]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
Merge branch 'speck-v20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141
142 static bool __read_mostly vector_hashing = true;
143 module_param(vector_hashing, bool, S_IRUGO);
144
145 bool __read_mostly enable_vmware_backdoor = false;
146 module_param(enable_vmware_backdoor, bool, S_IRUGO);
147 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
148
149 static bool __read_mostly force_emulation_prefix = false;
150 module_param(force_emulation_prefix, bool, S_IRUGO);
151
152 #define KVM_NR_SHARED_MSRS 16
153
154 struct kvm_shared_msrs_global {
155         int nr;
156         u32 msrs[KVM_NR_SHARED_MSRS];
157 };
158
159 struct kvm_shared_msrs {
160         struct user_return_notifier urn;
161         bool registered;
162         struct kvm_shared_msr_values {
163                 u64 host;
164                 u64 curr;
165         } values[KVM_NR_SHARED_MSRS];
166 };
167
168 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
169 static struct kvm_shared_msrs __percpu *shared_msrs;
170
171 struct kvm_stats_debugfs_item debugfs_entries[] = {
172         { "pf_fixed", VCPU_STAT(pf_fixed) },
173         { "pf_guest", VCPU_STAT(pf_guest) },
174         { "tlb_flush", VCPU_STAT(tlb_flush) },
175         { "invlpg", VCPU_STAT(invlpg) },
176         { "exits", VCPU_STAT(exits) },
177         { "io_exits", VCPU_STAT(io_exits) },
178         { "mmio_exits", VCPU_STAT(mmio_exits) },
179         { "signal_exits", VCPU_STAT(signal_exits) },
180         { "irq_window", VCPU_STAT(irq_window_exits) },
181         { "nmi_window", VCPU_STAT(nmi_window_exits) },
182         { "halt_exits", VCPU_STAT(halt_exits) },
183         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
184         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
185         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
186         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
187         { "hypercalls", VCPU_STAT(hypercalls) },
188         { "request_irq", VCPU_STAT(request_irq_exits) },
189         { "irq_exits", VCPU_STAT(irq_exits) },
190         { "host_state_reload", VCPU_STAT(host_state_reload) },
191         { "fpu_reload", VCPU_STAT(fpu_reload) },
192         { "insn_emulation", VCPU_STAT(insn_emulation) },
193         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
194         { "irq_injections", VCPU_STAT(irq_injections) },
195         { "nmi_injections", VCPU_STAT(nmi_injections) },
196         { "req_event", VCPU_STAT(req_event) },
197         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
198         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
199         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
200         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
201         { "mmu_flooded", VM_STAT(mmu_flooded) },
202         { "mmu_recycled", VM_STAT(mmu_recycled) },
203         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
204         { "mmu_unsync", VM_STAT(mmu_unsync) },
205         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
206         { "largepages", VM_STAT(lpages) },
207         { "max_mmu_page_hash_collisions",
208                 VM_STAT(max_mmu_page_hash_collisions) },
209         { NULL }
210 };
211
212 u64 __read_mostly host_xcr0;
213
214 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
215
216 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
217 {
218         int i;
219         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
220                 vcpu->arch.apf.gfns[i] = ~0;
221 }
222
223 static void kvm_on_user_return(struct user_return_notifier *urn)
224 {
225         unsigned slot;
226         struct kvm_shared_msrs *locals
227                 = container_of(urn, struct kvm_shared_msrs, urn);
228         struct kvm_shared_msr_values *values;
229         unsigned long flags;
230
231         /*
232          * Disabling irqs at this point since the following code could be
233          * interrupted and executed through kvm_arch_hardware_disable()
234          */
235         local_irq_save(flags);
236         if (locals->registered) {
237                 locals->registered = false;
238                 user_return_notifier_unregister(urn);
239         }
240         local_irq_restore(flags);
241         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
242                 values = &locals->values[slot];
243                 if (values->host != values->curr) {
244                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
245                         values->curr = values->host;
246                 }
247         }
248 }
249
250 static void shared_msr_update(unsigned slot, u32 msr)
251 {
252         u64 value;
253         unsigned int cpu = smp_processor_id();
254         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255
256         /* only read, and nobody should modify it at this time,
257          * so don't need lock */
258         if (slot >= shared_msrs_global.nr) {
259                 printk(KERN_ERR "kvm: invalid MSR slot!");
260                 return;
261         }
262         rdmsrl_safe(msr, &value);
263         smsr->values[slot].host = value;
264         smsr->values[slot].curr = value;
265 }
266
267 void kvm_define_shared_msr(unsigned slot, u32 msr)
268 {
269         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
270         shared_msrs_global.msrs[slot] = msr;
271         if (slot >= shared_msrs_global.nr)
272                 shared_msrs_global.nr = slot + 1;
273 }
274 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
275
276 static void kvm_shared_msr_cpu_online(void)
277 {
278         unsigned i;
279
280         for (i = 0; i < shared_msrs_global.nr; ++i)
281                 shared_msr_update(i, shared_msrs_global.msrs[i]);
282 }
283
284 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
285 {
286         unsigned int cpu = smp_processor_id();
287         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
288         int err;
289
290         if (((value ^ smsr->values[slot].curr) & mask) == 0)
291                 return 0;
292         smsr->values[slot].curr = value;
293         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
294         if (err)
295                 return 1;
296
297         if (!smsr->registered) {
298                 smsr->urn.on_user_return = kvm_on_user_return;
299                 user_return_notifier_register(&smsr->urn);
300                 smsr->registered = true;
301         }
302         return 0;
303 }
304 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
305
306 static void drop_user_return_notifiers(void)
307 {
308         unsigned int cpu = smp_processor_id();
309         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
310
311         if (smsr->registered)
312                 kvm_on_user_return(&smsr->urn);
313 }
314
315 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
316 {
317         return vcpu->arch.apic_base;
318 }
319 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
320
321 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
322 {
323         u64 old_state = vcpu->arch.apic_base &
324                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
325         u64 new_state = msr_info->data &
326                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
327         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
328                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
329
330         if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
331                 return 1;
332         if (!msr_info->host_initiated &&
333             ((new_state == MSR_IA32_APICBASE_ENABLE &&
334               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
335              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
336               old_state == 0)))
337                 return 1;
338
339         kvm_lapic_set_base(vcpu, msr_info->data);
340         return 0;
341 }
342 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
343
344 asmlinkage __visible void kvm_spurious_fault(void)
345 {
346         /* Fault while not rebooting.  We want the trace. */
347         BUG();
348 }
349 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
350
351 #define EXCPT_BENIGN            0
352 #define EXCPT_CONTRIBUTORY      1
353 #define EXCPT_PF                2
354
355 static int exception_class(int vector)
356 {
357         switch (vector) {
358         case PF_VECTOR:
359                 return EXCPT_PF;
360         case DE_VECTOR:
361         case TS_VECTOR:
362         case NP_VECTOR:
363         case SS_VECTOR:
364         case GP_VECTOR:
365                 return EXCPT_CONTRIBUTORY;
366         default:
367                 break;
368         }
369         return EXCPT_BENIGN;
370 }
371
372 #define EXCPT_FAULT             0
373 #define EXCPT_TRAP              1
374 #define EXCPT_ABORT             2
375 #define EXCPT_INTERRUPT         3
376
377 static int exception_type(int vector)
378 {
379         unsigned int mask;
380
381         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
382                 return EXCPT_INTERRUPT;
383
384         mask = 1 << vector;
385
386         /* #DB is trap, as instruction watchpoints are handled elsewhere */
387         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
388                 return EXCPT_TRAP;
389
390         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
391                 return EXCPT_ABORT;
392
393         /* Reserved exceptions will result in fault */
394         return EXCPT_FAULT;
395 }
396
397 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
398                 unsigned nr, bool has_error, u32 error_code,
399                 bool reinject)
400 {
401         u32 prev_nr;
402         int class1, class2;
403
404         kvm_make_request(KVM_REQ_EVENT, vcpu);
405
406         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
407         queue:
408                 if (has_error && !is_protmode(vcpu))
409                         has_error = false;
410                 if (reinject) {
411                         /*
412                          * On vmentry, vcpu->arch.exception.pending is only
413                          * true if an event injection was blocked by
414                          * nested_run_pending.  In that case, however,
415                          * vcpu_enter_guest requests an immediate exit,
416                          * and the guest shouldn't proceed far enough to
417                          * need reinjection.
418                          */
419                         WARN_ON_ONCE(vcpu->arch.exception.pending);
420                         vcpu->arch.exception.injected = true;
421                 } else {
422                         vcpu->arch.exception.pending = true;
423                         vcpu->arch.exception.injected = false;
424                 }
425                 vcpu->arch.exception.has_error_code = has_error;
426                 vcpu->arch.exception.nr = nr;
427                 vcpu->arch.exception.error_code = error_code;
428                 return;
429         }
430
431         /* to check exception */
432         prev_nr = vcpu->arch.exception.nr;
433         if (prev_nr == DF_VECTOR) {
434                 /* triple fault -> shutdown */
435                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
436                 return;
437         }
438         class1 = exception_class(prev_nr);
439         class2 = exception_class(nr);
440         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
441                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
442                 /*
443                  * Generate double fault per SDM Table 5-5.  Set
444                  * exception.pending = true so that the double fault
445                  * can trigger a nested vmexit.
446                  */
447                 vcpu->arch.exception.pending = true;
448                 vcpu->arch.exception.injected = false;
449                 vcpu->arch.exception.has_error_code = true;
450                 vcpu->arch.exception.nr = DF_VECTOR;
451                 vcpu->arch.exception.error_code = 0;
452         } else
453                 /* replace previous exception with a new one in a hope
454                    that instruction re-execution will regenerate lost
455                    exception */
456                 goto queue;
457 }
458
459 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
460 {
461         kvm_multiple_exception(vcpu, nr, false, 0, false);
462 }
463 EXPORT_SYMBOL_GPL(kvm_queue_exception);
464
465 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
466 {
467         kvm_multiple_exception(vcpu, nr, false, 0, true);
468 }
469 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
470
471 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
472 {
473         if (err)
474                 kvm_inject_gp(vcpu, 0);
475         else
476                 return kvm_skip_emulated_instruction(vcpu);
477
478         return 1;
479 }
480 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
481
482 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
483 {
484         ++vcpu->stat.pf_guest;
485         vcpu->arch.exception.nested_apf =
486                 is_guest_mode(vcpu) && fault->async_page_fault;
487         if (vcpu->arch.exception.nested_apf)
488                 vcpu->arch.apf.nested_apf_token = fault->address;
489         else
490                 vcpu->arch.cr2 = fault->address;
491         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
492 }
493 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
494
495 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
496 {
497         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
498                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
499         else
500                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
501
502         return fault->nested_page_fault;
503 }
504
505 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
506 {
507         atomic_inc(&vcpu->arch.nmi_queued);
508         kvm_make_request(KVM_REQ_NMI, vcpu);
509 }
510 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
511
512 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
513 {
514         kvm_multiple_exception(vcpu, nr, true, error_code, false);
515 }
516 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
517
518 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
519 {
520         kvm_multiple_exception(vcpu, nr, true, error_code, true);
521 }
522 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
523
524 /*
525  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
526  * a #GP and return false.
527  */
528 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
529 {
530         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
531                 return true;
532         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
533         return false;
534 }
535 EXPORT_SYMBOL_GPL(kvm_require_cpl);
536
537 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
538 {
539         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
540                 return true;
541
542         kvm_queue_exception(vcpu, UD_VECTOR);
543         return false;
544 }
545 EXPORT_SYMBOL_GPL(kvm_require_dr);
546
547 /*
548  * This function will be used to read from the physical memory of the currently
549  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
550  * can read from guest physical or from the guest's guest physical memory.
551  */
552 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
553                             gfn_t ngfn, void *data, int offset, int len,
554                             u32 access)
555 {
556         struct x86_exception exception;
557         gfn_t real_gfn;
558         gpa_t ngpa;
559
560         ngpa     = gfn_to_gpa(ngfn);
561         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
562         if (real_gfn == UNMAPPED_GVA)
563                 return -EFAULT;
564
565         real_gfn = gpa_to_gfn(real_gfn);
566
567         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
568 }
569 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
570
571 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
572                                void *data, int offset, int len, u32 access)
573 {
574         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
575                                        data, offset, len, access);
576 }
577
578 /*
579  * Load the pae pdptrs.  Return true is they are all valid.
580  */
581 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
582 {
583         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
584         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
585         int i;
586         int ret;
587         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
588
589         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
590                                       offset * sizeof(u64), sizeof(pdpte),
591                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
592         if (ret < 0) {
593                 ret = 0;
594                 goto out;
595         }
596         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
597                 if ((pdpte[i] & PT_PRESENT_MASK) &&
598                     (pdpte[i] &
599                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
600                         ret = 0;
601                         goto out;
602                 }
603         }
604         ret = 1;
605
606         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
607         __set_bit(VCPU_EXREG_PDPTR,
608                   (unsigned long *)&vcpu->arch.regs_avail);
609         __set_bit(VCPU_EXREG_PDPTR,
610                   (unsigned long *)&vcpu->arch.regs_dirty);
611 out:
612
613         return ret;
614 }
615 EXPORT_SYMBOL_GPL(load_pdptrs);
616
617 bool pdptrs_changed(struct kvm_vcpu *vcpu)
618 {
619         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
620         bool changed = true;
621         int offset;
622         gfn_t gfn;
623         int r;
624
625         if (is_long_mode(vcpu) || !is_pae(vcpu))
626                 return false;
627
628         if (!test_bit(VCPU_EXREG_PDPTR,
629                       (unsigned long *)&vcpu->arch.regs_avail))
630                 return true;
631
632         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
633         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
634         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
635                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
636         if (r < 0)
637                 goto out;
638         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
639 out:
640
641         return changed;
642 }
643 EXPORT_SYMBOL_GPL(pdptrs_changed);
644
645 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
646 {
647         unsigned long old_cr0 = kvm_read_cr0(vcpu);
648         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
649
650         cr0 |= X86_CR0_ET;
651
652 #ifdef CONFIG_X86_64
653         if (cr0 & 0xffffffff00000000UL)
654                 return 1;
655 #endif
656
657         cr0 &= ~CR0_RESERVED_BITS;
658
659         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
660                 return 1;
661
662         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
663                 return 1;
664
665         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
666 #ifdef CONFIG_X86_64
667                 if ((vcpu->arch.efer & EFER_LME)) {
668                         int cs_db, cs_l;
669
670                         if (!is_pae(vcpu))
671                                 return 1;
672                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
673                         if (cs_l)
674                                 return 1;
675                 } else
676 #endif
677                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
678                                                  kvm_read_cr3(vcpu)))
679                         return 1;
680         }
681
682         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
683                 return 1;
684
685         kvm_x86_ops->set_cr0(vcpu, cr0);
686
687         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
688                 kvm_clear_async_pf_completion_queue(vcpu);
689                 kvm_async_pf_hash_reset(vcpu);
690         }
691
692         if ((cr0 ^ old_cr0) & update_bits)
693                 kvm_mmu_reset_context(vcpu);
694
695         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
696             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
697             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
698                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
699
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr0);
703
704 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
705 {
706         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
707 }
708 EXPORT_SYMBOL_GPL(kvm_lmsw);
709
710 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
711 {
712         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
713                         !vcpu->guest_xcr0_loaded) {
714                 /* kvm_set_xcr() also depends on this */
715                 if (vcpu->arch.xcr0 != host_xcr0)
716                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
717                 vcpu->guest_xcr0_loaded = 1;
718         }
719 }
720
721 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
722 {
723         if (vcpu->guest_xcr0_loaded) {
724                 if (vcpu->arch.xcr0 != host_xcr0)
725                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
726                 vcpu->guest_xcr0_loaded = 0;
727         }
728 }
729
730 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732         u64 xcr0 = xcr;
733         u64 old_xcr0 = vcpu->arch.xcr0;
734         u64 valid_bits;
735
736         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
737         if (index != XCR_XFEATURE_ENABLED_MASK)
738                 return 1;
739         if (!(xcr0 & XFEATURE_MASK_FP))
740                 return 1;
741         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
742                 return 1;
743
744         /*
745          * Do not allow the guest to set bits that we do not support
746          * saving.  However, xcr0 bit 0 is always set, even if the
747          * emulated CPU does not support XSAVE (see fx_init).
748          */
749         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
750         if (xcr0 & ~valid_bits)
751                 return 1;
752
753         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
754             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
755                 return 1;
756
757         if (xcr0 & XFEATURE_MASK_AVX512) {
758                 if (!(xcr0 & XFEATURE_MASK_YMM))
759                         return 1;
760                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
761                         return 1;
762         }
763         vcpu->arch.xcr0 = xcr0;
764
765         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
766                 kvm_update_cpuid(vcpu);
767         return 0;
768 }
769
770 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
771 {
772         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
773             __kvm_set_xcr(vcpu, index, xcr)) {
774                 kvm_inject_gp(vcpu, 0);
775                 return 1;
776         }
777         return 0;
778 }
779 EXPORT_SYMBOL_GPL(kvm_set_xcr);
780
781 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
782 {
783         unsigned long old_cr4 = kvm_read_cr4(vcpu);
784         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
785                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
786
787         if (cr4 & CR4_RESERVED_BITS)
788                 return 1;
789
790         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
791                 return 1;
792
793         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
794                 return 1;
795
796         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
797                 return 1;
798
799         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
800                 return 1;
801
802         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
803                 return 1;
804
805         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
806                 return 1;
807
808         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
809                 return 1;
810
811         if (is_long_mode(vcpu)) {
812                 if (!(cr4 & X86_CR4_PAE))
813                         return 1;
814         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
815                    && ((cr4 ^ old_cr4) & pdptr_bits)
816                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
817                                    kvm_read_cr3(vcpu)))
818                 return 1;
819
820         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
821                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
822                         return 1;
823
824                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
825                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
826                         return 1;
827         }
828
829         if (kvm_x86_ops->set_cr4(vcpu, cr4))
830                 return 1;
831
832         if (((cr4 ^ old_cr4) & pdptr_bits) ||
833             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
834                 kvm_mmu_reset_context(vcpu);
835
836         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
837                 kvm_update_cpuid(vcpu);
838
839         return 0;
840 }
841 EXPORT_SYMBOL_GPL(kvm_set_cr4);
842
843 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
844 {
845 #ifdef CONFIG_X86_64
846         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
847
848         if (pcid_enabled)
849                 cr3 &= ~CR3_PCID_INVD;
850 #endif
851
852         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
853                 kvm_mmu_sync_roots(vcpu);
854                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
855                 return 0;
856         }
857
858         if (is_long_mode(vcpu) &&
859             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
860                 return 1;
861         else if (is_pae(vcpu) && is_paging(vcpu) &&
862                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
863                 return 1;
864
865         vcpu->arch.cr3 = cr3;
866         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
867         kvm_mmu_new_cr3(vcpu);
868         return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_cr3);
871
872 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
873 {
874         if (cr8 & CR8_RESERVED_BITS)
875                 return 1;
876         if (lapic_in_kernel(vcpu))
877                 kvm_lapic_set_tpr(vcpu, cr8);
878         else
879                 vcpu->arch.cr8 = cr8;
880         return 0;
881 }
882 EXPORT_SYMBOL_GPL(kvm_set_cr8);
883
884 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
885 {
886         if (lapic_in_kernel(vcpu))
887                 return kvm_lapic_get_cr8(vcpu);
888         else
889                 return vcpu->arch.cr8;
890 }
891 EXPORT_SYMBOL_GPL(kvm_get_cr8);
892
893 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
894 {
895         int i;
896
897         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
898                 for (i = 0; i < KVM_NR_DB_REGS; i++)
899                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
900                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
901         }
902 }
903
904 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
905 {
906         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
907                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
908 }
909
910 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
911 {
912         unsigned long dr7;
913
914         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
915                 dr7 = vcpu->arch.guest_debug_dr7;
916         else
917                 dr7 = vcpu->arch.dr7;
918         kvm_x86_ops->set_dr7(vcpu, dr7);
919         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
920         if (dr7 & DR7_BP_EN_MASK)
921                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
922 }
923
924 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
925 {
926         u64 fixed = DR6_FIXED_1;
927
928         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
929                 fixed |= DR6_RTM;
930         return fixed;
931 }
932
933 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
934 {
935         switch (dr) {
936         case 0 ... 3:
937                 vcpu->arch.db[dr] = val;
938                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
939                         vcpu->arch.eff_db[dr] = val;
940                 break;
941         case 4:
942                 /* fall through */
943         case 6:
944                 if (val & 0xffffffff00000000ULL)
945                         return -1; /* #GP */
946                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
947                 kvm_update_dr6(vcpu);
948                 break;
949         case 5:
950                 /* fall through */
951         default: /* 7 */
952                 if (val & 0xffffffff00000000ULL)
953                         return -1; /* #GP */
954                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
955                 kvm_update_dr7(vcpu);
956                 break;
957         }
958
959         return 0;
960 }
961
962 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
963 {
964         if (__kvm_set_dr(vcpu, dr, val)) {
965                 kvm_inject_gp(vcpu, 0);
966                 return 1;
967         }
968         return 0;
969 }
970 EXPORT_SYMBOL_GPL(kvm_set_dr);
971
972 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
973 {
974         switch (dr) {
975         case 0 ... 3:
976                 *val = vcpu->arch.db[dr];
977                 break;
978         case 4:
979                 /* fall through */
980         case 6:
981                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
982                         *val = vcpu->arch.dr6;
983                 else
984                         *val = kvm_x86_ops->get_dr6(vcpu);
985                 break;
986         case 5:
987                 /* fall through */
988         default: /* 7 */
989                 *val = vcpu->arch.dr7;
990                 break;
991         }
992         return 0;
993 }
994 EXPORT_SYMBOL_GPL(kvm_get_dr);
995
996 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
997 {
998         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
999         u64 data;
1000         int err;
1001
1002         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1003         if (err)
1004                 return err;
1005         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1006         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1007         return err;
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1010
1011 /*
1012  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1013  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1014  *
1015  * This list is modified at module load time to reflect the
1016  * capabilities of the host cpu. This capabilities test skips MSRs that are
1017  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1018  * may depend on host virtualization features rather than host cpu features.
1019  */
1020
1021 static u32 msrs_to_save[] = {
1022         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1023         MSR_STAR,
1024 #ifdef CONFIG_X86_64
1025         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1026 #endif
1027         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1028         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1029         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1030 };
1031
1032 static unsigned num_msrs_to_save;
1033
1034 static u32 emulated_msrs[] = {
1035         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1036         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1037         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1038         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1039         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1040         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1041         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1042         HV_X64_MSR_RESET,
1043         HV_X64_MSR_VP_INDEX,
1044         HV_X64_MSR_VP_RUNTIME,
1045         HV_X64_MSR_SCONTROL,
1046         HV_X64_MSR_STIMER0_CONFIG,
1047         HV_X64_MSR_VP_ASSIST_PAGE,
1048         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1049         HV_X64_MSR_TSC_EMULATION_STATUS,
1050
1051         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1052         MSR_KVM_PV_EOI_EN,
1053
1054         MSR_IA32_TSC_ADJUST,
1055         MSR_IA32_TSCDEADLINE,
1056         MSR_IA32_MISC_ENABLE,
1057         MSR_IA32_MCG_STATUS,
1058         MSR_IA32_MCG_CTL,
1059         MSR_IA32_MCG_EXT_CTL,
1060         MSR_IA32_SMBASE,
1061         MSR_SMI_COUNT,
1062         MSR_PLATFORM_INFO,
1063         MSR_MISC_FEATURES_ENABLES,
1064         MSR_AMD64_VIRT_SPEC_CTRL,
1065 };
1066
1067 static unsigned num_emulated_msrs;
1068
1069 /*
1070  * List of msr numbers which are used to expose MSR-based features that
1071  * can be used by a hypervisor to validate requested CPU features.
1072  */
1073 static u32 msr_based_features[] = {
1074         MSR_IA32_VMX_BASIC,
1075         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1076         MSR_IA32_VMX_PINBASED_CTLS,
1077         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1078         MSR_IA32_VMX_PROCBASED_CTLS,
1079         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1080         MSR_IA32_VMX_EXIT_CTLS,
1081         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1082         MSR_IA32_VMX_ENTRY_CTLS,
1083         MSR_IA32_VMX_MISC,
1084         MSR_IA32_VMX_CR0_FIXED0,
1085         MSR_IA32_VMX_CR0_FIXED1,
1086         MSR_IA32_VMX_CR4_FIXED0,
1087         MSR_IA32_VMX_CR4_FIXED1,
1088         MSR_IA32_VMX_VMCS_ENUM,
1089         MSR_IA32_VMX_PROCBASED_CTLS2,
1090         MSR_IA32_VMX_EPT_VPID_CAP,
1091         MSR_IA32_VMX_VMFUNC,
1092
1093         MSR_F10H_DECFG,
1094         MSR_IA32_UCODE_REV,
1095 };
1096
1097 static unsigned int num_msr_based_features;
1098
1099 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1100 {
1101         switch (msr->index) {
1102         case MSR_IA32_UCODE_REV:
1103                 rdmsrl(msr->index, msr->data);
1104                 break;
1105         default:
1106                 if (kvm_x86_ops->get_msr_feature(msr))
1107                         return 1;
1108         }
1109         return 0;
1110 }
1111
1112 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1113 {
1114         struct kvm_msr_entry msr;
1115         int r;
1116
1117         msr.index = index;
1118         r = kvm_get_msr_feature(&msr);
1119         if (r)
1120                 return r;
1121
1122         *data = msr.data;
1123
1124         return 0;
1125 }
1126
1127 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1128 {
1129         if (efer & efer_reserved_bits)
1130                 return false;
1131
1132         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1133                         return false;
1134
1135         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1136                         return false;
1137
1138         return true;
1139 }
1140 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1141
1142 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1143 {
1144         u64 old_efer = vcpu->arch.efer;
1145
1146         if (!kvm_valid_efer(vcpu, efer))
1147                 return 1;
1148
1149         if (is_paging(vcpu)
1150             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1151                 return 1;
1152
1153         efer &= ~EFER_LMA;
1154         efer |= vcpu->arch.efer & EFER_LMA;
1155
1156         kvm_x86_ops->set_efer(vcpu, efer);
1157
1158         /* Update reserved bits */
1159         if ((efer ^ old_efer) & EFER_NX)
1160                 kvm_mmu_reset_context(vcpu);
1161
1162         return 0;
1163 }
1164
1165 void kvm_enable_efer_bits(u64 mask)
1166 {
1167        efer_reserved_bits &= ~mask;
1168 }
1169 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1170
1171 /*
1172  * Writes msr value into into the appropriate "register".
1173  * Returns 0 on success, non-0 otherwise.
1174  * Assumes vcpu_load() was already called.
1175  */
1176 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1177 {
1178         switch (msr->index) {
1179         case MSR_FS_BASE:
1180         case MSR_GS_BASE:
1181         case MSR_KERNEL_GS_BASE:
1182         case MSR_CSTAR:
1183         case MSR_LSTAR:
1184                 if (is_noncanonical_address(msr->data, vcpu))
1185                         return 1;
1186                 break;
1187         case MSR_IA32_SYSENTER_EIP:
1188         case MSR_IA32_SYSENTER_ESP:
1189                 /*
1190                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1191                  * non-canonical address is written on Intel but not on
1192                  * AMD (which ignores the top 32-bits, because it does
1193                  * not implement 64-bit SYSENTER).
1194                  *
1195                  * 64-bit code should hence be able to write a non-canonical
1196                  * value on AMD.  Making the address canonical ensures that
1197                  * vmentry does not fail on Intel after writing a non-canonical
1198                  * value, and that something deterministic happens if the guest
1199                  * invokes 64-bit SYSENTER.
1200                  */
1201                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1202         }
1203         return kvm_x86_ops->set_msr(vcpu, msr);
1204 }
1205 EXPORT_SYMBOL_GPL(kvm_set_msr);
1206
1207 /*
1208  * Adapt set_msr() to msr_io()'s calling convention
1209  */
1210 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1211 {
1212         struct msr_data msr;
1213         int r;
1214
1215         msr.index = index;
1216         msr.host_initiated = true;
1217         r = kvm_get_msr(vcpu, &msr);
1218         if (r)
1219                 return r;
1220
1221         *data = msr.data;
1222         return 0;
1223 }
1224
1225 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1226 {
1227         struct msr_data msr;
1228
1229         msr.data = *data;
1230         msr.index = index;
1231         msr.host_initiated = true;
1232         return kvm_set_msr(vcpu, &msr);
1233 }
1234
1235 #ifdef CONFIG_X86_64
1236 struct pvclock_gtod_data {
1237         seqcount_t      seq;
1238
1239         struct { /* extract of a clocksource struct */
1240                 int vclock_mode;
1241                 u64     cycle_last;
1242                 u64     mask;
1243                 u32     mult;
1244                 u32     shift;
1245         } clock;
1246
1247         u64             boot_ns;
1248         u64             nsec_base;
1249         u64             wall_time_sec;
1250 };
1251
1252 static struct pvclock_gtod_data pvclock_gtod_data;
1253
1254 static void update_pvclock_gtod(struct timekeeper *tk)
1255 {
1256         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1257         u64 boot_ns;
1258
1259         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1260
1261         write_seqcount_begin(&vdata->seq);
1262
1263         /* copy pvclock gtod data */
1264         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1265         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1266         vdata->clock.mask               = tk->tkr_mono.mask;
1267         vdata->clock.mult               = tk->tkr_mono.mult;
1268         vdata->clock.shift              = tk->tkr_mono.shift;
1269
1270         vdata->boot_ns                  = boot_ns;
1271         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1272
1273         vdata->wall_time_sec            = tk->xtime_sec;
1274
1275         write_seqcount_end(&vdata->seq);
1276 }
1277 #endif
1278
1279 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1280 {
1281         /*
1282          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1283          * vcpu_enter_guest.  This function is only called from
1284          * the physical CPU that is running vcpu.
1285          */
1286         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1287 }
1288
1289 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1290 {
1291         int version;
1292         int r;
1293         struct pvclock_wall_clock wc;
1294         struct timespec64 boot;
1295
1296         if (!wall_clock)
1297                 return;
1298
1299         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1300         if (r)
1301                 return;
1302
1303         if (version & 1)
1304                 ++version;  /* first time write, random junk */
1305
1306         ++version;
1307
1308         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1309                 return;
1310
1311         /*
1312          * The guest calculates current wall clock time by adding
1313          * system time (updated by kvm_guest_time_update below) to the
1314          * wall clock specified here.  guest system time equals host
1315          * system time for us, thus we must fill in host boot time here.
1316          */
1317         getboottime64(&boot);
1318
1319         if (kvm->arch.kvmclock_offset) {
1320                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1321                 boot = timespec64_sub(boot, ts);
1322         }
1323         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1324         wc.nsec = boot.tv_nsec;
1325         wc.version = version;
1326
1327         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1328
1329         version++;
1330         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1331 }
1332
1333 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1334 {
1335         do_shl32_div32(dividend, divisor);
1336         return dividend;
1337 }
1338
1339 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1340                                s8 *pshift, u32 *pmultiplier)
1341 {
1342         uint64_t scaled64;
1343         int32_t  shift = 0;
1344         uint64_t tps64;
1345         uint32_t tps32;
1346
1347         tps64 = base_hz;
1348         scaled64 = scaled_hz;
1349         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1350                 tps64 >>= 1;
1351                 shift--;
1352         }
1353
1354         tps32 = (uint32_t)tps64;
1355         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1356                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1357                         scaled64 >>= 1;
1358                 else
1359                         tps32 <<= 1;
1360                 shift++;
1361         }
1362
1363         *pshift = shift;
1364         *pmultiplier = div_frac(scaled64, tps32);
1365
1366         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1367                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1368 }
1369
1370 #ifdef CONFIG_X86_64
1371 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1372 #endif
1373
1374 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1375 static unsigned long max_tsc_khz;
1376
1377 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1378 {
1379         u64 v = (u64)khz * (1000000 + ppm);
1380         do_div(v, 1000000);
1381         return v;
1382 }
1383
1384 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1385 {
1386         u64 ratio;
1387
1388         /* Guest TSC same frequency as host TSC? */
1389         if (!scale) {
1390                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1391                 return 0;
1392         }
1393
1394         /* TSC scaling supported? */
1395         if (!kvm_has_tsc_control) {
1396                 if (user_tsc_khz > tsc_khz) {
1397                         vcpu->arch.tsc_catchup = 1;
1398                         vcpu->arch.tsc_always_catchup = 1;
1399                         return 0;
1400                 } else {
1401                         WARN(1, "user requested TSC rate below hardware speed\n");
1402                         return -1;
1403                 }
1404         }
1405
1406         /* TSC scaling required  - calculate ratio */
1407         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1408                                 user_tsc_khz, tsc_khz);
1409
1410         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1411                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1412                           user_tsc_khz);
1413                 return -1;
1414         }
1415
1416         vcpu->arch.tsc_scaling_ratio = ratio;
1417         return 0;
1418 }
1419
1420 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1421 {
1422         u32 thresh_lo, thresh_hi;
1423         int use_scaling = 0;
1424
1425         /* tsc_khz can be zero if TSC calibration fails */
1426         if (user_tsc_khz == 0) {
1427                 /* set tsc_scaling_ratio to a safe value */
1428                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1429                 return -1;
1430         }
1431
1432         /* Compute a scale to convert nanoseconds in TSC cycles */
1433         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1434                            &vcpu->arch.virtual_tsc_shift,
1435                            &vcpu->arch.virtual_tsc_mult);
1436         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1437
1438         /*
1439          * Compute the variation in TSC rate which is acceptable
1440          * within the range of tolerance and decide if the
1441          * rate being applied is within that bounds of the hardware
1442          * rate.  If so, no scaling or compensation need be done.
1443          */
1444         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1445         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1446         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1447                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1448                 use_scaling = 1;
1449         }
1450         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1451 }
1452
1453 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1454 {
1455         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1456                                       vcpu->arch.virtual_tsc_mult,
1457                                       vcpu->arch.virtual_tsc_shift);
1458         tsc += vcpu->arch.this_tsc_write;
1459         return tsc;
1460 }
1461
1462 static inline int gtod_is_based_on_tsc(int mode)
1463 {
1464         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1465 }
1466
1467 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1468 {
1469 #ifdef CONFIG_X86_64
1470         bool vcpus_matched;
1471         struct kvm_arch *ka = &vcpu->kvm->arch;
1472         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1473
1474         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1475                          atomic_read(&vcpu->kvm->online_vcpus));
1476
1477         /*
1478          * Once the masterclock is enabled, always perform request in
1479          * order to update it.
1480          *
1481          * In order to enable masterclock, the host clocksource must be TSC
1482          * and the vcpus need to have matched TSCs.  When that happens,
1483          * perform request to enable masterclock.
1484          */
1485         if (ka->use_master_clock ||
1486             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1487                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1488
1489         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1490                             atomic_read(&vcpu->kvm->online_vcpus),
1491                             ka->use_master_clock, gtod->clock.vclock_mode);
1492 #endif
1493 }
1494
1495 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1496 {
1497         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1498         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1499 }
1500
1501 /*
1502  * Multiply tsc by a fixed point number represented by ratio.
1503  *
1504  * The most significant 64-N bits (mult) of ratio represent the
1505  * integral part of the fixed point number; the remaining N bits
1506  * (frac) represent the fractional part, ie. ratio represents a fixed
1507  * point number (mult + frac * 2^(-N)).
1508  *
1509  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1510  */
1511 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1512 {
1513         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1514 }
1515
1516 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1517 {
1518         u64 _tsc = tsc;
1519         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1520
1521         if (ratio != kvm_default_tsc_scaling_ratio)
1522                 _tsc = __scale_tsc(ratio, tsc);
1523
1524         return _tsc;
1525 }
1526 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1527
1528 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1529 {
1530         u64 tsc;
1531
1532         tsc = kvm_scale_tsc(vcpu, rdtsc());
1533
1534         return target_tsc - tsc;
1535 }
1536
1537 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1538 {
1539         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1540
1541         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1542 }
1543 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1544
1545 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1546 {
1547         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1548         vcpu->arch.tsc_offset = offset;
1549 }
1550
1551 static inline bool kvm_check_tsc_unstable(void)
1552 {
1553 #ifdef CONFIG_X86_64
1554         /*
1555          * TSC is marked unstable when we're running on Hyper-V,
1556          * 'TSC page' clocksource is good.
1557          */
1558         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1559                 return false;
1560 #endif
1561         return check_tsc_unstable();
1562 }
1563
1564 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1565 {
1566         struct kvm *kvm = vcpu->kvm;
1567         u64 offset, ns, elapsed;
1568         unsigned long flags;
1569         bool matched;
1570         bool already_matched;
1571         u64 data = msr->data;
1572         bool synchronizing = false;
1573
1574         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1575         offset = kvm_compute_tsc_offset(vcpu, data);
1576         ns = ktime_get_boot_ns();
1577         elapsed = ns - kvm->arch.last_tsc_nsec;
1578
1579         if (vcpu->arch.virtual_tsc_khz) {
1580                 if (data == 0 && msr->host_initiated) {
1581                         /*
1582                          * detection of vcpu initialization -- need to sync
1583                          * with other vCPUs. This particularly helps to keep
1584                          * kvm_clock stable after CPU hotplug
1585                          */
1586                         synchronizing = true;
1587                 } else {
1588                         u64 tsc_exp = kvm->arch.last_tsc_write +
1589                                                 nsec_to_cycles(vcpu, elapsed);
1590                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1591                         /*
1592                          * Special case: TSC write with a small delta (1 second)
1593                          * of virtual cycle time against real time is
1594                          * interpreted as an attempt to synchronize the CPU.
1595                          */
1596                         synchronizing = data < tsc_exp + tsc_hz &&
1597                                         data + tsc_hz > tsc_exp;
1598                 }
1599         }
1600
1601         /*
1602          * For a reliable TSC, we can match TSC offsets, and for an unstable
1603          * TSC, we add elapsed time in this computation.  We could let the
1604          * compensation code attempt to catch up if we fall behind, but
1605          * it's better to try to match offsets from the beginning.
1606          */
1607         if (synchronizing &&
1608             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1609                 if (!kvm_check_tsc_unstable()) {
1610                         offset = kvm->arch.cur_tsc_offset;
1611                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1612                 } else {
1613                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1614                         data += delta;
1615                         offset = kvm_compute_tsc_offset(vcpu, data);
1616                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1617                 }
1618                 matched = true;
1619                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1620         } else {
1621                 /*
1622                  * We split periods of matched TSC writes into generations.
1623                  * For each generation, we track the original measured
1624                  * nanosecond time, offset, and write, so if TSCs are in
1625                  * sync, we can match exact offset, and if not, we can match
1626                  * exact software computation in compute_guest_tsc()
1627                  *
1628                  * These values are tracked in kvm->arch.cur_xxx variables.
1629                  */
1630                 kvm->arch.cur_tsc_generation++;
1631                 kvm->arch.cur_tsc_nsec = ns;
1632                 kvm->arch.cur_tsc_write = data;
1633                 kvm->arch.cur_tsc_offset = offset;
1634                 matched = false;
1635                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1636                          kvm->arch.cur_tsc_generation, data);
1637         }
1638
1639         /*
1640          * We also track th most recent recorded KHZ, write and time to
1641          * allow the matching interval to be extended at each write.
1642          */
1643         kvm->arch.last_tsc_nsec = ns;
1644         kvm->arch.last_tsc_write = data;
1645         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1646
1647         vcpu->arch.last_guest_tsc = data;
1648
1649         /* Keep track of which generation this VCPU has synchronized to */
1650         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1651         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1652         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1653
1654         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1655                 update_ia32_tsc_adjust_msr(vcpu, offset);
1656
1657         kvm_vcpu_write_tsc_offset(vcpu, offset);
1658         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1659
1660         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1661         if (!matched) {
1662                 kvm->arch.nr_vcpus_matched_tsc = 0;
1663         } else if (!already_matched) {
1664                 kvm->arch.nr_vcpus_matched_tsc++;
1665         }
1666
1667         kvm_track_tsc_matching(vcpu);
1668         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1669 }
1670
1671 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1672
1673 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1674                                            s64 adjustment)
1675 {
1676         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1677 }
1678
1679 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1680 {
1681         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1682                 WARN_ON(adjustment < 0);
1683         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1684         adjust_tsc_offset_guest(vcpu, adjustment);
1685 }
1686
1687 #ifdef CONFIG_X86_64
1688
1689 static u64 read_tsc(void)
1690 {
1691         u64 ret = (u64)rdtsc_ordered();
1692         u64 last = pvclock_gtod_data.clock.cycle_last;
1693
1694         if (likely(ret >= last))
1695                 return ret;
1696
1697         /*
1698          * GCC likes to generate cmov here, but this branch is extremely
1699          * predictable (it's just a function of time and the likely is
1700          * very likely) and there's a data dependence, so force GCC
1701          * to generate a branch instead.  I don't barrier() because
1702          * we don't actually need a barrier, and if this function
1703          * ever gets inlined it will generate worse code.
1704          */
1705         asm volatile ("");
1706         return last;
1707 }
1708
1709 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1710 {
1711         long v;
1712         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1713         u64 tsc_pg_val;
1714
1715         switch (gtod->clock.vclock_mode) {
1716         case VCLOCK_HVCLOCK:
1717                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1718                                                   tsc_timestamp);
1719                 if (tsc_pg_val != U64_MAX) {
1720                         /* TSC page valid */
1721                         *mode = VCLOCK_HVCLOCK;
1722                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1723                                 gtod->clock.mask;
1724                 } else {
1725                         /* TSC page invalid */
1726                         *mode = VCLOCK_NONE;
1727                 }
1728                 break;
1729         case VCLOCK_TSC:
1730                 *mode = VCLOCK_TSC;
1731                 *tsc_timestamp = read_tsc();
1732                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1733                         gtod->clock.mask;
1734                 break;
1735         default:
1736                 *mode = VCLOCK_NONE;
1737         }
1738
1739         if (*mode == VCLOCK_NONE)
1740                 *tsc_timestamp = v = 0;
1741
1742         return v * gtod->clock.mult;
1743 }
1744
1745 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1746 {
1747         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1748         unsigned long seq;
1749         int mode;
1750         u64 ns;
1751
1752         do {
1753                 seq = read_seqcount_begin(&gtod->seq);
1754                 ns = gtod->nsec_base;
1755                 ns += vgettsc(tsc_timestamp, &mode);
1756                 ns >>= gtod->clock.shift;
1757                 ns += gtod->boot_ns;
1758         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1759         *t = ns;
1760
1761         return mode;
1762 }
1763
1764 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1765 {
1766         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1767         unsigned long seq;
1768         int mode;
1769         u64 ns;
1770
1771         do {
1772                 seq = read_seqcount_begin(&gtod->seq);
1773                 ts->tv_sec = gtod->wall_time_sec;
1774                 ns = gtod->nsec_base;
1775                 ns += vgettsc(tsc_timestamp, &mode);
1776                 ns >>= gtod->clock.shift;
1777         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1778
1779         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1780         ts->tv_nsec = ns;
1781
1782         return mode;
1783 }
1784
1785 /* returns true if host is using TSC based clocksource */
1786 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1787 {
1788         /* checked again under seqlock below */
1789         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1790                 return false;
1791
1792         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1793                                                       tsc_timestamp));
1794 }
1795
1796 /* returns true if host is using TSC based clocksource */
1797 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1798                                            u64 *tsc_timestamp)
1799 {
1800         /* checked again under seqlock below */
1801         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1802                 return false;
1803
1804         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1805 }
1806 #endif
1807
1808 /*
1809  *
1810  * Assuming a stable TSC across physical CPUS, and a stable TSC
1811  * across virtual CPUs, the following condition is possible.
1812  * Each numbered line represents an event visible to both
1813  * CPUs at the next numbered event.
1814  *
1815  * "timespecX" represents host monotonic time. "tscX" represents
1816  * RDTSC value.
1817  *
1818  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1819  *
1820  * 1.  read timespec0,tsc0
1821  * 2.                                   | timespec1 = timespec0 + N
1822  *                                      | tsc1 = tsc0 + M
1823  * 3. transition to guest               | transition to guest
1824  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1825  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1826  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1827  *
1828  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1829  *
1830  *      - ret0 < ret1
1831  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1832  *              ...
1833  *      - 0 < N - M => M < N
1834  *
1835  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1836  * always the case (the difference between two distinct xtime instances
1837  * might be smaller then the difference between corresponding TSC reads,
1838  * when updating guest vcpus pvclock areas).
1839  *
1840  * To avoid that problem, do not allow visibility of distinct
1841  * system_timestamp/tsc_timestamp values simultaneously: use a master
1842  * copy of host monotonic time values. Update that master copy
1843  * in lockstep.
1844  *
1845  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1846  *
1847  */
1848
1849 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1850 {
1851 #ifdef CONFIG_X86_64
1852         struct kvm_arch *ka = &kvm->arch;
1853         int vclock_mode;
1854         bool host_tsc_clocksource, vcpus_matched;
1855
1856         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1857                         atomic_read(&kvm->online_vcpus));
1858
1859         /*
1860          * If the host uses TSC clock, then passthrough TSC as stable
1861          * to the guest.
1862          */
1863         host_tsc_clocksource = kvm_get_time_and_clockread(
1864                                         &ka->master_kernel_ns,
1865                                         &ka->master_cycle_now);
1866
1867         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1868                                 && !ka->backwards_tsc_observed
1869                                 && !ka->boot_vcpu_runs_old_kvmclock;
1870
1871         if (ka->use_master_clock)
1872                 atomic_set(&kvm_guest_has_master_clock, 1);
1873
1874         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1875         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1876                                         vcpus_matched);
1877 #endif
1878 }
1879
1880 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1881 {
1882         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1883 }
1884
1885 static void kvm_gen_update_masterclock(struct kvm *kvm)
1886 {
1887 #ifdef CONFIG_X86_64
1888         int i;
1889         struct kvm_vcpu *vcpu;
1890         struct kvm_arch *ka = &kvm->arch;
1891
1892         spin_lock(&ka->pvclock_gtod_sync_lock);
1893         kvm_make_mclock_inprogress_request(kvm);
1894         /* no guest entries from this point */
1895         pvclock_update_vm_gtod_copy(kvm);
1896
1897         kvm_for_each_vcpu(i, vcpu, kvm)
1898                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1899
1900         /* guest entries allowed */
1901         kvm_for_each_vcpu(i, vcpu, kvm)
1902                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1903
1904         spin_unlock(&ka->pvclock_gtod_sync_lock);
1905 #endif
1906 }
1907
1908 u64 get_kvmclock_ns(struct kvm *kvm)
1909 {
1910         struct kvm_arch *ka = &kvm->arch;
1911         struct pvclock_vcpu_time_info hv_clock;
1912         u64 ret;
1913
1914         spin_lock(&ka->pvclock_gtod_sync_lock);
1915         if (!ka->use_master_clock) {
1916                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1917                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1918         }
1919
1920         hv_clock.tsc_timestamp = ka->master_cycle_now;
1921         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1922         spin_unlock(&ka->pvclock_gtod_sync_lock);
1923
1924         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1925         get_cpu();
1926
1927         if (__this_cpu_read(cpu_tsc_khz)) {
1928                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1929                                    &hv_clock.tsc_shift,
1930                                    &hv_clock.tsc_to_system_mul);
1931                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1932         } else
1933                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1934
1935         put_cpu();
1936
1937         return ret;
1938 }
1939
1940 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1941 {
1942         struct kvm_vcpu_arch *vcpu = &v->arch;
1943         struct pvclock_vcpu_time_info guest_hv_clock;
1944
1945         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1946                 &guest_hv_clock, sizeof(guest_hv_clock))))
1947                 return;
1948
1949         /* This VCPU is paused, but it's legal for a guest to read another
1950          * VCPU's kvmclock, so we really have to follow the specification where
1951          * it says that version is odd if data is being modified, and even after
1952          * it is consistent.
1953          *
1954          * Version field updates must be kept separate.  This is because
1955          * kvm_write_guest_cached might use a "rep movs" instruction, and
1956          * writes within a string instruction are weakly ordered.  So there
1957          * are three writes overall.
1958          *
1959          * As a small optimization, only write the version field in the first
1960          * and third write.  The vcpu->pv_time cache is still valid, because the
1961          * version field is the first in the struct.
1962          */
1963         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1964
1965         if (guest_hv_clock.version & 1)
1966                 ++guest_hv_clock.version;  /* first time write, random junk */
1967
1968         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1969         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1970                                 &vcpu->hv_clock,
1971                                 sizeof(vcpu->hv_clock.version));
1972
1973         smp_wmb();
1974
1975         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1976         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1977
1978         if (vcpu->pvclock_set_guest_stopped_request) {
1979                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1980                 vcpu->pvclock_set_guest_stopped_request = false;
1981         }
1982
1983         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1984
1985         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1986                                 &vcpu->hv_clock,
1987                                 sizeof(vcpu->hv_clock));
1988
1989         smp_wmb();
1990
1991         vcpu->hv_clock.version++;
1992         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1993                                 &vcpu->hv_clock,
1994                                 sizeof(vcpu->hv_clock.version));
1995 }
1996
1997 static int kvm_guest_time_update(struct kvm_vcpu *v)
1998 {
1999         unsigned long flags, tgt_tsc_khz;
2000         struct kvm_vcpu_arch *vcpu = &v->arch;
2001         struct kvm_arch *ka = &v->kvm->arch;
2002         s64 kernel_ns;
2003         u64 tsc_timestamp, host_tsc;
2004         u8 pvclock_flags;
2005         bool use_master_clock;
2006
2007         kernel_ns = 0;
2008         host_tsc = 0;
2009
2010         /*
2011          * If the host uses TSC clock, then passthrough TSC as stable
2012          * to the guest.
2013          */
2014         spin_lock(&ka->pvclock_gtod_sync_lock);
2015         use_master_clock = ka->use_master_clock;
2016         if (use_master_clock) {
2017                 host_tsc = ka->master_cycle_now;
2018                 kernel_ns = ka->master_kernel_ns;
2019         }
2020         spin_unlock(&ka->pvclock_gtod_sync_lock);
2021
2022         /* Keep irq disabled to prevent changes to the clock */
2023         local_irq_save(flags);
2024         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2025         if (unlikely(tgt_tsc_khz == 0)) {
2026                 local_irq_restore(flags);
2027                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2028                 return 1;
2029         }
2030         if (!use_master_clock) {
2031                 host_tsc = rdtsc();
2032                 kernel_ns = ktime_get_boot_ns();
2033         }
2034
2035         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2036
2037         /*
2038          * We may have to catch up the TSC to match elapsed wall clock
2039          * time for two reasons, even if kvmclock is used.
2040          *   1) CPU could have been running below the maximum TSC rate
2041          *   2) Broken TSC compensation resets the base at each VCPU
2042          *      entry to avoid unknown leaps of TSC even when running
2043          *      again on the same CPU.  This may cause apparent elapsed
2044          *      time to disappear, and the guest to stand still or run
2045          *      very slowly.
2046          */
2047         if (vcpu->tsc_catchup) {
2048                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2049                 if (tsc > tsc_timestamp) {
2050                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2051                         tsc_timestamp = tsc;
2052                 }
2053         }
2054
2055         local_irq_restore(flags);
2056
2057         /* With all the info we got, fill in the values */
2058
2059         if (kvm_has_tsc_control)
2060                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2061
2062         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2063                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2064                                    &vcpu->hv_clock.tsc_shift,
2065                                    &vcpu->hv_clock.tsc_to_system_mul);
2066                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2067         }
2068
2069         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2070         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2071         vcpu->last_guest_tsc = tsc_timestamp;
2072
2073         /* If the host uses TSC clocksource, then it is stable */
2074         pvclock_flags = 0;
2075         if (use_master_clock)
2076                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2077
2078         vcpu->hv_clock.flags = pvclock_flags;
2079
2080         if (vcpu->pv_time_enabled)
2081                 kvm_setup_pvclock_page(v);
2082         if (v == kvm_get_vcpu(v->kvm, 0))
2083                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2084         return 0;
2085 }
2086
2087 /*
2088  * kvmclock updates which are isolated to a given vcpu, such as
2089  * vcpu->cpu migration, should not allow system_timestamp from
2090  * the rest of the vcpus to remain static. Otherwise ntp frequency
2091  * correction applies to one vcpu's system_timestamp but not
2092  * the others.
2093  *
2094  * So in those cases, request a kvmclock update for all vcpus.
2095  * We need to rate-limit these requests though, as they can
2096  * considerably slow guests that have a large number of vcpus.
2097  * The time for a remote vcpu to update its kvmclock is bound
2098  * by the delay we use to rate-limit the updates.
2099  */
2100
2101 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2102
2103 static void kvmclock_update_fn(struct work_struct *work)
2104 {
2105         int i;
2106         struct delayed_work *dwork = to_delayed_work(work);
2107         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2108                                            kvmclock_update_work);
2109         struct kvm *kvm = container_of(ka, struct kvm, arch);
2110         struct kvm_vcpu *vcpu;
2111
2112         kvm_for_each_vcpu(i, vcpu, kvm) {
2113                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2114                 kvm_vcpu_kick(vcpu);
2115         }
2116 }
2117
2118 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2119 {
2120         struct kvm *kvm = v->kvm;
2121
2122         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2123         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2124                                         KVMCLOCK_UPDATE_DELAY);
2125 }
2126
2127 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2128
2129 static void kvmclock_sync_fn(struct work_struct *work)
2130 {
2131         struct delayed_work *dwork = to_delayed_work(work);
2132         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2133                                            kvmclock_sync_work);
2134         struct kvm *kvm = container_of(ka, struct kvm, arch);
2135
2136         if (!kvmclock_periodic_sync)
2137                 return;
2138
2139         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2140         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2141                                         KVMCLOCK_SYNC_PERIOD);
2142 }
2143
2144 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2145 {
2146         u64 mcg_cap = vcpu->arch.mcg_cap;
2147         unsigned bank_num = mcg_cap & 0xff;
2148         u32 msr = msr_info->index;
2149         u64 data = msr_info->data;
2150
2151         switch (msr) {
2152         case MSR_IA32_MCG_STATUS:
2153                 vcpu->arch.mcg_status = data;
2154                 break;
2155         case MSR_IA32_MCG_CTL:
2156                 if (!(mcg_cap & MCG_CTL_P))
2157                         return 1;
2158                 if (data != 0 && data != ~(u64)0)
2159                         return -1;
2160                 vcpu->arch.mcg_ctl = data;
2161                 break;
2162         default:
2163                 if (msr >= MSR_IA32_MC0_CTL &&
2164                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2165                         u32 offset = msr - MSR_IA32_MC0_CTL;
2166                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2167                          * some Linux kernels though clear bit 10 in bank 4 to
2168                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2169                          * this to avoid an uncatched #GP in the guest
2170                          */
2171                         if ((offset & 0x3) == 0 &&
2172                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2173                                 return -1;
2174                         if (!msr_info->host_initiated &&
2175                                 (offset & 0x3) == 1 && data != 0)
2176                                 return -1;
2177                         vcpu->arch.mce_banks[offset] = data;
2178                         break;
2179                 }
2180                 return 1;
2181         }
2182         return 0;
2183 }
2184
2185 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2186 {
2187         struct kvm *kvm = vcpu->kvm;
2188         int lm = is_long_mode(vcpu);
2189         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2190                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2191         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2192                 : kvm->arch.xen_hvm_config.blob_size_32;
2193         u32 page_num = data & ~PAGE_MASK;
2194         u64 page_addr = data & PAGE_MASK;
2195         u8 *page;
2196         int r;
2197
2198         r = -E2BIG;
2199         if (page_num >= blob_size)
2200                 goto out;
2201         r = -ENOMEM;
2202         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2203         if (IS_ERR(page)) {
2204                 r = PTR_ERR(page);
2205                 goto out;
2206         }
2207         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2208                 goto out_free;
2209         r = 0;
2210 out_free:
2211         kfree(page);
2212 out:
2213         return r;
2214 }
2215
2216 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2217 {
2218         gpa_t gpa = data & ~0x3f;
2219
2220         /* Bits 3:5 are reserved, Should be zero */
2221         if (data & 0x38)
2222                 return 1;
2223
2224         vcpu->arch.apf.msr_val = data;
2225
2226         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2227                 kvm_clear_async_pf_completion_queue(vcpu);
2228                 kvm_async_pf_hash_reset(vcpu);
2229                 return 0;
2230         }
2231
2232         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2233                                         sizeof(u32)))
2234                 return 1;
2235
2236         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2237         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2238         kvm_async_pf_wakeup_all(vcpu);
2239         return 0;
2240 }
2241
2242 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2243 {
2244         vcpu->arch.pv_time_enabled = false;
2245 }
2246
2247 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2248 {
2249         ++vcpu->stat.tlb_flush;
2250         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2251 }
2252
2253 static void record_steal_time(struct kvm_vcpu *vcpu)
2254 {
2255         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2256                 return;
2257
2258         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2259                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2260                 return;
2261
2262         /*
2263          * Doing a TLB flush here, on the guest's behalf, can avoid
2264          * expensive IPIs.
2265          */
2266         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2267                 kvm_vcpu_flush_tlb(vcpu, false);
2268
2269         if (vcpu->arch.st.steal.version & 1)
2270                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2271
2272         vcpu->arch.st.steal.version += 1;
2273
2274         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2275                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2276
2277         smp_wmb();
2278
2279         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2280                 vcpu->arch.st.last_steal;
2281         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2282
2283         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2284                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2285
2286         smp_wmb();
2287
2288         vcpu->arch.st.steal.version += 1;
2289
2290         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2291                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2292 }
2293
2294 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2295 {
2296         bool pr = false;
2297         u32 msr = msr_info->index;
2298         u64 data = msr_info->data;
2299
2300         switch (msr) {
2301         case MSR_AMD64_NB_CFG:
2302         case MSR_IA32_UCODE_WRITE:
2303         case MSR_VM_HSAVE_PA:
2304         case MSR_AMD64_PATCH_LOADER:
2305         case MSR_AMD64_BU_CFG2:
2306         case MSR_AMD64_DC_CFG:
2307                 break;
2308
2309         case MSR_IA32_UCODE_REV:
2310                 if (msr_info->host_initiated)
2311                         vcpu->arch.microcode_version = data;
2312                 break;
2313         case MSR_EFER:
2314                 return set_efer(vcpu, data);
2315         case MSR_K7_HWCR:
2316                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2317                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2318                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2319                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2320                 if (data != 0) {
2321                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2322                                     data);
2323                         return 1;
2324                 }
2325                 break;
2326         case MSR_FAM10H_MMIO_CONF_BASE:
2327                 if (data != 0) {
2328                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2329                                     "0x%llx\n", data);
2330                         return 1;
2331                 }
2332                 break;
2333         case MSR_IA32_DEBUGCTLMSR:
2334                 if (!data) {
2335                         /* We support the non-activated case already */
2336                         break;
2337                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2338                         /* Values other than LBR and BTF are vendor-specific,
2339                            thus reserved and should throw a #GP */
2340                         return 1;
2341                 }
2342                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2343                             __func__, data);
2344                 break;
2345         case 0x200 ... 0x2ff:
2346                 return kvm_mtrr_set_msr(vcpu, msr, data);
2347         case MSR_IA32_APICBASE:
2348                 return kvm_set_apic_base(vcpu, msr_info);
2349         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2350                 return kvm_x2apic_msr_write(vcpu, msr, data);
2351         case MSR_IA32_TSCDEADLINE:
2352                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2353                 break;
2354         case MSR_IA32_TSC_ADJUST:
2355                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2356                         if (!msr_info->host_initiated) {
2357                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2358                                 adjust_tsc_offset_guest(vcpu, adj);
2359                         }
2360                         vcpu->arch.ia32_tsc_adjust_msr = data;
2361                 }
2362                 break;
2363         case MSR_IA32_MISC_ENABLE:
2364                 vcpu->arch.ia32_misc_enable_msr = data;
2365                 break;
2366         case MSR_IA32_SMBASE:
2367                 if (!msr_info->host_initiated)
2368                         return 1;
2369                 vcpu->arch.smbase = data;
2370                 break;
2371         case MSR_IA32_TSC:
2372                 kvm_write_tsc(vcpu, msr_info);
2373                 break;
2374         case MSR_SMI_COUNT:
2375                 if (!msr_info->host_initiated)
2376                         return 1;
2377                 vcpu->arch.smi_count = data;
2378                 break;
2379         case MSR_KVM_WALL_CLOCK_NEW:
2380         case MSR_KVM_WALL_CLOCK:
2381                 vcpu->kvm->arch.wall_clock = data;
2382                 kvm_write_wall_clock(vcpu->kvm, data);
2383                 break;
2384         case MSR_KVM_SYSTEM_TIME_NEW:
2385         case MSR_KVM_SYSTEM_TIME: {
2386                 struct kvm_arch *ka = &vcpu->kvm->arch;
2387
2388                 kvmclock_reset(vcpu);
2389
2390                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2391                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2392
2393                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2394                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2395
2396                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2397                 }
2398
2399                 vcpu->arch.time = data;
2400                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2401
2402                 /* we verify if the enable bit is set... */
2403                 if (!(data & 1))
2404                         break;
2405
2406                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2407                      &vcpu->arch.pv_time, data & ~1ULL,
2408                      sizeof(struct pvclock_vcpu_time_info)))
2409                         vcpu->arch.pv_time_enabled = false;
2410                 else
2411                         vcpu->arch.pv_time_enabled = true;
2412
2413                 break;
2414         }
2415         case MSR_KVM_ASYNC_PF_EN:
2416                 if (kvm_pv_enable_async_pf(vcpu, data))
2417                         return 1;
2418                 break;
2419         case MSR_KVM_STEAL_TIME:
2420
2421                 if (unlikely(!sched_info_on()))
2422                         return 1;
2423
2424                 if (data & KVM_STEAL_RESERVED_MASK)
2425                         return 1;
2426
2427                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2428                                                 data & KVM_STEAL_VALID_BITS,
2429                                                 sizeof(struct kvm_steal_time)))
2430                         return 1;
2431
2432                 vcpu->arch.st.msr_val = data;
2433
2434                 if (!(data & KVM_MSR_ENABLED))
2435                         break;
2436
2437                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2438
2439                 break;
2440         case MSR_KVM_PV_EOI_EN:
2441                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2442                         return 1;
2443                 break;
2444
2445         case MSR_IA32_MCG_CTL:
2446         case MSR_IA32_MCG_STATUS:
2447         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2448                 return set_msr_mce(vcpu, msr_info);
2449
2450         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2451         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2452                 pr = true; /* fall through */
2453         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2454         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2455                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2456                         return kvm_pmu_set_msr(vcpu, msr_info);
2457
2458                 if (pr || data != 0)
2459                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2460                                     "0x%x data 0x%llx\n", msr, data);
2461                 break;
2462         case MSR_K7_CLK_CTL:
2463                 /*
2464                  * Ignore all writes to this no longer documented MSR.
2465                  * Writes are only relevant for old K7 processors,
2466                  * all pre-dating SVM, but a recommended workaround from
2467                  * AMD for these chips. It is possible to specify the
2468                  * affected processor models on the command line, hence
2469                  * the need to ignore the workaround.
2470                  */
2471                 break;
2472         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2473         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2474         case HV_X64_MSR_CRASH_CTL:
2475         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2476         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2477         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2478         case HV_X64_MSR_TSC_EMULATION_STATUS:
2479                 return kvm_hv_set_msr_common(vcpu, msr, data,
2480                                              msr_info->host_initiated);
2481         case MSR_IA32_BBL_CR_CTL3:
2482                 /* Drop writes to this legacy MSR -- see rdmsr
2483                  * counterpart for further detail.
2484                  */
2485                 if (report_ignored_msrs)
2486                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2487                                 msr, data);
2488                 break;
2489         case MSR_AMD64_OSVW_ID_LENGTH:
2490                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2491                         return 1;
2492                 vcpu->arch.osvw.length = data;
2493                 break;
2494         case MSR_AMD64_OSVW_STATUS:
2495                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2496                         return 1;
2497                 vcpu->arch.osvw.status = data;
2498                 break;
2499         case MSR_PLATFORM_INFO:
2500                 if (!msr_info->host_initiated ||
2501                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2502                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2503                      cpuid_fault_enabled(vcpu)))
2504                         return 1;
2505                 vcpu->arch.msr_platform_info = data;
2506                 break;
2507         case MSR_MISC_FEATURES_ENABLES:
2508                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2509                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2510                      !supports_cpuid_fault(vcpu)))
2511                         return 1;
2512                 vcpu->arch.msr_misc_features_enables = data;
2513                 break;
2514         default:
2515                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2516                         return xen_hvm_config(vcpu, data);
2517                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2518                         return kvm_pmu_set_msr(vcpu, msr_info);
2519                 if (!ignore_msrs) {
2520                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2521                                     msr, data);
2522                         return 1;
2523                 } else {
2524                         if (report_ignored_msrs)
2525                                 vcpu_unimpl(vcpu,
2526                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2527                                         msr, data);
2528                         break;
2529                 }
2530         }
2531         return 0;
2532 }
2533 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2534
2535
2536 /*
2537  * Reads an msr value (of 'msr_index') into 'pdata'.
2538  * Returns 0 on success, non-0 otherwise.
2539  * Assumes vcpu_load() was already called.
2540  */
2541 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2542 {
2543         return kvm_x86_ops->get_msr(vcpu, msr);
2544 }
2545 EXPORT_SYMBOL_GPL(kvm_get_msr);
2546
2547 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2548 {
2549         u64 data;
2550         u64 mcg_cap = vcpu->arch.mcg_cap;
2551         unsigned bank_num = mcg_cap & 0xff;
2552
2553         switch (msr) {
2554         case MSR_IA32_P5_MC_ADDR:
2555         case MSR_IA32_P5_MC_TYPE:
2556                 data = 0;
2557                 break;
2558         case MSR_IA32_MCG_CAP:
2559                 data = vcpu->arch.mcg_cap;
2560                 break;
2561         case MSR_IA32_MCG_CTL:
2562                 if (!(mcg_cap & MCG_CTL_P))
2563                         return 1;
2564                 data = vcpu->arch.mcg_ctl;
2565                 break;
2566         case MSR_IA32_MCG_STATUS:
2567                 data = vcpu->arch.mcg_status;
2568                 break;
2569         default:
2570                 if (msr >= MSR_IA32_MC0_CTL &&
2571                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2572                         u32 offset = msr - MSR_IA32_MC0_CTL;
2573                         data = vcpu->arch.mce_banks[offset];
2574                         break;
2575                 }
2576                 return 1;
2577         }
2578         *pdata = data;
2579         return 0;
2580 }
2581
2582 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2583 {
2584         switch (msr_info->index) {
2585         case MSR_IA32_PLATFORM_ID:
2586         case MSR_IA32_EBL_CR_POWERON:
2587         case MSR_IA32_DEBUGCTLMSR:
2588         case MSR_IA32_LASTBRANCHFROMIP:
2589         case MSR_IA32_LASTBRANCHTOIP:
2590         case MSR_IA32_LASTINTFROMIP:
2591         case MSR_IA32_LASTINTTOIP:
2592         case MSR_K8_SYSCFG:
2593         case MSR_K8_TSEG_ADDR:
2594         case MSR_K8_TSEG_MASK:
2595         case MSR_K7_HWCR:
2596         case MSR_VM_HSAVE_PA:
2597         case MSR_K8_INT_PENDING_MSG:
2598         case MSR_AMD64_NB_CFG:
2599         case MSR_FAM10H_MMIO_CONF_BASE:
2600         case MSR_AMD64_BU_CFG2:
2601         case MSR_IA32_PERF_CTL:
2602         case MSR_AMD64_DC_CFG:
2603                 msr_info->data = 0;
2604                 break;
2605         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2606         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2607         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2608         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2609         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2610                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2611                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2612                 msr_info->data = 0;
2613                 break;
2614         case MSR_IA32_UCODE_REV:
2615                 msr_info->data = vcpu->arch.microcode_version;
2616                 break;
2617         case MSR_IA32_TSC:
2618                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2619                 break;
2620         case MSR_MTRRcap:
2621         case 0x200 ... 0x2ff:
2622                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2623         case 0xcd: /* fsb frequency */
2624                 msr_info->data = 3;
2625                 break;
2626                 /*
2627                  * MSR_EBC_FREQUENCY_ID
2628                  * Conservative value valid for even the basic CPU models.
2629                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2630                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2631                  * and 266MHz for model 3, or 4. Set Core Clock
2632                  * Frequency to System Bus Frequency Ratio to 1 (bits
2633                  * 31:24) even though these are only valid for CPU
2634                  * models > 2, however guests may end up dividing or
2635                  * multiplying by zero otherwise.
2636                  */
2637         case MSR_EBC_FREQUENCY_ID:
2638                 msr_info->data = 1 << 24;
2639                 break;
2640         case MSR_IA32_APICBASE:
2641                 msr_info->data = kvm_get_apic_base(vcpu);
2642                 break;
2643         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2644                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2645                 break;
2646         case MSR_IA32_TSCDEADLINE:
2647                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2648                 break;
2649         case MSR_IA32_TSC_ADJUST:
2650                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2651                 break;
2652         case MSR_IA32_MISC_ENABLE:
2653                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2654                 break;
2655         case MSR_IA32_SMBASE:
2656                 if (!msr_info->host_initiated)
2657                         return 1;
2658                 msr_info->data = vcpu->arch.smbase;
2659                 break;
2660         case MSR_SMI_COUNT:
2661                 msr_info->data = vcpu->arch.smi_count;
2662                 break;
2663         case MSR_IA32_PERF_STATUS:
2664                 /* TSC increment by tick */
2665                 msr_info->data = 1000ULL;
2666                 /* CPU multiplier */
2667                 msr_info->data |= (((uint64_t)4ULL) << 40);
2668                 break;
2669         case MSR_EFER:
2670                 msr_info->data = vcpu->arch.efer;
2671                 break;
2672         case MSR_KVM_WALL_CLOCK:
2673         case MSR_KVM_WALL_CLOCK_NEW:
2674                 msr_info->data = vcpu->kvm->arch.wall_clock;
2675                 break;
2676         case MSR_KVM_SYSTEM_TIME:
2677         case MSR_KVM_SYSTEM_TIME_NEW:
2678                 msr_info->data = vcpu->arch.time;
2679                 break;
2680         case MSR_KVM_ASYNC_PF_EN:
2681                 msr_info->data = vcpu->arch.apf.msr_val;
2682                 break;
2683         case MSR_KVM_STEAL_TIME:
2684                 msr_info->data = vcpu->arch.st.msr_val;
2685                 break;
2686         case MSR_KVM_PV_EOI_EN:
2687                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2688                 break;
2689         case MSR_IA32_P5_MC_ADDR:
2690         case MSR_IA32_P5_MC_TYPE:
2691         case MSR_IA32_MCG_CAP:
2692         case MSR_IA32_MCG_CTL:
2693         case MSR_IA32_MCG_STATUS:
2694         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2695                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2696         case MSR_K7_CLK_CTL:
2697                 /*
2698                  * Provide expected ramp-up count for K7. All other
2699                  * are set to zero, indicating minimum divisors for
2700                  * every field.
2701                  *
2702                  * This prevents guest kernels on AMD host with CPU
2703                  * type 6, model 8 and higher from exploding due to
2704                  * the rdmsr failing.
2705                  */
2706                 msr_info->data = 0x20000000;
2707                 break;
2708         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2709         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2710         case HV_X64_MSR_CRASH_CTL:
2711         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2712         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2713         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2714         case HV_X64_MSR_TSC_EMULATION_STATUS:
2715                 return kvm_hv_get_msr_common(vcpu,
2716                                              msr_info->index, &msr_info->data);
2717                 break;
2718         case MSR_IA32_BBL_CR_CTL3:
2719                 /* This legacy MSR exists but isn't fully documented in current
2720                  * silicon.  It is however accessed by winxp in very narrow
2721                  * scenarios where it sets bit #19, itself documented as
2722                  * a "reserved" bit.  Best effort attempt to source coherent
2723                  * read data here should the balance of the register be
2724                  * interpreted by the guest:
2725                  *
2726                  * L2 cache control register 3: 64GB range, 256KB size,
2727                  * enabled, latency 0x1, configured
2728                  */
2729                 msr_info->data = 0xbe702111;
2730                 break;
2731         case MSR_AMD64_OSVW_ID_LENGTH:
2732                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2733                         return 1;
2734                 msr_info->data = vcpu->arch.osvw.length;
2735                 break;
2736         case MSR_AMD64_OSVW_STATUS:
2737                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2738                         return 1;
2739                 msr_info->data = vcpu->arch.osvw.status;
2740                 break;
2741         case MSR_PLATFORM_INFO:
2742                 msr_info->data = vcpu->arch.msr_platform_info;
2743                 break;
2744         case MSR_MISC_FEATURES_ENABLES:
2745                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2746                 break;
2747         default:
2748                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2749                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2750                 if (!ignore_msrs) {
2751                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2752                                                msr_info->index);
2753                         return 1;
2754                 } else {
2755                         if (report_ignored_msrs)
2756                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2757                                         msr_info->index);
2758                         msr_info->data = 0;
2759                 }
2760                 break;
2761         }
2762         return 0;
2763 }
2764 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2765
2766 /*
2767  * Read or write a bunch of msrs. All parameters are kernel addresses.
2768  *
2769  * @return number of msrs set successfully.
2770  */
2771 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2772                     struct kvm_msr_entry *entries,
2773                     int (*do_msr)(struct kvm_vcpu *vcpu,
2774                                   unsigned index, u64 *data))
2775 {
2776         int i;
2777
2778         for (i = 0; i < msrs->nmsrs; ++i)
2779                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2780                         break;
2781
2782         return i;
2783 }
2784
2785 /*
2786  * Read or write a bunch of msrs. Parameters are user addresses.
2787  *
2788  * @return number of msrs set successfully.
2789  */
2790 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2791                   int (*do_msr)(struct kvm_vcpu *vcpu,
2792                                 unsigned index, u64 *data),
2793                   int writeback)
2794 {
2795         struct kvm_msrs msrs;
2796         struct kvm_msr_entry *entries;
2797         int r, n;
2798         unsigned size;
2799
2800         r = -EFAULT;
2801         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2802                 goto out;
2803
2804         r = -E2BIG;
2805         if (msrs.nmsrs >= MAX_IO_MSRS)
2806                 goto out;
2807
2808         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2809         entries = memdup_user(user_msrs->entries, size);
2810         if (IS_ERR(entries)) {
2811                 r = PTR_ERR(entries);
2812                 goto out;
2813         }
2814
2815         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2816         if (r < 0)
2817                 goto out_free;
2818
2819         r = -EFAULT;
2820         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2821                 goto out_free;
2822
2823         r = n;
2824
2825 out_free:
2826         kfree(entries);
2827 out:
2828         return r;
2829 }
2830
2831 static inline bool kvm_can_mwait_in_guest(void)
2832 {
2833         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2834                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2835                 boot_cpu_has(X86_FEATURE_ARAT);
2836 }
2837
2838 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2839 {
2840         int r = 0;
2841
2842         switch (ext) {
2843         case KVM_CAP_IRQCHIP:
2844         case KVM_CAP_HLT:
2845         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2846         case KVM_CAP_SET_TSS_ADDR:
2847         case KVM_CAP_EXT_CPUID:
2848         case KVM_CAP_EXT_EMUL_CPUID:
2849         case KVM_CAP_CLOCKSOURCE:
2850         case KVM_CAP_PIT:
2851         case KVM_CAP_NOP_IO_DELAY:
2852         case KVM_CAP_MP_STATE:
2853         case KVM_CAP_SYNC_MMU:
2854         case KVM_CAP_USER_NMI:
2855         case KVM_CAP_REINJECT_CONTROL:
2856         case KVM_CAP_IRQ_INJECT_STATUS:
2857         case KVM_CAP_IOEVENTFD:
2858         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2859         case KVM_CAP_PIT2:
2860         case KVM_CAP_PIT_STATE2:
2861         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2862         case KVM_CAP_XEN_HVM:
2863         case KVM_CAP_VCPU_EVENTS:
2864         case KVM_CAP_HYPERV:
2865         case KVM_CAP_HYPERV_VAPIC:
2866         case KVM_CAP_HYPERV_SPIN:
2867         case KVM_CAP_HYPERV_SYNIC:
2868         case KVM_CAP_HYPERV_SYNIC2:
2869         case KVM_CAP_HYPERV_VP_INDEX:
2870         case KVM_CAP_HYPERV_EVENTFD:
2871         case KVM_CAP_PCI_SEGMENT:
2872         case KVM_CAP_DEBUGREGS:
2873         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2874         case KVM_CAP_XSAVE:
2875         case KVM_CAP_ASYNC_PF:
2876         case KVM_CAP_GET_TSC_KHZ:
2877         case KVM_CAP_KVMCLOCK_CTRL:
2878         case KVM_CAP_READONLY_MEM:
2879         case KVM_CAP_HYPERV_TIME:
2880         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2881         case KVM_CAP_TSC_DEADLINE_TIMER:
2882         case KVM_CAP_ENABLE_CAP_VM:
2883         case KVM_CAP_DISABLE_QUIRKS:
2884         case KVM_CAP_SET_BOOT_CPU_ID:
2885         case KVM_CAP_SPLIT_IRQCHIP:
2886         case KVM_CAP_IMMEDIATE_EXIT:
2887         case KVM_CAP_GET_MSR_FEATURES:
2888                 r = 1;
2889                 break;
2890         case KVM_CAP_SYNC_REGS:
2891                 r = KVM_SYNC_X86_VALID_FIELDS;
2892                 break;
2893         case KVM_CAP_ADJUST_CLOCK:
2894                 r = KVM_CLOCK_TSC_STABLE;
2895                 break;
2896         case KVM_CAP_X86_DISABLE_EXITS:
2897                 r |=  KVM_X86_DISABLE_EXITS_HTL | KVM_X86_DISABLE_EXITS_PAUSE;
2898                 if(kvm_can_mwait_in_guest())
2899                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
2900                 break;
2901         case KVM_CAP_X86_SMM:
2902                 /* SMBASE is usually relocated above 1M on modern chipsets,
2903                  * and SMM handlers might indeed rely on 4G segment limits,
2904                  * so do not report SMM to be available if real mode is
2905                  * emulated via vm86 mode.  Still, do not go to great lengths
2906                  * to avoid userspace's usage of the feature, because it is a
2907                  * fringe case that is not enabled except via specific settings
2908                  * of the module parameters.
2909                  */
2910                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2911                 break;
2912         case KVM_CAP_VAPIC:
2913                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2914                 break;
2915         case KVM_CAP_NR_VCPUS:
2916                 r = KVM_SOFT_MAX_VCPUS;
2917                 break;
2918         case KVM_CAP_MAX_VCPUS:
2919                 r = KVM_MAX_VCPUS;
2920                 break;
2921         case KVM_CAP_NR_MEMSLOTS:
2922                 r = KVM_USER_MEM_SLOTS;
2923                 break;
2924         case KVM_CAP_PV_MMU:    /* obsolete */
2925                 r = 0;
2926                 break;
2927         case KVM_CAP_MCE:
2928                 r = KVM_MAX_MCE_BANKS;
2929                 break;
2930         case KVM_CAP_XCRS:
2931                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2932                 break;
2933         case KVM_CAP_TSC_CONTROL:
2934                 r = kvm_has_tsc_control;
2935                 break;
2936         case KVM_CAP_X2APIC_API:
2937                 r = KVM_X2APIC_API_VALID_FLAGS;
2938                 break;
2939         default:
2940                 break;
2941         }
2942         return r;
2943
2944 }
2945
2946 long kvm_arch_dev_ioctl(struct file *filp,
2947                         unsigned int ioctl, unsigned long arg)
2948 {
2949         void __user *argp = (void __user *)arg;
2950         long r;
2951
2952         switch (ioctl) {
2953         case KVM_GET_MSR_INDEX_LIST: {
2954                 struct kvm_msr_list __user *user_msr_list = argp;
2955                 struct kvm_msr_list msr_list;
2956                 unsigned n;
2957
2958                 r = -EFAULT;
2959                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2960                         goto out;
2961                 n = msr_list.nmsrs;
2962                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2963                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2964                         goto out;
2965                 r = -E2BIG;
2966                 if (n < msr_list.nmsrs)
2967                         goto out;
2968                 r = -EFAULT;
2969                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2970                                  num_msrs_to_save * sizeof(u32)))
2971                         goto out;
2972                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2973                                  &emulated_msrs,
2974                                  num_emulated_msrs * sizeof(u32)))
2975                         goto out;
2976                 r = 0;
2977                 break;
2978         }
2979         case KVM_GET_SUPPORTED_CPUID:
2980         case KVM_GET_EMULATED_CPUID: {
2981                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2982                 struct kvm_cpuid2 cpuid;
2983
2984                 r = -EFAULT;
2985                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2986                         goto out;
2987
2988                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2989                                             ioctl);
2990                 if (r)
2991                         goto out;
2992
2993                 r = -EFAULT;
2994                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2995                         goto out;
2996                 r = 0;
2997                 break;
2998         }
2999         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3000                 r = -EFAULT;
3001                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3002                                  sizeof(kvm_mce_cap_supported)))
3003                         goto out;
3004                 r = 0;
3005                 break;
3006         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3007                 struct kvm_msr_list __user *user_msr_list = argp;
3008                 struct kvm_msr_list msr_list;
3009                 unsigned int n;
3010
3011                 r = -EFAULT;
3012                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3013                         goto out;
3014                 n = msr_list.nmsrs;
3015                 msr_list.nmsrs = num_msr_based_features;
3016                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3017                         goto out;
3018                 r = -E2BIG;
3019                 if (n < msr_list.nmsrs)
3020                         goto out;
3021                 r = -EFAULT;
3022                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3023                                  num_msr_based_features * sizeof(u32)))
3024                         goto out;
3025                 r = 0;
3026                 break;
3027         }
3028         case KVM_GET_MSRS:
3029                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3030                 break;
3031         }
3032         default:
3033                 r = -EINVAL;
3034         }
3035 out:
3036         return r;
3037 }
3038
3039 static void wbinvd_ipi(void *garbage)
3040 {
3041         wbinvd();
3042 }
3043
3044 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3045 {
3046         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3047 }
3048
3049 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3050 {
3051         /* Address WBINVD may be executed by guest */
3052         if (need_emulate_wbinvd(vcpu)) {
3053                 if (kvm_x86_ops->has_wbinvd_exit())
3054                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3055                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3056                         smp_call_function_single(vcpu->cpu,
3057                                         wbinvd_ipi, NULL, 1);
3058         }
3059
3060         kvm_x86_ops->vcpu_load(vcpu, cpu);
3061
3062         /* Apply any externally detected TSC adjustments (due to suspend) */
3063         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3064                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3065                 vcpu->arch.tsc_offset_adjustment = 0;
3066                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3067         }
3068
3069         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3070                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3071                                 rdtsc() - vcpu->arch.last_host_tsc;
3072                 if (tsc_delta < 0)
3073                         mark_tsc_unstable("KVM discovered backwards TSC");
3074
3075                 if (kvm_check_tsc_unstable()) {
3076                         u64 offset = kvm_compute_tsc_offset(vcpu,
3077                                                 vcpu->arch.last_guest_tsc);
3078                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3079                         vcpu->arch.tsc_catchup = 1;
3080                 }
3081
3082                 if (kvm_lapic_hv_timer_in_use(vcpu))
3083                         kvm_lapic_restart_hv_timer(vcpu);
3084
3085                 /*
3086                  * On a host with synchronized TSC, there is no need to update
3087                  * kvmclock on vcpu->cpu migration
3088                  */
3089                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3090                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3091                 if (vcpu->cpu != cpu)
3092                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3093                 vcpu->cpu = cpu;
3094         }
3095
3096         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3097 }
3098
3099 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3100 {
3101         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3102                 return;
3103
3104         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3105
3106         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3107                         &vcpu->arch.st.steal.preempted,
3108                         offsetof(struct kvm_steal_time, preempted),
3109                         sizeof(vcpu->arch.st.steal.preempted));
3110 }
3111
3112 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3113 {
3114         int idx;
3115
3116         if (vcpu->preempted)
3117                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3118
3119         /*
3120          * Disable page faults because we're in atomic context here.
3121          * kvm_write_guest_offset_cached() would call might_fault()
3122          * that relies on pagefault_disable() to tell if there's a
3123          * bug. NOTE: the write to guest memory may not go through if
3124          * during postcopy live migration or if there's heavy guest
3125          * paging.
3126          */
3127         pagefault_disable();
3128         /*
3129          * kvm_memslots() will be called by
3130          * kvm_write_guest_offset_cached() so take the srcu lock.
3131          */
3132         idx = srcu_read_lock(&vcpu->kvm->srcu);
3133         kvm_steal_time_set_preempted(vcpu);
3134         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3135         pagefault_enable();
3136         kvm_x86_ops->vcpu_put(vcpu);
3137         vcpu->arch.last_host_tsc = rdtsc();
3138         /*
3139          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3140          * on every vmexit, but if not, we might have a stale dr6 from the
3141          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3142          */
3143         set_debugreg(0, 6);
3144 }
3145
3146 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3147                                     struct kvm_lapic_state *s)
3148 {
3149         if (vcpu->arch.apicv_active)
3150                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3151
3152         return kvm_apic_get_state(vcpu, s);
3153 }
3154
3155 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3156                                     struct kvm_lapic_state *s)
3157 {
3158         int r;
3159
3160         r = kvm_apic_set_state(vcpu, s);
3161         if (r)
3162                 return r;
3163         update_cr8_intercept(vcpu);
3164
3165         return 0;
3166 }
3167
3168 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3169 {
3170         return (!lapic_in_kernel(vcpu) ||
3171                 kvm_apic_accept_pic_intr(vcpu));
3172 }
3173
3174 /*
3175  * if userspace requested an interrupt window, check that the
3176  * interrupt window is open.
3177  *
3178  * No need to exit to userspace if we already have an interrupt queued.
3179  */
3180 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3181 {
3182         return kvm_arch_interrupt_allowed(vcpu) &&
3183                 !kvm_cpu_has_interrupt(vcpu) &&
3184                 !kvm_event_needs_reinjection(vcpu) &&
3185                 kvm_cpu_accept_dm_intr(vcpu);
3186 }
3187
3188 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3189                                     struct kvm_interrupt *irq)
3190 {
3191         if (irq->irq >= KVM_NR_INTERRUPTS)
3192                 return -EINVAL;
3193
3194         if (!irqchip_in_kernel(vcpu->kvm)) {
3195                 kvm_queue_interrupt(vcpu, irq->irq, false);
3196                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3197                 return 0;
3198         }
3199
3200         /*
3201          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3202          * fail for in-kernel 8259.
3203          */
3204         if (pic_in_kernel(vcpu->kvm))
3205                 return -ENXIO;
3206
3207         if (vcpu->arch.pending_external_vector != -1)
3208                 return -EEXIST;
3209
3210         vcpu->arch.pending_external_vector = irq->irq;
3211         kvm_make_request(KVM_REQ_EVENT, vcpu);
3212         return 0;
3213 }
3214
3215 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3216 {
3217         kvm_inject_nmi(vcpu);
3218
3219         return 0;
3220 }
3221
3222 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3223 {
3224         kvm_make_request(KVM_REQ_SMI, vcpu);
3225
3226         return 0;
3227 }
3228
3229 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3230                                            struct kvm_tpr_access_ctl *tac)
3231 {
3232         if (tac->flags)
3233                 return -EINVAL;
3234         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3235         return 0;
3236 }
3237
3238 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3239                                         u64 mcg_cap)
3240 {
3241         int r;
3242         unsigned bank_num = mcg_cap & 0xff, bank;
3243
3244         r = -EINVAL;
3245         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3246                 goto out;
3247         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3248                 goto out;
3249         r = 0;
3250         vcpu->arch.mcg_cap = mcg_cap;
3251         /* Init IA32_MCG_CTL to all 1s */
3252         if (mcg_cap & MCG_CTL_P)
3253                 vcpu->arch.mcg_ctl = ~(u64)0;
3254         /* Init IA32_MCi_CTL to all 1s */
3255         for (bank = 0; bank < bank_num; bank++)
3256                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3257
3258         if (kvm_x86_ops->setup_mce)
3259                 kvm_x86_ops->setup_mce(vcpu);
3260 out:
3261         return r;
3262 }
3263
3264 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3265                                       struct kvm_x86_mce *mce)
3266 {
3267         u64 mcg_cap = vcpu->arch.mcg_cap;
3268         unsigned bank_num = mcg_cap & 0xff;
3269         u64 *banks = vcpu->arch.mce_banks;
3270
3271         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3272                 return -EINVAL;
3273         /*
3274          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3275          * reporting is disabled
3276          */
3277         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3278             vcpu->arch.mcg_ctl != ~(u64)0)
3279                 return 0;
3280         banks += 4 * mce->bank;
3281         /*
3282          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3283          * reporting is disabled for the bank
3284          */
3285         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3286                 return 0;
3287         if (mce->status & MCI_STATUS_UC) {
3288                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3289                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3290                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3291                         return 0;
3292                 }
3293                 if (banks[1] & MCI_STATUS_VAL)
3294                         mce->status |= MCI_STATUS_OVER;
3295                 banks[2] = mce->addr;
3296                 banks[3] = mce->misc;
3297                 vcpu->arch.mcg_status = mce->mcg_status;
3298                 banks[1] = mce->status;
3299                 kvm_queue_exception(vcpu, MC_VECTOR);
3300         } else if (!(banks[1] & MCI_STATUS_VAL)
3301                    || !(banks[1] & MCI_STATUS_UC)) {
3302                 if (banks[1] & MCI_STATUS_VAL)
3303                         mce->status |= MCI_STATUS_OVER;
3304                 banks[2] = mce->addr;
3305                 banks[3] = mce->misc;
3306                 banks[1] = mce->status;
3307         } else
3308                 banks[1] |= MCI_STATUS_OVER;
3309         return 0;
3310 }
3311
3312 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3313                                                struct kvm_vcpu_events *events)
3314 {
3315         process_nmi(vcpu);
3316         /*
3317          * FIXME: pass injected and pending separately.  This is only
3318          * needed for nested virtualization, whose state cannot be
3319          * migrated yet.  For now we can combine them.
3320          */
3321         events->exception.injected =
3322                 (vcpu->arch.exception.pending ||
3323                  vcpu->arch.exception.injected) &&
3324                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3325         events->exception.nr = vcpu->arch.exception.nr;
3326         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3327         events->exception.pad = 0;
3328         events->exception.error_code = vcpu->arch.exception.error_code;
3329
3330         events->interrupt.injected =
3331                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3332         events->interrupt.nr = vcpu->arch.interrupt.nr;
3333         events->interrupt.soft = 0;
3334         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3335
3336         events->nmi.injected = vcpu->arch.nmi_injected;
3337         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3338         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3339         events->nmi.pad = 0;
3340
3341         events->sipi_vector = 0; /* never valid when reporting to user space */
3342
3343         events->smi.smm = is_smm(vcpu);
3344         events->smi.pending = vcpu->arch.smi_pending;
3345         events->smi.smm_inside_nmi =
3346                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3347         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3348
3349         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3350                          | KVM_VCPUEVENT_VALID_SHADOW
3351                          | KVM_VCPUEVENT_VALID_SMM);
3352         memset(&events->reserved, 0, sizeof(events->reserved));
3353 }
3354
3355 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3356
3357 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3358                                               struct kvm_vcpu_events *events)
3359 {
3360         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3361                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3362                               | KVM_VCPUEVENT_VALID_SHADOW
3363                               | KVM_VCPUEVENT_VALID_SMM))
3364                 return -EINVAL;
3365
3366         if (events->exception.injected &&
3367             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3368              is_guest_mode(vcpu)))
3369                 return -EINVAL;
3370
3371         /* INITs are latched while in SMM */
3372         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3373             (events->smi.smm || events->smi.pending) &&
3374             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3375                 return -EINVAL;
3376
3377         process_nmi(vcpu);
3378         vcpu->arch.exception.injected = false;
3379         vcpu->arch.exception.pending = events->exception.injected;
3380         vcpu->arch.exception.nr = events->exception.nr;
3381         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3382         vcpu->arch.exception.error_code = events->exception.error_code;
3383
3384         vcpu->arch.interrupt.injected = events->interrupt.injected;
3385         vcpu->arch.interrupt.nr = events->interrupt.nr;
3386         vcpu->arch.interrupt.soft = events->interrupt.soft;
3387         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3388                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3389                                                   events->interrupt.shadow);
3390
3391         vcpu->arch.nmi_injected = events->nmi.injected;
3392         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3393                 vcpu->arch.nmi_pending = events->nmi.pending;
3394         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3395
3396         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3397             lapic_in_kernel(vcpu))
3398                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3399
3400         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3401                 u32 hflags = vcpu->arch.hflags;
3402                 if (events->smi.smm)
3403                         hflags |= HF_SMM_MASK;
3404                 else
3405                         hflags &= ~HF_SMM_MASK;
3406                 kvm_set_hflags(vcpu, hflags);
3407
3408                 vcpu->arch.smi_pending = events->smi.pending;
3409
3410                 if (events->smi.smm) {
3411                         if (events->smi.smm_inside_nmi)
3412                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3413                         else
3414                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3415                         if (lapic_in_kernel(vcpu)) {
3416                                 if (events->smi.latched_init)
3417                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3418                                 else
3419                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3420                         }
3421                 }
3422         }
3423
3424         kvm_make_request(KVM_REQ_EVENT, vcpu);
3425
3426         return 0;
3427 }
3428
3429 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3430                                              struct kvm_debugregs *dbgregs)
3431 {
3432         unsigned long val;
3433
3434         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3435         kvm_get_dr(vcpu, 6, &val);
3436         dbgregs->dr6 = val;
3437         dbgregs->dr7 = vcpu->arch.dr7;
3438         dbgregs->flags = 0;
3439         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3440 }
3441
3442 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3443                                             struct kvm_debugregs *dbgregs)
3444 {
3445         if (dbgregs->flags)
3446                 return -EINVAL;
3447
3448         if (dbgregs->dr6 & ~0xffffffffull)
3449                 return -EINVAL;
3450         if (dbgregs->dr7 & ~0xffffffffull)
3451                 return -EINVAL;
3452
3453         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3454         kvm_update_dr0123(vcpu);
3455         vcpu->arch.dr6 = dbgregs->dr6;
3456         kvm_update_dr6(vcpu);
3457         vcpu->arch.dr7 = dbgregs->dr7;
3458         kvm_update_dr7(vcpu);
3459
3460         return 0;
3461 }
3462
3463 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3464
3465 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3466 {
3467         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3468         u64 xstate_bv = xsave->header.xfeatures;
3469         u64 valid;
3470
3471         /*
3472          * Copy legacy XSAVE area, to avoid complications with CPUID
3473          * leaves 0 and 1 in the loop below.
3474          */
3475         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3476
3477         /* Set XSTATE_BV */
3478         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3479         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3480
3481         /*
3482          * Copy each region from the possibly compacted offset to the
3483          * non-compacted offset.
3484          */
3485         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3486         while (valid) {
3487                 u64 feature = valid & -valid;
3488                 int index = fls64(feature) - 1;
3489                 void *src = get_xsave_addr(xsave, feature);
3490
3491                 if (src) {
3492                         u32 size, offset, ecx, edx;
3493                         cpuid_count(XSTATE_CPUID, index,
3494                                     &size, &offset, &ecx, &edx);
3495                         if (feature == XFEATURE_MASK_PKRU)
3496                                 memcpy(dest + offset, &vcpu->arch.pkru,
3497                                        sizeof(vcpu->arch.pkru));
3498                         else
3499                                 memcpy(dest + offset, src, size);
3500
3501                 }
3502
3503                 valid -= feature;
3504         }
3505 }
3506
3507 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3508 {
3509         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3510         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3511         u64 valid;
3512
3513         /*
3514          * Copy legacy XSAVE area, to avoid complications with CPUID
3515          * leaves 0 and 1 in the loop below.
3516          */
3517         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3518
3519         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3520         xsave->header.xfeatures = xstate_bv;
3521         if (boot_cpu_has(X86_FEATURE_XSAVES))
3522                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3523
3524         /*
3525          * Copy each region from the non-compacted offset to the
3526          * possibly compacted offset.
3527          */
3528         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3529         while (valid) {
3530                 u64 feature = valid & -valid;
3531                 int index = fls64(feature) - 1;
3532                 void *dest = get_xsave_addr(xsave, feature);
3533
3534                 if (dest) {
3535                         u32 size, offset, ecx, edx;
3536                         cpuid_count(XSTATE_CPUID, index,
3537                                     &size, &offset, &ecx, &edx);
3538                         if (feature == XFEATURE_MASK_PKRU)
3539                                 memcpy(&vcpu->arch.pkru, src + offset,
3540                                        sizeof(vcpu->arch.pkru));
3541                         else
3542                                 memcpy(dest, src + offset, size);
3543                 }
3544
3545                 valid -= feature;
3546         }
3547 }
3548
3549 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3550                                          struct kvm_xsave *guest_xsave)
3551 {
3552         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3553                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3554                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3555         } else {
3556                 memcpy(guest_xsave->region,
3557                         &vcpu->arch.guest_fpu.state.fxsave,
3558                         sizeof(struct fxregs_state));
3559                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3560                         XFEATURE_MASK_FPSSE;
3561         }
3562 }
3563
3564 #define XSAVE_MXCSR_OFFSET 24
3565
3566 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3567                                         struct kvm_xsave *guest_xsave)
3568 {
3569         u64 xstate_bv =
3570                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3571         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3572
3573         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3574                 /*
3575                  * Here we allow setting states that are not present in
3576                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3577                  * with old userspace.
3578                  */
3579                 if (xstate_bv & ~kvm_supported_xcr0() ||
3580                         mxcsr & ~mxcsr_feature_mask)
3581                         return -EINVAL;
3582                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3583         } else {
3584                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3585                         mxcsr & ~mxcsr_feature_mask)
3586                         return -EINVAL;
3587                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3588                         guest_xsave->region, sizeof(struct fxregs_state));
3589         }
3590         return 0;
3591 }
3592
3593 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3594                                         struct kvm_xcrs *guest_xcrs)
3595 {
3596         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3597                 guest_xcrs->nr_xcrs = 0;
3598                 return;
3599         }
3600
3601         guest_xcrs->nr_xcrs = 1;
3602         guest_xcrs->flags = 0;
3603         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3604         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3605 }
3606
3607 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3608                                        struct kvm_xcrs *guest_xcrs)
3609 {
3610         int i, r = 0;
3611
3612         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3613                 return -EINVAL;
3614
3615         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3616                 return -EINVAL;
3617
3618         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3619                 /* Only support XCR0 currently */
3620                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3621                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3622                                 guest_xcrs->xcrs[i].value);
3623                         break;
3624                 }
3625         if (r)
3626                 r = -EINVAL;
3627         return r;
3628 }
3629
3630 /*
3631  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3632  * stopped by the hypervisor.  This function will be called from the host only.
3633  * EINVAL is returned when the host attempts to set the flag for a guest that
3634  * does not support pv clocks.
3635  */
3636 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3637 {
3638         if (!vcpu->arch.pv_time_enabled)
3639                 return -EINVAL;
3640         vcpu->arch.pvclock_set_guest_stopped_request = true;
3641         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3642         return 0;
3643 }
3644
3645 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3646                                      struct kvm_enable_cap *cap)
3647 {
3648         if (cap->flags)
3649                 return -EINVAL;
3650
3651         switch (cap->cap) {
3652         case KVM_CAP_HYPERV_SYNIC2:
3653                 if (cap->args[0])
3654                         return -EINVAL;
3655         case KVM_CAP_HYPERV_SYNIC:
3656                 if (!irqchip_in_kernel(vcpu->kvm))
3657                         return -EINVAL;
3658                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3659                                              KVM_CAP_HYPERV_SYNIC2);
3660         default:
3661                 return -EINVAL;
3662         }
3663 }
3664
3665 long kvm_arch_vcpu_ioctl(struct file *filp,
3666                          unsigned int ioctl, unsigned long arg)
3667 {
3668         struct kvm_vcpu *vcpu = filp->private_data;
3669         void __user *argp = (void __user *)arg;
3670         int r;
3671         union {
3672                 struct kvm_lapic_state *lapic;
3673                 struct kvm_xsave *xsave;
3674                 struct kvm_xcrs *xcrs;
3675                 void *buffer;
3676         } u;
3677
3678         vcpu_load(vcpu);
3679
3680         u.buffer = NULL;
3681         switch (ioctl) {
3682         case KVM_GET_LAPIC: {
3683                 r = -EINVAL;
3684                 if (!lapic_in_kernel(vcpu))
3685                         goto out;
3686                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3687
3688                 r = -ENOMEM;
3689                 if (!u.lapic)
3690                         goto out;
3691                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3692                 if (r)
3693                         goto out;
3694                 r = -EFAULT;
3695                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3696                         goto out;
3697                 r = 0;
3698                 break;
3699         }
3700         case KVM_SET_LAPIC: {
3701                 r = -EINVAL;
3702                 if (!lapic_in_kernel(vcpu))
3703                         goto out;
3704                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3705                 if (IS_ERR(u.lapic)) {
3706                         r = PTR_ERR(u.lapic);
3707                         goto out_nofree;
3708                 }
3709
3710                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3711                 break;
3712         }
3713         case KVM_INTERRUPT: {
3714                 struct kvm_interrupt irq;
3715
3716                 r = -EFAULT;
3717                 if (copy_from_user(&irq, argp, sizeof irq))
3718                         goto out;
3719                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3720                 break;
3721         }
3722         case KVM_NMI: {
3723                 r = kvm_vcpu_ioctl_nmi(vcpu);
3724                 break;
3725         }
3726         case KVM_SMI: {
3727                 r = kvm_vcpu_ioctl_smi(vcpu);
3728                 break;
3729         }
3730         case KVM_SET_CPUID: {
3731                 struct kvm_cpuid __user *cpuid_arg = argp;
3732                 struct kvm_cpuid cpuid;
3733
3734                 r = -EFAULT;
3735                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3736                         goto out;
3737                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3738                 break;
3739         }
3740         case KVM_SET_CPUID2: {
3741                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3742                 struct kvm_cpuid2 cpuid;
3743
3744                 r = -EFAULT;
3745                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3746                         goto out;
3747                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3748                                               cpuid_arg->entries);
3749                 break;
3750         }
3751         case KVM_GET_CPUID2: {
3752                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3753                 struct kvm_cpuid2 cpuid;
3754
3755                 r = -EFAULT;
3756                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3757                         goto out;
3758                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3759                                               cpuid_arg->entries);
3760                 if (r)
3761                         goto out;
3762                 r = -EFAULT;
3763                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3764                         goto out;
3765                 r = 0;
3766                 break;
3767         }
3768         case KVM_GET_MSRS: {
3769                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3770                 r = msr_io(vcpu, argp, do_get_msr, 1);
3771                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3772                 break;
3773         }
3774         case KVM_SET_MSRS: {
3775                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3776                 r = msr_io(vcpu, argp, do_set_msr, 0);
3777                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3778                 break;
3779         }
3780         case KVM_TPR_ACCESS_REPORTING: {
3781                 struct kvm_tpr_access_ctl tac;
3782
3783                 r = -EFAULT;
3784                 if (copy_from_user(&tac, argp, sizeof tac))
3785                         goto out;
3786                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3787                 if (r)
3788                         goto out;
3789                 r = -EFAULT;
3790                 if (copy_to_user(argp, &tac, sizeof tac))
3791                         goto out;
3792                 r = 0;
3793                 break;
3794         };
3795         case KVM_SET_VAPIC_ADDR: {
3796                 struct kvm_vapic_addr va;
3797                 int idx;
3798
3799                 r = -EINVAL;
3800                 if (!lapic_in_kernel(vcpu))
3801                         goto out;
3802                 r = -EFAULT;
3803                 if (copy_from_user(&va, argp, sizeof va))
3804                         goto out;
3805                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3806                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3807                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3808                 break;
3809         }
3810         case KVM_X86_SETUP_MCE: {
3811                 u64 mcg_cap;
3812
3813                 r = -EFAULT;
3814                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3815                         goto out;
3816                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3817                 break;
3818         }
3819         case KVM_X86_SET_MCE: {
3820                 struct kvm_x86_mce mce;
3821
3822                 r = -EFAULT;
3823                 if (copy_from_user(&mce, argp, sizeof mce))
3824                         goto out;
3825                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3826                 break;
3827         }
3828         case KVM_GET_VCPU_EVENTS: {
3829                 struct kvm_vcpu_events events;
3830
3831                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3832
3833                 r = -EFAULT;
3834                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3835                         break;
3836                 r = 0;
3837                 break;
3838         }
3839         case KVM_SET_VCPU_EVENTS: {
3840                 struct kvm_vcpu_events events;
3841
3842                 r = -EFAULT;
3843                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3844                         break;
3845
3846                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3847                 break;
3848         }
3849         case KVM_GET_DEBUGREGS: {
3850                 struct kvm_debugregs dbgregs;
3851
3852                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3853
3854                 r = -EFAULT;
3855                 if (copy_to_user(argp, &dbgregs,
3856                                  sizeof(struct kvm_debugregs)))
3857                         break;
3858                 r = 0;
3859                 break;
3860         }
3861         case KVM_SET_DEBUGREGS: {
3862                 struct kvm_debugregs dbgregs;
3863
3864                 r = -EFAULT;
3865                 if (copy_from_user(&dbgregs, argp,
3866                                    sizeof(struct kvm_debugregs)))
3867                         break;
3868
3869                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3870                 break;
3871         }
3872         case KVM_GET_XSAVE: {
3873                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3874                 r = -ENOMEM;
3875                 if (!u.xsave)
3876                         break;
3877
3878                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3879
3880                 r = -EFAULT;
3881                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3882                         break;
3883                 r = 0;
3884                 break;
3885         }
3886         case KVM_SET_XSAVE: {
3887                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3888                 if (IS_ERR(u.xsave)) {
3889                         r = PTR_ERR(u.xsave);
3890                         goto out_nofree;
3891                 }
3892
3893                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3894                 break;
3895         }
3896         case KVM_GET_XCRS: {
3897                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3898                 r = -ENOMEM;
3899                 if (!u.xcrs)
3900                         break;
3901
3902                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3903
3904                 r = -EFAULT;
3905                 if (copy_to_user(argp, u.xcrs,
3906                                  sizeof(struct kvm_xcrs)))
3907                         break;
3908                 r = 0;
3909                 break;
3910         }
3911         case KVM_SET_XCRS: {
3912                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3913                 if (IS_ERR(u.xcrs)) {
3914                         r = PTR_ERR(u.xcrs);
3915                         goto out_nofree;
3916                 }
3917
3918                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3919                 break;
3920         }
3921         case KVM_SET_TSC_KHZ: {
3922                 u32 user_tsc_khz;
3923
3924                 r = -EINVAL;
3925                 user_tsc_khz = (u32)arg;
3926
3927                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3928                         goto out;
3929
3930                 if (user_tsc_khz == 0)
3931                         user_tsc_khz = tsc_khz;
3932
3933                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3934                         r = 0;
3935
3936                 goto out;
3937         }
3938         case KVM_GET_TSC_KHZ: {
3939                 r = vcpu->arch.virtual_tsc_khz;
3940                 goto out;
3941         }
3942         case KVM_KVMCLOCK_CTRL: {
3943                 r = kvm_set_guest_paused(vcpu);
3944                 goto out;
3945         }
3946         case KVM_ENABLE_CAP: {
3947                 struct kvm_enable_cap cap;
3948
3949                 r = -EFAULT;
3950                 if (copy_from_user(&cap, argp, sizeof(cap)))
3951                         goto out;
3952                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3953                 break;
3954         }
3955         default:
3956                 r = -EINVAL;
3957         }
3958 out:
3959         kfree(u.buffer);
3960 out_nofree:
3961         vcpu_put(vcpu);
3962         return r;
3963 }
3964
3965 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3966 {
3967         return VM_FAULT_SIGBUS;
3968 }
3969
3970 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3971 {
3972         int ret;
3973
3974         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3975                 return -EINVAL;
3976         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3977         return ret;
3978 }
3979
3980 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3981                                               u64 ident_addr)
3982 {
3983         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
3984 }
3985
3986 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3987                                           u32 kvm_nr_mmu_pages)
3988 {
3989         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3990                 return -EINVAL;
3991
3992         mutex_lock(&kvm->slots_lock);
3993
3994         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3995         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3996
3997         mutex_unlock(&kvm->slots_lock);
3998         return 0;
3999 }
4000
4001 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4002 {
4003         return kvm->arch.n_max_mmu_pages;
4004 }
4005
4006 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4007 {
4008         struct kvm_pic *pic = kvm->arch.vpic;
4009         int r;
4010
4011         r = 0;
4012         switch (chip->chip_id) {
4013         case KVM_IRQCHIP_PIC_MASTER:
4014                 memcpy(&chip->chip.pic, &pic->pics[0],
4015                         sizeof(struct kvm_pic_state));
4016                 break;
4017         case KVM_IRQCHIP_PIC_SLAVE:
4018                 memcpy(&chip->chip.pic, &pic->pics[1],
4019                         sizeof(struct kvm_pic_state));
4020                 break;
4021         case KVM_IRQCHIP_IOAPIC:
4022                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4023                 break;
4024         default:
4025                 r = -EINVAL;
4026                 break;
4027         }
4028         return r;
4029 }
4030
4031 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4032 {
4033         struct kvm_pic *pic = kvm->arch.vpic;
4034         int r;
4035
4036         r = 0;
4037         switch (chip->chip_id) {
4038         case KVM_IRQCHIP_PIC_MASTER:
4039                 spin_lock(&pic->lock);
4040                 memcpy(&pic->pics[0], &chip->chip.pic,
4041                         sizeof(struct kvm_pic_state));
4042                 spin_unlock(&pic->lock);
4043                 break;
4044         case KVM_IRQCHIP_PIC_SLAVE:
4045                 spin_lock(&pic->lock);
4046                 memcpy(&pic->pics[1], &chip->chip.pic,
4047                         sizeof(struct kvm_pic_state));
4048                 spin_unlock(&pic->lock);
4049                 break;
4050         case KVM_IRQCHIP_IOAPIC:
4051                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4052                 break;
4053         default:
4054                 r = -EINVAL;
4055                 break;
4056         }
4057         kvm_pic_update_irq(pic);
4058         return r;
4059 }
4060
4061 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4062 {
4063         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4064
4065         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4066
4067         mutex_lock(&kps->lock);
4068         memcpy(ps, &kps->channels, sizeof(*ps));
4069         mutex_unlock(&kps->lock);
4070         return 0;
4071 }
4072
4073 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4074 {
4075         int i;
4076         struct kvm_pit *pit = kvm->arch.vpit;
4077
4078         mutex_lock(&pit->pit_state.lock);
4079         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4080         for (i = 0; i < 3; i++)
4081                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4082         mutex_unlock(&pit->pit_state.lock);
4083         return 0;
4084 }
4085
4086 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4087 {
4088         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4089         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4090                 sizeof(ps->channels));
4091         ps->flags = kvm->arch.vpit->pit_state.flags;
4092         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4093         memset(&ps->reserved, 0, sizeof(ps->reserved));
4094         return 0;
4095 }
4096
4097 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4098 {
4099         int start = 0;
4100         int i;
4101         u32 prev_legacy, cur_legacy;
4102         struct kvm_pit *pit = kvm->arch.vpit;
4103
4104         mutex_lock(&pit->pit_state.lock);
4105         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4106         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4107         if (!prev_legacy && cur_legacy)
4108                 start = 1;
4109         memcpy(&pit->pit_state.channels, &ps->channels,
4110                sizeof(pit->pit_state.channels));
4111         pit->pit_state.flags = ps->flags;
4112         for (i = 0; i < 3; i++)
4113                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4114                                    start && i == 0);
4115         mutex_unlock(&pit->pit_state.lock);
4116         return 0;
4117 }
4118
4119 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4120                                  struct kvm_reinject_control *control)
4121 {
4122         struct kvm_pit *pit = kvm->arch.vpit;
4123
4124         if (!pit)
4125                 return -ENXIO;
4126
4127         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4128          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4129          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4130          */
4131         mutex_lock(&pit->pit_state.lock);
4132         kvm_pit_set_reinject(pit, control->pit_reinject);
4133         mutex_unlock(&pit->pit_state.lock);
4134
4135         return 0;
4136 }
4137
4138 /**
4139  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4140  * @kvm: kvm instance
4141  * @log: slot id and address to which we copy the log
4142  *
4143  * Steps 1-4 below provide general overview of dirty page logging. See
4144  * kvm_get_dirty_log_protect() function description for additional details.
4145  *
4146  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4147  * always flush the TLB (step 4) even if previous step failed  and the dirty
4148  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4149  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4150  * writes will be marked dirty for next log read.
4151  *
4152  *   1. Take a snapshot of the bit and clear it if needed.
4153  *   2. Write protect the corresponding page.
4154  *   3. Copy the snapshot to the userspace.
4155  *   4. Flush TLB's if needed.
4156  */
4157 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4158 {
4159         bool is_dirty = false;
4160         int r;
4161
4162         mutex_lock(&kvm->slots_lock);
4163
4164         /*
4165          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4166          */
4167         if (kvm_x86_ops->flush_log_dirty)
4168                 kvm_x86_ops->flush_log_dirty(kvm);
4169
4170         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4171
4172         /*
4173          * All the TLBs can be flushed out of mmu lock, see the comments in
4174          * kvm_mmu_slot_remove_write_access().
4175          */
4176         lockdep_assert_held(&kvm->slots_lock);
4177         if (is_dirty)
4178                 kvm_flush_remote_tlbs(kvm);
4179
4180         mutex_unlock(&kvm->slots_lock);
4181         return r;
4182 }
4183
4184 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4185                         bool line_status)
4186 {
4187         if (!irqchip_in_kernel(kvm))
4188                 return -ENXIO;
4189
4190         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4191                                         irq_event->irq, irq_event->level,
4192                                         line_status);
4193         return 0;
4194 }
4195
4196 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4197                                    struct kvm_enable_cap *cap)
4198 {
4199         int r;
4200
4201         if (cap->flags)
4202                 return -EINVAL;
4203
4204         switch (cap->cap) {
4205         case KVM_CAP_DISABLE_QUIRKS:
4206                 kvm->arch.disabled_quirks = cap->args[0];
4207                 r = 0;
4208                 break;
4209         case KVM_CAP_SPLIT_IRQCHIP: {
4210                 mutex_lock(&kvm->lock);
4211                 r = -EINVAL;
4212                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4213                         goto split_irqchip_unlock;
4214                 r = -EEXIST;
4215                 if (irqchip_in_kernel(kvm))
4216                         goto split_irqchip_unlock;
4217                 if (kvm->created_vcpus)
4218                         goto split_irqchip_unlock;
4219                 r = kvm_setup_empty_irq_routing(kvm);
4220                 if (r)
4221                         goto split_irqchip_unlock;
4222                 /* Pairs with irqchip_in_kernel. */
4223                 smp_wmb();
4224                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4225                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4226                 r = 0;
4227 split_irqchip_unlock:
4228                 mutex_unlock(&kvm->lock);
4229                 break;
4230         }
4231         case KVM_CAP_X2APIC_API:
4232                 r = -EINVAL;
4233                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4234                         break;
4235
4236                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4237                         kvm->arch.x2apic_format = true;
4238                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4239                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4240
4241                 r = 0;
4242                 break;
4243         case KVM_CAP_X86_DISABLE_EXITS:
4244                 r = -EINVAL;
4245                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4246                         break;
4247
4248                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4249                         kvm_can_mwait_in_guest())
4250                         kvm->arch.mwait_in_guest = true;
4251                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HTL)
4252                         kvm->arch.hlt_in_guest = true;
4253                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4254                         kvm->arch.pause_in_guest = true;
4255                 r = 0;
4256                 break;
4257         default:
4258                 r = -EINVAL;
4259                 break;
4260         }
4261         return r;
4262 }
4263
4264 long kvm_arch_vm_ioctl(struct file *filp,
4265                        unsigned int ioctl, unsigned long arg)
4266 {
4267         struct kvm *kvm = filp->private_data;
4268         void __user *argp = (void __user *)arg;
4269         int r = -ENOTTY;
4270         /*
4271          * This union makes it completely explicit to gcc-3.x
4272          * that these two variables' stack usage should be
4273          * combined, not added together.
4274          */
4275         union {
4276                 struct kvm_pit_state ps;
4277                 struct kvm_pit_state2 ps2;
4278                 struct kvm_pit_config pit_config;
4279         } u;
4280
4281         switch (ioctl) {
4282         case KVM_SET_TSS_ADDR:
4283                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4284                 break;
4285         case KVM_SET_IDENTITY_MAP_ADDR: {
4286                 u64 ident_addr;
4287
4288                 mutex_lock(&kvm->lock);
4289                 r = -EINVAL;
4290                 if (kvm->created_vcpus)
4291                         goto set_identity_unlock;
4292                 r = -EFAULT;
4293                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4294                         goto set_identity_unlock;
4295                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4296 set_identity_unlock:
4297                 mutex_unlock(&kvm->lock);
4298                 break;
4299         }
4300         case KVM_SET_NR_MMU_PAGES:
4301                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4302                 break;
4303         case KVM_GET_NR_MMU_PAGES:
4304                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4305                 break;
4306         case KVM_CREATE_IRQCHIP: {
4307                 mutex_lock(&kvm->lock);
4308
4309                 r = -EEXIST;
4310                 if (irqchip_in_kernel(kvm))
4311                         goto create_irqchip_unlock;
4312
4313                 r = -EINVAL;
4314                 if (kvm->created_vcpus)
4315                         goto create_irqchip_unlock;
4316
4317                 r = kvm_pic_init(kvm);
4318                 if (r)
4319                         goto create_irqchip_unlock;
4320
4321                 r = kvm_ioapic_init(kvm);
4322                 if (r) {
4323                         kvm_pic_destroy(kvm);
4324                         goto create_irqchip_unlock;
4325                 }
4326
4327                 r = kvm_setup_default_irq_routing(kvm);
4328                 if (r) {
4329                         kvm_ioapic_destroy(kvm);
4330                         kvm_pic_destroy(kvm);
4331                         goto create_irqchip_unlock;
4332                 }
4333                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4334                 smp_wmb();
4335                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4336         create_irqchip_unlock:
4337                 mutex_unlock(&kvm->lock);
4338                 break;
4339         }
4340         case KVM_CREATE_PIT:
4341                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4342                 goto create_pit;
4343         case KVM_CREATE_PIT2:
4344                 r = -EFAULT;
4345                 if (copy_from_user(&u.pit_config, argp,
4346                                    sizeof(struct kvm_pit_config)))
4347                         goto out;
4348         create_pit:
4349                 mutex_lock(&kvm->lock);
4350                 r = -EEXIST;
4351                 if (kvm->arch.vpit)
4352                         goto create_pit_unlock;
4353                 r = -ENOMEM;
4354                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4355                 if (kvm->arch.vpit)
4356                         r = 0;
4357         create_pit_unlock:
4358                 mutex_unlock(&kvm->lock);
4359                 break;
4360         case KVM_GET_IRQCHIP: {
4361                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4362                 struct kvm_irqchip *chip;
4363
4364                 chip = memdup_user(argp, sizeof(*chip));
4365                 if (IS_ERR(chip)) {
4366                         r = PTR_ERR(chip);
4367                         goto out;
4368                 }
4369
4370                 r = -ENXIO;
4371                 if (!irqchip_kernel(kvm))
4372                         goto get_irqchip_out;
4373                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4374                 if (r)
4375                         goto get_irqchip_out;
4376                 r = -EFAULT;
4377                 if (copy_to_user(argp, chip, sizeof *chip))
4378                         goto get_irqchip_out;
4379                 r = 0;
4380         get_irqchip_out:
4381                 kfree(chip);
4382                 break;
4383         }
4384         case KVM_SET_IRQCHIP: {
4385                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4386                 struct kvm_irqchip *chip;
4387
4388                 chip = memdup_user(argp, sizeof(*chip));
4389                 if (IS_ERR(chip)) {
4390                         r = PTR_ERR(chip);
4391                         goto out;
4392                 }
4393
4394                 r = -ENXIO;
4395                 if (!irqchip_kernel(kvm))
4396                         goto set_irqchip_out;
4397                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4398                 if (r)
4399                         goto set_irqchip_out;
4400                 r = 0;
4401         set_irqchip_out:
4402                 kfree(chip);
4403                 break;
4404         }
4405         case KVM_GET_PIT: {
4406                 r = -EFAULT;
4407                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4408                         goto out;
4409                 r = -ENXIO;
4410                 if (!kvm->arch.vpit)
4411                         goto out;
4412                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4413                 if (r)
4414                         goto out;
4415                 r = -EFAULT;
4416                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4417                         goto out;
4418                 r = 0;
4419                 break;
4420         }
4421         case KVM_SET_PIT: {
4422                 r = -EFAULT;
4423                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4424                         goto out;
4425                 r = -ENXIO;
4426                 if (!kvm->arch.vpit)
4427                         goto out;
4428                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4429                 break;
4430         }
4431         case KVM_GET_PIT2: {
4432                 r = -ENXIO;
4433                 if (!kvm->arch.vpit)
4434                         goto out;
4435                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4436                 if (r)
4437                         goto out;
4438                 r = -EFAULT;
4439                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4440                         goto out;
4441                 r = 0;
4442                 break;
4443         }
4444         case KVM_SET_PIT2: {
4445                 r = -EFAULT;
4446                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4447                         goto out;
4448                 r = -ENXIO;
4449                 if (!kvm->arch.vpit)
4450                         goto out;
4451                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4452                 break;
4453         }
4454         case KVM_REINJECT_CONTROL: {
4455                 struct kvm_reinject_control control;
4456                 r =  -EFAULT;
4457                 if (copy_from_user(&control, argp, sizeof(control)))
4458                         goto out;
4459                 r = kvm_vm_ioctl_reinject(kvm, &control);
4460                 break;
4461         }
4462         case KVM_SET_BOOT_CPU_ID:
4463                 r = 0;
4464                 mutex_lock(&kvm->lock);
4465                 if (kvm->created_vcpus)
4466                         r = -EBUSY;
4467                 else
4468                         kvm->arch.bsp_vcpu_id = arg;
4469                 mutex_unlock(&kvm->lock);
4470                 break;
4471         case KVM_XEN_HVM_CONFIG: {
4472                 struct kvm_xen_hvm_config xhc;
4473                 r = -EFAULT;
4474                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4475                         goto out;
4476                 r = -EINVAL;
4477                 if (xhc.flags)
4478                         goto out;
4479                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4480                 r = 0;
4481                 break;
4482         }
4483         case KVM_SET_CLOCK: {
4484                 struct kvm_clock_data user_ns;
4485                 u64 now_ns;
4486
4487                 r = -EFAULT;
4488                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4489                         goto out;
4490
4491                 r = -EINVAL;
4492                 if (user_ns.flags)
4493                         goto out;
4494
4495                 r = 0;
4496                 /*
4497                  * TODO: userspace has to take care of races with VCPU_RUN, so
4498                  * kvm_gen_update_masterclock() can be cut down to locked
4499                  * pvclock_update_vm_gtod_copy().
4500                  */
4501                 kvm_gen_update_masterclock(kvm);
4502                 now_ns = get_kvmclock_ns(kvm);
4503                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4504                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4505                 break;
4506         }
4507         case KVM_GET_CLOCK: {
4508                 struct kvm_clock_data user_ns;
4509                 u64 now_ns;
4510
4511                 now_ns = get_kvmclock_ns(kvm);
4512                 user_ns.clock = now_ns;
4513                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4514                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4515
4516                 r = -EFAULT;
4517                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4518                         goto out;
4519                 r = 0;
4520                 break;
4521         }
4522         case KVM_ENABLE_CAP: {
4523                 struct kvm_enable_cap cap;
4524
4525                 r = -EFAULT;
4526                 if (copy_from_user(&cap, argp, sizeof(cap)))
4527                         goto out;
4528                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4529                 break;
4530         }
4531         case KVM_MEMORY_ENCRYPT_OP: {
4532                 r = -ENOTTY;
4533                 if (kvm_x86_ops->mem_enc_op)
4534                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4535                 break;
4536         }
4537         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4538                 struct kvm_enc_region region;
4539
4540                 r = -EFAULT;
4541                 if (copy_from_user(&region, argp, sizeof(region)))
4542                         goto out;
4543
4544                 r = -ENOTTY;
4545                 if (kvm_x86_ops->mem_enc_reg_region)
4546                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4547                 break;
4548         }
4549         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4550                 struct kvm_enc_region region;
4551
4552                 r = -EFAULT;
4553                 if (copy_from_user(&region, argp, sizeof(region)))
4554                         goto out;
4555
4556                 r = -ENOTTY;
4557                 if (kvm_x86_ops->mem_enc_unreg_region)
4558                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4559                 break;
4560         }
4561         case KVM_HYPERV_EVENTFD: {
4562                 struct kvm_hyperv_eventfd hvevfd;
4563
4564                 r = -EFAULT;
4565                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4566                         goto out;
4567                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4568                 break;
4569         }
4570         default:
4571                 r = -ENOTTY;
4572         }
4573 out:
4574         return r;
4575 }
4576
4577 static void kvm_init_msr_list(void)
4578 {
4579         u32 dummy[2];
4580         unsigned i, j;
4581
4582         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4583                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4584                         continue;
4585
4586                 /*
4587                  * Even MSRs that are valid in the host may not be exposed
4588                  * to the guests in some cases.
4589                  */
4590                 switch (msrs_to_save[i]) {
4591                 case MSR_IA32_BNDCFGS:
4592                         if (!kvm_x86_ops->mpx_supported())
4593                                 continue;
4594                         break;
4595                 case MSR_TSC_AUX:
4596                         if (!kvm_x86_ops->rdtscp_supported())
4597                                 continue;
4598                         break;
4599                 default:
4600                         break;
4601                 }
4602
4603                 if (j < i)
4604                         msrs_to_save[j] = msrs_to_save[i];
4605                 j++;
4606         }
4607         num_msrs_to_save = j;
4608
4609         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4610                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4611                         continue;
4612
4613                 if (j < i)
4614                         emulated_msrs[j] = emulated_msrs[i];
4615                 j++;
4616         }
4617         num_emulated_msrs = j;
4618
4619         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4620                 struct kvm_msr_entry msr;
4621
4622                 msr.index = msr_based_features[i];
4623                 if (kvm_get_msr_feature(&msr))
4624                         continue;
4625
4626                 if (j < i)
4627                         msr_based_features[j] = msr_based_features[i];
4628                 j++;
4629         }
4630         num_msr_based_features = j;
4631 }
4632
4633 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4634                            const void *v)
4635 {
4636         int handled = 0;
4637         int n;
4638
4639         do {
4640                 n = min(len, 8);
4641                 if (!(lapic_in_kernel(vcpu) &&
4642                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4643                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4644                         break;
4645                 handled += n;
4646                 addr += n;
4647                 len -= n;
4648                 v += n;
4649         } while (len);
4650
4651         return handled;
4652 }
4653
4654 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4655 {
4656         int handled = 0;
4657         int n;
4658
4659         do {
4660                 n = min(len, 8);
4661                 if (!(lapic_in_kernel(vcpu) &&
4662                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4663                                          addr, n, v))
4664                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4665                         break;
4666                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4667                 handled += n;
4668                 addr += n;
4669                 len -= n;
4670                 v += n;
4671         } while (len);
4672
4673         return handled;
4674 }
4675
4676 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4677                         struct kvm_segment *var, int seg)
4678 {
4679         kvm_x86_ops->set_segment(vcpu, var, seg);
4680 }
4681
4682 void kvm_get_segment(struct kvm_vcpu *vcpu,
4683                      struct kvm_segment *var, int seg)
4684 {
4685         kvm_x86_ops->get_segment(vcpu, var, seg);
4686 }
4687
4688 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4689                            struct x86_exception *exception)
4690 {
4691         gpa_t t_gpa;
4692
4693         BUG_ON(!mmu_is_nested(vcpu));
4694
4695         /* NPT walks are always user-walks */
4696         access |= PFERR_USER_MASK;
4697         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4698
4699         return t_gpa;
4700 }
4701
4702 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4703                               struct x86_exception *exception)
4704 {
4705         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4706         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4707 }
4708
4709  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4710                                 struct x86_exception *exception)
4711 {
4712         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4713         access |= PFERR_FETCH_MASK;
4714         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4715 }
4716
4717 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4718                                struct x86_exception *exception)
4719 {
4720         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4721         access |= PFERR_WRITE_MASK;
4722         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4723 }
4724
4725 /* uses this to access any guest's mapped memory without checking CPL */
4726 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4727                                 struct x86_exception *exception)
4728 {
4729         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4730 }
4731
4732 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4733                                       struct kvm_vcpu *vcpu, u32 access,
4734                                       struct x86_exception *exception)
4735 {
4736         void *data = val;
4737         int r = X86EMUL_CONTINUE;
4738
4739         while (bytes) {
4740                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4741                                                             exception);
4742                 unsigned offset = addr & (PAGE_SIZE-1);
4743                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4744                 int ret;
4745
4746                 if (gpa == UNMAPPED_GVA)
4747                         return X86EMUL_PROPAGATE_FAULT;
4748                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4749                                                offset, toread);
4750                 if (ret < 0) {
4751                         r = X86EMUL_IO_NEEDED;
4752                         goto out;
4753                 }
4754
4755                 bytes -= toread;
4756                 data += toread;
4757                 addr += toread;
4758         }
4759 out:
4760         return r;
4761 }
4762
4763 /* used for instruction fetching */
4764 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4765                                 gva_t addr, void *val, unsigned int bytes,
4766                                 struct x86_exception *exception)
4767 {
4768         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4769         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4770         unsigned offset;
4771         int ret;
4772
4773         /* Inline kvm_read_guest_virt_helper for speed.  */
4774         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4775                                                     exception);
4776         if (unlikely(gpa == UNMAPPED_GVA))
4777                 return X86EMUL_PROPAGATE_FAULT;
4778
4779         offset = addr & (PAGE_SIZE-1);
4780         if (WARN_ON(offset + bytes > PAGE_SIZE))
4781                 bytes = (unsigned)PAGE_SIZE - offset;
4782         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4783                                        offset, bytes);
4784         if (unlikely(ret < 0))
4785                 return X86EMUL_IO_NEEDED;
4786
4787         return X86EMUL_CONTINUE;
4788 }
4789
4790 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4791                                gva_t addr, void *val, unsigned int bytes,
4792                                struct x86_exception *exception)
4793 {
4794         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4795         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4796
4797         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4798                                           exception);
4799 }
4800 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4801
4802 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4803                                       gva_t addr, void *val, unsigned int bytes,
4804                                       struct x86_exception *exception)
4805 {
4806         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4807         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4808 }
4809
4810 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4811                 unsigned long addr, void *val, unsigned int bytes)
4812 {
4813         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4814         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4815
4816         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4817 }
4818
4819 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4820                                        gva_t addr, void *val,
4821                                        unsigned int bytes,
4822                                        struct x86_exception *exception)
4823 {
4824         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4825         void *data = val;
4826         int r = X86EMUL_CONTINUE;
4827
4828         while (bytes) {
4829                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4830                                                              PFERR_WRITE_MASK,
4831                                                              exception);
4832                 unsigned offset = addr & (PAGE_SIZE-1);
4833                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4834                 int ret;
4835
4836                 if (gpa == UNMAPPED_GVA)
4837                         return X86EMUL_PROPAGATE_FAULT;
4838                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4839                 if (ret < 0) {
4840                         r = X86EMUL_IO_NEEDED;
4841                         goto out;
4842                 }
4843
4844                 bytes -= towrite;
4845                 data += towrite;
4846                 addr += towrite;
4847         }
4848 out:
4849         return r;
4850 }
4851 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4852
4853 int handle_ud(struct kvm_vcpu *vcpu)
4854 {
4855         int emul_type = EMULTYPE_TRAP_UD;
4856         enum emulation_result er;
4857         char sig[5]; /* ud2; .ascii "kvm" */
4858         struct x86_exception e;
4859
4860         if (force_emulation_prefix &&
4861             kvm_read_guest_virt(&vcpu->arch.emulate_ctxt,
4862                                 kvm_get_linear_rip(vcpu), sig, sizeof(sig), &e) == 0 &&
4863             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4864                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4865                 emul_type = 0;
4866         }
4867
4868         er = emulate_instruction(vcpu, emul_type);
4869         if (er == EMULATE_USER_EXIT)
4870                 return 0;
4871         if (er != EMULATE_DONE)
4872                 kvm_queue_exception(vcpu, UD_VECTOR);
4873         return 1;
4874 }
4875 EXPORT_SYMBOL_GPL(handle_ud);
4876
4877 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4878                             gpa_t gpa, bool write)
4879 {
4880         /* For APIC access vmexit */
4881         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4882                 return 1;
4883
4884         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4885                 trace_vcpu_match_mmio(gva, gpa, write, true);
4886                 return 1;
4887         }
4888
4889         return 0;
4890 }
4891
4892 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4893                                 gpa_t *gpa, struct x86_exception *exception,
4894                                 bool write)
4895 {
4896         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4897                 | (write ? PFERR_WRITE_MASK : 0);
4898
4899         /*
4900          * currently PKRU is only applied to ept enabled guest so
4901          * there is no pkey in EPT page table for L1 guest or EPT
4902          * shadow page table for L2 guest.
4903          */
4904         if (vcpu_match_mmio_gva(vcpu, gva)
4905             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4906                                  vcpu->arch.access, 0, access)) {
4907                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4908                                         (gva & (PAGE_SIZE - 1));
4909                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4910                 return 1;
4911         }
4912
4913         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4914
4915         if (*gpa == UNMAPPED_GVA)
4916                 return -1;
4917
4918         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4919 }
4920
4921 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4922                         const void *val, int bytes)
4923 {
4924         int ret;
4925
4926         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4927         if (ret < 0)
4928                 return 0;
4929         kvm_page_track_write(vcpu, gpa, val, bytes);
4930         return 1;
4931 }
4932
4933 struct read_write_emulator_ops {
4934         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4935                                   int bytes);
4936         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4937                                   void *val, int bytes);
4938         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4939                                int bytes, void *val);
4940         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4941                                     void *val, int bytes);
4942         bool write;
4943 };
4944
4945 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4946 {
4947         if (vcpu->mmio_read_completed) {
4948                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4949                                vcpu->mmio_fragments[0].gpa, val);
4950                 vcpu->mmio_read_completed = 0;
4951                 return 1;
4952         }
4953
4954         return 0;
4955 }
4956
4957 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4958                         void *val, int bytes)
4959 {
4960         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4961 }
4962
4963 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4964                          void *val, int bytes)
4965 {
4966         return emulator_write_phys(vcpu, gpa, val, bytes);
4967 }
4968
4969 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4970 {
4971         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4972         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4973 }
4974
4975 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4976                           void *val, int bytes)
4977 {
4978         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4979         return X86EMUL_IO_NEEDED;
4980 }
4981
4982 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4983                            void *val, int bytes)
4984 {
4985         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4986
4987         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4988         return X86EMUL_CONTINUE;
4989 }
4990
4991 static const struct read_write_emulator_ops read_emultor = {
4992         .read_write_prepare = read_prepare,
4993         .read_write_emulate = read_emulate,
4994         .read_write_mmio = vcpu_mmio_read,
4995         .read_write_exit_mmio = read_exit_mmio,
4996 };
4997
4998 static const struct read_write_emulator_ops write_emultor = {
4999         .read_write_emulate = write_emulate,
5000         .read_write_mmio = write_mmio,
5001         .read_write_exit_mmio = write_exit_mmio,
5002         .write = true,
5003 };
5004
5005 static int emulator_read_write_onepage(unsigned long addr, void *val,
5006                                        unsigned int bytes,
5007                                        struct x86_exception *exception,
5008                                        struct kvm_vcpu *vcpu,
5009                                        const struct read_write_emulator_ops *ops)
5010 {
5011         gpa_t gpa;
5012         int handled, ret;
5013         bool write = ops->write;
5014         struct kvm_mmio_fragment *frag;
5015         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5016
5017         /*
5018          * If the exit was due to a NPF we may already have a GPA.
5019          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5020          * Note, this cannot be used on string operations since string
5021          * operation using rep will only have the initial GPA from the NPF
5022          * occurred.
5023          */
5024         if (vcpu->arch.gpa_available &&
5025             emulator_can_use_gpa(ctxt) &&
5026             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5027                 gpa = vcpu->arch.gpa_val;
5028                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5029         } else {
5030                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5031                 if (ret < 0)
5032                         return X86EMUL_PROPAGATE_FAULT;
5033         }
5034
5035         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5036                 return X86EMUL_CONTINUE;
5037
5038         /*
5039          * Is this MMIO handled locally?
5040          */
5041         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5042         if (handled == bytes)
5043                 return X86EMUL_CONTINUE;
5044
5045         gpa += handled;
5046         bytes -= handled;
5047         val += handled;
5048
5049         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5050         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5051         frag->gpa = gpa;
5052         frag->data = val;
5053         frag->len = bytes;
5054         return X86EMUL_CONTINUE;
5055 }
5056
5057 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5058                         unsigned long addr,
5059                         void *val, unsigned int bytes,
5060                         struct x86_exception *exception,
5061                         const struct read_write_emulator_ops *ops)
5062 {
5063         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5064         gpa_t gpa;
5065         int rc;
5066
5067         if (ops->read_write_prepare &&
5068                   ops->read_write_prepare(vcpu, val, bytes))
5069                 return X86EMUL_CONTINUE;
5070
5071         vcpu->mmio_nr_fragments = 0;
5072
5073         /* Crossing a page boundary? */
5074         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5075                 int now;
5076
5077                 now = -addr & ~PAGE_MASK;
5078                 rc = emulator_read_write_onepage(addr, val, now, exception,
5079                                                  vcpu, ops);
5080
5081                 if (rc != X86EMUL_CONTINUE)
5082                         return rc;
5083                 addr += now;
5084                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5085                         addr = (u32)addr;
5086                 val += now;
5087                 bytes -= now;
5088         }
5089
5090         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5091                                          vcpu, ops);
5092         if (rc != X86EMUL_CONTINUE)
5093                 return rc;
5094
5095         if (!vcpu->mmio_nr_fragments)
5096                 return rc;
5097
5098         gpa = vcpu->mmio_fragments[0].gpa;
5099
5100         vcpu->mmio_needed = 1;
5101         vcpu->mmio_cur_fragment = 0;
5102
5103         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5104         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5105         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5106         vcpu->run->mmio.phys_addr = gpa;
5107
5108         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5109 }
5110
5111 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5112                                   unsigned long addr,
5113                                   void *val,
5114                                   unsigned int bytes,
5115                                   struct x86_exception *exception)
5116 {
5117         return emulator_read_write(ctxt, addr, val, bytes,
5118                                    exception, &read_emultor);
5119 }
5120
5121 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5122                             unsigned long addr,
5123                             const void *val,
5124                             unsigned int bytes,
5125                             struct x86_exception *exception)
5126 {
5127         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5128                                    exception, &write_emultor);
5129 }
5130
5131 #define CMPXCHG_TYPE(t, ptr, old, new) \
5132         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5133
5134 #ifdef CONFIG_X86_64
5135 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5136 #else
5137 #  define CMPXCHG64(ptr, old, new) \
5138         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5139 #endif
5140
5141 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5142                                      unsigned long addr,
5143                                      const void *old,
5144                                      const void *new,
5145                                      unsigned int bytes,
5146                                      struct x86_exception *exception)
5147 {
5148         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5149         gpa_t gpa;
5150         struct page *page;
5151         char *kaddr;
5152         bool exchanged;
5153
5154         /* guests cmpxchg8b have to be emulated atomically */
5155         if (bytes > 8 || (bytes & (bytes - 1)))
5156                 goto emul_write;
5157
5158         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5159
5160         if (gpa == UNMAPPED_GVA ||
5161             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5162                 goto emul_write;
5163
5164         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5165                 goto emul_write;
5166
5167         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5168         if (is_error_page(page))
5169                 goto emul_write;
5170
5171         kaddr = kmap_atomic(page);
5172         kaddr += offset_in_page(gpa);
5173         switch (bytes) {
5174         case 1:
5175                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5176                 break;
5177         case 2:
5178                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5179                 break;
5180         case 4:
5181                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5182                 break;
5183         case 8:
5184                 exchanged = CMPXCHG64(kaddr, old, new);
5185                 break;
5186         default:
5187                 BUG();
5188         }
5189         kunmap_atomic(kaddr);
5190         kvm_release_page_dirty(page);
5191
5192         if (!exchanged)
5193                 return X86EMUL_CMPXCHG_FAILED;
5194
5195         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5196         kvm_page_track_write(vcpu, gpa, new, bytes);
5197
5198         return X86EMUL_CONTINUE;
5199
5200 emul_write:
5201         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5202
5203         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5204 }
5205
5206 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5207 {
5208         int r = 0, i;
5209
5210         for (i = 0; i < vcpu->arch.pio.count; i++) {
5211                 if (vcpu->arch.pio.in)
5212                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5213                                             vcpu->arch.pio.size, pd);
5214                 else
5215                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5216                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5217                                              pd);
5218                 if (r)
5219                         break;
5220                 pd += vcpu->arch.pio.size;
5221         }
5222         return r;
5223 }
5224
5225 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5226                                unsigned short port, void *val,
5227                                unsigned int count, bool in)
5228 {
5229         vcpu->arch.pio.port = port;
5230         vcpu->arch.pio.in = in;
5231         vcpu->arch.pio.count  = count;
5232         vcpu->arch.pio.size = size;
5233
5234         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5235                 vcpu->arch.pio.count = 0;
5236                 return 1;
5237         }
5238
5239         vcpu->run->exit_reason = KVM_EXIT_IO;
5240         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5241         vcpu->run->io.size = size;
5242         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5243         vcpu->run->io.count = count;
5244         vcpu->run->io.port = port;
5245
5246         return 0;
5247 }
5248
5249 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5250                                     int size, unsigned short port, void *val,
5251                                     unsigned int count)
5252 {
5253         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5254         int ret;
5255
5256         if (vcpu->arch.pio.count)
5257                 goto data_avail;
5258
5259         memset(vcpu->arch.pio_data, 0, size * count);
5260
5261         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5262         if (ret) {
5263 data_avail:
5264                 memcpy(val, vcpu->arch.pio_data, size * count);
5265                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5266                 vcpu->arch.pio.count = 0;
5267                 return 1;
5268         }
5269
5270         return 0;
5271 }
5272
5273 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5274                                      int size, unsigned short port,
5275                                      const void *val, unsigned int count)
5276 {
5277         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5278
5279         memcpy(vcpu->arch.pio_data, val, size * count);
5280         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5281         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5282 }
5283
5284 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5285 {
5286         return kvm_x86_ops->get_segment_base(vcpu, seg);
5287 }
5288
5289 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5290 {
5291         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5292 }
5293
5294 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5295 {
5296         if (!need_emulate_wbinvd(vcpu))
5297                 return X86EMUL_CONTINUE;
5298
5299         if (kvm_x86_ops->has_wbinvd_exit()) {
5300                 int cpu = get_cpu();
5301
5302                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5303                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5304                                 wbinvd_ipi, NULL, 1);
5305                 put_cpu();
5306                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5307         } else
5308                 wbinvd();
5309         return X86EMUL_CONTINUE;
5310 }
5311
5312 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5313 {
5314         kvm_emulate_wbinvd_noskip(vcpu);
5315         return kvm_skip_emulated_instruction(vcpu);
5316 }
5317 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5318
5319
5320
5321 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5322 {
5323         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5324 }
5325
5326 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5327                            unsigned long *dest)
5328 {
5329         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5330 }
5331
5332 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5333                            unsigned long value)
5334 {
5335
5336         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5337 }
5338
5339 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5340 {
5341         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5342 }
5343
5344 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5345 {
5346         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5347         unsigned long value;
5348
5349         switch (cr) {
5350         case 0:
5351                 value = kvm_read_cr0(vcpu);
5352                 break;
5353         case 2:
5354                 value = vcpu->arch.cr2;
5355                 break;
5356         case 3:
5357                 value = kvm_read_cr3(vcpu);
5358                 break;
5359         case 4:
5360                 value = kvm_read_cr4(vcpu);
5361                 break;
5362         case 8:
5363                 value = kvm_get_cr8(vcpu);
5364                 break;
5365         default:
5366                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5367                 return 0;
5368         }
5369
5370         return value;
5371 }
5372
5373 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5374 {
5375         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5376         int res = 0;
5377
5378         switch (cr) {
5379         case 0:
5380                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5381                 break;
5382         case 2:
5383                 vcpu->arch.cr2 = val;
5384                 break;
5385         case 3:
5386                 res = kvm_set_cr3(vcpu, val);
5387                 break;
5388         case 4:
5389                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5390                 break;
5391         case 8:
5392                 res = kvm_set_cr8(vcpu, val);
5393                 break;
5394         default:
5395                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5396                 res = -1;
5397         }
5398
5399         return res;
5400 }
5401
5402 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5403 {
5404         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5405 }
5406
5407 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5408 {
5409         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5410 }
5411
5412 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5413 {
5414         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5415 }
5416
5417 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5418 {
5419         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5420 }
5421
5422 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5423 {
5424         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5425 }
5426
5427 static unsigned long emulator_get_cached_segment_base(
5428         struct x86_emulate_ctxt *ctxt, int seg)
5429 {
5430         return get_segment_base(emul_to_vcpu(ctxt), seg);
5431 }
5432
5433 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5434                                  struct desc_struct *desc, u32 *base3,
5435                                  int seg)
5436 {
5437         struct kvm_segment var;
5438
5439         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5440         *selector = var.selector;
5441
5442         if (var.unusable) {
5443                 memset(desc, 0, sizeof(*desc));
5444                 if (base3)
5445                         *base3 = 0;
5446                 return false;
5447         }
5448
5449         if (var.g)
5450                 var.limit >>= 12;
5451         set_desc_limit(desc, var.limit);
5452         set_desc_base(desc, (unsigned long)var.base);
5453 #ifdef CONFIG_X86_64
5454         if (base3)
5455                 *base3 = var.base >> 32;
5456 #endif
5457         desc->type = var.type;
5458         desc->s = var.s;
5459         desc->dpl = var.dpl;
5460         desc->p = var.present;
5461         desc->avl = var.avl;
5462         desc->l = var.l;
5463         desc->d = var.db;
5464         desc->g = var.g;
5465
5466         return true;
5467 }
5468
5469 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5470                                  struct desc_struct *desc, u32 base3,
5471                                  int seg)
5472 {
5473         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5474         struct kvm_segment var;
5475
5476         var.selector = selector;
5477         var.base = get_desc_base(desc);
5478 #ifdef CONFIG_X86_64
5479         var.base |= ((u64)base3) << 32;
5480 #endif
5481         var.limit = get_desc_limit(desc);
5482         if (desc->g)
5483                 var.limit = (var.limit << 12) | 0xfff;
5484         var.type = desc->type;
5485         var.dpl = desc->dpl;
5486         var.db = desc->d;
5487         var.s = desc->s;
5488         var.l = desc->l;
5489         var.g = desc->g;
5490         var.avl = desc->avl;
5491         var.present = desc->p;
5492         var.unusable = !var.present;
5493         var.padding = 0;
5494
5495         kvm_set_segment(vcpu, &var, seg);
5496         return;
5497 }
5498
5499 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5500                             u32 msr_index, u64 *pdata)
5501 {
5502         struct msr_data msr;
5503         int r;
5504
5505         msr.index = msr_index;
5506         msr.host_initiated = false;
5507         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5508         if (r)
5509                 return r;
5510
5511         *pdata = msr.data;
5512         return 0;
5513 }
5514
5515 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5516                             u32 msr_index, u64 data)
5517 {
5518         struct msr_data msr;
5519
5520         msr.data = data;
5521         msr.index = msr_index;
5522         msr.host_initiated = false;
5523         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5524 }
5525
5526 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5527 {
5528         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5529
5530         return vcpu->arch.smbase;
5531 }
5532
5533 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5534 {
5535         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5536
5537         vcpu->arch.smbase = smbase;
5538 }
5539
5540 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5541                               u32 pmc)
5542 {
5543         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5544 }
5545
5546 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5547                              u32 pmc, u64 *pdata)
5548 {
5549         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5550 }
5551
5552 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5553 {
5554         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5555 }
5556
5557 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5558                               struct x86_instruction_info *info,
5559                               enum x86_intercept_stage stage)
5560 {
5561         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5562 }
5563
5564 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5565                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5566 {
5567         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5568 }
5569
5570 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5571 {
5572         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5573 }
5574
5575 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5576 {
5577         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5578 }
5579
5580 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5581 {
5582         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5583 }
5584
5585 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5586 {
5587         return emul_to_vcpu(ctxt)->arch.hflags;
5588 }
5589
5590 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5591 {
5592         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5593 }
5594
5595 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5596 {
5597         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5598 }
5599
5600 static const struct x86_emulate_ops emulate_ops = {
5601         .read_gpr            = emulator_read_gpr,
5602         .write_gpr           = emulator_write_gpr,
5603         .read_std            = kvm_read_guest_virt_system,
5604         .write_std           = kvm_write_guest_virt_system,
5605         .read_phys           = kvm_read_guest_phys_system,
5606         .fetch               = kvm_fetch_guest_virt,
5607         .read_emulated       = emulator_read_emulated,
5608         .write_emulated      = emulator_write_emulated,
5609         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5610         .invlpg              = emulator_invlpg,
5611         .pio_in_emulated     = emulator_pio_in_emulated,
5612         .pio_out_emulated    = emulator_pio_out_emulated,
5613         .get_segment         = emulator_get_segment,
5614         .set_segment         = emulator_set_segment,
5615         .get_cached_segment_base = emulator_get_cached_segment_base,
5616         .get_gdt             = emulator_get_gdt,
5617         .get_idt             = emulator_get_idt,
5618         .set_gdt             = emulator_set_gdt,
5619         .set_idt             = emulator_set_idt,
5620         .get_cr              = emulator_get_cr,
5621         .set_cr              = emulator_set_cr,
5622         .cpl                 = emulator_get_cpl,
5623         .get_dr              = emulator_get_dr,
5624         .set_dr              = emulator_set_dr,
5625         .get_smbase          = emulator_get_smbase,
5626         .set_smbase          = emulator_set_smbase,
5627         .set_msr             = emulator_set_msr,
5628         .get_msr             = emulator_get_msr,
5629         .check_pmc           = emulator_check_pmc,
5630         .read_pmc            = emulator_read_pmc,
5631         .halt                = emulator_halt,
5632         .wbinvd              = emulator_wbinvd,
5633         .fix_hypercall       = emulator_fix_hypercall,
5634         .intercept           = emulator_intercept,
5635         .get_cpuid           = emulator_get_cpuid,
5636         .set_nmi_mask        = emulator_set_nmi_mask,
5637         .get_hflags          = emulator_get_hflags,
5638         .set_hflags          = emulator_set_hflags,
5639         .pre_leave_smm       = emulator_pre_leave_smm,
5640 };
5641
5642 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5643 {
5644         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5645         /*
5646          * an sti; sti; sequence only disable interrupts for the first
5647          * instruction. So, if the last instruction, be it emulated or
5648          * not, left the system with the INT_STI flag enabled, it
5649          * means that the last instruction is an sti. We should not
5650          * leave the flag on in this case. The same goes for mov ss
5651          */
5652         if (int_shadow & mask)
5653                 mask = 0;
5654         if (unlikely(int_shadow || mask)) {
5655                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5656                 if (!mask)
5657                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5658         }
5659 }
5660
5661 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5662 {
5663         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5664         if (ctxt->exception.vector == PF_VECTOR)
5665                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5666
5667         if (ctxt->exception.error_code_valid)
5668                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5669                                       ctxt->exception.error_code);
5670         else
5671                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5672         return false;
5673 }
5674
5675 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5676 {
5677         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5678         int cs_db, cs_l;
5679
5680         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5681
5682         ctxt->eflags = kvm_get_rflags(vcpu);
5683         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5684
5685         ctxt->eip = kvm_rip_read(vcpu);
5686         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5687                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5688                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5689                      cs_db                              ? X86EMUL_MODE_PROT32 :
5690                                                           X86EMUL_MODE_PROT16;
5691         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5692         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5693         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5694
5695         init_decode_cache(ctxt);
5696         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5697 }
5698
5699 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5700 {
5701         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5702         int ret;
5703
5704         init_emulate_ctxt(vcpu);
5705
5706         ctxt->op_bytes = 2;
5707         ctxt->ad_bytes = 2;
5708         ctxt->_eip = ctxt->eip + inc_eip;
5709         ret = emulate_int_real(ctxt, irq);
5710
5711         if (ret != X86EMUL_CONTINUE)
5712                 return EMULATE_FAIL;
5713
5714         ctxt->eip = ctxt->_eip;
5715         kvm_rip_write(vcpu, ctxt->eip);
5716         kvm_set_rflags(vcpu, ctxt->eflags);
5717
5718         return EMULATE_DONE;
5719 }
5720 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5721
5722 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5723 {
5724         int r = EMULATE_DONE;
5725
5726         ++vcpu->stat.insn_emulation_fail;
5727         trace_kvm_emulate_insn_failed(vcpu);
5728
5729         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5730                 return EMULATE_FAIL;
5731
5732         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5733                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5734                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5735                 vcpu->run->internal.ndata = 0;
5736                 r = EMULATE_USER_EXIT;
5737         }
5738
5739         kvm_queue_exception(vcpu, UD_VECTOR);
5740
5741         return r;
5742 }
5743
5744 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5745                                   bool write_fault_to_shadow_pgtable,
5746                                   int emulation_type)
5747 {
5748         gpa_t gpa = cr2;
5749         kvm_pfn_t pfn;
5750
5751         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5752                 return false;
5753
5754         if (!vcpu->arch.mmu.direct_map) {
5755                 /*
5756                  * Write permission should be allowed since only
5757                  * write access need to be emulated.
5758                  */
5759                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5760
5761                 /*
5762                  * If the mapping is invalid in guest, let cpu retry
5763                  * it to generate fault.
5764                  */
5765                 if (gpa == UNMAPPED_GVA)
5766                         return true;
5767         }
5768
5769         /*
5770          * Do not retry the unhandleable instruction if it faults on the
5771          * readonly host memory, otherwise it will goto a infinite loop:
5772          * retry instruction -> write #PF -> emulation fail -> retry
5773          * instruction -> ...
5774          */
5775         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5776
5777         /*
5778          * If the instruction failed on the error pfn, it can not be fixed,
5779          * report the error to userspace.
5780          */
5781         if (is_error_noslot_pfn(pfn))
5782                 return false;
5783
5784         kvm_release_pfn_clean(pfn);
5785
5786         /* The instructions are well-emulated on direct mmu. */
5787         if (vcpu->arch.mmu.direct_map) {
5788                 unsigned int indirect_shadow_pages;
5789
5790                 spin_lock(&vcpu->kvm->mmu_lock);
5791                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5792                 spin_unlock(&vcpu->kvm->mmu_lock);
5793
5794                 if (indirect_shadow_pages)
5795                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5796
5797                 return true;
5798         }
5799
5800         /*
5801          * if emulation was due to access to shadowed page table
5802          * and it failed try to unshadow page and re-enter the
5803          * guest to let CPU execute the instruction.
5804          */
5805         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5806
5807         /*
5808          * If the access faults on its page table, it can not
5809          * be fixed by unprotecting shadow page and it should
5810          * be reported to userspace.
5811          */
5812         return !write_fault_to_shadow_pgtable;
5813 }
5814
5815 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5816                               unsigned long cr2,  int emulation_type)
5817 {
5818         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5819         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5820
5821         last_retry_eip = vcpu->arch.last_retry_eip;
5822         last_retry_addr = vcpu->arch.last_retry_addr;
5823
5824         /*
5825          * If the emulation is caused by #PF and it is non-page_table
5826          * writing instruction, it means the VM-EXIT is caused by shadow
5827          * page protected, we can zap the shadow page and retry this
5828          * instruction directly.
5829          *
5830          * Note: if the guest uses a non-page-table modifying instruction
5831          * on the PDE that points to the instruction, then we will unmap
5832          * the instruction and go to an infinite loop. So, we cache the
5833          * last retried eip and the last fault address, if we meet the eip
5834          * and the address again, we can break out of the potential infinite
5835          * loop.
5836          */
5837         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5838
5839         if (!(emulation_type & EMULTYPE_RETRY))
5840                 return false;
5841
5842         if (x86_page_table_writing_insn(ctxt))
5843                 return false;
5844
5845         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5846                 return false;
5847
5848         vcpu->arch.last_retry_eip = ctxt->eip;
5849         vcpu->arch.last_retry_addr = cr2;
5850
5851         if (!vcpu->arch.mmu.direct_map)
5852                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5853
5854         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5855
5856         return true;
5857 }
5858
5859 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5860 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5861
5862 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5863 {
5864         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5865                 /* This is a good place to trace that we are exiting SMM.  */
5866                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5867
5868                 /* Process a latched INIT or SMI, if any.  */
5869                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5870         }
5871
5872         kvm_mmu_reset_context(vcpu);
5873 }
5874
5875 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5876 {
5877         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5878
5879         vcpu->arch.hflags = emul_flags;
5880
5881         if (changed & HF_SMM_MASK)
5882                 kvm_smm_changed(vcpu);
5883 }
5884
5885 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5886                                 unsigned long *db)
5887 {
5888         u32 dr6 = 0;
5889         int i;
5890         u32 enable, rwlen;
5891
5892         enable = dr7;
5893         rwlen = dr7 >> 16;
5894         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5895                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5896                         dr6 |= (1 << i);
5897         return dr6;
5898 }
5899
5900 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5901 {
5902         struct kvm_run *kvm_run = vcpu->run;
5903
5904         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5905                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5906                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5907                 kvm_run->debug.arch.exception = DB_VECTOR;
5908                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5909                 *r = EMULATE_USER_EXIT;
5910         } else {
5911                 /*
5912                  * "Certain debug exceptions may clear bit 0-3.  The
5913                  * remaining contents of the DR6 register are never
5914                  * cleared by the processor".
5915                  */
5916                 vcpu->arch.dr6 &= ~15;
5917                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5918                 kvm_queue_exception(vcpu, DB_VECTOR);
5919         }
5920 }
5921
5922 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5923 {
5924         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5925         int r = EMULATE_DONE;
5926
5927         kvm_x86_ops->skip_emulated_instruction(vcpu);
5928
5929         /*
5930          * rflags is the old, "raw" value of the flags.  The new value has
5931          * not been saved yet.
5932          *
5933          * This is correct even for TF set by the guest, because "the
5934          * processor will not generate this exception after the instruction
5935          * that sets the TF flag".
5936          */
5937         if (unlikely(rflags & X86_EFLAGS_TF))
5938                 kvm_vcpu_do_singlestep(vcpu, &r);
5939         return r == EMULATE_DONE;
5940 }
5941 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5942
5943 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5944 {
5945         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5946             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5947                 struct kvm_run *kvm_run = vcpu->run;
5948                 unsigned long eip = kvm_get_linear_rip(vcpu);
5949                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5950                                            vcpu->arch.guest_debug_dr7,
5951                                            vcpu->arch.eff_db);
5952
5953                 if (dr6 != 0) {
5954                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5955                         kvm_run->debug.arch.pc = eip;
5956                         kvm_run->debug.arch.exception = DB_VECTOR;
5957                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5958                         *r = EMULATE_USER_EXIT;
5959                         return true;
5960                 }
5961         }
5962
5963         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5964             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5965                 unsigned long eip = kvm_get_linear_rip(vcpu);
5966                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5967                                            vcpu->arch.dr7,
5968                                            vcpu->arch.db);
5969
5970                 if (dr6 != 0) {
5971                         vcpu->arch.dr6 &= ~15;
5972                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5973                         kvm_queue_exception(vcpu, DB_VECTOR);
5974                         *r = EMULATE_DONE;
5975                         return true;
5976                 }
5977         }
5978
5979         return false;
5980 }
5981
5982 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
5983 {
5984         switch (ctxt->opcode_len) {
5985         case 1:
5986                 switch (ctxt->b) {
5987                 case 0xe4:      /* IN */
5988                 case 0xe5:
5989                 case 0xec:
5990                 case 0xed:
5991                 case 0xe6:      /* OUT */
5992                 case 0xe7:
5993                 case 0xee:
5994                 case 0xef:
5995                 case 0x6c:      /* INS */
5996                 case 0x6d:
5997                 case 0x6e:      /* OUTS */
5998                 case 0x6f:
5999                         return true;
6000                 }
6001                 break;
6002         case 2:
6003                 switch (ctxt->b) {
6004                 case 0x33:      /* RDPMC */
6005                         return true;
6006                 }
6007                 break;
6008         }
6009
6010         return false;
6011 }
6012
6013 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6014                             unsigned long cr2,
6015                             int emulation_type,
6016                             void *insn,
6017                             int insn_len)
6018 {
6019         int r;
6020         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6021         bool writeback = true;
6022         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6023
6024         /*
6025          * Clear write_fault_to_shadow_pgtable here to ensure it is
6026          * never reused.
6027          */
6028         vcpu->arch.write_fault_to_shadow_pgtable = false;
6029         kvm_clear_exception_queue(vcpu);
6030
6031         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6032                 init_emulate_ctxt(vcpu);
6033
6034                 /*
6035                  * We will reenter on the same instruction since
6036                  * we do not set complete_userspace_io.  This does not
6037                  * handle watchpoints yet, those would be handled in
6038                  * the emulate_ops.
6039                  */
6040                 if (!(emulation_type & EMULTYPE_SKIP) &&
6041                     kvm_vcpu_check_breakpoint(vcpu, &r))
6042                         return r;
6043
6044                 ctxt->interruptibility = 0;
6045                 ctxt->have_exception = false;
6046                 ctxt->exception.vector = -1;
6047                 ctxt->perm_ok = false;
6048
6049                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6050
6051                 r = x86_decode_insn(ctxt, insn, insn_len);
6052
6053                 trace_kvm_emulate_insn_start(vcpu);
6054                 ++vcpu->stat.insn_emulation;
6055                 if (r != EMULATION_OK)  {
6056                         if (emulation_type & EMULTYPE_TRAP_UD)
6057                                 return EMULATE_FAIL;
6058                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6059                                                 emulation_type))
6060                                 return EMULATE_DONE;
6061                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6062                                 return EMULATE_DONE;
6063                         if (emulation_type & EMULTYPE_SKIP)
6064                                 return EMULATE_FAIL;
6065                         return handle_emulation_failure(vcpu, emulation_type);
6066                 }
6067         }
6068
6069         if ((emulation_type & EMULTYPE_VMWARE) &&
6070             !is_vmware_backdoor_opcode(ctxt))
6071                 return EMULATE_FAIL;
6072
6073         if (emulation_type & EMULTYPE_SKIP) {
6074                 kvm_rip_write(vcpu, ctxt->_eip);
6075                 if (ctxt->eflags & X86_EFLAGS_RF)
6076                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6077                 return EMULATE_DONE;
6078         }
6079
6080         if (retry_instruction(ctxt, cr2, emulation_type))
6081                 return EMULATE_DONE;
6082
6083         /* this is needed for vmware backdoor interface to work since it
6084            changes registers values  during IO operation */
6085         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6086                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6087                 emulator_invalidate_register_cache(ctxt);
6088         }
6089
6090 restart:
6091         /* Save the faulting GPA (cr2) in the address field */
6092         ctxt->exception.address = cr2;
6093
6094         r = x86_emulate_insn(ctxt);
6095
6096         if (r == EMULATION_INTERCEPTED)
6097                 return EMULATE_DONE;
6098
6099         if (r == EMULATION_FAILED) {
6100                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6101                                         emulation_type))
6102                         return EMULATE_DONE;
6103
6104                 return handle_emulation_failure(vcpu, emulation_type);
6105         }
6106
6107         if (ctxt->have_exception) {
6108                 r = EMULATE_DONE;
6109                 if (inject_emulated_exception(vcpu))
6110                         return r;
6111         } else if (vcpu->arch.pio.count) {
6112                 if (!vcpu->arch.pio.in) {
6113                         /* FIXME: return into emulator if single-stepping.  */
6114                         vcpu->arch.pio.count = 0;
6115                 } else {
6116                         writeback = false;
6117                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6118                 }
6119                 r = EMULATE_USER_EXIT;
6120         } else if (vcpu->mmio_needed) {
6121                 if (!vcpu->mmio_is_write)
6122                         writeback = false;
6123                 r = EMULATE_USER_EXIT;
6124                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6125         } else if (r == EMULATION_RESTART)
6126                 goto restart;
6127         else
6128                 r = EMULATE_DONE;
6129
6130         if (writeback) {
6131                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6132                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6133                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6134                 kvm_rip_write(vcpu, ctxt->eip);
6135                 if (r == EMULATE_DONE &&
6136                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6137                         kvm_vcpu_do_singlestep(vcpu, &r);
6138                 if (!ctxt->have_exception ||
6139                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6140                         __kvm_set_rflags(vcpu, ctxt->eflags);
6141
6142                 /*
6143                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6144                  * do nothing, and it will be requested again as soon as
6145                  * the shadow expires.  But we still need to check here,
6146                  * because POPF has no interrupt shadow.
6147                  */
6148                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6149                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6150         } else
6151                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6152
6153         return r;
6154 }
6155 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6156
6157 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6158                             unsigned short port)
6159 {
6160         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6161         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6162                                             size, port, &val, 1);
6163         /* do not return to emulator after return from userspace */
6164         vcpu->arch.pio.count = 0;
6165         return ret;
6166 }
6167
6168 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6169 {
6170         unsigned long val;
6171
6172         /* We should only ever be called with arch.pio.count equal to 1 */
6173         BUG_ON(vcpu->arch.pio.count != 1);
6174
6175         /* For size less than 4 we merge, else we zero extend */
6176         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6177                                         : 0;
6178
6179         /*
6180          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6181          * the copy and tracing
6182          */
6183         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6184                                  vcpu->arch.pio.port, &val, 1);
6185         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6186
6187         return 1;
6188 }
6189
6190 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6191                            unsigned short port)
6192 {
6193         unsigned long val;
6194         int ret;
6195
6196         /* For size less than 4 we merge, else we zero extend */
6197         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6198
6199         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6200                                        &val, 1);
6201         if (ret) {
6202                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6203                 return ret;
6204         }
6205
6206         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6207
6208         return 0;
6209 }
6210
6211 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6212 {
6213         int ret = kvm_skip_emulated_instruction(vcpu);
6214
6215         /*
6216          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6217          * KVM_EXIT_DEBUG here.
6218          */
6219         if (in)
6220                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6221         else
6222                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6223 }
6224 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6225
6226 static int kvmclock_cpu_down_prep(unsigned int cpu)
6227 {
6228         __this_cpu_write(cpu_tsc_khz, 0);
6229         return 0;
6230 }
6231
6232 static void tsc_khz_changed(void *data)
6233 {
6234         struct cpufreq_freqs *freq = data;
6235         unsigned long khz = 0;
6236
6237         if (data)
6238                 khz = freq->new;
6239         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6240                 khz = cpufreq_quick_get(raw_smp_processor_id());
6241         if (!khz)
6242                 khz = tsc_khz;
6243         __this_cpu_write(cpu_tsc_khz, khz);
6244 }
6245
6246 #ifdef CONFIG_X86_64
6247 static void kvm_hyperv_tsc_notifier(void)
6248 {
6249         struct kvm *kvm;
6250         struct kvm_vcpu *vcpu;
6251         int cpu;
6252
6253         spin_lock(&kvm_lock);
6254         list_for_each_entry(kvm, &vm_list, vm_list)
6255                 kvm_make_mclock_inprogress_request(kvm);
6256
6257         hyperv_stop_tsc_emulation();
6258
6259         /* TSC frequency always matches when on Hyper-V */
6260         for_each_present_cpu(cpu)
6261                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6262         kvm_max_guest_tsc_khz = tsc_khz;
6263
6264         list_for_each_entry(kvm, &vm_list, vm_list) {
6265                 struct kvm_arch *ka = &kvm->arch;
6266
6267                 spin_lock(&ka->pvclock_gtod_sync_lock);
6268
6269                 pvclock_update_vm_gtod_copy(kvm);
6270
6271                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6272                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6273
6274                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6275                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6276
6277                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6278         }
6279         spin_unlock(&kvm_lock);
6280 }
6281 #endif
6282
6283 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6284                                      void *data)
6285 {
6286         struct cpufreq_freqs *freq = data;
6287         struct kvm *kvm;
6288         struct kvm_vcpu *vcpu;
6289         int i, send_ipi = 0;
6290
6291         /*
6292          * We allow guests to temporarily run on slowing clocks,
6293          * provided we notify them after, or to run on accelerating
6294          * clocks, provided we notify them before.  Thus time never
6295          * goes backwards.
6296          *
6297          * However, we have a problem.  We can't atomically update
6298          * the frequency of a given CPU from this function; it is
6299          * merely a notifier, which can be called from any CPU.
6300          * Changing the TSC frequency at arbitrary points in time
6301          * requires a recomputation of local variables related to
6302          * the TSC for each VCPU.  We must flag these local variables
6303          * to be updated and be sure the update takes place with the
6304          * new frequency before any guests proceed.
6305          *
6306          * Unfortunately, the combination of hotplug CPU and frequency
6307          * change creates an intractable locking scenario; the order
6308          * of when these callouts happen is undefined with respect to
6309          * CPU hotplug, and they can race with each other.  As such,
6310          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6311          * undefined; you can actually have a CPU frequency change take
6312          * place in between the computation of X and the setting of the
6313          * variable.  To protect against this problem, all updates of
6314          * the per_cpu tsc_khz variable are done in an interrupt
6315          * protected IPI, and all callers wishing to update the value
6316          * must wait for a synchronous IPI to complete (which is trivial
6317          * if the caller is on the CPU already).  This establishes the
6318          * necessary total order on variable updates.
6319          *
6320          * Note that because a guest time update may take place
6321          * anytime after the setting of the VCPU's request bit, the
6322          * correct TSC value must be set before the request.  However,
6323          * to ensure the update actually makes it to any guest which
6324          * starts running in hardware virtualization between the set
6325          * and the acquisition of the spinlock, we must also ping the
6326          * CPU after setting the request bit.
6327          *
6328          */
6329
6330         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6331                 return 0;
6332         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6333                 return 0;
6334
6335         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6336
6337         spin_lock(&kvm_lock);
6338         list_for_each_entry(kvm, &vm_list, vm_list) {
6339                 kvm_for_each_vcpu(i, vcpu, kvm) {
6340                         if (vcpu->cpu != freq->cpu)
6341                                 continue;
6342                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6343                         if (vcpu->cpu != smp_processor_id())
6344                                 send_ipi = 1;
6345                 }
6346         }
6347         spin_unlock(&kvm_lock);
6348
6349         if (freq->old < freq->new && send_ipi) {
6350                 /*
6351                  * We upscale the frequency.  Must make the guest
6352                  * doesn't see old kvmclock values while running with
6353                  * the new frequency, otherwise we risk the guest sees
6354                  * time go backwards.
6355                  *
6356                  * In case we update the frequency for another cpu
6357                  * (which might be in guest context) send an interrupt
6358                  * to kick the cpu out of guest context.  Next time
6359                  * guest context is entered kvmclock will be updated,
6360                  * so the guest will not see stale values.
6361                  */
6362                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6363         }
6364         return 0;
6365 }
6366
6367 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6368         .notifier_call  = kvmclock_cpufreq_notifier
6369 };
6370
6371 static int kvmclock_cpu_online(unsigned int cpu)
6372 {
6373         tsc_khz_changed(NULL);
6374         return 0;
6375 }
6376
6377 static void kvm_timer_init(void)
6378 {
6379         max_tsc_khz = tsc_khz;
6380
6381         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6382 #ifdef CONFIG_CPU_FREQ
6383                 struct cpufreq_policy policy;
6384                 int cpu;
6385
6386                 memset(&policy, 0, sizeof(policy));
6387                 cpu = get_cpu();
6388                 cpufreq_get_policy(&policy, cpu);
6389                 if (policy.cpuinfo.max_freq)
6390                         max_tsc_khz = policy.cpuinfo.max_freq;
6391                 put_cpu();
6392 #endif
6393                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6394                                           CPUFREQ_TRANSITION_NOTIFIER);
6395         }
6396         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6397
6398         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6399                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6400 }
6401
6402 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6403 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6404
6405 int kvm_is_in_guest(void)
6406 {
6407         return __this_cpu_read(current_vcpu) != NULL;
6408 }
6409
6410 static int kvm_is_user_mode(void)
6411 {
6412         int user_mode = 3;
6413
6414         if (__this_cpu_read(current_vcpu))
6415                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6416
6417         return user_mode != 0;
6418 }
6419
6420 static unsigned long kvm_get_guest_ip(void)
6421 {
6422         unsigned long ip = 0;
6423
6424         if (__this_cpu_read(current_vcpu))
6425                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6426
6427         return ip;
6428 }
6429
6430 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6431         .is_in_guest            = kvm_is_in_guest,
6432         .is_user_mode           = kvm_is_user_mode,
6433         .get_guest_ip           = kvm_get_guest_ip,
6434 };
6435
6436 static void kvm_set_mmio_spte_mask(void)
6437 {
6438         u64 mask;
6439         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6440
6441         /*
6442          * Set the reserved bits and the present bit of an paging-structure
6443          * entry to generate page fault with PFER.RSV = 1.
6444          */
6445          /* Mask the reserved physical address bits. */
6446         mask = rsvd_bits(maxphyaddr, 51);
6447
6448         /* Set the present bit. */
6449         mask |= 1ull;
6450
6451 #ifdef CONFIG_X86_64
6452         /*
6453          * If reserved bit is not supported, clear the present bit to disable
6454          * mmio page fault.
6455          */
6456         if (maxphyaddr == 52)
6457                 mask &= ~1ull;
6458 #endif
6459
6460         kvm_mmu_set_mmio_spte_mask(mask, mask);
6461 }
6462
6463 #ifdef CONFIG_X86_64
6464 static void pvclock_gtod_update_fn(struct work_struct *work)
6465 {
6466         struct kvm *kvm;
6467
6468         struct kvm_vcpu *vcpu;
6469         int i;
6470
6471         spin_lock(&kvm_lock);
6472         list_for_each_entry(kvm, &vm_list, vm_list)
6473                 kvm_for_each_vcpu(i, vcpu, kvm)
6474                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6475         atomic_set(&kvm_guest_has_master_clock, 0);
6476         spin_unlock(&kvm_lock);
6477 }
6478
6479 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6480
6481 /*
6482  * Notification about pvclock gtod data update.
6483  */
6484 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6485                                void *priv)
6486 {
6487         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6488         struct timekeeper *tk = priv;
6489
6490         update_pvclock_gtod(tk);
6491
6492         /* disable master clock if host does not trust, or does not
6493          * use, TSC based clocksource.
6494          */
6495         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6496             atomic_read(&kvm_guest_has_master_clock) != 0)
6497                 queue_work(system_long_wq, &pvclock_gtod_work);
6498
6499         return 0;
6500 }
6501
6502 static struct notifier_block pvclock_gtod_notifier = {
6503         .notifier_call = pvclock_gtod_notify,
6504 };
6505 #endif
6506
6507 int kvm_arch_init(void *opaque)
6508 {
6509         int r;
6510         struct kvm_x86_ops *ops = opaque;
6511
6512         if (kvm_x86_ops) {
6513                 printk(KERN_ERR "kvm: already loaded the other module\n");
6514                 r = -EEXIST;
6515                 goto out;
6516         }
6517
6518         if (!ops->cpu_has_kvm_support()) {
6519                 printk(KERN_ERR "kvm: no hardware support\n");
6520                 r = -EOPNOTSUPP;
6521                 goto out;
6522         }
6523         if (ops->disabled_by_bios()) {
6524                 printk(KERN_ERR "kvm: disabled by bios\n");
6525                 r = -EOPNOTSUPP;
6526                 goto out;
6527         }
6528
6529         r = -ENOMEM;
6530         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6531         if (!shared_msrs) {
6532                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6533                 goto out;
6534         }
6535
6536         r = kvm_mmu_module_init();
6537         if (r)
6538                 goto out_free_percpu;
6539
6540         kvm_set_mmio_spte_mask();
6541
6542         kvm_x86_ops = ops;
6543
6544         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6545                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6546                         PT_PRESENT_MASK, 0, sme_me_mask);
6547         kvm_timer_init();
6548
6549         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6550
6551         if (boot_cpu_has(X86_FEATURE_XSAVE))
6552                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6553
6554         kvm_lapic_init();
6555 #ifdef CONFIG_X86_64
6556         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6557
6558         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6559                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6560 #endif
6561
6562         return 0;
6563
6564 out_free_percpu:
6565         free_percpu(shared_msrs);
6566 out:
6567         return r;
6568 }
6569
6570 void kvm_arch_exit(void)
6571 {
6572 #ifdef CONFIG_X86_64
6573         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6574                 clear_hv_tscchange_cb();
6575 #endif
6576         kvm_lapic_exit();
6577         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6578
6579         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6580                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6581                                             CPUFREQ_TRANSITION_NOTIFIER);
6582         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6583 #ifdef CONFIG_X86_64
6584         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6585 #endif
6586         kvm_x86_ops = NULL;
6587         kvm_mmu_module_exit();
6588         free_percpu(shared_msrs);
6589 }
6590
6591 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6592 {
6593         ++vcpu->stat.halt_exits;
6594         if (lapic_in_kernel(vcpu)) {
6595                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6596                 return 1;
6597         } else {
6598                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6599                 return 0;
6600         }
6601 }
6602 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6603
6604 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6605 {
6606         int ret = kvm_skip_emulated_instruction(vcpu);
6607         /*
6608          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6609          * KVM_EXIT_DEBUG here.
6610          */
6611         return kvm_vcpu_halt(vcpu) && ret;
6612 }
6613 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6614
6615 #ifdef CONFIG_X86_64
6616 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6617                                 unsigned long clock_type)
6618 {
6619         struct kvm_clock_pairing clock_pairing;
6620         struct timespec ts;
6621         u64 cycle;
6622         int ret;
6623
6624         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6625                 return -KVM_EOPNOTSUPP;
6626
6627         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6628                 return -KVM_EOPNOTSUPP;
6629
6630         clock_pairing.sec = ts.tv_sec;
6631         clock_pairing.nsec = ts.tv_nsec;
6632         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6633         clock_pairing.flags = 0;
6634
6635         ret = 0;
6636         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6637                             sizeof(struct kvm_clock_pairing)))
6638                 ret = -KVM_EFAULT;
6639
6640         return ret;
6641 }
6642 #endif
6643
6644 /*
6645  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6646  *
6647  * @apicid - apicid of vcpu to be kicked.
6648  */
6649 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6650 {
6651         struct kvm_lapic_irq lapic_irq;
6652
6653         lapic_irq.shorthand = 0;
6654         lapic_irq.dest_mode = 0;
6655         lapic_irq.level = 0;
6656         lapic_irq.dest_id = apicid;
6657         lapic_irq.msi_redir_hint = false;
6658
6659         lapic_irq.delivery_mode = APIC_DM_REMRD;
6660         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6661 }
6662
6663 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6664 {
6665         vcpu->arch.apicv_active = false;
6666         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6667 }
6668
6669 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6670 {
6671         unsigned long nr, a0, a1, a2, a3, ret;
6672         int op_64_bit;
6673
6674         if (kvm_hv_hypercall_enabled(vcpu->kvm)) {
6675                 if (!kvm_hv_hypercall(vcpu))
6676                         return 0;
6677                 goto out;
6678         }
6679
6680         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6681         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6682         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6683         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6684         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6685
6686         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6687
6688         op_64_bit = is_64_bit_mode(vcpu);
6689         if (!op_64_bit) {
6690                 nr &= 0xFFFFFFFF;
6691                 a0 &= 0xFFFFFFFF;
6692                 a1 &= 0xFFFFFFFF;
6693                 a2 &= 0xFFFFFFFF;
6694                 a3 &= 0xFFFFFFFF;
6695         }
6696
6697         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6698                 ret = -KVM_EPERM;
6699                 goto out_error;
6700         }
6701
6702         switch (nr) {
6703         case KVM_HC_VAPIC_POLL_IRQ:
6704                 ret = 0;
6705                 break;
6706         case KVM_HC_KICK_CPU:
6707                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6708                 ret = 0;
6709                 break;
6710 #ifdef CONFIG_X86_64
6711         case KVM_HC_CLOCK_PAIRING:
6712                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6713                 break;
6714 #endif
6715         default:
6716                 ret = -KVM_ENOSYS;
6717                 break;
6718         }
6719 out_error:
6720         if (!op_64_bit)
6721                 ret = (u32)ret;
6722         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6723
6724 out:
6725         ++vcpu->stat.hypercalls;
6726         return kvm_skip_emulated_instruction(vcpu);
6727 }
6728 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6729
6730 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6731 {
6732         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6733         char instruction[3];
6734         unsigned long rip = kvm_rip_read(vcpu);
6735
6736         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6737
6738         return emulator_write_emulated(ctxt, rip, instruction, 3,
6739                 &ctxt->exception);
6740 }
6741
6742 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6743 {
6744         return vcpu->run->request_interrupt_window &&
6745                 likely(!pic_in_kernel(vcpu->kvm));
6746 }
6747
6748 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6749 {
6750         struct kvm_run *kvm_run = vcpu->run;
6751
6752         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6753         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6754         kvm_run->cr8 = kvm_get_cr8(vcpu);
6755         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6756         kvm_run->ready_for_interrupt_injection =
6757                 pic_in_kernel(vcpu->kvm) ||
6758                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6759 }
6760
6761 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6762 {
6763         int max_irr, tpr;
6764
6765         if (!kvm_x86_ops->update_cr8_intercept)
6766                 return;
6767
6768         if (!lapic_in_kernel(vcpu))
6769                 return;
6770
6771         if (vcpu->arch.apicv_active)
6772                 return;
6773
6774         if (!vcpu->arch.apic->vapic_addr)
6775                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6776         else
6777                 max_irr = -1;
6778
6779         if (max_irr != -1)
6780                 max_irr >>= 4;
6781
6782         tpr = kvm_lapic_get_cr8(vcpu);
6783
6784         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6785 }
6786
6787 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6788 {
6789         int r;
6790
6791         /* try to reinject previous events if any */
6792
6793         if (vcpu->arch.exception.injected)
6794                 kvm_x86_ops->queue_exception(vcpu);
6795         /*
6796          * Do not inject an NMI or interrupt if there is a pending
6797          * exception.  Exceptions and interrupts are recognized at
6798          * instruction boundaries, i.e. the start of an instruction.
6799          * Trap-like exceptions, e.g. #DB, have higher priority than
6800          * NMIs and interrupts, i.e. traps are recognized before an
6801          * NMI/interrupt that's pending on the same instruction.
6802          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6803          * priority, but are only generated (pended) during instruction
6804          * execution, i.e. a pending fault-like exception means the
6805          * fault occurred on the *previous* instruction and must be
6806          * serviced prior to recognizing any new events in order to
6807          * fully complete the previous instruction.
6808          */
6809         else if (!vcpu->arch.exception.pending) {
6810                 if (vcpu->arch.nmi_injected)
6811                         kvm_x86_ops->set_nmi(vcpu);
6812                 else if (vcpu->arch.interrupt.injected)
6813                         kvm_x86_ops->set_irq(vcpu);
6814         }
6815
6816         /*
6817          * Call check_nested_events() even if we reinjected a previous event
6818          * in order for caller to determine if it should require immediate-exit
6819          * from L2 to L1 due to pending L1 events which require exit
6820          * from L2 to L1.
6821          */
6822         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6823                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6824                 if (r != 0)
6825                         return r;
6826         }
6827
6828         /* try to inject new event if pending */
6829         if (vcpu->arch.exception.pending) {
6830                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6831                                         vcpu->arch.exception.has_error_code,
6832                                         vcpu->arch.exception.error_code);
6833
6834                 WARN_ON_ONCE(vcpu->arch.exception.injected);
6835                 vcpu->arch.exception.pending = false;
6836                 vcpu->arch.exception.injected = true;
6837
6838                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6839                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6840                                              X86_EFLAGS_RF);
6841
6842                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6843                     (vcpu->arch.dr7 & DR7_GD)) {
6844                         vcpu->arch.dr7 &= ~DR7_GD;
6845                         kvm_update_dr7(vcpu);
6846                 }
6847
6848                 kvm_x86_ops->queue_exception(vcpu);
6849         }
6850
6851         /* Don't consider new event if we re-injected an event */
6852         if (kvm_event_needs_reinjection(vcpu))
6853                 return 0;
6854
6855         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6856             kvm_x86_ops->smi_allowed(vcpu)) {
6857                 vcpu->arch.smi_pending = false;
6858                 ++vcpu->arch.smi_count;
6859                 enter_smm(vcpu);
6860         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6861                 --vcpu->arch.nmi_pending;
6862                 vcpu->arch.nmi_injected = true;
6863                 kvm_x86_ops->set_nmi(vcpu);
6864         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6865                 /*
6866                  * Because interrupts can be injected asynchronously, we are
6867                  * calling check_nested_events again here to avoid a race condition.
6868                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6869                  * proposal and current concerns.  Perhaps we should be setting
6870                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6871                  */
6872                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6873                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6874                         if (r != 0)
6875                                 return r;
6876                 }
6877                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6878                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6879                                             false);
6880                         kvm_x86_ops->set_irq(vcpu);
6881                 }
6882         }
6883
6884         return 0;
6885 }
6886
6887 static void process_nmi(struct kvm_vcpu *vcpu)
6888 {
6889         unsigned limit = 2;
6890
6891         /*
6892          * x86 is limited to one NMI running, and one NMI pending after it.
6893          * If an NMI is already in progress, limit further NMIs to just one.
6894          * Otherwise, allow two (and we'll inject the first one immediately).
6895          */
6896         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6897                 limit = 1;
6898
6899         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6900         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6901         kvm_make_request(KVM_REQ_EVENT, vcpu);
6902 }
6903
6904 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6905 {
6906         u32 flags = 0;
6907         flags |= seg->g       << 23;
6908         flags |= seg->db      << 22;
6909         flags |= seg->l       << 21;
6910         flags |= seg->avl     << 20;
6911         flags |= seg->present << 15;
6912         flags |= seg->dpl     << 13;
6913         flags |= seg->s       << 12;
6914         flags |= seg->type    << 8;
6915         return flags;
6916 }
6917
6918 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6919 {
6920         struct kvm_segment seg;
6921         int offset;
6922
6923         kvm_get_segment(vcpu, &seg, n);
6924         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6925
6926         if (n < 3)
6927                 offset = 0x7f84 + n * 12;
6928         else
6929                 offset = 0x7f2c + (n - 3) * 12;
6930
6931         put_smstate(u32, buf, offset + 8, seg.base);
6932         put_smstate(u32, buf, offset + 4, seg.limit);
6933         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6934 }
6935
6936 #ifdef CONFIG_X86_64
6937 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6938 {
6939         struct kvm_segment seg;
6940         int offset;
6941         u16 flags;
6942
6943         kvm_get_segment(vcpu, &seg, n);
6944         offset = 0x7e00 + n * 16;
6945
6946         flags = enter_smm_get_segment_flags(&seg) >> 8;
6947         put_smstate(u16, buf, offset, seg.selector);
6948         put_smstate(u16, buf, offset + 2, flags);
6949         put_smstate(u32, buf, offset + 4, seg.limit);
6950         put_smstate(u64, buf, offset + 8, seg.base);
6951 }
6952 #endif
6953
6954 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6955 {
6956         struct desc_ptr dt;
6957         struct kvm_segment seg;
6958         unsigned long val;
6959         int i;
6960
6961         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6962         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6963         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6964         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6965
6966         for (i = 0; i < 8; i++)
6967                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6968
6969         kvm_get_dr(vcpu, 6, &val);
6970         put_smstate(u32, buf, 0x7fcc, (u32)val);
6971         kvm_get_dr(vcpu, 7, &val);
6972         put_smstate(u32, buf, 0x7fc8, (u32)val);
6973
6974         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6975         put_smstate(u32, buf, 0x7fc4, seg.selector);
6976         put_smstate(u32, buf, 0x7f64, seg.base);
6977         put_smstate(u32, buf, 0x7f60, seg.limit);
6978         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6979
6980         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6981         put_smstate(u32, buf, 0x7fc0, seg.selector);
6982         put_smstate(u32, buf, 0x7f80, seg.base);
6983         put_smstate(u32, buf, 0x7f7c, seg.limit);
6984         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6985
6986         kvm_x86_ops->get_gdt(vcpu, &dt);
6987         put_smstate(u32, buf, 0x7f74, dt.address);
6988         put_smstate(u32, buf, 0x7f70, dt.size);
6989
6990         kvm_x86_ops->get_idt(vcpu, &dt);
6991         put_smstate(u32, buf, 0x7f58, dt.address);
6992         put_smstate(u32, buf, 0x7f54, dt.size);
6993
6994         for (i = 0; i < 6; i++)
6995                 enter_smm_save_seg_32(vcpu, buf, i);
6996
6997         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6998
6999         /* revision id */
7000         put_smstate(u32, buf, 0x7efc, 0x00020000);
7001         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7002 }
7003
7004 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7005 {
7006 #ifdef CONFIG_X86_64
7007         struct desc_ptr dt;
7008         struct kvm_segment seg;
7009         unsigned long val;
7010         int i;
7011
7012         for (i = 0; i < 16; i++)
7013                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7014
7015         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7016         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7017
7018         kvm_get_dr(vcpu, 6, &val);
7019         put_smstate(u64, buf, 0x7f68, val);
7020         kvm_get_dr(vcpu, 7, &val);
7021         put_smstate(u64, buf, 0x7f60, val);
7022
7023         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7024         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7025         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7026
7027         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7028
7029         /* revision id */
7030         put_smstate(u32, buf, 0x7efc, 0x00020064);
7031
7032         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7033
7034         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7035         put_smstate(u16, buf, 0x7e90, seg.selector);
7036         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7037         put_smstate(u32, buf, 0x7e94, seg.limit);
7038         put_smstate(u64, buf, 0x7e98, seg.base);
7039
7040         kvm_x86_ops->get_idt(vcpu, &dt);
7041         put_smstate(u32, buf, 0x7e84, dt.size);
7042         put_smstate(u64, buf, 0x7e88, dt.address);
7043
7044         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7045         put_smstate(u16, buf, 0x7e70, seg.selector);
7046         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7047         put_smstate(u32, buf, 0x7e74, seg.limit);
7048         put_smstate(u64, buf, 0x7e78, seg.base);
7049
7050         kvm_x86_ops->get_gdt(vcpu, &dt);
7051         put_smstate(u32, buf, 0x7e64, dt.size);
7052         put_smstate(u64, buf, 0x7e68, dt.address);
7053
7054         for (i = 0; i < 6; i++)
7055                 enter_smm_save_seg_64(vcpu, buf, i);
7056 #else
7057         WARN_ON_ONCE(1);
7058 #endif
7059 }
7060
7061 static void enter_smm(struct kvm_vcpu *vcpu)
7062 {
7063         struct kvm_segment cs, ds;
7064         struct desc_ptr dt;
7065         char buf[512];
7066         u32 cr0;
7067
7068         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7069         memset(buf, 0, 512);
7070         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7071                 enter_smm_save_state_64(vcpu, buf);
7072         else
7073                 enter_smm_save_state_32(vcpu, buf);
7074
7075         /*
7076          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7077          * vCPU state (e.g. leave guest mode) after we've saved the state into
7078          * the SMM state-save area.
7079          */
7080         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7081
7082         vcpu->arch.hflags |= HF_SMM_MASK;
7083         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7084
7085         if (kvm_x86_ops->get_nmi_mask(vcpu))
7086                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7087         else
7088                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7089
7090         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7091         kvm_rip_write(vcpu, 0x8000);
7092
7093         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7094         kvm_x86_ops->set_cr0(vcpu, cr0);
7095         vcpu->arch.cr0 = cr0;
7096
7097         kvm_x86_ops->set_cr4(vcpu, 0);
7098
7099         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7100         dt.address = dt.size = 0;
7101         kvm_x86_ops->set_idt(vcpu, &dt);
7102
7103         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7104
7105         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7106         cs.base = vcpu->arch.smbase;
7107
7108         ds.selector = 0;
7109         ds.base = 0;
7110
7111         cs.limit    = ds.limit = 0xffffffff;
7112         cs.type     = ds.type = 0x3;
7113         cs.dpl      = ds.dpl = 0;
7114         cs.db       = ds.db = 0;
7115         cs.s        = ds.s = 1;
7116         cs.l        = ds.l = 0;
7117         cs.g        = ds.g = 1;
7118         cs.avl      = ds.avl = 0;
7119         cs.present  = ds.present = 1;
7120         cs.unusable = ds.unusable = 0;
7121         cs.padding  = ds.padding = 0;
7122
7123         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7124         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7125         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7126         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7127         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7128         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7129
7130         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7131                 kvm_x86_ops->set_efer(vcpu, 0);
7132
7133         kvm_update_cpuid(vcpu);
7134         kvm_mmu_reset_context(vcpu);
7135 }
7136
7137 static void process_smi(struct kvm_vcpu *vcpu)
7138 {
7139         vcpu->arch.smi_pending = true;
7140         kvm_make_request(KVM_REQ_EVENT, vcpu);
7141 }
7142
7143 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7144 {
7145         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7146 }
7147
7148 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7149 {
7150         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7151                 return;
7152
7153         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7154
7155         if (irqchip_split(vcpu->kvm))
7156                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7157         else {
7158                 if (vcpu->arch.apicv_active)
7159                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7160                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7161         }
7162
7163         if (is_guest_mode(vcpu))
7164                 vcpu->arch.load_eoi_exitmap_pending = true;
7165         else
7166                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7167 }
7168
7169 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7170 {
7171         u64 eoi_exit_bitmap[4];
7172
7173         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7174                 return;
7175
7176         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7177                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7178         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7179 }
7180
7181 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7182                 unsigned long start, unsigned long end)
7183 {
7184         unsigned long apic_address;
7185
7186         /*
7187          * The physical address of apic access page is stored in the VMCS.
7188          * Update it when it becomes invalid.
7189          */
7190         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7191         if (start <= apic_address && apic_address < end)
7192                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7193 }
7194
7195 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7196 {
7197         struct page *page = NULL;
7198
7199         if (!lapic_in_kernel(vcpu))
7200                 return;
7201
7202         if (!kvm_x86_ops->set_apic_access_page_addr)
7203                 return;
7204
7205         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7206         if (is_error_page(page))
7207                 return;
7208         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7209
7210         /*
7211          * Do not pin apic access page in memory, the MMU notifier
7212          * will call us again if it is migrated or swapped out.
7213          */
7214         put_page(page);
7215 }
7216 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7217
7218 /*
7219  * Returns 1 to let vcpu_run() continue the guest execution loop without
7220  * exiting to the userspace.  Otherwise, the value will be returned to the
7221  * userspace.
7222  */
7223 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7224 {
7225         int r;
7226         bool req_int_win =
7227                 dm_request_for_irq_injection(vcpu) &&
7228                 kvm_cpu_accept_dm_intr(vcpu);
7229
7230         bool req_immediate_exit = false;
7231
7232         if (kvm_request_pending(vcpu)) {
7233                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7234                         kvm_mmu_unload(vcpu);
7235                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7236                         __kvm_migrate_timers(vcpu);
7237                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7238                         kvm_gen_update_masterclock(vcpu->kvm);
7239                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7240                         kvm_gen_kvmclock_update(vcpu);
7241                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7242                         r = kvm_guest_time_update(vcpu);
7243                         if (unlikely(r))
7244                                 goto out;
7245                 }
7246                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7247                         kvm_mmu_sync_roots(vcpu);
7248                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7249                         kvm_vcpu_flush_tlb(vcpu, true);
7250                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7251                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7252                         r = 0;
7253                         goto out;
7254                 }
7255                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7256                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7257                         vcpu->mmio_needed = 0;
7258                         r = 0;
7259                         goto out;
7260                 }
7261                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7262                         /* Page is swapped out. Do synthetic halt */
7263                         vcpu->arch.apf.halted = true;
7264                         r = 1;
7265                         goto out;
7266                 }
7267                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7268                         record_steal_time(vcpu);
7269                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7270                         process_smi(vcpu);
7271                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7272                         process_nmi(vcpu);
7273                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7274                         kvm_pmu_handle_event(vcpu);
7275                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7276                         kvm_pmu_deliver_pmi(vcpu);
7277                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7278                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7279                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7280                                      vcpu->arch.ioapic_handled_vectors)) {
7281                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7282                                 vcpu->run->eoi.vector =
7283                                                 vcpu->arch.pending_ioapic_eoi;
7284                                 r = 0;
7285                                 goto out;
7286                         }
7287                 }
7288                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7289                         vcpu_scan_ioapic(vcpu);
7290                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7291                         vcpu_load_eoi_exitmap(vcpu);
7292                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7293                         kvm_vcpu_reload_apic_access_page(vcpu);
7294                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7295                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7296                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7297                         r = 0;
7298                         goto out;
7299                 }
7300                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7301                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7302                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7303                         r = 0;
7304                         goto out;
7305                 }
7306                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7307                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7308                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7309                         r = 0;
7310                         goto out;
7311                 }
7312
7313                 /*
7314                  * KVM_REQ_HV_STIMER has to be processed after
7315                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7316                  * depend on the guest clock being up-to-date
7317                  */
7318                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7319                         kvm_hv_process_stimers(vcpu);
7320         }
7321
7322         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7323                 ++vcpu->stat.req_event;
7324                 kvm_apic_accept_events(vcpu);
7325                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7326                         r = 1;
7327                         goto out;
7328                 }
7329
7330                 if (inject_pending_event(vcpu, req_int_win) != 0)
7331                         req_immediate_exit = true;
7332                 else {
7333                         /* Enable SMI/NMI/IRQ window open exits if needed.
7334                          *
7335                          * SMIs have three cases:
7336                          * 1) They can be nested, and then there is nothing to
7337                          *    do here because RSM will cause a vmexit anyway.
7338                          * 2) There is an ISA-specific reason why SMI cannot be
7339                          *    injected, and the moment when this changes can be
7340                          *    intercepted.
7341                          * 3) Or the SMI can be pending because
7342                          *    inject_pending_event has completed the injection
7343                          *    of an IRQ or NMI from the previous vmexit, and
7344                          *    then we request an immediate exit to inject the
7345                          *    SMI.
7346                          */
7347                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7348                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7349                                         req_immediate_exit = true;
7350                         if (vcpu->arch.nmi_pending)
7351                                 kvm_x86_ops->enable_nmi_window(vcpu);
7352                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7353                                 kvm_x86_ops->enable_irq_window(vcpu);
7354                         WARN_ON(vcpu->arch.exception.pending);
7355                 }
7356
7357                 if (kvm_lapic_enabled(vcpu)) {
7358                         update_cr8_intercept(vcpu);
7359                         kvm_lapic_sync_to_vapic(vcpu);
7360                 }
7361         }
7362
7363         r = kvm_mmu_reload(vcpu);
7364         if (unlikely(r)) {
7365                 goto cancel_injection;
7366         }
7367
7368         preempt_disable();
7369
7370         kvm_x86_ops->prepare_guest_switch(vcpu);
7371
7372         /*
7373          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7374          * IPI are then delayed after guest entry, which ensures that they
7375          * result in virtual interrupt delivery.
7376          */
7377         local_irq_disable();
7378         vcpu->mode = IN_GUEST_MODE;
7379
7380         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7381
7382         /*
7383          * 1) We should set ->mode before checking ->requests.  Please see
7384          * the comment in kvm_vcpu_exiting_guest_mode().
7385          *
7386          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7387          * pairs with the memory barrier implicit in pi_test_and_set_on
7388          * (see vmx_deliver_posted_interrupt).
7389          *
7390          * 3) This also orders the write to mode from any reads to the page
7391          * tables done while the VCPU is running.  Please see the comment
7392          * in kvm_flush_remote_tlbs.
7393          */
7394         smp_mb__after_srcu_read_unlock();
7395
7396         /*
7397          * This handles the case where a posted interrupt was
7398          * notified with kvm_vcpu_kick.
7399          */
7400         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7401                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7402
7403         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7404             || need_resched() || signal_pending(current)) {
7405                 vcpu->mode = OUTSIDE_GUEST_MODE;
7406                 smp_wmb();
7407                 local_irq_enable();
7408                 preempt_enable();
7409                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7410                 r = 1;
7411                 goto cancel_injection;
7412         }
7413
7414         kvm_load_guest_xcr0(vcpu);
7415
7416         if (req_immediate_exit) {
7417                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7418                 smp_send_reschedule(vcpu->cpu);
7419         }
7420
7421         trace_kvm_entry(vcpu->vcpu_id);
7422         if (lapic_timer_advance_ns)
7423                 wait_lapic_expire(vcpu);
7424         guest_enter_irqoff();
7425
7426         if (unlikely(vcpu->arch.switch_db_regs)) {
7427                 set_debugreg(0, 7);
7428                 set_debugreg(vcpu->arch.eff_db[0], 0);
7429                 set_debugreg(vcpu->arch.eff_db[1], 1);
7430                 set_debugreg(vcpu->arch.eff_db[2], 2);
7431                 set_debugreg(vcpu->arch.eff_db[3], 3);
7432                 set_debugreg(vcpu->arch.dr6, 6);
7433                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7434         }
7435
7436         kvm_x86_ops->run(vcpu);
7437
7438         /*
7439          * Do this here before restoring debug registers on the host.  And
7440          * since we do this before handling the vmexit, a DR access vmexit
7441          * can (a) read the correct value of the debug registers, (b) set
7442          * KVM_DEBUGREG_WONT_EXIT again.
7443          */
7444         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7445                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7446                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7447                 kvm_update_dr0123(vcpu);
7448                 kvm_update_dr6(vcpu);
7449                 kvm_update_dr7(vcpu);
7450                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7451         }
7452
7453         /*
7454          * If the guest has used debug registers, at least dr7
7455          * will be disabled while returning to the host.
7456          * If we don't have active breakpoints in the host, we don't
7457          * care about the messed up debug address registers. But if
7458          * we have some of them active, restore the old state.
7459          */
7460         if (hw_breakpoint_active())
7461                 hw_breakpoint_restore();
7462
7463         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7464
7465         vcpu->mode = OUTSIDE_GUEST_MODE;
7466         smp_wmb();
7467
7468         kvm_put_guest_xcr0(vcpu);
7469
7470         kvm_before_interrupt(vcpu);
7471         kvm_x86_ops->handle_external_intr(vcpu);
7472         kvm_after_interrupt(vcpu);
7473
7474         ++vcpu->stat.exits;
7475
7476         guest_exit_irqoff();
7477
7478         local_irq_enable();
7479         preempt_enable();
7480
7481         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7482
7483         /*
7484          * Profile KVM exit RIPs:
7485          */
7486         if (unlikely(prof_on == KVM_PROFILING)) {
7487                 unsigned long rip = kvm_rip_read(vcpu);
7488                 profile_hit(KVM_PROFILING, (void *)rip);
7489         }
7490
7491         if (unlikely(vcpu->arch.tsc_always_catchup))
7492                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7493
7494         if (vcpu->arch.apic_attention)
7495                 kvm_lapic_sync_from_vapic(vcpu);
7496
7497         vcpu->arch.gpa_available = false;
7498         r = kvm_x86_ops->handle_exit(vcpu);
7499         return r;
7500
7501 cancel_injection:
7502         kvm_x86_ops->cancel_injection(vcpu);
7503         if (unlikely(vcpu->arch.apic_attention))
7504                 kvm_lapic_sync_from_vapic(vcpu);
7505 out:
7506         return r;
7507 }
7508
7509 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7510 {
7511         if (!kvm_arch_vcpu_runnable(vcpu) &&
7512             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7513                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7514                 kvm_vcpu_block(vcpu);
7515                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7516
7517                 if (kvm_x86_ops->post_block)
7518                         kvm_x86_ops->post_block(vcpu);
7519
7520                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7521                         return 1;
7522         }
7523
7524         kvm_apic_accept_events(vcpu);
7525         switch(vcpu->arch.mp_state) {
7526         case KVM_MP_STATE_HALTED:
7527                 vcpu->arch.pv.pv_unhalted = false;
7528                 vcpu->arch.mp_state =
7529                         KVM_MP_STATE_RUNNABLE;
7530         case KVM_MP_STATE_RUNNABLE:
7531                 vcpu->arch.apf.halted = false;
7532                 break;
7533         case KVM_MP_STATE_INIT_RECEIVED:
7534                 break;
7535         default:
7536                 return -EINTR;
7537                 break;
7538         }
7539         return 1;
7540 }
7541
7542 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7543 {
7544         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7545                 kvm_x86_ops->check_nested_events(vcpu, false);
7546
7547         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7548                 !vcpu->arch.apf.halted);
7549 }
7550
7551 static int vcpu_run(struct kvm_vcpu *vcpu)
7552 {
7553         int r;
7554         struct kvm *kvm = vcpu->kvm;
7555
7556         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7557
7558         for (;;) {
7559                 if (kvm_vcpu_running(vcpu)) {
7560                         r = vcpu_enter_guest(vcpu);
7561                 } else {
7562                         r = vcpu_block(kvm, vcpu);
7563                 }
7564
7565                 if (r <= 0)
7566                         break;
7567
7568                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7569                 if (kvm_cpu_has_pending_timer(vcpu))
7570                         kvm_inject_pending_timer_irqs(vcpu);
7571
7572                 if (dm_request_for_irq_injection(vcpu) &&
7573                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7574                         r = 0;
7575                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7576                         ++vcpu->stat.request_irq_exits;
7577                         break;
7578                 }
7579
7580                 kvm_check_async_pf_completion(vcpu);
7581
7582                 if (signal_pending(current)) {
7583                         r = -EINTR;
7584                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7585                         ++vcpu->stat.signal_exits;
7586                         break;
7587                 }
7588                 if (need_resched()) {
7589                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7590                         cond_resched();
7591                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7592                 }
7593         }
7594
7595         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7596
7597         return r;
7598 }
7599
7600 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7601 {
7602         int r;
7603         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7604         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7605         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7606         if (r != EMULATE_DONE)
7607                 return 0;
7608         return 1;
7609 }
7610
7611 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7612 {
7613         BUG_ON(!vcpu->arch.pio.count);
7614
7615         return complete_emulated_io(vcpu);
7616 }
7617
7618 /*
7619  * Implements the following, as a state machine:
7620  *
7621  * read:
7622  *   for each fragment
7623  *     for each mmio piece in the fragment
7624  *       write gpa, len
7625  *       exit
7626  *       copy data
7627  *   execute insn
7628  *
7629  * write:
7630  *   for each fragment
7631  *     for each mmio piece in the fragment
7632  *       write gpa, len
7633  *       copy data
7634  *       exit
7635  */
7636 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7637 {
7638         struct kvm_run *run = vcpu->run;
7639         struct kvm_mmio_fragment *frag;
7640         unsigned len;
7641
7642         BUG_ON(!vcpu->mmio_needed);
7643
7644         /* Complete previous fragment */
7645         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7646         len = min(8u, frag->len);
7647         if (!vcpu->mmio_is_write)
7648                 memcpy(frag->data, run->mmio.data, len);
7649
7650         if (frag->len <= 8) {
7651                 /* Switch to the next fragment. */
7652                 frag++;
7653                 vcpu->mmio_cur_fragment++;
7654         } else {
7655                 /* Go forward to the next mmio piece. */
7656                 frag->data += len;
7657                 frag->gpa += len;
7658                 frag->len -= len;
7659         }
7660
7661         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7662                 vcpu->mmio_needed = 0;
7663
7664                 /* FIXME: return into emulator if single-stepping.  */
7665                 if (vcpu->mmio_is_write)
7666                         return 1;
7667                 vcpu->mmio_read_completed = 1;
7668                 return complete_emulated_io(vcpu);
7669         }
7670
7671         run->exit_reason = KVM_EXIT_MMIO;
7672         run->mmio.phys_addr = frag->gpa;
7673         if (vcpu->mmio_is_write)
7674                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7675         run->mmio.len = min(8u, frag->len);
7676         run->mmio.is_write = vcpu->mmio_is_write;
7677         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7678         return 0;
7679 }
7680
7681 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7682 {
7683         int r;
7684
7685         vcpu_load(vcpu);
7686         kvm_sigset_activate(vcpu);
7687         kvm_load_guest_fpu(vcpu);
7688
7689         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7690                 if (kvm_run->immediate_exit) {
7691                         r = -EINTR;
7692                         goto out;
7693                 }
7694                 kvm_vcpu_block(vcpu);
7695                 kvm_apic_accept_events(vcpu);
7696                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7697                 r = -EAGAIN;
7698                 if (signal_pending(current)) {
7699                         r = -EINTR;
7700                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7701                         ++vcpu->stat.signal_exits;
7702                 }
7703                 goto out;
7704         }
7705
7706         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7707                 r = -EINVAL;
7708                 goto out;
7709         }
7710
7711         if (vcpu->run->kvm_dirty_regs) {
7712                 r = sync_regs(vcpu);
7713                 if (r != 0)
7714                         goto out;
7715         }
7716
7717         /* re-sync apic's tpr */
7718         if (!lapic_in_kernel(vcpu)) {
7719                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7720                         r = -EINVAL;
7721                         goto out;
7722                 }
7723         }
7724
7725         if (unlikely(vcpu->arch.complete_userspace_io)) {
7726                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7727                 vcpu->arch.complete_userspace_io = NULL;
7728                 r = cui(vcpu);
7729                 if (r <= 0)
7730                         goto out;
7731         } else
7732                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7733
7734         if (kvm_run->immediate_exit)
7735                 r = -EINTR;
7736         else
7737                 r = vcpu_run(vcpu);
7738
7739 out:
7740         kvm_put_guest_fpu(vcpu);
7741         if (vcpu->run->kvm_valid_regs)
7742                 store_regs(vcpu);
7743         post_kvm_run_save(vcpu);
7744         kvm_sigset_deactivate(vcpu);
7745
7746         vcpu_put(vcpu);
7747         return r;
7748 }
7749
7750 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7751 {
7752         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7753                 /*
7754                  * We are here if userspace calls get_regs() in the middle of
7755                  * instruction emulation. Registers state needs to be copied
7756                  * back from emulation context to vcpu. Userspace shouldn't do
7757                  * that usually, but some bad designed PV devices (vmware
7758                  * backdoor interface) need this to work
7759                  */
7760                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7761                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7762         }
7763         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7764         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7765         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7766         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7767         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7768         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7769         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7770         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7771 #ifdef CONFIG_X86_64
7772         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7773         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7774         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7775         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7776         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7777         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7778         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7779         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7780 #endif
7781
7782         regs->rip = kvm_rip_read(vcpu);
7783         regs->rflags = kvm_get_rflags(vcpu);
7784 }
7785
7786 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7787 {
7788         vcpu_load(vcpu);
7789         __get_regs(vcpu, regs);
7790         vcpu_put(vcpu);
7791         return 0;
7792 }
7793
7794 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7795 {
7796         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7797         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7798
7799         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7800         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7801         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7802         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7803         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7804         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7805         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7806         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7807 #ifdef CONFIG_X86_64
7808         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7809         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7810         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7811         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7812         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7813         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7814         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7815         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7816 #endif
7817
7818         kvm_rip_write(vcpu, regs->rip);
7819         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7820
7821         vcpu->arch.exception.pending = false;
7822
7823         kvm_make_request(KVM_REQ_EVENT, vcpu);
7824 }
7825
7826 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7827 {
7828         vcpu_load(vcpu);
7829         __set_regs(vcpu, regs);
7830         vcpu_put(vcpu);
7831         return 0;
7832 }
7833
7834 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7835 {
7836         struct kvm_segment cs;
7837
7838         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7839         *db = cs.db;
7840         *l = cs.l;
7841 }
7842 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7843
7844 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7845 {
7846         struct desc_ptr dt;
7847
7848         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7849         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7850         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7851         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7852         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7853         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7854
7855         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7856         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7857
7858         kvm_x86_ops->get_idt(vcpu, &dt);
7859         sregs->idt.limit = dt.size;
7860         sregs->idt.base = dt.address;
7861         kvm_x86_ops->get_gdt(vcpu, &dt);
7862         sregs->gdt.limit = dt.size;
7863         sregs->gdt.base = dt.address;
7864
7865         sregs->cr0 = kvm_read_cr0(vcpu);
7866         sregs->cr2 = vcpu->arch.cr2;
7867         sregs->cr3 = kvm_read_cr3(vcpu);
7868         sregs->cr4 = kvm_read_cr4(vcpu);
7869         sregs->cr8 = kvm_get_cr8(vcpu);
7870         sregs->efer = vcpu->arch.efer;
7871         sregs->apic_base = kvm_get_apic_base(vcpu);
7872
7873         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7874
7875         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
7876                 set_bit(vcpu->arch.interrupt.nr,
7877                         (unsigned long *)sregs->interrupt_bitmap);
7878 }
7879
7880 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7881                                   struct kvm_sregs *sregs)
7882 {
7883         vcpu_load(vcpu);
7884         __get_sregs(vcpu, sregs);
7885         vcpu_put(vcpu);
7886         return 0;
7887 }
7888
7889 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7890                                     struct kvm_mp_state *mp_state)
7891 {
7892         vcpu_load(vcpu);
7893
7894         kvm_apic_accept_events(vcpu);
7895         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7896                                         vcpu->arch.pv.pv_unhalted)
7897                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7898         else
7899                 mp_state->mp_state = vcpu->arch.mp_state;
7900
7901         vcpu_put(vcpu);
7902         return 0;
7903 }
7904
7905 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7906                                     struct kvm_mp_state *mp_state)
7907 {
7908         int ret = -EINVAL;
7909
7910         vcpu_load(vcpu);
7911
7912         if (!lapic_in_kernel(vcpu) &&
7913             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7914                 goto out;
7915
7916         /* INITs are latched while in SMM */
7917         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7918             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7919              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7920                 goto out;
7921
7922         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7923                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7924                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7925         } else
7926                 vcpu->arch.mp_state = mp_state->mp_state;
7927         kvm_make_request(KVM_REQ_EVENT, vcpu);
7928
7929         ret = 0;
7930 out:
7931         vcpu_put(vcpu);
7932         return ret;
7933 }
7934
7935 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7936                     int reason, bool has_error_code, u32 error_code)
7937 {
7938         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7939         int ret;
7940
7941         init_emulate_ctxt(vcpu);
7942
7943         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7944                                    has_error_code, error_code);
7945
7946         if (ret)
7947                 return EMULATE_FAIL;
7948
7949         kvm_rip_write(vcpu, ctxt->eip);
7950         kvm_set_rflags(vcpu, ctxt->eflags);
7951         kvm_make_request(KVM_REQ_EVENT, vcpu);
7952         return EMULATE_DONE;
7953 }
7954 EXPORT_SYMBOL_GPL(kvm_task_switch);
7955
7956 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7957 {
7958         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7959                 /*
7960                  * When EFER.LME and CR0.PG are set, the processor is in
7961                  * 64-bit mode (though maybe in a 32-bit code segment).
7962                  * CR4.PAE and EFER.LMA must be set.
7963                  */
7964                 if (!(sregs->cr4 & X86_CR4_PAE)
7965                     || !(sregs->efer & EFER_LMA))
7966                         return -EINVAL;
7967         } else {
7968                 /*
7969                  * Not in 64-bit mode: EFER.LMA is clear and the code
7970                  * segment cannot be 64-bit.
7971                  */
7972                 if (sregs->efer & EFER_LMA || sregs->cs.l)
7973                         return -EINVAL;
7974         }
7975
7976         return 0;
7977 }
7978
7979 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7980 {
7981         struct msr_data apic_base_msr;
7982         int mmu_reset_needed = 0;
7983         int pending_vec, max_bits, idx;
7984         struct desc_ptr dt;
7985         int ret = -EINVAL;
7986
7987         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7988                         (sregs->cr4 & X86_CR4_OSXSAVE))
7989                 goto out;
7990
7991         if (kvm_valid_sregs(vcpu, sregs))
7992                 goto out;
7993
7994         apic_base_msr.data = sregs->apic_base;
7995         apic_base_msr.host_initiated = true;
7996         if (kvm_set_apic_base(vcpu, &apic_base_msr))
7997                 goto out;
7998
7999         dt.size = sregs->idt.limit;
8000         dt.address = sregs->idt.base;
8001         kvm_x86_ops->set_idt(vcpu, &dt);
8002         dt.size = sregs->gdt.limit;
8003         dt.address = sregs->gdt.base;
8004         kvm_x86_ops->set_gdt(vcpu, &dt);
8005
8006         vcpu->arch.cr2 = sregs->cr2;
8007         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8008         vcpu->arch.cr3 = sregs->cr3;
8009         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8010
8011         kvm_set_cr8(vcpu, sregs->cr8);
8012
8013         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8014         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8015
8016         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8017         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8018         vcpu->arch.cr0 = sregs->cr0;
8019
8020         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8021         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8022         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
8023                 kvm_update_cpuid(vcpu);
8024
8025         idx = srcu_read_lock(&vcpu->kvm->srcu);
8026         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8027                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8028                 mmu_reset_needed = 1;
8029         }
8030         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8031
8032         if (mmu_reset_needed)
8033                 kvm_mmu_reset_context(vcpu);
8034
8035         max_bits = KVM_NR_INTERRUPTS;
8036         pending_vec = find_first_bit(
8037                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8038         if (pending_vec < max_bits) {
8039                 kvm_queue_interrupt(vcpu, pending_vec, false);
8040                 pr_debug("Set back pending irq %d\n", pending_vec);
8041         }
8042
8043         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8044         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8045         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8046         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8047         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8048         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8049
8050         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8051         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8052
8053         update_cr8_intercept(vcpu);
8054
8055         /* Older userspace won't unhalt the vcpu on reset. */
8056         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8057             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8058             !is_protmode(vcpu))
8059                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8060
8061         kvm_make_request(KVM_REQ_EVENT, vcpu);
8062
8063         ret = 0;
8064 out:
8065         return ret;
8066 }
8067
8068 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8069                                   struct kvm_sregs *sregs)
8070 {
8071         int ret;
8072
8073         vcpu_load(vcpu);
8074         ret = __set_sregs(vcpu, sregs);
8075         vcpu_put(vcpu);
8076         return ret;
8077 }
8078
8079 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8080                                         struct kvm_guest_debug *dbg)
8081 {
8082         unsigned long rflags;
8083         int i, r;
8084
8085         vcpu_load(vcpu);
8086
8087         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8088                 r = -EBUSY;
8089                 if (vcpu->arch.exception.pending)
8090                         goto out;
8091                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8092                         kvm_queue_exception(vcpu, DB_VECTOR);
8093                 else
8094                         kvm_queue_exception(vcpu, BP_VECTOR);
8095         }
8096
8097         /*
8098          * Read rflags as long as potentially injected trace flags are still
8099          * filtered out.
8100          */
8101         rflags = kvm_get_rflags(vcpu);
8102
8103         vcpu->guest_debug = dbg->control;
8104         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8105                 vcpu->guest_debug = 0;
8106
8107         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8108                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8109                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8110                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8111         } else {
8112                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8113                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8114         }
8115         kvm_update_dr7(vcpu);
8116
8117         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8118                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8119                         get_segment_base(vcpu, VCPU_SREG_CS);
8120
8121         /*
8122          * Trigger an rflags update that will inject or remove the trace
8123          * flags.
8124          */
8125         kvm_set_rflags(vcpu, rflags);
8126
8127         kvm_x86_ops->update_bp_intercept(vcpu);
8128
8129         r = 0;
8130
8131 out:
8132         vcpu_put(vcpu);
8133         return r;
8134 }
8135
8136 /*
8137  * Translate a guest virtual address to a guest physical address.
8138  */
8139 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8140                                     struct kvm_translation *tr)
8141 {
8142         unsigned long vaddr = tr->linear_address;
8143         gpa_t gpa;
8144         int idx;
8145
8146         vcpu_load(vcpu);
8147
8148         idx = srcu_read_lock(&vcpu->kvm->srcu);
8149         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8150         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8151         tr->physical_address = gpa;
8152         tr->valid = gpa != UNMAPPED_GVA;
8153         tr->writeable = 1;
8154         tr->usermode = 0;
8155
8156         vcpu_put(vcpu);
8157         return 0;
8158 }
8159
8160 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8161 {
8162         struct fxregs_state *fxsave;
8163
8164         vcpu_load(vcpu);
8165
8166         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8167         memcpy(fpu->fpr, fxsave->st_space, 128);
8168         fpu->fcw = fxsave->cwd;
8169         fpu->fsw = fxsave->swd;
8170         fpu->ftwx = fxsave->twd;
8171         fpu->last_opcode = fxsave->fop;
8172         fpu->last_ip = fxsave->rip;
8173         fpu->last_dp = fxsave->rdp;
8174         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8175
8176         vcpu_put(vcpu);
8177         return 0;
8178 }
8179
8180 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8181 {
8182         struct fxregs_state *fxsave;
8183
8184         vcpu_load(vcpu);
8185
8186         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8187
8188         memcpy(fxsave->st_space, fpu->fpr, 128);
8189         fxsave->cwd = fpu->fcw;
8190         fxsave->swd = fpu->fsw;
8191         fxsave->twd = fpu->ftwx;
8192         fxsave->fop = fpu->last_opcode;
8193         fxsave->rip = fpu->last_ip;
8194         fxsave->rdp = fpu->last_dp;
8195         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8196
8197         vcpu_put(vcpu);
8198         return 0;
8199 }
8200
8201 static void store_regs(struct kvm_vcpu *vcpu)
8202 {
8203         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8204
8205         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8206                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8207
8208         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8209                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8210
8211         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8212                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8213                                 vcpu, &vcpu->run->s.regs.events);
8214 }
8215
8216 static int sync_regs(struct kvm_vcpu *vcpu)
8217 {
8218         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8219                 return -EINVAL;
8220
8221         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8222                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8223                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8224         }
8225         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8226                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8227                         return -EINVAL;
8228                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8229         }
8230         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8231                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8232                                 vcpu, &vcpu->run->s.regs.events))
8233                         return -EINVAL;
8234                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8235         }
8236
8237         return 0;
8238 }
8239
8240 static void fx_init(struct kvm_vcpu *vcpu)
8241 {
8242         fpstate_init(&vcpu->arch.guest_fpu.state);
8243         if (boot_cpu_has(X86_FEATURE_XSAVES))
8244                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8245                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8246
8247         /*
8248          * Ensure guest xcr0 is valid for loading
8249          */
8250         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8251
8252         vcpu->arch.cr0 |= X86_CR0_ET;
8253 }
8254
8255 /* Swap (qemu) user FPU context for the guest FPU context. */
8256 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8257 {
8258         preempt_disable();
8259         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8260         /* PKRU is separately restored in kvm_x86_ops->run.  */
8261         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8262                                 ~XFEATURE_MASK_PKRU);
8263         preempt_enable();
8264         trace_kvm_fpu(1);
8265 }
8266
8267 /* When vcpu_run ends, restore user space FPU context. */
8268 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8269 {
8270         preempt_disable();
8271         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8272         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8273         preempt_enable();
8274         ++vcpu->stat.fpu_reload;
8275         trace_kvm_fpu(0);
8276 }
8277
8278 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8279 {
8280         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8281
8282         kvmclock_reset(vcpu);
8283
8284         kvm_x86_ops->vcpu_free(vcpu);
8285         free_cpumask_var(wbinvd_dirty_mask);
8286 }
8287
8288 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8289                                                 unsigned int id)
8290 {
8291         struct kvm_vcpu *vcpu;
8292
8293         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8294                 printk_once(KERN_WARNING
8295                 "kvm: SMP vm created on host with unstable TSC; "
8296                 "guest TSC will not be reliable\n");
8297
8298         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8299
8300         return vcpu;
8301 }
8302
8303 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8304 {
8305         kvm_vcpu_mtrr_init(vcpu);
8306         vcpu_load(vcpu);
8307         kvm_vcpu_reset(vcpu, false);
8308         kvm_mmu_setup(vcpu);
8309         vcpu_put(vcpu);
8310         return 0;
8311 }
8312
8313 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8314 {
8315         struct msr_data msr;
8316         struct kvm *kvm = vcpu->kvm;
8317
8318         kvm_hv_vcpu_postcreate(vcpu);
8319
8320         if (mutex_lock_killable(&vcpu->mutex))
8321                 return;
8322         vcpu_load(vcpu);
8323         msr.data = 0x0;
8324         msr.index = MSR_IA32_TSC;
8325         msr.host_initiated = true;
8326         kvm_write_tsc(vcpu, &msr);
8327         vcpu_put(vcpu);
8328         mutex_unlock(&vcpu->mutex);
8329
8330         if (!kvmclock_periodic_sync)
8331                 return;
8332
8333         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8334                                         KVMCLOCK_SYNC_PERIOD);
8335 }
8336
8337 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8338 {
8339         vcpu->arch.apf.msr_val = 0;
8340
8341         vcpu_load(vcpu);
8342         kvm_mmu_unload(vcpu);
8343         vcpu_put(vcpu);
8344
8345         kvm_x86_ops->vcpu_free(vcpu);
8346 }
8347
8348 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8349 {
8350         kvm_lapic_reset(vcpu, init_event);
8351
8352         vcpu->arch.hflags = 0;
8353
8354         vcpu->arch.smi_pending = 0;
8355         vcpu->arch.smi_count = 0;
8356         atomic_set(&vcpu->arch.nmi_queued, 0);
8357         vcpu->arch.nmi_pending = 0;
8358         vcpu->arch.nmi_injected = false;
8359         kvm_clear_interrupt_queue(vcpu);
8360         kvm_clear_exception_queue(vcpu);
8361         vcpu->arch.exception.pending = false;
8362
8363         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8364         kvm_update_dr0123(vcpu);
8365         vcpu->arch.dr6 = DR6_INIT;
8366         kvm_update_dr6(vcpu);
8367         vcpu->arch.dr7 = DR7_FIXED_1;
8368         kvm_update_dr7(vcpu);
8369
8370         vcpu->arch.cr2 = 0;
8371
8372         kvm_make_request(KVM_REQ_EVENT, vcpu);
8373         vcpu->arch.apf.msr_val = 0;
8374         vcpu->arch.st.msr_val = 0;
8375
8376         kvmclock_reset(vcpu);
8377
8378         kvm_clear_async_pf_completion_queue(vcpu);
8379         kvm_async_pf_hash_reset(vcpu);
8380         vcpu->arch.apf.halted = false;
8381
8382         if (kvm_mpx_supported()) {
8383                 void *mpx_state_buffer;
8384
8385                 /*
8386                  * To avoid have the INIT path from kvm_apic_has_events() that be
8387                  * called with loaded FPU and does not let userspace fix the state.
8388                  */
8389                 if (init_event)
8390                         kvm_put_guest_fpu(vcpu);
8391                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8392                                         XFEATURE_MASK_BNDREGS);
8393                 if (mpx_state_buffer)
8394                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8395                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8396                                         XFEATURE_MASK_BNDCSR);
8397                 if (mpx_state_buffer)
8398                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8399                 if (init_event)
8400                         kvm_load_guest_fpu(vcpu);
8401         }
8402
8403         if (!init_event) {
8404                 kvm_pmu_reset(vcpu);
8405                 vcpu->arch.smbase = 0x30000;
8406
8407                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8408                 vcpu->arch.msr_misc_features_enables = 0;
8409
8410                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8411         }
8412
8413         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8414         vcpu->arch.regs_avail = ~0;
8415         vcpu->arch.regs_dirty = ~0;
8416
8417         vcpu->arch.ia32_xss = 0;
8418
8419         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8420 }
8421
8422 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8423 {
8424         struct kvm_segment cs;
8425
8426         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8427         cs.selector = vector << 8;
8428         cs.base = vector << 12;
8429         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8430         kvm_rip_write(vcpu, 0);
8431 }
8432
8433 int kvm_arch_hardware_enable(void)
8434 {
8435         struct kvm *kvm;
8436         struct kvm_vcpu *vcpu;
8437         int i;
8438         int ret;
8439         u64 local_tsc;
8440         u64 max_tsc = 0;
8441         bool stable, backwards_tsc = false;
8442
8443         kvm_shared_msr_cpu_online();
8444         ret = kvm_x86_ops->hardware_enable();
8445         if (ret != 0)
8446                 return ret;
8447
8448         local_tsc = rdtsc();
8449         stable = !kvm_check_tsc_unstable();
8450         list_for_each_entry(kvm, &vm_list, vm_list) {
8451                 kvm_for_each_vcpu(i, vcpu, kvm) {
8452                         if (!stable && vcpu->cpu == smp_processor_id())
8453                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8454                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8455                                 backwards_tsc = true;
8456                                 if (vcpu->arch.last_host_tsc > max_tsc)
8457                                         max_tsc = vcpu->arch.last_host_tsc;
8458                         }
8459                 }
8460         }
8461
8462         /*
8463          * Sometimes, even reliable TSCs go backwards.  This happens on
8464          * platforms that reset TSC during suspend or hibernate actions, but
8465          * maintain synchronization.  We must compensate.  Fortunately, we can
8466          * detect that condition here, which happens early in CPU bringup,
8467          * before any KVM threads can be running.  Unfortunately, we can't
8468          * bring the TSCs fully up to date with real time, as we aren't yet far
8469          * enough into CPU bringup that we know how much real time has actually
8470          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8471          * variables that haven't been updated yet.
8472          *
8473          * So we simply find the maximum observed TSC above, then record the
8474          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8475          * the adjustment will be applied.  Note that we accumulate
8476          * adjustments, in case multiple suspend cycles happen before some VCPU
8477          * gets a chance to run again.  In the event that no KVM threads get a
8478          * chance to run, we will miss the entire elapsed period, as we'll have
8479          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8480          * loose cycle time.  This isn't too big a deal, since the loss will be
8481          * uniform across all VCPUs (not to mention the scenario is extremely
8482          * unlikely). It is possible that a second hibernate recovery happens
8483          * much faster than a first, causing the observed TSC here to be
8484          * smaller; this would require additional padding adjustment, which is
8485          * why we set last_host_tsc to the local tsc observed here.
8486          *
8487          * N.B. - this code below runs only on platforms with reliable TSC,
8488          * as that is the only way backwards_tsc is set above.  Also note
8489          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8490          * have the same delta_cyc adjustment applied if backwards_tsc
8491          * is detected.  Note further, this adjustment is only done once,
8492          * as we reset last_host_tsc on all VCPUs to stop this from being
8493          * called multiple times (one for each physical CPU bringup).
8494          *
8495          * Platforms with unreliable TSCs don't have to deal with this, they
8496          * will be compensated by the logic in vcpu_load, which sets the TSC to
8497          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8498          * guarantee that they stay in perfect synchronization.
8499          */
8500         if (backwards_tsc) {
8501                 u64 delta_cyc = max_tsc - local_tsc;
8502                 list_for_each_entry(kvm, &vm_list, vm_list) {
8503                         kvm->arch.backwards_tsc_observed = true;
8504                         kvm_for_each_vcpu(i, vcpu, kvm) {
8505                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8506                                 vcpu->arch.last_host_tsc = local_tsc;
8507                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8508                         }
8509
8510                         /*
8511                          * We have to disable TSC offset matching.. if you were
8512                          * booting a VM while issuing an S4 host suspend....
8513                          * you may have some problem.  Solving this issue is
8514                          * left as an exercise to the reader.
8515                          */
8516                         kvm->arch.last_tsc_nsec = 0;
8517                         kvm->arch.last_tsc_write = 0;
8518                 }
8519
8520         }
8521         return 0;
8522 }
8523
8524 void kvm_arch_hardware_disable(void)
8525 {
8526         kvm_x86_ops->hardware_disable();
8527         drop_user_return_notifiers();
8528 }
8529
8530 int kvm_arch_hardware_setup(void)
8531 {
8532         int r;
8533
8534         r = kvm_x86_ops->hardware_setup();
8535         if (r != 0)
8536                 return r;
8537
8538         if (kvm_has_tsc_control) {
8539                 /*
8540                  * Make sure the user can only configure tsc_khz values that
8541                  * fit into a signed integer.
8542                  * A min value is not calculated needed because it will always
8543                  * be 1 on all machines.
8544                  */
8545                 u64 max = min(0x7fffffffULL,
8546                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8547                 kvm_max_guest_tsc_khz = max;
8548
8549                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8550         }
8551
8552         kvm_init_msr_list();
8553         return 0;
8554 }
8555
8556 void kvm_arch_hardware_unsetup(void)
8557 {
8558         kvm_x86_ops->hardware_unsetup();
8559 }
8560
8561 void kvm_arch_check_processor_compat(void *rtn)
8562 {
8563         kvm_x86_ops->check_processor_compatibility(rtn);
8564 }
8565
8566 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8567 {
8568         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8569 }
8570 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8571
8572 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8573 {
8574         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8575 }
8576
8577 struct static_key kvm_no_apic_vcpu __read_mostly;
8578 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8579
8580 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8581 {
8582         struct page *page;
8583         int r;
8584
8585         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8586         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8587         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8588                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8589         else
8590                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8591
8592         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8593         if (!page) {
8594                 r = -ENOMEM;
8595                 goto fail;
8596         }
8597         vcpu->arch.pio_data = page_address(page);
8598
8599         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8600
8601         r = kvm_mmu_create(vcpu);
8602         if (r < 0)
8603                 goto fail_free_pio_data;
8604
8605         if (irqchip_in_kernel(vcpu->kvm)) {
8606                 r = kvm_create_lapic(vcpu);
8607                 if (r < 0)
8608                         goto fail_mmu_destroy;
8609         } else
8610                 static_key_slow_inc(&kvm_no_apic_vcpu);
8611
8612         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8613                                        GFP_KERNEL);
8614         if (!vcpu->arch.mce_banks) {
8615                 r = -ENOMEM;
8616                 goto fail_free_lapic;
8617         }
8618         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8619
8620         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8621                 r = -ENOMEM;
8622                 goto fail_free_mce_banks;
8623         }
8624
8625         fx_init(vcpu);
8626
8627         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8628
8629         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8630
8631         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8632
8633         kvm_async_pf_hash_reset(vcpu);
8634         kvm_pmu_init(vcpu);
8635
8636         vcpu->arch.pending_external_vector = -1;
8637         vcpu->arch.preempted_in_kernel = false;
8638
8639         kvm_hv_vcpu_init(vcpu);
8640
8641         return 0;
8642
8643 fail_free_mce_banks:
8644         kfree(vcpu->arch.mce_banks);
8645 fail_free_lapic:
8646         kvm_free_lapic(vcpu);
8647 fail_mmu_destroy:
8648         kvm_mmu_destroy(vcpu);
8649 fail_free_pio_data:
8650         free_page((unsigned long)vcpu->arch.pio_data);
8651 fail:
8652         return r;
8653 }
8654
8655 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8656 {
8657         int idx;
8658
8659         kvm_hv_vcpu_uninit(vcpu);
8660         kvm_pmu_destroy(vcpu);
8661         kfree(vcpu->arch.mce_banks);
8662         kvm_free_lapic(vcpu);
8663         idx = srcu_read_lock(&vcpu->kvm->srcu);
8664         kvm_mmu_destroy(vcpu);
8665         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8666         free_page((unsigned long)vcpu->arch.pio_data);
8667         if (!lapic_in_kernel(vcpu))
8668                 static_key_slow_dec(&kvm_no_apic_vcpu);
8669 }
8670
8671 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8672 {
8673         kvm_x86_ops->sched_in(vcpu, cpu);
8674 }
8675
8676 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8677 {
8678         if (type)
8679                 return -EINVAL;
8680
8681         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8682         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8683         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8684         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8685         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8686
8687         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8688         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8689         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8690         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8691                 &kvm->arch.irq_sources_bitmap);
8692
8693         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8694         mutex_init(&kvm->arch.apic_map_lock);
8695         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8696
8697         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8698         pvclock_update_vm_gtod_copy(kvm);
8699
8700         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8701         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8702
8703         kvm_hv_init_vm(kvm);
8704         kvm_page_track_init(kvm);
8705         kvm_mmu_init_vm(kvm);
8706
8707         if (kvm_x86_ops->vm_init)
8708                 return kvm_x86_ops->vm_init(kvm);
8709
8710         return 0;
8711 }
8712
8713 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8714 {
8715         vcpu_load(vcpu);
8716         kvm_mmu_unload(vcpu);
8717         vcpu_put(vcpu);
8718 }
8719
8720 static void kvm_free_vcpus(struct kvm *kvm)
8721 {
8722         unsigned int i;
8723         struct kvm_vcpu *vcpu;
8724
8725         /*
8726          * Unpin any mmu pages first.
8727          */
8728         kvm_for_each_vcpu(i, vcpu, kvm) {
8729                 kvm_clear_async_pf_completion_queue(vcpu);
8730                 kvm_unload_vcpu_mmu(vcpu);
8731         }
8732         kvm_for_each_vcpu(i, vcpu, kvm)
8733                 kvm_arch_vcpu_free(vcpu);
8734
8735         mutex_lock(&kvm->lock);
8736         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8737                 kvm->vcpus[i] = NULL;
8738
8739         atomic_set(&kvm->online_vcpus, 0);
8740         mutex_unlock(&kvm->lock);
8741 }
8742
8743 void kvm_arch_sync_events(struct kvm *kvm)
8744 {
8745         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8746         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8747         kvm_free_pit(kvm);
8748 }
8749
8750 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8751 {
8752         int i, r;
8753         unsigned long hva;
8754         struct kvm_memslots *slots = kvm_memslots(kvm);
8755         struct kvm_memory_slot *slot, old;
8756
8757         /* Called with kvm->slots_lock held.  */
8758         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8759                 return -EINVAL;
8760
8761         slot = id_to_memslot(slots, id);
8762         if (size) {
8763                 if (slot->npages)
8764                         return -EEXIST;
8765
8766                 /*
8767                  * MAP_SHARED to prevent internal slot pages from being moved
8768                  * by fork()/COW.
8769                  */
8770                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8771                               MAP_SHARED | MAP_ANONYMOUS, 0);
8772                 if (IS_ERR((void *)hva))
8773                         return PTR_ERR((void *)hva);
8774         } else {
8775                 if (!slot->npages)
8776                         return 0;
8777
8778                 hva = 0;
8779         }
8780
8781         old = *slot;
8782         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8783                 struct kvm_userspace_memory_region m;
8784
8785                 m.slot = id | (i << 16);
8786                 m.flags = 0;
8787                 m.guest_phys_addr = gpa;
8788                 m.userspace_addr = hva;
8789                 m.memory_size = size;
8790                 r = __kvm_set_memory_region(kvm, &m);
8791                 if (r < 0)
8792                         return r;
8793         }
8794
8795         if (!size)
8796                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8797
8798         return 0;
8799 }
8800 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8801
8802 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8803 {
8804         int r;
8805
8806         mutex_lock(&kvm->slots_lock);
8807         r = __x86_set_memory_region(kvm, id, gpa, size);
8808         mutex_unlock(&kvm->slots_lock);
8809
8810         return r;
8811 }
8812 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8813
8814 void kvm_arch_destroy_vm(struct kvm *kvm)
8815 {
8816         if (current->mm == kvm->mm) {
8817                 /*
8818                  * Free memory regions allocated on behalf of userspace,
8819                  * unless the the memory map has changed due to process exit
8820                  * or fd copying.
8821                  */
8822                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8823                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8824                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8825         }
8826         if (kvm_x86_ops->vm_destroy)
8827                 kvm_x86_ops->vm_destroy(kvm);
8828         kvm_pic_destroy(kvm);
8829         kvm_ioapic_destroy(kvm);
8830         kvm_free_vcpus(kvm);
8831         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8832         kvm_mmu_uninit_vm(kvm);
8833         kvm_page_track_cleanup(kvm);
8834         kvm_hv_destroy_vm(kvm);
8835 }
8836
8837 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8838                            struct kvm_memory_slot *dont)
8839 {
8840         int i;
8841
8842         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8843                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8844                         kvfree(free->arch.rmap[i]);
8845                         free->arch.rmap[i] = NULL;
8846                 }
8847                 if (i == 0)
8848                         continue;
8849
8850                 if (!dont || free->arch.lpage_info[i - 1] !=
8851                              dont->arch.lpage_info[i - 1]) {
8852                         kvfree(free->arch.lpage_info[i - 1]);
8853                         free->arch.lpage_info[i - 1] = NULL;
8854                 }
8855         }
8856
8857         kvm_page_track_free_memslot(free, dont);
8858 }
8859
8860 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8861                             unsigned long npages)
8862 {
8863         int i;
8864
8865         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8866                 struct kvm_lpage_info *linfo;
8867                 unsigned long ugfn;
8868                 int lpages;
8869                 int level = i + 1;
8870
8871                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8872                                       slot->base_gfn, level) + 1;
8873
8874                 slot->arch.rmap[i] =
8875                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8876                 if (!slot->arch.rmap[i])
8877                         goto out_free;
8878                 if (i == 0)
8879                         continue;
8880
8881                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8882                 if (!linfo)
8883                         goto out_free;
8884
8885                 slot->arch.lpage_info[i - 1] = linfo;
8886
8887                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8888                         linfo[0].disallow_lpage = 1;
8889                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8890                         linfo[lpages - 1].disallow_lpage = 1;
8891                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8892                 /*
8893                  * If the gfn and userspace address are not aligned wrt each
8894                  * other, or if explicitly asked to, disable large page
8895                  * support for this slot
8896                  */
8897                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8898                     !kvm_largepages_enabled()) {
8899                         unsigned long j;
8900
8901                         for (j = 0; j < lpages; ++j)
8902                                 linfo[j].disallow_lpage = 1;
8903                 }
8904         }
8905
8906         if (kvm_page_track_create_memslot(slot, npages))
8907                 goto out_free;
8908
8909         return 0;
8910
8911 out_free:
8912         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8913                 kvfree(slot->arch.rmap[i]);
8914                 slot->arch.rmap[i] = NULL;
8915                 if (i == 0)
8916                         continue;
8917
8918                 kvfree(slot->arch.lpage_info[i - 1]);
8919                 slot->arch.lpage_info[i - 1] = NULL;
8920         }
8921         return -ENOMEM;
8922 }
8923
8924 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8925 {
8926         /*
8927          * memslots->generation has been incremented.
8928          * mmio generation may have reached its maximum value.
8929          */
8930         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8931 }
8932
8933 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8934                                 struct kvm_memory_slot *memslot,
8935                                 const struct kvm_userspace_memory_region *mem,
8936                                 enum kvm_mr_change change)
8937 {
8938         return 0;
8939 }
8940
8941 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8942                                      struct kvm_memory_slot *new)
8943 {
8944         /* Still write protect RO slot */
8945         if (new->flags & KVM_MEM_READONLY) {
8946                 kvm_mmu_slot_remove_write_access(kvm, new);
8947                 return;
8948         }
8949
8950         /*
8951          * Call kvm_x86_ops dirty logging hooks when they are valid.
8952          *
8953          * kvm_x86_ops->slot_disable_log_dirty is called when:
8954          *
8955          *  - KVM_MR_CREATE with dirty logging is disabled
8956          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8957          *
8958          * The reason is, in case of PML, we need to set D-bit for any slots
8959          * with dirty logging disabled in order to eliminate unnecessary GPA
8960          * logging in PML buffer (and potential PML buffer full VMEXT). This
8961          * guarantees leaving PML enabled during guest's lifetime won't have
8962          * any additonal overhead from PML when guest is running with dirty
8963          * logging disabled for memory slots.
8964          *
8965          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8966          * to dirty logging mode.
8967          *
8968          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8969          *
8970          * In case of write protect:
8971          *
8972          * Write protect all pages for dirty logging.
8973          *
8974          * All the sptes including the large sptes which point to this
8975          * slot are set to readonly. We can not create any new large
8976          * spte on this slot until the end of the logging.
8977          *
8978          * See the comments in fast_page_fault().
8979          */
8980         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8981                 if (kvm_x86_ops->slot_enable_log_dirty)
8982                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8983                 else
8984                         kvm_mmu_slot_remove_write_access(kvm, new);
8985         } else {
8986                 if (kvm_x86_ops->slot_disable_log_dirty)
8987                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8988         }
8989 }
8990
8991 void kvm_arch_commit_memory_region(struct kvm *kvm,
8992                                 const struct kvm_userspace_memory_region *mem,
8993                                 const struct kvm_memory_slot *old,
8994                                 const struct kvm_memory_slot *new,
8995                                 enum kvm_mr_change change)
8996 {
8997         int nr_mmu_pages = 0;
8998
8999         if (!kvm->arch.n_requested_mmu_pages)
9000                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9001
9002         if (nr_mmu_pages)
9003                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9004
9005         /*
9006          * Dirty logging tracks sptes in 4k granularity, meaning that large
9007          * sptes have to be split.  If live migration is successful, the guest
9008          * in the source machine will be destroyed and large sptes will be
9009          * created in the destination. However, if the guest continues to run
9010          * in the source machine (for example if live migration fails), small
9011          * sptes will remain around and cause bad performance.
9012          *
9013          * Scan sptes if dirty logging has been stopped, dropping those
9014          * which can be collapsed into a single large-page spte.  Later
9015          * page faults will create the large-page sptes.
9016          */
9017         if ((change != KVM_MR_DELETE) &&
9018                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9019                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9020                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9021
9022         /*
9023          * Set up write protection and/or dirty logging for the new slot.
9024          *
9025          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9026          * been zapped so no dirty logging staff is needed for old slot. For
9027          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9028          * new and it's also covered when dealing with the new slot.
9029          *
9030          * FIXME: const-ify all uses of struct kvm_memory_slot.
9031          */
9032         if (change != KVM_MR_DELETE)
9033                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9034 }
9035
9036 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9037 {
9038         kvm_mmu_invalidate_zap_all_pages(kvm);
9039 }
9040
9041 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9042                                    struct kvm_memory_slot *slot)
9043 {
9044         kvm_page_track_flush_slot(kvm, slot);
9045 }
9046
9047 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9048 {
9049         if (!list_empty_careful(&vcpu->async_pf.done))
9050                 return true;
9051
9052         if (kvm_apic_has_events(vcpu))
9053                 return true;
9054
9055         if (vcpu->arch.pv.pv_unhalted)
9056                 return true;
9057
9058         if (vcpu->arch.exception.pending)
9059                 return true;
9060
9061         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9062             (vcpu->arch.nmi_pending &&
9063              kvm_x86_ops->nmi_allowed(vcpu)))
9064                 return true;
9065
9066         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9067             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9068                 return true;
9069
9070         if (kvm_arch_interrupt_allowed(vcpu) &&
9071             kvm_cpu_has_interrupt(vcpu))
9072                 return true;
9073
9074         if (kvm_hv_has_stimer_pending(vcpu))
9075                 return true;
9076
9077         return false;
9078 }
9079
9080 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9081 {
9082         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9083 }
9084
9085 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9086 {
9087         return vcpu->arch.preempted_in_kernel;
9088 }
9089
9090 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9091 {
9092         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9093 }
9094
9095 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9096 {
9097         return kvm_x86_ops->interrupt_allowed(vcpu);
9098 }
9099
9100 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9101 {
9102         if (is_64_bit_mode(vcpu))
9103                 return kvm_rip_read(vcpu);
9104         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9105                      kvm_rip_read(vcpu));
9106 }
9107 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9108
9109 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9110 {
9111         return kvm_get_linear_rip(vcpu) == linear_rip;
9112 }
9113 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9114
9115 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9116 {
9117         unsigned long rflags;
9118
9119         rflags = kvm_x86_ops->get_rflags(vcpu);
9120         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9121                 rflags &= ~X86_EFLAGS_TF;
9122         return rflags;
9123 }
9124 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9125
9126 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9127 {
9128         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9129             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9130                 rflags |= X86_EFLAGS_TF;
9131         kvm_x86_ops->set_rflags(vcpu, rflags);
9132 }
9133
9134 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9135 {
9136         __kvm_set_rflags(vcpu, rflags);
9137         kvm_make_request(KVM_REQ_EVENT, vcpu);
9138 }
9139 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9140
9141 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9142 {
9143         int r;
9144
9145         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9146               work->wakeup_all)
9147                 return;
9148
9149         r = kvm_mmu_reload(vcpu);
9150         if (unlikely(r))
9151                 return;
9152
9153         if (!vcpu->arch.mmu.direct_map &&
9154               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9155                 return;
9156
9157         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9158 }
9159
9160 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9161 {
9162         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9163 }
9164
9165 static inline u32 kvm_async_pf_next_probe(u32 key)
9166 {
9167         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9168 }
9169
9170 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9171 {
9172         u32 key = kvm_async_pf_hash_fn(gfn);
9173
9174         while (vcpu->arch.apf.gfns[key] != ~0)
9175                 key = kvm_async_pf_next_probe(key);
9176
9177         vcpu->arch.apf.gfns[key] = gfn;
9178 }
9179
9180 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9181 {
9182         int i;
9183         u32 key = kvm_async_pf_hash_fn(gfn);
9184
9185         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9186                      (vcpu->arch.apf.gfns[key] != gfn &&
9187                       vcpu->arch.apf.gfns[key] != ~0); i++)
9188                 key = kvm_async_pf_next_probe(key);
9189
9190         return key;
9191 }
9192
9193 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9194 {
9195         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9196 }
9197
9198 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9199 {
9200         u32 i, j, k;
9201
9202         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9203         while (true) {
9204                 vcpu->arch.apf.gfns[i] = ~0;
9205                 do {
9206                         j = kvm_async_pf_next_probe(j);
9207                         if (vcpu->arch.apf.gfns[j] == ~0)
9208                                 return;
9209                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9210                         /*
9211                          * k lies cyclically in ]i,j]
9212                          * |    i.k.j |
9213                          * |....j i.k.| or  |.k..j i...|
9214                          */
9215                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9216                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9217                 i = j;
9218         }
9219 }
9220
9221 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9222 {
9223
9224         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9225                                       sizeof(val));
9226 }
9227
9228 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9229 {
9230
9231         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9232                                       sizeof(u32));
9233 }
9234
9235 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9236                                      struct kvm_async_pf *work)
9237 {
9238         struct x86_exception fault;
9239
9240         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9241         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9242
9243         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9244             (vcpu->arch.apf.send_user_only &&
9245              kvm_x86_ops->get_cpl(vcpu) == 0))
9246                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9247         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9248                 fault.vector = PF_VECTOR;
9249                 fault.error_code_valid = true;
9250                 fault.error_code = 0;
9251                 fault.nested_page_fault = false;
9252                 fault.address = work->arch.token;
9253                 fault.async_page_fault = true;
9254                 kvm_inject_page_fault(vcpu, &fault);
9255         }
9256 }
9257
9258 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9259                                  struct kvm_async_pf *work)
9260 {
9261         struct x86_exception fault;
9262         u32 val;
9263
9264         if (work->wakeup_all)
9265                 work->arch.token = ~0; /* broadcast wakeup */
9266         else
9267                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9268         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9269
9270         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9271             !apf_get_user(vcpu, &val)) {
9272                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9273                     vcpu->arch.exception.pending &&
9274                     vcpu->arch.exception.nr == PF_VECTOR &&
9275                     !apf_put_user(vcpu, 0)) {
9276                         vcpu->arch.exception.injected = false;
9277                         vcpu->arch.exception.pending = false;
9278                         vcpu->arch.exception.nr = 0;
9279                         vcpu->arch.exception.has_error_code = false;
9280                         vcpu->arch.exception.error_code = 0;
9281                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9282                         fault.vector = PF_VECTOR;
9283                         fault.error_code_valid = true;
9284                         fault.error_code = 0;
9285                         fault.nested_page_fault = false;
9286                         fault.address = work->arch.token;
9287                         fault.async_page_fault = true;
9288                         kvm_inject_page_fault(vcpu, &fault);
9289                 }
9290         }
9291         vcpu->arch.apf.halted = false;
9292         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9293 }
9294
9295 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9296 {
9297         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9298                 return true;
9299         else
9300                 return kvm_can_do_async_pf(vcpu);
9301 }
9302
9303 void kvm_arch_start_assignment(struct kvm *kvm)
9304 {
9305         atomic_inc(&kvm->arch.assigned_device_count);
9306 }
9307 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9308
9309 void kvm_arch_end_assignment(struct kvm *kvm)
9310 {
9311         atomic_dec(&kvm->arch.assigned_device_count);
9312 }
9313 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9314
9315 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9316 {
9317         return atomic_read(&kvm->arch.assigned_device_count);
9318 }
9319 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9320
9321 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9322 {
9323         atomic_inc(&kvm->arch.noncoherent_dma_count);
9324 }
9325 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9326
9327 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9328 {
9329         atomic_dec(&kvm->arch.noncoherent_dma_count);
9330 }
9331 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9332
9333 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9334 {
9335         return atomic_read(&kvm->arch.noncoherent_dma_count);
9336 }
9337 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9338
9339 bool kvm_arch_has_irq_bypass(void)
9340 {
9341         return kvm_x86_ops->update_pi_irte != NULL;
9342 }
9343
9344 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9345                                       struct irq_bypass_producer *prod)
9346 {
9347         struct kvm_kernel_irqfd *irqfd =
9348                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9349
9350         irqfd->producer = prod;
9351
9352         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9353                                            prod->irq, irqfd->gsi, 1);
9354 }
9355
9356 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9357                                       struct irq_bypass_producer *prod)
9358 {
9359         int ret;
9360         struct kvm_kernel_irqfd *irqfd =
9361                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9362
9363         WARN_ON(irqfd->producer != prod);
9364         irqfd->producer = NULL;
9365
9366         /*
9367          * When producer of consumer is unregistered, we change back to
9368          * remapped mode, so we can re-use the current implementation
9369          * when the irq is masked/disabled or the consumer side (KVM
9370          * int this case doesn't want to receive the interrupts.
9371         */
9372         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9373         if (ret)
9374                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9375                        " fails: %d\n", irqfd->consumer.token, ret);
9376 }
9377
9378 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9379                                    uint32_t guest_irq, bool set)
9380 {
9381         if (!kvm_x86_ops->update_pi_irte)
9382                 return -EINVAL;
9383
9384         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9385 }
9386
9387 bool kvm_vector_hashing_enabled(void)
9388 {
9389         return vector_hashing;
9390 }
9391 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9392
9393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9394 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9395 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);