCH_MASK;
4254         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4255 }
4256
4257 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4258                                struct x86_exception *exception)
4259 {
4260         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4261         access |= PFERR_WRITE_MASK;
4262         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4263 }
4264
4265 /* uses this to access any guest's mapped memory without checking CPL */
4266 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4267                                 struct x86_exception *exception)
4268 {
4269         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4270 }
4271
4272 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4273                                       struct kvm_vcpu *vcpu, u32 access,
4274                                       struct x86_exception *exception)
4275 {
4276         void *data = val;
4277         int r = X86EMUL_CONTINUE;
4278
4279         while (bytes) {
4280                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4281                                                             exception);
4282                 unsigned offset = addr & (PAGE_SIZE-1);
4283                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4284                 int ret;
4285
4286                 if (gpa == UNMAPPED_GVA)
4287                         return X86EMUL_PROPAGATE_FAULT;
4288                 ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, data,
4289                                           offset, toread);
4290                 if (ret < 0) {
4291                         r = X86EMUL_IO_NEEDED;
4292                         goto out;
4293                 }
4294
4295                 bytes -= toread;
4296                 data += toread;
4297                 addr += toread;
4298         }
4299 out:
4300         return r;
4301 }
4302
4303 /* used for instruction fetching */
4304 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4305                                 gva_t addr, void *val, unsigned int bytes,
4306                                 struct x86_exception *exception)
4307 {
4308         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4309         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4310         unsigned offset;
4311         int ret;
4312
4313         /* Inline kvm_read_guest_virt_helper for speed.  */
4314         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4315                                                     exception);
4316         if (unlikely(gpa == UNMAPPED_GVA))
4317                 return X86EMUL_PROPAGATE_FAULT;
4318
4319         offset = addr & (PAGE_SIZE-1);
4320         if (WARN_ON(offset + bytes > PAGE_SIZE))
4321                 bytes = (unsigned)PAGE_SIZE - offset;
4322         ret = kvm_read_guest_page(vcpu->kvm, gpa >> PAGE_SHIFT, val,
4323                                   offset, bytes);
4324         if (unlikely(ret < 0))
4325                 return X86EMUL_IO_NEEDED;
4326
4327         return X86EMUL_CONTINUE;
4328 }
4329
4330 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4331                                gva_t addr, void *val, unsigned int bytes,
4332                                struct x86_exception *exception)
4333 {
4334         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4335         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4336
4337         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4338                                           exception);
4339 }
4340 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4341
4342 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4343                                       gva_t addr, void *val, unsigned int bytes,
4344                                       struct x86_exception *exception)
4345 {
4346         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4347         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4348 }
4349
4350 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4351                                        gva_t addr, void *val,
4352                                        unsigned int bytes,
4353                                        struct x86_exception *exception)
4354 {
4355         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4356         void *data = val;
4357         int r = X86EMUL_CONTINUE;
4358
4359         while (bytes) {
4360                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4361                                                              PFERR_WRITE_MASK,
4362                                                              exception);
4363                 unsigned offset = addr & (PAGE_SIZE-1);
4364                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4365                 int ret;
4366
4367                 if (gpa == UNMAPPED_GVA)
4368                         return X86EMUL_PROPAGATE_FAULT;
4369                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4370                 if (ret < 0) {
4371                         r = X86EMUL_IO_NEEDED;
4372                         goto out;
4373                 }
4374
4375                 bytes -= towrite;
4376                 data += towrite;
4377                 addr += towrite;
4378         }
4379 out:
4380         return r;
4381 }
4382 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4383
4384 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4385                                 gpa_t *gpa, struct x86_exception *exception,
4386                                 bool write)
4387 {
4388         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4389                 | (write ? PFERR_WRITE_MASK : 0);
4390
4391         if (vcpu_match_mmio_gva(vcpu, gva)
4392             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4393                                  vcpu->arch.access, access)) {
4394                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4395                                         (gva & (PAGE_SIZE - 1));
4396                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4397                 return 1;
4398         }
4399
4400         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4401
4402         if (*gpa == UNMAPPED_GVA)
4403                 return -1;
4404
4405         /* For APIC access vmexit */
4406         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4407                 return 1;
4408
4409         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4410                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4411                 return 1;
4412         }
4413
4414         return 0;
4415 }
4416
4417 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4418                         const void *val, int bytes)
4419 {
4420         int ret;
4421
4422         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4423         if (ret < 0)
4424                 return 0;
4425         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4426         return 1;
4427 }
4428
4429 struct read_write_emulator_ops {
4430         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4431                                   int bytes);
4432         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4433                                   void *val, int bytes);
4434         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4435                                int bytes, void *val);
4436         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4437                                     void *val, int bytes);
4438         bool write;
4439 };
4440
4441 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4442 {
4443         if (vcpu->mmio_read_completed) {
4444                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4445                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4446                 vcpu->mmio_read_completed = 0;
4447                 return 1;
4448         }
4449
4450         return 0;
4451 }
4452
4453 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4454                         void *val, int bytes)
4455 {
4456         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4457 }
4458
4459 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4460                          void *val, int bytes)
4461 {
4462         return emulator_write_phys(vcpu, gpa, val, bytes);
4463 }
4464
4465 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4466 {
4467         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4468         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4469 }
4470
4471 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4472                           void *val, int bytes)
4473 {
4474         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4475         return X86EMUL_IO_NEEDED;
4476 }
4477
4478 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4479                            void *val, int bytes)
4480 {
4481         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4482
4483         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4484         return X86EMUL_CONTINUE;
4485 }
4486
4487 static const struct read_write_emulator_ops read_emultor = {
4488         .read_write_prepare = read_prepare,
4489         .read_write_emulate = read_emulate,
4490         .read_write_mmio = vcpu_mmio_read,
4491         .read_write_exit_mmio = read_exit_mmio,
4492 };
4493
4494 static const struct read_write_emulator_ops write_emultor = {
4495         .read_write_emulate = write_emulate,
4496         .read_write_mmio = write_mmio,
4497         .read_write_exit_mmio = write_exit_mmio,
4498         .write = true,
4499 };
4500
4501 static int emulator_read_write_onepage(unsigned long addr, void *val,
4502                                        unsigned int bytes,
4503                                        struct x86_exception *exception,
4504                                        struct kvm_vcpu *vcpu,
4505                                        const struct read_write_emulator_ops *ops)
4506 {
4507         gpa_t gpa;
4508         int handled, ret;
4509         bool write = ops->write;
4510         struct kvm_mmio_fragment *frag;
4511
4512         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4513
4514         if (ret < 0)
4515                 return X86EMUL_PROPAGATE_FAULT;
4516
4517         /* For APIC access vmexit */
4518         if (ret)
4519                 goto mmio;
4520
4521         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4522                 return X86EMUL_CONTINUE;
4523
4524 mmio:
4525         /*
4526          * Is this MMIO handled locally?
4527          */
4528         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4529         if (handled == bytes)
4530                 return X86EMUL_CONTINUE;
4531
4532         gpa += handled;
4533         bytes -= handled;
4534         val += handled;
4535
4536         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4537         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4538         frag->gpa = gpa;
4539         frag->data = val;
4540         frag->len = bytes;
4541         return X86EMUL_CONTINUE;
4542 }
4543
4544 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4545                         unsigned long addr,
4546                         void *val, unsigned int bytes,
4547                         struct x86_exception *exception,
4548                         const struct read_write_emulator_ops *ops)
4549 {
4550         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4551         gpa_t gpa;
4552         int rc;
4553
4554         if (ops->read_write_prepare &&
4555                   ops->read_write_prepare(vcpu, val, bytes))
4556                 return X86EMUL_CONTINUE;
4557
4558         vcpu->mmio_nr_fragments = 0;
4559
4560         /* Crossing a page boundary? */
4561         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4562                 int now;
4563
4564                 now = -addr & ~PAGE_MASK;
4565                 rc = emulator_read_write_onepage(addr, val, now, exception,
4566                                                  vcpu, ops);
4567
4568                 if (rc != X86EMUL_CONTINUE)
4569                         return rc;
4570                 addr += now;
4571                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4572                         addr = (u32)addr;
4573                 val += now;
4574                 bytes -= now;
4575         }
4576
4577         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4578                                          vcpu, ops);
4579         if (rc != X86EMUL_CONTINUE)
4580                 return rc;
4581
4582         if (!vcpu->mmio_nr_fragments)
4583                 return rc;
4584
4585         gpa = vcpu->mmio_fragments[0].gpa;
4586
4587         vcpu->mmio_needed = 1;
4588         vcpu->mmio_cur_fragment = 0;
4589
4590         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4591         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4592         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4593         vcpu->run->mmio.phys_addr = gpa;
4594
4595         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4596 }
4597
4598 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4599                                   unsigned long addr,
4600                                   void *val,
4601                                   unsigned int bytes,
4602                                   struct x86_exception *exception)
4603 {
4604         return emulator_read_write(ctxt, addr, val, bytes,
4605                                    exception, &read_emultor);
4606 }
4607
4608 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4609                             unsigned long addr,
4610                             const void *val,
4611                             unsigned int bytes,
4612                             struct x86_exception *exception)
4613 {
4614         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4615                                    exception, &write_emultor);
4616 }
4617
4618 #define CMPXCHG_TYPE(t, ptr, old, new) \
4619         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4620
4621 #ifdef CONFIG_X86_64
4622 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4623 #else
4624 #  define CMPXCHG64(ptr, old, new) \
4625         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4626 #endif
4627
4628 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4629                                      unsigned long addr,
4630                                      const void *old,
4631                                      const void *new,
4632                                      unsigned int bytes,
4633                                      struct x86_exception *exception)
4634 {
4635         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4636         gpa_t gpa;
4637         struct page *page;
4638         char *kaddr;
4639         bool exchanged;
4640
4641         /* guests cmpxchg8b have to be emulated atomically */
4642         if (bytes > 8 || (bytes & (bytes - 1)))
4643                 goto emul_write;
4644
4645         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4646
4647         if (gpa == UNMAPPED_GVA ||
4648             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4649                 goto emul_write;
4650
4651         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4652                 goto emul_write;
4653
4654         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4655         if (is_error_page(page))
4656                 goto emul_write;
4657
4658         kaddr = kmap_atomic(page);
4659         kaddr += offset_in_page(gpa);
4660         switch (bytes) {
4661         case 1:
4662                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4663                 break;
4664         case 2:
4665                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4666                 break;
4667         case 4:
4668                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4669                 break;
4670         case 8:
4671                 exchanged = CMPXCHG64(kaddr, old, new);
4672                 break;
4673         default:
4674                 BUG();
4675         }
4676         kunmap_atomic(kaddr);
4677         kvm_release_page_dirty(page);
4678
4679         if (!exchanged)
4680                 return X86EMUL_CMPXCHG_FAILED;
4681
4682         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
4683         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4684
4685         return X86EMUL_CONTINUE;
4686
4687 emul_write:
4688         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4689
4690         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4691 }
4692
4693 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4694 {
4695         /* TODO: String I/O for in kernel device */
4696         int r;
4697
4698         if (vcpu->arch.pio.in)
4699                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4700                                     vcpu->arch.pio.size, pd);
4701         else
4702                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4703                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4704                                      pd);
4705         return r;
4706 }
4707
4708 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4709                                unsigned short port, void *val,
4710                                unsigned int count, bool in)
4711 {
4712         vcpu->arch.pio.port = port;
4713         vcpu->arch.pio.in = in;
4714         vcpu->arch.pio.count  = count;
4715         vcpu->arch.pio.size = size;
4716
4717         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4718                 vcpu->arch.pio.count = 0;
4719                 return 1;
4720         }
4721
4722         vcpu->run->exit_reason = KVM_EXIT_IO;
4723         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4724         vcpu->run->io.size = size;
4725         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4726         vcpu->run->io.count = count;
4727         vcpu->run->io.port = port;
4728
4729         return 0;
4730 }
4731
4732 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4733                                     int size, unsigned short port, void *val,
4734                                     unsigned int count)
4735 {
4736         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4737         int ret;
4738
4739         if (vcpu->arch.pio.count)
4740                 goto data_avail;
4741
4742         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4743         if (ret) {
4744 data_avail:
4745                 memcpy(val, vcpu->arch.pio_data, size * count);
4746                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4747                 vcpu->arch.pio.count = 0;
4748                 return 1;
4749         }
4750
4751         return 0;
4752 }
4753
4754 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4755                                      int size, unsigned short port,
4756                                      const void *val, unsigned int count)
4757 {
4758         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4759
4760         memcpy(vcpu->arch.pio_data, val, size * count);
4761         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4762         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4763 }
4764
4765 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4766 {
4767         return kvm_x86_ops->get_segment_base(vcpu, seg);
4768 }
4769
4770 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4771 {
4772         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4773 }
4774
4775 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4776 {
4777         if (!need_emulate_wbinvd(vcpu))
4778                 return X86EMUL_CONTINUE;
4779
4780         if (kvm_x86_ops->has_wbinvd_exit()) {
4781                 int cpu = get_cpu();
4782
4783                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4784                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4785                                 wbinvd_ipi, NULL, 1);
4786                 put_cpu();
4787                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4788         } else
4789                 wbinvd();
4790         return X86EMUL_CONTINUE;
4791 }
4792
4793 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4794 {
4795         kvm_x86_ops->skip_emulated_instruction(vcpu);
4796         return kvm_emulate_wbinvd_noskip(vcpu);
4797 }
4798 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4799
4800
4801
4802 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4803 {
4804         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4805 }
4806
4807 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4808                            unsigned long *dest)
4809 {
4810         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4811 }
4812
4813 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4814                            unsigned long value)
4815 {
4816
4817         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4818 }
4819
4820 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4821 {
4822         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4823 }
4824
4825 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4826 {
4827         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4828         unsigned long value;
4829
4830         switch (cr) {
4831         case 0:
4832                 value = kvm_read_cr0(vcpu);
4833                 break;
4834         case 2:
4835                 value = vcpu->arch.cr2;
4836                 break;
4837         case 3:
4838                 value = kvm_read_cr3(vcpu);
4839                 break;
4840         case 4:
4841                 value = kvm_read_cr4(vcpu);
4842                 break;
4843         case 8:
4844                 value = kvm_get_cr8(vcpu);
4845                 break;
4846         default:
4847                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4848                 return 0;
4849         }
4850
4851         return value;
4852 }
4853
4854 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4855 {
4856         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4857         int res = 0;
4858
4859         switch (cr) {
4860         case 0:
4861                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4862                 break;
4863         case 2:
4864                 vcpu->arch.cr2 = val;
4865                 break;
4866         case 3:
4867                 res = kvm_set_cr3(vcpu, val);
4868                 break;
4869         case 4:
4870                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4871                 break;
4872         case 8:
4873                 res = kvm_set_cr8(vcpu, val);
4874                 break;
4875         default:
4876                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4877                 res = -1;
4878         }
4879
4880         return res;
4881 }
4882
4883 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4884 {
4885         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4886 }
4887
4888 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4889 {
4890         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4891 }
4892
4893 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4894 {
4895         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4896 }
4897
4898 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4899 {
4900         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4901 }
4902
4903 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4904 {
4905         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4906 }
4907
4908 static unsigned long emulator_get_cached_segment_base(
4909         struct x86_emulate_ctxt *ctxt, int seg)
4910 {
4911         return get_segment_base(emul_to_vcpu(ctxt), seg);
4912 }
4913
4914 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4915                                  struct desc_struct *desc, u32 *base3,
4916                                  int seg)
4917 {
4918         struct kvm_segment var;
4919
4920         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4921         *selector = var.selector;
4922
4923         if (var.unusable) {
4924                 memset(desc, 0, sizeof(*desc));
4925                 return false;
4926         }
4927
4928         if (var.g)
4929                 var.limit >>= 12;
4930         set_desc_limit(desc, var.limit);
4931         set_desc_base(desc, (unsigned long)var.base);
4932 #ifdef CONFIG_X86_64
4933         if (base3)
4934                 *base3 = var.base >> 32;
4935 #endif
4936         desc->type = var.type;
4937         desc->s = var.s;
4938         desc->dpl = var.dpl;
4939         desc->p = var.present;
4940         desc->avl = var.avl;
4941         desc->l = var.l;
4942         desc->d = var.db;
4943         desc->g = var.g;
4944
4945         return true;
4946 }
4947
4948 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4949                                  struct desc_struct *desc, u32 base3,
4950                                  int seg)
4951 {
4952         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4953         struct kvm_segment var;
4954
4955         var.selector = selector;
4956         var.base = get_desc_base(desc);
4957 #ifdef CONFIG_X86_64
4958         var.base |= ((u64)base3) << 32;
4959 #endif
4960         var.limit = get_desc_limit(desc);
4961         if (desc->g)
4962                 var.limit = (var.limit << 12) | 0xfff;
4963         var.type = desc->type;
4964         var.dpl = desc->dpl;
4965         var.db = desc->d;
4966         var.s = desc->s;
4967         var.l = desc->l;
4968         var.g = desc->g;
4969         var.avl = desc->avl;
4970         var.present = desc->p;
4971         var.unusable = !var.present;
4972         var.padding = 0;
4973
4974         kvm_set_segment(vcpu, &var, seg);
4975         return;
4976 }
4977
4978 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4979                             u32 msr_index, u64 *pdata)
4980 {
4981         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4982 }
4983
4984 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4985                             u32 msr_index, u64 data)
4986 {
4987         struct msr_data msr;
4988
4989         msr.data = data;
4990         msr.index = msr_index;
4991         msr.host_initiated = false;
4992         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4993 }
4994
4995 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4996                               u32 pmc)
4997 {
4998         return kvm_pmu_check_pmc(emul_to_vcpu(ctxt), pmc);
4999 }
5000
5001 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5002                              u32 pmc, u64 *pdata)
5003 {
5004         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
5005 }
5006
5007 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5008 {
5009         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5010 }
5011
5012 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5013 {
5014         preempt_disable();
5015         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5016         /*
5017          * CR0.TS may reference the host fpu state, not the guest fpu state,
5018          * so it may be clear at this point.
5019          */
5020         clts();
5021 }
5022
5023 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5024 {
5025         preempt_enable();
5026 }
5027
5028 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5029                               struct x86_instruction_info *info,
5030                               enum x86_intercept_stage stage)
5031 {
5032         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5033 }
5034
5035 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5036                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5037 {
5038         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5039 }
5040
5041 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5042 {
5043         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5044 }
5045
5046 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5047 {
5048         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5049 }
5050
5051 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5052 {
5053         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5054 }
5055
5056 static const struct x86_emulate_ops emulate_ops = {
5057         .read_gpr            = emulator_read_gpr,
5058         .write_gpr           = emulator_write_gpr,
5059         .read_std            = kvm_read_guest_virt_system,
5060         .write_std           = kvm_write_guest_virt_system,
5061         .fetch               = kvm_fetch_guest_virt,
5062         .read_emulated       = emulator_read_emulated,
5063         .write_emulated      = emulator_write_emulated,
5064         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5065         .invlpg              = emulator_invlpg,
5066         .pio_in_emulated     = emulator_pio_in_emulated,
5067         .pio_out_emulated    = emulator_pio_out_emulated,
5068         .get_segment         = emulator_get_segment,
5069         .set_segment         = emulator_set_segment,
5070         .get_cached_segment_base = emulator_get_cached_segment_base,
5071         .get_gdt             = emulator_get_gdt,
5072         .get_idt             = emulator_get_idt,
5073         .set_gdt             = emulator_set_gdt,
5074         .set_idt             = emulator_set_idt,
5075         .get_cr              = emulator_get_cr,
5076         .set_cr              = emulator_set_cr,
5077         .cpl                 = emulator_get_cpl,
5078         .get_dr              = emulator_get_dr,
5079         .set_dr              = emulator_set_dr,
5080         .set_msr             = emulator_set_msr,
5081         .get_msr             = emulator_get_msr,
5082         .check_pmc           = emulator_check_pmc,
5083         .read_pmc            = emulator_read_pmc,
5084         .halt                = emulator_halt,
5085         .wbinvd              = emulator_wbinvd,
5086         .fix_hypercall       = emulator_fix_hypercall,
5087         .get_fpu             = emulator_get_fpu,
5088         .put_fpu             = emulator_put_fpu,
5089         .intercept           = emulator_intercept,
5090         .get_cpuid           = emulator_get_cpuid,
5091         .set_nmi_mask        = emulator_set_nmi_mask,
5092 };
5093
5094 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5095 {
5096         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5097         /*
5098          * an sti; sti; sequence only disable interrupts for the first
5099          * instruction. So, if the last instruction, be it emulated or
5100          * not, left the system with the INT_STI flag enabled, it
5101          * means that the last instruction is an sti. We should not
5102          * leave the flag on in this case. The same goes for mov ss
5103          */
5104         if (int_shadow & mask)
5105                 mask = 0;
5106         if (unlikely(int_shadow || mask)) {
5107                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5108                 if (!mask)
5109                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5110         }
5111 }
5112
5113 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5114 {
5115         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5116         if (ctxt->exception.vector == PF_VECTOR)
5117                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5118
5119         if (ctxt->exception.error_code_valid)
5120                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5121                                       ctxt->exception.error_code);
5122         else
5123                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5124         return false;
5125 }
5126
5127 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5128 {
5129         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5130         int cs_db, cs_l;
5131
5132         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5133
5134         ctxt->eflags = kvm_get_rflags(vcpu);
5135         ctxt->eip = kvm_rip_read(vcpu);
5136         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5137                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5138                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5139                      cs_db                              ? X86EMUL_MODE_PROT32 :
5140                                                           X86EMUL_MODE_PROT16;
5141         ctxt->guest_mode = is_guest_mode(vcpu);
5142
5143         init_decode_cache(ctxt);
5144         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5145 }
5146
5147 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5148 {
5149         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5150         int ret;
5151
5152         init_emulate_ctxt(vcpu);
5153
5154         ctxt->op_bytes = 2;
5155         ctxt->ad_bytes = 2;
5156         ctxt->_eip = ctxt->eip + inc_eip;
5157         ret = emulate_int_real(ctxt, irq);
5158
5159         if (ret != X86EMUL_CONTINUE)
5160                 return EMULATE_FAIL;
5161
5162         ctxt->eip = ctxt->_eip;
5163         kvm_rip_write(vcpu, ctxt->eip);
5164         kvm_set_rflags(vcpu, ctxt->eflags);
5165
5166         if (irq == NMI_VECTOR)
5167                 vcpu->arch.nmi_pending = 0;
5168         else
5169                 vcpu->arch.interrupt.pending = false;
5170
5171         return EMULATE_DONE;
5172 }
5173 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5174
5175 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5176 {
5177         int r = EMULATE_DONE;
5178
5179         ++vcpu->stat.insn_emulation_fail;
5180         trace_kvm_emulate_insn_failed(vcpu);
5181         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5182                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5183                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5184                 vcpu->run->internal.ndata = 0;
5185                 r = EMULATE_FAIL;
5186         }
5187         kvm_queue_exception(vcpu, UD_VECTOR);
5188
5189         return r;
5190 }
5191
5192 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5193                                   bool write_fault_to_shadow_pgtable,
5194                                   int emulation_type)
5195 {
5196         gpa_t gpa = cr2;
5197         pfn_t pfn;
5198
5199         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5200                 return false;
5201
5202         if (!vcpu->arch.mmu.direct_map) {
5203                 /*
5204                  * Write permission should be allowed since only
5205                  * write access need to be emulated.
5206                  */
5207                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5208
5209                 /*
5210                  * If the mapping is invalid in guest, let cpu retry
5211                  * it to generate fault.
5212                  */
5213                 if (gpa == UNMAPPED_GVA)
5214                         return true;
5215         }
5216
5217         /*
5218          * Do not retry the unhandleable instruction if it faults on the
5219          * readonly host memory, otherwise it will goto a infinite loop:
5220          * retry instruction -> write #PF -> emulation fail -> retry
5221          * instruction -> ...
5222          */
5223         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5224
5225         /*
5226          * If the instruction failed on the error pfn, it can not be fixed,
5227          * report the error to userspace.
5228          */
5229         if (is_error_noslot_pfn(pfn))
5230                 return false;
5231
5232         kvm_release_pfn_clean(pfn);
5233
5234         /* The instructions are well-emulated on direct mmu. */
5235         if (vcpu->arch.mmu.direct_map) {
5236                 unsigned int indirect_shadow_pages;
5237
5238                 spin_lock(&vcpu->kvm->mmu_lock);
5239                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5240                 spin_unlock(&vcpu->kvm->mmu_lock);
5241
5242                 if (indirect_shadow_pages)
5243                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5244
5245                 return true;
5246         }
5247
5248         /*
5249          * if emulation was due to access to shadowed page table
5250          * and it failed try to unshadow page and re-enter the
5251          * guest to let CPU execute the instruction.
5252          */
5253         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5254
5255         /*
5256          * If the access faults on its page table, it can not
5257          * be fixed by unprotecting shadow page and it should
5258          * be reported to userspace.
5259          */
5260         return !write_fault_to_shadow_pgtable;
5261 }
5262
5263 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5264                               unsigned long cr2,  int emulation_type)
5265 {
5266         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5267         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5268
5269         last_retry_eip = vcpu->arch.last_retry_eip;
5270         last_retry_addr = vcpu->arch.last_retry_addr;
5271
5272         /*
5273          * If the emulation is caused by #PF and it is non-page_table
5274          * writing instruction, it means the VM-EXIT is caused by shadow
5275          * page protected, we can zap the shadow page and retry this
5276          * instruction directly.
5277          *
5278          * Note: if the guest uses a non-page-table modifying instruction
5279          * on the PDE that points to the instruction, then we will unmap
5280          * the instruction and go to an infinite loop. So, we cache the
5281          * last retried eip and the last fault address, if we meet the eip
5282          * and the address again, we can break out of the potential infinite
5283          * loop.
5284          */
5285         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5286
5287         if (!(emulation_type & EMULTYPE_RETRY))
5288                 return false;
5289
5290         if (x86_page_table_writing_insn(ctxt))
5291                 return false;
5292
5293         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5294                 return false;
5295
5296         vcpu->arch.last_retry_eip = ctxt->eip;
5297         vcpu->arch.last_retry_addr = cr2;
5298
5299         if (!vcpu->arch.mmu.direct_map)
5300                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5301
5302         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5303
5304         return true;
5305 }
5306
5307 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5308 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5309
5310 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5311                                 unsigned long *db)
5312 {
5313         u32 dr6 = 0;
5314         int i;
5315         u32 enable, rwlen;
5316
5317         enable = dr7;
5318         rwlen = dr7 >> 16;
5319         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5320                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5321                         dr6 |= (1 << i);
5322         return dr6;
5323 }
5324
5325 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5326 {
5327         struct kvm_run *kvm_run = vcpu->run;
5328
5329         /*
5330          * rflags is the old, "raw" value of the flags.  The new value has
5331          * not been saved yet.
5332          *
5333          * This is correct even for TF set by the guest, because "the
5334          * processor will not generate this exception after the instruction
5335          * that sets the TF flag".
5336          */
5337         if (unlikely(rflags & X86_EFLAGS_TF)) {
5338                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5339                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5340                                                   DR6_RTM;
5341                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5342                         kvm_run->debug.arch.exception = DB_VECTOR;
5343                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5344                         *r = EMULATE_USER_EXIT;
5345                 } else {
5346                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5347                         /*
5348                          * "Certain debug exceptions may clear bit 0-3.  The
5349                          * remaining contents of the DR6 register are never
5350                          * cleared by the processor".
5351                          */
5352                         vcpu->arch.dr6 &= ~15;
5353                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5354                         kvm_queue_exception(vcpu, DB_VECTOR);
5355                 }
5356         }
5357 }
5358
5359 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5360 {
5361         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5362             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5363                 struct kvm_run *kvm_run = vcpu->run;
5364                 unsigned long eip = kvm_get_linear_rip(vcpu);
5365                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5366                                            vcpu->arch.guest_debug_dr7,
5367                                            vcpu->arch.eff_db);
5368
5369                 if (dr6 != 0) {
5370                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5371                         kvm_run->debug.arch.pc = eip;
5372                         kvm_run->debug.arch.exception = DB_VECTOR;
5373                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5374                         *r = EMULATE_USER_EXIT;
5375                         return true;
5376                 }
5377         }
5378
5379         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5380             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5381                 unsigned long eip = kvm_get_linear_rip(vcpu);
5382                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5383                                            vcpu->arch.dr7,
5384                                            vcpu->arch.db);
5385
5386                 if (dr6 != 0) {
5387                         vcpu->arch.dr6 &= ~15;
5388                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5389                         kvm_queue_exception(vcpu, DB_VECTOR);
5390                         *r = EMULATE_DONE;
5391                         return true;
5392                 }
5393         }
5394
5395         return false;
5396 }
5397
5398 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5399                             unsigned long cr2,
5400                             int emulation_type,
5401                             void *insn,
5402                             int insn_len)
5403 {
5404         int r;
5405         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5406         bool writeback = true;
5407         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5408
5409         /*
5410          * Clear write_fault_to_shadow_pgtable here to ensure it is
5411          * never reused.
5412          */
5413         vcpu->arch.write_fault_to_shadow_pgtable = false;
5414         kvm_clear_exception_queue(vcpu);
5415
5416         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5417                 init_emulate_ctxt(vcpu);
5418
5419                 /*
5420                  * We will reenter on the same instruction since
5421                  * we do not set complete_userspace_io.  This does not
5422                  * handle watchpoints yet, those would be handled in
5423                  * the emulate_ops.
5424                  */
5425                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5426                         return r;
5427
5428                 ctxt->interruptibility = 0;
5429                 ctxt->have_exception = false;
5430                 ctxt->exception.vector = -1;
5431                 ctxt->perm_ok = false;
5432
5433                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5434
5435                 r = x86_decode_insn(ctxt, insn, insn_len);
5436
5437                 trace_kvm_emulate_insn_start(vcpu);
5438                 ++vcpu->stat.insn_emulation;
5439                 if (r != EMULATION_OK)  {
5440                         if (emulation_type & EMULTYPE_TRAP_UD)
5441                                 return EMULATE_FAIL;
5442                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5443                                                 emulation_type))
5444                                 return EMULATE_DONE;
5445                         if (emulation_type & EMULTYPE_SKIP)
5446                                 return EMULATE_FAIL;
5447                         return handle_emulation_failure(vcpu);
5448                 }
5449         }
5450
5451         if (emulation_type & EMULTYPE_SKIP) {
5452                 kvm_rip_write(vcpu, ctxt->_eip);
5453                 if (ctxt->eflags & X86_EFLAGS_RF)
5454                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5455                 return EMULATE_DONE;
5456         }
5457
5458         if (retry_instruction(ctxt, cr2, emulation_type))
5459                 return EMULATE_DONE;
5460
5461         /* this is needed for vmware backdoor interface to work since it
5462            changes registers values  during IO operation */
5463         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5464                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5465                 emulator_invalidate_register_cache(ctxt);
5466         }
5467
5468 restart:
5469         r = x86_emulate_insn(ctxt);
5470
5471         if (r == EMULATION_INTERCEPTED)
5472                 return EMULATE_DONE;
5473
5474         if (r == EMULATION_FAILED) {
5475                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5476                                         emulation_type))
5477                         return EMULATE_DONE;
5478
5479                 return handle_emulation_failure(vcpu);
5480         }
5481
5482         if (ctxt->have_exception) {
5483                 r = EMULATE_DONE;
5484                 if (inject_emulated_exception(vcpu))
5485                         return r;
5486         } else if (vcpu->arch.pio.count) {
5487                 if (!vcpu->arch.pio.in) {
5488                         /* FIXME: return into emulator if single-stepping.  */
5489                         vcpu->arch.pio.count = 0;
5490                 } else {
5491                         writeback = false;
5492                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5493                 }
5494                 r = EMULATE_USER_EXIT;
5495         } else if (vcpu->mmio_needed) {
5496                 if (!vcpu->mmio_is_write)
5497                         writeback = false;
5498                 r = EMULATE_USER_EXIT;
5499                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5500         } else if (r == EMULATION_RESTART)
5501                 goto restart;
5502         else
5503                 r = EMULATE_DONE;
5504
5505         if (writeback) {
5506                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5507                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5508                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5509                 kvm_rip_write(vcpu, ctxt->eip);
5510                 if (r == EMULATE_DONE)
5511                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5512                 if (!ctxt->have_exception ||
5513                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5514                         __kvm_set_rflags(vcpu, ctxt->eflags);
5515
5516                 /*
5517                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5518                  * do nothing, and it will be requested again as soon as
5519                  * the shadow expires.  But we still need to check here,
5520                  * because POPF has no interrupt shadow.
5521                  */
5522                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5523                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5524         } else
5525                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5526
5527         return r;
5528 }
5529 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5530
5531 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5532 {
5533         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5534         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5535                                             size, port, &val, 1);
5536         /* do not return to emulator after return from userspace */
5537         vcpu->arch.pio.count = 0;
5538         return ret;
5539 }
5540 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5541
5542 static void tsc_bad(void *info)
5543 {
5544         __this_cpu_write(cpu_tsc_khz, 0);
5545 }
5546
5547 static void tsc_khz_changed(void *data)
5548 {
5549         struct cpufreq_freqs *freq = data;
5550         unsigned long khz = 0;
5551
5552         if (data)
5553                 khz = freq->new;
5554         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5555                 khz = cpufreq_quick_get(raw_smp_processor_id());
5556         if (!khz)
5557                 khz = tsc_khz;
5558         __this_cpu_write(cpu_tsc_khz, khz);
5559 }
5560
5561 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5562                                      void *data)
5563 {
5564         struct cpufreq_freqs *freq = data;
5565         struct kvm *kvm;
5566         struct kvm_vcpu *vcpu;
5567         int i, send_ipi = 0;
5568
5569         /*
5570          * We allow guests to temporarily run on slowing clocks,
5571          * provided we notify them after, or to run on accelerating
5572          * clocks, provided we notify them before.  Thus time never
5573          * goes backwards.
5574          *
5575          * However, we have a problem.  We can't atomically update
5576          * the frequency of a given CPU from this function; it is
5577          * merely a notifier, which can be called from any CPU.
5578          * Changing the TSC frequency at arbitrary points in time
5579          * requires a recomputation of local variables related to
5580          * the TSC for each VCPU.  We must flag these local variables
5581          * to be updated and be sure the update takes place with the
5582          * new frequency before any guests proceed.
5583          *
5584          * Unfortunately, the combination of hotplug CPU and frequency
5585          * change creates an intractable locking scenario; the order
5586          * of when these callouts happen is undefined with respect to
5587          * CPU hotplug, and they can race with each other.  As such,
5588          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5589          * undefined; you can actually have a CPU frequency change take
5590          * place in between the computation of X and the setting of the
5591          * variable.  To protect against this problem, all updates of
5592          * the per_cpu tsc_khz variable are done in an interrupt
5593          * protected IPI, and all callers wishing to update the value
5594          * must wait for a synchronous IPI to complete (which is trivial
5595          * if the caller is on the CPU already).  This establishes the
5596          * necessary total order on variable updates.
5597          *
5598          * Note that because a guest time update may take place
5599          * anytime after the setting of the VCPU's request bit, the
5600          * correct TSC value must be set before the request.  However,
5601          * to ensure the update actually makes it to any guest which
5602          * starts running in hardware virtualization between the set
5603          * and the acquisition of the spinlock, we must also ping the
5604          * CPU after setting the request bit.
5605          *
5606          */
5607
5608         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5609                 return 0;
5610         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5611                 return 0;
5612
5613         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5614
5615         spin_lock(&kvm_lock);
5616         list_for_each_entry(kvm, &vm_list, vm_list) {
5617                 kvm_for_each_vcpu(i, vcpu, kvm) {
5618                         if (vcpu->cpu != freq->cpu)
5619                                 continue;
5620                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5621                         if (vcpu->cpu != smp_processor_id())
5622                                 send_ipi = 1;
5623                 }
5624         }
5625         spin_unlock(&kvm_lock);
5626
5627         if (freq->old < freq->new && send_ipi) {
5628                 /*
5629                  * We upscale the frequency.  Must make the guest
5630                  * doesn't see old kvmclock values while running with
5631                  * the new frequency, otherwise we risk the guest sees
5632                  * time go backwards.
5633                  *
5634                  * In case we update the frequency for another cpu
5635                  * (which might be in guest context) send an interrupt
5636                  * to kick the cpu out of guest context.  Next time
5637                  * guest context is entered kvmclock will be updated,
5638                  * so the guest will not see stale values.
5639                  */
5640                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5641         }
5642         return 0;
5643 }
5644
5645 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5646         .notifier_call  = kvmclock_cpufreq_notifier
5647 };
5648
5649 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5650                                         unsigned long action, void *hcpu)
5651 {
5652         unsigned int cpu = (unsigned long)hcpu;
5653
5654         switch (action) {
5655                 case CPU_ONLINE:
5656                 case CPU_DOWN_FAILED:
5657                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5658                         break;
5659                 case CPU_DOWN_PREPARE:
5660                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5661                         break;
5662         }
5663         return NOTIFY_OK;
5664 }
5665
5666 static struct notifier_block kvmclock_cpu_notifier_block = {
5667         .notifier_call  = kvmclock_cpu_notifier,
5668         .priority = -INT_MAX
5669 };
5670
5671 static void kvm_timer_init(void)
5672 {
5673         int cpu;
5674
5675         max_tsc_khz = tsc_khz;
5676
5677         cpu_notifier_register_begin();
5678         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5679 #ifdef CONFIG_CPU_FREQ
5680                 struct cpufreq_policy policy;
5681                 memset(&policy, 0, sizeof(policy));
5682                 cpu = get_cpu();
5683                 cpufreq_get_policy(&policy, cpu);
5684                 if (policy.cpuinfo.max_freq)
5685                         max_tsc_khz = policy.cpuinfo.max_freq;
5686                 put_cpu();
5687 #endif
5688                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5689                                           CPUFREQ_TRANSITION_NOTIFIER);
5690         }
5691         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5692         for_each_online_cpu(cpu)
5693                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5694
5695         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5696         cpu_notifier_register_done();
5697
5698 }
5699
5700 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5701
5702 int kvm_is_in_guest(void)
5703 {
5704         return __this_cpu_read(current_vcpu) != NULL;
5705 }
5706
5707 static int kvm_is_user_mode(void)
5708 {
5709         int user_mode = 3;
5710
5711         if (__this_cpu_read(current_vcpu))
5712                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5713
5714         return user_mode != 0;
5715 }
5716
5717 static unsigned long kvm_get_guest_ip(void)
5718 {
5719         unsigned long ip = 0;
5720
5721         if (__this_cpu_read(current_vcpu))
5722                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5723
5724         return ip;
5725 }
5726
5727 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5728         .is_in_guest            = kvm_is_in_guest,
5729         .is_user_mode           = kvm_is_user_mode,
5730         .get_guest_ip           = kvm_get_guest_ip,
5731 };
5732
5733 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5734 {
5735         __this_cpu_write(current_vcpu, vcpu);
5736 }
5737 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5738
5739 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5740 {
5741         __this_cpu_write(current_vcpu, NULL);
5742 }
5743 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5744
5745 static void kvm_set_mmio_spte_mask(void)
5746 {
5747         u64 mask;
5748         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5749
5750         /*
5751          * Set the reserved bits and the present bit of an paging-structure
5752          * entry to generate page fault with PFER.RSV = 1.
5753          */
5754          /* Mask the reserved physical address bits. */
5755         mask = rsvd_bits(maxphyaddr, 51);
5756
5757         /* Bit 62 is always reserved for 32bit host. */
5758         mask |= 0x3ull << 62;
5759
5760         /* Set the present bit. */
5761         mask |= 1ull;
5762
5763 #ifdef CONFIG_X86_64
5764         /*
5765          * If reserved bit is not supported, clear the present bit to disable
5766          * mmio page fault.
5767          */
5768         if (maxphyaddr == 52)
5769                 mask &= ~1ull;
5770 #endif
5771
5772         kvm_mmu_set_mmio_spte_mask(mask);
5773 }
5774
5775 #ifdef CONFIG_X86_64
5776 static void pvclock_gtod_update_fn(struct work_struct *work)
5777 {
5778         struct kvm *kvm;
5779
5780         struct kvm_vcpu *vcpu;
5781         int i;
5782
5783         spin_lock(&kvm_lock);
5784         list_for_each_entry(kvm, &vm_list, vm_list)
5785                 kvm_for_each_vcpu(i, vcpu, kvm)
5786                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5787         atomic_set(&kvm_guest_has_master_clock, 0);
5788         spin_unlock(&kvm_lock);
5789 }
5790
5791 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5792
5793 /*
5794  * Notification about pvclock gtod data update.
5795  */
5796 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5797                                void *priv)
5798 {
5799         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5800         struct timekeeper *tk = priv;
5801
5802         update_pvclock_gtod(tk);
5803
5804         /* disable master clock if host does not trust, or does not
5805          * use, TSC clocksource
5806          */
5807         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5808             atomic_read(&kvm_guest_has_master_clock) != 0)
5809                 queue_work(system_long_wq, &pvclock_gtod_work);
5810
5811         return 0;
5812 }
5813
5814 static struct notifier_block pvclock_gtod_notifier = {
5815         .notifier_call = pvclock_gtod_notify,
5816 };
5817 #endif
5818
5819 int kvm_arch_init(void *opaque)
5820 {
5821         int r;
5822         struct kvm_x86_ops *ops = opaque;
5823
5824         if (kvm_x86_ops) {
5825                 printk(KERN_ERR "kvm: already loaded the other module\n");
5826                 r = -EEXIST;
5827                 goto out;
5828         }
5829
5830         if (!ops->cpu_has_kvm_support()) {
5831                 printk(KERN_ERR "kvm: no hardware support\n");
5832                 r = -EOPNOTSUPP;
5833                 goto out;
5834         }
5835         if (ops->disabled_by_bios()) {
5836                 printk(KERN_ERR "kvm: disabled by bios\n");
5837                 r = -EOPNOTSUPP;
5838                 goto out;
5839         }
5840
5841         r = -ENOMEM;
5842         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5843         if (!shared_msrs) {
5844                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5845                 goto out;
5846         }
5847
5848         r = kvm_mmu_module_init();
5849         if (r)
5850                 goto out_free_percpu;
5851
5852         kvm_set_mmio_spte_mask();
5853
5854         kvm_x86_ops = ops;
5855
5856         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5857                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5858
5859         kvm_timer_init();
5860
5861         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5862
5863         if (cpu_has_xsave)
5864                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5865
5866         kvm_lapic_init();
5867 #ifdef CONFIG_X86_64
5868         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5869 #endif
5870
5871         return 0;
5872
5873 out_free_percpu:
5874         free_percpu(shared_msrs);
5875 out:
5876         return r;
5877 }
5878
5879 void kvm_arch_exit(void)
5880 {
5881         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5882
5883         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5884                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5885                                             CPUFREQ_TRANSITION_NOTIFIER);
5886         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5887 #ifdef CONFIG_X86_64
5888         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5889 #endif
5890         kvm_x86_ops = NULL;
5891         kvm_mmu_module_exit();
5892         free_percpu(shared_msrs);
5893 }
5894
5895 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5896 {
5897         ++vcpu->stat.halt_exits;
5898         if (irqchip_in_kernel(vcpu->kvm)) {
5899                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5900                 return 1;
5901         } else {
5902                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5903                 return 0;
5904         }
5905 }
5906 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5907
5908 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5909 {
5910         kvm_x86_ops->skip_emulated_instruction(vcpu);
5911         return kvm_vcpu_halt(vcpu);
5912 }
5913 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5914
5915 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5916 {
5917         u64 param, ingpa, outgpa, ret;
5918         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5919         bool fast, longmode;
5920
5921         /*
5922          * hypercall generates UD from non zero cpl and real mode
5923          * per HYPER-V spec
5924          */
5925         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5926                 kvm_queue_exception(vcpu, UD_VECTOR);
5927                 return 0;
5928         }
5929
5930         longmode = is_64_bit_mode(vcpu);
5931
5932         if (!longmode) {
5933                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5934                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5935                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5936                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5937                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5938                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5939         }
5940 #ifdef CONFIG_X86_64
5941         else {
5942                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5943                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5944                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5945         }
5946 #endif
5947
5948         code = param & 0xffff;
5949         fast = (param >> 16) & 0x1;
5950         rep_cnt = (param >> 32) & 0xfff;
5951         rep_idx = (param >> 48) & 0xfff;
5952
5953         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5954
5955         switch (code) {
5956         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5957                 kvm_vcpu_on_spin(vcpu);
5958                 break;
5959         default:
5960                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5961                 break;
5962         }
5963
5964         ret = res | (((u64)rep_done & 0xfff) << 32);
5965         if (longmode) {
5966                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5967         } else {
5968                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5969                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5970         }
5971
5972         return 1;
5973 }
5974
5975 /*
5976  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5977  *
5978  * @apicid - apicid of vcpu to be kicked.
5979  */
5980 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5981 {
5982         struct kvm_lapic_irq lapic_irq;
5983
5984         lapic_irq.shorthand = 0;
5985         lapic_irq.dest_mode = 0;
5986         lapic_irq.dest_id = apicid;
5987
5988         lapic_irq.delivery_mode = APIC_DM_REMRD;
5989         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5990 }
5991
5992 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5993 {
5994         unsigned long nr, a0, a1, a2, a3, ret;
5995         int op_64_bit, r = 1;
5996
5997         kvm_x86_ops->skip_emulated_instruction(vcpu);
5998
5999         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6000                 return kvm_hv_hypercall(vcpu);
6001
6002         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6003         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6004         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6005         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6006         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6007
6008         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6009
6010         op_64_bit = is_64_bit_mode(vcpu);
6011         if (!op_64_bit) {
6012                 nr &= 0xFFFFFFFF;
6013                 a0 &= 0xFFFFFFFF;
6014                 a1 &= 0xFFFFFFFF;
6015                 a2 &= 0xFFFFFFFF;
6016                 a3 &= 0xFFFFFFFF;
6017         }
6018
6019         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6020                 ret = -KVM_EPERM;
6021                 goto out;
6022         }
6023
6024         switch (nr) {
6025         case KVM_HC_VAPIC_POLL_IRQ:
6026                 ret = 0;
6027                 break;
6028         case KVM_HC_KICK_CPU:
6029                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6030                 ret = 0;
6031                 break;
6032         default:
6033                 ret = -KVM_ENOSYS;
6034                 break;
6035         }
6036 out:
6037         if (!op_64_bit)
6038                 ret = (u32)ret;
6039         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6040         ++vcpu->stat.hypercalls;
6041         return r;
6042 }
6043 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6044
6045 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6046 {
6047         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6048         char instruction[3];
6049         unsigned long rip = kvm_rip_read(vcpu);
6050
6051         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6052
6053         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6054 }
6055
6056 /*
6057  * Check if userspace requested an interrupt window, and that the
6058  * interrupt window is open.
6059  *
6060  * No need to exit to userspace if we already have an interrupt queued.
6061  */
6062 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6063 {
6064         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
6065                 vcpu->run->request_interrupt_window &&
6066                 kvm_arch_interrupt_allowed(vcpu));
6067 }
6068
6069 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6070 {
6071         struct kvm_run *kvm_run = vcpu->run;
6072
6073         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6074         kvm_run->cr8 = kvm_get_cr8(vcpu);
6075         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6076         if (irqchip_in_kernel(vcpu->kvm))
6077                 kvm_run->ready_for_interrupt_injection = 1;
6078         else
6079                 kvm_run->ready_for_interrupt_injection =
6080                         kvm_arch_interrupt_allowed(vcpu) &&
6081                         !kvm_cpu_has_interrupt(vcpu) &&
6082                         !kvm_event_needs_reinjection(vcpu);
6083 }
6084
6085 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6086 {
6087         int max_irr, tpr;
6088
6089         if (!kvm_x86_ops->update_cr8_intercept)
6090                 return;
6091
6092         if (!vcpu->arch.apic)
6093                 return;
6094
6095         if (!vcpu->arch.apic->vapic_addr)
6096                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6097         else
6098                 max_irr = -1;
6099
6100         if (max_irr != -1)
6101                 max_irr >>= 4;
6102
6103         tpr = kvm_lapic_get_cr8(vcpu);
6104
6105         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6106 }
6107
6108 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6109 {
6110         int r;
6111
6112         /* try to reinject previous events if any */
6113         if (vcpu->arch.exception.pending) {
6114                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6115                                         vcpu->arch.exception.has_error_code,
6116                                         vcpu->arch.exception.error_code);
6117
6118                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6119                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6120                                              X86_EFLAGS_RF);
6121
6122                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6123                     (vcpu->arch.dr7 & DR7_GD)) {
6124                         vcpu->arch.dr7 &= ~DR7_GD;
6125                         kvm_update_dr7(vcpu);
6126                 }
6127
6128                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6129                                           vcpu->arch.exception.has_error_code,
6130                                           vcpu->arch.exception.error_code,
6131                                           vcpu->arch.exception.reinject);
6132                 return 0;
6133         }
6134
6135         if (vcpu->arch.nmi_injected) {
6136                 kvm_x86_ops->set_nmi(vcpu);
6137                 return 0;
6138         }
6139
6140         if (vcpu->arch.interrupt.pending) {
6141                 kvm_x86_ops->set_irq(vcpu);
6142                 return 0;
6143         }
6144
6145         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6146                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6147                 if (r != 0)
6148                         return r;
6149         }
6150
6151         /* try to inject new event if pending */
6152         if (vcpu->arch.nmi_pending) {
6153                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6154                         --vcpu->arch.nmi_pending;
6155                         vcpu->arch.nmi_injected = true;
6156                         kvm_x86_ops->set_nmi(vcpu);
6157                 }
6158         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6159                 /*
6160                  * Because interrupts can be injected asynchronously, we are
6161                  * calling check_nested_events again here to avoid a race condition.
6162                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6163                  * proposal and current concerns.  Perhaps we should be setting
6164                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6165                  */
6166                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6167                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6168                         if (r != 0)
6169                                 return r;
6170                 }
6171                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6172                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6173                                             false);
6174                         kvm_x86_ops->set_irq(vcpu);
6175                 }
6176         }
6177         return 0;
6178 }
6179
6180 static void process_nmi(struct kvm_vcpu *vcpu)
6181 {
6182         unsigned limit = 2;
6183
6184         /*
6185          * x86 is limited to one NMI running, and one NMI pending after it.
6186          * If an NMI is already in progress, limit further NMIs to just one.
6187          * Otherwise, allow two (and we'll inject the first one immediately).
6188          */
6189         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6190                 limit = 1;
6191
6192         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6193         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6194         kvm_make_request(KVM_REQ_EVENT, vcpu);
6195 }
6196
6197 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6198 {
6199         u64 eoi_exit_bitmap[4];
6200         u32 tmr[8];
6201
6202         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6203                 return;
6204
6205         memset(eoi_exit_bitmap, 0, 32);
6206         memset(tmr, 0, 32);
6207
6208         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6209         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6210         kvm_apic_update_tmr(vcpu, tmr);
6211 }
6212
6213 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6214 {
6215         ++vcpu->stat.tlb_flush;
6216         kvm_x86_ops->tlb_flush(vcpu);
6217 }
6218
6219 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6220 {
6221         struct page *page = NULL;
6222
6223         if (!irqchip_in_kernel(vcpu->kvm))
6224                 return;
6225
6226         if (!kvm_x86_ops->set_apic_access_page_addr)
6227                 return;
6228
6229         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6230         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6231
6232         /*
6233          * Do not pin apic access page in memory, the MMU notifier
6234          * will call us again if it is migrated or swapped out.
6235          */
6236         put_page(page);
6237 }
6238 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6239
6240 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6241                                            unsigned long address)
6242 {
6243         /*
6244          * The physical address of apic access page is stored in the VMCS.
6245          * Update it when it becomes invalid.
6246          */
6247         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6248                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6249 }
6250
6251 /*
6252  * Returns 1 to let vcpu_run() continue the guest execution loop without
6253  * exiting to the userspace.  Otherwise, the value will be returned to the
6254  * userspace.
6255  */
6256 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6257 {
6258         int r;
6259         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6260                 vcpu->run->request_interrupt_window;
6261         bool req_immediate_exit = false;
6262
6263         if (vcpu->requests) {
6264                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6265                         kvm_mmu_unload(vcpu);
6266                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6267                         __kvm_migrate_timers(vcpu);
6268                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6269                         kvm_gen_update_masterclock(vcpu->kvm);
6270                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6271                         kvm_gen_kvmclock_update(vcpu);
6272                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6273                         r = kvm_guest_time_update(vcpu);
6274                         if (unlikely(r))
6275                                 goto out;
6276                 }
6277                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6278                         kvm_mmu_sync_roots(vcpu);
6279                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6280                         kvm_vcpu_flush_tlb(vcpu);
6281                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6282                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6283                         r = 0;
6284                         goto out;
6285                 }
6286                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6287                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6288                         r = 0;
6289                         goto out;
6290                 }
6291                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6292                         vcpu->fpu_active = 0;
6293                         kvm_x86_ops->fpu_deactivate(vcpu);
6294                 }
6295                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6296                         /* Page is swapped out. Do synthetic halt */
6297                         vcpu->arch.apf.halted = true;
6298                         r = 1;
6299                         goto out;
6300                 }
6301                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6302                         record_steal_time(vcpu);
6303                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6304                         process_nmi(vcpu);
6305                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6306                         kvm_handle_pmu_event(vcpu);
6307                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6308                         kvm_deliver_pmi(vcpu);
6309                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6310                         vcpu_scan_ioapic(vcpu);
6311                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6312                         kvm_vcpu_reload_apic_access_page(vcpu);
6313         }
6314
6315         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6316                 kvm_apic_accept_events(vcpu);
6317                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6318                         r = 1;
6319                         goto out;
6320                 }
6321
6322                 if (inject_pending_event(vcpu, req_int_win) != 0)
6323                         req_immediate_exit = true;
6324                 /* enable NMI/IRQ window open exits if needed */
6325                 else if (vcpu->arch.nmi_pending)
6326                         kvm_x86_ops->enable_nmi_window(vcpu);
6327                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6328                         kvm_x86_ops->enable_irq_window(vcpu);
6329
6330                 if (kvm_lapic_enabled(vcpu)) {
6331                         /*
6332                          * Update architecture specific hints for APIC
6333                          * virtual interrupt delivery.
6334                          */
6335                         if (kvm_x86_ops->hwapic_irr_update)
6336                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6337                                         kvm_lapic_find_highest_irr(vcpu));
6338                         update_cr8_intercept(vcpu);
6339                         kvm_lapic_sync_to_vapic(vcpu);
6340                 }
6341         }
6342
6343         r = kvm_mmu_reload(vcpu);
6344         if (unlikely(r)) {
6345                 goto cancel_injection;
6346         }
6347
6348         preempt_disable();
6349
6350         kvm_x86_ops->prepare_guest_switch(vcpu);
6351         if (vcpu->fpu_active)
6352                 kvm_load_guest_fpu(vcpu);
6353         kvm_load_guest_xcr0(vcpu);
6354
6355         vcpu->mode = IN_GUEST_MODE;
6356
6357         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6358
6359         /* We should set ->mode before check ->requests,
6360          * see the comment in make_all_cpus_request.
6361          */
6362         smp_mb__after_srcu_read_unlock();
6363
6364         local_irq_disable();
6365
6366         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6367             || need_resched() || signal_pending(current)) {
6368                 vcpu->mode = OUTSIDE_GUEST_MODE;
6369                 smp_wmb();
6370                 local_irq_enable();
6371                 preempt_enable();
6372                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6373                 r = 1;
6374                 goto cancel_injection;
6375         }
6376
6377         if (req_immediate_exit)
6378                 smp_send_reschedule(vcpu->cpu);
6379
6380         __kvm_guest_enter();
6381
6382         if (unlikely(vcpu->arch.switch_db_regs)) {
6383                 set_debugreg(0, 7);
6384                 set_debugreg(vcpu->arch.eff_db[0], 0);
6385                 set_debugreg(vcpu->arch.eff_db[1], 1);
6386                 set_debugreg(vcpu->arch.eff_db[2], 2);
6387                 set_debugreg(vcpu->arch.eff_db[3], 3);
6388                 set_debugreg(vcpu->arch.dr6, 6);
6389                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6390         }
6391
6392         trace_kvm_entry(vcpu->vcpu_id);
6393         wait_lapic_expire(vcpu);
6394         kvm_x86_ops->run(vcpu);
6395
6396         /*
6397          * Do this here before restoring debug registers on the host.  And
6398          * since we do this before handling the vmexit, a DR access vmexit
6399          * can (a) read the correct value of the debug registers, (b) set
6400          * KVM_DEBUGREG_WONT_EXIT again.
6401          */
6402         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6403                 int i;
6404
6405                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6406                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6407                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6408                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6409         }
6410
6411         /*
6412          * If the guest has used debug registers, at least dr7
6413          * will be disabled while returning to the host.
6414          * If we don't have active breakpoints in the host, we don't
6415          * care about the messed up debug address registers. But if
6416          * we have some of them active, restore the old state.
6417          */
6418         if (hw_breakpoint_active())
6419                 hw_breakpoint_restore();
6420
6421         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6422                                                            native_read_tsc());
6423
6424         vcpu->mode = OUTSIDE_GUEST_MODE;
6425         smp_wmb();
6426
6427         /* Interrupt is enabled by handle_external_intr() */
6428         kvm_x86_ops->handle_external_intr(vcpu);
6429
6430         ++vcpu->stat.exits;
6431
6432         /*
6433          * We must have an instruction between local_irq_enable() and
6434          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6435          * the interrupt shadow.  The stat.exits increment will do nicely.
6436          * But we need to prevent reordering, hence this barrier():
6437          */
6438         barrier();
6439
6440         kvm_guest_exit();
6441
6442         preempt_enable();
6443
6444         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6445
6446         /*
6447          * Profile KVM exit RIPs:
6448          */
6449         if (unlikely(prof_on == KVM_PROFILING)) {
6450                 unsigned long rip = kvm_rip_read(vcpu);
6451                 profile_hit(KVM_PROFILING, (void *)rip);
6452         }
6453
6454         if (unlikely(vcpu->arch.tsc_always_catchup))
6455                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6456
6457         if (vcpu->arch.apic_attention)
6458                 kvm_lapic_sync_from_vapic(vcpu);
6459
6460         r = kvm_x86_ops->handle_exit(vcpu);
6461         return r;
6462
6463 cancel_injection:
6464         kvm_x86_ops->cancel_injection(vcpu);
6465         if (unlikely(vcpu->arch.apic_attention))
6466                 kvm_lapic_sync_from_vapic(vcpu);
6467 out:
6468         return r;
6469 }
6470
6471 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6472 {
6473         if (!kvm_arch_vcpu_runnable(vcpu)) {
6474                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6475                 kvm_vcpu_block(vcpu);
6476                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6477                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6478                         return 1;
6479         }
6480
6481         kvm_apic_accept_events(vcpu);
6482         switch(vcpu->arch.mp_state) {
6483         case KVM_MP_STATE_HALTED:
6484                 vcpu->arch.pv.pv_unhalted = false;
6485                 vcpu->arch.mp_state =
6486                         KVM_MP_STATE_RUNNABLE;
6487         case KVM_MP_STATE_RUNNABLE:
6488                 vcpu->arch.apf.halted = false;
6489                 break;
6490         case KVM_MP_STATE_INIT_RECEIVED:
6491                 break;
6492         default:
6493                 return -EINTR;
6494                 break;
6495         }
6496         return 1;
6497 }
6498
6499 static int vcpu_run(struct kvm_vcpu *vcpu)
6500 {
6501         int r;
6502         struct kvm *kvm = vcpu->kvm;
6503
6504         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6505
6506         for (;;) {
6507                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6508                     !vcpu->arch.apf.halted)
6509                         r = vcpu_enter_guest(vcpu);
6510                 else
6511                         r = vcpu_block(kvm, vcpu);
6512                 if (r <= 0)
6513                         break;
6514
6515                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6516                 if (kvm_cpu_has_pending_timer(vcpu))
6517                         kvm_inject_pending_timer_irqs(vcpu);
6518
6519                 if (dm_request_for_irq_injection(vcpu)) {
6520                         r = -EINTR;
6521                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6522                         ++vcpu->stat.request_irq_exits;
6523                         break;
6524                 }
6525
6526                 kvm_check_async_pf_completion(vcpu);
6527
6528                 if (signal_pending(current)) {
6529                         r = -EINTR;
6530                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6531                         ++vcpu->stat.signal_exits;
6532                         break;
6533                 }
6534                 if (need_resched()) {
6535                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6536                         cond_resched();
6537                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6538                 }
6539         }
6540
6541         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6542
6543         return r;
6544 }
6545
6546 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6547 {
6548         int r;
6549         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6550         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6551         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6552         if (r != EMULATE_DONE)
6553                 return 0;
6554         return 1;
6555 }
6556
6557 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6558 {
6559         BUG_ON(!vcpu->arch.pio.count);
6560
6561         return complete_emulated_io(vcpu);
6562 }
6563
6564 /*
6565  * Implements the following, as a state machine:
6566  *
6567  * read:
6568  *   for each fragment
6569  *     for each mmio piece in the fragment
6570  *       write gpa, len
6571  *       exit
6572  *       copy data
6573  *   execute insn
6574  *
6575  * write:
6576  *   for each fragment
6577  *     for each mmio piece in the fragment
6578  *       write gpa, len
6579  *       copy data
6580  *       exit
6581  */
6582 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6583 {
6584         struct kvm_run *run = vcpu->run;
6585         struct kvm_mmio_fragment *frag;
6586         unsigned len;
6587
6588         BUG_ON(!vcpu->mmio_needed);
6589
6590         /* Complete previous fragment */
6591         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6592         len = min(8u, frag->len);
6593         if (!vcpu->mmio_is_write)
6594                 memcpy(frag->data, run->mmio.data, len);
6595
6596         if (frag->len <= 8) {
6597                 /* Switch to the next fragment. */
6598                 frag++;
6599                 vcpu->mmio_cur_fragment++;
6600         } else {
6601                 /* Go forward to the next mmio piece. */
6602                 frag->data += len;
6603                 frag->gpa += len;
6604                 frag->len -= len;
6605         }
6606
6607         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6608                 vcpu->mmio_needed = 0;
6609
6610                 /* FIXME: return into emulator if single-stepping.  */
6611                 if (vcpu->mmio_is_write)
6612                         return 1;
6613                 vcpu->mmio_read_completed = 1;
6614                 return complete_emulated_io(vcpu);
6615         }
6616
6617         run->exit_reason = KVM_EXIT_MMIO;
6618         run->mmio.phys_addr = frag->gpa;
6619         if (vcpu->mmio_is_write)
6620                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6621         run->mmio.len = min(8u, frag->len);
6622         run->mmio.is_write = vcpu->mmio_is_write;
6623         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6624         return 0;
6625 }
6626
6627
6628 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6629 {
6630         int r;
6631         sigset_t sigsaved;
6632
6633         if (!tsk_used_math(current) && init_fpu(current))
6634                 return -ENOMEM;
6635
6636         if (vcpu->sigset_active)
6637                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6638
6639         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6640                 kvm_vcpu_block(vcpu);
6641                 kvm_apic_accept_events(vcpu);
6642                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6643                 r = -EAGAIN;
6644                 goto out;
6645         }
6646
6647         /* re-sync apic's tpr */
6648         if (!irqchip_in_kernel(vcpu->kvm)) {
6649                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6650                         r = -EINVAL;
6651                         goto out;
6652                 }
6653         }
6654
6655         if (unlikely(vcpu->arch.complete_userspace_io)) {
6656                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6657                 vcpu->arch.complete_userspace_io = NULL;
6658                 r = cui(vcpu);
6659                 if (r <= 0)
6660                         goto out;
6661         } else
6662                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6663
6664         r = vcpu_run(vcpu);
6665
6666 out:
6667         post_kvm_run_save(vcpu);
6668         if (vcpu->sigset_active)
6669                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6670
6671         return r;
6672 }
6673
6674 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6675 {
6676         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6677                 /*
6678                  * We are here if userspace calls get_regs() in the middle of
6679                  * instruction emulation. Registers state needs to be copied
6680                  * back from emulation context to vcpu. Userspace shouldn't do
6681                  * that usually, but some bad designed PV devices (vmware
6682                  * backdoor interface) need this to work
6683                  */
6684                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6685                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6686         }
6687         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6688         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6689         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6690         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6691         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6692         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6693         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6694         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6695 #ifdef CONFIG_X86_64
6696         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6697         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6698         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6699         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6700         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6701         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6702         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6703         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6704 #endif
6705
6706         regs->rip = kvm_rip_read(vcpu);
6707         regs->rflags = kvm_get_rflags(vcpu);
6708
6709         return 0;
6710 }
6711
6712 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6713 {
6714         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6715         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6716
6717         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6718         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6719         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6720         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6721         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6722         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6723         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6724         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6725 #ifdef CONFIG_X86_64
6726         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6727         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6728         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6729         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6730         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6731         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6732         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6733         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6734 #endif
6735
6736         kvm_rip_write(vcpu, regs->rip);
6737         kvm_set_rflags(vcpu, regs->rflags);
6738
6739         vcpu->arch.exception.pending = false;
6740
6741         kvm_make_request(KVM_REQ_EVENT, vcpu);
6742
6743         return 0;
6744 }
6745
6746 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6747 {
6748         struct kvm_segment cs;
6749
6750         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6751         *db = cs.db;
6752         *l = cs.l;
6753 }
6754 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6755
6756 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6757                                   struct kvm_sregs *sregs)
6758 {
6759         struct desc_ptr dt;
6760
6761         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6762         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6763         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6764         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6765         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6766         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6767
6768         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6769         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6770
6771         kvm_x86_ops->get_idt(vcpu, &dt);
6772         sregs->idt.limit = dt.size;
6773         sregs->idt.base = dt.address;
6774         kvm_x86_ops->get_gdt(vcpu, &dt);
6775         sregs->gdt.limit = dt.size;
6776         sregs->gdt.base = dt.address;
6777
6778         sregs->cr0 = kvm_read_cr0(vcpu);
6779         sregs->cr2 = vcpu->arch.cr2;
6780         sregs->cr3 = kvm_read_cr3(vcpu);
6781         sregs->cr4 = kvm_read_cr4(vcpu);
6782         sregs->cr8 = kvm_get_cr8(vcpu);
6783         sregs->efer = vcpu->arch.efer;
6784         sregs->apic_base = kvm_get_apic_base(vcpu);
6785
6786         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6787
6788         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6789                 set_bit(vcpu->arch.interrupt.nr,
6790                         (unsigned long *)sregs->interrupt_bitmap);
6791
6792         return 0;
6793 }
6794
6795 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6796                                     struct kvm_mp_state *mp_state)
6797 {
6798         kvm_apic_accept_events(vcpu);
6799         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6800                                         vcpu->arch.pv.pv_unhalted)
6801                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6802         else
6803                 mp_state->mp_state = vcpu->arch.mp_state;
6804
6805         return 0;
6806 }
6807
6808 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6809                                     struct kvm_mp_state *mp_state)
6810 {
6811         if (!kvm_vcpu_has_lapic(vcpu) &&
6812             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6813                 return -EINVAL;
6814
6815         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6816                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6817                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6818         } else
6819                 vcpu->arch.mp_state = mp_state->mp_state;
6820         kvm_make_request(KVM_REQ_EVENT, vcpu);
6821         return 0;
6822 }
6823
6824 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6825                     int reason, bool has_error_code, u32 error_code)
6826 {
6827         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6828         int ret;
6829
6830         init_emulate_ctxt(vcpu);
6831
6832         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6833                                    has_error_code, error_code);
6834
6835         if (ret)
6836                 return EMULATE_FAIL;
6837
6838         kvm_rip_write(vcpu, ctxt->eip);
6839         kvm_set_rflags(vcpu, ctxt->eflags);
6840         kvm_make_request(KVM_REQ_EVENT, vcpu);
6841         return EMULATE_DONE;
6842 }
6843 EXPORT_SYMBOL_GPL(kvm_task_switch);
6844
6845 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6846                                   struct kvm_sregs *sregs)
6847 {
6848         struct msr_data apic_base_msr;
6849         int mmu_reset_needed = 0;
6850         int pending_vec, max_bits, idx;
6851         struct desc_ptr dt;
6852
6853         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6854                 return -EINVAL;
6855
6856         dt.size = sregs->idt.limit;
6857         dt.address = sregs->idt.base;
6858         kvm_x86_ops->set_idt(vcpu, &dt);
6859         dt.size = sregs->gdt.limit;
6860         dt.address = sregs->gdt.base;
6861         kvm_x86_ops->set_gdt(vcpu, &dt);
6862
6863         vcpu->arch.cr2 = sregs->cr2;
6864         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6865         vcpu->arch.cr3 = sregs->cr3;
6866         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6867
6868         kvm_set_cr8(vcpu, sregs->cr8);
6869
6870         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6871         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6872         apic_base_msr.data = sregs->apic_base;
6873         apic_base_msr.host_initiated = true;
6874         kvm_set_apic_base(vcpu, &apic_base_msr);
6875
6876         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6877         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6878         vcpu->arch.cr0 = sregs->cr0;
6879
6880         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6881         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6882         if (sregs->cr4 & X86_CR4_OSXSAVE)
6883                 kvm_update_cpuid(vcpu);
6884
6885         idx = srcu_read_lock(&vcpu->kvm->srcu);
6886         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6887                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6888                 mmu_reset_needed = 1;
6889         }
6890         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6891
6892         if (mmu_reset_needed)
6893                 kvm_mmu_reset_context(vcpu);
6894
6895         max_bits = KVM_NR_INTERRUPTS;
6896         pending_vec = find_first_bit(
6897                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6898         if (pending_vec < max_bits) {
6899                 kvm_queue_interrupt(vcpu, pending_vec, false);
6900                 pr_debug("Set back pending irq %d\n", pending_vec);
6901         }
6902
6903         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6904         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6905         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6906         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6907         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6908         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6909
6910         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6911         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6912
6913         update_cr8_intercept(vcpu);
6914
6915         /* Older userspace won't unhalt the vcpu on reset. */
6916         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6917             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6918             !is_protmode(vcpu))
6919                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6920
6921         kvm_make_request(KVM_REQ_EVENT, vcpu);
6922
6923         return 0;
6924 }
6925
6926 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6927                                         struct kvm_guest_debug *dbg)
6928 {
6929         unsigned long rflags;
6930         int i, r;
6931
6932         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6933                 r = -EBUSY;
6934                 if (vcpu->arch.exception.pending)
6935                         goto out;
6936                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6937                         kvm_queue_exception(vcpu, DB_VECTOR);
6938                 else
6939                         kvm_queue_exception(vcpu, BP_VECTOR);
6940         }
6941
6942         /*
6943          * Read rflags as long as potentially injected trace flags are still
6944          * filtered out.
6945          */
6946         rflags = kvm_get_rflags(vcpu);
6947
6948         vcpu->guest_debug = dbg->control;
6949         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6950                 vcpu->guest_debug = 0;
6951
6952         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6953                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6954                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6955                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6956         } else {
6957                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6958                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6959         }
6960         kvm_update_dr7(vcpu);
6961
6962         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6963                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6964                         get_segment_base(vcpu, VCPU_SREG_CS);
6965
6966         /*
6967          * Trigger an rflags update that will inject or remove the trace
6968          * flags.
6969          */
6970         kvm_set_rflags(vcpu, rflags);
6971
6972         kvm_x86_ops->update_db_bp_intercept(vcpu);
6973
6974         r = 0;
6975
6976 out:
6977
6978         return r;
6979 }
6980
6981 /*
6982  * Translate a guest virtual address to a guest physical address.
6983  */
6984 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6985                                     struct kvm_translation *tr)
6986 {
6987         unsigned long vaddr = tr->linear_address;
6988         gpa_t gpa;
6989         int idx;
6990
6991         idx = srcu_read_lock(&vcpu->kvm->srcu);
6992         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6993         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6994         tr->physical_address = gpa;
6995         tr->valid = gpa != UNMAPPED_GVA;
6996         tr->writeable = 1;
6997         tr->usermode = 0;
6998
6999         return 0;
7000 }
7001
7002 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7003 {
7004         struct i387_fxsave_struct *fxsave =
7005                         &vcpu->arch.guest_fpu.state->fxsave;
7006
7007         memcpy(fpu->fpr, fxsave->st_space, 128);
7008         fpu->fcw = fxsave->cwd;
7009         fpu->fsw = fxsave->swd;
7010         fpu->ftwx = fxsave->twd;
7011         fpu->last_opcode = fxsave->fop;
7012         fpu->last_ip = fxsave->rip;
7013         fpu->last_dp = fxsave->rdp;
7014         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7015
7016         return 0;
7017 }
7018
7019 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7020 {
7021         struct i387_fxsave_struct *fxsave =
7022                         &vcpu->arch.guest_fpu.state->fxsave;
7023
7024         memcpy(fxsave->st_space, fpu->fpr, 128);
7025         fxsave->cwd = fpu->fcw;
7026         fxsave->swd = fpu->fsw;
7027         fxsave->twd = fpu->ftwx;
7028         fxsave->fop = fpu->last_opcode;
7029         fxsave->rip = fpu->last_ip;
7030         fxsave->rdp = fpu->last_dp;
7031         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7032
7033         return 0;
7034 }
7035
7036 int fx_init(struct kvm_vcpu *vcpu)
7037 {
7038         int err;
7039
7040         err = fpu_alloc(&vcpu->arch.guest_fpu);
7041         if (err)
7042                 return err;
7043
7044         fpu_finit(&vcpu->arch.guest_fpu);
7045         if (cpu_has_xsaves)
7046                 vcpu->arch.guest_fpu.state->xsave.xsave_hdr.xcomp_bv =
7047                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7048
7049         /*
7050          * Ensure guest xcr0 is valid for loading
7051          */
7052         vcpu->arch.xcr0 = XSTATE_FP;
7053
7054         vcpu->arch.cr0 |= X86_CR0_ET;
7055
7056         return 0;
7057 }
7058 EXPORT_SYMBOL_GPL(fx_init);
7059
7060 static void fx_free(struct kvm_vcpu *vcpu)
7061 {
7062         fpu_free(&vcpu->arch.guest_fpu);
7063 }
7064
7065 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7066 {
7067         if (vcpu->guest_fpu_loaded)
7068                 return;
7069
7070         /*
7071          * Restore all possible states in the guest,
7072          * and assume host would use all available bits.
7073          * Guest xcr0 would be loaded later.
7074          */
7075         kvm_put_guest_xcr0(vcpu);
7076         vcpu->guest_fpu_loaded = 1;
7077         __kernel_fpu_begin();
7078         fpu_restore_checking(&vcpu->arch.guest_fpu);
7079         trace_kvm_fpu(1);
7080 }
7081
7082 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7083 {
7084         kvm_put_guest_xcr0(vcpu);
7085
7086         if (!vcpu->guest_fpu_loaded)
7087                 return;
7088
7089         vcpu->guest_fpu_loaded = 0;
7090         fpu_save_init(&vcpu->arch.guest_fpu);
7091         __kernel_fpu_end();
7092         ++vcpu->stat.fpu_reload;
7093         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7094         trace_kvm_fpu(0);
7095 }
7096
7097 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7098 {
7099         kvmclock_reset(vcpu);
7100
7101         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7102         fx_free(vcpu);
7103         kvm_x86_ops->vcpu_free(vcpu);
7104 }
7105
7106 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7107                                                 unsigned int id)
7108 {
7109         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7110                 printk_once(KERN_WARNING
7111                 "kvm: SMP vm created on host with unstable TSC; "
7112                 "guest TSC will not be reliable\n");
7113         return kvm_x86_ops->vcpu_create(kvm, id);
7114 }
7115
7116 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7117 {
7118         int r;
7119
7120         vcpu->arch.mtrr_state.have_fixed = 1;
7121         r = vcpu_load(vcpu);
7122         if (r)
7123                 return r;
7124         kvm_vcpu_reset(vcpu);
7125         kvm_mmu_setup(vcpu);
7126         vcpu_put(vcpu);
7127
7128         return r;
7129 }
7130
7131 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7132 {
7133         struct msr_data msr;
7134         struct kvm *kvm = vcpu->kvm;
7135
7136         if (vcpu_load(vcpu))
7137                 return;
7138         msr.data = 0x0;
7139         msr.index = MSR_IA32_TSC;
7140         msr.host_initiated = true;
7141         kvm_write_tsc(vcpu, &msr);
7142         vcpu_put(vcpu);
7143
7144         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7145                                         KVMCLOCK_SYNC_PERIOD);
7146 }
7147
7148 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7149 {
7150         int r;
7151         vcpu->arch.apf.msr_val = 0;
7152
7153         r = vcpu_load(vcpu);
7154         BUG_ON(r);
7155         kvm_mmu_unload(vcpu);
7156         vcpu_put(vcpu);
7157
7158         fx_free(vcpu);
7159         kvm_x86_ops->vcpu_free(vcpu);
7160 }
7161
7162 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
7163 {
7164         atomic_set(&vcpu->arch.nmi_queued, 0);
7165         vcpu->arch.nmi_pending = 0;
7166         vcpu->arch.nmi_injected = false;
7167         kvm_clear_interrupt_queue(vcpu);
7168         kvm_clear_exception_queue(vcpu);
7169
7170         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7171         kvm_update_dr0123(vcpu);
7172         vcpu->arch.dr6 = DR6_INIT;
7173         kvm_update_dr6(vcpu);
7174         vcpu->arch.dr7 = DR7_FIXED_1;
7175         kvm_update_dr7(vcpu);
7176
7177         vcpu->arch.cr2 = 0;
7178
7179         kvm_make_request(KVM_REQ_EVENT, vcpu);
7180         vcpu->arch.apf.msr_val = 0;
7181         vcpu->arch.st.msr_val = 0;
7182
7183         kvmclock_reset(vcpu);
7184
7185         kvm_clear_async_pf_completion_queue(vcpu);
7186         kvm_async_pf_hash_reset(vcpu);
7187         vcpu->arch.apf.halted = false;
7188
7189         kvm_pmu_reset(vcpu);
7190
7191         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7192         vcpu->arch.regs_avail = ~0;
7193         vcpu->arch.regs_dirty = ~0;
7194
7195         kvm_x86_ops->vcpu_reset(vcpu);
7196 }
7197
7198 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7199 {
7200         struct kvm_segment cs;
7201
7202         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7203         cs.selector = vector << 8;
7204         cs.base = vector << 12;
7205         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7206         kvm_rip_write(vcpu, 0);
7207 }
7208
7209 int kvm_arch_hardware_enable(void)
7210 {
7211         struct kvm *kvm;
7212         struct kvm_vcpu *vcpu;
7213         int i;
7214         int ret;
7215         u64 local_tsc;
7216         u64 max_tsc = 0;
7217         bool stable, backwards_tsc = false;
7218
7219         kvm_shared_msr_cpu_online();
7220         ret = kvm_x86_ops->hardware_enable();
7221         if (ret != 0)
7222                 return ret;
7223
7224         local_tsc = native_read_tsc();
7225         stable = !check_tsc_unstable();
7226         list_for_each_entry(kvm, &vm_list, vm_list) {
7227                 kvm_for_each_vcpu(i, vcpu, kvm) {
7228                         if (!stable && vcpu->cpu == smp_processor_id())
7229                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7230                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7231                                 backwards_tsc = true;
7232                                 if (vcpu->arch.last_host_tsc > max_tsc)
7233                                         max_tsc = vcpu->arch.last_host_tsc;
7234                         }
7235                 }
7236         }
7237
7238         /*
7239          * Sometimes, even reliable TSCs go backwards.  This happens on
7240          * platforms that reset TSC during suspend or hibernate actions, but
7241          * maintain synchronization.  We must compensate.  Fortunately, we can
7242          * detect that condition here, which happens early in CPU bringup,
7243          * before any KVM threads can be running.  Unfortunately, we can't
7244          * bring the TSCs fully up to date with real time, as we aren't yet far
7245          * enough into CPU bringup that we know how much real time has actually
7246          * elapsed; our helper function, get_kernel_ns() will be using boot
7247          * variables that haven't been updated yet.
7248          *
7249          * So we simply find the maximum observed TSC above, then record the
7250          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7251          * the adjustment will be applied.  Note that we accumulate
7252          * adjustments, in case multiple suspend cycles happen before some VCPU
7253          * gets a chance to run again.  In the event that no KVM threads get a
7254          * chance to run, we will miss the entire elapsed period, as we'll have
7255          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7256          * loose cycle time.  This isn't too big a deal, since the loss will be
7257          * uniform across all VCPUs (not to mention the scenario is extremely
7258          * unlikely). It is possible that a second hibernate recovery happens
7259          * much faster than a first, causing the observed TSC here to be
7260          * smaller; this would require additional padding adjustment, which is
7261          * why we set last_host_tsc to the local tsc observed here.
7262          *
7263          * N.B. - this code below runs only on platforms with reliable TSC,
7264          * as that is the only way backwards_tsc is set above.  Also note
7265          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7266          * have the same delta_cyc adjustment applied if backwards_tsc
7267          * is detected.  Note further, this adjustment is only done once,
7268          * as we reset last_host_tsc on all VCPUs to stop this from being
7269          * called multiple times (one for each physical CPU bringup).
7270          *
7271          * Platforms with unreliable TSCs don't have to deal with this, they
7272          * will be compensated by the logic in vcpu_load, which sets the TSC to
7273          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7274          * guarantee that they stay in perfect synchronization.
7275          */
7276         if (backwards_tsc) {
7277                 u64 delta_cyc = max_tsc - local_tsc;
7278                 backwards_tsc_observed = true;
7279                 list_for_each_entry(kvm, &vm_list, vm_list) {
7280                         kvm_for_each_vcpu(i, vcpu, kvm) {
7281                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7282                                 vcpu->arch.last_host_tsc = local_tsc;
7283                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7284                         }
7285
7286                         /*
7287                          * We have to disable TSC offset matching.. if you were
7288                          * booting a VM while issuing an S4 host suspend....
7289                          * you may have some problem.  Solving this issue is
7290                          * left as an exercise to the reader.
7291                          */
7292                         kvm->arch.last_tsc_nsec = 0;
7293                         kvm->arch.last_tsc_write = 0;
7294                 }
7295
7296         }
7297         return 0;
7298 }
7299
7300 void kvm_arch_hardware_disable(void)
7301 {
7302         kvm_x86_ops->hardware_disable();
7303         drop_user_return_notifiers();
7304 }
7305
7306 int kvm_arch_hardware_setup(void)
7307 {
7308         int r;
7309
7310         r = kvm_x86_ops->hardware_setup();
7311         if (r != 0)
7312                 return r;
7313
7314         kvm_init_msr_list();
7315         return 0;
7316 }
7317
7318 void kvm_arch_hardware_unsetup(void)
7319 {
7320         kvm_x86_ops->hardware_unsetup();
7321 }
7322
7323 void kvm_arch_check_processor_compat(void *rtn)
7324 {
7325         kvm_x86_ops->check_processor_compatibility(rtn);
7326 }
7327
7328 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7329 {
7330         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7331 }
7332
7333 struct static_key kvm_no_apic_vcpu __read_mostly;
7334
7335 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7336 {
7337         struct page *page;
7338         struct kvm *kvm;
7339         int r;
7340
7341         BUG_ON(vcpu->kvm == NULL);
7342         kvm = vcpu->kvm;
7343
7344         vcpu->arch.pv.pv_unhalted = false;
7345         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7346         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7347                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7348         else
7349                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7350
7351         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7352         if (!page) {
7353                 r = -ENOMEM;
7354                 goto fail;
7355         }
7356         vcpu->arch.pio_data = page_address(page);
7357
7358         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7359
7360         r = kvm_mmu_create(vcpu);
7361         if (r < 0)
7362                 goto fail_free_pio_data;
7363
7364         if (irqchip_in_kernel(kvm)) {
7365                 r = kvm_create_lapic(vcpu);
7366                 if (r < 0)
7367                         goto fail_mmu_destroy;
7368         } else
7369                 static_key_slow_inc(&kvm_no_apic_vcpu);
7370
7371         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7372                                        GFP_KERNEL);
7373         if (!vcpu->arch.mce_banks) {
7374                 r = -ENOMEM;
7375                 goto fail_free_lapic;
7376         }
7377         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7378
7379         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7380                 r = -ENOMEM;
7381                 goto fail_free_mce_banks;
7382         }
7383
7384         r = fx_init(vcpu);
7385         if (r)
7386                 goto fail_free_wbinvd_dirty_mask;
7387
7388         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7389         vcpu->arch.pv_time_enabled = false;
7390
7391         vcpu->arch.guest_supported_xcr0 = 0;
7392         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7393
7394         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7395
7396         kvm_async_pf_hash_reset(vcpu);
7397         kvm_pmu_init(vcpu);
7398
7399         return 0;
7400 fail_free_wbinvd_dirty_mask:
7401         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7402 fail_free_mce_banks:
7403         kfree(vcpu->arch.mce_banks);
7404 fail_free_lapic:
7405         kvm_free_lapic(vcpu);
7406 fail_mmu_destroy:
7407         kvm_mmu_destroy(vcpu);
7408 fail_free_pio_data:
7409         free_page((unsigned long)vcpu->arch.pio_data);
7410 fail:
7411         return r;
7412 }
7413
7414 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7415 {
7416         int idx;
7417
7418         kvm_pmu_destroy(vcpu);
7419         kfree(vcpu->arch.mce_banks);
7420         kvm_free_lapic(vcpu);
7421         idx = srcu_read_lock(&vcpu->kvm->srcu);
7422         kvm_mmu_destroy(vcpu);
7423         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7424         free_page((unsigned long)vcpu->arch.pio_data);
7425         if (!irqchip_in_kernel(vcpu->kvm))
7426                 static_key_slow_dec(&kvm_no_apic_vcpu);
7427 }
7428
7429 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7430 {
7431         kvm_x86_ops->sched_in(vcpu, cpu);
7432 }
7433
7434 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7435 {
7436         if (type)
7437                 return -EINVAL;
7438
7439         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7440         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7441         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7442         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7443         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7444
7445         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7446         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7447         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7448         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7449                 &kvm->arch.irq_sources_bitmap);
7450
7451         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7452         mutex_init(&kvm->arch.apic_map_lock);
7453         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7454
7455         pvclock_update_vm_gtod_copy(kvm);
7456
7457         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7458         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7459
7460         return 0;
7461 }
7462
7463 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7464 {
7465         int r;
7466         r = vcpu_load(vcpu);
7467         BUG_ON(r);
7468         kvm_mmu_unload(vcpu);
7469         vcpu_put(vcpu);
7470 }
7471
7472 static void kvm_free_vcpus(struct kvm *kvm)
7473 {
7474         unsigned int i;
7475         struct kvm_vcpu *vcpu;
7476
7477         /*
7478          * Unpin any mmu pages first.
7479          */
7480         kvm_for_each_vcpu(i, vcpu, kvm) {
7481                 kvm_clear_async_pf_completion_queue(vcpu);
7482                 kvm_unload_vcpu_mmu(vcpu);
7483         }
7484         kvm_for_each_vcpu(i, vcpu, kvm)
7485                 kvm_arch_vcpu_free(vcpu);
7486
7487         mutex_lock(&kvm->lock);
7488         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7489                 kvm->vcpus[i] = NULL;
7490
7491         atomic_set(&kvm->online_vcpus, 0);
7492         mutex_unlock(&kvm->lock);
7493 }
7494
7495 void kvm_arch_sync_events(struct kvm *kvm)
7496 {
7497         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7498         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7499         kvm_free_all_assigned_devices(kvm);
7500         kvm_free_pit(kvm);
7501 }
7502
7503 void kvm_arch_destroy_vm(struct kvm *kvm)
7504 {
7505         if (current->mm == kvm->mm) {
7506                 /*
7507                  * Free memory regions allocated on behalf of userspace,
7508                  * unless the the memory map has changed due to process exit
7509                  * or fd copying.
7510                  */
7511                 struct kvm_userspace_memory_region mem;
7512                 memset(&mem, 0, sizeof(mem));
7513                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7514                 kvm_set_memory_region(kvm, &mem);
7515
7516                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7517                 kvm_set_memory_region(kvm, &mem);
7518
7519                 mem.slot = TSS_PRIVATE_MEMSLOT;
7520                 kvm_set_memory_region(kvm, &mem);
7521         }
7522         kvm_iommu_unmap_guest(kvm);
7523         kfree(kvm->arch.vpic);
7524         kfree(kvm->arch.vioapic);
7525         kvm_free_vcpus(kvm);
7526         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7527 }
7528
7529 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7530                            struct kvm_memory_slot *dont)
7531 {
7532         int i;
7533
7534         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7535                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7536                         kvfree(free->arch.rmap[i]);
7537                         free->arch.rmap[i] = NULL;
7538                 }
7539                 if (i == 0)
7540                         continue;
7541
7542                 if (!dont || free->arch.lpage_info[i - 1] !=
7543                              dont->arch.lpage_info[i - 1]) {
7544                         kvfree(free->arch.lpage_info[i - 1]);
7545                         free->arch.lpage_info[i - 1] = NULL;
7546                 }
7547         }
7548 }
7549
7550 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7551                             unsigned long npages)
7552 {
7553         int i;
7554
7555         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7556                 unsigned long ugfn;
7557                 int lpages;
7558                 int level = i + 1;
7559
7560                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7561                                       slot->base_gfn, level) + 1;
7562
7563                 slot->arch.rmap[i] =
7564                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7565                 if (!slot->arch.rmap[i])
7566                         goto out_free;
7567                 if (i == 0)
7568                         continue;
7569
7570                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7571                                         sizeof(*slot->arch.lpage_info[i - 1]));
7572                 if (!slot->arch.lpage_info[i - 1])
7573                         goto out_free;
7574
7575                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7576                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7577                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7578                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7579                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7580                 /*
7581                  * If the gfn and userspace address are not aligned wrt each
7582                  * other, or if explicitly asked to, disable large page
7583                  * support for this slot
7584                  */
7585                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7586                     !kvm_largepages_enabled()) {
7587                         unsigned long j;
7588
7589                         for (j = 0; j < lpages; ++j)
7590                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7591                 }
7592         }
7593
7594         return 0;
7595
7596 out_free:
7597         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7598                 kvfree(slot->arch.rmap[i]);
7599                 slot->arch.rmap[i] = NULL;
7600                 if (i == 0)
7601                         continue;
7602
7603                 kvfree(slot->arch.lpage_info[i - 1]);
7604                 slot->arch.lpage_info[i - 1] = NULL;
7605         }
7606         return -ENOMEM;
7607 }
7608
7609 void kvm_arch_memslots_updated(struct kvm *kvm)
7610 {
7611         /*
7612          * memslots->generation has been incremented.
7613          * mmio generation may have reached its maximum value.
7614          */
7615         kvm_mmu_invalidate_mmio_sptes(kvm);
7616 }
7617
7618 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7619                                 struct kvm_memory_slot *memslot,
7620                                 struct kvm_userspace_memory_region *mem,
7621                                 enum kvm_mr_change change)
7622 {
7623         /*
7624          * Only private memory slots need to be mapped here since
7625          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7626          */
7627         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7628                 unsigned long userspace_addr;
7629
7630                 /*
7631                  * MAP_SHARED to prevent internal slot pages from being moved
7632                  * by fork()/COW.
7633                  */
7634                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7635                                          PROT_READ | PROT_WRITE,
7636                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7637
7638                 if (IS_ERR((void *)userspace_addr))
7639                         return PTR_ERR((void *)userspace_addr);
7640
7641                 memslot->userspace_addr = userspace_addr;
7642         }
7643
7644         return 0;
7645 }
7646
7647 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7648                                      struct kvm_memory_slot *new)
7649 {
7650         /* Still write protect RO slot */
7651         if (new->flags & KVM_MEM_READONLY) {
7652                 kvm_mmu_slot_remove_write_access(kvm, new);
7653                 return;
7654         }
7655
7656         /*
7657          * Call kvm_x86_ops dirty logging hooks when they are valid.
7658          *
7659          * kvm_x86_ops->slot_disable_log_dirty is called when:
7660          *
7661          *  - KVM_MR_CREATE with dirty logging is disabled
7662          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7663          *
7664          * The reason is, in case of PML, we need to set D-bit for any slots
7665          * with dirty logging disabled in order to eliminate unnecessary GPA
7666          * logging in PML buffer (and potential PML buffer full VMEXT). This
7667          * guarantees leaving PML enabled during guest's lifetime won't have
7668          * any additonal overhead from PML when guest is running with dirty
7669          * logging disabled for memory slots.
7670          *
7671          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7672          * to dirty logging mode.
7673          *
7674          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7675          *
7676          * In case of write protect:
7677          *
7678          * Write protect all pages for dirty logging.
7679          *
7680          * All the sptes including the large sptes which point to this
7681          * slot are set to readonly. We can not create any new large
7682          * spte on this slot until the end of the logging.
7683          *
7684          * See the comments in fast_page_fault().
7685          */
7686         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7687                 if (kvm_x86_ops->slot_enable_log_dirty)
7688                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7689                 else
7690                         kvm_mmu_slot_remove_write_access(kvm, new);
7691         } else {
7692                 if (kvm_x86_ops->slot_disable_log_dirty)
7693                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7694         }
7695 }
7696
7697 void kvm_arch_commit_memory_region(struct kvm *kvm,
7698                                 struct kvm_userspace_memory_region *mem,
7699                                 const struct kvm_memory_slot *old,
7700                                 enum kvm_mr_change change)
7701 {
7702         struct kvm_memory_slot *new;
7703         int nr_mmu_pages = 0;
7704
7705         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7706                 int ret;
7707
7708                 ret = vm_munmap(old->userspace_addr,
7709                                 old->npages * PAGE_SIZE);
7710                 if (ret < 0)
7711                         printk(KERN_WARNING
7712                                "kvm_vm_ioctl_set_memory_region: "
7713                                "failed to munmap memory\n");
7714         }
7715
7716         if (!kvm->arch.n_requested_mmu_pages)
7717                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7718
7719         if (nr_mmu_pages)
7720                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7721
7722         /* It's OK to get 'new' slot here as it has already been installed */
7723         new = id_to_memslot(kvm->memslots, mem->slot);
7724
7725         /*
7726          * Dirty logging tracks sptes in 4k granularity, meaning that large
7727          * sptes have to be split.  If live migration is successful, the guest
7728          * in the source machine will be destroyed and large sptes will be
7729          * created in the destination. However, if the guest continues to run
7730          * in the source machine (for example if live migration fails), small
7731          * sptes will remain around and cause bad performance.
7732          *
7733          * Scan sptes if dirty logging has been stopped, dropping those
7734          * which can be collapsed into a single large-page spte.  Later
7735          * page faults will create the large-page sptes.
7736          */
7737         if ((change != KVM_MR_DELETE) &&
7738                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7739                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7740                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7741
7742         /*
7743          * Set up write protection and/or dirty logging for the new slot.
7744          *
7745          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7746          * been zapped so no dirty logging staff is needed for old slot. For
7747          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7748          * new and it's also covered when dealing with the new slot.
7749          */
7750         if (change != KVM_MR_DELETE)
7751                 kvm_mmu_slot_apply_flags(kvm, new);
7752 }
7753
7754 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7755 {
7756         kvm_mmu_invalidate_zap_all_pages(kvm);
7757 }
7758
7759 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7760                                    struct kvm_memory_slot *slot)
7761 {
7762         kvm_mmu_invalidate_zap_all_pages(kvm);
7763 }
7764
7765 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7766 {
7767         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7768                 kvm_x86_ops->check_nested_events(vcpu, false);
7769
7770         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7771                 !vcpu->arch.apf.halted)
7772                 || !list_empty_careful(&vcpu->async_pf.done)
7773                 || kvm_apic_has_events(vcpu)
7774                 || vcpu->arch.pv.pv_unhalted
7775                 || atomic_read(&vcpu->arch.nmi_queued) ||
7776                 (kvm_arch_interrupt_allowed(vcpu) &&
7777                  kvm_cpu_has_interrupt(vcpu));
7778 }
7779
7780 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7781 {
7782         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7783 }
7784
7785 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7786 {
7787         return kvm_x86_ops->interrupt_allowed(vcpu);
7788 }
7789
7790 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7791 {
7792         if (is_64_bit_mode(vcpu))
7793                 return kvm_rip_read(vcpu);
7794         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7795                      kvm_rip_read(vcpu));
7796 }
7797 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7798
7799 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7800 {
7801         return kvm_get_linear_rip(vcpu) == linear_rip;
7802 }
7803 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7804
7805 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7806 {
7807         unsigned long rflags;
7808
7809         rflags = kvm_x86_ops->get_rflags(vcpu);
7810         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7811                 rflags &= ~X86_EFLAGS_TF;
7812         return rflags;
7813 }
7814 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7815
7816 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7817 {
7818         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7819             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7820                 rflags |= X86_EFLAGS_TF;
7821         kvm_x86_ops->set_rflags(vcpu, rflags);
7822 }
7823
7824 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7825 {
7826         __kvm_set_rflags(vcpu, rflags);
7827         kvm_make_request(KVM_REQ_EVENT, vcpu);
7828 }
7829 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7830
7831 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7832 {
7833         int r;
7834
7835         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7836               work->wakeup_all)
7837                 return;
7838
7839         r = kvm_mmu_reload(vcpu);
7840         if (unlikely(r))
7841                 return;
7842
7843         if (!vcpu->arch.mmu.direct_map &&
7844               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7845                 return;
7846
7847         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7848 }
7849
7850 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7851 {
7852         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7853 }
7854
7855 static inline u32 kvm_async_pf_next_probe(u32 key)
7856 {
7857         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7858 }
7859
7860 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7861 {
7862         u32 key = kvm_async_pf_hash_fn(gfn);
7863
7864         while (vcpu->arch.apf.gfns[key] != ~0)
7865                 key = kvm_async_pf_next_probe(key);
7866
7867         vcpu->arch.apf.gfns[key] = gfn;
7868 }
7869
7870 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7871 {
7872         int i;
7873         u32 key = kvm_async_pf_hash_fn(gfn);
7874
7875         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7876                      (vcpu->arch.apf.gfns[key] != gfn &&
7877                       vcpu->arch.apf.gfns[key] != ~0); i++)
7878                 key = kvm_async_pf_next_probe(key);
7879
7880         return key;
7881 }
7882
7883 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7884 {
7885         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7886 }
7887
7888 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7889 {
7890         u32 i, j, k;
7891
7892         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7893         while (true) {
7894                 vcpu->arch.apf.gfns[i] = ~0;
7895                 do {
7896                         j = kvm_async_pf_next_probe(j);
7897                         if (vcpu->arch.apf.gfns[j] == ~0)
7898                                 return;
7899                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7900                         /*
7901                          * k lies cyclically in ]i,j]
7902                          * |    i.k.j |
7903                          * |....j i.k.| or  |.k..j i...|
7904                          */
7905                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7906                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7907                 i = j;
7908         }
7909 }
7910
7911 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7912 {
7913
7914         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7915                                       sizeof(val));
7916 }
7917
7918 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7919                                      struct kvm_async_pf *work)
7920 {
7921         struct x86_exception fault;
7922
7923         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7924         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7925
7926         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7927             (vcpu->arch.apf.send_user_only &&
7928              kvm_x86_ops->get_cpl(vcpu) == 0))
7929                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7930         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7931                 fault.vector = PF_VECTOR;
7932                 fault.error_code_valid = true;
7933                 fault.error_code = 0;
7934                 fault.nested_page_fault = false;
7935                 fault.address = work->arch.token;
7936                 kvm_inject_page_fault(vcpu, &fault);
7937         }
7938 }
7939
7940 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7941                                  struct kvm_async_pf *work)
7942 {
7943         struct x86_exception fault;
7944
7945         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7946         if (work->wakeup_all)
7947                 work->arch.token = ~0; /* broadcast wakeup */
7948         else
7949                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7950
7951         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7952             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7953                 fault.vector = PF_VECTOR;
7954                 fault.error_code_valid = true;
7955                 fault.error_code = 0;
7956                 fault.nested_page_fault = false;
7957                 fault.address = work->arch.token;
7958                 kvm_inject_page_fault(vcpu, &fault);
7959         }
7960         vcpu->arch.apf.halted = false;
7961         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7962 }
7963
7964 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7965 {
7966         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7967                 return true;
7968         else
7969                 return !kvm_event_needs_reinjection(vcpu) &&
7970                         kvm_x86_ops->interrupt_allowed(vcpu);
7971 }
7972
7973 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7974 {
7975         atomic_inc(&kvm->arch.noncoherent_dma_count);
7976 }
7977 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7978
7979 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7980 {
7981         atomic_dec(&kvm->arch.noncoherent_dma_count);
7982 }
7983 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7984
7985 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7986 {
7987         return atomic_read(&kvm->arch.noncoherent_dma_count);
7988 }
7989 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7990
7991 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7992 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7993 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7994 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7995 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7996 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7997 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7998 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7999 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8000 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8001 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8002 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8003 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8004 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8005 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);