]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
10feed6a01eb8fd83ba6a4f89cbde5073d31d565
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72 #include <asm/intel_pt.h>
73
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81
82 #define emul_to_vcpu(ctxt) \
83         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95
96 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
97 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
98
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32  __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64  __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138
139 /*
140  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
141  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
142  * advancement entirely.  Any other value is used as-is and disables adaptive
143  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
144  */
145 static int __read_mostly lapic_timer_advance_ns = -1;
146 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
147
148 static bool __read_mostly vector_hashing = true;
149 module_param(vector_hashing, bool, S_IRUGO);
150
151 bool __read_mostly enable_vmware_backdoor = false;
152 module_param(enable_vmware_backdoor, bool, S_IRUGO);
153 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
154
155 static bool __read_mostly force_emulation_prefix = false;
156 module_param(force_emulation_prefix, bool, S_IRUGO);
157
158 #define KVM_NR_SHARED_MSRS 16
159
160 struct kvm_shared_msrs_global {
161         int nr;
162         u32 msrs[KVM_NR_SHARED_MSRS];
163 };
164
165 struct kvm_shared_msrs {
166         struct user_return_notifier urn;
167         bool registered;
168         struct kvm_shared_msr_values {
169                 u64 host;
170                 u64 curr;
171         } values[KVM_NR_SHARED_MSRS];
172 };
173
174 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
175 static struct kvm_shared_msrs __percpu *shared_msrs;
176
177 struct kvm_stats_debugfs_item debugfs_entries[] = {
178         { "pf_fixed", VCPU_STAT(pf_fixed) },
179         { "pf_guest", VCPU_STAT(pf_guest) },
180         { "tlb_flush", VCPU_STAT(tlb_flush) },
181         { "invlpg", VCPU_STAT(invlpg) },
182         { "exits", VCPU_STAT(exits) },
183         { "io_exits", VCPU_STAT(io_exits) },
184         { "mmio_exits", VCPU_STAT(mmio_exits) },
185         { "signal_exits", VCPU_STAT(signal_exits) },
186         { "irq_window", VCPU_STAT(irq_window_exits) },
187         { "nmi_window", VCPU_STAT(nmi_window_exits) },
188         { "halt_exits", VCPU_STAT(halt_exits) },
189         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
190         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
191         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
192         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
193         { "hypercalls", VCPU_STAT(hypercalls) },
194         { "request_irq", VCPU_STAT(request_irq_exits) },
195         { "irq_exits", VCPU_STAT(irq_exits) },
196         { "host_state_reload", VCPU_STAT(host_state_reload) },
197         { "fpu_reload", VCPU_STAT(fpu_reload) },
198         { "insn_emulation", VCPU_STAT(insn_emulation) },
199         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
200         { "irq_injections", VCPU_STAT(irq_injections) },
201         { "nmi_injections", VCPU_STAT(nmi_injections) },
202         { "req_event", VCPU_STAT(req_event) },
203         { "l1d_flush", VCPU_STAT(l1d_flush) },
204         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
205         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
206         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
207         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
208         { "mmu_flooded", VM_STAT(mmu_flooded) },
209         { "mmu_recycled", VM_STAT(mmu_recycled) },
210         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
211         { "mmu_unsync", VM_STAT(mmu_unsync) },
212         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
213         { "largepages", VM_STAT(lpages) },
214         { "max_mmu_page_hash_collisions",
215                 VM_STAT(max_mmu_page_hash_collisions) },
216         { NULL }
217 };
218
219 u64 __read_mostly host_xcr0;
220
221 struct kmem_cache *x86_fpu_cache;
222 EXPORT_SYMBOL_GPL(x86_fpu_cache);
223
224 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
225
226 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
227 {
228         int i;
229         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
230                 vcpu->arch.apf.gfns[i] = ~0;
231 }
232
233 static void kvm_on_user_return(struct user_return_notifier *urn)
234 {
235         unsigned slot;
236         struct kvm_shared_msrs *locals
237                 = container_of(urn, struct kvm_shared_msrs, urn);
238         struct kvm_shared_msr_values *values;
239         unsigned long flags;
240
241         /*
242          * Disabling irqs at this point since the following code could be
243          * interrupted and executed through kvm_arch_hardware_disable()
244          */
245         local_irq_save(flags);
246         if (locals->registered) {
247                 locals->registered = false;
248                 user_return_notifier_unregister(urn);
249         }
250         local_irq_restore(flags);
251         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
252                 values = &locals->values[slot];
253                 if (values->host != values->curr) {
254                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
255                         values->curr = values->host;
256                 }
257         }
258 }
259
260 static void shared_msr_update(unsigned slot, u32 msr)
261 {
262         u64 value;
263         unsigned int cpu = smp_processor_id();
264         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
265
266         /* only read, and nobody should modify it at this time,
267          * so don't need lock */
268         if (slot >= shared_msrs_global.nr) {
269                 printk(KERN_ERR "kvm: invalid MSR slot!");
270                 return;
271         }
272         rdmsrl_safe(msr, &value);
273         smsr->values[slot].host = value;
274         smsr->values[slot].curr = value;
275 }
276
277 void kvm_define_shared_msr(unsigned slot, u32 msr)
278 {
279         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
280         shared_msrs_global.msrs[slot] = msr;
281         if (slot >= shared_msrs_global.nr)
282                 shared_msrs_global.nr = slot + 1;
283 }
284 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
285
286 static void kvm_shared_msr_cpu_online(void)
287 {
288         unsigned i;
289
290         for (i = 0; i < shared_msrs_global.nr; ++i)
291                 shared_msr_update(i, shared_msrs_global.msrs[i]);
292 }
293
294 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
295 {
296         unsigned int cpu = smp_processor_id();
297         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
298         int err;
299
300         if (((value ^ smsr->values[slot].curr) & mask) == 0)
301                 return 0;
302         smsr->values[slot].curr = value;
303         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
304         if (err)
305                 return 1;
306
307         if (!smsr->registered) {
308                 smsr->urn.on_user_return = kvm_on_user_return;
309                 user_return_notifier_register(&smsr->urn);
310                 smsr->registered = true;
311         }
312         return 0;
313 }
314 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
315
316 static void drop_user_return_notifiers(void)
317 {
318         unsigned int cpu = smp_processor_id();
319         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
320
321         if (smsr->registered)
322                 kvm_on_user_return(&smsr->urn);
323 }
324
325 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
326 {
327         return vcpu->arch.apic_base;
328 }
329 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
330
331 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
332 {
333         return kvm_apic_mode(kvm_get_apic_base(vcpu));
334 }
335 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
336
337 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
338 {
339         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
340         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
341         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
342                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
343
344         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
345                 return 1;
346         if (!msr_info->host_initiated) {
347                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
348                         return 1;
349                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
350                         return 1;
351         }
352
353         kvm_lapic_set_base(vcpu, msr_info->data);
354         return 0;
355 }
356 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
357
358 asmlinkage __visible void kvm_spurious_fault(void)
359 {
360         /* Fault while not rebooting.  We want the trace. */
361         BUG();
362 }
363 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
364
365 #define EXCPT_BENIGN            0
366 #define EXCPT_CONTRIBUTORY      1
367 #define EXCPT_PF                2
368
369 static int exception_class(int vector)
370 {
371         switch (vector) {
372         case PF_VECTOR:
373                 return EXCPT_PF;
374         case DE_VECTOR:
375         case TS_VECTOR:
376         case NP_VECTOR:
377         case SS_VECTOR:
378         case GP_VECTOR:
379                 return EXCPT_CONTRIBUTORY;
380         default:
381                 break;
382         }
383         return EXCPT_BENIGN;
384 }
385
386 #define EXCPT_FAULT             0
387 #define EXCPT_TRAP              1
388 #define EXCPT_ABORT             2
389 #define EXCPT_INTERRUPT         3
390
391 static int exception_type(int vector)
392 {
393         unsigned int mask;
394
395         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
396                 return EXCPT_INTERRUPT;
397
398         mask = 1 << vector;
399
400         /* #DB is trap, as instruction watchpoints are handled elsewhere */
401         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
402                 return EXCPT_TRAP;
403
404         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
405                 return EXCPT_ABORT;
406
407         /* Reserved exceptions will result in fault */
408         return EXCPT_FAULT;
409 }
410
411 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
412 {
413         unsigned nr = vcpu->arch.exception.nr;
414         bool has_payload = vcpu->arch.exception.has_payload;
415         unsigned long payload = vcpu->arch.exception.payload;
416
417         if (!has_payload)
418                 return;
419
420         switch (nr) {
421         case DB_VECTOR:
422                 /*
423                  * "Certain debug exceptions may clear bit 0-3.  The
424                  * remaining contents of the DR6 register are never
425                  * cleared by the processor".
426                  */
427                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
428                 /*
429                  * DR6.RTM is set by all #DB exceptions that don't clear it.
430                  */
431                 vcpu->arch.dr6 |= DR6_RTM;
432                 vcpu->arch.dr6 |= payload;
433                 /*
434                  * Bit 16 should be set in the payload whenever the #DB
435                  * exception should clear DR6.RTM. This makes the payload
436                  * compatible with the pending debug exceptions under VMX.
437                  * Though not currently documented in the SDM, this also
438                  * makes the payload compatible with the exit qualification
439                  * for #DB exceptions under VMX.
440                  */
441                 vcpu->arch.dr6 ^= payload & DR6_RTM;
442                 break;
443         case PF_VECTOR:
444                 vcpu->arch.cr2 = payload;
445                 break;
446         }
447
448         vcpu->arch.exception.has_payload = false;
449         vcpu->arch.exception.payload = 0;
450 }
451 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
452
453 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
454                 unsigned nr, bool has_error, u32 error_code,
455                 bool has_payload, unsigned long payload, bool reinject)
456 {
457         u32 prev_nr;
458         int class1, class2;
459
460         kvm_make_request(KVM_REQ_EVENT, vcpu);
461
462         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
463         queue:
464                 if (has_error && !is_protmode(vcpu))
465                         has_error = false;
466                 if (reinject) {
467                         /*
468                          * On vmentry, vcpu->arch.exception.pending is only
469                          * true if an event injection was blocked by
470                          * nested_run_pending.  In that case, however,
471                          * vcpu_enter_guest requests an immediate exit,
472                          * and the guest shouldn't proceed far enough to
473                          * need reinjection.
474                          */
475                         WARN_ON_ONCE(vcpu->arch.exception.pending);
476                         vcpu->arch.exception.injected = true;
477                         if (WARN_ON_ONCE(has_payload)) {
478                                 /*
479                                  * A reinjected event has already
480                                  * delivered its payload.
481                                  */
482                                 has_payload = false;
483                                 payload = 0;
484                         }
485                 } else {
486                         vcpu->arch.exception.pending = true;
487                         vcpu->arch.exception.injected = false;
488                 }
489                 vcpu->arch.exception.has_error_code = has_error;
490                 vcpu->arch.exception.nr = nr;
491                 vcpu->arch.exception.error_code = error_code;
492                 vcpu->arch.exception.has_payload = has_payload;
493                 vcpu->arch.exception.payload = payload;
494                 /*
495                  * In guest mode, payload delivery should be deferred,
496                  * so that the L1 hypervisor can intercept #PF before
497                  * CR2 is modified (or intercept #DB before DR6 is
498                  * modified under nVMX).  However, for ABI
499                  * compatibility with KVM_GET_VCPU_EVENTS and
500                  * KVM_SET_VCPU_EVENTS, we can't delay payload
501                  * delivery unless userspace has enabled this
502                  * functionality via the per-VM capability,
503                  * KVM_CAP_EXCEPTION_PAYLOAD.
504                  */
505                 if (!vcpu->kvm->arch.exception_payload_enabled ||
506                     !is_guest_mode(vcpu))
507                         kvm_deliver_exception_payload(vcpu);
508                 return;
509         }
510
511         /* to check exception */
512         prev_nr = vcpu->arch.exception.nr;
513         if (prev_nr == DF_VECTOR) {
514                 /* triple fault -> shutdown */
515                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
516                 return;
517         }
518         class1 = exception_class(prev_nr);
519         class2 = exception_class(nr);
520         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
521                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
522                 /*
523                  * Generate double fault per SDM Table 5-5.  Set
524                  * exception.pending = true so that the double fault
525                  * can trigger a nested vmexit.
526                  */
527                 vcpu->arch.exception.pending = true;
528                 vcpu->arch.exception.injected = false;
529                 vcpu->arch.exception.has_error_code = true;
530                 vcpu->arch.exception.nr = DF_VECTOR;
531                 vcpu->arch.exception.error_code = 0;
532                 vcpu->arch.exception.has_payload = false;
533                 vcpu->arch.exception.payload = 0;
534         } else
535                 /* replace previous exception with a new one in a hope
536                    that instruction re-execution will regenerate lost
537                    exception */
538                 goto queue;
539 }
540
541 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
542 {
543         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
544 }
545 EXPORT_SYMBOL_GPL(kvm_queue_exception);
546
547 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
548 {
549         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
550 }
551 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
552
553 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
554                                   unsigned long payload)
555 {
556         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
557 }
558
559 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
560                                     u32 error_code, unsigned long payload)
561 {
562         kvm_multiple_exception(vcpu, nr, true, error_code,
563                                true, payload, false);
564 }
565
566 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
567 {
568         if (err)
569                 kvm_inject_gp(vcpu, 0);
570         else
571                 return kvm_skip_emulated_instruction(vcpu);
572
573         return 1;
574 }
575 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
576
577 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
578 {
579         ++vcpu->stat.pf_guest;
580         vcpu->arch.exception.nested_apf =
581                 is_guest_mode(vcpu) && fault->async_page_fault;
582         if (vcpu->arch.exception.nested_apf) {
583                 vcpu->arch.apf.nested_apf_token = fault->address;
584                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
585         } else {
586                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
587                                         fault->address);
588         }
589 }
590 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
591
592 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
593 {
594         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
595                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
596         else
597                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
598
599         return fault->nested_page_fault;
600 }
601
602 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
603 {
604         atomic_inc(&vcpu->arch.nmi_queued);
605         kvm_make_request(KVM_REQ_NMI, vcpu);
606 }
607 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
608
609 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
610 {
611         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
612 }
613 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
614
615 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
616 {
617         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
618 }
619 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
620
621 /*
622  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
623  * a #GP and return false.
624  */
625 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
626 {
627         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
628                 return true;
629         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
630         return false;
631 }
632 EXPORT_SYMBOL_GPL(kvm_require_cpl);
633
634 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
635 {
636         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
637                 return true;
638
639         kvm_queue_exception(vcpu, UD_VECTOR);
640         return false;
641 }
642 EXPORT_SYMBOL_GPL(kvm_require_dr);
643
644 /*
645  * This function will be used to read from the physical memory of the currently
646  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
647  * can read from guest physical or from the guest's guest physical memory.
648  */
649 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
650                             gfn_t ngfn, void *data, int offset, int len,
651                             u32 access)
652 {
653         struct x86_exception exception;
654         gfn_t real_gfn;
655         gpa_t ngpa;
656
657         ngpa     = gfn_to_gpa(ngfn);
658         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
659         if (real_gfn == UNMAPPED_GVA)
660                 return -EFAULT;
661
662         real_gfn = gpa_to_gfn(real_gfn);
663
664         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
665 }
666 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
667
668 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
669                                void *data, int offset, int len, u32 access)
670 {
671         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
672                                        data, offset, len, access);
673 }
674
675 /*
676  * Load the pae pdptrs.  Return true is they are all valid.
677  */
678 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
679 {
680         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
681         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
682         int i;
683         int ret;
684         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
685
686         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
687                                       offset * sizeof(u64), sizeof(pdpte),
688                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
689         if (ret < 0) {
690                 ret = 0;
691                 goto out;
692         }
693         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
694                 if ((pdpte[i] & PT_PRESENT_MASK) &&
695                     (pdpte[i] &
696                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
697                         ret = 0;
698                         goto out;
699                 }
700         }
701         ret = 1;
702
703         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
704         __set_bit(VCPU_EXREG_PDPTR,
705                   (unsigned long *)&vcpu->arch.regs_avail);
706         __set_bit(VCPU_EXREG_PDPTR,
707                   (unsigned long *)&vcpu->arch.regs_dirty);
708 out:
709
710         return ret;
711 }
712 EXPORT_SYMBOL_GPL(load_pdptrs);
713
714 bool pdptrs_changed(struct kvm_vcpu *vcpu)
715 {
716         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
717         bool changed = true;
718         int offset;
719         gfn_t gfn;
720         int r;
721
722         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
723                 return false;
724
725         if (!test_bit(VCPU_EXREG_PDPTR,
726                       (unsigned long *)&vcpu->arch.regs_avail))
727                 return true;
728
729         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
730         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
731         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
732                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
733         if (r < 0)
734                 goto out;
735         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
736 out:
737
738         return changed;
739 }
740 EXPORT_SYMBOL_GPL(pdptrs_changed);
741
742 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
743 {
744         unsigned long old_cr0 = kvm_read_cr0(vcpu);
745         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
746
747         cr0 |= X86_CR0_ET;
748
749 #ifdef CONFIG_X86_64
750         if (cr0 & 0xffffffff00000000UL)
751                 return 1;
752 #endif
753
754         cr0 &= ~CR0_RESERVED_BITS;
755
756         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
757                 return 1;
758
759         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
760                 return 1;
761
762         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
763 #ifdef CONFIG_X86_64
764                 if ((vcpu->arch.efer & EFER_LME)) {
765                         int cs_db, cs_l;
766
767                         if (!is_pae(vcpu))
768                                 return 1;
769                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
770                         if (cs_l)
771                                 return 1;
772                 } else
773 #endif
774                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
775                                                  kvm_read_cr3(vcpu)))
776                         return 1;
777         }
778
779         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
780                 return 1;
781
782         kvm_x86_ops->set_cr0(vcpu, cr0);
783
784         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
785                 kvm_clear_async_pf_completion_queue(vcpu);
786                 kvm_async_pf_hash_reset(vcpu);
787         }
788
789         if ((cr0 ^ old_cr0) & update_bits)
790                 kvm_mmu_reset_context(vcpu);
791
792         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
793             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
794             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
795                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
796
797         return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr0);
800
801 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
802 {
803         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
804 }
805 EXPORT_SYMBOL_GPL(kvm_lmsw);
806
807 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
808 {
809         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
810                         !vcpu->guest_xcr0_loaded) {
811                 /* kvm_set_xcr() also depends on this */
812                 if (vcpu->arch.xcr0 != host_xcr0)
813                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
814                 vcpu->guest_xcr0_loaded = 1;
815         }
816 }
817 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
818
819 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
820 {
821         if (vcpu->guest_xcr0_loaded) {
822                 if (vcpu->arch.xcr0 != host_xcr0)
823                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
824                 vcpu->guest_xcr0_loaded = 0;
825         }
826 }
827 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
828
829 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
830 {
831         u64 xcr0 = xcr;
832         u64 old_xcr0 = vcpu->arch.xcr0;
833         u64 valid_bits;
834
835         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
836         if (index != XCR_XFEATURE_ENABLED_MASK)
837                 return 1;
838         if (!(xcr0 & XFEATURE_MASK_FP))
839                 return 1;
840         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
841                 return 1;
842
843         /*
844          * Do not allow the guest to set bits that we do not support
845          * saving.  However, xcr0 bit 0 is always set, even if the
846          * emulated CPU does not support XSAVE (see fx_init).
847          */
848         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
849         if (xcr0 & ~valid_bits)
850                 return 1;
851
852         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
853             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
854                 return 1;
855
856         if (xcr0 & XFEATURE_MASK_AVX512) {
857                 if (!(xcr0 & XFEATURE_MASK_YMM))
858                         return 1;
859                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
860                         return 1;
861         }
862         vcpu->arch.xcr0 = xcr0;
863
864         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
865                 kvm_update_cpuid(vcpu);
866         return 0;
867 }
868
869 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
870 {
871         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
872             __kvm_set_xcr(vcpu, index, xcr)) {
873                 kvm_inject_gp(vcpu, 0);
874                 return 1;
875         }
876         return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvm_set_xcr);
879
880 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
881 {
882         unsigned long old_cr4 = kvm_read_cr4(vcpu);
883         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
884                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
885
886         if (cr4 & CR4_RESERVED_BITS)
887                 return 1;
888
889         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
890                 return 1;
891
892         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
893                 return 1;
894
895         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
896                 return 1;
897
898         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
899                 return 1;
900
901         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
902                 return 1;
903
904         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
905                 return 1;
906
907         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
908                 return 1;
909
910         if (is_long_mode(vcpu)) {
911                 if (!(cr4 & X86_CR4_PAE))
912                         return 1;
913         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
914                    && ((cr4 ^ old_cr4) & pdptr_bits)
915                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
916                                    kvm_read_cr3(vcpu)))
917                 return 1;
918
919         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
920                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
921                         return 1;
922
923                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
924                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
925                         return 1;
926         }
927
928         if (kvm_x86_ops->set_cr4(vcpu, cr4))
929                 return 1;
930
931         if (((cr4 ^ old_cr4) & pdptr_bits) ||
932             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
933                 kvm_mmu_reset_context(vcpu);
934
935         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
936                 kvm_update_cpuid(vcpu);
937
938         return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_set_cr4);
941
942 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
943 {
944         bool skip_tlb_flush = false;
945 #ifdef CONFIG_X86_64
946         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
947
948         if (pcid_enabled) {
949                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
950                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
951         }
952 #endif
953
954         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
955                 if (!skip_tlb_flush) {
956                         kvm_mmu_sync_roots(vcpu);
957                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
958                 }
959                 return 0;
960         }
961
962         if (is_long_mode(vcpu) &&
963             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
964                 return 1;
965         else if (is_pae(vcpu) && is_paging(vcpu) &&
966                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
967                 return 1;
968
969         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
970         vcpu->arch.cr3 = cr3;
971         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
972
973         return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_cr3);
976
977 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
978 {
979         if (cr8 & CR8_RESERVED_BITS)
980                 return 1;
981         if (lapic_in_kernel(vcpu))
982                 kvm_lapic_set_tpr(vcpu, cr8);
983         else
984                 vcpu->arch.cr8 = cr8;
985         return 0;
986 }
987 EXPORT_SYMBOL_GPL(kvm_set_cr8);
988
989 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
990 {
991         if (lapic_in_kernel(vcpu))
992                 return kvm_lapic_get_cr8(vcpu);
993         else
994                 return vcpu->arch.cr8;
995 }
996 EXPORT_SYMBOL_GPL(kvm_get_cr8);
997
998 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
999 {
1000         int i;
1001
1002         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1003                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1004                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1005                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1006         }
1007 }
1008
1009 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1010 {
1011         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1012                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1013 }
1014
1015 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1016 {
1017         unsigned long dr7;
1018
1019         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1020                 dr7 = vcpu->arch.guest_debug_dr7;
1021         else
1022                 dr7 = vcpu->arch.dr7;
1023         kvm_x86_ops->set_dr7(vcpu, dr7);
1024         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1025         if (dr7 & DR7_BP_EN_MASK)
1026                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1027 }
1028
1029 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1030 {
1031         u64 fixed = DR6_FIXED_1;
1032
1033         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1034                 fixed |= DR6_RTM;
1035         return fixed;
1036 }
1037
1038 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1039 {
1040         switch (dr) {
1041         case 0 ... 3:
1042                 vcpu->arch.db[dr] = val;
1043                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1044                         vcpu->arch.eff_db[dr] = val;
1045                 break;
1046         case 4:
1047                 /* fall through */
1048         case 6:
1049                 if (val & 0xffffffff00000000ULL)
1050                         return -1; /* #GP */
1051                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1052                 kvm_update_dr6(vcpu);
1053                 break;
1054         case 5:
1055                 /* fall through */
1056         default: /* 7 */
1057                 if (val & 0xffffffff00000000ULL)
1058                         return -1; /* #GP */
1059                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1060                 kvm_update_dr7(vcpu);
1061                 break;
1062         }
1063
1064         return 0;
1065 }
1066
1067 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1068 {
1069         if (__kvm_set_dr(vcpu, dr, val)) {
1070                 kvm_inject_gp(vcpu, 0);
1071                 return 1;
1072         }
1073         return 0;
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_dr);
1076
1077 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1078 {
1079         switch (dr) {
1080         case 0 ... 3:
1081                 *val = vcpu->arch.db[dr];
1082                 break;
1083         case 4:
1084                 /* fall through */
1085         case 6:
1086                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1087                         *val = vcpu->arch.dr6;
1088                 else
1089                         *val = kvm_x86_ops->get_dr6(vcpu);
1090                 break;
1091         case 5:
1092                 /* fall through */
1093         default: /* 7 */
1094                 *val = vcpu->arch.dr7;
1095                 break;
1096         }
1097         return 0;
1098 }
1099 EXPORT_SYMBOL_GPL(kvm_get_dr);
1100
1101 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1102 {
1103         u32 ecx = kvm_rcx_read(vcpu);
1104         u64 data;
1105         int err;
1106
1107         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1108         if (err)
1109                 return err;
1110         kvm_rax_write(vcpu, (u32)data);
1111         kvm_rdx_write(vcpu, data >> 32);
1112         return err;
1113 }
1114 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1115
1116 /*
1117  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1118  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1119  *
1120  * This list is modified at module load time to reflect the
1121  * capabilities of the host cpu. This capabilities test skips MSRs that are
1122  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1123  * may depend on host virtualization features rather than host cpu features.
1124  */
1125
1126 static u32 msrs_to_save[] = {
1127         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1128         MSR_STAR,
1129 #ifdef CONFIG_X86_64
1130         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1131 #endif
1132         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1133         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1134         MSR_IA32_SPEC_CTRL,
1135         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1136         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1137         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1138         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1139         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1140         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1141 };
1142
1143 static unsigned num_msrs_to_save;
1144
1145 static u32 emulated_msrs[] = {
1146         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1147         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1148         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1149         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1150         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1151         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1152         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1153         HV_X64_MSR_RESET,
1154         HV_X64_MSR_VP_INDEX,
1155         HV_X64_MSR_VP_RUNTIME,
1156         HV_X64_MSR_SCONTROL,
1157         HV_X64_MSR_STIMER0_CONFIG,
1158         HV_X64_MSR_VP_ASSIST_PAGE,
1159         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1160         HV_X64_MSR_TSC_EMULATION_STATUS,
1161
1162         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1163         MSR_KVM_PV_EOI_EN,
1164
1165         MSR_IA32_TSC_ADJUST,
1166         MSR_IA32_TSCDEADLINE,
1167         MSR_IA32_ARCH_CAPABILITIES,
1168         MSR_IA32_MISC_ENABLE,
1169         MSR_IA32_MCG_STATUS,
1170         MSR_IA32_MCG_CTL,
1171         MSR_IA32_MCG_EXT_CTL,
1172         MSR_IA32_SMBASE,
1173         MSR_SMI_COUNT,
1174         MSR_PLATFORM_INFO,
1175         MSR_MISC_FEATURES_ENABLES,
1176         MSR_AMD64_VIRT_SPEC_CTRL,
1177         MSR_IA32_POWER_CTL,
1178
1179         MSR_K7_HWCR,
1180 };
1181
1182 static unsigned num_emulated_msrs;
1183
1184 /*
1185  * List of msr numbers which are used to expose MSR-based features that
1186  * can be used by a hypervisor to validate requested CPU features.
1187  */
1188 static u32 msr_based_features[] = {
1189         MSR_IA32_VMX_BASIC,
1190         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1191         MSR_IA32_VMX_PINBASED_CTLS,
1192         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1193         MSR_IA32_VMX_PROCBASED_CTLS,
1194         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1195         MSR_IA32_VMX_EXIT_CTLS,
1196         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1197         MSR_IA32_VMX_ENTRY_CTLS,
1198         MSR_IA32_VMX_MISC,
1199         MSR_IA32_VMX_CR0_FIXED0,
1200         MSR_IA32_VMX_CR0_FIXED1,
1201         MSR_IA32_VMX_CR4_FIXED0,
1202         MSR_IA32_VMX_CR4_FIXED1,
1203         MSR_IA32_VMX_VMCS_ENUM,
1204         MSR_IA32_VMX_PROCBASED_CTLS2,
1205         MSR_IA32_VMX_EPT_VPID_CAP,
1206         MSR_IA32_VMX_VMFUNC,
1207
1208         MSR_F10H_DECFG,
1209         MSR_IA32_UCODE_REV,
1210         MSR_IA32_ARCH_CAPABILITIES,
1211 };
1212
1213 static unsigned int num_msr_based_features;
1214
1215 static u64 kvm_get_arch_capabilities(void)
1216 {
1217         u64 data = 0;
1218
1219         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1220                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1221
1222         /*
1223          * If we're doing cache flushes (either "always" or "cond")
1224          * we will do one whenever the guest does a vmlaunch/vmresume.
1225          * If an outer hypervisor is doing the cache flush for us
1226          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1227          * capability to the guest too, and if EPT is disabled we're not
1228          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1229          * require a nested hypervisor to do a flush of its own.
1230          */
1231         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1232                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1233
1234         return data;
1235 }
1236
1237 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1238 {
1239         switch (msr->index) {
1240         case MSR_IA32_ARCH_CAPABILITIES:
1241                 msr->data = kvm_get_arch_capabilities();
1242                 break;
1243         case MSR_IA32_UCODE_REV:
1244                 rdmsrl_safe(msr->index, &msr->data);
1245                 break;
1246         default:
1247                 if (kvm_x86_ops->get_msr_feature(msr))
1248                         return 1;
1249         }
1250         return 0;
1251 }
1252
1253 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1254 {
1255         struct kvm_msr_entry msr;
1256         int r;
1257
1258         msr.index = index;
1259         r = kvm_get_msr_feature(&msr);
1260         if (r)
1261                 return r;
1262
1263         *data = msr.data;
1264
1265         return 0;
1266 }
1267
1268 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1269 {
1270         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1271                 return false;
1272
1273         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1274                 return false;
1275
1276         if (efer & (EFER_LME | EFER_LMA) &&
1277             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1278                 return false;
1279
1280         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1281                 return false;
1282
1283         return true;
1284
1285 }
1286 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1287 {
1288         if (efer & efer_reserved_bits)
1289                 return false;
1290
1291         return __kvm_valid_efer(vcpu, efer);
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1294
1295 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1296 {
1297         u64 old_efer = vcpu->arch.efer;
1298         u64 efer = msr_info->data;
1299
1300         if (efer & efer_reserved_bits)
1301                 return 1;
1302
1303         if (!msr_info->host_initiated) {
1304                 if (!__kvm_valid_efer(vcpu, efer))
1305                         return 1;
1306
1307                 if (is_paging(vcpu) &&
1308                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1309                         return 1;
1310         }
1311
1312         efer &= ~EFER_LMA;
1313         efer |= vcpu->arch.efer & EFER_LMA;
1314
1315         kvm_x86_ops->set_efer(vcpu, efer);
1316
1317         /* Update reserved bits */
1318         if ((efer ^ old_efer) & EFER_NX)
1319                 kvm_mmu_reset_context(vcpu);
1320
1321         return 0;
1322 }
1323
1324 void kvm_enable_efer_bits(u64 mask)
1325 {
1326        efer_reserved_bits &= ~mask;
1327 }
1328 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1329
1330 /*
1331  * Writes msr value into into the appropriate "register".
1332  * Returns 0 on success, non-0 otherwise.
1333  * Assumes vcpu_load() was already called.
1334  */
1335 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1336 {
1337         switch (msr->index) {
1338         case MSR_FS_BASE:
1339         case MSR_GS_BASE:
1340         case MSR_KERNEL_GS_BASE:
1341         case MSR_CSTAR:
1342         case MSR_LSTAR:
1343                 if (is_noncanonical_address(msr->data, vcpu))
1344                         return 1;
1345                 break;
1346         case MSR_IA32_SYSENTER_EIP:
1347         case MSR_IA32_SYSENTER_ESP:
1348                 /*
1349                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1350                  * non-canonical address is written on Intel but not on
1351                  * AMD (which ignores the top 32-bits, because it does
1352                  * not implement 64-bit SYSENTER).
1353                  *
1354                  * 64-bit code should hence be able to write a non-canonical
1355                  * value on AMD.  Making the address canonical ensures that
1356                  * vmentry does not fail on Intel after writing a non-canonical
1357                  * value, and that something deterministic happens if the guest
1358                  * invokes 64-bit SYSENTER.
1359                  */
1360                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1361         }
1362         return kvm_x86_ops->set_msr(vcpu, msr);
1363 }
1364 EXPORT_SYMBOL_GPL(kvm_set_msr);
1365
1366 /*
1367  * Adapt set_msr() to msr_io()'s calling convention
1368  */
1369 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1370 {
1371         struct msr_data msr;
1372         int r;
1373
1374         msr.index = index;
1375         msr.host_initiated = true;
1376         r = kvm_get_msr(vcpu, &msr);
1377         if (r)
1378                 return r;
1379
1380         *data = msr.data;
1381         return 0;
1382 }
1383
1384 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1385 {
1386         struct msr_data msr;
1387
1388         msr.data = *data;
1389         msr.index = index;
1390         msr.host_initiated = true;
1391         return kvm_set_msr(vcpu, &msr);
1392 }
1393
1394 #ifdef CONFIG_X86_64
1395 struct pvclock_gtod_data {
1396         seqcount_t      seq;
1397
1398         struct { /* extract of a clocksource struct */
1399                 int vclock_mode;
1400                 u64     cycle_last;
1401                 u64     mask;
1402                 u32     mult;
1403                 u32     shift;
1404         } clock;
1405
1406         u64             boot_ns;
1407         u64             nsec_base;
1408         u64             wall_time_sec;
1409 };
1410
1411 static struct pvclock_gtod_data pvclock_gtod_data;
1412
1413 static void update_pvclock_gtod(struct timekeeper *tk)
1414 {
1415         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1416         u64 boot_ns;
1417
1418         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1419
1420         write_seqcount_begin(&vdata->seq);
1421
1422         /* copy pvclock gtod data */
1423         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1424         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1425         vdata->clock.mask               = tk->tkr_mono.mask;
1426         vdata->clock.mult               = tk->tkr_mono.mult;
1427         vdata->clock.shift              = tk->tkr_mono.shift;
1428
1429         vdata->boot_ns                  = boot_ns;
1430         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1431
1432         vdata->wall_time_sec            = tk->xtime_sec;
1433
1434         write_seqcount_end(&vdata->seq);
1435 }
1436 #endif
1437
1438 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1439 {
1440         /*
1441          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1442          * vcpu_enter_guest.  This function is only called from
1443          * the physical CPU that is running vcpu.
1444          */
1445         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1446 }
1447
1448 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1449 {
1450         int version;
1451         int r;
1452         struct pvclock_wall_clock wc;
1453         struct timespec64 boot;
1454
1455         if (!wall_clock)
1456                 return;
1457
1458         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1459         if (r)
1460                 return;
1461
1462         if (version & 1)
1463                 ++version;  /* first time write, random junk */
1464
1465         ++version;
1466
1467         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1468                 return;
1469
1470         /*
1471          * The guest calculates current wall clock time by adding
1472          * system time (updated by kvm_guest_time_update below) to the
1473          * wall clock specified here.  guest system time equals host
1474          * system time for us, thus we must fill in host boot time here.
1475          */
1476         getboottime64(&boot);
1477
1478         if (kvm->arch.kvmclock_offset) {
1479                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1480                 boot = timespec64_sub(boot, ts);
1481         }
1482         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1483         wc.nsec = boot.tv_nsec;
1484         wc.version = version;
1485
1486         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1487
1488         version++;
1489         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1490 }
1491
1492 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1493 {
1494         do_shl32_div32(dividend, divisor);
1495         return dividend;
1496 }
1497
1498 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1499                                s8 *pshift, u32 *pmultiplier)
1500 {
1501         uint64_t scaled64;
1502         int32_t  shift = 0;
1503         uint64_t tps64;
1504         uint32_t tps32;
1505
1506         tps64 = base_hz;
1507         scaled64 = scaled_hz;
1508         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1509                 tps64 >>= 1;
1510                 shift--;
1511         }
1512
1513         tps32 = (uint32_t)tps64;
1514         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1515                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1516                         scaled64 >>= 1;
1517                 else
1518                         tps32 <<= 1;
1519                 shift++;
1520         }
1521
1522         *pshift = shift;
1523         *pmultiplier = div_frac(scaled64, tps32);
1524
1525         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1526                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1527 }
1528
1529 #ifdef CONFIG_X86_64
1530 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1531 #endif
1532
1533 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1534 static unsigned long max_tsc_khz;
1535
1536 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1537 {
1538         u64 v = (u64)khz * (1000000 + ppm);
1539         do_div(v, 1000000);
1540         return v;
1541 }
1542
1543 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1544 {
1545         u64 ratio;
1546
1547         /* Guest TSC same frequency as host TSC? */
1548         if (!scale) {
1549                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1550                 return 0;
1551         }
1552
1553         /* TSC scaling supported? */
1554         if (!kvm_has_tsc_control) {
1555                 if (user_tsc_khz > tsc_khz) {
1556                         vcpu->arch.tsc_catchup = 1;
1557                         vcpu->arch.tsc_always_catchup = 1;
1558                         return 0;
1559                 } else {
1560                         WARN(1, "user requested TSC rate below hardware speed\n");
1561                         return -1;
1562                 }
1563         }
1564
1565         /* TSC scaling required  - calculate ratio */
1566         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1567                                 user_tsc_khz, tsc_khz);
1568
1569         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1570                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1571                           user_tsc_khz);
1572                 return -1;
1573         }
1574
1575         vcpu->arch.tsc_scaling_ratio = ratio;
1576         return 0;
1577 }
1578
1579 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1580 {
1581         u32 thresh_lo, thresh_hi;
1582         int use_scaling = 0;
1583
1584         /* tsc_khz can be zero if TSC calibration fails */
1585         if (user_tsc_khz == 0) {
1586                 /* set tsc_scaling_ratio to a safe value */
1587                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1588                 return -1;
1589         }
1590
1591         /* Compute a scale to convert nanoseconds in TSC cycles */
1592         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1593                            &vcpu->arch.virtual_tsc_shift,
1594                            &vcpu->arch.virtual_tsc_mult);
1595         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1596
1597         /*
1598          * Compute the variation in TSC rate which is acceptable
1599          * within the range of tolerance and decide if the
1600          * rate being applied is within that bounds of the hardware
1601          * rate.  If so, no scaling or compensation need be done.
1602          */
1603         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1604         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1605         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1606                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1607                 use_scaling = 1;
1608         }
1609         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1610 }
1611
1612 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1613 {
1614         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1615                                       vcpu->arch.virtual_tsc_mult,
1616                                       vcpu->arch.virtual_tsc_shift);
1617         tsc += vcpu->arch.this_tsc_write;
1618         return tsc;
1619 }
1620
1621 static inline int gtod_is_based_on_tsc(int mode)
1622 {
1623         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1624 }
1625
1626 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1627 {
1628 #ifdef CONFIG_X86_64
1629         bool vcpus_matched;
1630         struct kvm_arch *ka = &vcpu->kvm->arch;
1631         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1632
1633         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1634                          atomic_read(&vcpu->kvm->online_vcpus));
1635
1636         /*
1637          * Once the masterclock is enabled, always perform request in
1638          * order to update it.
1639          *
1640          * In order to enable masterclock, the host clocksource must be TSC
1641          * and the vcpus need to have matched TSCs.  When that happens,
1642          * perform request to enable masterclock.
1643          */
1644         if (ka->use_master_clock ||
1645             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1646                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1647
1648         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1649                             atomic_read(&vcpu->kvm->online_vcpus),
1650                             ka->use_master_clock, gtod->clock.vclock_mode);
1651 #endif
1652 }
1653
1654 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1655 {
1656         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1657         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1658 }
1659
1660 /*
1661  * Multiply tsc by a fixed point number represented by ratio.
1662  *
1663  * The most significant 64-N bits (mult) of ratio represent the
1664  * integral part of the fixed point number; the remaining N bits
1665  * (frac) represent the fractional part, ie. ratio represents a fixed
1666  * point number (mult + frac * 2^(-N)).
1667  *
1668  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1669  */
1670 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1671 {
1672         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1673 }
1674
1675 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1676 {
1677         u64 _tsc = tsc;
1678         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1679
1680         if (ratio != kvm_default_tsc_scaling_ratio)
1681                 _tsc = __scale_tsc(ratio, tsc);
1682
1683         return _tsc;
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1686
1687 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1688 {
1689         u64 tsc;
1690
1691         tsc = kvm_scale_tsc(vcpu, rdtsc());
1692
1693         return target_tsc - tsc;
1694 }
1695
1696 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1697 {
1698         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1699
1700         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1701 }
1702 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1703
1704 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1705 {
1706         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1707 }
1708
1709 static inline bool kvm_check_tsc_unstable(void)
1710 {
1711 #ifdef CONFIG_X86_64
1712         /*
1713          * TSC is marked unstable when we're running on Hyper-V,
1714          * 'TSC page' clocksource is good.
1715          */
1716         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1717                 return false;
1718 #endif
1719         return check_tsc_unstable();
1720 }
1721
1722 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1723 {
1724         struct kvm *kvm = vcpu->kvm;
1725         u64 offset, ns, elapsed;
1726         unsigned long flags;
1727         bool matched;
1728         bool already_matched;
1729         u64 data = msr->data;
1730         bool synchronizing = false;
1731
1732         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1733         offset = kvm_compute_tsc_offset(vcpu, data);
1734         ns = ktime_get_boot_ns();
1735         elapsed = ns - kvm->arch.last_tsc_nsec;
1736
1737         if (vcpu->arch.virtual_tsc_khz) {
1738                 if (data == 0 && msr->host_initiated) {
1739                         /*
1740                          * detection of vcpu initialization -- need to sync
1741                          * with other vCPUs. This particularly helps to keep
1742                          * kvm_clock stable after CPU hotplug
1743                          */
1744                         synchronizing = true;
1745                 } else {
1746                         u64 tsc_exp = kvm->arch.last_tsc_write +
1747                                                 nsec_to_cycles(vcpu, elapsed);
1748                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1749                         /*
1750                          * Special case: TSC write with a small delta (1 second)
1751                          * of virtual cycle time against real time is
1752                          * interpreted as an attempt to synchronize the CPU.
1753                          */
1754                         synchronizing = data < tsc_exp + tsc_hz &&
1755                                         data + tsc_hz > tsc_exp;
1756                 }
1757         }
1758
1759         /*
1760          * For a reliable TSC, we can match TSC offsets, and for an unstable
1761          * TSC, we add elapsed time in this computation.  We could let the
1762          * compensation code attempt to catch up if we fall behind, but
1763          * it's better to try to match offsets from the beginning.
1764          */
1765         if (synchronizing &&
1766             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1767                 if (!kvm_check_tsc_unstable()) {
1768                         offset = kvm->arch.cur_tsc_offset;
1769                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1770                 } else {
1771                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1772                         data += delta;
1773                         offset = kvm_compute_tsc_offset(vcpu, data);
1774                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1775                 }
1776                 matched = true;
1777                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1778         } else {
1779                 /*
1780                  * We split periods of matched TSC writes into generations.
1781                  * For each generation, we track the original measured
1782                  * nanosecond time, offset, and write, so if TSCs are in
1783                  * sync, we can match exact offset, and if not, we can match
1784                  * exact software computation in compute_guest_tsc()
1785                  *
1786                  * These values are tracked in kvm->arch.cur_xxx variables.
1787                  */
1788                 kvm->arch.cur_tsc_generation++;
1789                 kvm->arch.cur_tsc_nsec = ns;
1790                 kvm->arch.cur_tsc_write = data;
1791                 kvm->arch.cur_tsc_offset = offset;
1792                 matched = false;
1793                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1794                          kvm->arch.cur_tsc_generation, data);
1795         }
1796
1797         /*
1798          * We also track th most recent recorded KHZ, write and time to
1799          * allow the matching interval to be extended at each write.
1800          */
1801         kvm->arch.last_tsc_nsec = ns;
1802         kvm->arch.last_tsc_write = data;
1803         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1804
1805         vcpu->arch.last_guest_tsc = data;
1806
1807         /* Keep track of which generation this VCPU has synchronized to */
1808         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1809         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1810         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1811
1812         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1813                 update_ia32_tsc_adjust_msr(vcpu, offset);
1814
1815         kvm_vcpu_write_tsc_offset(vcpu, offset);
1816         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1817
1818         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1819         if (!matched) {
1820                 kvm->arch.nr_vcpus_matched_tsc = 0;
1821         } else if (!already_matched) {
1822                 kvm->arch.nr_vcpus_matched_tsc++;
1823         }
1824
1825         kvm_track_tsc_matching(vcpu);
1826         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1827 }
1828
1829 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1830
1831 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1832                                            s64 adjustment)
1833 {
1834         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1835         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1836 }
1837
1838 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1839 {
1840         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1841                 WARN_ON(adjustment < 0);
1842         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1843         adjust_tsc_offset_guest(vcpu, adjustment);
1844 }
1845
1846 #ifdef CONFIG_X86_64
1847
1848 static u64 read_tsc(void)
1849 {
1850         u64 ret = (u64)rdtsc_ordered();
1851         u64 last = pvclock_gtod_data.clock.cycle_last;
1852
1853         if (likely(ret >= last))
1854                 return ret;
1855
1856         /*
1857          * GCC likes to generate cmov here, but this branch is extremely
1858          * predictable (it's just a function of time and the likely is
1859          * very likely) and there's a data dependence, so force GCC
1860          * to generate a branch instead.  I don't barrier() because
1861          * we don't actually need a barrier, and if this function
1862          * ever gets inlined it will generate worse code.
1863          */
1864         asm volatile ("");
1865         return last;
1866 }
1867
1868 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1869 {
1870         long v;
1871         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1872         u64 tsc_pg_val;
1873
1874         switch (gtod->clock.vclock_mode) {
1875         case VCLOCK_HVCLOCK:
1876                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1877                                                   tsc_timestamp);
1878                 if (tsc_pg_val != U64_MAX) {
1879                         /* TSC page valid */
1880                         *mode = VCLOCK_HVCLOCK;
1881                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1882                                 gtod->clock.mask;
1883                 } else {
1884                         /* TSC page invalid */
1885                         *mode = VCLOCK_NONE;
1886                 }
1887                 break;
1888         case VCLOCK_TSC:
1889                 *mode = VCLOCK_TSC;
1890                 *tsc_timestamp = read_tsc();
1891                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1892                         gtod->clock.mask;
1893                 break;
1894         default:
1895                 *mode = VCLOCK_NONE;
1896         }
1897
1898         if (*mode == VCLOCK_NONE)
1899                 *tsc_timestamp = v = 0;
1900
1901         return v * gtod->clock.mult;
1902 }
1903
1904 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1905 {
1906         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1907         unsigned long seq;
1908         int mode;
1909         u64 ns;
1910
1911         do {
1912                 seq = read_seqcount_begin(&gtod->seq);
1913                 ns = gtod->nsec_base;
1914                 ns += vgettsc(tsc_timestamp, &mode);
1915                 ns >>= gtod->clock.shift;
1916                 ns += gtod->boot_ns;
1917         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1918         *t = ns;
1919
1920         return mode;
1921 }
1922
1923 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1924 {
1925         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1926         unsigned long seq;
1927         int mode;
1928         u64 ns;
1929
1930         do {
1931                 seq = read_seqcount_begin(&gtod->seq);
1932                 ts->tv_sec = gtod->wall_time_sec;
1933                 ns = gtod->nsec_base;
1934                 ns += vgettsc(tsc_timestamp, &mode);
1935                 ns >>= gtod->clock.shift;
1936         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1937
1938         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1939         ts->tv_nsec = ns;
1940
1941         return mode;
1942 }
1943
1944 /* returns true if host is using TSC based clocksource */
1945 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1946 {
1947         /* checked again under seqlock below */
1948         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1949                 return false;
1950
1951         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1952                                                       tsc_timestamp));
1953 }
1954
1955 /* returns true if host is using TSC based clocksource */
1956 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1957                                            u64 *tsc_timestamp)
1958 {
1959         /* checked again under seqlock below */
1960         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1961                 return false;
1962
1963         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1964 }
1965 #endif
1966
1967 /*
1968  *
1969  * Assuming a stable TSC across physical CPUS, and a stable TSC
1970  * across virtual CPUs, the following condition is possible.
1971  * Each numbered line represents an event visible to both
1972  * CPUs at the next numbered event.
1973  *
1974  * "timespecX" represents host monotonic time. "tscX" represents
1975  * RDTSC value.
1976  *
1977  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1978  *
1979  * 1.  read timespec0,tsc0
1980  * 2.                                   | timespec1 = timespec0 + N
1981  *                                      | tsc1 = tsc0 + M
1982  * 3. transition to guest               | transition to guest
1983  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1984  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1985  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1986  *
1987  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1988  *
1989  *      - ret0 < ret1
1990  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1991  *              ...
1992  *      - 0 < N - M => M < N
1993  *
1994  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1995  * always the case (the difference between two distinct xtime instances
1996  * might be smaller then the difference between corresponding TSC reads,
1997  * when updating guest vcpus pvclock areas).
1998  *
1999  * To avoid that problem, do not allow visibility of distinct
2000  * system_timestamp/tsc_timestamp values simultaneously: use a master
2001  * copy of host monotonic time values. Update that master copy
2002  * in lockstep.
2003  *
2004  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2005  *
2006  */
2007
2008 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2009 {
2010 #ifdef CONFIG_X86_64
2011         struct kvm_arch *ka = &kvm->arch;
2012         int vclock_mode;
2013         bool host_tsc_clocksource, vcpus_matched;
2014
2015         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2016                         atomic_read(&kvm->online_vcpus));
2017
2018         /*
2019          * If the host uses TSC clock, then passthrough TSC as stable
2020          * to the guest.
2021          */
2022         host_tsc_clocksource = kvm_get_time_and_clockread(
2023                                         &ka->master_kernel_ns,
2024                                         &ka->master_cycle_now);
2025
2026         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2027                                 && !ka->backwards_tsc_observed
2028                                 && !ka->boot_vcpu_runs_old_kvmclock;
2029
2030         if (ka->use_master_clock)
2031                 atomic_set(&kvm_guest_has_master_clock, 1);
2032
2033         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2034         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2035                                         vcpus_matched);
2036 #endif
2037 }
2038
2039 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2040 {
2041         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2042 }
2043
2044 static void kvm_gen_update_masterclock(struct kvm *kvm)
2045 {
2046 #ifdef CONFIG_X86_64
2047         int i;
2048         struct kvm_vcpu *vcpu;
2049         struct kvm_arch *ka = &kvm->arch;
2050
2051         spin_lock(&ka->pvclock_gtod_sync_lock);
2052         kvm_make_mclock_inprogress_request(kvm);
2053         /* no guest entries from this point */
2054         pvclock_update_vm_gtod_copy(kvm);
2055
2056         kvm_for_each_vcpu(i, vcpu, kvm)
2057                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2058
2059         /* guest entries allowed */
2060         kvm_for_each_vcpu(i, vcpu, kvm)
2061                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2062
2063         spin_unlock(&ka->pvclock_gtod_sync_lock);
2064 #endif
2065 }
2066
2067 u64 get_kvmclock_ns(struct kvm *kvm)
2068 {
2069         struct kvm_arch *ka = &kvm->arch;
2070         struct pvclock_vcpu_time_info hv_clock;
2071         u64 ret;
2072
2073         spin_lock(&ka->pvclock_gtod_sync_lock);
2074         if (!ka->use_master_clock) {
2075                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2076                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2077         }
2078
2079         hv_clock.tsc_timestamp = ka->master_cycle_now;
2080         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2081         spin_unlock(&ka->pvclock_gtod_sync_lock);
2082
2083         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2084         get_cpu();
2085
2086         if (__this_cpu_read(cpu_tsc_khz)) {
2087                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2088                                    &hv_clock.tsc_shift,
2089                                    &hv_clock.tsc_to_system_mul);
2090                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2091         } else
2092                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2093
2094         put_cpu();
2095
2096         return ret;
2097 }
2098
2099 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2100 {
2101         struct kvm_vcpu_arch *vcpu = &v->arch;
2102         struct pvclock_vcpu_time_info guest_hv_clock;
2103
2104         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2105                 &guest_hv_clock, sizeof(guest_hv_clock))))
2106                 return;
2107
2108         /* This VCPU is paused, but it's legal for a guest to read another
2109          * VCPU's kvmclock, so we really have to follow the specification where
2110          * it says that version is odd if data is being modified, and even after
2111          * it is consistent.
2112          *
2113          * Version field updates must be kept separate.  This is because
2114          * kvm_write_guest_cached might use a "rep movs" instruction, and
2115          * writes within a string instruction are weakly ordered.  So there
2116          * are three writes overall.
2117          *
2118          * As a small optimization, only write the version field in the first
2119          * and third write.  The vcpu->pv_time cache is still valid, because the
2120          * version field is the first in the struct.
2121          */
2122         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2123
2124         if (guest_hv_clock.version & 1)
2125                 ++guest_hv_clock.version;  /* first time write, random junk */
2126
2127         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2128         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2129                                 &vcpu->hv_clock,
2130                                 sizeof(vcpu->hv_clock.version));
2131
2132         smp_wmb();
2133
2134         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2135         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2136
2137         if (vcpu->pvclock_set_guest_stopped_request) {
2138                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2139                 vcpu->pvclock_set_guest_stopped_request = false;
2140         }
2141
2142         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2143
2144         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2145                                 &vcpu->hv_clock,
2146                                 sizeof(vcpu->hv_clock));
2147
2148         smp_wmb();
2149
2150         vcpu->hv_clock.version++;
2151         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2152                                 &vcpu->hv_clock,
2153                                 sizeof(vcpu->hv_clock.version));
2154 }
2155
2156 static int kvm_guest_time_update(struct kvm_vcpu *v)
2157 {
2158         unsigned long flags, tgt_tsc_khz;
2159         struct kvm_vcpu_arch *vcpu = &v->arch;
2160         struct kvm_arch *ka = &v->kvm->arch;
2161         s64 kernel_ns;
2162         u64 tsc_timestamp, host_tsc;
2163         u8 pvclock_flags;
2164         bool use_master_clock;
2165
2166         kernel_ns = 0;
2167         host_tsc = 0;
2168
2169         /*
2170          * If the host uses TSC clock, then passthrough TSC as stable
2171          * to the guest.
2172          */
2173         spin_lock(&ka->pvclock_gtod_sync_lock);
2174         use_master_clock = ka->use_master_clock;
2175         if (use_master_clock) {
2176                 host_tsc = ka->master_cycle_now;
2177                 kernel_ns = ka->master_kernel_ns;
2178         }
2179         spin_unlock(&ka->pvclock_gtod_sync_lock);
2180
2181         /* Keep irq disabled to prevent changes to the clock */
2182         local_irq_save(flags);
2183         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2184         if (unlikely(tgt_tsc_khz == 0)) {
2185                 local_irq_restore(flags);
2186                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2187                 return 1;
2188         }
2189         if (!use_master_clock) {
2190                 host_tsc = rdtsc();
2191                 kernel_ns = ktime_get_boot_ns();
2192         }
2193
2194         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2195
2196         /*
2197          * We may have to catch up the TSC to match elapsed wall clock
2198          * time for two reasons, even if kvmclock is used.
2199          *   1) CPU could have been running below the maximum TSC rate
2200          *   2) Broken TSC compensation resets the base at each VCPU
2201          *      entry to avoid unknown leaps of TSC even when running
2202          *      again on the same CPU.  This may cause apparent elapsed
2203          *      time to disappear, and the guest to stand still or run
2204          *      very slowly.
2205          */
2206         if (vcpu->tsc_catchup) {
2207                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2208                 if (tsc > tsc_timestamp) {
2209                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2210                         tsc_timestamp = tsc;
2211                 }
2212         }
2213
2214         local_irq_restore(flags);
2215
2216         /* With all the info we got, fill in the values */
2217
2218         if (kvm_has_tsc_control)
2219                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2220
2221         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2222                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2223                                    &vcpu->hv_clock.tsc_shift,
2224                                    &vcpu->hv_clock.tsc_to_system_mul);
2225                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2226         }
2227
2228         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2229         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2230         vcpu->last_guest_tsc = tsc_timestamp;
2231
2232         /* If the host uses TSC clocksource, then it is stable */
2233         pvclock_flags = 0;
2234         if (use_master_clock)
2235                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2236
2237         vcpu->hv_clock.flags = pvclock_flags;
2238
2239         if (vcpu->pv_time_enabled)
2240                 kvm_setup_pvclock_page(v);
2241         if (v == kvm_get_vcpu(v->kvm, 0))
2242                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2243         return 0;
2244 }
2245
2246 /*
2247  * kvmclock updates which are isolated to a given vcpu, such as
2248  * vcpu->cpu migration, should not allow system_timestamp from
2249  * the rest of the vcpus to remain static. Otherwise ntp frequency
2250  * correction applies to one vcpu's system_timestamp but not
2251  * the others.
2252  *
2253  * So in those cases, request a kvmclock update for all vcpus.
2254  * We need to rate-limit these requests though, as they can
2255  * considerably slow guests that have a large number of vcpus.
2256  * The time for a remote vcpu to update its kvmclock is bound
2257  * by the delay we use to rate-limit the updates.
2258  */
2259
2260 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2261
2262 static void kvmclock_update_fn(struct work_struct *work)
2263 {
2264         int i;
2265         struct delayed_work *dwork = to_delayed_work(work);
2266         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2267                                            kvmclock_update_work);
2268         struct kvm *kvm = container_of(ka, struct kvm, arch);
2269         struct kvm_vcpu *vcpu;
2270
2271         kvm_for_each_vcpu(i, vcpu, kvm) {
2272                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2273                 kvm_vcpu_kick(vcpu);
2274         }
2275 }
2276
2277 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2278 {
2279         struct kvm *kvm = v->kvm;
2280
2281         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2282         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2283                                         KVMCLOCK_UPDATE_DELAY);
2284 }
2285
2286 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2287
2288 static void kvmclock_sync_fn(struct work_struct *work)
2289 {
2290         struct delayed_work *dwork = to_delayed_work(work);
2291         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2292                                            kvmclock_sync_work);
2293         struct kvm *kvm = container_of(ka, struct kvm, arch);
2294
2295         if (!kvmclock_periodic_sync)
2296                 return;
2297
2298         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2299         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2300                                         KVMCLOCK_SYNC_PERIOD);
2301 }
2302
2303 /*
2304  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2305  */
2306 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2307 {
2308         /* McStatusWrEn enabled? */
2309         if (guest_cpuid_is_amd(vcpu))
2310                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2311
2312         return false;
2313 }
2314
2315 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2316 {
2317         u64 mcg_cap = vcpu->arch.mcg_cap;
2318         unsigned bank_num = mcg_cap & 0xff;
2319         u32 msr = msr_info->index;
2320         u64 data = msr_info->data;
2321
2322         switch (msr) {
2323         case MSR_IA32_MCG_STATUS:
2324                 vcpu->arch.mcg_status = data;
2325                 break;
2326         case MSR_IA32_MCG_CTL:
2327                 if (!(mcg_cap & MCG_CTL_P) &&
2328                     (data || !msr_info->host_initiated))
2329                         return 1;
2330                 if (data != 0 && data != ~(u64)0)
2331                         return 1;
2332                 vcpu->arch.mcg_ctl = data;
2333                 break;
2334         default:
2335                 if (msr >= MSR_IA32_MC0_CTL &&
2336                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2337                         u32 offset = msr - MSR_IA32_MC0_CTL;
2338                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2339                          * some Linux kernels though clear bit 10 in bank 4 to
2340                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2341                          * this to avoid an uncatched #GP in the guest
2342                          */
2343                         if ((offset & 0x3) == 0 &&
2344                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2345                                 return -1;
2346
2347                         /* MCi_STATUS */
2348                         if (!msr_info->host_initiated &&
2349                             (offset & 0x3) == 1 && data != 0) {
2350                                 if (!can_set_mci_status(vcpu))
2351                                         return -1;
2352                         }
2353
2354                         vcpu->arch.mce_banks[offset] = data;
2355                         break;
2356                 }
2357                 return 1;
2358         }
2359         return 0;
2360 }
2361
2362 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2363 {
2364         struct kvm *kvm = vcpu->kvm;
2365         int lm = is_long_mode(vcpu);
2366         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2367                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2368         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2369                 : kvm->arch.xen_hvm_config.blob_size_32;
2370         u32 page_num = data & ~PAGE_MASK;
2371         u64 page_addr = data & PAGE_MASK;
2372         u8 *page;
2373         int r;
2374
2375         r = -E2BIG;
2376         if (page_num >= blob_size)
2377                 goto out;
2378         r = -ENOMEM;
2379         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2380         if (IS_ERR(page)) {
2381                 r = PTR_ERR(page);
2382                 goto out;
2383         }
2384         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2385                 goto out_free;
2386         r = 0;
2387 out_free:
2388         kfree(page);
2389 out:
2390         return r;
2391 }
2392
2393 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2394 {
2395         gpa_t gpa = data & ~0x3f;
2396
2397         /* Bits 3:5 are reserved, Should be zero */
2398         if (data & 0x38)
2399                 return 1;
2400
2401         vcpu->arch.apf.msr_val = data;
2402
2403         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2404                 kvm_clear_async_pf_completion_queue(vcpu);
2405                 kvm_async_pf_hash_reset(vcpu);
2406                 return 0;
2407         }
2408
2409         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2410                                         sizeof(u32)))
2411                 return 1;
2412
2413         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2414         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2415         kvm_async_pf_wakeup_all(vcpu);
2416         return 0;
2417 }
2418
2419 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2420 {
2421         vcpu->arch.pv_time_enabled = false;
2422 }
2423
2424 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2425 {
2426         ++vcpu->stat.tlb_flush;
2427         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2428 }
2429
2430 static void record_steal_time(struct kvm_vcpu *vcpu)
2431 {
2432         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2433                 return;
2434
2435         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2436                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2437                 return;
2438
2439         /*
2440          * Doing a TLB flush here, on the guest's behalf, can avoid
2441          * expensive IPIs.
2442          */
2443         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2444                 kvm_vcpu_flush_tlb(vcpu, false);
2445
2446         if (vcpu->arch.st.steal.version & 1)
2447                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2448
2449         vcpu->arch.st.steal.version += 1;
2450
2451         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2452                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2453
2454         smp_wmb();
2455
2456         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2457                 vcpu->arch.st.last_steal;
2458         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2459
2460         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2461                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2462
2463         smp_wmb();
2464
2465         vcpu->arch.st.steal.version += 1;
2466
2467         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2468                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2469 }
2470
2471 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2472 {
2473         bool pr = false;
2474         u32 msr = msr_info->index;
2475         u64 data = msr_info->data;
2476
2477         switch (msr) {
2478         case MSR_AMD64_NB_CFG:
2479         case MSR_IA32_UCODE_WRITE:
2480         case MSR_VM_HSAVE_PA:
2481         case MSR_AMD64_PATCH_LOADER:
2482         case MSR_AMD64_BU_CFG2:
2483         case MSR_AMD64_DC_CFG:
2484         case MSR_F15H_EX_CFG:
2485                 break;
2486
2487         case MSR_IA32_UCODE_REV:
2488                 if (msr_info->host_initiated)
2489                         vcpu->arch.microcode_version = data;
2490                 break;
2491         case MSR_IA32_ARCH_CAPABILITIES:
2492                 if (!msr_info->host_initiated)
2493                         return 1;
2494                 vcpu->arch.arch_capabilities = data;
2495                 break;
2496         case MSR_EFER:
2497                 return set_efer(vcpu, msr_info);
2498         case MSR_K7_HWCR:
2499                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2500                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2501                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2502
2503                 /* Handle McStatusWrEn */
2504                 if (data == BIT_ULL(18)) {
2505                         vcpu->arch.msr_hwcr = data;
2506                 } else if (data != 0) {
2507                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2508                                     data);
2509                         return 1;
2510                 }
2511                 break;
2512         case MSR_FAM10H_MMIO_CONF_BASE:
2513                 if (data != 0) {
2514                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2515                                     "0x%llx\n", data);
2516                         return 1;
2517                 }
2518                 break;
2519         case MSR_IA32_DEBUGCTLMSR:
2520                 if (!data) {
2521                         /* We support the non-activated case already */
2522                         break;
2523                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2524                         /* Values other than LBR and BTF are vendor-specific,
2525                            thus reserved and should throw a #GP */
2526                         return 1;
2527                 }
2528                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2529                             __func__, data);
2530                 break;
2531         case 0x200 ... 0x2ff:
2532                 return kvm_mtrr_set_msr(vcpu, msr, data);
2533         case MSR_IA32_APICBASE:
2534                 return kvm_set_apic_base(vcpu, msr_info);
2535         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2536                 return kvm_x2apic_msr_write(vcpu, msr, data);
2537         case MSR_IA32_TSCDEADLINE:
2538                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2539                 break;
2540         case MSR_IA32_TSC_ADJUST:
2541                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2542                         if (!msr_info->host_initiated) {
2543                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2544                                 adjust_tsc_offset_guest(vcpu, adj);
2545                         }
2546                         vcpu->arch.ia32_tsc_adjust_msr = data;
2547                 }
2548                 break;
2549         case MSR_IA32_MISC_ENABLE:
2550                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2551                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2552                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2553                                 return 1;
2554                         vcpu->arch.ia32_misc_enable_msr = data;
2555                         kvm_update_cpuid(vcpu);
2556                 } else {
2557                         vcpu->arch.ia32_misc_enable_msr = data;
2558                 }
2559                 break;
2560         case MSR_IA32_SMBASE:
2561                 if (!msr_info->host_initiated)
2562                         return 1;
2563                 vcpu->arch.smbase = data;
2564                 break;
2565         case MSR_IA32_TSC:
2566                 kvm_write_tsc(vcpu, msr_info);
2567                 break;
2568         case MSR_SMI_COUNT:
2569                 if (!msr_info->host_initiated)
2570                         return 1;
2571                 vcpu->arch.smi_count = data;
2572                 break;
2573         case MSR_KVM_WALL_CLOCK_NEW:
2574         case MSR_KVM_WALL_CLOCK:
2575                 vcpu->kvm->arch.wall_clock = data;
2576                 kvm_write_wall_clock(vcpu->kvm, data);
2577                 break;
2578         case MSR_KVM_SYSTEM_TIME_NEW:
2579         case MSR_KVM_SYSTEM_TIME: {
2580                 struct kvm_arch *ka = &vcpu->kvm->arch;
2581
2582                 kvmclock_reset(vcpu);
2583
2584                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2585                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2586
2587                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2588                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2589
2590                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2591                 }
2592
2593                 vcpu->arch.time = data;
2594                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2595
2596                 /* we verify if the enable bit is set... */
2597                 if (!(data & 1))
2598                         break;
2599
2600                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2601                      &vcpu->arch.pv_time, data & ~1ULL,
2602                      sizeof(struct pvclock_vcpu_time_info)))
2603                         vcpu->arch.pv_time_enabled = false;
2604                 else
2605                         vcpu->arch.pv_time_enabled = true;
2606
2607                 break;
2608         }
2609         case MSR_KVM_ASYNC_PF_EN:
2610                 if (kvm_pv_enable_async_pf(vcpu, data))
2611                         return 1;
2612                 break;
2613         case MSR_KVM_STEAL_TIME:
2614
2615                 if (unlikely(!sched_info_on()))
2616                         return 1;
2617
2618                 if (data & KVM_STEAL_RESERVED_MASK)
2619                         return 1;
2620
2621                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2622                                                 data & KVM_STEAL_VALID_BITS,
2623                                                 sizeof(struct kvm_steal_time)))
2624                         return 1;
2625
2626                 vcpu->arch.st.msr_val = data;
2627
2628                 if (!(data & KVM_MSR_ENABLED))
2629                         break;
2630
2631                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2632
2633                 break;
2634         case MSR_KVM_PV_EOI_EN:
2635                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2636                         return 1;
2637                 break;
2638
2639         case MSR_IA32_MCG_CTL:
2640         case MSR_IA32_MCG_STATUS:
2641         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2642                 return set_msr_mce(vcpu, msr_info);
2643
2644         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2645         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2646                 pr = true; /* fall through */
2647         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2648         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2649                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2650                         return kvm_pmu_set_msr(vcpu, msr_info);
2651
2652                 if (pr || data != 0)
2653                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2654                                     "0x%x data 0x%llx\n", msr, data);
2655                 break;
2656         case MSR_K7_CLK_CTL:
2657                 /*
2658                  * Ignore all writes to this no longer documented MSR.
2659                  * Writes are only relevant for old K7 processors,
2660                  * all pre-dating SVM, but a recommended workaround from
2661                  * AMD for these chips. It is possible to specify the
2662                  * affected processor models on the command line, hence
2663                  * the need to ignore the workaround.
2664                  */
2665                 break;
2666         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2667         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2668         case HV_X64_MSR_CRASH_CTL:
2669         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2670         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2671         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2672         case HV_X64_MSR_TSC_EMULATION_STATUS:
2673                 return kvm_hv_set_msr_common(vcpu, msr, data,
2674                                              msr_info->host_initiated);
2675         case MSR_IA32_BBL_CR_CTL3:
2676                 /* Drop writes to this legacy MSR -- see rdmsr
2677                  * counterpart for further detail.
2678                  */
2679                 if (report_ignored_msrs)
2680                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2681                                 msr, data);
2682                 break;
2683         case MSR_AMD64_OSVW_ID_LENGTH:
2684                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2685                         return 1;
2686                 vcpu->arch.osvw.length = data;
2687                 break;
2688         case MSR_AMD64_OSVW_STATUS:
2689                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2690                         return 1;
2691                 vcpu->arch.osvw.status = data;
2692                 break;
2693         case MSR_PLATFORM_INFO:
2694                 if (!msr_info->host_initiated ||
2695                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2696                      cpuid_fault_enabled(vcpu)))
2697                         return 1;
2698                 vcpu->arch.msr_platform_info = data;
2699                 break;
2700         case MSR_MISC_FEATURES_ENABLES:
2701                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2702                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2703                      !supports_cpuid_fault(vcpu)))
2704                         return 1;
2705                 vcpu->arch.msr_misc_features_enables = data;
2706                 break;
2707         default:
2708                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2709                         return xen_hvm_config(vcpu, data);
2710                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2711                         return kvm_pmu_set_msr(vcpu, msr_info);
2712                 if (!ignore_msrs) {
2713                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2714                                     msr, data);
2715                         return 1;
2716                 } else {
2717                         if (report_ignored_msrs)
2718                                 vcpu_unimpl(vcpu,
2719                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2720                                         msr, data);
2721                         break;
2722                 }
2723         }
2724         return 0;
2725 }
2726 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2727
2728
2729 /*
2730  * Reads an msr value (of 'msr_index') into 'pdata'.
2731  * Returns 0 on success, non-0 otherwise.
2732  * Assumes vcpu_load() was already called.
2733  */
2734 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2735 {
2736         return kvm_x86_ops->get_msr(vcpu, msr);
2737 }
2738 EXPORT_SYMBOL_GPL(kvm_get_msr);
2739
2740 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2741 {
2742         u64 data;
2743         u64 mcg_cap = vcpu->arch.mcg_cap;
2744         unsigned bank_num = mcg_cap & 0xff;
2745
2746         switch (msr) {
2747         case MSR_IA32_P5_MC_ADDR:
2748         case MSR_IA32_P5_MC_TYPE:
2749                 data = 0;
2750                 break;
2751         case MSR_IA32_MCG_CAP:
2752                 data = vcpu->arch.mcg_cap;
2753                 break;
2754         case MSR_IA32_MCG_CTL:
2755                 if (!(mcg_cap & MCG_CTL_P) && !host)
2756                         return 1;
2757                 data = vcpu->arch.mcg_ctl;
2758                 break;
2759         case MSR_IA32_MCG_STATUS:
2760                 data = vcpu->arch.mcg_status;
2761                 break;
2762         default:
2763                 if (msr >= MSR_IA32_MC0_CTL &&
2764                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2765                         u32 offset = msr - MSR_IA32_MC0_CTL;
2766                         data = vcpu->arch.mce_banks[offset];
2767                         break;
2768                 }
2769                 return 1;
2770         }
2771         *pdata = data;
2772         return 0;
2773 }
2774
2775 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2776 {
2777         switch (msr_info->index) {
2778         case MSR_IA32_PLATFORM_ID:
2779         case MSR_IA32_EBL_CR_POWERON:
2780         case MSR_IA32_DEBUGCTLMSR:
2781         case MSR_IA32_LASTBRANCHFROMIP:
2782         case MSR_IA32_LASTBRANCHTOIP:
2783         case MSR_IA32_LASTINTFROMIP:
2784         case MSR_IA32_LASTINTTOIP:
2785         case MSR_K8_SYSCFG:
2786         case MSR_K8_TSEG_ADDR:
2787         case MSR_K8_TSEG_MASK:
2788         case MSR_VM_HSAVE_PA:
2789         case MSR_K8_INT_PENDING_MSG:
2790         case MSR_AMD64_NB_CFG:
2791         case MSR_FAM10H_MMIO_CONF_BASE:
2792         case MSR_AMD64_BU_CFG2:
2793         case MSR_IA32_PERF_CTL:
2794         case MSR_AMD64_DC_CFG:
2795         case MSR_F15H_EX_CFG:
2796                 msr_info->data = 0;
2797                 break;
2798         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2799         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2800         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2801         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2802         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2803                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2804                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2805                 msr_info->data = 0;
2806                 break;
2807         case MSR_IA32_UCODE_REV:
2808                 msr_info->data = vcpu->arch.microcode_version;
2809                 break;
2810         case MSR_IA32_ARCH_CAPABILITIES:
2811                 if (!msr_info->host_initiated &&
2812                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2813                         return 1;
2814                 msr_info->data = vcpu->arch.arch_capabilities;
2815                 break;
2816         case MSR_IA32_TSC:
2817                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2818                 break;
2819         case MSR_MTRRcap:
2820         case 0x200 ... 0x2ff:
2821                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2822         case 0xcd: /* fsb frequency */
2823                 msr_info->data = 3;
2824                 break;
2825                 /*
2826                  * MSR_EBC_FREQUENCY_ID
2827                  * Conservative value valid for even the basic CPU models.
2828                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2829                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2830                  * and 266MHz for model 3, or 4. Set Core Clock
2831                  * Frequency to System Bus Frequency Ratio to 1 (bits
2832                  * 31:24) even though these are only valid for CPU
2833                  * models > 2, however guests may end up dividing or
2834                  * multiplying by zero otherwise.
2835                  */
2836         case MSR_EBC_FREQUENCY_ID:
2837                 msr_info->data = 1 << 24;
2838                 break;
2839         case MSR_IA32_APICBASE:
2840                 msr_info->data = kvm_get_apic_base(vcpu);
2841                 break;
2842         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2843                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2844                 break;
2845         case MSR_IA32_TSCDEADLINE:
2846                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2847                 break;
2848         case MSR_IA32_TSC_ADJUST:
2849                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2850                 break;
2851         case MSR_IA32_MISC_ENABLE:
2852                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2853                 break;
2854         case MSR_IA32_SMBASE:
2855                 if (!msr_info->host_initiated)
2856                         return 1;
2857                 msr_info->data = vcpu->arch.smbase;
2858                 break;
2859         case MSR_SMI_COUNT:
2860                 msr_info->data = vcpu->arch.smi_count;
2861                 break;
2862         case MSR_IA32_PERF_STATUS:
2863                 /* TSC increment by tick */
2864                 msr_info->data = 1000ULL;
2865                 /* CPU multiplier */
2866                 msr_info->data |= (((uint64_t)4ULL) << 40);
2867                 break;
2868         case MSR_EFER:
2869                 msr_info->data = vcpu->arch.efer;
2870                 break;
2871         case MSR_KVM_WALL_CLOCK:
2872         case MSR_KVM_WALL_CLOCK_NEW:
2873                 msr_info->data = vcpu->kvm->arch.wall_clock;
2874                 break;
2875         case MSR_KVM_SYSTEM_TIME:
2876         case MSR_KVM_SYSTEM_TIME_NEW:
2877                 msr_info->data = vcpu->arch.time;
2878                 break;
2879         case MSR_KVM_ASYNC_PF_EN:
2880                 msr_info->data = vcpu->arch.apf.msr_val;
2881                 break;
2882         case MSR_KVM_STEAL_TIME:
2883                 msr_info->data = vcpu->arch.st.msr_val;
2884                 break;
2885         case MSR_KVM_PV_EOI_EN:
2886                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2887                 break;
2888         case MSR_IA32_P5_MC_ADDR:
2889         case MSR_IA32_P5_MC_TYPE:
2890         case MSR_IA32_MCG_CAP:
2891         case MSR_IA32_MCG_CTL:
2892         case MSR_IA32_MCG_STATUS:
2893         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2894                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2895                                    msr_info->host_initiated);
2896         case MSR_K7_CLK_CTL:
2897                 /*
2898                  * Provide expected ramp-up count for K7. All other
2899                  * are set to zero, indicating minimum divisors for
2900                  * every field.
2901                  *
2902                  * This prevents guest kernels on AMD host with CPU
2903                  * type 6, model 8 and higher from exploding due to
2904                  * the rdmsr failing.
2905                  */
2906                 msr_info->data = 0x20000000;
2907                 break;
2908         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2909         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2910         case HV_X64_MSR_CRASH_CTL:
2911         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2912         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2913         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2914         case HV_X64_MSR_TSC_EMULATION_STATUS:
2915                 return kvm_hv_get_msr_common(vcpu,
2916                                              msr_info->index, &msr_info->data,
2917                                              msr_info->host_initiated);
2918                 break;
2919         case MSR_IA32_BBL_CR_CTL3:
2920                 /* This legacy MSR exists but isn't fully documented in current
2921                  * silicon.  It is however accessed by winxp in very narrow
2922                  * scenarios where it sets bit #19, itself documented as
2923                  * a "reserved" bit.  Best effort attempt to source coherent
2924                  * read data here should the balance of the register be
2925                  * interpreted by the guest:
2926                  *
2927                  * L2 cache control register 3: 64GB range, 256KB size,
2928                  * enabled, latency 0x1, configured
2929                  */
2930                 msr_info->data = 0xbe702111;
2931                 break;
2932         case MSR_AMD64_OSVW_ID_LENGTH:
2933                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2934                         return 1;
2935                 msr_info->data = vcpu->arch.osvw.length;
2936                 break;
2937         case MSR_AMD64_OSVW_STATUS:
2938                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2939                         return 1;
2940                 msr_info->data = vcpu->arch.osvw.status;
2941                 break;
2942         case MSR_PLATFORM_INFO:
2943                 if (!msr_info->host_initiated &&
2944                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2945                         return 1;
2946                 msr_info->data = vcpu->arch.msr_platform_info;
2947                 break;
2948         case MSR_MISC_FEATURES_ENABLES:
2949                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2950                 break;
2951         case MSR_K7_HWCR:
2952                 msr_info->data = vcpu->arch.msr_hwcr;
2953                 break;
2954         default:
2955                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2956                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2957                 if (!ignore_msrs) {
2958                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2959                                                msr_info->index);
2960                         return 1;
2961                 } else {
2962                         if (report_ignored_msrs)
2963                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2964                                         msr_info->index);
2965                         msr_info->data = 0;
2966                 }
2967                 break;
2968         }
2969         return 0;
2970 }
2971 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2972
2973 /*
2974  * Read or write a bunch of msrs. All parameters are kernel addresses.
2975  *
2976  * @return number of msrs set successfully.
2977  */
2978 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2979                     struct kvm_msr_entry *entries,
2980                     int (*do_msr)(struct kvm_vcpu *vcpu,
2981                                   unsigned index, u64 *data))
2982 {
2983         int i;
2984
2985         for (i = 0; i < msrs->nmsrs; ++i)
2986                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2987                         break;
2988
2989         return i;
2990 }
2991
2992 /*
2993  * Read or write a bunch of msrs. Parameters are user addresses.
2994  *
2995  * @return number of msrs set successfully.
2996  */
2997 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2998                   int (*do_msr)(struct kvm_vcpu *vcpu,
2999                                 unsigned index, u64 *data),
3000                   int writeback)
3001 {
3002         struct kvm_msrs msrs;
3003         struct kvm_msr_entry *entries;
3004         int r, n;
3005         unsigned size;
3006
3007         r = -EFAULT;
3008         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3009                 goto out;
3010
3011         r = -E2BIG;
3012         if (msrs.nmsrs >= MAX_IO_MSRS)
3013                 goto out;
3014
3015         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3016         entries = memdup_user(user_msrs->entries, size);
3017         if (IS_ERR(entries)) {
3018                 r = PTR_ERR(entries);
3019                 goto out;
3020         }
3021
3022         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3023         if (r < 0)
3024                 goto out_free;
3025
3026         r = -EFAULT;
3027         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3028                 goto out_free;
3029
3030         r = n;
3031
3032 out_free:
3033         kfree(entries);
3034 out:
3035         return r;
3036 }
3037
3038 static inline bool kvm_can_mwait_in_guest(void)
3039 {
3040         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3041                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3042                 boot_cpu_has(X86_FEATURE_ARAT);
3043 }
3044
3045 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3046 {
3047         int r = 0;
3048
3049         switch (ext) {
3050         case KVM_CAP_IRQCHIP:
3051         case KVM_CAP_HLT:
3052         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3053         case KVM_CAP_SET_TSS_ADDR:
3054         case KVM_CAP_EXT_CPUID:
3055         case KVM_CAP_EXT_EMUL_CPUID:
3056         case KVM_CAP_CLOCKSOURCE:
3057         case KVM_CAP_PIT:
3058         case KVM_CAP_NOP_IO_DELAY:
3059         case KVM_CAP_MP_STATE:
3060         case KVM_CAP_SYNC_MMU:
3061         case KVM_CAP_USER_NMI:
3062         case KVM_CAP_REINJECT_CONTROL:
3063         case KVM_CAP_IRQ_INJECT_STATUS:
3064         case KVM_CAP_IOEVENTFD:
3065         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3066         case KVM_CAP_PIT2:
3067         case KVM_CAP_PIT_STATE2:
3068         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3069         case KVM_CAP_XEN_HVM:
3070         case KVM_CAP_VCPU_EVENTS:
3071         case KVM_CAP_HYPERV:
3072         case KVM_CAP_HYPERV_VAPIC:
3073         case KVM_CAP_HYPERV_SPIN:
3074         case KVM_CAP_HYPERV_SYNIC:
3075         case KVM_CAP_HYPERV_SYNIC2:
3076         case KVM_CAP_HYPERV_VP_INDEX:
3077         case KVM_CAP_HYPERV_EVENTFD:
3078         case KVM_CAP_HYPERV_TLBFLUSH:
3079         case KVM_CAP_HYPERV_SEND_IPI:
3080         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3081         case KVM_CAP_HYPERV_CPUID:
3082         case KVM_CAP_PCI_SEGMENT:
3083         case KVM_CAP_DEBUGREGS:
3084         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3085         case KVM_CAP_XSAVE:
3086         case KVM_CAP_ASYNC_PF:
3087         case KVM_CAP_GET_TSC_KHZ:
3088         case KVM_CAP_KVMCLOCK_CTRL:
3089         case KVM_CAP_READONLY_MEM:
3090         case KVM_CAP_HYPERV_TIME:
3091         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3092         case KVM_CAP_TSC_DEADLINE_TIMER:
3093         case KVM_CAP_DISABLE_QUIRKS:
3094         case KVM_CAP_SET_BOOT_CPU_ID:
3095         case KVM_CAP_SPLIT_IRQCHIP:
3096         case KVM_CAP_IMMEDIATE_EXIT:
3097         case KVM_CAP_GET_MSR_FEATURES:
3098         case KVM_CAP_MSR_PLATFORM_INFO:
3099         case KVM_CAP_EXCEPTION_PAYLOAD:
3100                 r = 1;
3101                 break;
3102         case KVM_CAP_SYNC_REGS:
3103                 r = KVM_SYNC_X86_VALID_FIELDS;
3104                 break;
3105         case KVM_CAP_ADJUST_CLOCK:
3106                 r = KVM_CLOCK_TSC_STABLE;
3107                 break;
3108         case KVM_CAP_X86_DISABLE_EXITS:
3109                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3110                       KVM_X86_DISABLE_EXITS_CSTATE;
3111                 if(kvm_can_mwait_in_guest())
3112                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3113                 break;
3114         case KVM_CAP_X86_SMM:
3115                 /* SMBASE is usually relocated above 1M on modern chipsets,
3116                  * and SMM handlers might indeed rely on 4G segment limits,
3117                  * so do not report SMM to be available if real mode is
3118                  * emulated via vm86 mode.  Still, do not go to great lengths
3119                  * to avoid userspace's usage of the feature, because it is a
3120                  * fringe case that is not enabled except via specific settings
3121                  * of the module parameters.
3122                  */
3123                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3124                 break;
3125         case KVM_CAP_VAPIC:
3126                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3127                 break;
3128         case KVM_CAP_NR_VCPUS:
3129                 r = KVM_SOFT_MAX_VCPUS;
3130                 break;
3131         case KVM_CAP_MAX_VCPUS:
3132                 r = KVM_MAX_VCPUS;
3133                 break;
3134         case KVM_CAP_MAX_VCPU_ID:
3135                 r = KVM_MAX_VCPU_ID;
3136                 break;
3137         case KVM_CAP_PV_MMU:    /* obsolete */
3138                 r = 0;
3139                 break;
3140         case KVM_CAP_MCE:
3141                 r = KVM_MAX_MCE_BANKS;
3142                 break;
3143         case KVM_CAP_XCRS:
3144                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3145                 break;
3146         case KVM_CAP_TSC_CONTROL:
3147                 r = kvm_has_tsc_control;
3148                 break;
3149         case KVM_CAP_X2APIC_API:
3150                 r = KVM_X2APIC_API_VALID_FLAGS;
3151                 break;
3152         case KVM_CAP_NESTED_STATE:
3153                 r = kvm_x86_ops->get_nested_state ?
3154                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3155                 break;
3156         default:
3157                 break;
3158         }
3159         return r;
3160
3161 }
3162
3163 long kvm_arch_dev_ioctl(struct file *filp,
3164                         unsigned int ioctl, unsigned long arg)
3165 {
3166         void __user *argp = (void __user *)arg;
3167         long r;
3168
3169         switch (ioctl) {
3170         case KVM_GET_MSR_INDEX_LIST: {
3171                 struct kvm_msr_list __user *user_msr_list = argp;
3172                 struct kvm_msr_list msr_list;
3173                 unsigned n;
3174
3175                 r = -EFAULT;
3176                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3177                         goto out;
3178                 n = msr_list.nmsrs;
3179                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3180                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3181                         goto out;
3182                 r = -E2BIG;
3183                 if (n < msr_list.nmsrs)
3184                         goto out;
3185                 r = -EFAULT;
3186                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3187                                  num_msrs_to_save * sizeof(u32)))
3188                         goto out;
3189                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3190                                  &emulated_msrs,
3191                                  num_emulated_msrs * sizeof(u32)))
3192                         goto out;
3193                 r = 0;
3194                 break;
3195         }
3196         case KVM_GET_SUPPORTED_CPUID:
3197         case KVM_GET_EMULATED_CPUID: {
3198                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3199                 struct kvm_cpuid2 cpuid;
3200
3201                 r = -EFAULT;
3202                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3203                         goto out;
3204
3205                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3206                                             ioctl);
3207                 if (r)
3208                         goto out;
3209
3210                 r = -EFAULT;
3211                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3212                         goto out;
3213                 r = 0;
3214                 break;
3215         }
3216         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3217                 r = -EFAULT;
3218                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3219                                  sizeof(kvm_mce_cap_supported)))
3220                         goto out;
3221                 r = 0;
3222                 break;
3223         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3224                 struct kvm_msr_list __user *user_msr_list = argp;
3225                 struct kvm_msr_list msr_list;
3226                 unsigned int n;
3227
3228                 r = -EFAULT;
3229                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3230                         goto out;
3231                 n = msr_list.nmsrs;
3232                 msr_list.nmsrs = num_msr_based_features;
3233                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3234                         goto out;
3235                 r = -E2BIG;
3236                 if (n < msr_list.nmsrs)
3237                         goto out;
3238                 r = -EFAULT;
3239                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3240                                  num_msr_based_features * sizeof(u32)))
3241                         goto out;
3242                 r = 0;
3243                 break;
3244         }
3245         case KVM_GET_MSRS:
3246                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3247                 break;
3248         }
3249         default:
3250                 r = -EINVAL;
3251         }
3252 out:
3253         return r;
3254 }
3255
3256 static void wbinvd_ipi(void *garbage)
3257 {
3258         wbinvd();
3259 }
3260
3261 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3262 {
3263         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3264 }
3265
3266 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3267 {
3268         /* Address WBINVD may be executed by guest */
3269         if (need_emulate_wbinvd(vcpu)) {
3270                 if (kvm_x86_ops->has_wbinvd_exit())
3271                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3272                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3273                         smp_call_function_single(vcpu->cpu,
3274                                         wbinvd_ipi, NULL, 1);
3275         }
3276
3277         kvm_x86_ops->vcpu_load(vcpu, cpu);
3278
3279         /* Apply any externally detected TSC adjustments (due to suspend) */
3280         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3281                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3282                 vcpu->arch.tsc_offset_adjustment = 0;
3283                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3284         }
3285
3286         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3287                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3288                                 rdtsc() - vcpu->arch.last_host_tsc;
3289                 if (tsc_delta < 0)
3290                         mark_tsc_unstable("KVM discovered backwards TSC");
3291
3292                 if (kvm_check_tsc_unstable()) {
3293                         u64 offset = kvm_compute_tsc_offset(vcpu,
3294                                                 vcpu->arch.last_guest_tsc);
3295                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3296                         vcpu->arch.tsc_catchup = 1;
3297                 }
3298
3299                 if (kvm_lapic_hv_timer_in_use(vcpu))
3300                         kvm_lapic_restart_hv_timer(vcpu);
3301
3302                 /*
3303                  * On a host with synchronized TSC, there is no need to update
3304                  * kvmclock on vcpu->cpu migration
3305                  */
3306                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3307                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3308                 if (vcpu->cpu != cpu)
3309                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3310                 vcpu->cpu = cpu;
3311         }
3312
3313         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3314 }
3315
3316 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3317 {
3318         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3319                 return;
3320
3321         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3322
3323         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3324                         &vcpu->arch.st.steal.preempted,
3325                         offsetof(struct kvm_steal_time, preempted),
3326                         sizeof(vcpu->arch.st.steal.preempted));
3327 }
3328
3329 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3330 {
3331         int idx;
3332
3333         if (vcpu->preempted)
3334                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3335
3336         /*
3337          * Disable page faults because we're in atomic context here.
3338          * kvm_write_guest_offset_cached() would call might_fault()
3339          * that relies on pagefault_disable() to tell if there's a
3340          * bug. NOTE: the write to guest memory may not go through if
3341          * during postcopy live migration or if there's heavy guest
3342          * paging.
3343          */
3344         pagefault_disable();
3345         /*
3346          * kvm_memslots() will be called by
3347          * kvm_write_guest_offset_cached() so take the srcu lock.
3348          */
3349         idx = srcu_read_lock(&vcpu->kvm->srcu);
3350         kvm_steal_time_set_preempted(vcpu);
3351         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3352         pagefault_enable();
3353         kvm_x86_ops->vcpu_put(vcpu);
3354         vcpu->arch.last_host_tsc = rdtsc();
3355         /*
3356          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3357          * on every vmexit, but if not, we might have a stale dr6 from the
3358          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3359          */
3360         set_debugreg(0, 6);
3361 }
3362
3363 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3364                                     struct kvm_lapic_state *s)
3365 {
3366         if (vcpu->arch.apicv_active)
3367                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3368
3369         return kvm_apic_get_state(vcpu, s);
3370 }
3371
3372 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3373                                     struct kvm_lapic_state *s)
3374 {
3375         int r;
3376
3377         r = kvm_apic_set_state(vcpu, s);
3378         if (r)
3379                 return r;
3380         update_cr8_intercept(vcpu);
3381
3382         return 0;
3383 }
3384
3385 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3386 {
3387         return (!lapic_in_kernel(vcpu) ||
3388                 kvm_apic_accept_pic_intr(vcpu));
3389 }
3390
3391 /*
3392  * if userspace requested an interrupt window, check that the
3393  * interrupt window is open.
3394  *
3395  * No need to exit to userspace if we already have an interrupt queued.
3396  */
3397 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3398 {
3399         return kvm_arch_interrupt_allowed(vcpu) &&
3400                 !kvm_cpu_has_interrupt(vcpu) &&
3401                 !kvm_event_needs_reinjection(vcpu) &&
3402                 kvm_cpu_accept_dm_intr(vcpu);
3403 }
3404
3405 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3406                                     struct kvm_interrupt *irq)
3407 {
3408         if (irq->irq >= KVM_NR_INTERRUPTS)
3409                 return -EINVAL;
3410
3411         if (!irqchip_in_kernel(vcpu->kvm)) {
3412                 kvm_queue_interrupt(vcpu, irq->irq, false);
3413                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3414                 return 0;
3415         }
3416
3417         /*
3418          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3419          * fail for in-kernel 8259.
3420          */
3421         if (pic_in_kernel(vcpu->kvm))
3422                 return -ENXIO;
3423
3424         if (vcpu->arch.pending_external_vector != -1)
3425                 return -EEXIST;
3426
3427         vcpu->arch.pending_external_vector = irq->irq;
3428         kvm_make_request(KVM_REQ_EVENT, vcpu);
3429         return 0;
3430 }
3431
3432 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3433 {
3434         kvm_inject_nmi(vcpu);
3435
3436         return 0;
3437 }
3438
3439 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3440 {
3441         kvm_make_request(KVM_REQ_SMI, vcpu);
3442
3443         return 0;
3444 }
3445
3446 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3447                                            struct kvm_tpr_access_ctl *tac)
3448 {
3449         if (tac->flags)
3450                 return -EINVAL;
3451         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3452         return 0;
3453 }
3454
3455 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3456                                         u64 mcg_cap)
3457 {
3458         int r;
3459         unsigned bank_num = mcg_cap & 0xff, bank;
3460
3461         r = -EINVAL;
3462         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3463                 goto out;
3464         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3465                 goto out;
3466         r = 0;
3467         vcpu->arch.mcg_cap = mcg_cap;
3468         /* Init IA32_MCG_CTL to all 1s */
3469         if (mcg_cap & MCG_CTL_P)
3470                 vcpu->arch.mcg_ctl = ~(u64)0;
3471         /* Init IA32_MCi_CTL to all 1s */
3472         for (bank = 0; bank < bank_num; bank++)
3473                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3474
3475         if (kvm_x86_ops->setup_mce)
3476                 kvm_x86_ops->setup_mce(vcpu);
3477 out:
3478         return r;
3479 }
3480
3481 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3482                                       struct kvm_x86_mce *mce)
3483 {
3484         u64 mcg_cap = vcpu->arch.mcg_cap;
3485         unsigned bank_num = mcg_cap & 0xff;
3486         u64 *banks = vcpu->arch.mce_banks;
3487
3488         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3489                 return -EINVAL;
3490         /*
3491          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3492          * reporting is disabled
3493          */
3494         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3495             vcpu->arch.mcg_ctl != ~(u64)0)
3496                 return 0;
3497         banks += 4 * mce->bank;
3498         /*
3499          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3500          * reporting is disabled for the bank
3501          */
3502         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3503                 return 0;
3504         if (mce->status & MCI_STATUS_UC) {
3505                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3506                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3507                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3508                         return 0;
3509                 }
3510                 if (banks[1] & MCI_STATUS_VAL)
3511                         mce->status |= MCI_STATUS_OVER;
3512                 banks[2] = mce->addr;
3513                 banks[3] = mce->misc;
3514                 vcpu->arch.mcg_status = mce->mcg_status;
3515                 banks[1] = mce->status;
3516                 kvm_queue_exception(vcpu, MC_VECTOR);
3517         } else if (!(banks[1] & MCI_STATUS_VAL)
3518                    || !(banks[1] & MCI_STATUS_UC)) {
3519                 if (banks[1] & MCI_STATUS_VAL)
3520                         mce->status |= MCI_STATUS_OVER;
3521                 banks[2] = mce->addr;
3522                 banks[3] = mce->misc;
3523                 banks[1] = mce->status;
3524         } else
3525                 banks[1] |= MCI_STATUS_OVER;
3526         return 0;
3527 }
3528
3529 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3530                                                struct kvm_vcpu_events *events)
3531 {
3532         process_nmi(vcpu);
3533
3534         /*
3535          * The API doesn't provide the instruction length for software
3536          * exceptions, so don't report them. As long as the guest RIP
3537          * isn't advanced, we should expect to encounter the exception
3538          * again.
3539          */
3540         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3541                 events->exception.injected = 0;
3542                 events->exception.pending = 0;
3543         } else {
3544                 events->exception.injected = vcpu->arch.exception.injected;
3545                 events->exception.pending = vcpu->arch.exception.pending;
3546                 /*
3547                  * For ABI compatibility, deliberately conflate
3548                  * pending and injected exceptions when
3549                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3550                  */
3551                 if (!vcpu->kvm->arch.exception_payload_enabled)
3552                         events->exception.injected |=
3553                                 vcpu->arch.exception.pending;
3554         }
3555         events->exception.nr = vcpu->arch.exception.nr;
3556         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3557         events->exception.error_code = vcpu->arch.exception.error_code;
3558         events->exception_has_payload = vcpu->arch.exception.has_payload;
3559         events->exception_payload = vcpu->arch.exception.payload;
3560
3561         events->interrupt.injected =
3562                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3563         events->interrupt.nr = vcpu->arch.interrupt.nr;
3564         events->interrupt.soft = 0;
3565         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3566
3567         events->nmi.injected = vcpu->arch.nmi_injected;
3568         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3569         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3570         events->nmi.pad = 0;
3571
3572         events->sipi_vector = 0; /* never valid when reporting to user space */
3573
3574         events->smi.smm = is_smm(vcpu);
3575         events->smi.pending = vcpu->arch.smi_pending;
3576         events->smi.smm_inside_nmi =
3577                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3578         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3579
3580         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3581                          | KVM_VCPUEVENT_VALID_SHADOW
3582                          | KVM_VCPUEVENT_VALID_SMM);
3583         if (vcpu->kvm->arch.exception_payload_enabled)
3584                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3585
3586         memset(&events->reserved, 0, sizeof(events->reserved));
3587 }
3588
3589 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3590
3591 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3592                                               struct kvm_vcpu_events *events)
3593 {
3594         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3595                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3596                               | KVM_VCPUEVENT_VALID_SHADOW
3597                               | KVM_VCPUEVENT_VALID_SMM
3598                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3599                 return -EINVAL;
3600
3601         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3602                 if (!vcpu->kvm->arch.exception_payload_enabled)
3603                         return -EINVAL;
3604                 if (events->exception.pending)
3605                         events->exception.injected = 0;
3606                 else
3607                         events->exception_has_payload = 0;
3608         } else {
3609                 events->exception.pending = 0;
3610                 events->exception_has_payload = 0;
3611         }
3612
3613         if ((events->exception.injected || events->exception.pending) &&
3614             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3615                 return -EINVAL;
3616
3617         /* INITs are latched while in SMM */
3618         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3619             (events->smi.smm || events->smi.pending) &&
3620             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3621                 return -EINVAL;
3622
3623         process_nmi(vcpu);
3624         vcpu->arch.exception.injected = events->exception.injected;
3625         vcpu->arch.exception.pending = events->exception.pending;
3626         vcpu->arch.exception.nr = events->exception.nr;
3627         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3628         vcpu->arch.exception.error_code = events->exception.error_code;
3629         vcpu->arch.exception.has_payload = events->exception_has_payload;
3630         vcpu->arch.exception.payload = events->exception_payload;
3631
3632         vcpu->arch.interrupt.injected = events->interrupt.injected;
3633         vcpu->arch.interrupt.nr = events->interrupt.nr;
3634         vcpu->arch.interrupt.soft = events->interrupt.soft;
3635         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3636                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3637                                                   events->interrupt.shadow);
3638
3639         vcpu->arch.nmi_injected = events->nmi.injected;
3640         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3641                 vcpu->arch.nmi_pending = events->nmi.pending;
3642         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3643
3644         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3645             lapic_in_kernel(vcpu))
3646                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3647
3648         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3649                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3650                         if (events->smi.smm)
3651                                 vcpu->arch.hflags |= HF_SMM_MASK;
3652                         else
3653                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3654                         kvm_smm_changed(vcpu);
3655                 }
3656
3657                 vcpu->arch.smi_pending = events->smi.pending;
3658
3659                 if (events->smi.smm) {
3660                         if (events->smi.smm_inside_nmi)
3661                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3662                         else
3663                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3664                         if (lapic_in_kernel(vcpu)) {
3665                                 if (events->smi.latched_init)
3666                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3667                                 else
3668                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3669                         }
3670                 }
3671         }
3672
3673         kvm_make_request(KVM_REQ_EVENT, vcpu);
3674
3675         return 0;
3676 }
3677
3678 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3679                                              struct kvm_debugregs *dbgregs)
3680 {
3681         unsigned long val;
3682
3683         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3684         kvm_get_dr(vcpu, 6, &val);
3685         dbgregs->dr6 = val;
3686         dbgregs->dr7 = vcpu->arch.dr7;
3687         dbgregs->flags = 0;
3688         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3689 }
3690
3691 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3692                                             struct kvm_debugregs *dbgregs)
3693 {
3694         if (dbgregs->flags)
3695                 return -EINVAL;
3696
3697         if (dbgregs->dr6 & ~0xffffffffull)
3698                 return -EINVAL;
3699         if (dbgregs->dr7 & ~0xffffffffull)
3700                 return -EINVAL;
3701
3702         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3703         kvm_update_dr0123(vcpu);
3704         vcpu->arch.dr6 = dbgregs->dr6;
3705         kvm_update_dr6(vcpu);
3706         vcpu->arch.dr7 = dbgregs->dr7;
3707         kvm_update_dr7(vcpu);
3708
3709         return 0;
3710 }
3711
3712 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3713
3714 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3715 {
3716         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3717         u64 xstate_bv = xsave->header.xfeatures;
3718         u64 valid;
3719
3720         /*
3721          * Copy legacy XSAVE area, to avoid complications with CPUID
3722          * leaves 0 and 1 in the loop below.
3723          */
3724         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3725
3726         /* Set XSTATE_BV */
3727         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3728         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3729
3730         /*
3731          * Copy each region from the possibly compacted offset to the
3732          * non-compacted offset.
3733          */
3734         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3735         while (valid) {
3736                 u64 xfeature_mask = valid & -valid;
3737                 int xfeature_nr = fls64(xfeature_mask) - 1;
3738                 void *src = get_xsave_addr(xsave, xfeature_nr);
3739
3740                 if (src) {
3741                         u32 size, offset, ecx, edx;
3742                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3743                                     &size, &offset, &ecx, &edx);
3744                         if (xfeature_nr == XFEATURE_PKRU)
3745                                 memcpy(dest + offset, &vcpu->arch.pkru,
3746                                        sizeof(vcpu->arch.pkru));
3747                         else
3748                                 memcpy(dest + offset, src, size);
3749
3750                 }
3751
3752                 valid -= xfeature_mask;
3753         }
3754 }
3755
3756 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3757 {
3758         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3759         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3760         u64 valid;
3761
3762         /*
3763          * Copy legacy XSAVE area, to avoid complications with CPUID
3764          * leaves 0 and 1 in the loop below.
3765          */
3766         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3767
3768         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3769         xsave->header.xfeatures = xstate_bv;
3770         if (boot_cpu_has(X86_FEATURE_XSAVES))
3771                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3772
3773         /*
3774          * Copy each region from the non-compacted offset to the
3775          * possibly compacted offset.
3776          */
3777         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3778         while (valid) {
3779                 u64 xfeature_mask = valid & -valid;
3780                 int xfeature_nr = fls64(xfeature_mask) - 1;
3781                 void *dest = get_xsave_addr(xsave, xfeature_nr);
3782
3783                 if (dest) {
3784                         u32 size, offset, ecx, edx;
3785                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3786                                     &size, &offset, &ecx, &edx);
3787                         if (xfeature_nr == XFEATURE_PKRU)
3788                                 memcpy(&vcpu->arch.pkru, src + offset,
3789                                        sizeof(vcpu->arch.pkru));
3790                         else
3791                                 memcpy(dest, src + offset, size);
3792                 }
3793
3794                 valid -= xfeature_mask;
3795         }
3796 }
3797
3798 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3799                                          struct kvm_xsave *guest_xsave)
3800 {
3801         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3802                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3803                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3804         } else {
3805                 memcpy(guest_xsave->region,
3806                         &vcpu->arch.guest_fpu->state.fxsave,
3807                         sizeof(struct fxregs_state));
3808                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3809                         XFEATURE_MASK_FPSSE;
3810         }
3811 }
3812
3813 #define XSAVE_MXCSR_OFFSET 24
3814
3815 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3816                                         struct kvm_xsave *guest_xsave)
3817 {
3818         u64 xstate_bv =
3819                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3820         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3821
3822         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3823                 /*
3824                  * Here we allow setting states that are not present in
3825                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3826                  * with old userspace.
3827                  */
3828                 if (xstate_bv & ~kvm_supported_xcr0() ||
3829                         mxcsr & ~mxcsr_feature_mask)
3830                         return -EINVAL;
3831                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3832         } else {
3833                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3834                         mxcsr & ~mxcsr_feature_mask)
3835                         return -EINVAL;
3836                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3837                         guest_xsave->region, sizeof(struct fxregs_state));
3838         }
3839         return 0;
3840 }
3841
3842 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3843                                         struct kvm_xcrs *guest_xcrs)
3844 {
3845         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3846                 guest_xcrs->nr_xcrs = 0;
3847                 return;
3848         }
3849
3850         guest_xcrs->nr_xcrs = 1;
3851         guest_xcrs->flags = 0;
3852         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3853         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3854 }
3855
3856 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3857                                        struct kvm_xcrs *guest_xcrs)
3858 {
3859         int i, r = 0;
3860
3861         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3862                 return -EINVAL;
3863
3864         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3865                 return -EINVAL;
3866
3867         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3868                 /* Only support XCR0 currently */
3869                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3870                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3871                                 guest_xcrs->xcrs[i].value);
3872                         break;
3873                 }
3874         if (r)
3875                 r = -EINVAL;
3876         return r;
3877 }
3878
3879 /*
3880  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3881  * stopped by the hypervisor.  This function will be called from the host only.
3882  * EINVAL is returned when the host attempts to set the flag for a guest that
3883  * does not support pv clocks.
3884  */
3885 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3886 {
3887         if (!vcpu->arch.pv_time_enabled)
3888                 return -EINVAL;
3889         vcpu->arch.pvclock_set_guest_stopped_request = true;
3890         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3891         return 0;
3892 }
3893
3894 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3895                                      struct kvm_enable_cap *cap)
3896 {
3897         int r;
3898         uint16_t vmcs_version;
3899         void __user *user_ptr;
3900
3901         if (cap->flags)
3902                 return -EINVAL;
3903
3904         switch (cap->cap) {
3905         case KVM_CAP_HYPERV_SYNIC2:
3906                 if (cap->args[0])
3907                         return -EINVAL;
3908                 /* fall through */
3909
3910         case KVM_CAP_HYPERV_SYNIC:
3911                 if (!irqchip_in_kernel(vcpu->kvm))
3912                         return -EINVAL;
3913                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3914                                              KVM_CAP_HYPERV_SYNIC2);
3915         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3916                 if (!kvm_x86_ops->nested_enable_evmcs)
3917                         return -ENOTTY;
3918                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3919                 if (!r) {
3920                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3921                         if (copy_to_user(user_ptr, &vmcs_version,
3922                                          sizeof(vmcs_version)))
3923                                 r = -EFAULT;
3924                 }
3925                 return r;
3926
3927         default:
3928                 return -EINVAL;
3929         }
3930 }
3931
3932 long kvm_arch_vcpu_ioctl(struct file *filp,
3933                          unsigned int ioctl, unsigned long arg)
3934 {
3935         struct kvm_vcpu *vcpu = filp->private_data;
3936         void __user *argp = (void __user *)arg;
3937         int r;
3938         union {
3939                 struct kvm_lapic_state *lapic;
3940                 struct kvm_xsave *xsave;
3941                 struct kvm_xcrs *xcrs;
3942                 void *buffer;
3943         } u;
3944
3945         vcpu_load(vcpu);
3946
3947         u.buffer = NULL;
3948         switch (ioctl) {
3949         case KVM_GET_LAPIC: {
3950                 r = -EINVAL;
3951                 if (!lapic_in_kernel(vcpu))
3952                         goto out;
3953                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3954                                 GFP_KERNEL_ACCOUNT);
3955
3956                 r = -ENOMEM;
3957                 if (!u.lapic)
3958                         goto out;
3959                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3960                 if (r)
3961                         goto out;
3962                 r = -EFAULT;
3963                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3964                         goto out;
3965                 r = 0;
3966                 break;
3967         }
3968         case KVM_SET_LAPIC: {
3969                 r = -EINVAL;
3970                 if (!lapic_in_kernel(vcpu))
3971                         goto out;
3972                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3973                 if (IS_ERR(u.lapic)) {
3974                         r = PTR_ERR(u.lapic);
3975                         goto out_nofree;
3976                 }
3977
3978                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3979                 break;
3980         }
3981         case KVM_INTERRUPT: {
3982                 struct kvm_interrupt irq;
3983
3984                 r = -EFAULT;
3985                 if (copy_from_user(&irq, argp, sizeof(irq)))
3986                         goto out;
3987                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3988                 break;
3989         }
3990         case KVM_NMI: {
3991                 r = kvm_vcpu_ioctl_nmi(vcpu);
3992                 break;
3993         }
3994         case KVM_SMI: {
3995                 r = kvm_vcpu_ioctl_smi(vcpu);
3996                 break;
3997         }
3998         case KVM_SET_CPUID: {
3999                 struct kvm_cpuid __user *cpuid_arg = argp;
4000                 struct kvm_cpuid cpuid;
4001
4002                 r = -EFAULT;
4003                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4004                         goto out;
4005                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4006                 break;
4007         }
4008         case KVM_SET_CPUID2: {
4009                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4010                 struct kvm_cpuid2 cpuid;
4011
4012                 r = -EFAULT;
4013                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4014                         goto out;
4015                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4016                                               cpuid_arg->entries);
4017                 break;
4018         }
4019         case KVM_GET_CPUID2: {
4020                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4021                 struct kvm_cpuid2 cpuid;
4022
4023                 r = -EFAULT;
4024                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4025                         goto out;
4026                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4027                                               cpuid_arg->entries);
4028                 if (r)
4029                         goto out;
4030                 r = -EFAULT;
4031                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4032                         goto out;
4033                 r = 0;
4034                 break;
4035         }
4036         case KVM_GET_MSRS: {
4037                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4038                 r = msr_io(vcpu, argp, do_get_msr, 1);
4039                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4040                 break;
4041         }
4042         case KVM_SET_MSRS: {
4043                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4044                 r = msr_io(vcpu, argp, do_set_msr, 0);
4045                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4046                 break;
4047         }
4048         case KVM_TPR_ACCESS_REPORTING: {
4049                 struct kvm_tpr_access_ctl tac;
4050
4051                 r = -EFAULT;
4052                 if (copy_from_user(&tac, argp, sizeof(tac)))
4053                         goto out;
4054                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4055                 if (r)
4056                         goto out;
4057                 r = -EFAULT;
4058                 if (copy_to_user(argp, &tac, sizeof(tac)))
4059                         goto out;
4060                 r = 0;
4061                 break;
4062         };
4063         case KVM_SET_VAPIC_ADDR: {
4064                 struct kvm_vapic_addr va;
4065                 int idx;
4066
4067                 r = -EINVAL;
4068                 if (!lapic_in_kernel(vcpu))
4069                         goto out;
4070                 r = -EFAULT;
4071                 if (copy_from_user(&va, argp, sizeof(va)))
4072                         goto out;
4073                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4074                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4075                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4076                 break;
4077         }
4078         case KVM_X86_SETUP_MCE: {
4079                 u64 mcg_cap;
4080
4081                 r = -EFAULT;
4082                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4083                         goto out;
4084                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4085                 break;
4086         }
4087         case KVM_X86_SET_MCE: {
4088                 struct kvm_x86_mce mce;
4089
4090                 r = -EFAULT;
4091                 if (copy_from_user(&mce, argp, sizeof(mce)))
4092                         goto out;
4093                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4094                 break;
4095         }
4096         case KVM_GET_VCPU_EVENTS: {
4097                 struct kvm_vcpu_events events;
4098
4099                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4100
4101                 r = -EFAULT;
4102                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4103                         break;
4104                 r = 0;
4105                 break;
4106         }
4107         case KVM_SET_VCPU_EVENTS: {
4108                 struct kvm_vcpu_events events;
4109
4110                 r = -EFAULT;
4111                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4112                         break;
4113
4114                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4115                 break;
4116         }
4117         case KVM_GET_DEBUGREGS: {
4118                 struct kvm_debugregs dbgregs;
4119
4120                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4121
4122                 r = -EFAULT;
4123                 if (copy_to_user(argp, &dbgregs,
4124                                  sizeof(struct kvm_debugregs)))
4125                         break;
4126                 r = 0;
4127                 break;
4128         }
4129         case KVM_SET_DEBUGREGS: {
4130                 struct kvm_debugregs dbgregs;
4131
4132                 r = -EFAULT;
4133                 if (copy_from_user(&dbgregs, argp,
4134                                    sizeof(struct kvm_debugregs)))
4135                         break;
4136
4137                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4138                 break;
4139         }
4140         case KVM_GET_XSAVE: {
4141                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4142                 r = -ENOMEM;
4143                 if (!u.xsave)
4144                         break;
4145
4146                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4147
4148                 r = -EFAULT;
4149                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4150                         break;
4151                 r = 0;
4152                 break;
4153         }
4154         case KVM_SET_XSAVE: {
4155                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4156                 if (IS_ERR(u.xsave)) {
4157                         r = PTR_ERR(u.xsave);
4158                         goto out_nofree;
4159                 }
4160
4161                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4162                 break;
4163         }
4164         case KVM_GET_XCRS: {
4165                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4166                 r = -ENOMEM;
4167                 if (!u.xcrs)
4168                         break;
4169
4170                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4171
4172                 r = -EFAULT;
4173                 if (copy_to_user(argp, u.xcrs,
4174                                  sizeof(struct kvm_xcrs)))
4175                         break;
4176                 r = 0;
4177                 break;
4178         }
4179         case KVM_SET_XCRS: {
4180                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4181                 if (IS_ERR(u.xcrs)) {
4182                         r = PTR_ERR(u.xcrs);
4183                         goto out_nofree;
4184                 }
4185
4186                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4187                 break;
4188         }
4189         case KVM_SET_TSC_KHZ: {
4190                 u32 user_tsc_khz;
4191
4192                 r = -EINVAL;
4193                 user_tsc_khz = (u32)arg;
4194
4195                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4196                         goto out;
4197
4198                 if (user_tsc_khz == 0)
4199                         user_tsc_khz = tsc_khz;
4200
4201                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4202                         r = 0;
4203
4204                 goto out;
4205         }
4206         case KVM_GET_TSC_KHZ: {
4207                 r = vcpu->arch.virtual_tsc_khz;
4208                 goto out;
4209         }
4210         case KVM_KVMCLOCK_CTRL: {
4211                 r = kvm_set_guest_paused(vcpu);
4212                 goto out;
4213         }
4214         case KVM_ENABLE_CAP: {
4215                 struct kvm_enable_cap cap;
4216
4217                 r = -EFAULT;
4218                 if (copy_from_user(&cap, argp, sizeof(cap)))
4219                         goto out;
4220                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4221                 break;
4222         }
4223         case KVM_GET_NESTED_STATE: {
4224                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4225                 u32 user_data_size;
4226
4227                 r = -EINVAL;
4228                 if (!kvm_x86_ops->get_nested_state)
4229                         break;
4230
4231                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4232                 r = -EFAULT;
4233                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4234                         break;
4235
4236                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4237                                                   user_data_size);
4238                 if (r < 0)
4239                         break;
4240
4241                 if (r > user_data_size) {
4242                         if (put_user(r, &user_kvm_nested_state->size))
4243                                 r = -EFAULT;
4244                         else
4245                                 r = -E2BIG;
4246                         break;
4247                 }
4248
4249                 r = 0;
4250                 break;
4251         }
4252         case KVM_SET_NESTED_STATE: {
4253                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4254                 struct kvm_nested_state kvm_state;
4255
4256                 r = -EINVAL;
4257                 if (!kvm_x86_ops->set_nested_state)
4258                         break;
4259
4260                 r = -EFAULT;
4261                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4262                         break;
4263
4264                 r = -EINVAL;
4265                 if (kvm_state.size < sizeof(kvm_state))
4266                         break;
4267
4268                 if (kvm_state.flags &
4269                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4270                       | KVM_STATE_NESTED_EVMCS))
4271                         break;
4272
4273                 /* nested_run_pending implies guest_mode.  */
4274                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4275                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4276                         break;
4277
4278                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4279                 break;
4280         }
4281         case KVM_GET_SUPPORTED_HV_CPUID: {
4282                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4283                 struct kvm_cpuid2 cpuid;
4284
4285                 r = -EFAULT;
4286                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4287                         goto out;
4288
4289                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4290                                                 cpuid_arg->entries);
4291                 if (r)
4292                         goto out;
4293
4294                 r = -EFAULT;
4295                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4296                         goto out;
4297                 r = 0;
4298                 break;
4299         }
4300         default:
4301                 r = -EINVAL;
4302         }
4303 out:
4304         kfree(u.buffer);
4305 out_nofree:
4306         vcpu_put(vcpu);
4307         return r;
4308 }
4309
4310 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4311 {
4312         return VM_FAULT_SIGBUS;
4313 }
4314
4315 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4316 {
4317         int ret;
4318
4319         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4320                 return -EINVAL;
4321         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4322         return ret;
4323 }
4324
4325 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4326                                               u64 ident_addr)
4327 {
4328         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4329 }
4330
4331 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4332                                          unsigned long kvm_nr_mmu_pages)
4333 {
4334         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4335                 return -EINVAL;
4336
4337         mutex_lock(&kvm->slots_lock);
4338
4339         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4340         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4341
4342         mutex_unlock(&kvm->slots_lock);
4343         return 0;
4344 }
4345
4346 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4347 {
4348         return kvm->arch.n_max_mmu_pages;
4349 }
4350
4351 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4352 {
4353         struct kvm_pic *pic = kvm->arch.vpic;
4354         int r;
4355
4356         r = 0;
4357         switch (chip->chip_id) {
4358         case KVM_IRQCHIP_PIC_MASTER:
4359                 memcpy(&chip->chip.pic, &pic->pics[0],
4360                         sizeof(struct kvm_pic_state));
4361                 break;
4362         case KVM_IRQCHIP_PIC_SLAVE:
4363                 memcpy(&chip->chip.pic, &pic->pics[1],
4364                         sizeof(struct kvm_pic_state));
4365                 break;
4366         case KVM_IRQCHIP_IOAPIC:
4367                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4368                 break;
4369         default:
4370                 r = -EINVAL;
4371                 break;
4372         }
4373         return r;
4374 }
4375
4376 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4377 {
4378         struct kvm_pic *pic = kvm->arch.vpic;
4379         int r;
4380
4381         r = 0;
4382         switch (chip->chip_id) {
4383         case KVM_IRQCHIP_PIC_MASTER:
4384                 spin_lock(&pic->lock);
4385                 memcpy(&pic->pics[0], &chip->chip.pic,
4386                         sizeof(struct kvm_pic_state));
4387                 spin_unlock(&pic->lock);
4388                 break;
4389         case KVM_IRQCHIP_PIC_SLAVE:
4390                 spin_lock(&pic->lock);
4391                 memcpy(&pic->pics[1], &chip->chip.pic,
4392                         sizeof(struct kvm_pic_state));
4393                 spin_unlock(&pic->lock);
4394                 break;
4395         case KVM_IRQCHIP_IOAPIC:
4396                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4397                 break;
4398         default:
4399                 r = -EINVAL;
4400                 break;
4401         }
4402         kvm_pic_update_irq(pic);
4403         return r;
4404 }
4405
4406 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4407 {
4408         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4409
4410         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4411
4412         mutex_lock(&kps->lock);
4413         memcpy(ps, &kps->channels, sizeof(*ps));
4414         mutex_unlock(&kps->lock);
4415         return 0;
4416 }
4417
4418 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4419 {
4420         int i;
4421         struct kvm_pit *pit = kvm->arch.vpit;
4422
4423         mutex_lock(&pit->pit_state.lock);
4424         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4425         for (i = 0; i < 3; i++)
4426                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4427         mutex_unlock(&pit->pit_state.lock);
4428         return 0;
4429 }
4430
4431 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4432 {
4433         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4434         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4435                 sizeof(ps->channels));
4436         ps->flags = kvm->arch.vpit->pit_state.flags;
4437         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4438         memset(&ps->reserved, 0, sizeof(ps->reserved));
4439         return 0;
4440 }
4441
4442 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4443 {
4444         int start = 0;
4445         int i;
4446         u32 prev_legacy, cur_legacy;
4447         struct kvm_pit *pit = kvm->arch.vpit;
4448
4449         mutex_lock(&pit->pit_state.lock);
4450         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4451         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4452         if (!prev_legacy && cur_legacy)
4453                 start = 1;
4454         memcpy(&pit->pit_state.channels, &ps->channels,
4455                sizeof(pit->pit_state.channels));
4456         pit->pit_state.flags = ps->flags;
4457         for (i = 0; i < 3; i++)
4458                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4459                                    start && i == 0);
4460         mutex_unlock(&pit->pit_state.lock);
4461         return 0;
4462 }
4463
4464 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4465                                  struct kvm_reinject_control *control)
4466 {
4467         struct kvm_pit *pit = kvm->arch.vpit;
4468
4469         if (!pit)
4470                 return -ENXIO;
4471
4472         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4473          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4474          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4475          */
4476         mutex_lock(&pit->pit_state.lock);
4477         kvm_pit_set_reinject(pit, control->pit_reinject);
4478         mutex_unlock(&pit->pit_state.lock);
4479
4480         return 0;
4481 }
4482
4483 /**
4484  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4485  * @kvm: kvm instance
4486  * @log: slot id and address to which we copy the log
4487  *
4488  * Steps 1-4 below provide general overview of dirty page logging. See
4489  * kvm_get_dirty_log_protect() function description for additional details.
4490  *
4491  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4492  * always flush the TLB (step 4) even if previous step failed  and the dirty
4493  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4494  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4495  * writes will be marked dirty for next log read.
4496  *
4497  *   1. Take a snapshot of the bit and clear it if needed.
4498  *   2. Write protect the corresponding page.
4499  *   3. Copy the snapshot to the userspace.
4500  *   4. Flush TLB's if needed.
4501  */
4502 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4503 {
4504         bool flush = false;
4505         int r;
4506
4507         mutex_lock(&kvm->slots_lock);
4508
4509         /*
4510          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4511          */
4512         if (kvm_x86_ops->flush_log_dirty)
4513                 kvm_x86_ops->flush_log_dirty(kvm);
4514
4515         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4516
4517         /*
4518          * All the TLBs can be flushed out of mmu lock, see the comments in
4519          * kvm_mmu_slot_remove_write_access().
4520          */
4521         lockdep_assert_held(&kvm->slots_lock);
4522         if (flush)
4523                 kvm_flush_remote_tlbs(kvm);
4524
4525         mutex_unlock(&kvm->slots_lock);
4526         return r;
4527 }
4528
4529 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4530 {
4531         bool flush = false;
4532         int r;
4533
4534         mutex_lock(&kvm->slots_lock);
4535
4536         /*
4537          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4538          */
4539         if (kvm_x86_ops->flush_log_dirty)
4540                 kvm_x86_ops->flush_log_dirty(kvm);
4541
4542         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4543
4544         /*
4545          * All the TLBs can be flushed out of mmu lock, see the comments in
4546          * kvm_mmu_slot_remove_write_access().
4547          */
4548         lockdep_assert_held(&kvm->slots_lock);
4549         if (flush)
4550                 kvm_flush_remote_tlbs(kvm);
4551
4552         mutex_unlock(&kvm->slots_lock);
4553         return r;
4554 }
4555
4556 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4557                         bool line_status)
4558 {
4559         if (!irqchip_in_kernel(kvm))
4560                 return -ENXIO;
4561
4562         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4563                                         irq_event->irq, irq_event->level,
4564                                         line_status);
4565         return 0;
4566 }
4567
4568 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4569                             struct kvm_enable_cap *cap)
4570 {
4571         int r;
4572
4573         if (cap->flags)
4574                 return -EINVAL;
4575
4576         switch (cap->cap) {
4577         case KVM_CAP_DISABLE_QUIRKS:
4578                 kvm->arch.disabled_quirks = cap->args[0];
4579                 r = 0;
4580                 break;
4581         case KVM_CAP_SPLIT_IRQCHIP: {
4582                 mutex_lock(&kvm->lock);
4583                 r = -EINVAL;
4584                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4585                         goto split_irqchip_unlock;
4586                 r = -EEXIST;
4587                 if (irqchip_in_kernel(kvm))
4588                         goto split_irqchip_unlock;
4589                 if (kvm->created_vcpus)
4590                         goto split_irqchip_unlock;
4591                 r = kvm_setup_empty_irq_routing(kvm);
4592                 if (r)
4593                         goto split_irqchip_unlock;
4594                 /* Pairs with irqchip_in_kernel. */
4595                 smp_wmb();
4596                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4597                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4598                 r = 0;
4599 split_irqchip_unlock:
4600                 mutex_unlock(&kvm->lock);
4601                 break;
4602         }
4603         case KVM_CAP_X2APIC_API:
4604                 r = -EINVAL;
4605                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4606                         break;
4607
4608                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4609                         kvm->arch.x2apic_format = true;
4610                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4611                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4612
4613                 r = 0;
4614                 break;
4615         case KVM_CAP_X86_DISABLE_EXITS:
4616                 r = -EINVAL;
4617                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4618                         break;
4619
4620                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4621                         kvm_can_mwait_in_guest())
4622                         kvm->arch.mwait_in_guest = true;
4623                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4624                         kvm->arch.hlt_in_guest = true;
4625                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4626                         kvm->arch.pause_in_guest = true;
4627                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4628                         kvm->arch.cstate_in_guest = true;
4629                 r = 0;
4630                 break;
4631         case KVM_CAP_MSR_PLATFORM_INFO:
4632                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4633                 r = 0;
4634                 break;
4635         case KVM_CAP_EXCEPTION_PAYLOAD:
4636                 kvm->arch.exception_payload_enabled = cap->args[0];
4637                 r = 0;
4638                 break;
4639         default:
4640                 r = -EINVAL;
4641                 break;
4642         }
4643         return r;
4644 }
4645
4646 long kvm_arch_vm_ioctl(struct file *filp,
4647                        unsigned int ioctl, unsigned long arg)
4648 {
4649         struct kvm *kvm = filp->private_data;
4650         void __user *argp = (void __user *)arg;
4651         int r = -ENOTTY;
4652         /*
4653          * This union makes it completely explicit to gcc-3.x
4654          * that these two variables' stack usage should be
4655          * combined, not added together.
4656          */
4657         union {
4658                 struct kvm_pit_state ps;
4659                 struct kvm_pit_state2 ps2;
4660                 struct kvm_pit_config pit_config;
4661         } u;
4662
4663         switch (ioctl) {
4664         case KVM_SET_TSS_ADDR:
4665                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4666                 break;
4667         case KVM_SET_IDENTITY_MAP_ADDR: {
4668                 u64 ident_addr;
4669
4670                 mutex_lock(&kvm->lock);
4671                 r = -EINVAL;
4672                 if (kvm->created_vcpus)
4673                         goto set_identity_unlock;
4674                 r = -EFAULT;
4675                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4676                         goto set_identity_unlock;
4677                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4678 set_identity_unlock:
4679                 mutex_unlock(&kvm->lock);
4680                 break;
4681         }
4682         case KVM_SET_NR_MMU_PAGES:
4683                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4684                 break;
4685         case KVM_GET_NR_MMU_PAGES:
4686                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4687                 break;
4688         case KVM_CREATE_IRQCHIP: {
4689                 mutex_lock(&kvm->lock);
4690
4691                 r = -EEXIST;
4692                 if (irqchip_in_kernel(kvm))
4693                         goto create_irqchip_unlock;
4694
4695                 r = -EINVAL;
4696                 if (kvm->created_vcpus)
4697                         goto create_irqchip_unlock;
4698
4699                 r = kvm_pic_init(kvm);
4700                 if (r)
4701                         goto create_irqchip_unlock;
4702
4703                 r = kvm_ioapic_init(kvm);
4704                 if (r) {
4705                         kvm_pic_destroy(kvm);
4706                         goto create_irqchip_unlock;
4707                 }
4708
4709                 r = kvm_setup_default_irq_routing(kvm);
4710                 if (r) {
4711                         kvm_ioapic_destroy(kvm);
4712                         kvm_pic_destroy(kvm);
4713                         goto create_irqchip_unlock;
4714                 }
4715                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4716                 smp_wmb();
4717                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4718         create_irqchip_unlock:
4719                 mutex_unlock(&kvm->lock);
4720                 break;
4721         }
4722         case KVM_CREATE_PIT:
4723                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4724                 goto create_pit;
4725         case KVM_CREATE_PIT2:
4726                 r = -EFAULT;
4727                 if (copy_from_user(&u.pit_config, argp,
4728                                    sizeof(struct kvm_pit_config)))
4729                         goto out;
4730         create_pit:
4731                 mutex_lock(&kvm->lock);
4732                 r = -EEXIST;
4733                 if (kvm->arch.vpit)
4734                         goto create_pit_unlock;
4735                 r = -ENOMEM;
4736                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4737                 if (kvm->arch.vpit)
4738                         r = 0;
4739         create_pit_unlock:
4740                 mutex_unlock(&kvm->lock);
4741                 break;
4742         case KVM_GET_IRQCHIP: {
4743                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4744                 struct kvm_irqchip *chip;
4745
4746                 chip = memdup_user(argp, sizeof(*chip));
4747                 if (IS_ERR(chip)) {
4748                         r = PTR_ERR(chip);
4749                         goto out;
4750                 }
4751
4752                 r = -ENXIO;
4753                 if (!irqchip_kernel(kvm))
4754                         goto get_irqchip_out;
4755                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4756                 if (r)
4757                         goto get_irqchip_out;
4758                 r = -EFAULT;
4759                 if (copy_to_user(argp, chip, sizeof(*chip)))
4760                         goto get_irqchip_out;
4761                 r = 0;
4762         get_irqchip_out:
4763                 kfree(chip);
4764                 break;
4765         }
4766         case KVM_SET_IRQCHIP: {
4767                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4768                 struct kvm_irqchip *chip;
4769
4770                 chip = memdup_user(argp, sizeof(*chip));
4771                 if (IS_ERR(chip)) {
4772                         r = PTR_ERR(chip);
4773                         goto out;
4774                 }
4775
4776                 r = -ENXIO;
4777                 if (!irqchip_kernel(kvm))
4778                         goto set_irqchip_out;
4779                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4780                 if (r)
4781                         goto set_irqchip_out;
4782                 r = 0;
4783         set_irqchip_out:
4784                 kfree(chip);
4785                 break;
4786         }
4787         case KVM_GET_PIT: {
4788                 r = -EFAULT;
4789                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4790                         goto out;
4791                 r = -ENXIO;
4792                 if (!kvm->arch.vpit)
4793                         goto out;
4794                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4795                 if (r)
4796                         goto out;
4797                 r = -EFAULT;
4798                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4799                         goto out;
4800                 r = 0;
4801                 break;
4802         }
4803         case KVM_SET_PIT: {
4804                 r = -EFAULT;
4805                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4806                         goto out;
4807                 r = -ENXIO;
4808                 if (!kvm->arch.vpit)
4809                         goto out;
4810                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4811                 break;
4812         }
4813         case KVM_GET_PIT2: {
4814                 r = -ENXIO;
4815                 if (!kvm->arch.vpit)
4816                         goto out;
4817                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4818                 if (r)
4819                         goto out;
4820                 r = -EFAULT;
4821                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4822                         goto out;
4823                 r = 0;
4824                 break;
4825         }
4826         case KVM_SET_PIT2: {
4827                 r = -EFAULT;
4828                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4829                         goto out;
4830                 r = -ENXIO;
4831                 if (!kvm->arch.vpit)
4832                         goto out;
4833                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4834                 break;
4835         }
4836         case KVM_REINJECT_CONTROL: {
4837                 struct kvm_reinject_control control;
4838                 r =  -EFAULT;
4839                 if (copy_from_user(&control, argp, sizeof(control)))
4840                         goto out;
4841                 r = kvm_vm_ioctl_reinject(kvm, &control);
4842                 break;
4843         }
4844         case KVM_SET_BOOT_CPU_ID:
4845                 r = 0;
4846                 mutex_lock(&kvm->lock);
4847                 if (kvm->created_vcpus)
4848                         r = -EBUSY;
4849                 else
4850                         kvm->arch.bsp_vcpu_id = arg;
4851                 mutex_unlock(&kvm->lock);
4852                 break;
4853         case KVM_XEN_HVM_CONFIG: {
4854                 struct kvm_xen_hvm_config xhc;
4855                 r = -EFAULT;
4856                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4857                         goto out;
4858                 r = -EINVAL;
4859                 if (xhc.flags)
4860                         goto out;
4861                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4862                 r = 0;
4863                 break;
4864         }
4865         case KVM_SET_CLOCK: {
4866                 struct kvm_clock_data user_ns;
4867                 u64 now_ns;
4868
4869                 r = -EFAULT;
4870                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4871                         goto out;
4872
4873                 r = -EINVAL;
4874                 if (user_ns.flags)
4875                         goto out;
4876
4877                 r = 0;
4878                 /*
4879                  * TODO: userspace has to take care of races with VCPU_RUN, so
4880                  * kvm_gen_update_masterclock() can be cut down to locked
4881                  * pvclock_update_vm_gtod_copy().
4882                  */
4883                 kvm_gen_update_masterclock(kvm);
4884                 now_ns = get_kvmclock_ns(kvm);
4885                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4886                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4887                 break;
4888         }
4889         case KVM_GET_CLOCK: {
4890                 struct kvm_clock_data user_ns;
4891                 u64 now_ns;
4892
4893                 now_ns = get_kvmclock_ns(kvm);
4894                 user_ns.clock = now_ns;
4895                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4896                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4897
4898                 r = -EFAULT;
4899                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4900                         goto out;
4901                 r = 0;
4902                 break;
4903         }
4904         case KVM_MEMORY_ENCRYPT_OP: {
4905                 r = -ENOTTY;
4906                 if (kvm_x86_ops->mem_enc_op)
4907                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4908                 break;
4909         }
4910         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4911                 struct kvm_enc_region region;
4912
4913                 r = -EFAULT;
4914                 if (copy_from_user(&region, argp, sizeof(region)))
4915                         goto out;
4916
4917                 r = -ENOTTY;
4918                 if (kvm_x86_ops->mem_enc_reg_region)
4919                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4920                 break;
4921         }
4922         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4923                 struct kvm_enc_region region;
4924
4925                 r = -EFAULT;
4926                 if (copy_from_user(&region, argp, sizeof(region)))
4927                         goto out;
4928
4929                 r = -ENOTTY;
4930                 if (kvm_x86_ops->mem_enc_unreg_region)
4931                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4932                 break;
4933         }
4934         case KVM_HYPERV_EVENTFD: {
4935                 struct kvm_hyperv_eventfd hvevfd;
4936
4937                 r = -EFAULT;
4938                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4939                         goto out;
4940                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4941                 break;
4942         }
4943         default:
4944                 r = -ENOTTY;
4945         }
4946 out:
4947         return r;
4948 }
4949
4950 static void kvm_init_msr_list(void)
4951 {
4952         u32 dummy[2];
4953         unsigned i, j;
4954
4955         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4956                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4957                         continue;
4958
4959                 /*
4960                  * Even MSRs that are valid in the host may not be exposed
4961                  * to the guests in some cases.
4962                  */
4963                 switch (msrs_to_save[i]) {
4964                 case MSR_IA32_BNDCFGS:
4965                         if (!kvm_mpx_supported())
4966                                 continue;
4967                         break;
4968                 case MSR_TSC_AUX:
4969                         if (!kvm_x86_ops->rdtscp_supported())
4970                                 continue;
4971                         break;
4972                 case MSR_IA32_RTIT_CTL:
4973                 case MSR_IA32_RTIT_STATUS:
4974                         if (!kvm_x86_ops->pt_supported())
4975                                 continue;
4976                         break;
4977                 case MSR_IA32_RTIT_CR3_MATCH:
4978                         if (!kvm_x86_ops->pt_supported() ||
4979                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
4980                                 continue;
4981                         break;
4982                 case MSR_IA32_RTIT_OUTPUT_BASE:
4983                 case MSR_IA32_RTIT_OUTPUT_MASK:
4984                         if (!kvm_x86_ops->pt_supported() ||
4985                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
4986                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
4987                                 continue;
4988                         break;
4989                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
4990                         if (!kvm_x86_ops->pt_supported() ||
4991                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
4992                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
4993                                 continue;
4994                         break;
4995                 }
4996                 default:
4997                         break;
4998                 }
4999
5000                 if (j < i)
5001                         msrs_to_save[j] = msrs_to_save[i];
5002                 j++;
5003         }
5004         num_msrs_to_save = j;
5005
5006         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5007                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5008                         continue;
5009
5010                 if (j < i)
5011                         emulated_msrs[j] = emulated_msrs[i];
5012                 j++;
5013         }
5014         num_emulated_msrs = j;
5015
5016         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5017                 struct kvm_msr_entry msr;
5018
5019                 msr.index = msr_based_features[i];
5020                 if (kvm_get_msr_feature(&msr))
5021                         continue;
5022
5023                 if (j < i)
5024                         msr_based_features[j] = msr_based_features[i];
5025                 j++;
5026         }
5027         num_msr_based_features = j;
5028 }
5029
5030 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5031                            const void *v)
5032 {
5033         int handled = 0;
5034         int n;
5035
5036         do {
5037                 n = min(len, 8);
5038                 if (!(lapic_in_kernel(vcpu) &&
5039                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5040                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5041                         break;
5042                 handled += n;
5043                 addr += n;
5044                 len -= n;
5045                 v += n;
5046         } while (len);
5047
5048         return handled;
5049 }
5050
5051 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5052 {
5053         int handled = 0;
5054         int n;
5055
5056         do {
5057                 n = min(len, 8);
5058                 if (!(lapic_in_kernel(vcpu) &&
5059                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5060                                          addr, n, v))
5061                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5062                         break;
5063                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5064                 handled += n;
5065                 addr += n;
5066                 len -= n;
5067                 v += n;
5068         } while (len);
5069
5070         return handled;
5071 }
5072
5073 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5074                         struct kvm_segment *var, int seg)
5075 {
5076         kvm_x86_ops->set_segment(vcpu, var, seg);
5077 }
5078
5079 void kvm_get_segment(struct kvm_vcpu *vcpu,
5080                      struct kvm_segment *var, int seg)
5081 {
5082         kvm_x86_ops->get_segment(vcpu, var, seg);
5083 }
5084
5085 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5086                            struct x86_exception *exception)
5087 {
5088         gpa_t t_gpa;
5089
5090         BUG_ON(!mmu_is_nested(vcpu));
5091
5092         /* NPT walks are always user-walks */
5093         access |= PFERR_USER_MASK;
5094         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5095
5096         return t_gpa;
5097 }
5098
5099 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5100                               struct x86_exception *exception)
5101 {
5102         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5103         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5104 }
5105
5106  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5107                                 struct x86_exception *exception)
5108 {
5109         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5110         access |= PFERR_FETCH_MASK;
5111         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5112 }
5113
5114 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5115                                struct x86_exception *exception)
5116 {
5117         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5118         access |= PFERR_WRITE_MASK;
5119         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5120 }
5121
5122 /* uses this to access any guest's mapped memory without checking CPL */
5123 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5124                                 struct x86_exception *exception)
5125 {
5126         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5127 }
5128
5129 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5130                                       struct kvm_vcpu *vcpu, u32 access,
5131                                       struct x86_exception *exception)
5132 {
5133         void *data = val;
5134         int r = X86EMUL_CONTINUE;
5135
5136         while (bytes) {
5137                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5138                                                             exception);
5139                 unsigned offset = addr & (PAGE_SIZE-1);
5140                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5141                 int ret;
5142
5143                 if (gpa == UNMAPPED_GVA)
5144                         return X86EMUL_PROPAGATE_FAULT;
5145                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5146                                                offset, toread);
5147                 if (ret < 0) {
5148                         r = X86EMUL_IO_NEEDED;
5149                         goto out;
5150                 }
5151
5152                 bytes -= toread;
5153                 data += toread;
5154                 addr += toread;
5155         }
5156 out:
5157         return r;
5158 }
5159
5160 /* used for instruction fetching */
5161 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5162                                 gva_t addr, void *val, unsigned int bytes,
5163                                 struct x86_exception *exception)
5164 {
5165         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5166         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5167         unsigned offset;
5168         int ret;
5169
5170         /* Inline kvm_read_guest_virt_helper for speed.  */
5171         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5172                                                     exception);
5173         if (unlikely(gpa == UNMAPPED_GVA))
5174                 return X86EMUL_PROPAGATE_FAULT;
5175
5176         offset = addr & (PAGE_SIZE-1);
5177         if (WARN_ON(offset + bytes > PAGE_SIZE))
5178                 bytes = (unsigned)PAGE_SIZE - offset;
5179         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5180                                        offset, bytes);
5181         if (unlikely(ret < 0))
5182                 return X86EMUL_IO_NEEDED;
5183
5184         return X86EMUL_CONTINUE;
5185 }
5186
5187 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5188                                gva_t addr, void *val, unsigned int bytes,
5189                                struct x86_exception *exception)
5190 {
5191         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5192
5193         /*
5194          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5195          * is returned, but our callers are not ready for that and they blindly
5196          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5197          * uninitialized kernel stack memory into cr2 and error code.
5198          */
5199         memset(exception, 0, sizeof(*exception));
5200         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5201                                           exception);
5202 }
5203 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5204
5205 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5206                              gva_t addr, void *val, unsigned int bytes,
5207                              struct x86_exception *exception, bool system)
5208 {
5209         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5210         u32 access = 0;
5211
5212         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5213                 access |= PFERR_USER_MASK;
5214
5215         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5216 }
5217
5218 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5219                 unsigned long addr, void *val, unsigned int bytes)
5220 {
5221         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5222         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5223
5224         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5225 }
5226
5227 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5228                                       struct kvm_vcpu *vcpu, u32 access,
5229                                       struct x86_exception *exception)
5230 {
5231         void *data = val;
5232         int r = X86EMUL_CONTINUE;
5233
5234         while (bytes) {
5235                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5236                                                              access,
5237                                                              exception);
5238                 unsigned offset = addr & (PAGE_SIZE-1);
5239                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5240                 int ret;
5241
5242                 if (gpa == UNMAPPED_GVA)
5243                         return X86EMUL_PROPAGATE_FAULT;
5244                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5245                 if (ret < 0) {
5246                         r = X86EMUL_IO_NEEDED;
5247                         goto out;
5248                 }
5249
5250                 bytes -= towrite;
5251                 data += towrite;
5252                 addr += towrite;
5253         }
5254 out:
5255         return r;
5256 }
5257
5258 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5259                               unsigned int bytes, struct x86_exception *exception,
5260                               bool system)
5261 {
5262         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5263         u32 access = PFERR_WRITE_MASK;
5264
5265         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5266                 access |= PFERR_USER_MASK;
5267
5268         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5269                                            access, exception);
5270 }
5271
5272 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5273                                 unsigned int bytes, struct x86_exception *exception)
5274 {
5275         /* kvm_write_guest_virt_system can pull in tons of pages. */
5276         vcpu->arch.l1tf_flush_l1d = true;
5277
5278         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5279                                            PFERR_WRITE_MASK, exception);
5280 }
5281 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5282
5283 int handle_ud(struct kvm_vcpu *vcpu)
5284 {
5285         int emul_type = EMULTYPE_TRAP_UD;
5286         enum emulation_result er;
5287         char sig[5]; /* ud2; .ascii "kvm" */
5288         struct x86_exception e;
5289
5290         if (force_emulation_prefix &&
5291             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5292                                 sig, sizeof(sig), &e) == 0 &&
5293             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5294                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5295                 emul_type = 0;
5296         }
5297
5298         er = kvm_emulate_instruction(vcpu, emul_type);
5299         if (er == EMULATE_USER_EXIT)
5300                 return 0;
5301         if (er != EMULATE_DONE)
5302                 kvm_queue_exception(vcpu, UD_VECTOR);
5303         return 1;
5304 }
5305 EXPORT_SYMBOL_GPL(handle_ud);
5306
5307 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5308                             gpa_t gpa, bool write)
5309 {
5310         /* For APIC access vmexit */
5311         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5312                 return 1;
5313
5314         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5315                 trace_vcpu_match_mmio(gva, gpa, write, true);
5316                 return 1;
5317         }
5318
5319         return 0;
5320 }
5321
5322 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5323                                 gpa_t *gpa, struct x86_exception *exception,
5324                                 bool write)
5325 {
5326         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5327                 | (write ? PFERR_WRITE_MASK : 0);
5328
5329         /*
5330          * currently PKRU is only applied to ept enabled guest so
5331          * there is no pkey in EPT page table for L1 guest or EPT
5332          * shadow page table for L2 guest.
5333          */
5334         if (vcpu_match_mmio_gva(vcpu, gva)
5335             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5336                                  vcpu->arch.access, 0, access)) {
5337                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5338                                         (gva & (PAGE_SIZE - 1));
5339                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5340                 return 1;
5341         }
5342
5343         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5344
5345         if (*gpa == UNMAPPED_GVA)
5346                 return -1;
5347
5348         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5349 }
5350
5351 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5352                         const void *val, int bytes)
5353 {
5354         int ret;
5355
5356         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5357         if (ret < 0)
5358                 return 0;
5359         kvm_page_track_write(vcpu, gpa, val, bytes);
5360         return 1;
5361 }
5362
5363 struct read_write_emulator_ops {
5364         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5365                                   int bytes);
5366         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5367                                   void *val, int bytes);
5368         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5369                                int bytes, void *val);
5370         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5371                                     void *val, int bytes);
5372         bool write;
5373 };
5374
5375 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5376 {
5377         if (vcpu->mmio_read_completed) {
5378                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5379                                vcpu->mmio_fragments[0].gpa, val);
5380                 vcpu->mmio_read_completed = 0;
5381                 return 1;
5382         }
5383
5384         return 0;
5385 }
5386
5387 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5388                         void *val, int bytes)
5389 {
5390         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5391 }
5392
5393 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5394                          void *val, int bytes)
5395 {
5396         return emulator_write_phys(vcpu, gpa, val, bytes);
5397 }
5398
5399 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5400 {
5401         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5402         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5403 }
5404
5405 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5406                           void *val, int bytes)
5407 {
5408         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5409         return X86EMUL_IO_NEEDED;
5410 }
5411
5412 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5413                            void *val, int bytes)
5414 {
5415         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5416
5417         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5418         return X86EMUL_CONTINUE;
5419 }
5420
5421 static const struct read_write_emulator_ops read_emultor = {
5422         .read_write_prepare = read_prepare,
5423         .read_write_emulate = read_emulate,
5424         .read_write_mmio = vcpu_mmio_read,
5425         .read_write_exit_mmio = read_exit_mmio,
5426 };
5427
5428 static const struct read_write_emulator_ops write_emultor = {
5429         .read_write_emulate = write_emulate,
5430         .read_write_mmio = write_mmio,
5431         .read_write_exit_mmio = write_exit_mmio,
5432         .write = true,
5433 };
5434
5435 static int emulator_read_write_onepage(unsigned long addr, void *val,
5436                                        unsigned int bytes,
5437                                        struct x86_exception *exception,
5438                                        struct kvm_vcpu *vcpu,
5439                                        const struct read_write_emulator_ops *ops)
5440 {
5441         gpa_t gpa;
5442         int handled, ret;
5443         bool write = ops->write;
5444         struct kvm_mmio_fragment *frag;
5445         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5446
5447         /*
5448          * If the exit was due to a NPF we may already have a GPA.
5449          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5450          * Note, this cannot be used on string operations since string
5451          * operation using rep will only have the initial GPA from the NPF
5452          * occurred.
5453          */
5454         if (vcpu->arch.gpa_available &&
5455             emulator_can_use_gpa(ctxt) &&
5456             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5457                 gpa = vcpu->arch.gpa_val;
5458                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5459         } else {
5460                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5461                 if (ret < 0)
5462                         return X86EMUL_PROPAGATE_FAULT;
5463         }
5464
5465         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5466                 return X86EMUL_CONTINUE;
5467
5468         /*
5469          * Is this MMIO handled locally?
5470          */
5471         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5472         if (handled == bytes)
5473                 return X86EMUL_CONTINUE;
5474
5475         gpa += handled;
5476         bytes -= handled;
5477         val += handled;
5478
5479         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5480         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5481         frag->gpa = gpa;
5482         frag->data = val;
5483         frag->len = bytes;
5484         return X86EMUL_CONTINUE;
5485 }
5486
5487 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5488                         unsigned long addr,
5489                         void *val, unsigned int bytes,
5490                         struct x86_exception *exception,
5491                         const struct read_write_emulator_ops *ops)
5492 {
5493         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5494         gpa_t gpa;
5495         int rc;
5496
5497         if (ops->read_write_prepare &&
5498                   ops->read_write_prepare(vcpu, val, bytes))
5499                 return X86EMUL_CONTINUE;
5500
5501         vcpu->mmio_nr_fragments = 0;
5502
5503         /* Crossing a page boundary? */
5504         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5505                 int now;
5506
5507                 now = -addr & ~PAGE_MASK;
5508                 rc = emulator_read_write_onepage(addr, val, now, exception,
5509                                                  vcpu, ops);
5510
5511                 if (rc != X86EMUL_CONTINUE)
5512                         return rc;
5513                 addr += now;
5514                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5515                         addr = (u32)addr;
5516                 val += now;
5517                 bytes -= now;
5518         }
5519
5520         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5521                                          vcpu, ops);
5522         if (rc != X86EMUL_CONTINUE)
5523                 return rc;
5524
5525         if (!vcpu->mmio_nr_fragments)
5526                 return rc;
5527
5528         gpa = vcpu->mmio_fragments[0].gpa;
5529
5530         vcpu->mmio_needed = 1;
5531         vcpu->mmio_cur_fragment = 0;
5532
5533         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5534         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5535         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5536         vcpu->run->mmio.phys_addr = gpa;
5537
5538         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5539 }
5540
5541 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5542                                   unsigned long addr,
5543                                   void *val,
5544                                   unsigned int bytes,
5545                                   struct x86_exception *exception)
5546 {
5547         return emulator_read_write(ctxt, addr, val, bytes,
5548                                    exception, &read_emultor);
5549 }
5550
5551 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5552                             unsigned long addr,
5553                             const void *val,
5554                             unsigned int bytes,
5555                             struct x86_exception *exception)
5556 {
5557         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5558                                    exception, &write_emultor);
5559 }
5560
5561 #define CMPXCHG_TYPE(t, ptr, old, new) \
5562         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5563
5564 #ifdef CONFIG_X86_64
5565 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5566 #else
5567 #  define CMPXCHG64(ptr, old, new) \
5568         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5569 #endif
5570
5571 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5572                                      unsigned long addr,
5573                                      const void *old,
5574                                      const void *new,
5575                                      unsigned int bytes,
5576                                      struct x86_exception *exception)
5577 {
5578         struct kvm_host_map map;
5579         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5580         gpa_t gpa;
5581         char *kaddr;
5582         bool exchanged;
5583
5584         /* guests cmpxchg8b have to be emulated atomically */
5585         if (bytes > 8 || (bytes & (bytes - 1)))
5586                 goto emul_write;
5587
5588         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5589
5590         if (gpa == UNMAPPED_GVA ||
5591             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5592                 goto emul_write;
5593
5594         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5595                 goto emul_write;
5596
5597         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5598                 goto emul_write;
5599
5600         kaddr = map.hva + offset_in_page(gpa);
5601
5602         switch (bytes) {
5603         case 1:
5604                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5605                 break;
5606         case 2:
5607                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5608                 break;
5609         case 4:
5610                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5611                 break;
5612         case 8:
5613                 exchanged = CMPXCHG64(kaddr, old, new);
5614                 break;
5615         default:
5616                 BUG();
5617         }
5618
5619         kvm_vcpu_unmap(vcpu, &map, true);
5620
5621         if (!exchanged)
5622                 return X86EMUL_CMPXCHG_FAILED;
5623
5624         kvm_page_track_write(vcpu, gpa, new, bytes);
5625
5626         return X86EMUL_CONTINUE;
5627
5628 emul_write:
5629         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5630
5631         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5632 }
5633
5634 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5635 {
5636         int r = 0, i;
5637
5638         for (i = 0; i < vcpu->arch.pio.count; i++) {
5639                 if (vcpu->arch.pio.in)
5640                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5641                                             vcpu->arch.pio.size, pd);
5642                 else
5643                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5644                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5645                                              pd);
5646                 if (r)
5647                         break;
5648                 pd += vcpu->arch.pio.size;
5649         }
5650         return r;
5651 }
5652
5653 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5654                                unsigned short port, void *val,
5655                                unsigned int count, bool in)
5656 {
5657         vcpu->arch.pio.port = port;
5658         vcpu->arch.pio.in = in;
5659         vcpu->arch.pio.count  = count;
5660         vcpu->arch.pio.size = size;
5661
5662         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5663                 vcpu->arch.pio.count = 0;
5664                 return 1;
5665         }
5666
5667         vcpu->run->exit_reason = KVM_EXIT_IO;
5668         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5669         vcpu->run->io.size = size;
5670         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5671         vcpu->run->io.count = count;
5672         vcpu->run->io.port = port;
5673
5674         return 0;
5675 }
5676
5677 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5678                                     int size, unsigned short port, void *val,
5679                                     unsigned int count)
5680 {
5681         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5682         int ret;
5683
5684         if (vcpu->arch.pio.count)
5685                 goto data_avail;
5686
5687         memset(vcpu->arch.pio_data, 0, size * count);
5688
5689         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5690         if (ret) {
5691 data_avail:
5692                 memcpy(val, vcpu->arch.pio_data, size * count);
5693                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5694                 vcpu->arch.pio.count = 0;
5695                 return 1;
5696         }
5697
5698         return 0;
5699 }
5700
5701 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5702                                      int size, unsigned short port,
5703                                      const void *val, unsigned int count)
5704 {
5705         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5706
5707         memcpy(vcpu->arch.pio_data, val, size * count);
5708         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5709         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5710 }
5711
5712 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5713 {
5714         return kvm_x86_ops->get_segment_base(vcpu, seg);
5715 }
5716
5717 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5718 {
5719         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5720 }
5721
5722 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5723 {
5724         if (!need_emulate_wbinvd(vcpu))
5725                 return X86EMUL_CONTINUE;
5726
5727         if (kvm_x86_ops->has_wbinvd_exit()) {
5728                 int cpu = get_cpu();
5729
5730                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5731                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5732                                 wbinvd_ipi, NULL, 1);
5733                 put_cpu();
5734                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5735         } else
5736                 wbinvd();
5737         return X86EMUL_CONTINUE;
5738 }
5739
5740 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5741 {
5742         kvm_emulate_wbinvd_noskip(vcpu);
5743         return kvm_skip_emulated_instruction(vcpu);
5744 }
5745 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5746
5747
5748
5749 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5750 {
5751         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5752 }
5753
5754 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5755                            unsigned long *dest)
5756 {
5757         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5758 }
5759
5760 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5761                            unsigned long value)
5762 {
5763
5764         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5765 }
5766
5767 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5768 {
5769         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5770 }
5771
5772 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5773 {
5774         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5775         unsigned long value;
5776
5777         switch (cr) {
5778         case 0:
5779                 value = kvm_read_cr0(vcpu);
5780                 break;
5781         case 2:
5782                 value = vcpu->arch.cr2;
5783                 break;
5784         case 3:
5785                 value = kvm_read_cr3(vcpu);
5786                 break;
5787         case 4:
5788                 value = kvm_read_cr4(vcpu);
5789                 break;
5790         case 8:
5791                 value = kvm_get_cr8(vcpu);
5792                 break;
5793         default:
5794                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5795                 return 0;
5796         }
5797
5798         return value;
5799 }
5800
5801 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5802 {
5803         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5804         int res = 0;
5805
5806         switch (cr) {
5807         case 0:
5808                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5809                 break;
5810         case 2:
5811                 vcpu->arch.cr2 = val;
5812                 break;
5813         case 3:
5814                 res = kvm_set_cr3(vcpu, val);
5815                 break;
5816         case 4:
5817                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5818                 break;
5819         case 8:
5820                 res = kvm_set_cr8(vcpu, val);
5821                 break;
5822         default:
5823                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5824                 res = -1;
5825         }
5826
5827         return res;
5828 }
5829
5830 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5831 {
5832         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5833 }
5834
5835 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5836 {
5837         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5838 }
5839
5840 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5841 {
5842         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5843 }
5844
5845 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5846 {
5847         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5848 }
5849
5850 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5851 {
5852         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5853 }
5854
5855 static unsigned long emulator_get_cached_segment_base(
5856         struct x86_emulate_ctxt *ctxt, int seg)
5857 {
5858         return get_segment_base(emul_to_vcpu(ctxt), seg);
5859 }
5860
5861 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5862                                  struct desc_struct *desc, u32 *base3,
5863                                  int seg)
5864 {
5865         struct kvm_segment var;
5866
5867         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5868         *selector = var.selector;
5869
5870         if (var.unusable) {
5871                 memset(desc, 0, sizeof(*desc));
5872                 if (base3)
5873                         *base3 = 0;
5874                 return false;
5875         }
5876
5877         if (var.g)
5878                 var.limit >>= 12;
5879         set_desc_limit(desc, var.limit);
5880         set_desc_base(desc, (unsigned long)var.base);
5881 #ifdef CONFIG_X86_64
5882         if (base3)
5883                 *base3 = var.base >> 32;
5884 #endif
5885         desc->type = var.type;
5886         desc->s = var.s;
5887         desc->dpl = var.dpl;
5888         desc->p = var.present;
5889         desc->avl = var.avl;
5890         desc->l = var.l;
5891         desc->d = var.db;
5892         desc->g = var.g;
5893
5894         return true;
5895 }
5896
5897 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5898                                  struct desc_struct *desc, u32 base3,
5899                                  int seg)
5900 {
5901         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5902         struct kvm_segment var;
5903
5904         var.selector = selector;
5905         var.base = get_desc_base(desc);
5906 #ifdef CONFIG_X86_64
5907         var.base |= ((u64)base3) << 32;
5908 #endif
5909         var.limit = get_desc_limit(desc);
5910         if (desc->g)
5911                 var.limit = (var.limit << 12) | 0xfff;
5912         var.type = desc->type;
5913         var.dpl = desc->dpl;
5914         var.db = desc->d;
5915         var.s = desc->s;
5916         var.l = desc->l;
5917         var.g = desc->g;
5918         var.avl = desc->avl;
5919         var.present = desc->p;
5920         var.unusable = !var.present;
5921         var.padding = 0;
5922
5923         kvm_set_segment(vcpu, &var, seg);
5924         return;
5925 }
5926
5927 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5928                             u32 msr_index, u64 *pdata)
5929 {
5930         struct msr_data msr;
5931         int r;
5932
5933         msr.index = msr_index;
5934         msr.host_initiated = false;
5935         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5936         if (r)
5937                 return r;
5938
5939         *pdata = msr.data;
5940         return 0;
5941 }
5942
5943 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5944                             u32 msr_index, u64 data)
5945 {
5946         struct msr_data msr;
5947
5948         msr.data = data;
5949         msr.index = msr_index;
5950         msr.host_initiated = false;
5951         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5952 }
5953
5954 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5955 {
5956         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5957
5958         return vcpu->arch.smbase;
5959 }
5960
5961 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5962 {
5963         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5964
5965         vcpu->arch.smbase = smbase;
5966 }
5967
5968 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5969                               u32 pmc)
5970 {
5971         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5972 }
5973
5974 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5975                              u32 pmc, u64 *pdata)
5976 {
5977         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5978 }
5979
5980 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5981 {
5982         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5983 }
5984
5985 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5986                               struct x86_instruction_info *info,
5987                               enum x86_intercept_stage stage)
5988 {
5989         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5990 }
5991
5992 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5993                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5994 {
5995         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5996 }
5997
5998 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5999 {
6000         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6001 }
6002
6003 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6004 {
6005         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6006 }
6007
6008 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6009 {
6010         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6011 }
6012
6013 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6014 {
6015         return emul_to_vcpu(ctxt)->arch.hflags;
6016 }
6017
6018 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6019 {
6020         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6021 }
6022
6023 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6024                                   const char *smstate)
6025 {
6026         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6027 }
6028
6029 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6030 {
6031         kvm_smm_changed(emul_to_vcpu(ctxt));
6032 }
6033
6034 static const struct x86_emulate_ops emulate_ops = {
6035         .read_gpr            = emulator_read_gpr,
6036         .write_gpr           = emulator_write_gpr,
6037         .read_std            = emulator_read_std,
6038         .write_std           = emulator_write_std,
6039         .read_phys           = kvm_read_guest_phys_system,
6040         .fetch               = kvm_fetch_guest_virt,
6041         .read_emulated       = emulator_read_emulated,
6042         .write_emulated      = emulator_write_emulated,
6043         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6044         .invlpg              = emulator_invlpg,
6045         .pio_in_emulated     = emulator_pio_in_emulated,
6046         .pio_out_emulated    = emulator_pio_out_emulated,
6047         .get_segment         = emulator_get_segment,
6048         .set_segment         = emulator_set_segment,
6049         .get_cached_segment_base = emulator_get_cached_segment_base,
6050         .get_gdt             = emulator_get_gdt,
6051         .get_idt             = emulator_get_idt,
6052         .set_gdt             = emulator_set_gdt,
6053         .set_idt             = emulator_set_idt,
6054         .get_cr              = emulator_get_cr,
6055         .set_cr              = emulator_set_cr,
6056         .cpl                 = emulator_get_cpl,
6057         .get_dr              = emulator_get_dr,
6058         .set_dr              = emulator_set_dr,
6059         .get_smbase          = emulator_get_smbase,
6060         .set_smbase          = emulator_set_smbase,
6061         .set_msr             = emulator_set_msr,
6062         .get_msr             = emulator_get_msr,
6063         .check_pmc           = emulator_check_pmc,
6064         .read_pmc            = emulator_read_pmc,
6065         .halt                = emulator_halt,
6066         .wbinvd              = emulator_wbinvd,
6067         .fix_hypercall       = emulator_fix_hypercall,
6068         .intercept           = emulator_intercept,
6069         .get_cpuid           = emulator_get_cpuid,
6070         .set_nmi_mask        = emulator_set_nmi_mask,
6071         .get_hflags          = emulator_get_hflags,
6072         .set_hflags          = emulator_set_hflags,
6073         .pre_leave_smm       = emulator_pre_leave_smm,
6074         .post_leave_smm      = emulator_post_leave_smm,
6075 };
6076
6077 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6078 {
6079         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6080         /*
6081          * an sti; sti; sequence only disable interrupts for the first
6082          * instruction. So, if the last instruction, be it emulated or
6083          * not, left the system with the INT_STI flag enabled, it
6084          * means that the last instruction is an sti. We should not
6085          * leave the flag on in this case. The same goes for mov ss
6086          */
6087         if (int_shadow & mask)
6088                 mask = 0;
6089         if (unlikely(int_shadow || mask)) {
6090                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6091                 if (!mask)
6092                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6093         }
6094 }
6095
6096 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6097 {
6098         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6099         if (ctxt->exception.vector == PF_VECTOR)
6100                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6101
6102         if (ctxt->exception.error_code_valid)
6103                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6104                                       ctxt->exception.error_code);
6105         else
6106                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6107         return false;
6108 }
6109
6110 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6111 {
6112         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6113         int cs_db, cs_l;
6114
6115         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6116
6117         ctxt->eflags = kvm_get_rflags(vcpu);
6118         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6119
6120         ctxt->eip = kvm_rip_read(vcpu);
6121         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6122                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6123                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6124                      cs_db                              ? X86EMUL_MODE_PROT32 :
6125                                                           X86EMUL_MODE_PROT16;
6126         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6127         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6128         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6129
6130         init_decode_cache(ctxt);
6131         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6132 }
6133
6134 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6135 {
6136         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6137         int ret;
6138
6139         init_emulate_ctxt(vcpu);
6140
6141         ctxt->op_bytes = 2;
6142         ctxt->ad_bytes = 2;
6143         ctxt->_eip = ctxt->eip + inc_eip;
6144         ret = emulate_int_real(ctxt, irq);
6145
6146         if (ret != X86EMUL_CONTINUE)
6147                 return EMULATE_FAIL;
6148
6149         ctxt->eip = ctxt->_eip;
6150         kvm_rip_write(vcpu, ctxt->eip);
6151         kvm_set_rflags(vcpu, ctxt->eflags);
6152
6153         return EMULATE_DONE;
6154 }
6155 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6156
6157 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6158 {
6159         int r = EMULATE_DONE;
6160
6161         ++vcpu->stat.insn_emulation_fail;
6162         trace_kvm_emulate_insn_failed(vcpu);
6163
6164         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6165                 return EMULATE_FAIL;
6166
6167         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6168                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6169                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6170                 vcpu->run->internal.ndata = 0;
6171                 r = EMULATE_USER_EXIT;
6172         }
6173
6174         kvm_queue_exception(vcpu, UD_VECTOR);
6175
6176         return r;
6177 }
6178
6179 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6180                                   bool write_fault_to_shadow_pgtable,
6181                                   int emulation_type)
6182 {
6183         gpa_t gpa = cr2;
6184         kvm_pfn_t pfn;
6185
6186         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6187                 return false;
6188
6189         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6190                 return false;
6191
6192         if (!vcpu->arch.mmu->direct_map) {
6193                 /*
6194                  * Write permission should be allowed since only
6195                  * write access need to be emulated.
6196                  */
6197                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6198
6199                 /*
6200                  * If the mapping is invalid in guest, let cpu retry
6201                  * it to generate fault.
6202                  */
6203                 if (gpa == UNMAPPED_GVA)
6204                         return true;
6205         }
6206
6207         /*
6208          * Do not retry the unhandleable instruction if it faults on the
6209          * readonly host memory, otherwise it will goto a infinite loop:
6210          * retry instruction -> write #PF -> emulation fail -> retry
6211          * instruction -> ...
6212          */
6213         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6214
6215         /*
6216          * If the instruction failed on the error pfn, it can not be fixed,
6217          * report the error to userspace.
6218          */
6219         if (is_error_noslot_pfn(pfn))
6220                 return false;
6221
6222         kvm_release_pfn_clean(pfn);
6223
6224         /* The instructions are well-emulated on direct mmu. */
6225         if (vcpu->arch.mmu->direct_map) {
6226                 unsigned int indirect_shadow_pages;
6227
6228                 spin_lock(&vcpu->kvm->mmu_lock);
6229                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6230                 spin_unlock(&vcpu->kvm->mmu_lock);
6231
6232                 if (indirect_shadow_pages)
6233                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6234
6235                 return true;
6236         }
6237
6238         /*
6239          * if emulation was due to access to shadowed page table
6240          * and it failed try to unshadow page and re-enter the
6241          * guest to let CPU execute the instruction.
6242          */
6243         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6244
6245         /*
6246          * If the access faults on its page table, it can not
6247          * be fixed by unprotecting shadow page and it should
6248          * be reported to userspace.
6249          */
6250         return !write_fault_to_shadow_pgtable;
6251 }
6252
6253 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6254                               unsigned long cr2,  int emulation_type)
6255 {
6256         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6257         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6258
6259         last_retry_eip = vcpu->arch.last_retry_eip;
6260         last_retry_addr = vcpu->arch.last_retry_addr;
6261
6262         /*
6263          * If the emulation is caused by #PF and it is non-page_table
6264          * writing instruction, it means the VM-EXIT is caused by shadow
6265          * page protected, we can zap the shadow page and retry this
6266          * instruction directly.
6267          *
6268          * Note: if the guest uses a non-page-table modifying instruction
6269          * on the PDE that points to the instruction, then we will unmap
6270          * the instruction and go to an infinite loop. So, we cache the
6271          * last retried eip and the last fault address, if we meet the eip
6272          * and the address again, we can break out of the potential infinite
6273          * loop.
6274          */
6275         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6276
6277         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6278                 return false;
6279
6280         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6281                 return false;
6282
6283         if (x86_page_table_writing_insn(ctxt))
6284                 return false;
6285
6286         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6287                 return false;
6288
6289         vcpu->arch.last_retry_eip = ctxt->eip;
6290         vcpu->arch.last_retry_addr = cr2;
6291
6292         if (!vcpu->arch.mmu->direct_map)
6293                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6294
6295         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6296
6297         return true;
6298 }
6299
6300 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6301 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6302
6303 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6304 {
6305         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6306                 /* This is a good place to trace that we are exiting SMM.  */
6307                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6308
6309                 /* Process a latched INIT or SMI, if any.  */
6310                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6311         }
6312
6313         kvm_mmu_reset_context(vcpu);
6314 }
6315
6316 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6317                                 unsigned long *db)
6318 {
6319         u32 dr6 = 0;
6320         int i;
6321         u32 enable, rwlen;
6322
6323         enable = dr7;
6324         rwlen = dr7 >> 16;
6325         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6326                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6327                         dr6 |= (1 << i);
6328         return dr6;
6329 }
6330
6331 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6332 {
6333         struct kvm_run *kvm_run = vcpu->run;
6334
6335         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6336                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6337                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6338                 kvm_run->debug.arch.exception = DB_VECTOR;
6339                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6340                 *r = EMULATE_USER_EXIT;
6341         } else {
6342                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6343         }
6344 }
6345
6346 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6347 {
6348         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6349         int r = EMULATE_DONE;
6350
6351         kvm_x86_ops->skip_emulated_instruction(vcpu);
6352
6353         /*
6354          * rflags is the old, "raw" value of the flags.  The new value has
6355          * not been saved yet.
6356          *
6357          * This is correct even for TF set by the guest, because "the
6358          * processor will not generate this exception after the instruction
6359          * that sets the TF flag".
6360          */
6361         if (unlikely(rflags & X86_EFLAGS_TF))
6362                 kvm_vcpu_do_singlestep(vcpu, &r);
6363         return r == EMULATE_DONE;
6364 }
6365 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6366
6367 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6368 {
6369         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6370             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6371                 struct kvm_run *kvm_run = vcpu->run;
6372                 unsigned long eip = kvm_get_linear_rip(vcpu);
6373                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6374                                            vcpu->arch.guest_debug_dr7,
6375                                            vcpu->arch.eff_db);
6376
6377                 if (dr6 != 0) {
6378                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6379                         kvm_run->debug.arch.pc = eip;
6380                         kvm_run->debug.arch.exception = DB_VECTOR;
6381                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6382                         *r = EMULATE_USER_EXIT;
6383                         return true;
6384                 }
6385         }
6386
6387         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6388             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6389                 unsigned long eip = kvm_get_linear_rip(vcpu);
6390                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6391                                            vcpu->arch.dr7,
6392                                            vcpu->arch.db);
6393
6394                 if (dr6 != 0) {
6395                         vcpu->arch.dr6 &= ~15;
6396                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6397                         kvm_queue_exception(vcpu, DB_VECTOR);
6398                         *r = EMULATE_DONE;
6399                         return true;
6400                 }
6401         }
6402
6403         return false;
6404 }
6405
6406 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6407 {
6408         switch (ctxt->opcode_len) {
6409         case 1:
6410                 switch (ctxt->b) {
6411                 case 0xe4:      /* IN */
6412                 case 0xe5:
6413                 case 0xec:
6414                 case 0xed:
6415                 case 0xe6:      /* OUT */
6416                 case 0xe7:
6417                 case 0xee:
6418                 case 0xef:
6419                 case 0x6c:      /* INS */
6420                 case 0x6d:
6421                 case 0x6e:      /* OUTS */
6422                 case 0x6f:
6423                         return true;
6424                 }
6425                 break;
6426         case 2:
6427                 switch (ctxt->b) {
6428                 case 0x33:      /* RDPMC */
6429                         return true;
6430                 }
6431                 break;
6432         }
6433
6434         return false;
6435 }
6436
6437 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6438                             unsigned long cr2,
6439                             int emulation_type,
6440                             void *insn,
6441                             int insn_len)
6442 {
6443         int r;
6444         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6445         bool writeback = true;
6446         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6447
6448         vcpu->arch.l1tf_flush_l1d = true;
6449
6450         /*
6451          * Clear write_fault_to_shadow_pgtable here to ensure it is
6452          * never reused.
6453          */
6454         vcpu->arch.write_fault_to_shadow_pgtable = false;
6455         kvm_clear_exception_queue(vcpu);
6456
6457         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6458                 init_emulate_ctxt(vcpu);
6459
6460                 /*
6461                  * We will reenter on the same instruction since
6462                  * we do not set complete_userspace_io.  This does not
6463                  * handle watchpoints yet, those would be handled in
6464                  * the emulate_ops.
6465                  */
6466                 if (!(emulation_type & EMULTYPE_SKIP) &&
6467                     kvm_vcpu_check_breakpoint(vcpu, &r))
6468                         return r;
6469
6470                 ctxt->interruptibility = 0;
6471                 ctxt->have_exception = false;
6472                 ctxt->exception.vector = -1;
6473                 ctxt->perm_ok = false;
6474
6475                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6476
6477                 r = x86_decode_insn(ctxt, insn, insn_len);
6478
6479                 trace_kvm_emulate_insn_start(vcpu);
6480                 ++vcpu->stat.insn_emulation;
6481                 if (r != EMULATION_OK)  {
6482                         if (emulation_type & EMULTYPE_TRAP_UD)
6483                                 return EMULATE_FAIL;
6484                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6485                                                 emulation_type))
6486                                 return EMULATE_DONE;
6487                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6488                                 return EMULATE_DONE;
6489                         if (emulation_type & EMULTYPE_SKIP)
6490                                 return EMULATE_FAIL;
6491                         return handle_emulation_failure(vcpu, emulation_type);
6492                 }
6493         }
6494
6495         if ((emulation_type & EMULTYPE_VMWARE) &&
6496             !is_vmware_backdoor_opcode(ctxt))
6497                 return EMULATE_FAIL;
6498
6499         if (emulation_type & EMULTYPE_SKIP) {
6500                 kvm_rip_write(vcpu, ctxt->_eip);
6501                 if (ctxt->eflags & X86_EFLAGS_RF)
6502                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6503                 return EMULATE_DONE;
6504         }
6505
6506         if (retry_instruction(ctxt, cr2, emulation_type))
6507                 return EMULATE_DONE;
6508
6509         /* this is needed for vmware backdoor interface to work since it
6510            changes registers values  during IO operation */
6511         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6512                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6513                 emulator_invalidate_register_cache(ctxt);
6514         }
6515
6516 restart:
6517         /* Save the faulting GPA (cr2) in the address field */
6518         ctxt->exception.address = cr2;
6519
6520         r = x86_emulate_insn(ctxt);
6521
6522         if (r == EMULATION_INTERCEPTED)
6523                 return EMULATE_DONE;
6524
6525         if (r == EMULATION_FAILED) {
6526                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6527                                         emulation_type))
6528                         return EMULATE_DONE;
6529
6530                 return handle_emulation_failure(vcpu, emulation_type);
6531         }
6532
6533         if (ctxt->have_exception) {
6534                 r = EMULATE_DONE;
6535                 if (inject_emulated_exception(vcpu))
6536                         return r;
6537         } else if (vcpu->arch.pio.count) {
6538                 if (!vcpu->arch.pio.in) {
6539                         /* FIXME: return into emulator if single-stepping.  */
6540                         vcpu->arch.pio.count = 0;
6541                 } else {
6542                         writeback = false;
6543                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6544                 }
6545                 r = EMULATE_USER_EXIT;
6546         } else if (vcpu->mmio_needed) {
6547                 if (!vcpu->mmio_is_write)
6548                         writeback = false;
6549                 r = EMULATE_USER_EXIT;
6550                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6551         } else if (r == EMULATION_RESTART)
6552                 goto restart;
6553         else
6554                 r = EMULATE_DONE;
6555
6556         if (writeback) {
6557                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6558                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6559                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6560                 kvm_rip_write(vcpu, ctxt->eip);
6561                 if (r == EMULATE_DONE && ctxt->tf)
6562                         kvm_vcpu_do_singlestep(vcpu, &r);
6563                 if (!ctxt->have_exception ||
6564                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6565                         __kvm_set_rflags(vcpu, ctxt->eflags);
6566
6567                 /*
6568                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6569                  * do nothing, and it will be requested again as soon as
6570                  * the shadow expires.  But we still need to check here,
6571                  * because POPF has no interrupt shadow.
6572                  */
6573                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6574                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6575         } else
6576                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6577
6578         return r;
6579 }
6580
6581 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6582 {
6583         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6584 }
6585 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6586
6587 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6588                                         void *insn, int insn_len)
6589 {
6590         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6591 }
6592 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6593
6594 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6595 {
6596         vcpu->arch.pio.count = 0;
6597         return 1;
6598 }
6599
6600 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6601 {
6602         vcpu->arch.pio.count = 0;
6603
6604         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6605                 return 1;
6606
6607         return kvm_skip_emulated_instruction(vcpu);
6608 }
6609
6610 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6611                             unsigned short port)
6612 {
6613         unsigned long val = kvm_rax_read(vcpu);
6614         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6615                                             size, port, &val, 1);
6616         if (ret)
6617                 return ret;
6618
6619         /*
6620          * Workaround userspace that relies on old KVM behavior of %rip being
6621          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6622          */
6623         if (port == 0x7e &&
6624             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6625                 vcpu->arch.complete_userspace_io =
6626                         complete_fast_pio_out_port_0x7e;
6627                 kvm_skip_emulated_instruction(vcpu);
6628         } else {
6629                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6630                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6631         }
6632         return 0;
6633 }
6634
6635 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6636 {
6637         unsigned long val;
6638
6639         /* We should only ever be called with arch.pio.count equal to 1 */
6640         BUG_ON(vcpu->arch.pio.count != 1);
6641
6642         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6643                 vcpu->arch.pio.count = 0;
6644                 return 1;
6645         }
6646
6647         /* For size less than 4 we merge, else we zero extend */
6648         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6649
6650         /*
6651          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6652          * the copy and tracing
6653          */
6654         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6655                                  vcpu->arch.pio.port, &val, 1);
6656         kvm_rax_write(vcpu, val);
6657
6658         return kvm_skip_emulated_instruction(vcpu);
6659 }
6660
6661 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6662                            unsigned short port)
6663 {
6664         unsigned long val;
6665         int ret;
6666
6667         /* For size less than 4 we merge, else we zero extend */
6668         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6669
6670         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6671                                        &val, 1);
6672         if (ret) {
6673                 kvm_rax_write(vcpu, val);
6674                 return ret;
6675         }
6676
6677         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6678         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6679
6680         return 0;
6681 }
6682
6683 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6684 {
6685         int ret;
6686
6687         if (in)
6688                 ret = kvm_fast_pio_in(vcpu, size, port);
6689         else
6690                 ret = kvm_fast_pio_out(vcpu, size, port);
6691         return ret && kvm_skip_emulated_instruction(vcpu);
6692 }
6693 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6694
6695 static int kvmclock_cpu_down_prep(unsigned int cpu)
6696 {
6697         __this_cpu_write(cpu_tsc_khz, 0);
6698         return 0;
6699 }
6700
6701 static void tsc_khz_changed(void *data)
6702 {
6703         struct cpufreq_freqs *freq = data;
6704         unsigned long khz = 0;
6705
6706         if (data)
6707                 khz = freq->new;
6708         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6709                 khz = cpufreq_quick_get(raw_smp_processor_id());
6710         if (!khz)
6711                 khz = tsc_khz;
6712         __this_cpu_write(cpu_tsc_khz, khz);
6713 }
6714
6715 #ifdef CONFIG_X86_64
6716 static void kvm_hyperv_tsc_notifier(void)
6717 {
6718         struct kvm *kvm;
6719         struct kvm_vcpu *vcpu;
6720         int cpu;
6721
6722         spin_lock(&kvm_lock);
6723         list_for_each_entry(kvm, &vm_list, vm_list)
6724                 kvm_make_mclock_inprogress_request(kvm);
6725
6726         hyperv_stop_tsc_emulation();
6727
6728         /* TSC frequency always matches when on Hyper-V */
6729         for_each_present_cpu(cpu)
6730                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6731         kvm_max_guest_tsc_khz = tsc_khz;
6732
6733         list_for_each_entry(kvm, &vm_list, vm_list) {
6734                 struct kvm_arch *ka = &kvm->arch;
6735
6736                 spin_lock(&ka->pvclock_gtod_sync_lock);
6737
6738                 pvclock_update_vm_gtod_copy(kvm);
6739
6740                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6741                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6742
6743                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6744                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6745
6746                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6747         }
6748         spin_unlock(&kvm_lock);
6749 }
6750 #endif
6751
6752 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6753 {
6754         struct kvm *kvm;
6755         struct kvm_vcpu *vcpu;
6756         int i, send_ipi = 0;
6757
6758         /*
6759          * We allow guests to temporarily run on slowing clocks,
6760          * provided we notify them after, or to run on accelerating
6761          * clocks, provided we notify them before.  Thus time never
6762          * goes backwards.
6763          *
6764          * However, we have a problem.  We can't atomically update
6765          * the frequency of a given CPU from this function; it is
6766          * merely a notifier, which can be called from any CPU.
6767          * Changing the TSC frequency at arbitrary points in time
6768          * requires a recomputation of local variables related to
6769          * the TSC for each VCPU.  We must flag these local variables
6770          * to be updated and be sure the update takes place with the
6771          * new frequency before any guests proceed.
6772          *
6773          * Unfortunately, the combination of hotplug CPU and frequency
6774          * change creates an intractable locking scenario; the order
6775          * of when these callouts happen is undefined with respect to
6776          * CPU hotplug, and they can race with each other.  As such,
6777          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6778          * undefined; you can actually have a CPU frequency change take
6779          * place in between the computation of X and the setting of the
6780          * variable.  To protect against this problem, all updates of
6781          * the per_cpu tsc_khz variable are done in an interrupt
6782          * protected IPI, and all callers wishing to update the value
6783          * must wait for a synchronous IPI to complete (which is trivial
6784          * if the caller is on the CPU already).  This establishes the
6785          * necessary total order on variable updates.
6786          *
6787          * Note that because a guest time update may take place
6788          * anytime after the setting of the VCPU's request bit, the
6789          * correct TSC value must be set before the request.  However,
6790          * to ensure the update actually makes it to any guest which
6791          * starts running in hardware virtualization between the set
6792          * and the acquisition of the spinlock, we must also ping the
6793          * CPU after setting the request bit.
6794          *
6795          */
6796
6797         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6798
6799         spin_lock(&kvm_lock);
6800         list_for_each_entry(kvm, &vm_list, vm_list) {
6801                 kvm_for_each_vcpu(i, vcpu, kvm) {
6802                         if (vcpu->cpu != cpu)
6803                                 continue;
6804                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6805                         if (vcpu->cpu != smp_processor_id())
6806                                 send_ipi = 1;
6807                 }
6808         }
6809         spin_unlock(&kvm_lock);
6810
6811         if (freq->old < freq->new && send_ipi) {
6812                 /*
6813                  * We upscale the frequency.  Must make the guest
6814                  * doesn't see old kvmclock values while running with
6815                  * the new frequency, otherwise we risk the guest sees
6816                  * time go backwards.
6817                  *
6818                  * In case we update the frequency for another cpu
6819                  * (which might be in guest context) send an interrupt
6820                  * to kick the cpu out of guest context.  Next time
6821                  * guest context is entered kvmclock will be updated,
6822                  * so the guest will not see stale values.
6823                  */
6824                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6825         }
6826 }
6827
6828 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6829                                      void *data)
6830 {
6831         struct cpufreq_freqs *freq = data;
6832         int cpu;
6833
6834         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6835                 return 0;
6836         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6837                 return 0;
6838
6839         for_each_cpu(cpu, freq->policy->cpus)
6840                 __kvmclock_cpufreq_notifier(freq, cpu);
6841
6842         return 0;
6843 }
6844
6845 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6846         .notifier_call  = kvmclock_cpufreq_notifier
6847 };
6848
6849 static int kvmclock_cpu_online(unsigned int cpu)
6850 {
6851         tsc_khz_changed(NULL);
6852         return 0;
6853 }
6854
6855 static void kvm_timer_init(void)
6856 {
6857         max_tsc_khz = tsc_khz;
6858
6859         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6860 #ifdef CONFIG_CPU_FREQ
6861                 struct cpufreq_policy policy;
6862                 int cpu;
6863
6864                 memset(&policy, 0, sizeof(policy));
6865                 cpu = get_cpu();
6866                 cpufreq_get_policy(&policy, cpu);
6867                 if (policy.cpuinfo.max_freq)
6868                         max_tsc_khz = policy.cpuinfo.max_freq;
6869                 put_cpu();
6870 #endif
6871                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6872                                           CPUFREQ_TRANSITION_NOTIFIER);
6873         }
6874         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6875
6876         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6877                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6878 }
6879
6880 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6881 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6882
6883 int kvm_is_in_guest(void)
6884 {
6885         return __this_cpu_read(current_vcpu) != NULL;
6886 }
6887
6888 static int kvm_is_user_mode(void)
6889 {
6890         int user_mode = 3;
6891
6892         if (__this_cpu_read(current_vcpu))
6893                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6894
6895         return user_mode != 0;
6896 }
6897
6898 static unsigned long kvm_get_guest_ip(void)
6899 {
6900         unsigned long ip = 0;
6901
6902         if (__this_cpu_read(current_vcpu))
6903                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6904
6905         return ip;
6906 }
6907
6908 static void kvm_handle_intel_pt_intr(void)
6909 {
6910         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6911
6912         kvm_make_request(KVM_REQ_PMI, vcpu);
6913         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6914                         (unsigned long *)&vcpu->arch.pmu.global_status);
6915 }
6916
6917 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6918         .is_in_guest            = kvm_is_in_guest,
6919         .is_user_mode           = kvm_is_user_mode,
6920         .get_guest_ip           = kvm_get_guest_ip,
6921         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
6922 };
6923
6924 #ifdef CONFIG_X86_64
6925 static void pvclock_gtod_update_fn(struct work_struct *work)
6926 {
6927         struct kvm *kvm;
6928
6929         struct kvm_vcpu *vcpu;
6930         int i;
6931
6932         spin_lock(&kvm_lock);
6933         list_for_each_entry(kvm, &vm_list, vm_list)
6934                 kvm_for_each_vcpu(i, vcpu, kvm)
6935                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6936         atomic_set(&kvm_guest_has_master_clock, 0);
6937         spin_unlock(&kvm_lock);
6938 }
6939
6940 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6941
6942 /*
6943  * Notification about pvclock gtod data update.
6944  */
6945 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6946                                void *priv)
6947 {
6948         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6949         struct timekeeper *tk = priv;
6950
6951         update_pvclock_gtod(tk);
6952
6953         /* disable master clock if host does not trust, or does not
6954          * use, TSC based clocksource.
6955          */
6956         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6957             atomic_read(&kvm_guest_has_master_clock) != 0)
6958                 queue_work(system_long_wq, &pvclock_gtod_work);
6959
6960         return 0;
6961 }
6962
6963 static struct notifier_block pvclock_gtod_notifier = {
6964         .notifier_call = pvclock_gtod_notify,
6965 };
6966 #endif
6967
6968 int kvm_arch_init(void *opaque)
6969 {
6970         int r;
6971         struct kvm_x86_ops *ops = opaque;
6972
6973         if (kvm_x86_ops) {
6974                 printk(KERN_ERR "kvm: already loaded the other module\n");
6975                 r = -EEXIST;
6976                 goto out;
6977         }
6978
6979         if (!ops->cpu_has_kvm_support()) {
6980                 printk(KERN_ERR "kvm: no hardware support\n");
6981                 r = -EOPNOTSUPP;
6982                 goto out;
6983         }
6984         if (ops->disabled_by_bios()) {
6985                 printk(KERN_ERR "kvm: disabled by bios\n");
6986                 r = -EOPNOTSUPP;
6987                 goto out;
6988         }
6989
6990         /*
6991          * KVM explicitly assumes that the guest has an FPU and
6992          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
6993          * vCPU's FPU state as a fxregs_state struct.
6994          */
6995         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
6996                 printk(KERN_ERR "kvm: inadequate fpu\n");
6997                 r = -EOPNOTSUPP;
6998                 goto out;
6999         }
7000
7001         r = -ENOMEM;
7002         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7003                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7004                                           NULL);
7005         if (!x86_fpu_cache) {
7006                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7007                 goto out;
7008         }
7009
7010         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7011         if (!shared_msrs) {
7012                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7013                 goto out_free_x86_fpu_cache;
7014         }
7015
7016         r = kvm_mmu_module_init();
7017         if (r)
7018                 goto out_free_percpu;
7019
7020         kvm_x86_ops = ops;
7021
7022         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7023                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7024                         PT_PRESENT_MASK, 0, sme_me_mask);
7025         kvm_timer_init();
7026
7027         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7028
7029         if (boot_cpu_has(X86_FEATURE_XSAVE))
7030                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7031
7032         kvm_lapic_init();
7033 #ifdef CONFIG_X86_64
7034         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7035
7036         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7037                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7038 #endif
7039
7040         return 0;
7041
7042 out_free_percpu:
7043         free_percpu(shared_msrs);
7044 out_free_x86_fpu_cache:
7045         kmem_cache_destroy(x86_fpu_cache);
7046 out:
7047         return r;
7048 }
7049
7050 void kvm_arch_exit(void)
7051 {
7052 #ifdef CONFIG_X86_64
7053         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7054                 clear_hv_tscchange_cb();
7055 #endif
7056         kvm_lapic_exit();
7057         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7058
7059         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7060                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7061                                             CPUFREQ_TRANSITION_NOTIFIER);
7062         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7063 #ifdef CONFIG_X86_64
7064         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7065 #endif
7066         kvm_x86_ops = NULL;
7067         kvm_mmu_module_exit();
7068         free_percpu(shared_msrs);
7069         kmem_cache_destroy(x86_fpu_cache);
7070 }
7071
7072 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7073 {
7074         ++vcpu->stat.halt_exits;
7075         if (lapic_in_kernel(vcpu)) {
7076                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7077                 return 1;
7078         } else {
7079                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7080                 return 0;
7081         }
7082 }
7083 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7084
7085 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7086 {
7087         int ret = kvm_skip_emulated_instruction(vcpu);
7088         /*
7089          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7090          * KVM_EXIT_DEBUG here.
7091          */
7092         return kvm_vcpu_halt(vcpu) && ret;
7093 }
7094 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7095
7096 #ifdef CONFIG_X86_64
7097 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7098                                 unsigned long clock_type)
7099 {
7100         struct kvm_clock_pairing clock_pairing;
7101         struct timespec64 ts;
7102         u64 cycle;
7103         int ret;
7104
7105         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7106                 return -KVM_EOPNOTSUPP;
7107
7108         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7109                 return -KVM_EOPNOTSUPP;
7110
7111         clock_pairing.sec = ts.tv_sec;
7112         clock_pairing.nsec = ts.tv_nsec;
7113         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7114         clock_pairing.flags = 0;
7115         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7116
7117         ret = 0;
7118         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7119                             sizeof(struct kvm_clock_pairing)))
7120                 ret = -KVM_EFAULT;
7121
7122         return ret;
7123 }
7124 #endif
7125
7126 /*
7127  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7128  *
7129  * @apicid - apicid of vcpu to be kicked.
7130  */
7131 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7132 {
7133         struct kvm_lapic_irq lapic_irq;
7134
7135         lapic_irq.shorthand = 0;
7136         lapic_irq.dest_mode = 0;
7137         lapic_irq.level = 0;
7138         lapic_irq.dest_id = apicid;
7139         lapic_irq.msi_redir_hint = false;
7140
7141         lapic_irq.delivery_mode = APIC_DM_REMRD;
7142         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7143 }
7144
7145 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7146 {
7147         if (!lapic_in_kernel(vcpu)) {
7148                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7149                 return;
7150         }
7151         if (!vcpu->arch.apicv_active)
7152                 return;
7153
7154         vcpu->arch.apicv_active = false;
7155         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7156 }
7157
7158 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7159 {
7160         unsigned long nr, a0, a1, a2, a3, ret;
7161         int op_64_bit;
7162
7163         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7164                 return kvm_hv_hypercall(vcpu);
7165
7166         nr = kvm_rax_read(vcpu);
7167         a0 = kvm_rbx_read(vcpu);
7168         a1 = kvm_rcx_read(vcpu);
7169         a2 = kvm_rdx_read(vcpu);
7170         a3 = kvm_rsi_read(vcpu);
7171
7172         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7173
7174         op_64_bit = is_64_bit_mode(vcpu);
7175         if (!op_64_bit) {
7176                 nr &= 0xFFFFFFFF;
7177                 a0 &= 0xFFFFFFFF;
7178                 a1 &= 0xFFFFFFFF;
7179                 a2 &= 0xFFFFFFFF;
7180                 a3 &= 0xFFFFFFFF;
7181         }
7182
7183         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7184                 ret = -KVM_EPERM;
7185                 goto out;
7186         }
7187
7188         switch (nr) {
7189         case KVM_HC_VAPIC_POLL_IRQ:
7190                 ret = 0;
7191                 break;
7192         case KVM_HC_KICK_CPU:
7193                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7194                 ret = 0;
7195                 break;
7196 #ifdef CONFIG_X86_64
7197         case KVM_HC_CLOCK_PAIRING:
7198                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7199                 break;
7200 #endif
7201         case KVM_HC_SEND_IPI:
7202                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7203                 break;
7204         default:
7205                 ret = -KVM_ENOSYS;
7206                 break;
7207         }
7208 out:
7209         if (!op_64_bit)
7210                 ret = (u32)ret;
7211         kvm_rax_write(vcpu, ret);
7212
7213         ++vcpu->stat.hypercalls;
7214         return kvm_skip_emulated_instruction(vcpu);
7215 }
7216 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7217
7218 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7219 {
7220         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7221         char instruction[3];
7222         unsigned long rip = kvm_rip_read(vcpu);
7223
7224         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7225
7226         return emulator_write_emulated(ctxt, rip, instruction, 3,
7227                 &ctxt->exception);
7228 }
7229
7230 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7231 {
7232         return vcpu->run->request_interrupt_window &&
7233                 likely(!pic_in_kernel(vcpu->kvm));
7234 }
7235
7236 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7237 {
7238         struct kvm_run *kvm_run = vcpu->run;
7239
7240         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7241         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7242         kvm_run->cr8 = kvm_get_cr8(vcpu);
7243         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7244         kvm_run->ready_for_interrupt_injection =
7245                 pic_in_kernel(vcpu->kvm) ||
7246                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7247 }
7248
7249 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7250 {
7251         int max_irr, tpr;
7252
7253         if (!kvm_x86_ops->update_cr8_intercept)
7254                 return;
7255
7256         if (!lapic_in_kernel(vcpu))
7257                 return;
7258
7259         if (vcpu->arch.apicv_active)
7260                 return;
7261
7262         if (!vcpu->arch.apic->vapic_addr)
7263                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7264         else
7265                 max_irr = -1;
7266
7267         if (max_irr != -1)
7268                 max_irr >>= 4;
7269
7270         tpr = kvm_lapic_get_cr8(vcpu);
7271
7272         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7273 }
7274
7275 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7276 {
7277         int r;
7278
7279         /* try to reinject previous events if any */
7280
7281         if (vcpu->arch.exception.injected)
7282                 kvm_x86_ops->queue_exception(vcpu);
7283         /*
7284          * Do not inject an NMI or interrupt if there is a pending
7285          * exception.  Exceptions and interrupts are recognized at
7286          * instruction boundaries, i.e. the start of an instruction.
7287          * Trap-like exceptions, e.g. #DB, have higher priority than
7288          * NMIs and interrupts, i.e. traps are recognized before an
7289          * NMI/interrupt that's pending on the same instruction.
7290          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7291          * priority, but are only generated (pended) during instruction
7292          * execution, i.e. a pending fault-like exception means the
7293          * fault occurred on the *previous* instruction and must be
7294          * serviced prior to recognizing any new events in order to
7295          * fully complete the previous instruction.
7296          */
7297         else if (!vcpu->arch.exception.pending) {
7298                 if (vcpu->arch.nmi_injected)
7299                         kvm_x86_ops->set_nmi(vcpu);
7300                 else if (vcpu->arch.interrupt.injected)
7301                         kvm_x86_ops->set_irq(vcpu);
7302         }
7303
7304         /*
7305          * Call check_nested_events() even if we reinjected a previous event
7306          * in order for caller to determine if it should require immediate-exit
7307          * from L2 to L1 due to pending L1 events which require exit
7308          * from L2 to L1.
7309          */
7310         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7311                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7312                 if (r != 0)
7313                         return r;
7314         }
7315
7316         /* try to inject new event if pending */
7317         if (vcpu->arch.exception.pending) {
7318                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7319                                         vcpu->arch.exception.has_error_code,
7320                                         vcpu->arch.exception.error_code);
7321
7322                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7323                 vcpu->arch.exception.pending = false;
7324                 vcpu->arch.exception.injected = true;
7325
7326                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7327                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7328                                              X86_EFLAGS_RF);
7329
7330                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7331                         /*
7332                          * This code assumes that nSVM doesn't use
7333                          * check_nested_events(). If it does, the
7334                          * DR6/DR7 changes should happen before L1
7335                          * gets a #VMEXIT for an intercepted #DB in
7336                          * L2.  (Under VMX, on the other hand, the
7337                          * DR6/DR7 changes should not happen in the
7338                          * event of a VM-exit to L1 for an intercepted
7339                          * #DB in L2.)
7340                          */
7341                         kvm_deliver_exception_payload(vcpu);
7342                         if (vcpu->arch.dr7 & DR7_GD) {
7343                                 vcpu->arch.dr7 &= ~DR7_GD;
7344                                 kvm_update_dr7(vcpu);
7345                         }
7346                 }
7347
7348                 kvm_x86_ops->queue_exception(vcpu);
7349         }
7350
7351         /* Don't consider new event if we re-injected an event */
7352         if (kvm_event_needs_reinjection(vcpu))
7353                 return 0;
7354
7355         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7356             kvm_x86_ops->smi_allowed(vcpu)) {
7357                 vcpu->arch.smi_pending = false;
7358                 ++vcpu->arch.smi_count;
7359                 enter_smm(vcpu);
7360         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7361                 --vcpu->arch.nmi_pending;
7362                 vcpu->arch.nmi_injected = true;
7363                 kvm_x86_ops->set_nmi(vcpu);
7364         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7365                 /*
7366                  * Because interrupts can be injected asynchronously, we are
7367                  * calling check_nested_events again here to avoid a race condition.
7368                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7369                  * proposal and current concerns.  Perhaps we should be setting
7370                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7371                  */
7372                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7373                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7374                         if (r != 0)
7375                                 return r;
7376                 }
7377                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7378                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7379                                             false);
7380                         kvm_x86_ops->set_irq(vcpu);
7381                 }
7382         }
7383
7384         return 0;
7385 }
7386
7387 static void process_nmi(struct kvm_vcpu *vcpu)
7388 {
7389         unsigned limit = 2;
7390
7391         /*
7392          * x86 is limited to one NMI running, and one NMI pending after it.
7393          * If an NMI is already in progress, limit further NMIs to just one.
7394          * Otherwise, allow two (and we'll inject the first one immediately).
7395          */
7396         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7397                 limit = 1;
7398
7399         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7400         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7401         kvm_make_request(KVM_REQ_EVENT, vcpu);
7402 }
7403
7404 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7405 {
7406         u32 flags = 0;
7407         flags |= seg->g       << 23;
7408         flags |= seg->db      << 22;
7409         flags |= seg->l       << 21;
7410         flags |= seg->avl     << 20;
7411         flags |= seg->present << 15;
7412         flags |= seg->dpl     << 13;
7413         flags |= seg->s       << 12;
7414         flags |= seg->type    << 8;
7415         return flags;
7416 }
7417
7418 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7419 {
7420         struct kvm_segment seg;
7421         int offset;
7422
7423         kvm_get_segment(vcpu, &seg, n);
7424         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7425
7426         if (n < 3)
7427                 offset = 0x7f84 + n * 12;
7428         else
7429                 offset = 0x7f2c + (n - 3) * 12;
7430
7431         put_smstate(u32, buf, offset + 8, seg.base);
7432         put_smstate(u32, buf, offset + 4, seg.limit);
7433         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7434 }
7435
7436 #ifdef CONFIG_X86_64
7437 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7438 {
7439         struct kvm_segment seg;
7440         int offset;
7441         u16 flags;
7442
7443         kvm_get_segment(vcpu, &seg, n);
7444         offset = 0x7e00 + n * 16;
7445
7446         flags = enter_smm_get_segment_flags(&seg) >> 8;
7447         put_smstate(u16, buf, offset, seg.selector);
7448         put_smstate(u16, buf, offset + 2, flags);
7449         put_smstate(u32, buf, offset + 4, seg.limit);
7450         put_smstate(u64, buf, offset + 8, seg.base);
7451 }
7452 #endif
7453
7454 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7455 {
7456         struct desc_ptr dt;
7457         struct kvm_segment seg;
7458         unsigned long val;
7459         int i;
7460
7461         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7462         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7463         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7464         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7465
7466         for (i = 0; i < 8; i++)
7467                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7468
7469         kvm_get_dr(vcpu, 6, &val);
7470         put_smstate(u32, buf, 0x7fcc, (u32)val);
7471         kvm_get_dr(vcpu, 7, &val);
7472         put_smstate(u32, buf, 0x7fc8, (u32)val);
7473
7474         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7475         put_smstate(u32, buf, 0x7fc4, seg.selector);
7476         put_smstate(u32, buf, 0x7f64, seg.base);
7477         put_smstate(u32, buf, 0x7f60, seg.limit);
7478         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7479
7480         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7481         put_smstate(u32, buf, 0x7fc0, seg.selector);
7482         put_smstate(u32, buf, 0x7f80, seg.base);
7483         put_smstate(u32, buf, 0x7f7c, seg.limit);
7484         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7485
7486         kvm_x86_ops->get_gdt(vcpu, &dt);
7487         put_smstate(u32, buf, 0x7f74, dt.address);
7488         put_smstate(u32, buf, 0x7f70, dt.size);
7489
7490         kvm_x86_ops->get_idt(vcpu, &dt);
7491         put_smstate(u32, buf, 0x7f58, dt.address);
7492         put_smstate(u32, buf, 0x7f54, dt.size);
7493
7494         for (i = 0; i < 6; i++)
7495                 enter_smm_save_seg_32(vcpu, buf, i);
7496
7497         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7498
7499         /* revision id */
7500         put_smstate(u32, buf, 0x7efc, 0x00020000);
7501         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7502 }
7503
7504 #ifdef CONFIG_X86_64
7505 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7506 {
7507         struct desc_ptr dt;
7508         struct kvm_segment seg;
7509         unsigned long val;
7510         int i;
7511
7512         for (i = 0; i < 16; i++)
7513                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7514
7515         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7516         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7517
7518         kvm_get_dr(vcpu, 6, &val);
7519         put_smstate(u64, buf, 0x7f68, val);
7520         kvm_get_dr(vcpu, 7, &val);
7521         put_smstate(u64, buf, 0x7f60, val);
7522
7523         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7524         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7525         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7526
7527         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7528
7529         /* revision id */
7530         put_smstate(u32, buf, 0x7efc, 0x00020064);
7531
7532         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7533
7534         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7535         put_smstate(u16, buf, 0x7e90, seg.selector);
7536         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7537         put_smstate(u32, buf, 0x7e94, seg.limit);
7538         put_smstate(u64, buf, 0x7e98, seg.base);
7539
7540         kvm_x86_ops->get_idt(vcpu, &dt);
7541         put_smstate(u32, buf, 0x7e84, dt.size);
7542         put_smstate(u64, buf, 0x7e88, dt.address);
7543
7544         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7545         put_smstate(u16, buf, 0x7e70, seg.selector);
7546         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7547         put_smstate(u32, buf, 0x7e74, seg.limit);
7548         put_smstate(u64, buf, 0x7e78, seg.base);
7549
7550         kvm_x86_ops->get_gdt(vcpu, &dt);
7551         put_smstate(u32, buf, 0x7e64, dt.size);
7552         put_smstate(u64, buf, 0x7e68, dt.address);
7553
7554         for (i = 0; i < 6; i++)
7555                 enter_smm_save_seg_64(vcpu, buf, i);
7556 }
7557 #endif
7558
7559 static void enter_smm(struct kvm_vcpu *vcpu)
7560 {
7561         struct kvm_segment cs, ds;
7562         struct desc_ptr dt;
7563         char buf[512];
7564         u32 cr0;
7565
7566         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7567         memset(buf, 0, 512);
7568 #ifdef CONFIG_X86_64
7569         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7570                 enter_smm_save_state_64(vcpu, buf);
7571         else
7572 #endif
7573                 enter_smm_save_state_32(vcpu, buf);
7574
7575         /*
7576          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7577          * vCPU state (e.g. leave guest mode) after we've saved the state into
7578          * the SMM state-save area.
7579          */
7580         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7581
7582         vcpu->arch.hflags |= HF_SMM_MASK;
7583         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7584
7585         if (kvm_x86_ops->get_nmi_mask(vcpu))
7586                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7587         else
7588                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7589
7590         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7591         kvm_rip_write(vcpu, 0x8000);
7592
7593         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7594         kvm_x86_ops->set_cr0(vcpu, cr0);
7595         vcpu->arch.cr0 = cr0;
7596
7597         kvm_x86_ops->set_cr4(vcpu, 0);
7598
7599         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7600         dt.address = dt.size = 0;
7601         kvm_x86_ops->set_idt(vcpu, &dt);
7602
7603         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7604
7605         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7606         cs.base = vcpu->arch.smbase;
7607
7608         ds.selector = 0;
7609         ds.base = 0;
7610
7611         cs.limit    = ds.limit = 0xffffffff;
7612         cs.type     = ds.type = 0x3;
7613         cs.dpl      = ds.dpl = 0;
7614         cs.db       = ds.db = 0;
7615         cs.s        = ds.s = 1;
7616         cs.l        = ds.l = 0;
7617         cs.g        = ds.g = 1;
7618         cs.avl      = ds.avl = 0;
7619         cs.present  = ds.present = 1;
7620         cs.unusable = ds.unusable = 0;
7621         cs.padding  = ds.padding = 0;
7622
7623         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7624         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7625         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7626         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7627         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7628         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7629
7630 #ifdef CONFIG_X86_64
7631         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7632                 kvm_x86_ops->set_efer(vcpu, 0);
7633 #endif
7634
7635         kvm_update_cpuid(vcpu);
7636         kvm_mmu_reset_context(vcpu);
7637 }
7638
7639 static void process_smi(struct kvm_vcpu *vcpu)
7640 {
7641         vcpu->arch.smi_pending = true;
7642         kvm_make_request(KVM_REQ_EVENT, vcpu);
7643 }
7644
7645 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7646 {
7647         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7648 }
7649
7650 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7651 {
7652         if (!kvm_apic_present(vcpu))
7653                 return;
7654
7655         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7656
7657         if (irqchip_split(vcpu->kvm))
7658                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7659         else {
7660                 if (vcpu->arch.apicv_active)
7661                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7662                 if (ioapic_in_kernel(vcpu->kvm))
7663                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7664         }
7665
7666         if (is_guest_mode(vcpu))
7667                 vcpu->arch.load_eoi_exitmap_pending = true;
7668         else
7669                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7670 }
7671
7672 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7673 {
7674         u64 eoi_exit_bitmap[4];
7675
7676         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7677                 return;
7678
7679         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7680                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7681         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7682 }
7683
7684 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7685                 unsigned long start, unsigned long end,
7686                 bool blockable)
7687 {
7688         unsigned long apic_address;
7689
7690         /*
7691          * The physical address of apic access page is stored in the VMCS.
7692          * Update it when it becomes invalid.
7693          */
7694         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7695         if (start <= apic_address && apic_address < end)
7696                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7697
7698         return 0;
7699 }
7700
7701 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7702 {
7703         struct page *page = NULL;
7704
7705         if (!lapic_in_kernel(vcpu))
7706                 return;
7707
7708         if (!kvm_x86_ops->set_apic_access_page_addr)
7709                 return;
7710
7711         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7712         if (is_error_page(page))
7713                 return;
7714         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7715
7716         /*
7717          * Do not pin apic access page in memory, the MMU notifier
7718          * will call us again if it is migrated or swapped out.
7719          */
7720         put_page(page);
7721 }
7722 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7723
7724 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7725 {
7726         smp_send_reschedule(vcpu->cpu);
7727 }
7728 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7729
7730 /*
7731  * Returns 1 to let vcpu_run() continue the guest execution loop without
7732  * exiting to the userspace.  Otherwise, the value will be returned to the
7733  * userspace.
7734  */
7735 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7736 {
7737         int r;
7738         bool req_int_win =
7739                 dm_request_for_irq_injection(vcpu) &&
7740                 kvm_cpu_accept_dm_intr(vcpu);
7741
7742         bool req_immediate_exit = false;
7743
7744         if (kvm_request_pending(vcpu)) {
7745                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7746                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7747                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7748                         kvm_mmu_unload(vcpu);
7749                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7750                         __kvm_migrate_timers(vcpu);
7751                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7752                         kvm_gen_update_masterclock(vcpu->kvm);
7753                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7754                         kvm_gen_kvmclock_update(vcpu);
7755                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7756                         r = kvm_guest_time_update(vcpu);
7757                         if (unlikely(r))
7758                                 goto out;
7759                 }
7760                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7761                         kvm_mmu_sync_roots(vcpu);
7762                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7763                         kvm_mmu_load_cr3(vcpu);
7764                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7765                         kvm_vcpu_flush_tlb(vcpu, true);
7766                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7767                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7768                         r = 0;
7769                         goto out;
7770                 }
7771                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7772                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7773                         vcpu->mmio_needed = 0;
7774                         r = 0;
7775                         goto out;
7776                 }
7777                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7778                         /* Page is swapped out. Do synthetic halt */
7779                         vcpu->arch.apf.halted = true;
7780                         r = 1;
7781                         goto out;
7782                 }
7783                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7784                         record_steal_time(vcpu);
7785                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7786                         process_smi(vcpu);
7787                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7788                         process_nmi(vcpu);
7789                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7790                         kvm_pmu_handle_event(vcpu);
7791                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7792                         kvm_pmu_deliver_pmi(vcpu);
7793                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7794                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7795                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7796                                      vcpu->arch.ioapic_handled_vectors)) {
7797                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7798                                 vcpu->run->eoi.vector =
7799                                                 vcpu->arch.pending_ioapic_eoi;
7800                                 r = 0;
7801                                 goto out;
7802                         }
7803                 }
7804                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7805                         vcpu_scan_ioapic(vcpu);
7806                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7807                         vcpu_load_eoi_exitmap(vcpu);
7808                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7809                         kvm_vcpu_reload_apic_access_page(vcpu);
7810                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7811                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7812                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7813                         r = 0;
7814                         goto out;
7815                 }
7816                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7817                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7818                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7819                         r = 0;
7820                         goto out;
7821                 }
7822                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7823                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7824                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7825                         r = 0;
7826                         goto out;
7827                 }
7828
7829                 /*
7830                  * KVM_REQ_HV_STIMER has to be processed after
7831                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7832                  * depend on the guest clock being up-to-date
7833                  */
7834                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7835                         kvm_hv_process_stimers(vcpu);
7836         }
7837
7838         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7839                 ++vcpu->stat.req_event;
7840                 kvm_apic_accept_events(vcpu);
7841                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7842                         r = 1;
7843                         goto out;
7844                 }
7845
7846                 if (inject_pending_event(vcpu, req_int_win) != 0)
7847                         req_immediate_exit = true;
7848                 else {
7849                         /* Enable SMI/NMI/IRQ window open exits if needed.
7850                          *
7851                          * SMIs have three cases:
7852                          * 1) They can be nested, and then there is nothing to
7853                          *    do here because RSM will cause a vmexit anyway.
7854                          * 2) There is an ISA-specific reason why SMI cannot be
7855                          *    injected, and the moment when this changes can be
7856                          *    intercepted.
7857                          * 3) Or the SMI can be pending because
7858                          *    inject_pending_event has completed the injection
7859                          *    of an IRQ or NMI from the previous vmexit, and
7860                          *    then we request an immediate exit to inject the
7861                          *    SMI.
7862                          */
7863                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7864                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7865                                         req_immediate_exit = true;
7866                         if (vcpu->arch.nmi_pending)
7867                                 kvm_x86_ops->enable_nmi_window(vcpu);
7868                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7869                                 kvm_x86_ops->enable_irq_window(vcpu);
7870                         WARN_ON(vcpu->arch.exception.pending);
7871                 }
7872
7873                 if (kvm_lapic_enabled(vcpu)) {
7874                         update_cr8_intercept(vcpu);
7875                         kvm_lapic_sync_to_vapic(vcpu);
7876                 }
7877         }
7878
7879         r = kvm_mmu_reload(vcpu);
7880         if (unlikely(r)) {
7881                 goto cancel_injection;
7882         }
7883
7884         preempt_disable();
7885
7886         kvm_x86_ops->prepare_guest_switch(vcpu);
7887
7888         /*
7889          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7890          * IPI are then delayed after guest entry, which ensures that they
7891          * result in virtual interrupt delivery.
7892          */
7893         local_irq_disable();
7894         vcpu->mode = IN_GUEST_MODE;
7895
7896         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7897
7898         /*
7899          * 1) We should set ->mode before checking ->requests.  Please see
7900          * the comment in kvm_vcpu_exiting_guest_mode().
7901          *
7902          * 2) For APICv, we should set ->mode before checking PID.ON. This
7903          * pairs with the memory barrier implicit in pi_test_and_set_on
7904          * (see vmx_deliver_posted_interrupt).
7905          *
7906          * 3) This also orders the write to mode from any reads to the page
7907          * tables done while the VCPU is running.  Please see the comment
7908          * in kvm_flush_remote_tlbs.
7909          */
7910         smp_mb__after_srcu_read_unlock();
7911
7912         /*
7913          * This handles the case where a posted interrupt was
7914          * notified with kvm_vcpu_kick.
7915          */
7916         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7917                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7918
7919         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7920             || need_resched() || signal_pending(current)) {
7921                 vcpu->mode = OUTSIDE_GUEST_MODE;
7922                 smp_wmb();
7923                 local_irq_enable();
7924                 preempt_enable();
7925                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7926                 r = 1;
7927                 goto cancel_injection;
7928         }
7929
7930         if (req_immediate_exit) {
7931                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7932                 kvm_x86_ops->request_immediate_exit(vcpu);
7933         }
7934
7935         trace_kvm_entry(vcpu->vcpu_id);
7936         guest_enter_irqoff();
7937
7938         fpregs_assert_state_consistent();
7939         if (test_thread_flag(TIF_NEED_FPU_LOAD))
7940                 switch_fpu_return();
7941
7942         if (unlikely(vcpu->arch.switch_db_regs)) {
7943                 set_debugreg(0, 7);
7944                 set_debugreg(vcpu->arch.eff_db[0], 0);
7945                 set_debugreg(vcpu->arch.eff_db[1], 1);
7946                 set_debugreg(vcpu->arch.eff_db[2], 2);
7947                 set_debugreg(vcpu->arch.eff_db[3], 3);
7948                 set_debugreg(vcpu->arch.dr6, 6);
7949                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7950         }
7951
7952         kvm_x86_ops->run(vcpu);
7953
7954         /*
7955          * Do this here before restoring debug registers on the host.  And
7956          * since we do this before handling the vmexit, a DR access vmexit
7957          * can (a) read the correct value of the debug registers, (b) set
7958          * KVM_DEBUGREG_WONT_EXIT again.
7959          */
7960         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7961                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7962                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7963                 kvm_update_dr0123(vcpu);
7964                 kvm_update_dr6(vcpu);
7965                 kvm_update_dr7(vcpu);
7966                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7967         }
7968
7969         /*
7970          * If the guest has used debug registers, at least dr7
7971          * will be disabled while returning to the host.
7972          * If we don't have active breakpoints in the host, we don't
7973          * care about the messed up debug address registers. But if
7974          * we have some of them active, restore the old state.
7975          */
7976         if (hw_breakpoint_active())
7977                 hw_breakpoint_restore();
7978
7979         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7980
7981         vcpu->mode = OUTSIDE_GUEST_MODE;
7982         smp_wmb();
7983
7984         kvm_before_interrupt(vcpu);
7985         kvm_x86_ops->handle_external_intr(vcpu);
7986         kvm_after_interrupt(vcpu);
7987
7988         ++vcpu->stat.exits;
7989
7990         guest_exit_irqoff();
7991         if (lapic_in_kernel(vcpu)) {
7992                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
7993                 if (delta != S64_MIN) {
7994                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
7995                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
7996                 }
7997         }
7998
7999         local_irq_enable();
8000         preempt_enable();
8001
8002         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8003
8004         /*
8005          * Profile KVM exit RIPs:
8006          */
8007         if (unlikely(prof_on == KVM_PROFILING)) {
8008                 unsigned long rip = kvm_rip_read(vcpu);
8009                 profile_hit(KVM_PROFILING, (void *)rip);
8010         }
8011
8012         if (unlikely(vcpu->arch.tsc_always_catchup))
8013                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8014
8015         if (vcpu->arch.apic_attention)
8016                 kvm_lapic_sync_from_vapic(vcpu);
8017
8018         vcpu->arch.gpa_available = false;
8019         r = kvm_x86_ops->handle_exit(vcpu);
8020         return r;
8021
8022 cancel_injection:
8023         kvm_x86_ops->cancel_injection(vcpu);
8024         if (unlikely(vcpu->arch.apic_attention))
8025                 kvm_lapic_sync_from_vapic(vcpu);
8026 out:
8027         return r;
8028 }
8029
8030 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8031 {
8032         if (!kvm_arch_vcpu_runnable(vcpu) &&
8033             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8034                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8035                 kvm_vcpu_block(vcpu);
8036                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8037
8038                 if (kvm_x86_ops->post_block)
8039                         kvm_x86_ops->post_block(vcpu);
8040
8041                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8042                         return 1;
8043         }
8044
8045         kvm_apic_accept_events(vcpu);
8046         switch(vcpu->arch.mp_state) {
8047         case KVM_MP_STATE_HALTED:
8048                 vcpu->arch.pv.pv_unhalted = false;
8049                 vcpu->arch.mp_state =
8050                         KVM_MP_STATE_RUNNABLE;
8051                 /* fall through */
8052         case KVM_MP_STATE_RUNNABLE:
8053                 vcpu->arch.apf.halted = false;
8054                 break;
8055         case KVM_MP_STATE_INIT_RECEIVED:
8056                 break;
8057         default:
8058                 return -EINTR;
8059                 break;
8060         }
8061         return 1;
8062 }
8063
8064 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8065 {
8066         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8067                 kvm_x86_ops->check_nested_events(vcpu, false);
8068
8069         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8070                 !vcpu->arch.apf.halted);
8071 }
8072
8073 static int vcpu_run(struct kvm_vcpu *vcpu)
8074 {
8075         int r;
8076         struct kvm *kvm = vcpu->kvm;
8077
8078         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8079         vcpu->arch.l1tf_flush_l1d = true;
8080
8081         for (;;) {
8082                 if (kvm_vcpu_running(vcpu)) {
8083                         r = vcpu_enter_guest(vcpu);
8084                 } else {
8085                         r = vcpu_block(kvm, vcpu);
8086                 }
8087
8088                 if (r <= 0)
8089                         break;
8090
8091                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8092                 if (kvm_cpu_has_pending_timer(vcpu))
8093                         kvm_inject_pending_timer_irqs(vcpu);
8094
8095                 if (dm_request_for_irq_injection(vcpu) &&
8096                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8097                         r = 0;
8098                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8099                         ++vcpu->stat.request_irq_exits;
8100                         break;
8101                 }
8102
8103                 kvm_check_async_pf_completion(vcpu);
8104
8105                 if (signal_pending(current)) {
8106                         r = -EINTR;
8107                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8108                         ++vcpu->stat.signal_exits;
8109                         break;
8110                 }
8111                 if (need_resched()) {
8112                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8113                         cond_resched();
8114                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8115                 }
8116         }
8117
8118         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8119
8120         return r;
8121 }
8122
8123 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8124 {
8125         int r;
8126         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8127         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8128         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8129         if (r != EMULATE_DONE)
8130                 return 0;
8131         return 1;
8132 }
8133
8134 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8135 {
8136         BUG_ON(!vcpu->arch.pio.count);
8137
8138         return complete_emulated_io(vcpu);
8139 }
8140
8141 /*
8142  * Implements the following, as a state machine:
8143  *
8144  * read:
8145  *   for each fragment
8146  *     for each mmio piece in the fragment
8147  *       write gpa, len
8148  *       exit
8149  *       copy data
8150  *   execute insn
8151  *
8152  * write:
8153  *   for each fragment
8154  *     for each mmio piece in the fragment
8155  *       write gpa, len
8156  *       copy data
8157  *       exit
8158  */
8159 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8160 {
8161         struct kvm_run *run = vcpu->run;
8162         struct kvm_mmio_fragment *frag;
8163         unsigned len;
8164
8165         BUG_ON(!vcpu->mmio_needed);
8166
8167         /* Complete previous fragment */
8168         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8169         len = min(8u, frag->len);
8170         if (!vcpu->mmio_is_write)
8171                 memcpy(frag->data, run->mmio.data, len);
8172
8173         if (frag->len <= 8) {
8174                 /* Switch to the next fragment. */
8175                 frag++;
8176                 vcpu->mmio_cur_fragment++;
8177         } else {
8178                 /* Go forward to the next mmio piece. */
8179                 frag->data += len;
8180                 frag->gpa += len;
8181                 frag->len -= len;
8182         }
8183
8184         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8185                 vcpu->mmio_needed = 0;
8186
8187                 /* FIXME: return into emulator if single-stepping.  */
8188                 if (vcpu->mmio_is_write)
8189                         return 1;
8190                 vcpu->mmio_read_completed = 1;
8191                 return complete_emulated_io(vcpu);
8192         }
8193
8194         run->exit_reason = KVM_EXIT_MMIO;
8195         run->mmio.phys_addr = frag->gpa;
8196         if (vcpu->mmio_is_write)
8197                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8198         run->mmio.len = min(8u, frag->len);
8199         run->mmio.is_write = vcpu->mmio_is_write;
8200         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8201         return 0;
8202 }
8203
8204 /* Swap (qemu) user FPU context for the guest FPU context. */
8205 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8206 {
8207         fpregs_lock();
8208
8209         copy_fpregs_to_fpstate(&current->thread.fpu);
8210         /* PKRU is separately restored in kvm_x86_ops->run.  */
8211         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8212                                 ~XFEATURE_MASK_PKRU);
8213
8214         fpregs_mark_activate();
8215         fpregs_unlock();
8216
8217         trace_kvm_fpu(1);
8218 }
8219
8220 /* When vcpu_run ends, restore user space FPU context. */
8221 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8222 {
8223         fpregs_lock();
8224
8225         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8226         copy_kernel_to_fpregs(&current->thread.fpu.state);
8227
8228         fpregs_mark_activate();
8229         fpregs_unlock();
8230
8231         ++vcpu->stat.fpu_reload;
8232         trace_kvm_fpu(0);
8233 }
8234
8235 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8236 {
8237         int r;
8238
8239         vcpu_load(vcpu);
8240         kvm_sigset_activate(vcpu);
8241         kvm_load_guest_fpu(vcpu);
8242
8243         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8244                 if (kvm_run->immediate_exit) {
8245                         r = -EINTR;
8246                         goto out;
8247                 }
8248                 kvm_vcpu_block(vcpu);
8249                 kvm_apic_accept_events(vcpu);
8250                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8251                 r = -EAGAIN;
8252                 if (signal_pending(current)) {
8253                         r = -EINTR;
8254                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8255                         ++vcpu->stat.signal_exits;
8256                 }
8257                 goto out;
8258         }
8259
8260         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8261                 r = -EINVAL;
8262                 goto out;
8263         }
8264
8265         if (vcpu->run->kvm_dirty_regs) {
8266                 r = sync_regs(vcpu);
8267                 if (r != 0)
8268                         goto out;
8269         }
8270
8271         /* re-sync apic's tpr */
8272         if (!lapic_in_kernel(vcpu)) {
8273                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8274                         r = -EINVAL;
8275                         goto out;
8276                 }
8277         }
8278
8279         if (unlikely(vcpu->arch.complete_userspace_io)) {
8280                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8281                 vcpu->arch.complete_userspace_io = NULL;
8282                 r = cui(vcpu);
8283                 if (r <= 0)
8284                         goto out;
8285         } else
8286                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8287
8288         if (kvm_run->immediate_exit)
8289                 r = -EINTR;
8290         else
8291                 r = vcpu_run(vcpu);
8292
8293 out:
8294         kvm_put_guest_fpu(vcpu);
8295         if (vcpu->run->kvm_valid_regs)
8296                 store_regs(vcpu);
8297         post_kvm_run_save(vcpu);
8298         kvm_sigset_deactivate(vcpu);
8299
8300         vcpu_put(vcpu);
8301         return r;
8302 }
8303
8304 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8305 {
8306         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8307                 /*
8308                  * We are here if userspace calls get_regs() in the middle of
8309                  * instruction emulation. Registers state needs to be copied
8310                  * back from emulation context to vcpu. Userspace shouldn't do
8311                  * that usually, but some bad designed PV devices (vmware
8312                  * backdoor interface) need this to work
8313                  */
8314                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8315                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8316         }
8317         regs->rax = kvm_rax_read(vcpu);
8318         regs->rbx = kvm_rbx_read(vcpu);
8319         regs->rcx = kvm_rcx_read(vcpu);
8320         regs->rdx = kvm_rdx_read(vcpu);
8321         regs->rsi = kvm_rsi_read(vcpu);
8322         regs->rdi = kvm_rdi_read(vcpu);
8323         regs->rsp = kvm_rsp_read(vcpu);
8324         regs->rbp = kvm_rbp_read(vcpu);
8325 #ifdef CONFIG_X86_64
8326         regs->r8 = kvm_r8_read(vcpu);
8327         regs->r9 = kvm_r9_read(vcpu);
8328         regs->r10 = kvm_r10_read(vcpu);
8329         regs->r11 = kvm_r11_read(vcpu);
8330         regs->r12 = kvm_r12_read(vcpu);
8331         regs->r13 = kvm_r13_read(vcpu);
8332         regs->r14 = kvm_r14_read(vcpu);
8333         regs->r15 = kvm_r15_read(vcpu);
8334 #endif
8335
8336         regs->rip = kvm_rip_read(vcpu);
8337         regs->rflags = kvm_get_rflags(vcpu);
8338 }
8339
8340 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8341 {
8342         vcpu_load(vcpu);
8343         __get_regs(vcpu, regs);
8344         vcpu_put(vcpu);
8345         return 0;
8346 }
8347
8348 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8349 {
8350         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8351         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8352
8353         kvm_rax_write(vcpu, regs->rax);
8354         kvm_rbx_write(vcpu, regs->rbx);
8355         kvm_rcx_write(vcpu, regs->rcx);
8356         kvm_rdx_write(vcpu, regs->rdx);
8357         kvm_rsi_write(vcpu, regs->rsi);
8358         kvm_rdi_write(vcpu, regs->rdi);
8359         kvm_rsp_write(vcpu, regs->rsp);
8360         kvm_rbp_write(vcpu, regs->rbp);
8361 #ifdef CONFIG_X86_64
8362         kvm_r8_write(vcpu, regs->r8);
8363         kvm_r9_write(vcpu, regs->r9);
8364         kvm_r10_write(vcpu, regs->r10);
8365         kvm_r11_write(vcpu, regs->r11);
8366         kvm_r12_write(vcpu, regs->r12);
8367         kvm_r13_write(vcpu, regs->r13);
8368         kvm_r14_write(vcpu, regs->r14);
8369         kvm_r15_write(vcpu, regs->r15);
8370 #endif
8371
8372         kvm_rip_write(vcpu, regs->rip);
8373         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8374
8375         vcpu->arch.exception.pending = false;
8376
8377         kvm_make_request(KVM_REQ_EVENT, vcpu);
8378 }
8379
8380 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8381 {
8382         vcpu_load(vcpu);
8383         __set_regs(vcpu, regs);
8384         vcpu_put(vcpu);
8385         return 0;
8386 }
8387
8388 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8389 {
8390         struct kvm_segment cs;
8391
8392         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8393         *db = cs.db;
8394         *l = cs.l;
8395 }
8396 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8397
8398 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8399 {
8400         struct desc_ptr dt;
8401
8402         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8403         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8404         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8405         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8406         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8407         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8408
8409         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8410         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8411
8412         kvm_x86_ops->get_idt(vcpu, &dt);
8413         sregs->idt.limit = dt.size;
8414         sregs->idt.base = dt.address;
8415         kvm_x86_ops->get_gdt(vcpu, &dt);
8416         sregs->gdt.limit = dt.size;
8417         sregs->gdt.base = dt.address;
8418
8419         sregs->cr0 = kvm_read_cr0(vcpu);
8420         sregs->cr2 = vcpu->arch.cr2;
8421         sregs->cr3 = kvm_read_cr3(vcpu);
8422         sregs->cr4 = kvm_read_cr4(vcpu);
8423         sregs->cr8 = kvm_get_cr8(vcpu);
8424         sregs->efer = vcpu->arch.efer;
8425         sregs->apic_base = kvm_get_apic_base(vcpu);
8426
8427         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8428
8429         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8430                 set_bit(vcpu->arch.interrupt.nr,
8431                         (unsigned long *)sregs->interrupt_bitmap);
8432 }
8433
8434 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8435                                   struct kvm_sregs *sregs)
8436 {
8437         vcpu_load(vcpu);
8438         __get_sregs(vcpu, sregs);
8439         vcpu_put(vcpu);
8440         return 0;
8441 }
8442
8443 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8444                                     struct kvm_mp_state *mp_state)
8445 {
8446         vcpu_load(vcpu);
8447
8448         kvm_apic_accept_events(vcpu);
8449         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8450                                         vcpu->arch.pv.pv_unhalted)
8451                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8452         else
8453                 mp_state->mp_state = vcpu->arch.mp_state;
8454
8455         vcpu_put(vcpu);
8456         return 0;
8457 }
8458
8459 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8460                                     struct kvm_mp_state *mp_state)
8461 {
8462         int ret = -EINVAL;
8463
8464         vcpu_load(vcpu);
8465
8466         if (!lapic_in_kernel(vcpu) &&
8467             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8468                 goto out;
8469
8470         /* INITs are latched while in SMM */
8471         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8472             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8473              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8474                 goto out;
8475
8476         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8477                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8478                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8479         } else
8480                 vcpu->arch.mp_state = mp_state->mp_state;
8481         kvm_make_request(KVM_REQ_EVENT, vcpu);
8482
8483         ret = 0;
8484 out:
8485         vcpu_put(vcpu);
8486         return ret;
8487 }
8488
8489 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8490                     int reason, bool has_error_code, u32 error_code)
8491 {
8492         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8493         int ret;
8494
8495         init_emulate_ctxt(vcpu);
8496
8497         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8498                                    has_error_code, error_code);
8499
8500         if (ret)
8501                 return EMULATE_FAIL;
8502
8503         kvm_rip_write(vcpu, ctxt->eip);
8504         kvm_set_rflags(vcpu, ctxt->eflags);
8505         kvm_make_request(KVM_REQ_EVENT, vcpu);
8506         return EMULATE_DONE;
8507 }
8508 EXPORT_SYMBOL_GPL(kvm_task_switch);
8509
8510 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8511 {
8512         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8513                         (sregs->cr4 & X86_CR4_OSXSAVE))
8514                 return  -EINVAL;
8515
8516         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8517                 /*
8518                  * When EFER.LME and CR0.PG are set, the processor is in
8519                  * 64-bit mode (though maybe in a 32-bit code segment).
8520                  * CR4.PAE and EFER.LMA must be set.
8521                  */
8522                 if (!(sregs->cr4 & X86_CR4_PAE)
8523                     || !(sregs->efer & EFER_LMA))
8524                         return -EINVAL;
8525         } else {
8526                 /*
8527                  * Not in 64-bit mode: EFER.LMA is clear and the code
8528                  * segment cannot be 64-bit.
8529                  */
8530                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8531                         return -EINVAL;
8532         }
8533
8534         return 0;
8535 }
8536
8537 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8538 {
8539         struct msr_data apic_base_msr;
8540         int mmu_reset_needed = 0;
8541         int cpuid_update_needed = 0;
8542         int pending_vec, max_bits, idx;
8543         struct desc_ptr dt;
8544         int ret = -EINVAL;
8545
8546         if (kvm_valid_sregs(vcpu, sregs))
8547                 goto out;
8548
8549         apic_base_msr.data = sregs->apic_base;
8550         apic_base_msr.host_initiated = true;
8551         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8552                 goto out;
8553
8554         dt.size = sregs->idt.limit;
8555         dt.address = sregs->idt.base;
8556         kvm_x86_ops->set_idt(vcpu, &dt);
8557         dt.size = sregs->gdt.limit;
8558         dt.address = sregs->gdt.base;
8559         kvm_x86_ops->set_gdt(vcpu, &dt);
8560
8561         vcpu->arch.cr2 = sregs->cr2;
8562         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8563         vcpu->arch.cr3 = sregs->cr3;
8564         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8565
8566         kvm_set_cr8(vcpu, sregs->cr8);
8567
8568         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8569         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8570
8571         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8572         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8573         vcpu->arch.cr0 = sregs->cr0;
8574
8575         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8576         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8577                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8578         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8579         if (cpuid_update_needed)
8580                 kvm_update_cpuid(vcpu);
8581
8582         idx = srcu_read_lock(&vcpu->kvm->srcu);
8583         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8584                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8585                 mmu_reset_needed = 1;
8586         }
8587         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8588
8589         if (mmu_reset_needed)
8590                 kvm_mmu_reset_context(vcpu);
8591
8592         max_bits = KVM_NR_INTERRUPTS;
8593         pending_vec = find_first_bit(
8594                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8595         if (pending_vec < max_bits) {
8596                 kvm_queue_interrupt(vcpu, pending_vec, false);
8597                 pr_debug("Set back pending irq %d\n", pending_vec);
8598         }
8599
8600         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8601         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8602         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8603         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8604         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8605         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8606
8607         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8608         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8609
8610         update_cr8_intercept(vcpu);
8611
8612         /* Older userspace won't unhalt the vcpu on reset. */
8613         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8614             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8615             !is_protmode(vcpu))
8616                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8617
8618         kvm_make_request(KVM_REQ_EVENT, vcpu);
8619
8620         ret = 0;
8621 out:
8622         return ret;
8623 }
8624
8625 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8626                                   struct kvm_sregs *sregs)
8627 {
8628         int ret;
8629
8630         vcpu_load(vcpu);
8631         ret = __set_sregs(vcpu, sregs);
8632         vcpu_put(vcpu);
8633         return ret;
8634 }
8635
8636 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8637                                         struct kvm_guest_debug *dbg)
8638 {
8639         unsigned long rflags;
8640         int i, r;
8641
8642         vcpu_load(vcpu);
8643
8644         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8645                 r = -EBUSY;
8646                 if (vcpu->arch.exception.pending)
8647                         goto out;
8648                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8649                         kvm_queue_exception(vcpu, DB_VECTOR);
8650                 else
8651                         kvm_queue_exception(vcpu, BP_VECTOR);
8652         }
8653
8654         /*
8655          * Read rflags as long as potentially injected trace flags are still
8656          * filtered out.
8657          */
8658         rflags = kvm_get_rflags(vcpu);
8659
8660         vcpu->guest_debug = dbg->control;
8661         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8662                 vcpu->guest_debug = 0;
8663
8664         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8665                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8666                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8667                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8668         } else {
8669                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8670                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8671         }
8672         kvm_update_dr7(vcpu);
8673
8674         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8675                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8676                         get_segment_base(vcpu, VCPU_SREG_CS);
8677
8678         /*
8679          * Trigger an rflags update that will inject or remove the trace
8680          * flags.
8681          */
8682         kvm_set_rflags(vcpu, rflags);
8683
8684         kvm_x86_ops->update_bp_intercept(vcpu);
8685
8686         r = 0;
8687
8688 out:
8689         vcpu_put(vcpu);
8690         return r;
8691 }
8692
8693 /*
8694  * Translate a guest virtual address to a guest physical address.
8695  */
8696 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8697                                     struct kvm_translation *tr)
8698 {
8699         unsigned long vaddr = tr->linear_address;
8700         gpa_t gpa;
8701         int idx;
8702
8703         vcpu_load(vcpu);
8704
8705         idx = srcu_read_lock(&vcpu->kvm->srcu);
8706         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8707         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8708         tr->physical_address = gpa;
8709         tr->valid = gpa != UNMAPPED_GVA;
8710         tr->writeable = 1;
8711         tr->usermode = 0;
8712
8713         vcpu_put(vcpu);
8714         return 0;
8715 }
8716
8717 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8718 {
8719         struct fxregs_state *fxsave;
8720
8721         vcpu_load(vcpu);
8722
8723         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8724         memcpy(fpu->fpr, fxsave->st_space, 128);
8725         fpu->fcw = fxsave->cwd;
8726         fpu->fsw = fxsave->swd;
8727         fpu->ftwx = fxsave->twd;
8728         fpu->last_opcode = fxsave->fop;
8729         fpu->last_ip = fxsave->rip;
8730         fpu->last_dp = fxsave->rdp;
8731         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8732
8733         vcpu_put(vcpu);
8734         return 0;
8735 }
8736
8737 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8738 {
8739         struct fxregs_state *fxsave;
8740
8741         vcpu_load(vcpu);
8742
8743         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8744
8745         memcpy(fxsave->st_space, fpu->fpr, 128);
8746         fxsave->cwd = fpu->fcw;
8747         fxsave->swd = fpu->fsw;
8748         fxsave->twd = fpu->ftwx;
8749         fxsave->fop = fpu->last_opcode;
8750         fxsave->rip = fpu->last_ip;
8751         fxsave->rdp = fpu->last_dp;
8752         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8753
8754         vcpu_put(vcpu);
8755         return 0;
8756 }
8757
8758 static void store_regs(struct kvm_vcpu *vcpu)
8759 {
8760         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8761
8762         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8763                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8764
8765         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8766                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8767
8768         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8769                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8770                                 vcpu, &vcpu->run->s.regs.events);
8771 }
8772
8773 static int sync_regs(struct kvm_vcpu *vcpu)
8774 {
8775         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8776                 return -EINVAL;
8777
8778         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8779                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8780                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8781         }
8782         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8783                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8784                         return -EINVAL;
8785                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8786         }
8787         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8788                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8789                                 vcpu, &vcpu->run->s.regs.events))
8790                         return -EINVAL;
8791                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8792         }
8793
8794         return 0;
8795 }
8796
8797 static void fx_init(struct kvm_vcpu *vcpu)
8798 {
8799         fpstate_init(&vcpu->arch.guest_fpu->state);
8800         if (boot_cpu_has(X86_FEATURE_XSAVES))
8801                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8802                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8803
8804         /*
8805          * Ensure guest xcr0 is valid for loading
8806          */
8807         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8808
8809         vcpu->arch.cr0 |= X86_CR0_ET;
8810 }
8811
8812 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8813 {
8814         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8815
8816         kvmclock_reset(vcpu);
8817
8818         kvm_x86_ops->vcpu_free(vcpu);
8819         free_cpumask_var(wbinvd_dirty_mask);
8820 }
8821
8822 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8823                                                 unsigned int id)
8824 {
8825         struct kvm_vcpu *vcpu;
8826
8827         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8828                 printk_once(KERN_WARNING
8829                 "kvm: SMP vm created on host with unstable TSC; "
8830                 "guest TSC will not be reliable\n");
8831
8832         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8833
8834         return vcpu;
8835 }
8836
8837 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8838 {
8839         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8840         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8841         kvm_vcpu_mtrr_init(vcpu);
8842         vcpu_load(vcpu);
8843         kvm_vcpu_reset(vcpu, false);
8844         kvm_init_mmu(vcpu, false);
8845         vcpu_put(vcpu);
8846         return 0;
8847 }
8848
8849 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8850 {
8851         struct msr_data msr;
8852         struct kvm *kvm = vcpu->kvm;
8853
8854         kvm_hv_vcpu_postcreate(vcpu);
8855
8856         if (mutex_lock_killable(&vcpu->mutex))
8857                 return;
8858         vcpu_load(vcpu);
8859         msr.data = 0x0;
8860         msr.index = MSR_IA32_TSC;
8861         msr.host_initiated = true;
8862         kvm_write_tsc(vcpu, &msr);
8863         vcpu_put(vcpu);
8864         mutex_unlock(&vcpu->mutex);
8865
8866         if (!kvmclock_periodic_sync)
8867                 return;
8868
8869         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8870                                         KVMCLOCK_SYNC_PERIOD);
8871 }
8872
8873 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8874 {
8875         vcpu->arch.apf.msr_val = 0;
8876
8877         vcpu_load(vcpu);
8878         kvm_mmu_unload(vcpu);
8879         vcpu_put(vcpu);
8880
8881         kvm_x86_ops->vcpu_free(vcpu);
8882 }
8883
8884 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8885 {
8886         kvm_lapic_reset(vcpu, init_event);
8887
8888         vcpu->arch.hflags = 0;
8889
8890         vcpu->arch.smi_pending = 0;
8891         vcpu->arch.smi_count = 0;
8892         atomic_set(&vcpu->arch.nmi_queued, 0);
8893         vcpu->arch.nmi_pending = 0;
8894         vcpu->arch.nmi_injected = false;
8895         kvm_clear_interrupt_queue(vcpu);
8896         kvm_clear_exception_queue(vcpu);
8897         vcpu->arch.exception.pending = false;
8898
8899         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8900         kvm_update_dr0123(vcpu);
8901         vcpu->arch.dr6 = DR6_INIT;
8902         kvm_update_dr6(vcpu);
8903         vcpu->arch.dr7 = DR7_FIXED_1;
8904         kvm_update_dr7(vcpu);
8905
8906         vcpu->arch.cr2 = 0;
8907
8908         kvm_make_request(KVM_REQ_EVENT, vcpu);
8909         vcpu->arch.apf.msr_val = 0;
8910         vcpu->arch.st.msr_val = 0;
8911
8912         kvmclock_reset(vcpu);
8913
8914         kvm_clear_async_pf_completion_queue(vcpu);
8915         kvm_async_pf_hash_reset(vcpu);
8916         vcpu->arch.apf.halted = false;
8917
8918         if (kvm_mpx_supported()) {
8919                 void *mpx_state_buffer;
8920
8921                 /*
8922                  * To avoid have the INIT path from kvm_apic_has_events() that be
8923                  * called with loaded FPU and does not let userspace fix the state.
8924                  */
8925                 if (init_event)
8926                         kvm_put_guest_fpu(vcpu);
8927                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8928                                         XFEATURE_BNDREGS);
8929                 if (mpx_state_buffer)
8930                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8931                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8932                                         XFEATURE_BNDCSR);
8933                 if (mpx_state_buffer)
8934                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8935                 if (init_event)
8936                         kvm_load_guest_fpu(vcpu);
8937         }
8938
8939         if (!init_event) {
8940                 kvm_pmu_reset(vcpu);
8941                 vcpu->arch.smbase = 0x30000;
8942
8943                 vcpu->arch.msr_misc_features_enables = 0;
8944
8945                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8946         }
8947
8948         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8949         vcpu->arch.regs_avail = ~0;
8950         vcpu->arch.regs_dirty = ~0;
8951
8952         vcpu->arch.ia32_xss = 0;
8953
8954         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8955 }
8956
8957 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8958 {
8959         struct kvm_segment cs;
8960
8961         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8962         cs.selector = vector << 8;
8963         cs.base = vector << 12;
8964         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8965         kvm_rip_write(vcpu, 0);
8966 }
8967
8968 int kvm_arch_hardware_enable(void)
8969 {
8970         struct kvm *kvm;
8971         struct kvm_vcpu *vcpu;
8972         int i;
8973         int ret;
8974         u64 local_tsc;
8975         u64 max_tsc = 0;
8976         bool stable, backwards_tsc = false;
8977
8978         kvm_shared_msr_cpu_online();
8979         ret = kvm_x86_ops->hardware_enable();
8980         if (ret != 0)
8981                 return ret;
8982
8983         local_tsc = rdtsc();
8984         stable = !kvm_check_tsc_unstable();
8985         list_for_each_entry(kvm, &vm_list, vm_list) {
8986                 kvm_for_each_vcpu(i, vcpu, kvm) {
8987                         if (!stable && vcpu->cpu == smp_processor_id())
8988                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8989                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8990                                 backwards_tsc = true;
8991                                 if (vcpu->arch.last_host_tsc > max_tsc)
8992                                         max_tsc = vcpu->arch.last_host_tsc;
8993                         }
8994                 }
8995         }
8996
8997         /*
8998          * Sometimes, even reliable TSCs go backwards.  This happens on
8999          * platforms that reset TSC during suspend or hibernate actions, but
9000          * maintain synchronization.  We must compensate.  Fortunately, we can
9001          * detect that condition here, which happens early in CPU bringup,
9002          * before any KVM threads can be running.  Unfortunately, we can't
9003          * bring the TSCs fully up to date with real time, as we aren't yet far
9004          * enough into CPU bringup that we know how much real time has actually
9005          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
9006          * variables that haven't been updated yet.
9007          *
9008          * So we simply find the maximum observed TSC above, then record the
9009          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9010          * the adjustment will be applied.  Note that we accumulate
9011          * adjustments, in case multiple suspend cycles happen before some VCPU
9012          * gets a chance to run again.  In the event that no KVM threads get a
9013          * chance to run, we will miss the entire elapsed period, as we'll have
9014          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9015          * loose cycle time.  This isn't too big a deal, since the loss will be
9016          * uniform across all VCPUs (not to mention the scenario is extremely
9017          * unlikely). It is possible that a second hibernate recovery happens
9018          * much faster than a first, causing the observed TSC here to be
9019          * smaller; this would require additional padding adjustment, which is
9020          * why we set last_host_tsc to the local tsc observed here.
9021          *
9022          * N.B. - this code below runs only on platforms with reliable TSC,
9023          * as that is the only way backwards_tsc is set above.  Also note
9024          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9025          * have the same delta_cyc adjustment applied if backwards_tsc
9026          * is detected.  Note further, this adjustment is only done once,
9027          * as we reset last_host_tsc on all VCPUs to stop this from being
9028          * called multiple times (one for each physical CPU bringup).
9029          *
9030          * Platforms with unreliable TSCs don't have to deal with this, they
9031          * will be compensated by the logic in vcpu_load, which sets the TSC to
9032          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9033          * guarantee that they stay in perfect synchronization.
9034          */
9035         if (backwards_tsc) {
9036                 u64 delta_cyc = max_tsc - local_tsc;
9037                 list_for_each_entry(kvm, &vm_list, vm_list) {
9038                         kvm->arch.backwards_tsc_observed = true;
9039                         kvm_for_each_vcpu(i, vcpu, kvm) {
9040                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9041                                 vcpu->arch.last_host_tsc = local_tsc;
9042                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9043                         }
9044
9045                         /*
9046                          * We have to disable TSC offset matching.. if you were
9047                          * booting a VM while issuing an S4 host suspend....
9048                          * you may have some problem.  Solving this issue is
9049                          * left as an exercise to the reader.
9050                          */
9051                         kvm->arch.last_tsc_nsec = 0;
9052                         kvm->arch.last_tsc_write = 0;
9053                 }
9054
9055         }
9056         return 0;
9057 }
9058
9059 void kvm_arch_hardware_disable(void)
9060 {
9061         kvm_x86_ops->hardware_disable();
9062         drop_user_return_notifiers();
9063 }
9064
9065 int kvm_arch_hardware_setup(void)
9066 {
9067         int r;
9068
9069         r = kvm_x86_ops->hardware_setup();
9070         if (r != 0)
9071                 return r;
9072
9073         if (kvm_has_tsc_control) {
9074                 /*
9075                  * Make sure the user can only configure tsc_khz values that
9076                  * fit into a signed integer.
9077                  * A min value is not calculated because it will always
9078                  * be 1 on all machines.
9079                  */
9080                 u64 max = min(0x7fffffffULL,
9081                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9082                 kvm_max_guest_tsc_khz = max;
9083
9084                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9085         }
9086
9087         kvm_init_msr_list();
9088         return 0;
9089 }
9090
9091 void kvm_arch_hardware_unsetup(void)
9092 {
9093         kvm_x86_ops->hardware_unsetup();
9094 }
9095
9096 int kvm_arch_check_processor_compat(void)
9097 {
9098         return kvm_x86_ops->check_processor_compatibility();
9099 }
9100
9101 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9102 {
9103         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9104 }
9105 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9106
9107 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9108 {
9109         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9110 }
9111
9112 struct static_key kvm_no_apic_vcpu __read_mostly;
9113 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9114
9115 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9116 {
9117         struct page *page;
9118         int r;
9119
9120         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9121         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9122                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9123         else
9124                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9125
9126         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9127         if (!page) {
9128                 r = -ENOMEM;
9129                 goto fail;
9130         }
9131         vcpu->arch.pio_data = page_address(page);
9132
9133         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9134
9135         r = kvm_mmu_create(vcpu);
9136         if (r < 0)
9137                 goto fail_free_pio_data;
9138
9139         if (irqchip_in_kernel(vcpu->kvm)) {
9140                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9141                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9142                 if (r < 0)
9143                         goto fail_mmu_destroy;
9144         } else
9145                 static_key_slow_inc(&kvm_no_apic_vcpu);
9146
9147         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9148                                        GFP_KERNEL_ACCOUNT);
9149         if (!vcpu->arch.mce_banks) {
9150                 r = -ENOMEM;
9151                 goto fail_free_lapic;
9152         }
9153         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9154
9155         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9156                                 GFP_KERNEL_ACCOUNT)) {
9157                 r = -ENOMEM;
9158                 goto fail_free_mce_banks;
9159         }
9160
9161         fx_init(vcpu);
9162
9163         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9164
9165         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9166
9167         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9168
9169         kvm_async_pf_hash_reset(vcpu);
9170         kvm_pmu_init(vcpu);
9171
9172         vcpu->arch.pending_external_vector = -1;
9173         vcpu->arch.preempted_in_kernel = false;
9174
9175         kvm_hv_vcpu_init(vcpu);
9176
9177         return 0;
9178
9179 fail_free_mce_banks:
9180         kfree(vcpu->arch.mce_banks);
9181 fail_free_lapic:
9182         kvm_free_lapic(vcpu);
9183 fail_mmu_destroy:
9184         kvm_mmu_destroy(vcpu);
9185 fail_free_pio_data:
9186         free_page((unsigned long)vcpu->arch.pio_data);
9187 fail:
9188         return r;
9189 }
9190
9191 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9192 {
9193         int idx;
9194
9195         kvm_hv_vcpu_uninit(vcpu);
9196         kvm_pmu_destroy(vcpu);
9197         kfree(vcpu->arch.mce_banks);
9198         kvm_free_lapic(vcpu);
9199         idx = srcu_read_lock(&vcpu->kvm->srcu);
9200         kvm_mmu_destroy(vcpu);
9201         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9202         free_page((unsigned long)vcpu->arch.pio_data);
9203         if (!lapic_in_kernel(vcpu))
9204                 static_key_slow_dec(&kvm_no_apic_vcpu);
9205 }
9206
9207 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9208 {
9209         vcpu->arch.l1tf_flush_l1d = true;
9210         kvm_x86_ops->sched_in(vcpu, cpu);
9211 }
9212
9213 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9214 {
9215         if (type)
9216                 return -EINVAL;
9217
9218         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9219         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9220         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9221         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9222
9223         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9224         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9225         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9226         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9227                 &kvm->arch.irq_sources_bitmap);
9228
9229         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9230         mutex_init(&kvm->arch.apic_map_lock);
9231         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9232
9233         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9234         pvclock_update_vm_gtod_copy(kvm);
9235
9236         kvm->arch.guest_can_read_msr_platform_info = true;
9237
9238         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9239         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9240
9241         kvm_hv_init_vm(kvm);
9242         kvm_page_track_init(kvm);
9243         kvm_mmu_init_vm(kvm);
9244
9245         if (kvm_x86_ops->vm_init)
9246                 return kvm_x86_ops->vm_init(kvm);
9247
9248         return 0;
9249 }
9250
9251 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9252 {
9253         vcpu_load(vcpu);
9254         kvm_mmu_unload(vcpu);
9255         vcpu_put(vcpu);
9256 }
9257
9258 static void kvm_free_vcpus(struct kvm *kvm)
9259 {
9260         unsigned int i;
9261         struct kvm_vcpu *vcpu;
9262
9263         /*
9264          * Unpin any mmu pages first.
9265          */
9266         kvm_for_each_vcpu(i, vcpu, kvm) {
9267                 kvm_clear_async_pf_completion_queue(vcpu);
9268                 kvm_unload_vcpu_mmu(vcpu);
9269         }
9270         kvm_for_each_vcpu(i, vcpu, kvm)
9271                 kvm_arch_vcpu_free(vcpu);
9272
9273         mutex_lock(&kvm->lock);
9274         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9275                 kvm->vcpus[i] = NULL;
9276
9277         atomic_set(&kvm->online_vcpus, 0);
9278         mutex_unlock(&kvm->lock);
9279 }
9280
9281 void kvm_arch_sync_events(struct kvm *kvm)
9282 {
9283         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9284         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9285         kvm_free_pit(kvm);
9286 }
9287
9288 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9289 {
9290         int i, r;
9291         unsigned long hva;
9292         struct kvm_memslots *slots = kvm_memslots(kvm);
9293         struct kvm_memory_slot *slot, old;
9294
9295         /* Called with kvm->slots_lock held.  */
9296         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9297                 return -EINVAL;
9298
9299         slot = id_to_memslot(slots, id);
9300         if (size) {
9301                 if (slot->npages)
9302                         return -EEXIST;
9303
9304                 /*
9305                  * MAP_SHARED to prevent internal slot pages from being moved
9306                  * by fork()/COW.
9307                  */
9308                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9309                               MAP_SHARED | MAP_ANONYMOUS, 0);
9310                 if (IS_ERR((void *)hva))
9311                         return PTR_ERR((void *)hva);
9312         } else {
9313                 if (!slot->npages)
9314                         return 0;
9315
9316                 hva = 0;
9317         }
9318
9319         old = *slot;
9320         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9321                 struct kvm_userspace_memory_region m;
9322
9323                 m.slot = id | (i << 16);
9324                 m.flags = 0;
9325                 m.guest_phys_addr = gpa;
9326                 m.userspace_addr = hva;
9327                 m.memory_size = size;
9328                 r = __kvm_set_memory_region(kvm, &m);
9329                 if (r < 0)
9330                         return r;
9331         }
9332
9333         if (!size)
9334                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9335
9336         return 0;
9337 }
9338 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9339
9340 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9341 {
9342         int r;
9343
9344         mutex_lock(&kvm->slots_lock);
9345         r = __x86_set_memory_region(kvm, id, gpa, size);
9346         mutex_unlock(&kvm->slots_lock);
9347
9348         return r;
9349 }
9350 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9351
9352 void kvm_arch_destroy_vm(struct kvm *kvm)
9353 {
9354         if (current->mm == kvm->mm) {
9355                 /*
9356                  * Free memory regions allocated on behalf of userspace,
9357                  * unless the the memory map has changed due to process exit
9358                  * or fd copying.
9359                  */
9360                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9361                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9362                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9363         }
9364         if (kvm_x86_ops->vm_destroy)
9365                 kvm_x86_ops->vm_destroy(kvm);
9366         kvm_pic_destroy(kvm);
9367         kvm_ioapic_destroy(kvm);
9368         kvm_free_vcpus(kvm);
9369         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9370         kvm_mmu_uninit_vm(kvm);
9371         kvm_page_track_cleanup(kvm);
9372         kvm_hv_destroy_vm(kvm);
9373 }
9374
9375 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9376                            struct kvm_memory_slot *dont)
9377 {
9378         int i;
9379
9380         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9381                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9382                         kvfree(free->arch.rmap[i]);
9383                         free->arch.rmap[i] = NULL;
9384                 }
9385                 if (i == 0)
9386                         continue;
9387
9388                 if (!dont || free->arch.lpage_info[i - 1] !=
9389                              dont->arch.lpage_info[i - 1]) {
9390                         kvfree(free->arch.lpage_info[i - 1]);
9391                         free->arch.lpage_info[i - 1] = NULL;
9392                 }
9393         }
9394
9395         kvm_page_track_free_memslot(free, dont);
9396 }
9397
9398 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9399                             unsigned long npages)
9400 {
9401         int i;
9402
9403         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9404                 struct kvm_lpage_info *linfo;
9405                 unsigned long ugfn;
9406                 int lpages;
9407                 int level = i + 1;
9408
9409                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9410                                       slot->base_gfn, level) + 1;
9411
9412                 slot->arch.rmap[i] =
9413                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9414                                  GFP_KERNEL_ACCOUNT);
9415                 if (!slot->arch.rmap[i])
9416                         goto out_free;
9417                 if (i == 0)
9418                         continue;
9419
9420                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9421                 if (!linfo)
9422                         goto out_free;
9423
9424                 slot->arch.lpage_info[i - 1] = linfo;
9425
9426                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9427                         linfo[0].disallow_lpage = 1;
9428                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9429                         linfo[lpages - 1].disallow_lpage = 1;
9430                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9431                 /*
9432                  * If the gfn and userspace address are not aligned wrt each
9433                  * other, or if explicitly asked to, disable large page
9434                  * support for this slot
9435                  */
9436                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9437                     !kvm_largepages_enabled()) {
9438                         unsigned long j;
9439
9440                         for (j = 0; j < lpages; ++j)
9441                                 linfo[j].disallow_lpage = 1;
9442                 }
9443         }
9444
9445         if (kvm_page_track_create_memslot(slot, npages))
9446                 goto out_free;
9447
9448         return 0;
9449
9450 out_free:
9451         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9452                 kvfree(slot->arch.rmap[i]);
9453                 slot->arch.rmap[i] = NULL;
9454                 if (i == 0)
9455                         continue;
9456
9457                 kvfree(slot->arch.lpage_info[i - 1]);
9458                 slot->arch.lpage_info[i - 1] = NULL;
9459         }
9460         return -ENOMEM;
9461 }
9462
9463 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9464 {
9465         /*
9466          * memslots->generation has been incremented.
9467          * mmio generation may have reached its maximum value.
9468          */
9469         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9470 }
9471
9472 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9473                                 struct kvm_memory_slot *memslot,
9474                                 const struct kvm_userspace_memory_region *mem,
9475                                 enum kvm_mr_change change)
9476 {
9477         return 0;
9478 }
9479
9480 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9481                                      struct kvm_memory_slot *new)
9482 {
9483         /* Still write protect RO slot */
9484         if (new->flags & KVM_MEM_READONLY) {
9485                 kvm_mmu_slot_remove_write_access(kvm, new);
9486                 return;
9487         }
9488
9489         /*
9490          * Call kvm_x86_ops dirty logging hooks when they are valid.
9491          *
9492          * kvm_x86_ops->slot_disable_log_dirty is called when:
9493          *
9494          *  - KVM_MR_CREATE with dirty logging is disabled
9495          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9496          *
9497          * The reason is, in case of PML, we need to set D-bit for any slots
9498          * with dirty logging disabled in order to eliminate unnecessary GPA
9499          * logging in PML buffer (and potential PML buffer full VMEXT). This
9500          * guarantees leaving PML enabled during guest's lifetime won't have
9501          * any additional overhead from PML when guest is running with dirty
9502          * logging disabled for memory slots.
9503          *
9504          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9505          * to dirty logging mode.
9506          *
9507          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9508          *
9509          * In case of write protect:
9510          *
9511          * Write protect all pages for dirty logging.
9512          *
9513          * All the sptes including the large sptes which point to this
9514          * slot are set to readonly. We can not create any new large
9515          * spte on this slot until the end of the logging.
9516          *
9517          * See the comments in fast_page_fault().
9518          */
9519         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9520                 if (kvm_x86_ops->slot_enable_log_dirty)
9521                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9522                 else
9523                         kvm_mmu_slot_remove_write_access(kvm, new);
9524         } else {
9525                 if (kvm_x86_ops->slot_disable_log_dirty)
9526                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9527         }
9528 }
9529
9530 void kvm_arch_commit_memory_region(struct kvm *kvm,
9531                                 const struct kvm_userspace_memory_region *mem,
9532                                 const struct kvm_memory_slot *old,
9533                                 const struct kvm_memory_slot *new,
9534                                 enum kvm_mr_change change)
9535 {
9536         if (!kvm->arch.n_requested_mmu_pages)
9537                 kvm_mmu_change_mmu_pages(kvm,
9538                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9539
9540         /*
9541          * Dirty logging tracks sptes in 4k granularity, meaning that large
9542          * sptes have to be split.  If live migration is successful, the guest
9543          * in the source machine will be destroyed and large sptes will be
9544          * created in the destination. However, if the guest continues to run
9545          * in the source machine (for example if live migration fails), small
9546          * sptes will remain around and cause bad performance.
9547          *
9548          * Scan sptes if dirty logging has been stopped, dropping those
9549          * which can be collapsed into a single large-page spte.  Later
9550          * page faults will create the large-page sptes.
9551          */
9552         if ((change != KVM_MR_DELETE) &&
9553                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9554                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9555                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9556
9557         /*
9558          * Set up write protection and/or dirty logging for the new slot.
9559          *
9560          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9561          * been zapped so no dirty logging staff is needed for old slot. For
9562          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9563          * new and it's also covered when dealing with the new slot.
9564          *
9565          * FIXME: const-ify all uses of struct kvm_memory_slot.
9566          */
9567         if (change != KVM_MR_DELETE)
9568                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9569 }
9570
9571 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9572 {
9573         kvm_mmu_zap_all(kvm);
9574 }
9575
9576 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9577                                    struct kvm_memory_slot *slot)
9578 {
9579         kvm_page_track_flush_slot(kvm, slot);
9580 }
9581
9582 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9583 {
9584         return (is_guest_mode(vcpu) &&
9585                         kvm_x86_ops->guest_apic_has_interrupt &&
9586                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9587 }
9588
9589 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9590 {
9591         if (!list_empty_careful(&vcpu->async_pf.done))
9592                 return true;
9593
9594         if (kvm_apic_has_events(vcpu))
9595                 return true;
9596
9597         if (vcpu->arch.pv.pv_unhalted)
9598                 return true;
9599
9600         if (vcpu->arch.exception.pending)
9601                 return true;
9602
9603         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9604             (vcpu->arch.nmi_pending &&
9605              kvm_x86_ops->nmi_allowed(vcpu)))
9606                 return true;
9607
9608         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9609             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9610                 return true;
9611
9612         if (kvm_arch_interrupt_allowed(vcpu) &&
9613             (kvm_cpu_has_interrupt(vcpu) ||
9614             kvm_guest_apic_has_interrupt(vcpu)))
9615                 return true;
9616
9617         if (kvm_hv_has_stimer_pending(vcpu))
9618                 return true;
9619
9620         return false;
9621 }
9622
9623 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9624 {
9625         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9626 }
9627
9628 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9629 {
9630         return vcpu->arch.preempted_in_kernel;
9631 }
9632
9633 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9634 {
9635         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9636 }
9637
9638 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9639 {
9640         return kvm_x86_ops->interrupt_allowed(vcpu);
9641 }
9642
9643 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9644 {
9645         if (is_64_bit_mode(vcpu))
9646                 return kvm_rip_read(vcpu);
9647         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9648                      kvm_rip_read(vcpu));
9649 }
9650 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9651
9652 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9653 {
9654         return kvm_get_linear_rip(vcpu) == linear_rip;
9655 }
9656 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9657
9658 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9659 {
9660         unsigned long rflags;
9661
9662         rflags = kvm_x86_ops->get_rflags(vcpu);
9663         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9664                 rflags &= ~X86_EFLAGS_TF;
9665         return rflags;
9666 }
9667 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9668
9669 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9670 {
9671         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9672             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9673                 rflags |= X86_EFLAGS_TF;
9674         kvm_x86_ops->set_rflags(vcpu, rflags);
9675 }
9676
9677 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9678 {
9679         __kvm_set_rflags(vcpu, rflags);
9680         kvm_make_request(KVM_REQ_EVENT, vcpu);
9681 }
9682 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9683
9684 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9685 {
9686         int r;
9687
9688         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9689               work->wakeup_all)
9690                 return;
9691
9692         r = kvm_mmu_reload(vcpu);
9693         if (unlikely(r))
9694                 return;
9695
9696         if (!vcpu->arch.mmu->direct_map &&
9697               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9698                 return;
9699
9700         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9701 }
9702
9703 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9704 {
9705         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9706 }
9707
9708 static inline u32 kvm_async_pf_next_probe(u32 key)
9709 {
9710         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9711 }
9712
9713 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9714 {
9715         u32 key = kvm_async_pf_hash_fn(gfn);
9716
9717         while (vcpu->arch.apf.gfns[key] != ~0)
9718                 key = kvm_async_pf_next_probe(key);
9719
9720         vcpu->arch.apf.gfns[key] = gfn;
9721 }
9722
9723 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9724 {
9725         int i;
9726         u32 key = kvm_async_pf_hash_fn(gfn);
9727
9728         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9729                      (vcpu->arch.apf.gfns[key] != gfn &&
9730                       vcpu->arch.apf.gfns[key] != ~0); i++)
9731                 key = kvm_async_pf_next_probe(key);
9732
9733         return key;
9734 }
9735
9736 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9737 {
9738         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9739 }
9740
9741 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9742 {
9743         u32 i, j, k;
9744
9745         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9746         while (true) {
9747                 vcpu->arch.apf.gfns[i] = ~0;
9748                 do {
9749                         j = kvm_async_pf_next_probe(j);
9750                         if (vcpu->arch.apf.gfns[j] == ~0)
9751                                 return;
9752                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9753                         /*
9754                          * k lies cyclically in ]i,j]
9755                          * |    i.k.j |
9756                          * |....j i.k.| or  |.k..j i...|
9757                          */
9758                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9759                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9760                 i = j;
9761         }
9762 }
9763
9764 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9765 {
9766
9767         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9768                                       sizeof(val));
9769 }
9770
9771 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9772 {
9773
9774         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9775                                       sizeof(u32));
9776 }
9777
9778 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9779                                      struct kvm_async_pf *work)
9780 {
9781         struct x86_exception fault;
9782
9783         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9784         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9785
9786         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9787             (vcpu->arch.apf.send_user_only &&
9788              kvm_x86_ops->get_cpl(vcpu) == 0))
9789                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9790         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9791                 fault.vector = PF_VECTOR;
9792                 fault.error_code_valid = true;
9793                 fault.error_code = 0;
9794                 fault.nested_page_fault = false;
9795                 fault.address = work->arch.token;
9796                 fault.async_page_fault = true;
9797                 kvm_inject_page_fault(vcpu, &fault);
9798         }
9799 }
9800
9801 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9802                                  struct kvm_async_pf *work)
9803 {
9804         struct x86_exception fault;
9805         u32 val;
9806
9807         if (work->wakeup_all)
9808                 work->arch.token = ~0; /* broadcast wakeup */
9809         else
9810                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9811         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9812
9813         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9814             !apf_get_user(vcpu, &val)) {
9815                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9816                     vcpu->arch.exception.pending &&
9817                     vcpu->arch.exception.nr == PF_VECTOR &&
9818                     !apf_put_user(vcpu, 0)) {
9819                         vcpu->arch.exception.injected = false;
9820                         vcpu->arch.exception.pending = false;
9821                         vcpu->arch.exception.nr = 0;
9822                         vcpu->arch.exception.has_error_code = false;
9823                         vcpu->arch.exception.error_code = 0;
9824                         vcpu->arch.exception.has_payload = false;
9825                         vcpu->arch.exception.payload = 0;
9826                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9827                         fault.vector = PF_VECTOR;
9828                         fault.error_code_valid = true;
9829                         fault.error_code = 0;
9830                         fault.nested_page_fault = false;
9831                         fault.address = work->arch.token;
9832                         fault.async_page_fault = true;
9833                         kvm_inject_page_fault(vcpu, &fault);
9834                 }
9835         }
9836         vcpu->arch.apf.halted = false;
9837         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9838 }
9839
9840 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9841 {
9842         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9843                 return true;
9844         else
9845                 return kvm_can_do_async_pf(vcpu);
9846 }
9847
9848 void kvm_arch_start_assignment(struct kvm *kvm)
9849 {
9850         atomic_inc(&kvm->arch.assigned_device_count);
9851 }
9852 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9853
9854 void kvm_arch_end_assignment(struct kvm *kvm)
9855 {
9856         atomic_dec(&kvm->arch.assigned_device_count);
9857 }
9858 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9859
9860 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9861 {
9862         return atomic_read(&kvm->arch.assigned_device_count);
9863 }
9864 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9865
9866 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9867 {
9868         atomic_inc(&kvm->arch.noncoherent_dma_count);
9869 }
9870 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9871
9872 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9873 {
9874         atomic_dec(&kvm->arch.noncoherent_dma_count);
9875 }
9876 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9877
9878 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9879 {
9880         return atomic_read(&kvm->arch.noncoherent_dma_count);
9881 }
9882 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9883
9884 bool kvm_arch_has_irq_bypass(void)
9885 {
9886         return kvm_x86_ops->update_pi_irte != NULL;
9887 }
9888
9889 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9890                                       struct irq_bypass_producer *prod)
9891 {
9892         struct kvm_kernel_irqfd *irqfd =
9893                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9894
9895         irqfd->producer = prod;
9896
9897         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9898                                            prod->irq, irqfd->gsi, 1);
9899 }
9900
9901 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9902                                       struct irq_bypass_producer *prod)
9903 {
9904         int ret;
9905         struct kvm_kernel_irqfd *irqfd =
9906                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9907
9908         WARN_ON(irqfd->producer != prod);
9909         irqfd->producer = NULL;
9910
9911         /*
9912          * When producer of consumer is unregistered, we change back to
9913          * remapped mode, so we can re-use the current implementation
9914          * when the irq is masked/disabled or the consumer side (KVM
9915          * int this case doesn't want to receive the interrupts.
9916         */
9917         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9918         if (ret)
9919                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9920                        " fails: %d\n", irqfd->consumer.token, ret);
9921 }
9922
9923 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9924                                    uint32_t guest_irq, bool set)
9925 {
9926         if (!kvm_x86_ops->update_pi_irte)
9927                 return -EINVAL;
9928
9929         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9930 }
9931
9932 bool kvm_vector_hashing_enabled(void)
9933 {
9934         return vector_hashing;
9935 }
9936 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9937
9938 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9939 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9940 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9941 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9942 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9943 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9944 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9945 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9946 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9947 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9948 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9949 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9950 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9951 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9952 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9953 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9954 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9955 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9956 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);