]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
kvm: x86: Dynamically allocate guest_fpu
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152
153 #define KVM_NR_SHARED_MSRS 16
154
155 struct kvm_shared_msrs_global {
156         int nr;
157         u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159
160 struct kvm_shared_msrs {
161         struct user_return_notifier urn;
162         bool registered;
163         struct kvm_shared_msr_values {
164                 u64 host;
165                 u64 curr;
166         } values[KVM_NR_SHARED_MSRS];
167 };
168
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173         { "pf_fixed", VCPU_STAT(pf_fixed) },
174         { "pf_guest", VCPU_STAT(pf_guest) },
175         { "tlb_flush", VCPU_STAT(tlb_flush) },
176         { "invlpg", VCPU_STAT(invlpg) },
177         { "exits", VCPU_STAT(exits) },
178         { "io_exits", VCPU_STAT(io_exits) },
179         { "mmio_exits", VCPU_STAT(mmio_exits) },
180         { "signal_exits", VCPU_STAT(signal_exits) },
181         { "irq_window", VCPU_STAT(irq_window_exits) },
182         { "nmi_window", VCPU_STAT(nmi_window_exits) },
183         { "halt_exits", VCPU_STAT(halt_exits) },
184         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188         { "hypercalls", VCPU_STAT(hypercalls) },
189         { "request_irq", VCPU_STAT(request_irq_exits) },
190         { "irq_exits", VCPU_STAT(irq_exits) },
191         { "host_state_reload", VCPU_STAT(host_state_reload) },
192         { "fpu_reload", VCPU_STAT(fpu_reload) },
193         { "insn_emulation", VCPU_STAT(insn_emulation) },
194         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195         { "irq_injections", VCPU_STAT(irq_injections) },
196         { "nmi_injections", VCPU_STAT(nmi_injections) },
197         { "req_event", VCPU_STAT(req_event) },
198         { "l1d_flush", VCPU_STAT(l1d_flush) },
199         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203         { "mmu_flooded", VM_STAT(mmu_flooded) },
204         { "mmu_recycled", VM_STAT(mmu_recycled) },
205         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206         { "mmu_unsync", VM_STAT(mmu_unsync) },
207         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208         { "largepages", VM_STAT(lpages) },
209         { "max_mmu_page_hash_collisions",
210                 VM_STAT(max_mmu_page_hash_collisions) },
211         { NULL }
212 };
213
214 u64 __read_mostly host_xcr0;
215
216 struct kmem_cache *x86_fpu_cache;
217 EXPORT_SYMBOL_GPL(x86_fpu_cache);
218
219 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
220
221 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
222 {
223         int i;
224         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
225                 vcpu->arch.apf.gfns[i] = ~0;
226 }
227
228 static void kvm_on_user_return(struct user_return_notifier *urn)
229 {
230         unsigned slot;
231         struct kvm_shared_msrs *locals
232                 = container_of(urn, struct kvm_shared_msrs, urn);
233         struct kvm_shared_msr_values *values;
234         unsigned long flags;
235
236         /*
237          * Disabling irqs at this point since the following code could be
238          * interrupted and executed through kvm_arch_hardware_disable()
239          */
240         local_irq_save(flags);
241         if (locals->registered) {
242                 locals->registered = false;
243                 user_return_notifier_unregister(urn);
244         }
245         local_irq_restore(flags);
246         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
247                 values = &locals->values[slot];
248                 if (values->host != values->curr) {
249                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
250                         values->curr = values->host;
251                 }
252         }
253 }
254
255 static void shared_msr_update(unsigned slot, u32 msr)
256 {
257         u64 value;
258         unsigned int cpu = smp_processor_id();
259         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
260
261         /* only read, and nobody should modify it at this time,
262          * so don't need lock */
263         if (slot >= shared_msrs_global.nr) {
264                 printk(KERN_ERR "kvm: invalid MSR slot!");
265                 return;
266         }
267         rdmsrl_safe(msr, &value);
268         smsr->values[slot].host = value;
269         smsr->values[slot].curr = value;
270 }
271
272 void kvm_define_shared_msr(unsigned slot, u32 msr)
273 {
274         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
275         shared_msrs_global.msrs[slot] = msr;
276         if (slot >= shared_msrs_global.nr)
277                 shared_msrs_global.nr = slot + 1;
278 }
279 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
280
281 static void kvm_shared_msr_cpu_online(void)
282 {
283         unsigned i;
284
285         for (i = 0; i < shared_msrs_global.nr; ++i)
286                 shared_msr_update(i, shared_msrs_global.msrs[i]);
287 }
288
289 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
290 {
291         unsigned int cpu = smp_processor_id();
292         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
293         int err;
294
295         if (((value ^ smsr->values[slot].curr) & mask) == 0)
296                 return 0;
297         smsr->values[slot].curr = value;
298         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
299         if (err)
300                 return 1;
301
302         if (!smsr->registered) {
303                 smsr->urn.on_user_return = kvm_on_user_return;
304                 user_return_notifier_register(&smsr->urn);
305                 smsr->registered = true;
306         }
307         return 0;
308 }
309 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
310
311 static void drop_user_return_notifiers(void)
312 {
313         unsigned int cpu = smp_processor_id();
314         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
315
316         if (smsr->registered)
317                 kvm_on_user_return(&smsr->urn);
318 }
319
320 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
321 {
322         return vcpu->arch.apic_base;
323 }
324 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
325
326 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
327 {
328         return kvm_apic_mode(kvm_get_apic_base(vcpu));
329 }
330 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
331
332 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
333 {
334         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
335         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
336         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
337                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
338
339         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
340                 return 1;
341         if (!msr_info->host_initiated) {
342                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
343                         return 1;
344                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
345                         return 1;
346         }
347
348         kvm_lapic_set_base(vcpu, msr_info->data);
349         return 0;
350 }
351 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
352
353 asmlinkage __visible void kvm_spurious_fault(void)
354 {
355         /* Fault while not rebooting.  We want the trace. */
356         BUG();
357 }
358 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
359
360 #define EXCPT_BENIGN            0
361 #define EXCPT_CONTRIBUTORY      1
362 #define EXCPT_PF                2
363
364 static int exception_class(int vector)
365 {
366         switch (vector) {
367         case PF_VECTOR:
368                 return EXCPT_PF;
369         case DE_VECTOR:
370         case TS_VECTOR:
371         case NP_VECTOR:
372         case SS_VECTOR:
373         case GP_VECTOR:
374                 return EXCPT_CONTRIBUTORY;
375         default:
376                 break;
377         }
378         return EXCPT_BENIGN;
379 }
380
381 #define EXCPT_FAULT             0
382 #define EXCPT_TRAP              1
383 #define EXCPT_ABORT             2
384 #define EXCPT_INTERRUPT         3
385
386 static int exception_type(int vector)
387 {
388         unsigned int mask;
389
390         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
391                 return EXCPT_INTERRUPT;
392
393         mask = 1 << vector;
394
395         /* #DB is trap, as instruction watchpoints are handled elsewhere */
396         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
397                 return EXCPT_TRAP;
398
399         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
400                 return EXCPT_ABORT;
401
402         /* Reserved exceptions will result in fault */
403         return EXCPT_FAULT;
404 }
405
406 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
407 {
408         unsigned nr = vcpu->arch.exception.nr;
409         bool has_payload = vcpu->arch.exception.has_payload;
410         unsigned long payload = vcpu->arch.exception.payload;
411
412         if (!has_payload)
413                 return;
414
415         switch (nr) {
416         case DB_VECTOR:
417                 /*
418                  * "Certain debug exceptions may clear bit 0-3.  The
419                  * remaining contents of the DR6 register are never
420                  * cleared by the processor".
421                  */
422                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
423                 /*
424                  * DR6.RTM is set by all #DB exceptions that don't clear it.
425                  */
426                 vcpu->arch.dr6 |= DR6_RTM;
427                 vcpu->arch.dr6 |= payload;
428                 /*
429                  * Bit 16 should be set in the payload whenever the #DB
430                  * exception should clear DR6.RTM. This makes the payload
431                  * compatible with the pending debug exceptions under VMX.
432                  * Though not currently documented in the SDM, this also
433                  * makes the payload compatible with the exit qualification
434                  * for #DB exceptions under VMX.
435                  */
436                 vcpu->arch.dr6 ^= payload & DR6_RTM;
437                 break;
438         case PF_VECTOR:
439                 vcpu->arch.cr2 = payload;
440                 break;
441         }
442
443         vcpu->arch.exception.has_payload = false;
444         vcpu->arch.exception.payload = 0;
445 }
446 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
447
448 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
449                 unsigned nr, bool has_error, u32 error_code,
450                 bool has_payload, unsigned long payload, bool reinject)
451 {
452         u32 prev_nr;
453         int class1, class2;
454
455         kvm_make_request(KVM_REQ_EVENT, vcpu);
456
457         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
458         queue:
459                 if (has_error && !is_protmode(vcpu))
460                         has_error = false;
461                 if (reinject) {
462                         /*
463                          * On vmentry, vcpu->arch.exception.pending is only
464                          * true if an event injection was blocked by
465                          * nested_run_pending.  In that case, however,
466                          * vcpu_enter_guest requests an immediate exit,
467                          * and the guest shouldn't proceed far enough to
468                          * need reinjection.
469                          */
470                         WARN_ON_ONCE(vcpu->arch.exception.pending);
471                         vcpu->arch.exception.injected = true;
472                         if (WARN_ON_ONCE(has_payload)) {
473                                 /*
474                                  * A reinjected event has already
475                                  * delivered its payload.
476                                  */
477                                 has_payload = false;
478                                 payload = 0;
479                         }
480                 } else {
481                         vcpu->arch.exception.pending = true;
482                         vcpu->arch.exception.injected = false;
483                 }
484                 vcpu->arch.exception.has_error_code = has_error;
485                 vcpu->arch.exception.nr = nr;
486                 vcpu->arch.exception.error_code = error_code;
487                 vcpu->arch.exception.has_payload = has_payload;
488                 vcpu->arch.exception.payload = payload;
489                 /*
490                  * In guest mode, payload delivery should be deferred,
491                  * so that the L1 hypervisor can intercept #PF before
492                  * CR2 is modified (or intercept #DB before DR6 is
493                  * modified under nVMX).  However, for ABI
494                  * compatibility with KVM_GET_VCPU_EVENTS and
495                  * KVM_SET_VCPU_EVENTS, we can't delay payload
496                  * delivery unless userspace has enabled this
497                  * functionality via the per-VM capability,
498                  * KVM_CAP_EXCEPTION_PAYLOAD.
499                  */
500                 if (!vcpu->kvm->arch.exception_payload_enabled ||
501                     !is_guest_mode(vcpu))
502                         kvm_deliver_exception_payload(vcpu);
503                 return;
504         }
505
506         /* to check exception */
507         prev_nr = vcpu->arch.exception.nr;
508         if (prev_nr == DF_VECTOR) {
509                 /* triple fault -> shutdown */
510                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
511                 return;
512         }
513         class1 = exception_class(prev_nr);
514         class2 = exception_class(nr);
515         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
516                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
517                 /*
518                  * Generate double fault per SDM Table 5-5.  Set
519                  * exception.pending = true so that the double fault
520                  * can trigger a nested vmexit.
521                  */
522                 vcpu->arch.exception.pending = true;
523                 vcpu->arch.exception.injected = false;
524                 vcpu->arch.exception.has_error_code = true;
525                 vcpu->arch.exception.nr = DF_VECTOR;
526                 vcpu->arch.exception.error_code = 0;
527                 vcpu->arch.exception.has_payload = false;
528                 vcpu->arch.exception.payload = 0;
529         } else
530                 /* replace previous exception with a new one in a hope
531                    that instruction re-execution will regenerate lost
532                    exception */
533                 goto queue;
534 }
535
536 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
537 {
538         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
539 }
540 EXPORT_SYMBOL_GPL(kvm_queue_exception);
541
542 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
543 {
544         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
545 }
546 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
547
548 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
549                                   unsigned long payload)
550 {
551         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
552 }
553
554 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
555                                     u32 error_code, unsigned long payload)
556 {
557         kvm_multiple_exception(vcpu, nr, true, error_code,
558                                true, payload, false);
559 }
560
561 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
562 {
563         if (err)
564                 kvm_inject_gp(vcpu, 0);
565         else
566                 return kvm_skip_emulated_instruction(vcpu);
567
568         return 1;
569 }
570 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
571
572 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
573 {
574         ++vcpu->stat.pf_guest;
575         vcpu->arch.exception.nested_apf =
576                 is_guest_mode(vcpu) && fault->async_page_fault;
577         if (vcpu->arch.exception.nested_apf) {
578                 vcpu->arch.apf.nested_apf_token = fault->address;
579                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
580         } else {
581                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
582                                         fault->address);
583         }
584 }
585 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
586
587 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
588 {
589         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
590                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
591         else
592                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
593
594         return fault->nested_page_fault;
595 }
596
597 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
598 {
599         atomic_inc(&vcpu->arch.nmi_queued);
600         kvm_make_request(KVM_REQ_NMI, vcpu);
601 }
602 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
603
604 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
605 {
606         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
607 }
608 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
609
610 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
611 {
612         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
613 }
614 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
615
616 /*
617  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
618  * a #GP and return false.
619  */
620 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
621 {
622         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
623                 return true;
624         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
625         return false;
626 }
627 EXPORT_SYMBOL_GPL(kvm_require_cpl);
628
629 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
630 {
631         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
632                 return true;
633
634         kvm_queue_exception(vcpu, UD_VECTOR);
635         return false;
636 }
637 EXPORT_SYMBOL_GPL(kvm_require_dr);
638
639 /*
640  * This function will be used to read from the physical memory of the currently
641  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
642  * can read from guest physical or from the guest's guest physical memory.
643  */
644 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
645                             gfn_t ngfn, void *data, int offset, int len,
646                             u32 access)
647 {
648         struct x86_exception exception;
649         gfn_t real_gfn;
650         gpa_t ngpa;
651
652         ngpa     = gfn_to_gpa(ngfn);
653         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
654         if (real_gfn == UNMAPPED_GVA)
655                 return -EFAULT;
656
657         real_gfn = gpa_to_gfn(real_gfn);
658
659         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
660 }
661 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
662
663 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
664                                void *data, int offset, int len, u32 access)
665 {
666         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
667                                        data, offset, len, access);
668 }
669
670 /*
671  * Load the pae pdptrs.  Return true is they are all valid.
672  */
673 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
674 {
675         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
676         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
677         int i;
678         int ret;
679         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
680
681         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
682                                       offset * sizeof(u64), sizeof(pdpte),
683                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
684         if (ret < 0) {
685                 ret = 0;
686                 goto out;
687         }
688         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
689                 if ((pdpte[i] & PT_PRESENT_MASK) &&
690                     (pdpte[i] &
691                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
692                         ret = 0;
693                         goto out;
694                 }
695         }
696         ret = 1;
697
698         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
699         __set_bit(VCPU_EXREG_PDPTR,
700                   (unsigned long *)&vcpu->arch.regs_avail);
701         __set_bit(VCPU_EXREG_PDPTR,
702                   (unsigned long *)&vcpu->arch.regs_dirty);
703 out:
704
705         return ret;
706 }
707 EXPORT_SYMBOL_GPL(load_pdptrs);
708
709 bool pdptrs_changed(struct kvm_vcpu *vcpu)
710 {
711         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
712         bool changed = true;
713         int offset;
714         gfn_t gfn;
715         int r;
716
717         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
718                 return false;
719
720         if (!test_bit(VCPU_EXREG_PDPTR,
721                       (unsigned long *)&vcpu->arch.regs_avail))
722                 return true;
723
724         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
725         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
726         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
727                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
728         if (r < 0)
729                 goto out;
730         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
731 out:
732
733         return changed;
734 }
735 EXPORT_SYMBOL_GPL(pdptrs_changed);
736
737 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
738 {
739         unsigned long old_cr0 = kvm_read_cr0(vcpu);
740         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
741
742         cr0 |= X86_CR0_ET;
743
744 #ifdef CONFIG_X86_64
745         if (cr0 & 0xffffffff00000000UL)
746                 return 1;
747 #endif
748
749         cr0 &= ~CR0_RESERVED_BITS;
750
751         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
752                 return 1;
753
754         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
755                 return 1;
756
757         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
758 #ifdef CONFIG_X86_64
759                 if ((vcpu->arch.efer & EFER_LME)) {
760                         int cs_db, cs_l;
761
762                         if (!is_pae(vcpu))
763                                 return 1;
764                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
765                         if (cs_l)
766                                 return 1;
767                 } else
768 #endif
769                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
770                                                  kvm_read_cr3(vcpu)))
771                         return 1;
772         }
773
774         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
775                 return 1;
776
777         kvm_x86_ops->set_cr0(vcpu, cr0);
778
779         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
780                 kvm_clear_async_pf_completion_queue(vcpu);
781                 kvm_async_pf_hash_reset(vcpu);
782         }
783
784         if ((cr0 ^ old_cr0) & update_bits)
785                 kvm_mmu_reset_context(vcpu);
786
787         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
788             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
789             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
790                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
791
792         return 0;
793 }
794 EXPORT_SYMBOL_GPL(kvm_set_cr0);
795
796 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
797 {
798         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
799 }
800 EXPORT_SYMBOL_GPL(kvm_lmsw);
801
802 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
803 {
804         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
805                         !vcpu->guest_xcr0_loaded) {
806                 /* kvm_set_xcr() also depends on this */
807                 if (vcpu->arch.xcr0 != host_xcr0)
808                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
809                 vcpu->guest_xcr0_loaded = 1;
810         }
811 }
812
813 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
814 {
815         if (vcpu->guest_xcr0_loaded) {
816                 if (vcpu->arch.xcr0 != host_xcr0)
817                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
818                 vcpu->guest_xcr0_loaded = 0;
819         }
820 }
821
822 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
823 {
824         u64 xcr0 = xcr;
825         u64 old_xcr0 = vcpu->arch.xcr0;
826         u64 valid_bits;
827
828         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
829         if (index != XCR_XFEATURE_ENABLED_MASK)
830                 return 1;
831         if (!(xcr0 & XFEATURE_MASK_FP))
832                 return 1;
833         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
834                 return 1;
835
836         /*
837          * Do not allow the guest to set bits that we do not support
838          * saving.  However, xcr0 bit 0 is always set, even if the
839          * emulated CPU does not support XSAVE (see fx_init).
840          */
841         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
842         if (xcr0 & ~valid_bits)
843                 return 1;
844
845         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
846             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
847                 return 1;
848
849         if (xcr0 & XFEATURE_MASK_AVX512) {
850                 if (!(xcr0 & XFEATURE_MASK_YMM))
851                         return 1;
852                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
853                         return 1;
854         }
855         vcpu->arch.xcr0 = xcr0;
856
857         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
858                 kvm_update_cpuid(vcpu);
859         return 0;
860 }
861
862 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
863 {
864         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
865             __kvm_set_xcr(vcpu, index, xcr)) {
866                 kvm_inject_gp(vcpu, 0);
867                 return 1;
868         }
869         return 0;
870 }
871 EXPORT_SYMBOL_GPL(kvm_set_xcr);
872
873 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
874 {
875         unsigned long old_cr4 = kvm_read_cr4(vcpu);
876         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
877                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
878
879         if (cr4 & CR4_RESERVED_BITS)
880                 return 1;
881
882         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
883                 return 1;
884
885         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
886                 return 1;
887
888         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
889                 return 1;
890
891         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
892                 return 1;
893
894         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
895                 return 1;
896
897         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
898                 return 1;
899
900         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
901                 return 1;
902
903         if (is_long_mode(vcpu)) {
904                 if (!(cr4 & X86_CR4_PAE))
905                         return 1;
906         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
907                    && ((cr4 ^ old_cr4) & pdptr_bits)
908                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
909                                    kvm_read_cr3(vcpu)))
910                 return 1;
911
912         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
913                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
914                         return 1;
915
916                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
917                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
918                         return 1;
919         }
920
921         if (kvm_x86_ops->set_cr4(vcpu, cr4))
922                 return 1;
923
924         if (((cr4 ^ old_cr4) & pdptr_bits) ||
925             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
926                 kvm_mmu_reset_context(vcpu);
927
928         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
929                 kvm_update_cpuid(vcpu);
930
931         return 0;
932 }
933 EXPORT_SYMBOL_GPL(kvm_set_cr4);
934
935 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
936 {
937         bool skip_tlb_flush = false;
938 #ifdef CONFIG_X86_64
939         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
940
941         if (pcid_enabled) {
942                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
943                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
944         }
945 #endif
946
947         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
948                 if (!skip_tlb_flush) {
949                         kvm_mmu_sync_roots(vcpu);
950                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
951                 }
952                 return 0;
953         }
954
955         if (is_long_mode(vcpu) &&
956             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
957                 return 1;
958         else if (is_pae(vcpu) && is_paging(vcpu) &&
959                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
960                 return 1;
961
962         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
963         vcpu->arch.cr3 = cr3;
964         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
965
966         return 0;
967 }
968 EXPORT_SYMBOL_GPL(kvm_set_cr3);
969
970 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
971 {
972         if (cr8 & CR8_RESERVED_BITS)
973                 return 1;
974         if (lapic_in_kernel(vcpu))
975                 kvm_lapic_set_tpr(vcpu, cr8);
976         else
977                 vcpu->arch.cr8 = cr8;
978         return 0;
979 }
980 EXPORT_SYMBOL_GPL(kvm_set_cr8);
981
982 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
983 {
984         if (lapic_in_kernel(vcpu))
985                 return kvm_lapic_get_cr8(vcpu);
986         else
987                 return vcpu->arch.cr8;
988 }
989 EXPORT_SYMBOL_GPL(kvm_get_cr8);
990
991 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
992 {
993         int i;
994
995         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
996                 for (i = 0; i < KVM_NR_DB_REGS; i++)
997                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
998                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
999         }
1000 }
1001
1002 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1003 {
1004         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1005                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1006 }
1007
1008 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1009 {
1010         unsigned long dr7;
1011
1012         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1013                 dr7 = vcpu->arch.guest_debug_dr7;
1014         else
1015                 dr7 = vcpu->arch.dr7;
1016         kvm_x86_ops->set_dr7(vcpu, dr7);
1017         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1018         if (dr7 & DR7_BP_EN_MASK)
1019                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1020 }
1021
1022 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1023 {
1024         u64 fixed = DR6_FIXED_1;
1025
1026         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1027                 fixed |= DR6_RTM;
1028         return fixed;
1029 }
1030
1031 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1032 {
1033         switch (dr) {
1034         case 0 ... 3:
1035                 vcpu->arch.db[dr] = val;
1036                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1037                         vcpu->arch.eff_db[dr] = val;
1038                 break;
1039         case 4:
1040                 /* fall through */
1041         case 6:
1042                 if (val & 0xffffffff00000000ULL)
1043                         return -1; /* #GP */
1044                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1045                 kvm_update_dr6(vcpu);
1046                 break;
1047         case 5:
1048                 /* fall through */
1049         default: /* 7 */
1050                 if (val & 0xffffffff00000000ULL)
1051                         return -1; /* #GP */
1052                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1053                 kvm_update_dr7(vcpu);
1054                 break;
1055         }
1056
1057         return 0;
1058 }
1059
1060 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1061 {
1062         if (__kvm_set_dr(vcpu, dr, val)) {
1063                 kvm_inject_gp(vcpu, 0);
1064                 return 1;
1065         }
1066         return 0;
1067 }
1068 EXPORT_SYMBOL_GPL(kvm_set_dr);
1069
1070 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1071 {
1072         switch (dr) {
1073         case 0 ... 3:
1074                 *val = vcpu->arch.db[dr];
1075                 break;
1076         case 4:
1077                 /* fall through */
1078         case 6:
1079                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1080                         *val = vcpu->arch.dr6;
1081                 else
1082                         *val = kvm_x86_ops->get_dr6(vcpu);
1083                 break;
1084         case 5:
1085                 /* fall through */
1086         default: /* 7 */
1087                 *val = vcpu->arch.dr7;
1088                 break;
1089         }
1090         return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(kvm_get_dr);
1093
1094 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1095 {
1096         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1097         u64 data;
1098         int err;
1099
1100         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1101         if (err)
1102                 return err;
1103         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1104         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1105         return err;
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1108
1109 /*
1110  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1111  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1112  *
1113  * This list is modified at module load time to reflect the
1114  * capabilities of the host cpu. This capabilities test skips MSRs that are
1115  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1116  * may depend on host virtualization features rather than host cpu features.
1117  */
1118
1119 static u32 msrs_to_save[] = {
1120         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1121         MSR_STAR,
1122 #ifdef CONFIG_X86_64
1123         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1124 #endif
1125         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1126         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1127         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1128 };
1129
1130 static unsigned num_msrs_to_save;
1131
1132 static u32 emulated_msrs[] = {
1133         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1134         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1135         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1136         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1137         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1138         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1139         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1140         HV_X64_MSR_RESET,
1141         HV_X64_MSR_VP_INDEX,
1142         HV_X64_MSR_VP_RUNTIME,
1143         HV_X64_MSR_SCONTROL,
1144         HV_X64_MSR_STIMER0_CONFIG,
1145         HV_X64_MSR_VP_ASSIST_PAGE,
1146         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1147         HV_X64_MSR_TSC_EMULATION_STATUS,
1148
1149         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1150         MSR_KVM_PV_EOI_EN,
1151
1152         MSR_IA32_TSC_ADJUST,
1153         MSR_IA32_TSCDEADLINE,
1154         MSR_IA32_MISC_ENABLE,
1155         MSR_IA32_MCG_STATUS,
1156         MSR_IA32_MCG_CTL,
1157         MSR_IA32_MCG_EXT_CTL,
1158         MSR_IA32_SMBASE,
1159         MSR_SMI_COUNT,
1160         MSR_PLATFORM_INFO,
1161         MSR_MISC_FEATURES_ENABLES,
1162         MSR_AMD64_VIRT_SPEC_CTRL,
1163 };
1164
1165 static unsigned num_emulated_msrs;
1166
1167 /*
1168  * List of msr numbers which are used to expose MSR-based features that
1169  * can be used by a hypervisor to validate requested CPU features.
1170  */
1171 static u32 msr_based_features[] = {
1172         MSR_IA32_VMX_BASIC,
1173         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1174         MSR_IA32_VMX_PINBASED_CTLS,
1175         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1176         MSR_IA32_VMX_PROCBASED_CTLS,
1177         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1178         MSR_IA32_VMX_EXIT_CTLS,
1179         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1180         MSR_IA32_VMX_ENTRY_CTLS,
1181         MSR_IA32_VMX_MISC,
1182         MSR_IA32_VMX_CR0_FIXED0,
1183         MSR_IA32_VMX_CR0_FIXED1,
1184         MSR_IA32_VMX_CR4_FIXED0,
1185         MSR_IA32_VMX_CR4_FIXED1,
1186         MSR_IA32_VMX_VMCS_ENUM,
1187         MSR_IA32_VMX_PROCBASED_CTLS2,
1188         MSR_IA32_VMX_EPT_VPID_CAP,
1189         MSR_IA32_VMX_VMFUNC,
1190
1191         MSR_F10H_DECFG,
1192         MSR_IA32_UCODE_REV,
1193         MSR_IA32_ARCH_CAPABILITIES,
1194 };
1195
1196 static unsigned int num_msr_based_features;
1197
1198 u64 kvm_get_arch_capabilities(void)
1199 {
1200         u64 data;
1201
1202         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1203
1204         /*
1205          * If we're doing cache flushes (either "always" or "cond")
1206          * we will do one whenever the guest does a vmlaunch/vmresume.
1207          * If an outer hypervisor is doing the cache flush for us
1208          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1209          * capability to the guest too, and if EPT is disabled we're not
1210          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1211          * require a nested hypervisor to do a flush of its own.
1212          */
1213         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1214                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1215
1216         return data;
1217 }
1218 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1219
1220 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1221 {
1222         switch (msr->index) {
1223         case MSR_IA32_ARCH_CAPABILITIES:
1224                 msr->data = kvm_get_arch_capabilities();
1225                 break;
1226         case MSR_IA32_UCODE_REV:
1227                 rdmsrl_safe(msr->index, &msr->data);
1228                 break;
1229         default:
1230                 if (kvm_x86_ops->get_msr_feature(msr))
1231                         return 1;
1232         }
1233         return 0;
1234 }
1235
1236 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1237 {
1238         struct kvm_msr_entry msr;
1239         int r;
1240
1241         msr.index = index;
1242         r = kvm_get_msr_feature(&msr);
1243         if (r)
1244                 return r;
1245
1246         *data = msr.data;
1247
1248         return 0;
1249 }
1250
1251 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1252 {
1253         if (efer & efer_reserved_bits)
1254                 return false;
1255
1256         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1257                         return false;
1258
1259         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1260                         return false;
1261
1262         return true;
1263 }
1264 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1265
1266 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1267 {
1268         u64 old_efer = vcpu->arch.efer;
1269
1270         if (!kvm_valid_efer(vcpu, efer))
1271                 return 1;
1272
1273         if (is_paging(vcpu)
1274             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1275                 return 1;
1276
1277         efer &= ~EFER_LMA;
1278         efer |= vcpu->arch.efer & EFER_LMA;
1279
1280         kvm_x86_ops->set_efer(vcpu, efer);
1281
1282         /* Update reserved bits */
1283         if ((efer ^ old_efer) & EFER_NX)
1284                 kvm_mmu_reset_context(vcpu);
1285
1286         return 0;
1287 }
1288
1289 void kvm_enable_efer_bits(u64 mask)
1290 {
1291        efer_reserved_bits &= ~mask;
1292 }
1293 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1294
1295 /*
1296  * Writes msr value into into the appropriate "register".
1297  * Returns 0 on success, non-0 otherwise.
1298  * Assumes vcpu_load() was already called.
1299  */
1300 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1301 {
1302         switch (msr->index) {
1303         case MSR_FS_BASE:
1304         case MSR_GS_BASE:
1305         case MSR_KERNEL_GS_BASE:
1306         case MSR_CSTAR:
1307         case MSR_LSTAR:
1308                 if (is_noncanonical_address(msr->data, vcpu))
1309                         return 1;
1310                 break;
1311         case MSR_IA32_SYSENTER_EIP:
1312         case MSR_IA32_SYSENTER_ESP:
1313                 /*
1314                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1315                  * non-canonical address is written on Intel but not on
1316                  * AMD (which ignores the top 32-bits, because it does
1317                  * not implement 64-bit SYSENTER).
1318                  *
1319                  * 64-bit code should hence be able to write a non-canonical
1320                  * value on AMD.  Making the address canonical ensures that
1321                  * vmentry does not fail on Intel after writing a non-canonical
1322                  * value, and that something deterministic happens if the guest
1323                  * invokes 64-bit SYSENTER.
1324                  */
1325                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1326         }
1327         return kvm_x86_ops->set_msr(vcpu, msr);
1328 }
1329 EXPORT_SYMBOL_GPL(kvm_set_msr);
1330
1331 /*
1332  * Adapt set_msr() to msr_io()'s calling convention
1333  */
1334 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1335 {
1336         struct msr_data msr;
1337         int r;
1338
1339         msr.index = index;
1340         msr.host_initiated = true;
1341         r = kvm_get_msr(vcpu, &msr);
1342         if (r)
1343                 return r;
1344
1345         *data = msr.data;
1346         return 0;
1347 }
1348
1349 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1350 {
1351         struct msr_data msr;
1352
1353         msr.data = *data;
1354         msr.index = index;
1355         msr.host_initiated = true;
1356         return kvm_set_msr(vcpu, &msr);
1357 }
1358
1359 #ifdef CONFIG_X86_64
1360 struct pvclock_gtod_data {
1361         seqcount_t      seq;
1362
1363         struct { /* extract of a clocksource struct */
1364                 int vclock_mode;
1365                 u64     cycle_last;
1366                 u64     mask;
1367                 u32     mult;
1368                 u32     shift;
1369         } clock;
1370
1371         u64             boot_ns;
1372         u64             nsec_base;
1373         u64             wall_time_sec;
1374 };
1375
1376 static struct pvclock_gtod_data pvclock_gtod_data;
1377
1378 static void update_pvclock_gtod(struct timekeeper *tk)
1379 {
1380         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1381         u64 boot_ns;
1382
1383         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1384
1385         write_seqcount_begin(&vdata->seq);
1386
1387         /* copy pvclock gtod data */
1388         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1389         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1390         vdata->clock.mask               = tk->tkr_mono.mask;
1391         vdata->clock.mult               = tk->tkr_mono.mult;
1392         vdata->clock.shift              = tk->tkr_mono.shift;
1393
1394         vdata->boot_ns                  = boot_ns;
1395         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1396
1397         vdata->wall_time_sec            = tk->xtime_sec;
1398
1399         write_seqcount_end(&vdata->seq);
1400 }
1401 #endif
1402
1403 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1404 {
1405         /*
1406          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1407          * vcpu_enter_guest.  This function is only called from
1408          * the physical CPU that is running vcpu.
1409          */
1410         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1411 }
1412
1413 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1414 {
1415         int version;
1416         int r;
1417         struct pvclock_wall_clock wc;
1418         struct timespec64 boot;
1419
1420         if (!wall_clock)
1421                 return;
1422
1423         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1424         if (r)
1425                 return;
1426
1427         if (version & 1)
1428                 ++version;  /* first time write, random junk */
1429
1430         ++version;
1431
1432         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1433                 return;
1434
1435         /*
1436          * The guest calculates current wall clock time by adding
1437          * system time (updated by kvm_guest_time_update below) to the
1438          * wall clock specified here.  guest system time equals host
1439          * system time for us, thus we must fill in host boot time here.
1440          */
1441         getboottime64(&boot);
1442
1443         if (kvm->arch.kvmclock_offset) {
1444                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1445                 boot = timespec64_sub(boot, ts);
1446         }
1447         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1448         wc.nsec = boot.tv_nsec;
1449         wc.version = version;
1450
1451         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1452
1453         version++;
1454         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1455 }
1456
1457 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1458 {
1459         do_shl32_div32(dividend, divisor);
1460         return dividend;
1461 }
1462
1463 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1464                                s8 *pshift, u32 *pmultiplier)
1465 {
1466         uint64_t scaled64;
1467         int32_t  shift = 0;
1468         uint64_t tps64;
1469         uint32_t tps32;
1470
1471         tps64 = base_hz;
1472         scaled64 = scaled_hz;
1473         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1474                 tps64 >>= 1;
1475                 shift--;
1476         }
1477
1478         tps32 = (uint32_t)tps64;
1479         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1480                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1481                         scaled64 >>= 1;
1482                 else
1483                         tps32 <<= 1;
1484                 shift++;
1485         }
1486
1487         *pshift = shift;
1488         *pmultiplier = div_frac(scaled64, tps32);
1489
1490         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1491                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1492 }
1493
1494 #ifdef CONFIG_X86_64
1495 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1496 #endif
1497
1498 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1499 static unsigned long max_tsc_khz;
1500
1501 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1502 {
1503         u64 v = (u64)khz * (1000000 + ppm);
1504         do_div(v, 1000000);
1505         return v;
1506 }
1507
1508 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1509 {
1510         u64 ratio;
1511
1512         /* Guest TSC same frequency as host TSC? */
1513         if (!scale) {
1514                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1515                 return 0;
1516         }
1517
1518         /* TSC scaling supported? */
1519         if (!kvm_has_tsc_control) {
1520                 if (user_tsc_khz > tsc_khz) {
1521                         vcpu->arch.tsc_catchup = 1;
1522                         vcpu->arch.tsc_always_catchup = 1;
1523                         return 0;
1524                 } else {
1525                         WARN(1, "user requested TSC rate below hardware speed\n");
1526                         return -1;
1527                 }
1528         }
1529
1530         /* TSC scaling required  - calculate ratio */
1531         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1532                                 user_tsc_khz, tsc_khz);
1533
1534         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1535                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1536                           user_tsc_khz);
1537                 return -1;
1538         }
1539
1540         vcpu->arch.tsc_scaling_ratio = ratio;
1541         return 0;
1542 }
1543
1544 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1545 {
1546         u32 thresh_lo, thresh_hi;
1547         int use_scaling = 0;
1548
1549         /* tsc_khz can be zero if TSC calibration fails */
1550         if (user_tsc_khz == 0) {
1551                 /* set tsc_scaling_ratio to a safe value */
1552                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1553                 return -1;
1554         }
1555
1556         /* Compute a scale to convert nanoseconds in TSC cycles */
1557         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1558                            &vcpu->arch.virtual_tsc_shift,
1559                            &vcpu->arch.virtual_tsc_mult);
1560         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1561
1562         /*
1563          * Compute the variation in TSC rate which is acceptable
1564          * within the range of tolerance and decide if the
1565          * rate being applied is within that bounds of the hardware
1566          * rate.  If so, no scaling or compensation need be done.
1567          */
1568         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1569         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1570         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1571                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1572                 use_scaling = 1;
1573         }
1574         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1575 }
1576
1577 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1578 {
1579         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1580                                       vcpu->arch.virtual_tsc_mult,
1581                                       vcpu->arch.virtual_tsc_shift);
1582         tsc += vcpu->arch.this_tsc_write;
1583         return tsc;
1584 }
1585
1586 static inline int gtod_is_based_on_tsc(int mode)
1587 {
1588         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1589 }
1590
1591 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1592 {
1593 #ifdef CONFIG_X86_64
1594         bool vcpus_matched;
1595         struct kvm_arch *ka = &vcpu->kvm->arch;
1596         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1597
1598         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1599                          atomic_read(&vcpu->kvm->online_vcpus));
1600
1601         /*
1602          * Once the masterclock is enabled, always perform request in
1603          * order to update it.
1604          *
1605          * In order to enable masterclock, the host clocksource must be TSC
1606          * and the vcpus need to have matched TSCs.  When that happens,
1607          * perform request to enable masterclock.
1608          */
1609         if (ka->use_master_clock ||
1610             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1611                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1612
1613         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1614                             atomic_read(&vcpu->kvm->online_vcpus),
1615                             ka->use_master_clock, gtod->clock.vclock_mode);
1616 #endif
1617 }
1618
1619 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1620 {
1621         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1622         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1623 }
1624
1625 /*
1626  * Multiply tsc by a fixed point number represented by ratio.
1627  *
1628  * The most significant 64-N bits (mult) of ratio represent the
1629  * integral part of the fixed point number; the remaining N bits
1630  * (frac) represent the fractional part, ie. ratio represents a fixed
1631  * point number (mult + frac * 2^(-N)).
1632  *
1633  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1634  */
1635 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1636 {
1637         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1638 }
1639
1640 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1641 {
1642         u64 _tsc = tsc;
1643         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1644
1645         if (ratio != kvm_default_tsc_scaling_ratio)
1646                 _tsc = __scale_tsc(ratio, tsc);
1647
1648         return _tsc;
1649 }
1650 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1651
1652 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1653 {
1654         u64 tsc;
1655
1656         tsc = kvm_scale_tsc(vcpu, rdtsc());
1657
1658         return target_tsc - tsc;
1659 }
1660
1661 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1662 {
1663         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1664
1665         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1666 }
1667 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1668
1669 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1670 {
1671         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1672 }
1673
1674 static inline bool kvm_check_tsc_unstable(void)
1675 {
1676 #ifdef CONFIG_X86_64
1677         /*
1678          * TSC is marked unstable when we're running on Hyper-V,
1679          * 'TSC page' clocksource is good.
1680          */
1681         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1682                 return false;
1683 #endif
1684         return check_tsc_unstable();
1685 }
1686
1687 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1688 {
1689         struct kvm *kvm = vcpu->kvm;
1690         u64 offset, ns, elapsed;
1691         unsigned long flags;
1692         bool matched;
1693         bool already_matched;
1694         u64 data = msr->data;
1695         bool synchronizing = false;
1696
1697         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1698         offset = kvm_compute_tsc_offset(vcpu, data);
1699         ns = ktime_get_boot_ns();
1700         elapsed = ns - kvm->arch.last_tsc_nsec;
1701
1702         if (vcpu->arch.virtual_tsc_khz) {
1703                 if (data == 0 && msr->host_initiated) {
1704                         /*
1705                          * detection of vcpu initialization -- need to sync
1706                          * with other vCPUs. This particularly helps to keep
1707                          * kvm_clock stable after CPU hotplug
1708                          */
1709                         synchronizing = true;
1710                 } else {
1711                         u64 tsc_exp = kvm->arch.last_tsc_write +
1712                                                 nsec_to_cycles(vcpu, elapsed);
1713                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1714                         /*
1715                          * Special case: TSC write with a small delta (1 second)
1716                          * of virtual cycle time against real time is
1717                          * interpreted as an attempt to synchronize the CPU.
1718                          */
1719                         synchronizing = data < tsc_exp + tsc_hz &&
1720                                         data + tsc_hz > tsc_exp;
1721                 }
1722         }
1723
1724         /*
1725          * For a reliable TSC, we can match TSC offsets, and for an unstable
1726          * TSC, we add elapsed time in this computation.  We could let the
1727          * compensation code attempt to catch up if we fall behind, but
1728          * it's better to try to match offsets from the beginning.
1729          */
1730         if (synchronizing &&
1731             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1732                 if (!kvm_check_tsc_unstable()) {
1733                         offset = kvm->arch.cur_tsc_offset;
1734                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1735                 } else {
1736                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1737                         data += delta;
1738                         offset = kvm_compute_tsc_offset(vcpu, data);
1739                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1740                 }
1741                 matched = true;
1742                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1743         } else {
1744                 /*
1745                  * We split periods of matched TSC writes into generations.
1746                  * For each generation, we track the original measured
1747                  * nanosecond time, offset, and write, so if TSCs are in
1748                  * sync, we can match exact offset, and if not, we can match
1749                  * exact software computation in compute_guest_tsc()
1750                  *
1751                  * These values are tracked in kvm->arch.cur_xxx variables.
1752                  */
1753                 kvm->arch.cur_tsc_generation++;
1754                 kvm->arch.cur_tsc_nsec = ns;
1755                 kvm->arch.cur_tsc_write = data;
1756                 kvm->arch.cur_tsc_offset = offset;
1757                 matched = false;
1758                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1759                          kvm->arch.cur_tsc_generation, data);
1760         }
1761
1762         /*
1763          * We also track th most recent recorded KHZ, write and time to
1764          * allow the matching interval to be extended at each write.
1765          */
1766         kvm->arch.last_tsc_nsec = ns;
1767         kvm->arch.last_tsc_write = data;
1768         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1769
1770         vcpu->arch.last_guest_tsc = data;
1771
1772         /* Keep track of which generation this VCPU has synchronized to */
1773         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1774         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1775         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1776
1777         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1778                 update_ia32_tsc_adjust_msr(vcpu, offset);
1779
1780         kvm_vcpu_write_tsc_offset(vcpu, offset);
1781         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1782
1783         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1784         if (!matched) {
1785                 kvm->arch.nr_vcpus_matched_tsc = 0;
1786         } else if (!already_matched) {
1787                 kvm->arch.nr_vcpus_matched_tsc++;
1788         }
1789
1790         kvm_track_tsc_matching(vcpu);
1791         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1792 }
1793
1794 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1795
1796 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1797                                            s64 adjustment)
1798 {
1799         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1800         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1801 }
1802
1803 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1804 {
1805         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1806                 WARN_ON(adjustment < 0);
1807         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1808         adjust_tsc_offset_guest(vcpu, adjustment);
1809 }
1810
1811 #ifdef CONFIG_X86_64
1812
1813 static u64 read_tsc(void)
1814 {
1815         u64 ret = (u64)rdtsc_ordered();
1816         u64 last = pvclock_gtod_data.clock.cycle_last;
1817
1818         if (likely(ret >= last))
1819                 return ret;
1820
1821         /*
1822          * GCC likes to generate cmov here, but this branch is extremely
1823          * predictable (it's just a function of time and the likely is
1824          * very likely) and there's a data dependence, so force GCC
1825          * to generate a branch instead.  I don't barrier() because
1826          * we don't actually need a barrier, and if this function
1827          * ever gets inlined it will generate worse code.
1828          */
1829         asm volatile ("");
1830         return last;
1831 }
1832
1833 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1834 {
1835         long v;
1836         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1837         u64 tsc_pg_val;
1838
1839         switch (gtod->clock.vclock_mode) {
1840         case VCLOCK_HVCLOCK:
1841                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1842                                                   tsc_timestamp);
1843                 if (tsc_pg_val != U64_MAX) {
1844                         /* TSC page valid */
1845                         *mode = VCLOCK_HVCLOCK;
1846                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1847                                 gtod->clock.mask;
1848                 } else {
1849                         /* TSC page invalid */
1850                         *mode = VCLOCK_NONE;
1851                 }
1852                 break;
1853         case VCLOCK_TSC:
1854                 *mode = VCLOCK_TSC;
1855                 *tsc_timestamp = read_tsc();
1856                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1857                         gtod->clock.mask;
1858                 break;
1859         default:
1860                 *mode = VCLOCK_NONE;
1861         }
1862
1863         if (*mode == VCLOCK_NONE)
1864                 *tsc_timestamp = v = 0;
1865
1866         return v * gtod->clock.mult;
1867 }
1868
1869 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1870 {
1871         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1872         unsigned long seq;
1873         int mode;
1874         u64 ns;
1875
1876         do {
1877                 seq = read_seqcount_begin(&gtod->seq);
1878                 ns = gtod->nsec_base;
1879                 ns += vgettsc(tsc_timestamp, &mode);
1880                 ns >>= gtod->clock.shift;
1881                 ns += gtod->boot_ns;
1882         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1883         *t = ns;
1884
1885         return mode;
1886 }
1887
1888 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1889 {
1890         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1891         unsigned long seq;
1892         int mode;
1893         u64 ns;
1894
1895         do {
1896                 seq = read_seqcount_begin(&gtod->seq);
1897                 ts->tv_sec = gtod->wall_time_sec;
1898                 ns = gtod->nsec_base;
1899                 ns += vgettsc(tsc_timestamp, &mode);
1900                 ns >>= gtod->clock.shift;
1901         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1902
1903         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1904         ts->tv_nsec = ns;
1905
1906         return mode;
1907 }
1908
1909 /* returns true if host is using TSC based clocksource */
1910 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1911 {
1912         /* checked again under seqlock below */
1913         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1914                 return false;
1915
1916         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1917                                                       tsc_timestamp));
1918 }
1919
1920 /* returns true if host is using TSC based clocksource */
1921 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1922                                            u64 *tsc_timestamp)
1923 {
1924         /* checked again under seqlock below */
1925         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1926                 return false;
1927
1928         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1929 }
1930 #endif
1931
1932 /*
1933  *
1934  * Assuming a stable TSC across physical CPUS, and a stable TSC
1935  * across virtual CPUs, the following condition is possible.
1936  * Each numbered line represents an event visible to both
1937  * CPUs at the next numbered event.
1938  *
1939  * "timespecX" represents host monotonic time. "tscX" represents
1940  * RDTSC value.
1941  *
1942  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1943  *
1944  * 1.  read timespec0,tsc0
1945  * 2.                                   | timespec1 = timespec0 + N
1946  *                                      | tsc1 = tsc0 + M
1947  * 3. transition to guest               | transition to guest
1948  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1949  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1950  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1951  *
1952  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1953  *
1954  *      - ret0 < ret1
1955  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1956  *              ...
1957  *      - 0 < N - M => M < N
1958  *
1959  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1960  * always the case (the difference between two distinct xtime instances
1961  * might be smaller then the difference between corresponding TSC reads,
1962  * when updating guest vcpus pvclock areas).
1963  *
1964  * To avoid that problem, do not allow visibility of distinct
1965  * system_timestamp/tsc_timestamp values simultaneously: use a master
1966  * copy of host monotonic time values. Update that master copy
1967  * in lockstep.
1968  *
1969  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1970  *
1971  */
1972
1973 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1974 {
1975 #ifdef CONFIG_X86_64
1976         struct kvm_arch *ka = &kvm->arch;
1977         int vclock_mode;
1978         bool host_tsc_clocksource, vcpus_matched;
1979
1980         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1981                         atomic_read(&kvm->online_vcpus));
1982
1983         /*
1984          * If the host uses TSC clock, then passthrough TSC as stable
1985          * to the guest.
1986          */
1987         host_tsc_clocksource = kvm_get_time_and_clockread(
1988                                         &ka->master_kernel_ns,
1989                                         &ka->master_cycle_now);
1990
1991         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1992                                 && !ka->backwards_tsc_observed
1993                                 && !ka->boot_vcpu_runs_old_kvmclock;
1994
1995         if (ka->use_master_clock)
1996                 atomic_set(&kvm_guest_has_master_clock, 1);
1997
1998         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1999         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2000                                         vcpus_matched);
2001 #endif
2002 }
2003
2004 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2005 {
2006         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2007 }
2008
2009 static void kvm_gen_update_masterclock(struct kvm *kvm)
2010 {
2011 #ifdef CONFIG_X86_64
2012         int i;
2013         struct kvm_vcpu *vcpu;
2014         struct kvm_arch *ka = &kvm->arch;
2015
2016         spin_lock(&ka->pvclock_gtod_sync_lock);
2017         kvm_make_mclock_inprogress_request(kvm);
2018         /* no guest entries from this point */
2019         pvclock_update_vm_gtod_copy(kvm);
2020
2021         kvm_for_each_vcpu(i, vcpu, kvm)
2022                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2023
2024         /* guest entries allowed */
2025         kvm_for_each_vcpu(i, vcpu, kvm)
2026                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2027
2028         spin_unlock(&ka->pvclock_gtod_sync_lock);
2029 #endif
2030 }
2031
2032 u64 get_kvmclock_ns(struct kvm *kvm)
2033 {
2034         struct kvm_arch *ka = &kvm->arch;
2035         struct pvclock_vcpu_time_info hv_clock;
2036         u64 ret;
2037
2038         spin_lock(&ka->pvclock_gtod_sync_lock);
2039         if (!ka->use_master_clock) {
2040                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2041                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2042         }
2043
2044         hv_clock.tsc_timestamp = ka->master_cycle_now;
2045         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2046         spin_unlock(&ka->pvclock_gtod_sync_lock);
2047
2048         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2049         get_cpu();
2050
2051         if (__this_cpu_read(cpu_tsc_khz)) {
2052                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2053                                    &hv_clock.tsc_shift,
2054                                    &hv_clock.tsc_to_system_mul);
2055                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2056         } else
2057                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2058
2059         put_cpu();
2060
2061         return ret;
2062 }
2063
2064 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2065 {
2066         struct kvm_vcpu_arch *vcpu = &v->arch;
2067         struct pvclock_vcpu_time_info guest_hv_clock;
2068
2069         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2070                 &guest_hv_clock, sizeof(guest_hv_clock))))
2071                 return;
2072
2073         /* This VCPU is paused, but it's legal for a guest to read another
2074          * VCPU's kvmclock, so we really have to follow the specification where
2075          * it says that version is odd if data is being modified, and even after
2076          * it is consistent.
2077          *
2078          * Version field updates must be kept separate.  This is because
2079          * kvm_write_guest_cached might use a "rep movs" instruction, and
2080          * writes within a string instruction are weakly ordered.  So there
2081          * are three writes overall.
2082          *
2083          * As a small optimization, only write the version field in the first
2084          * and third write.  The vcpu->pv_time cache is still valid, because the
2085          * version field is the first in the struct.
2086          */
2087         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2088
2089         if (guest_hv_clock.version & 1)
2090                 ++guest_hv_clock.version;  /* first time write, random junk */
2091
2092         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2093         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2094                                 &vcpu->hv_clock,
2095                                 sizeof(vcpu->hv_clock.version));
2096
2097         smp_wmb();
2098
2099         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2100         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2101
2102         if (vcpu->pvclock_set_guest_stopped_request) {
2103                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2104                 vcpu->pvclock_set_guest_stopped_request = false;
2105         }
2106
2107         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2108
2109         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2110                                 &vcpu->hv_clock,
2111                                 sizeof(vcpu->hv_clock));
2112
2113         smp_wmb();
2114
2115         vcpu->hv_clock.version++;
2116         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2117                                 &vcpu->hv_clock,
2118                                 sizeof(vcpu->hv_clock.version));
2119 }
2120
2121 static int kvm_guest_time_update(struct kvm_vcpu *v)
2122 {
2123         unsigned long flags, tgt_tsc_khz;
2124         struct kvm_vcpu_arch *vcpu = &v->arch;
2125         struct kvm_arch *ka = &v->kvm->arch;
2126         s64 kernel_ns;
2127         u64 tsc_timestamp, host_tsc;
2128         u8 pvclock_flags;
2129         bool use_master_clock;
2130
2131         kernel_ns = 0;
2132         host_tsc = 0;
2133
2134         /*
2135          * If the host uses TSC clock, then passthrough TSC as stable
2136          * to the guest.
2137          */
2138         spin_lock(&ka->pvclock_gtod_sync_lock);
2139         use_master_clock = ka->use_master_clock;
2140         if (use_master_clock) {
2141                 host_tsc = ka->master_cycle_now;
2142                 kernel_ns = ka->master_kernel_ns;
2143         }
2144         spin_unlock(&ka->pvclock_gtod_sync_lock);
2145
2146         /* Keep irq disabled to prevent changes to the clock */
2147         local_irq_save(flags);
2148         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2149         if (unlikely(tgt_tsc_khz == 0)) {
2150                 local_irq_restore(flags);
2151                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2152                 return 1;
2153         }
2154         if (!use_master_clock) {
2155                 host_tsc = rdtsc();
2156                 kernel_ns = ktime_get_boot_ns();
2157         }
2158
2159         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2160
2161         /*
2162          * We may have to catch up the TSC to match elapsed wall clock
2163          * time for two reasons, even if kvmclock is used.
2164          *   1) CPU could have been running below the maximum TSC rate
2165          *   2) Broken TSC compensation resets the base at each VCPU
2166          *      entry to avoid unknown leaps of TSC even when running
2167          *      again on the same CPU.  This may cause apparent elapsed
2168          *      time to disappear, and the guest to stand still or run
2169          *      very slowly.
2170          */
2171         if (vcpu->tsc_catchup) {
2172                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2173                 if (tsc > tsc_timestamp) {
2174                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2175                         tsc_timestamp = tsc;
2176                 }
2177         }
2178
2179         local_irq_restore(flags);
2180
2181         /* With all the info we got, fill in the values */
2182
2183         if (kvm_has_tsc_control)
2184                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2185
2186         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2187                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2188                                    &vcpu->hv_clock.tsc_shift,
2189                                    &vcpu->hv_clock.tsc_to_system_mul);
2190                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2191         }
2192
2193         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2194         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2195         vcpu->last_guest_tsc = tsc_timestamp;
2196
2197         /* If the host uses TSC clocksource, then it is stable */
2198         pvclock_flags = 0;
2199         if (use_master_clock)
2200                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2201
2202         vcpu->hv_clock.flags = pvclock_flags;
2203
2204         if (vcpu->pv_time_enabled)
2205                 kvm_setup_pvclock_page(v);
2206         if (v == kvm_get_vcpu(v->kvm, 0))
2207                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2208         return 0;
2209 }
2210
2211 /*
2212  * kvmclock updates which are isolated to a given vcpu, such as
2213  * vcpu->cpu migration, should not allow system_timestamp from
2214  * the rest of the vcpus to remain static. Otherwise ntp frequency
2215  * correction applies to one vcpu's system_timestamp but not
2216  * the others.
2217  *
2218  * So in those cases, request a kvmclock update for all vcpus.
2219  * We need to rate-limit these requests though, as they can
2220  * considerably slow guests that have a large number of vcpus.
2221  * The time for a remote vcpu to update its kvmclock is bound
2222  * by the delay we use to rate-limit the updates.
2223  */
2224
2225 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2226
2227 static void kvmclock_update_fn(struct work_struct *work)
2228 {
2229         int i;
2230         struct delayed_work *dwork = to_delayed_work(work);
2231         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2232                                            kvmclock_update_work);
2233         struct kvm *kvm = container_of(ka, struct kvm, arch);
2234         struct kvm_vcpu *vcpu;
2235
2236         kvm_for_each_vcpu(i, vcpu, kvm) {
2237                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2238                 kvm_vcpu_kick(vcpu);
2239         }
2240 }
2241
2242 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2243 {
2244         struct kvm *kvm = v->kvm;
2245
2246         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2247         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2248                                         KVMCLOCK_UPDATE_DELAY);
2249 }
2250
2251 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2252
2253 static void kvmclock_sync_fn(struct work_struct *work)
2254 {
2255         struct delayed_work *dwork = to_delayed_work(work);
2256         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2257                                            kvmclock_sync_work);
2258         struct kvm *kvm = container_of(ka, struct kvm, arch);
2259
2260         if (!kvmclock_periodic_sync)
2261                 return;
2262
2263         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2264         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2265                                         KVMCLOCK_SYNC_PERIOD);
2266 }
2267
2268 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2269 {
2270         u64 mcg_cap = vcpu->arch.mcg_cap;
2271         unsigned bank_num = mcg_cap & 0xff;
2272         u32 msr = msr_info->index;
2273         u64 data = msr_info->data;
2274
2275         switch (msr) {
2276         case MSR_IA32_MCG_STATUS:
2277                 vcpu->arch.mcg_status = data;
2278                 break;
2279         case MSR_IA32_MCG_CTL:
2280                 if (!(mcg_cap & MCG_CTL_P) &&
2281                     (data || !msr_info->host_initiated))
2282                         return 1;
2283                 if (data != 0 && data != ~(u64)0)
2284                         return 1;
2285                 vcpu->arch.mcg_ctl = data;
2286                 break;
2287         default:
2288                 if (msr >= MSR_IA32_MC0_CTL &&
2289                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2290                         u32 offset = msr - MSR_IA32_MC0_CTL;
2291                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2292                          * some Linux kernels though clear bit 10 in bank 4 to
2293                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2294                          * this to avoid an uncatched #GP in the guest
2295                          */
2296                         if ((offset & 0x3) == 0 &&
2297                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2298                                 return -1;
2299                         if (!msr_info->host_initiated &&
2300                                 (offset & 0x3) == 1 && data != 0)
2301                                 return -1;
2302                         vcpu->arch.mce_banks[offset] = data;
2303                         break;
2304                 }
2305                 return 1;
2306         }
2307         return 0;
2308 }
2309
2310 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2311 {
2312         struct kvm *kvm = vcpu->kvm;
2313         int lm = is_long_mode(vcpu);
2314         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2315                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2316         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2317                 : kvm->arch.xen_hvm_config.blob_size_32;
2318         u32 page_num = data & ~PAGE_MASK;
2319         u64 page_addr = data & PAGE_MASK;
2320         u8 *page;
2321         int r;
2322
2323         r = -E2BIG;
2324         if (page_num >= blob_size)
2325                 goto out;
2326         r = -ENOMEM;
2327         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2328         if (IS_ERR(page)) {
2329                 r = PTR_ERR(page);
2330                 goto out;
2331         }
2332         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2333                 goto out_free;
2334         r = 0;
2335 out_free:
2336         kfree(page);
2337 out:
2338         return r;
2339 }
2340
2341 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2342 {
2343         gpa_t gpa = data & ~0x3f;
2344
2345         /* Bits 3:5 are reserved, Should be zero */
2346         if (data & 0x38)
2347                 return 1;
2348
2349         vcpu->arch.apf.msr_val = data;
2350
2351         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2352                 kvm_clear_async_pf_completion_queue(vcpu);
2353                 kvm_async_pf_hash_reset(vcpu);
2354                 return 0;
2355         }
2356
2357         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2358                                         sizeof(u32)))
2359                 return 1;
2360
2361         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2362         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2363         kvm_async_pf_wakeup_all(vcpu);
2364         return 0;
2365 }
2366
2367 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2368 {
2369         vcpu->arch.pv_time_enabled = false;
2370 }
2371
2372 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2373 {
2374         ++vcpu->stat.tlb_flush;
2375         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2376 }
2377
2378 static void record_steal_time(struct kvm_vcpu *vcpu)
2379 {
2380         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2381                 return;
2382
2383         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2384                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2385                 return;
2386
2387         /*
2388          * Doing a TLB flush here, on the guest's behalf, can avoid
2389          * expensive IPIs.
2390          */
2391         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2392                 kvm_vcpu_flush_tlb(vcpu, false);
2393
2394         if (vcpu->arch.st.steal.version & 1)
2395                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2396
2397         vcpu->arch.st.steal.version += 1;
2398
2399         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2400                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2401
2402         smp_wmb();
2403
2404         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2405                 vcpu->arch.st.last_steal;
2406         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2407
2408         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2409                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2410
2411         smp_wmb();
2412
2413         vcpu->arch.st.steal.version += 1;
2414
2415         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2416                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2417 }
2418
2419 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2420 {
2421         bool pr = false;
2422         u32 msr = msr_info->index;
2423         u64 data = msr_info->data;
2424
2425         switch (msr) {
2426         case MSR_AMD64_NB_CFG:
2427         case MSR_IA32_UCODE_WRITE:
2428         case MSR_VM_HSAVE_PA:
2429         case MSR_AMD64_PATCH_LOADER:
2430         case MSR_AMD64_BU_CFG2:
2431         case MSR_AMD64_DC_CFG:
2432                 break;
2433
2434         case MSR_IA32_UCODE_REV:
2435                 if (msr_info->host_initiated)
2436                         vcpu->arch.microcode_version = data;
2437                 break;
2438         case MSR_EFER:
2439                 return set_efer(vcpu, data);
2440         case MSR_K7_HWCR:
2441                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2442                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2443                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2444                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2445                 if (data != 0) {
2446                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2447                                     data);
2448                         return 1;
2449                 }
2450                 break;
2451         case MSR_FAM10H_MMIO_CONF_BASE:
2452                 if (data != 0) {
2453                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2454                                     "0x%llx\n", data);
2455                         return 1;
2456                 }
2457                 break;
2458         case MSR_IA32_DEBUGCTLMSR:
2459                 if (!data) {
2460                         /* We support the non-activated case already */
2461                         break;
2462                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2463                         /* Values other than LBR and BTF are vendor-specific,
2464                            thus reserved and should throw a #GP */
2465                         return 1;
2466                 }
2467                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2468                             __func__, data);
2469                 break;
2470         case 0x200 ... 0x2ff:
2471                 return kvm_mtrr_set_msr(vcpu, msr, data);
2472         case MSR_IA32_APICBASE:
2473                 return kvm_set_apic_base(vcpu, msr_info);
2474         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2475                 return kvm_x2apic_msr_write(vcpu, msr, data);
2476         case MSR_IA32_TSCDEADLINE:
2477                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2478                 break;
2479         case MSR_IA32_TSC_ADJUST:
2480                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2481                         if (!msr_info->host_initiated) {
2482                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2483                                 adjust_tsc_offset_guest(vcpu, adj);
2484                         }
2485                         vcpu->arch.ia32_tsc_adjust_msr = data;
2486                 }
2487                 break;
2488         case MSR_IA32_MISC_ENABLE:
2489                 vcpu->arch.ia32_misc_enable_msr = data;
2490                 break;
2491         case MSR_IA32_SMBASE:
2492                 if (!msr_info->host_initiated)
2493                         return 1;
2494                 vcpu->arch.smbase = data;
2495                 break;
2496         case MSR_IA32_TSC:
2497                 kvm_write_tsc(vcpu, msr_info);
2498                 break;
2499         case MSR_SMI_COUNT:
2500                 if (!msr_info->host_initiated)
2501                         return 1;
2502                 vcpu->arch.smi_count = data;
2503                 break;
2504         case MSR_KVM_WALL_CLOCK_NEW:
2505         case MSR_KVM_WALL_CLOCK:
2506                 vcpu->kvm->arch.wall_clock = data;
2507                 kvm_write_wall_clock(vcpu->kvm, data);
2508                 break;
2509         case MSR_KVM_SYSTEM_TIME_NEW:
2510         case MSR_KVM_SYSTEM_TIME: {
2511                 struct kvm_arch *ka = &vcpu->kvm->arch;
2512
2513                 kvmclock_reset(vcpu);
2514
2515                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2516                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2517
2518                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2519                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2520
2521                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2522                 }
2523
2524                 vcpu->arch.time = data;
2525                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2526
2527                 /* we verify if the enable bit is set... */
2528                 if (!(data & 1))
2529                         break;
2530
2531                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2532                      &vcpu->arch.pv_time, data & ~1ULL,
2533                      sizeof(struct pvclock_vcpu_time_info)))
2534                         vcpu->arch.pv_time_enabled = false;
2535                 else
2536                         vcpu->arch.pv_time_enabled = true;
2537
2538                 break;
2539         }
2540         case MSR_KVM_ASYNC_PF_EN:
2541                 if (kvm_pv_enable_async_pf(vcpu, data))
2542                         return 1;
2543                 break;
2544         case MSR_KVM_STEAL_TIME:
2545
2546                 if (unlikely(!sched_info_on()))
2547                         return 1;
2548
2549                 if (data & KVM_STEAL_RESERVED_MASK)
2550                         return 1;
2551
2552                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2553                                                 data & KVM_STEAL_VALID_BITS,
2554                                                 sizeof(struct kvm_steal_time)))
2555                         return 1;
2556
2557                 vcpu->arch.st.msr_val = data;
2558
2559                 if (!(data & KVM_MSR_ENABLED))
2560                         break;
2561
2562                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2563
2564                 break;
2565         case MSR_KVM_PV_EOI_EN:
2566                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2567                         return 1;
2568                 break;
2569
2570         case MSR_IA32_MCG_CTL:
2571         case MSR_IA32_MCG_STATUS:
2572         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2573                 return set_msr_mce(vcpu, msr_info);
2574
2575         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2576         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2577                 pr = true; /* fall through */
2578         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2579         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2580                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2581                         return kvm_pmu_set_msr(vcpu, msr_info);
2582
2583                 if (pr || data != 0)
2584                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2585                                     "0x%x data 0x%llx\n", msr, data);
2586                 break;
2587         case MSR_K7_CLK_CTL:
2588                 /*
2589                  * Ignore all writes to this no longer documented MSR.
2590                  * Writes are only relevant for old K7 processors,
2591                  * all pre-dating SVM, but a recommended workaround from
2592                  * AMD for these chips. It is possible to specify the
2593                  * affected processor models on the command line, hence
2594                  * the need to ignore the workaround.
2595                  */
2596                 break;
2597         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2598         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2599         case HV_X64_MSR_CRASH_CTL:
2600         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2601         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2602         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2603         case HV_X64_MSR_TSC_EMULATION_STATUS:
2604                 return kvm_hv_set_msr_common(vcpu, msr, data,
2605                                              msr_info->host_initiated);
2606         case MSR_IA32_BBL_CR_CTL3:
2607                 /* Drop writes to this legacy MSR -- see rdmsr
2608                  * counterpart for further detail.
2609                  */
2610                 if (report_ignored_msrs)
2611                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2612                                 msr, data);
2613                 break;
2614         case MSR_AMD64_OSVW_ID_LENGTH:
2615                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2616                         return 1;
2617                 vcpu->arch.osvw.length = data;
2618                 break;
2619         case MSR_AMD64_OSVW_STATUS:
2620                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2621                         return 1;
2622                 vcpu->arch.osvw.status = data;
2623                 break;
2624         case MSR_PLATFORM_INFO:
2625                 if (!msr_info->host_initiated ||
2626                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2627                      cpuid_fault_enabled(vcpu)))
2628                         return 1;
2629                 vcpu->arch.msr_platform_info = data;
2630                 break;
2631         case MSR_MISC_FEATURES_ENABLES:
2632                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2633                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2634                      !supports_cpuid_fault(vcpu)))
2635                         return 1;
2636                 vcpu->arch.msr_misc_features_enables = data;
2637                 break;
2638         default:
2639                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2640                         return xen_hvm_config(vcpu, data);
2641                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2642                         return kvm_pmu_set_msr(vcpu, msr_info);
2643                 if (!ignore_msrs) {
2644                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2645                                     msr, data);
2646                         return 1;
2647                 } else {
2648                         if (report_ignored_msrs)
2649                                 vcpu_unimpl(vcpu,
2650                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2651                                         msr, data);
2652                         break;
2653                 }
2654         }
2655         return 0;
2656 }
2657 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2658
2659
2660 /*
2661  * Reads an msr value (of 'msr_index') into 'pdata'.
2662  * Returns 0 on success, non-0 otherwise.
2663  * Assumes vcpu_load() was already called.
2664  */
2665 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2666 {
2667         return kvm_x86_ops->get_msr(vcpu, msr);
2668 }
2669 EXPORT_SYMBOL_GPL(kvm_get_msr);
2670
2671 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2672 {
2673         u64 data;
2674         u64 mcg_cap = vcpu->arch.mcg_cap;
2675         unsigned bank_num = mcg_cap & 0xff;
2676
2677         switch (msr) {
2678         case MSR_IA32_P5_MC_ADDR:
2679         case MSR_IA32_P5_MC_TYPE:
2680                 data = 0;
2681                 break;
2682         case MSR_IA32_MCG_CAP:
2683                 data = vcpu->arch.mcg_cap;
2684                 break;
2685         case MSR_IA32_MCG_CTL:
2686                 if (!(mcg_cap & MCG_CTL_P) && !host)
2687                         return 1;
2688                 data = vcpu->arch.mcg_ctl;
2689                 break;
2690         case MSR_IA32_MCG_STATUS:
2691                 data = vcpu->arch.mcg_status;
2692                 break;
2693         default:
2694                 if (msr >= MSR_IA32_MC0_CTL &&
2695                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2696                         u32 offset = msr - MSR_IA32_MC0_CTL;
2697                         data = vcpu->arch.mce_banks[offset];
2698                         break;
2699                 }
2700                 return 1;
2701         }
2702         *pdata = data;
2703         return 0;
2704 }
2705
2706 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2707 {
2708         switch (msr_info->index) {
2709         case MSR_IA32_PLATFORM_ID:
2710         case MSR_IA32_EBL_CR_POWERON:
2711         case MSR_IA32_DEBUGCTLMSR:
2712         case MSR_IA32_LASTBRANCHFROMIP:
2713         case MSR_IA32_LASTBRANCHTOIP:
2714         case MSR_IA32_LASTINTFROMIP:
2715         case MSR_IA32_LASTINTTOIP:
2716         case MSR_K8_SYSCFG:
2717         case MSR_K8_TSEG_ADDR:
2718         case MSR_K8_TSEG_MASK:
2719         case MSR_K7_HWCR:
2720         case MSR_VM_HSAVE_PA:
2721         case MSR_K8_INT_PENDING_MSG:
2722         case MSR_AMD64_NB_CFG:
2723         case MSR_FAM10H_MMIO_CONF_BASE:
2724         case MSR_AMD64_BU_CFG2:
2725         case MSR_IA32_PERF_CTL:
2726         case MSR_AMD64_DC_CFG:
2727                 msr_info->data = 0;
2728                 break;
2729         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2730         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2731         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2732         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2733         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2734                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2735                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2736                 msr_info->data = 0;
2737                 break;
2738         case MSR_IA32_UCODE_REV:
2739                 msr_info->data = vcpu->arch.microcode_version;
2740                 break;
2741         case MSR_IA32_TSC:
2742                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2743                 break;
2744         case MSR_MTRRcap:
2745         case 0x200 ... 0x2ff:
2746                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2747         case 0xcd: /* fsb frequency */
2748                 msr_info->data = 3;
2749                 break;
2750                 /*
2751                  * MSR_EBC_FREQUENCY_ID
2752                  * Conservative value valid for even the basic CPU models.
2753                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2754                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2755                  * and 266MHz for model 3, or 4. Set Core Clock
2756                  * Frequency to System Bus Frequency Ratio to 1 (bits
2757                  * 31:24) even though these are only valid for CPU
2758                  * models > 2, however guests may end up dividing or
2759                  * multiplying by zero otherwise.
2760                  */
2761         case MSR_EBC_FREQUENCY_ID:
2762                 msr_info->data = 1 << 24;
2763                 break;
2764         case MSR_IA32_APICBASE:
2765                 msr_info->data = kvm_get_apic_base(vcpu);
2766                 break;
2767         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2768                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2769                 break;
2770         case MSR_IA32_TSCDEADLINE:
2771                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2772                 break;
2773         case MSR_IA32_TSC_ADJUST:
2774                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2775                 break;
2776         case MSR_IA32_MISC_ENABLE:
2777                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2778                 break;
2779         case MSR_IA32_SMBASE:
2780                 if (!msr_info->host_initiated)
2781                         return 1;
2782                 msr_info->data = vcpu->arch.smbase;
2783                 break;
2784         case MSR_SMI_COUNT:
2785                 msr_info->data = vcpu->arch.smi_count;
2786                 break;
2787         case MSR_IA32_PERF_STATUS:
2788                 /* TSC increment by tick */
2789                 msr_info->data = 1000ULL;
2790                 /* CPU multiplier */
2791                 msr_info->data |= (((uint64_t)4ULL) << 40);
2792                 break;
2793         case MSR_EFER:
2794                 msr_info->data = vcpu->arch.efer;
2795                 break;
2796         case MSR_KVM_WALL_CLOCK:
2797         case MSR_KVM_WALL_CLOCK_NEW:
2798                 msr_info->data = vcpu->kvm->arch.wall_clock;
2799                 break;
2800         case MSR_KVM_SYSTEM_TIME:
2801         case MSR_KVM_SYSTEM_TIME_NEW:
2802                 msr_info->data = vcpu->arch.time;
2803                 break;
2804         case MSR_KVM_ASYNC_PF_EN:
2805                 msr_info->data = vcpu->arch.apf.msr_val;
2806                 break;
2807         case MSR_KVM_STEAL_TIME:
2808                 msr_info->data = vcpu->arch.st.msr_val;
2809                 break;
2810         case MSR_KVM_PV_EOI_EN:
2811                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2812                 break;
2813         case MSR_IA32_P5_MC_ADDR:
2814         case MSR_IA32_P5_MC_TYPE:
2815         case MSR_IA32_MCG_CAP:
2816         case MSR_IA32_MCG_CTL:
2817         case MSR_IA32_MCG_STATUS:
2818         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2819                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2820                                    msr_info->host_initiated);
2821         case MSR_K7_CLK_CTL:
2822                 /*
2823                  * Provide expected ramp-up count for K7. All other
2824                  * are set to zero, indicating minimum divisors for
2825                  * every field.
2826                  *
2827                  * This prevents guest kernels on AMD host with CPU
2828                  * type 6, model 8 and higher from exploding due to
2829                  * the rdmsr failing.
2830                  */
2831                 msr_info->data = 0x20000000;
2832                 break;
2833         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2834         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2835         case HV_X64_MSR_CRASH_CTL:
2836         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2837         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2838         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2839         case HV_X64_MSR_TSC_EMULATION_STATUS:
2840                 return kvm_hv_get_msr_common(vcpu,
2841                                              msr_info->index, &msr_info->data,
2842                                              msr_info->host_initiated);
2843                 break;
2844         case MSR_IA32_BBL_CR_CTL3:
2845                 /* This legacy MSR exists but isn't fully documented in current
2846                  * silicon.  It is however accessed by winxp in very narrow
2847                  * scenarios where it sets bit #19, itself documented as
2848                  * a "reserved" bit.  Best effort attempt to source coherent
2849                  * read data here should the balance of the register be
2850                  * interpreted by the guest:
2851                  *
2852                  * L2 cache control register 3: 64GB range, 256KB size,
2853                  * enabled, latency 0x1, configured
2854                  */
2855                 msr_info->data = 0xbe702111;
2856                 break;
2857         case MSR_AMD64_OSVW_ID_LENGTH:
2858                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2859                         return 1;
2860                 msr_info->data = vcpu->arch.osvw.length;
2861                 break;
2862         case MSR_AMD64_OSVW_STATUS:
2863                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2864                         return 1;
2865                 msr_info->data = vcpu->arch.osvw.status;
2866                 break;
2867         case MSR_PLATFORM_INFO:
2868                 if (!msr_info->host_initiated &&
2869                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2870                         return 1;
2871                 msr_info->data = vcpu->arch.msr_platform_info;
2872                 break;
2873         case MSR_MISC_FEATURES_ENABLES:
2874                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2875                 break;
2876         default:
2877                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2878                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2879                 if (!ignore_msrs) {
2880                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2881                                                msr_info->index);
2882                         return 1;
2883                 } else {
2884                         if (report_ignored_msrs)
2885                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2886                                         msr_info->index);
2887                         msr_info->data = 0;
2888                 }
2889                 break;
2890         }
2891         return 0;
2892 }
2893 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2894
2895 /*
2896  * Read or write a bunch of msrs. All parameters are kernel addresses.
2897  *
2898  * @return number of msrs set successfully.
2899  */
2900 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2901                     struct kvm_msr_entry *entries,
2902                     int (*do_msr)(struct kvm_vcpu *vcpu,
2903                                   unsigned index, u64 *data))
2904 {
2905         int i;
2906
2907         for (i = 0; i < msrs->nmsrs; ++i)
2908                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2909                         break;
2910
2911         return i;
2912 }
2913
2914 /*
2915  * Read or write a bunch of msrs. Parameters are user addresses.
2916  *
2917  * @return number of msrs set successfully.
2918  */
2919 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2920                   int (*do_msr)(struct kvm_vcpu *vcpu,
2921                                 unsigned index, u64 *data),
2922                   int writeback)
2923 {
2924         struct kvm_msrs msrs;
2925         struct kvm_msr_entry *entries;
2926         int r, n;
2927         unsigned size;
2928
2929         r = -EFAULT;
2930         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2931                 goto out;
2932
2933         r = -E2BIG;
2934         if (msrs.nmsrs >= MAX_IO_MSRS)
2935                 goto out;
2936
2937         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2938         entries = memdup_user(user_msrs->entries, size);
2939         if (IS_ERR(entries)) {
2940                 r = PTR_ERR(entries);
2941                 goto out;
2942         }
2943
2944         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2945         if (r < 0)
2946                 goto out_free;
2947
2948         r = -EFAULT;
2949         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2950                 goto out_free;
2951
2952         r = n;
2953
2954 out_free:
2955         kfree(entries);
2956 out:
2957         return r;
2958 }
2959
2960 static inline bool kvm_can_mwait_in_guest(void)
2961 {
2962         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2963                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2964                 boot_cpu_has(X86_FEATURE_ARAT);
2965 }
2966
2967 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2968 {
2969         int r = 0;
2970
2971         switch (ext) {
2972         case KVM_CAP_IRQCHIP:
2973         case KVM_CAP_HLT:
2974         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2975         case KVM_CAP_SET_TSS_ADDR:
2976         case KVM_CAP_EXT_CPUID:
2977         case KVM_CAP_EXT_EMUL_CPUID:
2978         case KVM_CAP_CLOCKSOURCE:
2979         case KVM_CAP_PIT:
2980         case KVM_CAP_NOP_IO_DELAY:
2981         case KVM_CAP_MP_STATE:
2982         case KVM_CAP_SYNC_MMU:
2983         case KVM_CAP_USER_NMI:
2984         case KVM_CAP_REINJECT_CONTROL:
2985         case KVM_CAP_IRQ_INJECT_STATUS:
2986         case KVM_CAP_IOEVENTFD:
2987         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2988         case KVM_CAP_PIT2:
2989         case KVM_CAP_PIT_STATE2:
2990         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2991         case KVM_CAP_XEN_HVM:
2992         case KVM_CAP_VCPU_EVENTS:
2993         case KVM_CAP_HYPERV:
2994         case KVM_CAP_HYPERV_VAPIC:
2995         case KVM_CAP_HYPERV_SPIN:
2996         case KVM_CAP_HYPERV_SYNIC:
2997         case KVM_CAP_HYPERV_SYNIC2:
2998         case KVM_CAP_HYPERV_VP_INDEX:
2999         case KVM_CAP_HYPERV_EVENTFD:
3000         case KVM_CAP_HYPERV_TLBFLUSH:
3001         case KVM_CAP_HYPERV_SEND_IPI:
3002         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3003         case KVM_CAP_HYPERV_CPUID:
3004         case KVM_CAP_PCI_SEGMENT:
3005         case KVM_CAP_DEBUGREGS:
3006         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3007         case KVM_CAP_XSAVE:
3008         case KVM_CAP_ASYNC_PF:
3009         case KVM_CAP_GET_TSC_KHZ:
3010         case KVM_CAP_KVMCLOCK_CTRL:
3011         case KVM_CAP_READONLY_MEM:
3012         case KVM_CAP_HYPERV_TIME:
3013         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3014         case KVM_CAP_TSC_DEADLINE_TIMER:
3015         case KVM_CAP_DISABLE_QUIRKS:
3016         case KVM_CAP_SET_BOOT_CPU_ID:
3017         case KVM_CAP_SPLIT_IRQCHIP:
3018         case KVM_CAP_IMMEDIATE_EXIT:
3019         case KVM_CAP_GET_MSR_FEATURES:
3020         case KVM_CAP_MSR_PLATFORM_INFO:
3021         case KVM_CAP_EXCEPTION_PAYLOAD:
3022                 r = 1;
3023                 break;
3024         case KVM_CAP_SYNC_REGS:
3025                 r = KVM_SYNC_X86_VALID_FIELDS;
3026                 break;
3027         case KVM_CAP_ADJUST_CLOCK:
3028                 r = KVM_CLOCK_TSC_STABLE;
3029                 break;
3030         case KVM_CAP_X86_DISABLE_EXITS:
3031                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3032                 if(kvm_can_mwait_in_guest())
3033                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3034                 break;
3035         case KVM_CAP_X86_SMM:
3036                 /* SMBASE is usually relocated above 1M on modern chipsets,
3037                  * and SMM handlers might indeed rely on 4G segment limits,
3038                  * so do not report SMM to be available if real mode is
3039                  * emulated via vm86 mode.  Still, do not go to great lengths
3040                  * to avoid userspace's usage of the feature, because it is a
3041                  * fringe case that is not enabled except via specific settings
3042                  * of the module parameters.
3043                  */
3044                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3045                 break;
3046         case KVM_CAP_VAPIC:
3047                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3048                 break;
3049         case KVM_CAP_NR_VCPUS:
3050                 r = KVM_SOFT_MAX_VCPUS;
3051                 break;
3052         case KVM_CAP_MAX_VCPUS:
3053                 r = KVM_MAX_VCPUS;
3054                 break;
3055         case KVM_CAP_NR_MEMSLOTS:
3056                 r = KVM_USER_MEM_SLOTS;
3057                 break;
3058         case KVM_CAP_PV_MMU:    /* obsolete */
3059                 r = 0;
3060                 break;
3061         case KVM_CAP_MCE:
3062                 r = KVM_MAX_MCE_BANKS;
3063                 break;
3064         case KVM_CAP_XCRS:
3065                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3066                 break;
3067         case KVM_CAP_TSC_CONTROL:
3068                 r = kvm_has_tsc_control;
3069                 break;
3070         case KVM_CAP_X2APIC_API:
3071                 r = KVM_X2APIC_API_VALID_FLAGS;
3072                 break;
3073         case KVM_CAP_NESTED_STATE:
3074                 r = kvm_x86_ops->get_nested_state ?
3075                         kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
3076                 break;
3077         default:
3078                 break;
3079         }
3080         return r;
3081
3082 }
3083
3084 long kvm_arch_dev_ioctl(struct file *filp,
3085                         unsigned int ioctl, unsigned long arg)
3086 {
3087         void __user *argp = (void __user *)arg;
3088         long r;
3089
3090         switch (ioctl) {
3091         case KVM_GET_MSR_INDEX_LIST: {
3092                 struct kvm_msr_list __user *user_msr_list = argp;
3093                 struct kvm_msr_list msr_list;
3094                 unsigned n;
3095
3096                 r = -EFAULT;
3097                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3098                         goto out;
3099                 n = msr_list.nmsrs;
3100                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3101                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3102                         goto out;
3103                 r = -E2BIG;
3104                 if (n < msr_list.nmsrs)
3105                         goto out;
3106                 r = -EFAULT;
3107                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3108                                  num_msrs_to_save * sizeof(u32)))
3109                         goto out;
3110                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3111                                  &emulated_msrs,
3112                                  num_emulated_msrs * sizeof(u32)))
3113                         goto out;
3114                 r = 0;
3115                 break;
3116         }
3117         case KVM_GET_SUPPORTED_CPUID:
3118         case KVM_GET_EMULATED_CPUID: {
3119                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3120                 struct kvm_cpuid2 cpuid;
3121
3122                 r = -EFAULT;
3123                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3124                         goto out;
3125
3126                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3127                                             ioctl);
3128                 if (r)
3129                         goto out;
3130
3131                 r = -EFAULT;
3132                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3133                         goto out;
3134                 r = 0;
3135                 break;
3136         }
3137         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3138                 r = -EFAULT;
3139                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3140                                  sizeof(kvm_mce_cap_supported)))
3141                         goto out;
3142                 r = 0;
3143                 break;
3144         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3145                 struct kvm_msr_list __user *user_msr_list = argp;
3146                 struct kvm_msr_list msr_list;
3147                 unsigned int n;
3148
3149                 r = -EFAULT;
3150                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3151                         goto out;
3152                 n = msr_list.nmsrs;
3153                 msr_list.nmsrs = num_msr_based_features;
3154                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3155                         goto out;
3156                 r = -E2BIG;
3157                 if (n < msr_list.nmsrs)
3158                         goto out;
3159                 r = -EFAULT;
3160                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3161                                  num_msr_based_features * sizeof(u32)))
3162                         goto out;
3163                 r = 0;
3164                 break;
3165         }
3166         case KVM_GET_MSRS:
3167                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3168                 break;
3169         }
3170         default:
3171                 r = -EINVAL;
3172         }
3173 out:
3174         return r;
3175 }
3176
3177 static void wbinvd_ipi(void *garbage)
3178 {
3179         wbinvd();
3180 }
3181
3182 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3183 {
3184         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3185 }
3186
3187 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3188 {
3189         /* Address WBINVD may be executed by guest */
3190         if (need_emulate_wbinvd(vcpu)) {
3191                 if (kvm_x86_ops->has_wbinvd_exit())
3192                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3193                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3194                         smp_call_function_single(vcpu->cpu,
3195                                         wbinvd_ipi, NULL, 1);
3196         }
3197
3198         kvm_x86_ops->vcpu_load(vcpu, cpu);
3199
3200         /* Apply any externally detected TSC adjustments (due to suspend) */
3201         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3202                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3203                 vcpu->arch.tsc_offset_adjustment = 0;
3204                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3205         }
3206
3207         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3208                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3209                                 rdtsc() - vcpu->arch.last_host_tsc;
3210                 if (tsc_delta < 0)
3211                         mark_tsc_unstable("KVM discovered backwards TSC");
3212
3213                 if (kvm_check_tsc_unstable()) {
3214                         u64 offset = kvm_compute_tsc_offset(vcpu,
3215                                                 vcpu->arch.last_guest_tsc);
3216                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3217                         vcpu->arch.tsc_catchup = 1;
3218                 }
3219
3220                 if (kvm_lapic_hv_timer_in_use(vcpu))
3221                         kvm_lapic_restart_hv_timer(vcpu);
3222
3223                 /*
3224                  * On a host with synchronized TSC, there is no need to update
3225                  * kvmclock on vcpu->cpu migration
3226                  */
3227                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3228                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3229                 if (vcpu->cpu != cpu)
3230                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3231                 vcpu->cpu = cpu;
3232         }
3233
3234         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3235 }
3236
3237 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3238 {
3239         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3240                 return;
3241
3242         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3243
3244         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3245                         &vcpu->arch.st.steal.preempted,
3246                         offsetof(struct kvm_steal_time, preempted),
3247                         sizeof(vcpu->arch.st.steal.preempted));
3248 }
3249
3250 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3251 {
3252         int idx;
3253
3254         if (vcpu->preempted)
3255                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3256
3257         /*
3258          * Disable page faults because we're in atomic context here.
3259          * kvm_write_guest_offset_cached() would call might_fault()
3260          * that relies on pagefault_disable() to tell if there's a
3261          * bug. NOTE: the write to guest memory may not go through if
3262          * during postcopy live migration or if there's heavy guest
3263          * paging.
3264          */
3265         pagefault_disable();
3266         /*
3267          * kvm_memslots() will be called by
3268          * kvm_write_guest_offset_cached() so take the srcu lock.
3269          */
3270         idx = srcu_read_lock(&vcpu->kvm->srcu);
3271         kvm_steal_time_set_preempted(vcpu);
3272         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3273         pagefault_enable();
3274         kvm_x86_ops->vcpu_put(vcpu);
3275         vcpu->arch.last_host_tsc = rdtsc();
3276         /*
3277          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3278          * on every vmexit, but if not, we might have a stale dr6 from the
3279          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3280          */
3281         set_debugreg(0, 6);
3282 }
3283
3284 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3285                                     struct kvm_lapic_state *s)
3286 {
3287         if (vcpu->arch.apicv_active)
3288                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3289
3290         return kvm_apic_get_state(vcpu, s);
3291 }
3292
3293 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3294                                     struct kvm_lapic_state *s)
3295 {
3296         int r;
3297
3298         r = kvm_apic_set_state(vcpu, s);
3299         if (r)
3300                 return r;
3301         update_cr8_intercept(vcpu);
3302
3303         return 0;
3304 }
3305
3306 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3307 {
3308         return (!lapic_in_kernel(vcpu) ||
3309                 kvm_apic_accept_pic_intr(vcpu));
3310 }
3311
3312 /*
3313  * if userspace requested an interrupt window, check that the
3314  * interrupt window is open.
3315  *
3316  * No need to exit to userspace if we already have an interrupt queued.
3317  */
3318 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3319 {
3320         return kvm_arch_interrupt_allowed(vcpu) &&
3321                 !kvm_cpu_has_interrupt(vcpu) &&
3322                 !kvm_event_needs_reinjection(vcpu) &&
3323                 kvm_cpu_accept_dm_intr(vcpu);
3324 }
3325
3326 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3327                                     struct kvm_interrupt *irq)
3328 {
3329         if (irq->irq >= KVM_NR_INTERRUPTS)
3330                 return -EINVAL;
3331
3332         if (!irqchip_in_kernel(vcpu->kvm)) {
3333                 kvm_queue_interrupt(vcpu, irq->irq, false);
3334                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3335                 return 0;
3336         }
3337
3338         /*
3339          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3340          * fail for in-kernel 8259.
3341          */
3342         if (pic_in_kernel(vcpu->kvm))
3343                 return -ENXIO;
3344
3345         if (vcpu->arch.pending_external_vector != -1)
3346                 return -EEXIST;
3347
3348         vcpu->arch.pending_external_vector = irq->irq;
3349         kvm_make_request(KVM_REQ_EVENT, vcpu);
3350         return 0;
3351 }
3352
3353 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3354 {
3355         kvm_inject_nmi(vcpu);
3356
3357         return 0;
3358 }
3359
3360 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3361 {
3362         kvm_make_request(KVM_REQ_SMI, vcpu);
3363
3364         return 0;
3365 }
3366
3367 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3368                                            struct kvm_tpr_access_ctl *tac)
3369 {
3370         if (tac->flags)
3371                 return -EINVAL;
3372         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3373         return 0;
3374 }
3375
3376 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3377                                         u64 mcg_cap)
3378 {
3379         int r;
3380         unsigned bank_num = mcg_cap & 0xff, bank;
3381
3382         r = -EINVAL;
3383         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3384                 goto out;
3385         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3386                 goto out;
3387         r = 0;
3388         vcpu->arch.mcg_cap = mcg_cap;
3389         /* Init IA32_MCG_CTL to all 1s */
3390         if (mcg_cap & MCG_CTL_P)
3391                 vcpu->arch.mcg_ctl = ~(u64)0;
3392         /* Init IA32_MCi_CTL to all 1s */
3393         for (bank = 0; bank < bank_num; bank++)
3394                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3395
3396         if (kvm_x86_ops->setup_mce)
3397                 kvm_x86_ops->setup_mce(vcpu);
3398 out:
3399         return r;
3400 }
3401
3402 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3403                                       struct kvm_x86_mce *mce)
3404 {
3405         u64 mcg_cap = vcpu->arch.mcg_cap;
3406         unsigned bank_num = mcg_cap & 0xff;
3407         u64 *banks = vcpu->arch.mce_banks;
3408
3409         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3410                 return -EINVAL;
3411         /*
3412          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3413          * reporting is disabled
3414          */
3415         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3416             vcpu->arch.mcg_ctl != ~(u64)0)
3417                 return 0;
3418         banks += 4 * mce->bank;
3419         /*
3420          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3421          * reporting is disabled for the bank
3422          */
3423         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3424                 return 0;
3425         if (mce->status & MCI_STATUS_UC) {
3426                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3427                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3428                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3429                         return 0;
3430                 }
3431                 if (banks[1] & MCI_STATUS_VAL)
3432                         mce->status |= MCI_STATUS_OVER;
3433                 banks[2] = mce->addr;
3434                 banks[3] = mce->misc;
3435                 vcpu->arch.mcg_status = mce->mcg_status;
3436                 banks[1] = mce->status;
3437                 kvm_queue_exception(vcpu, MC_VECTOR);
3438         } else if (!(banks[1] & MCI_STATUS_VAL)
3439                    || !(banks[1] & MCI_STATUS_UC)) {
3440                 if (banks[1] & MCI_STATUS_VAL)
3441                         mce->status |= MCI_STATUS_OVER;
3442                 banks[2] = mce->addr;
3443                 banks[3] = mce->misc;
3444                 banks[1] = mce->status;
3445         } else
3446                 banks[1] |= MCI_STATUS_OVER;
3447         return 0;
3448 }
3449
3450 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3451                                                struct kvm_vcpu_events *events)
3452 {
3453         process_nmi(vcpu);
3454
3455         /*
3456          * The API doesn't provide the instruction length for software
3457          * exceptions, so don't report them. As long as the guest RIP
3458          * isn't advanced, we should expect to encounter the exception
3459          * again.
3460          */
3461         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3462                 events->exception.injected = 0;
3463                 events->exception.pending = 0;
3464         } else {
3465                 events->exception.injected = vcpu->arch.exception.injected;
3466                 events->exception.pending = vcpu->arch.exception.pending;
3467                 /*
3468                  * For ABI compatibility, deliberately conflate
3469                  * pending and injected exceptions when
3470                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3471                  */
3472                 if (!vcpu->kvm->arch.exception_payload_enabled)
3473                         events->exception.injected |=
3474                                 vcpu->arch.exception.pending;
3475         }
3476         events->exception.nr = vcpu->arch.exception.nr;
3477         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3478         events->exception.error_code = vcpu->arch.exception.error_code;
3479         events->exception_has_payload = vcpu->arch.exception.has_payload;
3480         events->exception_payload = vcpu->arch.exception.payload;
3481
3482         events->interrupt.injected =
3483                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3484         events->interrupt.nr = vcpu->arch.interrupt.nr;
3485         events->interrupt.soft = 0;
3486         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3487
3488         events->nmi.injected = vcpu->arch.nmi_injected;
3489         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3490         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3491         events->nmi.pad = 0;
3492
3493         events->sipi_vector = 0; /* never valid when reporting to user space */
3494
3495         events->smi.smm = is_smm(vcpu);
3496         events->smi.pending = vcpu->arch.smi_pending;
3497         events->smi.smm_inside_nmi =
3498                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3499         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3500
3501         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3502                          | KVM_VCPUEVENT_VALID_SHADOW
3503                          | KVM_VCPUEVENT_VALID_SMM);
3504         if (vcpu->kvm->arch.exception_payload_enabled)
3505                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3506
3507         memset(&events->reserved, 0, sizeof(events->reserved));
3508 }
3509
3510 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3511
3512 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3513                                               struct kvm_vcpu_events *events)
3514 {
3515         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3516                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3517                               | KVM_VCPUEVENT_VALID_SHADOW
3518                               | KVM_VCPUEVENT_VALID_SMM
3519                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3520                 return -EINVAL;
3521
3522         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3523                 if (!vcpu->kvm->arch.exception_payload_enabled)
3524                         return -EINVAL;
3525                 if (events->exception.pending)
3526                         events->exception.injected = 0;
3527                 else
3528                         events->exception_has_payload = 0;
3529         } else {
3530                 events->exception.pending = 0;
3531                 events->exception_has_payload = 0;
3532         }
3533
3534         if ((events->exception.injected || events->exception.pending) &&
3535             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3536                 return -EINVAL;
3537
3538         /* INITs are latched while in SMM */
3539         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3540             (events->smi.smm || events->smi.pending) &&
3541             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3542                 return -EINVAL;
3543
3544         process_nmi(vcpu);
3545         vcpu->arch.exception.injected = events->exception.injected;
3546         vcpu->arch.exception.pending = events->exception.pending;
3547         vcpu->arch.exception.nr = events->exception.nr;
3548         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3549         vcpu->arch.exception.error_code = events->exception.error_code;
3550         vcpu->arch.exception.has_payload = events->exception_has_payload;
3551         vcpu->arch.exception.payload = events->exception_payload;
3552
3553         vcpu->arch.interrupt.injected = events->interrupt.injected;
3554         vcpu->arch.interrupt.nr = events->interrupt.nr;
3555         vcpu->arch.interrupt.soft = events->interrupt.soft;
3556         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3557                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3558                                                   events->interrupt.shadow);
3559
3560         vcpu->arch.nmi_injected = events->nmi.injected;
3561         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3562                 vcpu->arch.nmi_pending = events->nmi.pending;
3563         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3564
3565         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3566             lapic_in_kernel(vcpu))
3567                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3568
3569         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3570                 u32 hflags = vcpu->arch.hflags;
3571                 if (events->smi.smm)
3572                         hflags |= HF_SMM_MASK;
3573                 else
3574                         hflags &= ~HF_SMM_MASK;
3575                 kvm_set_hflags(vcpu, hflags);
3576
3577                 vcpu->arch.smi_pending = events->smi.pending;
3578
3579                 if (events->smi.smm) {
3580                         if (events->smi.smm_inside_nmi)
3581                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3582                         else
3583                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3584                         if (lapic_in_kernel(vcpu)) {
3585                                 if (events->smi.latched_init)
3586                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3587                                 else
3588                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3589                         }
3590                 }
3591         }
3592
3593         kvm_make_request(KVM_REQ_EVENT, vcpu);
3594
3595         return 0;
3596 }
3597
3598 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3599                                              struct kvm_debugregs *dbgregs)
3600 {
3601         unsigned long val;
3602
3603         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3604         kvm_get_dr(vcpu, 6, &val);
3605         dbgregs->dr6 = val;
3606         dbgregs->dr7 = vcpu->arch.dr7;
3607         dbgregs->flags = 0;
3608         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3609 }
3610
3611 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3612                                             struct kvm_debugregs *dbgregs)
3613 {
3614         if (dbgregs->flags)
3615                 return -EINVAL;
3616
3617         if (dbgregs->dr6 & ~0xffffffffull)
3618                 return -EINVAL;
3619         if (dbgregs->dr7 & ~0xffffffffull)
3620                 return -EINVAL;
3621
3622         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3623         kvm_update_dr0123(vcpu);
3624         vcpu->arch.dr6 = dbgregs->dr6;
3625         kvm_update_dr6(vcpu);
3626         vcpu->arch.dr7 = dbgregs->dr7;
3627         kvm_update_dr7(vcpu);
3628
3629         return 0;
3630 }
3631
3632 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3633
3634 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3635 {
3636         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3637         u64 xstate_bv = xsave->header.xfeatures;
3638         u64 valid;
3639
3640         /*
3641          * Copy legacy XSAVE area, to avoid complications with CPUID
3642          * leaves 0 and 1 in the loop below.
3643          */
3644         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3645
3646         /* Set XSTATE_BV */
3647         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3648         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3649
3650         /*
3651          * Copy each region from the possibly compacted offset to the
3652          * non-compacted offset.
3653          */
3654         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3655         while (valid) {
3656                 u64 feature = valid & -valid;
3657                 int index = fls64(feature) - 1;
3658                 void *src = get_xsave_addr(xsave, feature);
3659
3660                 if (src) {
3661                         u32 size, offset, ecx, edx;
3662                         cpuid_count(XSTATE_CPUID, index,
3663                                     &size, &offset, &ecx, &edx);
3664                         if (feature == XFEATURE_MASK_PKRU)
3665                                 memcpy(dest + offset, &vcpu->arch.pkru,
3666                                        sizeof(vcpu->arch.pkru));
3667                         else
3668                                 memcpy(dest + offset, src, size);
3669
3670                 }
3671
3672                 valid -= feature;
3673         }
3674 }
3675
3676 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3677 {
3678         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3679         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3680         u64 valid;
3681
3682         /*
3683          * Copy legacy XSAVE area, to avoid complications with CPUID
3684          * leaves 0 and 1 in the loop below.
3685          */
3686         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3687
3688         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3689         xsave->header.xfeatures = xstate_bv;
3690         if (boot_cpu_has(X86_FEATURE_XSAVES))
3691                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3692
3693         /*
3694          * Copy each region from the non-compacted offset to the
3695          * possibly compacted offset.
3696          */
3697         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3698         while (valid) {
3699                 u64 feature = valid & -valid;
3700                 int index = fls64(feature) - 1;
3701                 void *dest = get_xsave_addr(xsave, feature);
3702
3703                 if (dest) {
3704                         u32 size, offset, ecx, edx;
3705                         cpuid_count(XSTATE_CPUID, index,
3706                                     &size, &offset, &ecx, &edx);
3707                         if (feature == XFEATURE_MASK_PKRU)
3708                                 memcpy(&vcpu->arch.pkru, src + offset,
3709                                        sizeof(vcpu->arch.pkru));
3710                         else
3711                                 memcpy(dest, src + offset, size);
3712                 }
3713
3714                 valid -= feature;
3715         }
3716 }
3717
3718 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3719                                          struct kvm_xsave *guest_xsave)
3720 {
3721         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3722                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3723                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3724         } else {
3725                 memcpy(guest_xsave->region,
3726                         &vcpu->arch.guest_fpu->state.fxsave,
3727                         sizeof(struct fxregs_state));
3728                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3729                         XFEATURE_MASK_FPSSE;
3730         }
3731 }
3732
3733 #define XSAVE_MXCSR_OFFSET 24
3734
3735 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3736                                         struct kvm_xsave *guest_xsave)
3737 {
3738         u64 xstate_bv =
3739                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3740         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3741
3742         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3743                 /*
3744                  * Here we allow setting states that are not present in
3745                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3746                  * with old userspace.
3747                  */
3748                 if (xstate_bv & ~kvm_supported_xcr0() ||
3749                         mxcsr & ~mxcsr_feature_mask)
3750                         return -EINVAL;
3751                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3752         } else {
3753                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3754                         mxcsr & ~mxcsr_feature_mask)
3755                         return -EINVAL;
3756                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3757                         guest_xsave->region, sizeof(struct fxregs_state));
3758         }
3759         return 0;
3760 }
3761
3762 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3763                                         struct kvm_xcrs *guest_xcrs)
3764 {
3765         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3766                 guest_xcrs->nr_xcrs = 0;
3767                 return;
3768         }
3769
3770         guest_xcrs->nr_xcrs = 1;
3771         guest_xcrs->flags = 0;
3772         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3773         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3774 }
3775
3776 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3777                                        struct kvm_xcrs *guest_xcrs)
3778 {
3779         int i, r = 0;
3780
3781         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3782                 return -EINVAL;
3783
3784         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3785                 return -EINVAL;
3786
3787         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3788                 /* Only support XCR0 currently */
3789                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3790                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3791                                 guest_xcrs->xcrs[i].value);
3792                         break;
3793                 }
3794         if (r)
3795                 r = -EINVAL;
3796         return r;
3797 }
3798
3799 /*
3800  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3801  * stopped by the hypervisor.  This function will be called from the host only.
3802  * EINVAL is returned when the host attempts to set the flag for a guest that
3803  * does not support pv clocks.
3804  */
3805 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3806 {
3807         if (!vcpu->arch.pv_time_enabled)
3808                 return -EINVAL;
3809         vcpu->arch.pvclock_set_guest_stopped_request = true;
3810         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3811         return 0;
3812 }
3813
3814 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3815                                      struct kvm_enable_cap *cap)
3816 {
3817         int r;
3818         uint16_t vmcs_version;
3819         void __user *user_ptr;
3820
3821         if (cap->flags)
3822                 return -EINVAL;
3823
3824         switch (cap->cap) {
3825         case KVM_CAP_HYPERV_SYNIC2:
3826                 if (cap->args[0])
3827                         return -EINVAL;
3828         case KVM_CAP_HYPERV_SYNIC:
3829                 if (!irqchip_in_kernel(vcpu->kvm))
3830                         return -EINVAL;
3831                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3832                                              KVM_CAP_HYPERV_SYNIC2);
3833         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3834                 if (!kvm_x86_ops->nested_enable_evmcs)
3835                         return -ENOTTY;
3836                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3837                 if (!r) {
3838                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3839                         if (copy_to_user(user_ptr, &vmcs_version,
3840                                          sizeof(vmcs_version)))
3841                                 r = -EFAULT;
3842                 }
3843                 return r;
3844
3845         default:
3846                 return -EINVAL;
3847         }
3848 }
3849
3850 long kvm_arch_vcpu_ioctl(struct file *filp,
3851                          unsigned int ioctl, unsigned long arg)
3852 {
3853         struct kvm_vcpu *vcpu = filp->private_data;
3854         void __user *argp = (void __user *)arg;
3855         int r;
3856         union {
3857                 struct kvm_lapic_state *lapic;
3858                 struct kvm_xsave *xsave;
3859                 struct kvm_xcrs *xcrs;
3860                 void *buffer;
3861         } u;
3862
3863         vcpu_load(vcpu);
3864
3865         u.buffer = NULL;
3866         switch (ioctl) {
3867         case KVM_GET_LAPIC: {
3868                 r = -EINVAL;
3869                 if (!lapic_in_kernel(vcpu))
3870                         goto out;
3871                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3872
3873                 r = -ENOMEM;
3874                 if (!u.lapic)
3875                         goto out;
3876                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3877                 if (r)
3878                         goto out;
3879                 r = -EFAULT;
3880                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3881                         goto out;
3882                 r = 0;
3883                 break;
3884         }
3885         case KVM_SET_LAPIC: {
3886                 r = -EINVAL;
3887                 if (!lapic_in_kernel(vcpu))
3888                         goto out;
3889                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3890                 if (IS_ERR(u.lapic)) {
3891                         r = PTR_ERR(u.lapic);
3892                         goto out_nofree;
3893                 }
3894
3895                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3896                 break;
3897         }
3898         case KVM_INTERRUPT: {
3899                 struct kvm_interrupt irq;
3900
3901                 r = -EFAULT;
3902                 if (copy_from_user(&irq, argp, sizeof(irq)))
3903                         goto out;
3904                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3905                 break;
3906         }
3907         case KVM_NMI: {
3908                 r = kvm_vcpu_ioctl_nmi(vcpu);
3909                 break;
3910         }
3911         case KVM_SMI: {
3912                 r = kvm_vcpu_ioctl_smi(vcpu);
3913                 break;
3914         }
3915         case KVM_SET_CPUID: {
3916                 struct kvm_cpuid __user *cpuid_arg = argp;
3917                 struct kvm_cpuid cpuid;
3918
3919                 r = -EFAULT;
3920                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3921                         goto out;
3922                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3923                 break;
3924         }
3925         case KVM_SET_CPUID2: {
3926                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3927                 struct kvm_cpuid2 cpuid;
3928
3929                 r = -EFAULT;
3930                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3931                         goto out;
3932                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3933                                               cpuid_arg->entries);
3934                 break;
3935         }
3936         case KVM_GET_CPUID2: {
3937                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3938                 struct kvm_cpuid2 cpuid;
3939
3940                 r = -EFAULT;
3941                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3942                         goto out;
3943                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3944                                               cpuid_arg->entries);
3945                 if (r)
3946                         goto out;
3947                 r = -EFAULT;
3948                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3949                         goto out;
3950                 r = 0;
3951                 break;
3952         }
3953         case KVM_GET_MSRS: {
3954                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3955                 r = msr_io(vcpu, argp, do_get_msr, 1);
3956                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3957                 break;
3958         }
3959         case KVM_SET_MSRS: {
3960                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3961                 r = msr_io(vcpu, argp, do_set_msr, 0);
3962                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3963                 break;
3964         }
3965         case KVM_TPR_ACCESS_REPORTING: {
3966                 struct kvm_tpr_access_ctl tac;
3967
3968                 r = -EFAULT;
3969                 if (copy_from_user(&tac, argp, sizeof(tac)))
3970                         goto out;
3971                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3972                 if (r)
3973                         goto out;
3974                 r = -EFAULT;
3975                 if (copy_to_user(argp, &tac, sizeof(tac)))
3976                         goto out;
3977                 r = 0;
3978                 break;
3979         };
3980         case KVM_SET_VAPIC_ADDR: {
3981                 struct kvm_vapic_addr va;
3982                 int idx;
3983
3984                 r = -EINVAL;
3985                 if (!lapic_in_kernel(vcpu))
3986                         goto out;
3987                 r = -EFAULT;
3988                 if (copy_from_user(&va, argp, sizeof(va)))
3989                         goto out;
3990                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3991                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3992                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3993                 break;
3994         }
3995         case KVM_X86_SETUP_MCE: {
3996                 u64 mcg_cap;
3997
3998                 r = -EFAULT;
3999                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4000                         goto out;
4001                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4002                 break;
4003         }
4004         case KVM_X86_SET_MCE: {
4005                 struct kvm_x86_mce mce;
4006
4007                 r = -EFAULT;
4008                 if (copy_from_user(&mce, argp, sizeof(mce)))
4009                         goto out;
4010                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4011                 break;
4012         }
4013         case KVM_GET_VCPU_EVENTS: {
4014                 struct kvm_vcpu_events events;
4015
4016                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4017
4018                 r = -EFAULT;
4019                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4020                         break;
4021                 r = 0;
4022                 break;
4023         }
4024         case KVM_SET_VCPU_EVENTS: {
4025                 struct kvm_vcpu_events events;
4026
4027                 r = -EFAULT;
4028                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4029                         break;
4030
4031                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4032                 break;
4033         }
4034         case KVM_GET_DEBUGREGS: {
4035                 struct kvm_debugregs dbgregs;
4036
4037                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4038
4039                 r = -EFAULT;
4040                 if (copy_to_user(argp, &dbgregs,
4041                                  sizeof(struct kvm_debugregs)))
4042                         break;
4043                 r = 0;
4044                 break;
4045         }
4046         case KVM_SET_DEBUGREGS: {
4047                 struct kvm_debugregs dbgregs;
4048
4049                 r = -EFAULT;
4050                 if (copy_from_user(&dbgregs, argp,
4051                                    sizeof(struct kvm_debugregs)))
4052                         break;
4053
4054                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4055                 break;
4056         }
4057         case KVM_GET_XSAVE: {
4058                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
4059                 r = -ENOMEM;
4060                 if (!u.xsave)
4061                         break;
4062
4063                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4064
4065                 r = -EFAULT;
4066                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4067                         break;
4068                 r = 0;
4069                 break;
4070         }
4071         case KVM_SET_XSAVE: {
4072                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4073                 if (IS_ERR(u.xsave)) {
4074                         r = PTR_ERR(u.xsave);
4075                         goto out_nofree;
4076                 }
4077
4078                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4079                 break;
4080         }
4081         case KVM_GET_XCRS: {
4082                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
4083                 r = -ENOMEM;
4084                 if (!u.xcrs)
4085                         break;
4086
4087                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4088
4089                 r = -EFAULT;
4090                 if (copy_to_user(argp, u.xcrs,
4091                                  sizeof(struct kvm_xcrs)))
4092                         break;
4093                 r = 0;
4094                 break;
4095         }
4096         case KVM_SET_XCRS: {
4097                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4098                 if (IS_ERR(u.xcrs)) {
4099                         r = PTR_ERR(u.xcrs);
4100                         goto out_nofree;
4101                 }
4102
4103                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4104                 break;
4105         }
4106         case KVM_SET_TSC_KHZ: {
4107                 u32 user_tsc_khz;
4108
4109                 r = -EINVAL;
4110                 user_tsc_khz = (u32)arg;
4111
4112                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4113                         goto out;
4114
4115                 if (user_tsc_khz == 0)
4116                         user_tsc_khz = tsc_khz;
4117
4118                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4119                         r = 0;
4120
4121                 goto out;
4122         }
4123         case KVM_GET_TSC_KHZ: {
4124                 r = vcpu->arch.virtual_tsc_khz;
4125                 goto out;
4126         }
4127         case KVM_KVMCLOCK_CTRL: {
4128                 r = kvm_set_guest_paused(vcpu);
4129                 goto out;
4130         }
4131         case KVM_ENABLE_CAP: {
4132                 struct kvm_enable_cap cap;
4133
4134                 r = -EFAULT;
4135                 if (copy_from_user(&cap, argp, sizeof(cap)))
4136                         goto out;
4137                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4138                 break;
4139         }
4140         case KVM_GET_NESTED_STATE: {
4141                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4142                 u32 user_data_size;
4143
4144                 r = -EINVAL;
4145                 if (!kvm_x86_ops->get_nested_state)
4146                         break;
4147
4148                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4149                 r = -EFAULT;
4150                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4151                         break;
4152
4153                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4154                                                   user_data_size);
4155                 if (r < 0)
4156                         break;
4157
4158                 if (r > user_data_size) {
4159                         if (put_user(r, &user_kvm_nested_state->size))
4160                                 r = -EFAULT;
4161                         else
4162                                 r = -E2BIG;
4163                         break;
4164                 }
4165
4166                 r = 0;
4167                 break;
4168         }
4169         case KVM_SET_NESTED_STATE: {
4170                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4171                 struct kvm_nested_state kvm_state;
4172
4173                 r = -EINVAL;
4174                 if (!kvm_x86_ops->set_nested_state)
4175                         break;
4176
4177                 r = -EFAULT;
4178                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4179                         break;
4180
4181                 r = -EINVAL;
4182                 if (kvm_state.size < sizeof(kvm_state))
4183                         break;
4184
4185                 if (kvm_state.flags &
4186                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4187                       | KVM_STATE_NESTED_EVMCS))
4188                         break;
4189
4190                 /* nested_run_pending implies guest_mode.  */
4191                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4192                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4193                         break;
4194
4195                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4196                 break;
4197         }
4198         case KVM_GET_SUPPORTED_HV_CPUID: {
4199                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4200                 struct kvm_cpuid2 cpuid;
4201
4202                 r = -EFAULT;
4203                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4204                         goto out;
4205
4206                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4207                                                 cpuid_arg->entries);
4208                 if (r)
4209                         goto out;
4210
4211                 r = -EFAULT;
4212                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4213                         goto out;
4214                 r = 0;
4215                 break;
4216         }
4217         default:
4218                 r = -EINVAL;
4219         }
4220 out:
4221         kfree(u.buffer);
4222 out_nofree:
4223         vcpu_put(vcpu);
4224         return r;
4225 }
4226
4227 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4228 {
4229         return VM_FAULT_SIGBUS;
4230 }
4231
4232 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4233 {
4234         int ret;
4235
4236         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4237                 return -EINVAL;
4238         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4239         return ret;
4240 }
4241
4242 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4243                                               u64 ident_addr)
4244 {
4245         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4246 }
4247
4248 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4249                                           u32 kvm_nr_mmu_pages)
4250 {
4251         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4252                 return -EINVAL;
4253
4254         mutex_lock(&kvm->slots_lock);
4255
4256         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4257         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4258
4259         mutex_unlock(&kvm->slots_lock);
4260         return 0;
4261 }
4262
4263 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4264 {
4265         return kvm->arch.n_max_mmu_pages;
4266 }
4267
4268 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4269 {
4270         struct kvm_pic *pic = kvm->arch.vpic;
4271         int r;
4272
4273         r = 0;
4274         switch (chip->chip_id) {
4275         case KVM_IRQCHIP_PIC_MASTER:
4276                 memcpy(&chip->chip.pic, &pic->pics[0],
4277                         sizeof(struct kvm_pic_state));
4278                 break;
4279         case KVM_IRQCHIP_PIC_SLAVE:
4280                 memcpy(&chip->chip.pic, &pic->pics[1],
4281                         sizeof(struct kvm_pic_state));
4282                 break;
4283         case KVM_IRQCHIP_IOAPIC:
4284                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4285                 break;
4286         default:
4287                 r = -EINVAL;
4288                 break;
4289         }
4290         return r;
4291 }
4292
4293 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4294 {
4295         struct kvm_pic *pic = kvm->arch.vpic;
4296         int r;
4297
4298         r = 0;
4299         switch (chip->chip_id) {
4300         case KVM_IRQCHIP_PIC_MASTER:
4301                 spin_lock(&pic->lock);
4302                 memcpy(&pic->pics[0], &chip->chip.pic,
4303                         sizeof(struct kvm_pic_state));
4304                 spin_unlock(&pic->lock);
4305                 break;
4306         case KVM_IRQCHIP_PIC_SLAVE:
4307                 spin_lock(&pic->lock);
4308                 memcpy(&pic->pics[1], &chip->chip.pic,
4309                         sizeof(struct kvm_pic_state));
4310                 spin_unlock(&pic->lock);
4311                 break;
4312         case KVM_IRQCHIP_IOAPIC:
4313                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4314                 break;
4315         default:
4316                 r = -EINVAL;
4317                 break;
4318         }
4319         kvm_pic_update_irq(pic);
4320         return r;
4321 }
4322
4323 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4324 {
4325         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4326
4327         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4328
4329         mutex_lock(&kps->lock);
4330         memcpy(ps, &kps->channels, sizeof(*ps));
4331         mutex_unlock(&kps->lock);
4332         return 0;
4333 }
4334
4335 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4336 {
4337         int i;
4338         struct kvm_pit *pit = kvm->arch.vpit;
4339
4340         mutex_lock(&pit->pit_state.lock);
4341         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4342         for (i = 0; i < 3; i++)
4343                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4344         mutex_unlock(&pit->pit_state.lock);
4345         return 0;
4346 }
4347
4348 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4349 {
4350         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4351         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4352                 sizeof(ps->channels));
4353         ps->flags = kvm->arch.vpit->pit_state.flags;
4354         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4355         memset(&ps->reserved, 0, sizeof(ps->reserved));
4356         return 0;
4357 }
4358
4359 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4360 {
4361         int start = 0;
4362         int i;
4363         u32 prev_legacy, cur_legacy;
4364         struct kvm_pit *pit = kvm->arch.vpit;
4365
4366         mutex_lock(&pit->pit_state.lock);
4367         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4368         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4369         if (!prev_legacy && cur_legacy)
4370                 start = 1;
4371         memcpy(&pit->pit_state.channels, &ps->channels,
4372                sizeof(pit->pit_state.channels));
4373         pit->pit_state.flags = ps->flags;
4374         for (i = 0; i < 3; i++)
4375                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4376                                    start && i == 0);
4377         mutex_unlock(&pit->pit_state.lock);
4378         return 0;
4379 }
4380
4381 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4382                                  struct kvm_reinject_control *control)
4383 {
4384         struct kvm_pit *pit = kvm->arch.vpit;
4385
4386         if (!pit)
4387                 return -ENXIO;
4388
4389         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4390          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4391          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4392          */
4393         mutex_lock(&pit->pit_state.lock);
4394         kvm_pit_set_reinject(pit, control->pit_reinject);
4395         mutex_unlock(&pit->pit_state.lock);
4396
4397         return 0;
4398 }
4399
4400 /**
4401  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4402  * @kvm: kvm instance
4403  * @log: slot id and address to which we copy the log
4404  *
4405  * Steps 1-4 below provide general overview of dirty page logging. See
4406  * kvm_get_dirty_log_protect() function description for additional details.
4407  *
4408  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4409  * always flush the TLB (step 4) even if previous step failed  and the dirty
4410  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4411  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4412  * writes will be marked dirty for next log read.
4413  *
4414  *   1. Take a snapshot of the bit and clear it if needed.
4415  *   2. Write protect the corresponding page.
4416  *   3. Copy the snapshot to the userspace.
4417  *   4. Flush TLB's if needed.
4418  */
4419 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4420 {
4421         bool flush = false;
4422         int r;
4423
4424         mutex_lock(&kvm->slots_lock);
4425
4426         /*
4427          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4428          */
4429         if (kvm_x86_ops->flush_log_dirty)
4430                 kvm_x86_ops->flush_log_dirty(kvm);
4431
4432         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4433
4434         /*
4435          * All the TLBs can be flushed out of mmu lock, see the comments in
4436          * kvm_mmu_slot_remove_write_access().
4437          */
4438         lockdep_assert_held(&kvm->slots_lock);
4439         if (flush)
4440                 kvm_flush_remote_tlbs(kvm);
4441
4442         mutex_unlock(&kvm->slots_lock);
4443         return r;
4444 }
4445
4446 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4447 {
4448         bool flush = false;
4449         int r;
4450
4451         mutex_lock(&kvm->slots_lock);
4452
4453         /*
4454          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4455          */
4456         if (kvm_x86_ops->flush_log_dirty)
4457                 kvm_x86_ops->flush_log_dirty(kvm);
4458
4459         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4460
4461         /*
4462          * All the TLBs can be flushed out of mmu lock, see the comments in
4463          * kvm_mmu_slot_remove_write_access().
4464          */
4465         lockdep_assert_held(&kvm->slots_lock);
4466         if (flush)
4467                 kvm_flush_remote_tlbs(kvm);
4468
4469         mutex_unlock(&kvm->slots_lock);
4470         return r;
4471 }
4472
4473 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4474                         bool line_status)
4475 {
4476         if (!irqchip_in_kernel(kvm))
4477                 return -ENXIO;
4478
4479         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4480                                         irq_event->irq, irq_event->level,
4481                                         line_status);
4482         return 0;
4483 }
4484
4485 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4486                             struct kvm_enable_cap *cap)
4487 {
4488         int r;
4489
4490         if (cap->flags)
4491                 return -EINVAL;
4492
4493         switch (cap->cap) {
4494         case KVM_CAP_DISABLE_QUIRKS:
4495                 kvm->arch.disabled_quirks = cap->args[0];
4496                 r = 0;
4497                 break;
4498         case KVM_CAP_SPLIT_IRQCHIP: {
4499                 mutex_lock(&kvm->lock);
4500                 r = -EINVAL;
4501                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4502                         goto split_irqchip_unlock;
4503                 r = -EEXIST;
4504                 if (irqchip_in_kernel(kvm))
4505                         goto split_irqchip_unlock;
4506                 if (kvm->created_vcpus)
4507                         goto split_irqchip_unlock;
4508                 r = kvm_setup_empty_irq_routing(kvm);
4509                 if (r)
4510                         goto split_irqchip_unlock;
4511                 /* Pairs with irqchip_in_kernel. */
4512                 smp_wmb();
4513                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4514                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4515                 r = 0;
4516 split_irqchip_unlock:
4517                 mutex_unlock(&kvm->lock);
4518                 break;
4519         }
4520         case KVM_CAP_X2APIC_API:
4521                 r = -EINVAL;
4522                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4523                         break;
4524
4525                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4526                         kvm->arch.x2apic_format = true;
4527                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4528                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4529
4530                 r = 0;
4531                 break;
4532         case KVM_CAP_X86_DISABLE_EXITS:
4533                 r = -EINVAL;
4534                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4535                         break;
4536
4537                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4538                         kvm_can_mwait_in_guest())
4539                         kvm->arch.mwait_in_guest = true;
4540                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4541                         kvm->arch.hlt_in_guest = true;
4542                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4543                         kvm->arch.pause_in_guest = true;
4544                 r = 0;
4545                 break;
4546         case KVM_CAP_MSR_PLATFORM_INFO:
4547                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4548                 r = 0;
4549                 break;
4550         case KVM_CAP_EXCEPTION_PAYLOAD:
4551                 kvm->arch.exception_payload_enabled = cap->args[0];
4552                 r = 0;
4553                 break;
4554         default:
4555                 r = -EINVAL;
4556                 break;
4557         }
4558         return r;
4559 }
4560
4561 long kvm_arch_vm_ioctl(struct file *filp,
4562                        unsigned int ioctl, unsigned long arg)
4563 {
4564         struct kvm *kvm = filp->private_data;
4565         void __user *argp = (void __user *)arg;
4566         int r = -ENOTTY;
4567         /*
4568          * This union makes it completely explicit to gcc-3.x
4569          * that these two variables' stack usage should be
4570          * combined, not added together.
4571          */
4572         union {
4573                 struct kvm_pit_state ps;
4574                 struct kvm_pit_state2 ps2;
4575                 struct kvm_pit_config pit_config;
4576         } u;
4577
4578         switch (ioctl) {
4579         case KVM_SET_TSS_ADDR:
4580                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4581                 break;
4582         case KVM_SET_IDENTITY_MAP_ADDR: {
4583                 u64 ident_addr;
4584
4585                 mutex_lock(&kvm->lock);
4586                 r = -EINVAL;
4587                 if (kvm->created_vcpus)
4588                         goto set_identity_unlock;
4589                 r = -EFAULT;
4590                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4591                         goto set_identity_unlock;
4592                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4593 set_identity_unlock:
4594                 mutex_unlock(&kvm->lock);
4595                 break;
4596         }
4597         case KVM_SET_NR_MMU_PAGES:
4598                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4599                 break;
4600         case KVM_GET_NR_MMU_PAGES:
4601                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4602                 break;
4603         case KVM_CREATE_IRQCHIP: {
4604                 mutex_lock(&kvm->lock);
4605
4606                 r = -EEXIST;
4607                 if (irqchip_in_kernel(kvm))
4608                         goto create_irqchip_unlock;
4609
4610                 r = -EINVAL;
4611                 if (kvm->created_vcpus)
4612                         goto create_irqchip_unlock;
4613
4614                 r = kvm_pic_init(kvm);
4615                 if (r)
4616                         goto create_irqchip_unlock;
4617
4618                 r = kvm_ioapic_init(kvm);
4619                 if (r) {
4620                         kvm_pic_destroy(kvm);
4621                         goto create_irqchip_unlock;
4622                 }
4623
4624                 r = kvm_setup_default_irq_routing(kvm);
4625                 if (r) {
4626                         kvm_ioapic_destroy(kvm);
4627                         kvm_pic_destroy(kvm);
4628                         goto create_irqchip_unlock;
4629                 }
4630                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4631                 smp_wmb();
4632                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4633         create_irqchip_unlock:
4634                 mutex_unlock(&kvm->lock);
4635                 break;
4636         }
4637         case KVM_CREATE_PIT:
4638                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4639                 goto create_pit;
4640         case KVM_CREATE_PIT2:
4641                 r = -EFAULT;
4642                 if (copy_from_user(&u.pit_config, argp,
4643                                    sizeof(struct kvm_pit_config)))
4644                         goto out;
4645         create_pit:
4646                 mutex_lock(&kvm->lock);
4647                 r = -EEXIST;
4648                 if (kvm->arch.vpit)
4649                         goto create_pit_unlock;
4650                 r = -ENOMEM;
4651                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4652                 if (kvm->arch.vpit)
4653                         r = 0;
4654         create_pit_unlock:
4655                 mutex_unlock(&kvm->lock);
4656                 break;
4657         case KVM_GET_IRQCHIP: {
4658                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4659                 struct kvm_irqchip *chip;
4660
4661                 chip = memdup_user(argp, sizeof(*chip));
4662                 if (IS_ERR(chip)) {
4663                         r = PTR_ERR(chip);
4664                         goto out;
4665                 }
4666
4667                 r = -ENXIO;
4668                 if (!irqchip_kernel(kvm))
4669                         goto get_irqchip_out;
4670                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4671                 if (r)
4672                         goto get_irqchip_out;
4673                 r = -EFAULT;
4674                 if (copy_to_user(argp, chip, sizeof(*chip)))
4675                         goto get_irqchip_out;
4676                 r = 0;
4677         get_irqchip_out:
4678                 kfree(chip);
4679                 break;
4680         }
4681         case KVM_SET_IRQCHIP: {
4682                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4683                 struct kvm_irqchip *chip;
4684
4685                 chip = memdup_user(argp, sizeof(*chip));
4686                 if (IS_ERR(chip)) {
4687                         r = PTR_ERR(chip);
4688                         goto out;
4689                 }
4690
4691                 r = -ENXIO;
4692                 if (!irqchip_kernel(kvm))
4693                         goto set_irqchip_out;
4694                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4695                 if (r)
4696                         goto set_irqchip_out;
4697                 r = 0;
4698         set_irqchip_out:
4699                 kfree(chip);
4700                 break;
4701         }
4702         case KVM_GET_PIT: {
4703                 r = -EFAULT;
4704                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4705                         goto out;
4706                 r = -ENXIO;
4707                 if (!kvm->arch.vpit)
4708                         goto out;
4709                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4710                 if (r)
4711                         goto out;
4712                 r = -EFAULT;
4713                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4714                         goto out;
4715                 r = 0;
4716                 break;
4717         }
4718         case KVM_SET_PIT: {
4719                 r = -EFAULT;
4720                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4721                         goto out;
4722                 r = -ENXIO;
4723                 if (!kvm->arch.vpit)
4724                         goto out;
4725                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4726                 break;
4727         }
4728         case KVM_GET_PIT2: {
4729                 r = -ENXIO;
4730                 if (!kvm->arch.vpit)
4731                         goto out;
4732                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4733                 if (r)
4734                         goto out;
4735                 r = -EFAULT;
4736                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4737                         goto out;
4738                 r = 0;
4739                 break;
4740         }
4741         case KVM_SET_PIT2: {
4742                 r = -EFAULT;
4743                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4744                         goto out;
4745                 r = -ENXIO;
4746                 if (!kvm->arch.vpit)
4747                         goto out;
4748                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4749                 break;
4750         }
4751         case KVM_REINJECT_CONTROL: {
4752                 struct kvm_reinject_control control;
4753                 r =  -EFAULT;
4754                 if (copy_from_user(&control, argp, sizeof(control)))
4755                         goto out;
4756                 r = kvm_vm_ioctl_reinject(kvm, &control);
4757                 break;
4758         }
4759         case KVM_SET_BOOT_CPU_ID:
4760                 r = 0;
4761                 mutex_lock(&kvm->lock);
4762                 if (kvm->created_vcpus)
4763                         r = -EBUSY;
4764                 else
4765                         kvm->arch.bsp_vcpu_id = arg;
4766                 mutex_unlock(&kvm->lock);
4767                 break;
4768         case KVM_XEN_HVM_CONFIG: {
4769                 struct kvm_xen_hvm_config xhc;
4770                 r = -EFAULT;
4771                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4772                         goto out;
4773                 r = -EINVAL;
4774                 if (xhc.flags)
4775                         goto out;
4776                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4777                 r = 0;
4778                 break;
4779         }
4780         case KVM_SET_CLOCK: {
4781                 struct kvm_clock_data user_ns;
4782                 u64 now_ns;
4783
4784                 r = -EFAULT;
4785                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4786                         goto out;
4787
4788                 r = -EINVAL;
4789                 if (user_ns.flags)
4790                         goto out;
4791
4792                 r = 0;
4793                 /*
4794                  * TODO: userspace has to take care of races with VCPU_RUN, so
4795                  * kvm_gen_update_masterclock() can be cut down to locked
4796                  * pvclock_update_vm_gtod_copy().
4797                  */
4798                 kvm_gen_update_masterclock(kvm);
4799                 now_ns = get_kvmclock_ns(kvm);
4800                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4801                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4802                 break;
4803         }
4804         case KVM_GET_CLOCK: {
4805                 struct kvm_clock_data user_ns;
4806                 u64 now_ns;
4807
4808                 now_ns = get_kvmclock_ns(kvm);
4809                 user_ns.clock = now_ns;
4810                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4811                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4812
4813                 r = -EFAULT;
4814                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4815                         goto out;
4816                 r = 0;
4817                 break;
4818         }
4819         case KVM_MEMORY_ENCRYPT_OP: {
4820                 r = -ENOTTY;
4821                 if (kvm_x86_ops->mem_enc_op)
4822                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4823                 break;
4824         }
4825         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4826                 struct kvm_enc_region region;
4827
4828                 r = -EFAULT;
4829                 if (copy_from_user(&region, argp, sizeof(region)))
4830                         goto out;
4831
4832                 r = -ENOTTY;
4833                 if (kvm_x86_ops->mem_enc_reg_region)
4834                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4835                 break;
4836         }
4837         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4838                 struct kvm_enc_region region;
4839
4840                 r = -EFAULT;
4841                 if (copy_from_user(&region, argp, sizeof(region)))
4842                         goto out;
4843
4844                 r = -ENOTTY;
4845                 if (kvm_x86_ops->mem_enc_unreg_region)
4846                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4847                 break;
4848         }
4849         case KVM_HYPERV_EVENTFD: {
4850                 struct kvm_hyperv_eventfd hvevfd;
4851
4852                 r = -EFAULT;
4853                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4854                         goto out;
4855                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4856                 break;
4857         }
4858         default:
4859                 r = -ENOTTY;
4860         }
4861 out:
4862         return r;
4863 }
4864
4865 static void kvm_init_msr_list(void)
4866 {
4867         u32 dummy[2];
4868         unsigned i, j;
4869
4870         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4871                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4872                         continue;
4873
4874                 /*
4875                  * Even MSRs that are valid in the host may not be exposed
4876                  * to the guests in some cases.
4877                  */
4878                 switch (msrs_to_save[i]) {
4879                 case MSR_IA32_BNDCFGS:
4880                         if (!kvm_mpx_supported())
4881                                 continue;
4882                         break;
4883                 case MSR_TSC_AUX:
4884                         if (!kvm_x86_ops->rdtscp_supported())
4885                                 continue;
4886                         break;
4887                 default:
4888                         break;
4889                 }
4890
4891                 if (j < i)
4892                         msrs_to_save[j] = msrs_to_save[i];
4893                 j++;
4894         }
4895         num_msrs_to_save = j;
4896
4897         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4898                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4899                         continue;
4900
4901                 if (j < i)
4902                         emulated_msrs[j] = emulated_msrs[i];
4903                 j++;
4904         }
4905         num_emulated_msrs = j;
4906
4907         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4908                 struct kvm_msr_entry msr;
4909
4910                 msr.index = msr_based_features[i];
4911                 if (kvm_get_msr_feature(&msr))
4912                         continue;
4913
4914                 if (j < i)
4915                         msr_based_features[j] = msr_based_features[i];
4916                 j++;
4917         }
4918         num_msr_based_features = j;
4919 }
4920
4921 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4922                            const void *v)
4923 {
4924         int handled = 0;
4925         int n;
4926
4927         do {
4928                 n = min(len, 8);
4929                 if (!(lapic_in_kernel(vcpu) &&
4930                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4931                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4932                         break;
4933                 handled += n;
4934                 addr += n;
4935                 len -= n;
4936                 v += n;
4937         } while (len);
4938
4939         return handled;
4940 }
4941
4942 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4943 {
4944         int handled = 0;
4945         int n;
4946
4947         do {
4948                 n = min(len, 8);
4949                 if (!(lapic_in_kernel(vcpu) &&
4950                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4951                                          addr, n, v))
4952                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4953                         break;
4954                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4955                 handled += n;
4956                 addr += n;
4957                 len -= n;
4958                 v += n;
4959         } while (len);
4960
4961         return handled;
4962 }
4963
4964 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4965                         struct kvm_segment *var, int seg)
4966 {
4967         kvm_x86_ops->set_segment(vcpu, var, seg);
4968 }
4969
4970 void kvm_get_segment(struct kvm_vcpu *vcpu,
4971                      struct kvm_segment *var, int seg)
4972 {
4973         kvm_x86_ops->get_segment(vcpu, var, seg);
4974 }
4975
4976 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4977                            struct x86_exception *exception)
4978 {
4979         gpa_t t_gpa;
4980
4981         BUG_ON(!mmu_is_nested(vcpu));
4982
4983         /* NPT walks are always user-walks */
4984         access |= PFERR_USER_MASK;
4985         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
4986
4987         return t_gpa;
4988 }
4989
4990 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4991                               struct x86_exception *exception)
4992 {
4993         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4994         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4995 }
4996
4997  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4998                                 struct x86_exception *exception)
4999 {
5000         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5001         access |= PFERR_FETCH_MASK;
5002         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5003 }
5004
5005 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5006                                struct x86_exception *exception)
5007 {
5008         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5009         access |= PFERR_WRITE_MASK;
5010         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5011 }
5012
5013 /* uses this to access any guest's mapped memory without checking CPL */
5014 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5015                                 struct x86_exception *exception)
5016 {
5017         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5018 }
5019
5020 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5021                                       struct kvm_vcpu *vcpu, u32 access,
5022                                       struct x86_exception *exception)
5023 {
5024         void *data = val;
5025         int r = X86EMUL_CONTINUE;
5026
5027         while (bytes) {
5028                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5029                                                             exception);
5030                 unsigned offset = addr & (PAGE_SIZE-1);
5031                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5032                 int ret;
5033
5034                 if (gpa == UNMAPPED_GVA)
5035                         return X86EMUL_PROPAGATE_FAULT;
5036                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5037                                                offset, toread);
5038                 if (ret < 0) {
5039                         r = X86EMUL_IO_NEEDED;
5040                         goto out;
5041                 }
5042
5043                 bytes -= toread;
5044                 data += toread;
5045                 addr += toread;
5046         }
5047 out:
5048         return r;
5049 }
5050
5051 /* used for instruction fetching */
5052 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5053                                 gva_t addr, void *val, unsigned int bytes,
5054                                 struct x86_exception *exception)
5055 {
5056         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5057         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5058         unsigned offset;
5059         int ret;
5060
5061         /* Inline kvm_read_guest_virt_helper for speed.  */
5062         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5063                                                     exception);
5064         if (unlikely(gpa == UNMAPPED_GVA))
5065                 return X86EMUL_PROPAGATE_FAULT;
5066
5067         offset = addr & (PAGE_SIZE-1);
5068         if (WARN_ON(offset + bytes > PAGE_SIZE))
5069                 bytes = (unsigned)PAGE_SIZE - offset;
5070         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5071                                        offset, bytes);
5072         if (unlikely(ret < 0))
5073                 return X86EMUL_IO_NEEDED;
5074
5075         return X86EMUL_CONTINUE;
5076 }
5077
5078 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5079                                gva_t addr, void *val, unsigned int bytes,
5080                                struct x86_exception *exception)
5081 {
5082         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5083
5084         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5085                                           exception);
5086 }
5087 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5088
5089 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5090                              gva_t addr, void *val, unsigned int bytes,
5091                              struct x86_exception *exception, bool system)
5092 {
5093         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5094         u32 access = 0;
5095
5096         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5097                 access |= PFERR_USER_MASK;
5098
5099         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5100 }
5101
5102 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5103                 unsigned long addr, void *val, unsigned int bytes)
5104 {
5105         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5106         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5107
5108         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5109 }
5110
5111 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5112                                       struct kvm_vcpu *vcpu, u32 access,
5113                                       struct x86_exception *exception)
5114 {
5115         void *data = val;
5116         int r = X86EMUL_CONTINUE;
5117
5118         while (bytes) {
5119                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5120                                                              access,
5121                                                              exception);
5122                 unsigned offset = addr & (PAGE_SIZE-1);
5123                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5124                 int ret;
5125
5126                 if (gpa == UNMAPPED_GVA)
5127                         return X86EMUL_PROPAGATE_FAULT;
5128                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5129                 if (ret < 0) {
5130                         r = X86EMUL_IO_NEEDED;
5131                         goto out;
5132                 }
5133
5134                 bytes -= towrite;
5135                 data += towrite;
5136                 addr += towrite;
5137         }
5138 out:
5139         return r;
5140 }
5141
5142 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5143                               unsigned int bytes, struct x86_exception *exception,
5144                               bool system)
5145 {
5146         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5147         u32 access = PFERR_WRITE_MASK;
5148
5149         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5150                 access |= PFERR_USER_MASK;
5151
5152         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5153                                            access, exception);
5154 }
5155
5156 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5157                                 unsigned int bytes, struct x86_exception *exception)
5158 {
5159         /* kvm_write_guest_virt_system can pull in tons of pages. */
5160         vcpu->arch.l1tf_flush_l1d = true;
5161
5162         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5163                                            PFERR_WRITE_MASK, exception);
5164 }
5165 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5166
5167 int handle_ud(struct kvm_vcpu *vcpu)
5168 {
5169         int emul_type = EMULTYPE_TRAP_UD;
5170         enum emulation_result er;
5171         char sig[5]; /* ud2; .ascii "kvm" */
5172         struct x86_exception e;
5173
5174         if (force_emulation_prefix &&
5175             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5176                                 sig, sizeof(sig), &e) == 0 &&
5177             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5178                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5179                 emul_type = 0;
5180         }
5181
5182         er = kvm_emulate_instruction(vcpu, emul_type);
5183         if (er == EMULATE_USER_EXIT)
5184                 return 0;
5185         if (er != EMULATE_DONE)
5186                 kvm_queue_exception(vcpu, UD_VECTOR);
5187         return 1;
5188 }
5189 EXPORT_SYMBOL_GPL(handle_ud);
5190
5191 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5192                             gpa_t gpa, bool write)
5193 {
5194         /* For APIC access vmexit */
5195         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5196                 return 1;
5197
5198         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5199                 trace_vcpu_match_mmio(gva, gpa, write, true);
5200                 return 1;
5201         }
5202
5203         return 0;
5204 }
5205
5206 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5207                                 gpa_t *gpa, struct x86_exception *exception,
5208                                 bool write)
5209 {
5210         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5211                 | (write ? PFERR_WRITE_MASK : 0);
5212
5213         /*
5214          * currently PKRU is only applied to ept enabled guest so
5215          * there is no pkey in EPT page table for L1 guest or EPT
5216          * shadow page table for L2 guest.
5217          */
5218         if (vcpu_match_mmio_gva(vcpu, gva)
5219             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5220                                  vcpu->arch.access, 0, access)) {
5221                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5222                                         (gva & (PAGE_SIZE - 1));
5223                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5224                 return 1;
5225         }
5226
5227         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5228
5229         if (*gpa == UNMAPPED_GVA)
5230                 return -1;
5231
5232         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5233 }
5234
5235 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5236                         const void *val, int bytes)
5237 {
5238         int ret;
5239
5240         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5241         if (ret < 0)
5242                 return 0;
5243         kvm_page_track_write(vcpu, gpa, val, bytes);
5244         return 1;
5245 }
5246
5247 struct read_write_emulator_ops {
5248         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5249                                   int bytes);
5250         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5251                                   void *val, int bytes);
5252         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5253                                int bytes, void *val);
5254         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5255                                     void *val, int bytes);
5256         bool write;
5257 };
5258
5259 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5260 {
5261         if (vcpu->mmio_read_completed) {
5262                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5263                                vcpu->mmio_fragments[0].gpa, val);
5264                 vcpu->mmio_read_completed = 0;
5265                 return 1;
5266         }
5267
5268         return 0;
5269 }
5270
5271 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5272                         void *val, int bytes)
5273 {
5274         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5275 }
5276
5277 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5278                          void *val, int bytes)
5279 {
5280         return emulator_write_phys(vcpu, gpa, val, bytes);
5281 }
5282
5283 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5284 {
5285         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5286         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5287 }
5288
5289 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5290                           void *val, int bytes)
5291 {
5292         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5293         return X86EMUL_IO_NEEDED;
5294 }
5295
5296 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5297                            void *val, int bytes)
5298 {
5299         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5300
5301         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5302         return X86EMUL_CONTINUE;
5303 }
5304
5305 static const struct read_write_emulator_ops read_emultor = {
5306         .read_write_prepare = read_prepare,
5307         .read_write_emulate = read_emulate,
5308         .read_write_mmio = vcpu_mmio_read,
5309         .read_write_exit_mmio = read_exit_mmio,
5310 };
5311
5312 static const struct read_write_emulator_ops write_emultor = {
5313         .read_write_emulate = write_emulate,
5314         .read_write_mmio = write_mmio,
5315         .read_write_exit_mmio = write_exit_mmio,
5316         .write = true,
5317 };
5318
5319 static int emulator_read_write_onepage(unsigned long addr, void *val,
5320                                        unsigned int bytes,
5321                                        struct x86_exception *exception,
5322                                        struct kvm_vcpu *vcpu,
5323                                        const struct read_write_emulator_ops *ops)
5324 {
5325         gpa_t gpa;
5326         int handled, ret;
5327         bool write = ops->write;
5328         struct kvm_mmio_fragment *frag;
5329         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5330
5331         /*
5332          * If the exit was due to a NPF we may already have a GPA.
5333          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5334          * Note, this cannot be used on string operations since string
5335          * operation using rep will only have the initial GPA from the NPF
5336          * occurred.
5337          */
5338         if (vcpu->arch.gpa_available &&
5339             emulator_can_use_gpa(ctxt) &&
5340             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5341                 gpa = vcpu->arch.gpa_val;
5342                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5343         } else {
5344                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5345                 if (ret < 0)
5346                         return X86EMUL_PROPAGATE_FAULT;
5347         }
5348
5349         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5350                 return X86EMUL_CONTINUE;
5351
5352         /*
5353          * Is this MMIO handled locally?
5354          */
5355         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5356         if (handled == bytes)
5357                 return X86EMUL_CONTINUE;
5358
5359         gpa += handled;
5360         bytes -= handled;
5361         val += handled;
5362
5363         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5364         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5365         frag->gpa = gpa;
5366         frag->data = val;
5367         frag->len = bytes;
5368         return X86EMUL_CONTINUE;
5369 }
5370
5371 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5372                         unsigned long addr,
5373                         void *val, unsigned int bytes,
5374                         struct x86_exception *exception,
5375                         const struct read_write_emulator_ops *ops)
5376 {
5377         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5378         gpa_t gpa;
5379         int rc;
5380
5381         if (ops->read_write_prepare &&
5382                   ops->read_write_prepare(vcpu, val, bytes))
5383                 return X86EMUL_CONTINUE;
5384
5385         vcpu->mmio_nr_fragments = 0;
5386
5387         /* Crossing a page boundary? */
5388         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5389                 int now;
5390
5391                 now = -addr & ~PAGE_MASK;
5392                 rc = emulator_read_write_onepage(addr, val, now, exception,
5393                                                  vcpu, ops);
5394
5395                 if (rc != X86EMUL_CONTINUE)
5396                         return rc;
5397                 addr += now;
5398                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5399                         addr = (u32)addr;
5400                 val += now;
5401                 bytes -= now;
5402         }
5403
5404         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5405                                          vcpu, ops);
5406         if (rc != X86EMUL_CONTINUE)
5407                 return rc;
5408
5409         if (!vcpu->mmio_nr_fragments)
5410                 return rc;
5411
5412         gpa = vcpu->mmio_fragments[0].gpa;
5413
5414         vcpu->mmio_needed = 1;
5415         vcpu->mmio_cur_fragment = 0;
5416
5417         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5418         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5419         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5420         vcpu->run->mmio.phys_addr = gpa;
5421
5422         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5423 }
5424
5425 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5426                                   unsigned long addr,
5427                                   void *val,
5428                                   unsigned int bytes,
5429                                   struct x86_exception *exception)
5430 {
5431         return emulator_read_write(ctxt, addr, val, bytes,
5432                                    exception, &read_emultor);
5433 }
5434
5435 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5436                             unsigned long addr,
5437                             const void *val,
5438                             unsigned int bytes,
5439                             struct x86_exception *exception)
5440 {
5441         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5442                                    exception, &write_emultor);
5443 }
5444
5445 #define CMPXCHG_TYPE(t, ptr, old, new) \
5446         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5447
5448 #ifdef CONFIG_X86_64
5449 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5450 #else
5451 #  define CMPXCHG64(ptr, old, new) \
5452         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5453 #endif
5454
5455 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5456                                      unsigned long addr,
5457                                      const void *old,
5458                                      const void *new,
5459                                      unsigned int bytes,
5460                                      struct x86_exception *exception)
5461 {
5462         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5463         gpa_t gpa;
5464         struct page *page;
5465         char *kaddr;
5466         bool exchanged;
5467
5468         /* guests cmpxchg8b have to be emulated atomically */
5469         if (bytes > 8 || (bytes & (bytes - 1)))
5470                 goto emul_write;
5471
5472         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5473
5474         if (gpa == UNMAPPED_GVA ||
5475             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5476                 goto emul_write;
5477
5478         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5479                 goto emul_write;
5480
5481         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5482         if (is_error_page(page))
5483                 goto emul_write;
5484
5485         kaddr = kmap_atomic(page);
5486         kaddr += offset_in_page(gpa);
5487         switch (bytes) {
5488         case 1:
5489                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5490                 break;
5491         case 2:
5492                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5493                 break;
5494         case 4:
5495                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5496                 break;
5497         case 8:
5498                 exchanged = CMPXCHG64(kaddr, old, new);
5499                 break;
5500         default:
5501                 BUG();
5502         }
5503         kunmap_atomic(kaddr);
5504         kvm_release_page_dirty(page);
5505
5506         if (!exchanged)
5507                 return X86EMUL_CMPXCHG_FAILED;
5508
5509         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5510         kvm_page_track_write(vcpu, gpa, new, bytes);
5511
5512         return X86EMUL_CONTINUE;
5513
5514 emul_write:
5515         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5516
5517         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5518 }
5519
5520 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5521 {
5522         int r = 0, i;
5523
5524         for (i = 0; i < vcpu->arch.pio.count; i++) {
5525                 if (vcpu->arch.pio.in)
5526                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5527                                             vcpu->arch.pio.size, pd);
5528                 else
5529                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5530                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5531                                              pd);
5532                 if (r)
5533                         break;
5534                 pd += vcpu->arch.pio.size;
5535         }
5536         return r;
5537 }
5538
5539 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5540                                unsigned short port, void *val,
5541                                unsigned int count, bool in)
5542 {
5543         vcpu->arch.pio.port = port;
5544         vcpu->arch.pio.in = in;
5545         vcpu->arch.pio.count  = count;
5546         vcpu->arch.pio.size = size;
5547
5548         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5549                 vcpu->arch.pio.count = 0;
5550                 return 1;
5551         }
5552
5553         vcpu->run->exit_reason = KVM_EXIT_IO;
5554         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5555         vcpu->run->io.size = size;
5556         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5557         vcpu->run->io.count = count;
5558         vcpu->run->io.port = port;
5559
5560         return 0;
5561 }
5562
5563 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5564                                     int size, unsigned short port, void *val,
5565                                     unsigned int count)
5566 {
5567         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5568         int ret;
5569
5570         if (vcpu->arch.pio.count)
5571                 goto data_avail;
5572
5573         memset(vcpu->arch.pio_data, 0, size * count);
5574
5575         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5576         if (ret) {
5577 data_avail:
5578                 memcpy(val, vcpu->arch.pio_data, size * count);
5579                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5580                 vcpu->arch.pio.count = 0;
5581                 return 1;
5582         }
5583
5584         return 0;
5585 }
5586
5587 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5588                                      int size, unsigned short port,
5589                                      const void *val, unsigned int count)
5590 {
5591         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5592
5593         memcpy(vcpu->arch.pio_data, val, size * count);
5594         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5595         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5596 }
5597
5598 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5599 {
5600         return kvm_x86_ops->get_segment_base(vcpu, seg);
5601 }
5602
5603 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5604 {
5605         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5606 }
5607
5608 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5609 {
5610         if (!need_emulate_wbinvd(vcpu))
5611                 return X86EMUL_CONTINUE;
5612
5613         if (kvm_x86_ops->has_wbinvd_exit()) {
5614                 int cpu = get_cpu();
5615
5616                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5617                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5618                                 wbinvd_ipi, NULL, 1);
5619                 put_cpu();
5620                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5621         } else
5622                 wbinvd();
5623         return X86EMUL_CONTINUE;
5624 }
5625
5626 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5627 {
5628         kvm_emulate_wbinvd_noskip(vcpu);
5629         return kvm_skip_emulated_instruction(vcpu);
5630 }
5631 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5632
5633
5634
5635 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5636 {
5637         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5638 }
5639
5640 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5641                            unsigned long *dest)
5642 {
5643         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5644 }
5645
5646 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5647                            unsigned long value)
5648 {
5649
5650         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5651 }
5652
5653 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5654 {
5655         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5656 }
5657
5658 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5659 {
5660         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5661         unsigned long value;
5662
5663         switch (cr) {
5664         case 0:
5665                 value = kvm_read_cr0(vcpu);
5666                 break;
5667         case 2:
5668                 value = vcpu->arch.cr2;
5669                 break;
5670         case 3:
5671                 value = kvm_read_cr3(vcpu);
5672                 break;
5673         case 4:
5674                 value = kvm_read_cr4(vcpu);
5675                 break;
5676         case 8:
5677                 value = kvm_get_cr8(vcpu);
5678                 break;
5679         default:
5680                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5681                 return 0;
5682         }
5683
5684         return value;
5685 }
5686
5687 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5688 {
5689         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5690         int res = 0;
5691
5692         switch (cr) {
5693         case 0:
5694                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5695                 break;
5696         case 2:
5697                 vcpu->arch.cr2 = val;
5698                 break;
5699         case 3:
5700                 res = kvm_set_cr3(vcpu, val);
5701                 break;
5702         case 4:
5703                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5704                 break;
5705         case 8:
5706                 res = kvm_set_cr8(vcpu, val);
5707                 break;
5708         default:
5709                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5710                 res = -1;
5711         }
5712
5713         return res;
5714 }
5715
5716 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5717 {
5718         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5719 }
5720
5721 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5722 {
5723         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5724 }
5725
5726 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5727 {
5728         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5729 }
5730
5731 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5732 {
5733         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5734 }
5735
5736 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5737 {
5738         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5739 }
5740
5741 static unsigned long emulator_get_cached_segment_base(
5742         struct x86_emulate_ctxt *ctxt, int seg)
5743 {
5744         return get_segment_base(emul_to_vcpu(ctxt), seg);
5745 }
5746
5747 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5748                                  struct desc_struct *desc, u32 *base3,
5749                                  int seg)
5750 {
5751         struct kvm_segment var;
5752
5753         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5754         *selector = var.selector;
5755
5756         if (var.unusable) {
5757                 memset(desc, 0, sizeof(*desc));
5758                 if (base3)
5759                         *base3 = 0;
5760                 return false;
5761         }
5762
5763         if (var.g)
5764                 var.limit >>= 12;
5765         set_desc_limit(desc, var.limit);
5766         set_desc_base(desc, (unsigned long)var.base);
5767 #ifdef CONFIG_X86_64
5768         if (base3)
5769                 *base3 = var.base >> 32;
5770 #endif
5771         desc->type = var.type;
5772         desc->s = var.s;
5773         desc->dpl = var.dpl;
5774         desc->p = var.present;
5775         desc->avl = var.avl;
5776         desc->l = var.l;
5777         desc->d = var.db;
5778         desc->g = var.g;
5779
5780         return true;
5781 }
5782
5783 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5784                                  struct desc_struct *desc, u32 base3,
5785                                  int seg)
5786 {
5787         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5788         struct kvm_segment var;
5789
5790         var.selector = selector;
5791         var.base = get_desc_base(desc);
5792 #ifdef CONFIG_X86_64
5793         var.base |= ((u64)base3) << 32;
5794 #endif
5795         var.limit = get_desc_limit(desc);
5796         if (desc->g)
5797                 var.limit = (var.limit << 12) | 0xfff;
5798         var.type = desc->type;
5799         var.dpl = desc->dpl;
5800         var.db = desc->d;
5801         var.s = desc->s;
5802         var.l = desc->l;
5803         var.g = desc->g;
5804         var.avl = desc->avl;
5805         var.present = desc->p;
5806         var.unusable = !var.present;
5807         var.padding = 0;
5808
5809         kvm_set_segment(vcpu, &var, seg);
5810         return;
5811 }
5812
5813 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5814                             u32 msr_index, u64 *pdata)
5815 {
5816         struct msr_data msr;
5817         int r;
5818
5819         msr.index = msr_index;
5820         msr.host_initiated = false;
5821         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5822         if (r)
5823                 return r;
5824
5825         *pdata = msr.data;
5826         return 0;
5827 }
5828
5829 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5830                             u32 msr_index, u64 data)
5831 {
5832         struct msr_data msr;
5833
5834         msr.data = data;
5835         msr.index = msr_index;
5836         msr.host_initiated = false;
5837         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5838 }
5839
5840 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5841 {
5842         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5843
5844         return vcpu->arch.smbase;
5845 }
5846
5847 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5848 {
5849         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5850
5851         vcpu->arch.smbase = smbase;
5852 }
5853
5854 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5855                               u32 pmc)
5856 {
5857         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5858 }
5859
5860 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5861                              u32 pmc, u64 *pdata)
5862 {
5863         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5864 }
5865
5866 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5867 {
5868         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5869 }
5870
5871 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5872                               struct x86_instruction_info *info,
5873                               enum x86_intercept_stage stage)
5874 {
5875         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5876 }
5877
5878 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5879                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5880 {
5881         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5882 }
5883
5884 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5885 {
5886         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5887 }
5888
5889 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5890 {
5891         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5892 }
5893
5894 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5895 {
5896         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5897 }
5898
5899 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5900 {
5901         return emul_to_vcpu(ctxt)->arch.hflags;
5902 }
5903
5904 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5905 {
5906         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5907 }
5908
5909 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5910 {
5911         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5912 }
5913
5914 static const struct x86_emulate_ops emulate_ops = {
5915         .read_gpr            = emulator_read_gpr,
5916         .write_gpr           = emulator_write_gpr,
5917         .read_std            = emulator_read_std,
5918         .write_std           = emulator_write_std,
5919         .read_phys           = kvm_read_guest_phys_system,
5920         .fetch               = kvm_fetch_guest_virt,
5921         .read_emulated       = emulator_read_emulated,
5922         .write_emulated      = emulator_write_emulated,
5923         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5924         .invlpg              = emulator_invlpg,
5925         .pio_in_emulated     = emulator_pio_in_emulated,
5926         .pio_out_emulated    = emulator_pio_out_emulated,
5927         .get_segment         = emulator_get_segment,
5928         .set_segment         = emulator_set_segment,
5929         .get_cached_segment_base = emulator_get_cached_segment_base,
5930         .get_gdt             = emulator_get_gdt,
5931         .get_idt             = emulator_get_idt,
5932         .set_gdt             = emulator_set_gdt,
5933         .set_idt             = emulator_set_idt,
5934         .get_cr              = emulator_get_cr,
5935         .set_cr              = emulator_set_cr,
5936         .cpl                 = emulator_get_cpl,
5937         .get_dr              = emulator_get_dr,
5938         .set_dr              = emulator_set_dr,
5939         .get_smbase          = emulator_get_smbase,
5940         .set_smbase          = emulator_set_smbase,
5941         .set_msr             = emulator_set_msr,
5942         .get_msr             = emulator_get_msr,
5943         .check_pmc           = emulator_check_pmc,
5944         .read_pmc            = emulator_read_pmc,
5945         .halt                = emulator_halt,
5946         .wbinvd              = emulator_wbinvd,
5947         .fix_hypercall       = emulator_fix_hypercall,
5948         .intercept           = emulator_intercept,
5949         .get_cpuid           = emulator_get_cpuid,
5950         .set_nmi_mask        = emulator_set_nmi_mask,
5951         .get_hflags          = emulator_get_hflags,
5952         .set_hflags          = emulator_set_hflags,
5953         .pre_leave_smm       = emulator_pre_leave_smm,
5954 };
5955
5956 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5957 {
5958         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5959         /*
5960          * an sti; sti; sequence only disable interrupts for the first
5961          * instruction. So, if the last instruction, be it emulated or
5962          * not, left the system with the INT_STI flag enabled, it
5963          * means that the last instruction is an sti. We should not
5964          * leave the flag on in this case. The same goes for mov ss
5965          */
5966         if (int_shadow & mask)
5967                 mask = 0;
5968         if (unlikely(int_shadow || mask)) {
5969                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5970                 if (!mask)
5971                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5972         }
5973 }
5974
5975 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5976 {
5977         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5978         if (ctxt->exception.vector == PF_VECTOR)
5979                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5980
5981         if (ctxt->exception.error_code_valid)
5982                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5983                                       ctxt->exception.error_code);
5984         else
5985                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5986         return false;
5987 }
5988
5989 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5990 {
5991         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5992         int cs_db, cs_l;
5993
5994         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5995
5996         ctxt->eflags = kvm_get_rflags(vcpu);
5997         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5998
5999         ctxt->eip = kvm_rip_read(vcpu);
6000         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6001                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6002                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6003                      cs_db                              ? X86EMUL_MODE_PROT32 :
6004                                                           X86EMUL_MODE_PROT16;
6005         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6006         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6007         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6008
6009         init_decode_cache(ctxt);
6010         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6011 }
6012
6013 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6014 {
6015         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6016         int ret;
6017
6018         init_emulate_ctxt(vcpu);
6019
6020         ctxt->op_bytes = 2;
6021         ctxt->ad_bytes = 2;
6022         ctxt->_eip = ctxt->eip + inc_eip;
6023         ret = emulate_int_real(ctxt, irq);
6024
6025         if (ret != X86EMUL_CONTINUE)
6026                 return EMULATE_FAIL;
6027
6028         ctxt->eip = ctxt->_eip;
6029         kvm_rip_write(vcpu, ctxt->eip);
6030         kvm_set_rflags(vcpu, ctxt->eflags);
6031
6032         return EMULATE_DONE;
6033 }
6034 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6035
6036 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6037 {
6038         int r = EMULATE_DONE;
6039
6040         ++vcpu->stat.insn_emulation_fail;
6041         trace_kvm_emulate_insn_failed(vcpu);
6042
6043         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6044                 return EMULATE_FAIL;
6045
6046         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6047                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6048                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6049                 vcpu->run->internal.ndata = 0;
6050                 r = EMULATE_USER_EXIT;
6051         }
6052
6053         kvm_queue_exception(vcpu, UD_VECTOR);
6054
6055         return r;
6056 }
6057
6058 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6059                                   bool write_fault_to_shadow_pgtable,
6060                                   int emulation_type)
6061 {
6062         gpa_t gpa = cr2;
6063         kvm_pfn_t pfn;
6064
6065         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6066                 return false;
6067
6068         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6069                 return false;
6070
6071         if (!vcpu->arch.mmu->direct_map) {
6072                 /*
6073                  * Write permission should be allowed since only
6074                  * write access need to be emulated.
6075                  */
6076                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6077
6078                 /*
6079                  * If the mapping is invalid in guest, let cpu retry
6080                  * it to generate fault.
6081                  */
6082                 if (gpa == UNMAPPED_GVA)
6083                         return true;
6084         }
6085
6086         /*
6087          * Do not retry the unhandleable instruction if it faults on the
6088          * readonly host memory, otherwise it will goto a infinite loop:
6089          * retry instruction -> write #PF -> emulation fail -> retry
6090          * instruction -> ...
6091          */
6092         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6093
6094         /*
6095          * If the instruction failed on the error pfn, it can not be fixed,
6096          * report the error to userspace.
6097          */
6098         if (is_error_noslot_pfn(pfn))
6099                 return false;
6100
6101         kvm_release_pfn_clean(pfn);
6102
6103         /* The instructions are well-emulated on direct mmu. */
6104         if (vcpu->arch.mmu->direct_map) {
6105                 unsigned int indirect_shadow_pages;
6106
6107                 spin_lock(&vcpu->kvm->mmu_lock);
6108                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6109                 spin_unlock(&vcpu->kvm->mmu_lock);
6110
6111                 if (indirect_shadow_pages)
6112                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6113
6114                 return true;
6115         }
6116
6117         /*
6118          * if emulation was due to access to shadowed page table
6119          * and it failed try to unshadow page and re-enter the
6120          * guest to let CPU execute the instruction.
6121          */
6122         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6123
6124         /*
6125          * If the access faults on its page table, it can not
6126          * be fixed by unprotecting shadow page and it should
6127          * be reported to userspace.
6128          */
6129         return !write_fault_to_shadow_pgtable;
6130 }
6131
6132 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6133                               unsigned long cr2,  int emulation_type)
6134 {
6135         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6136         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6137
6138         last_retry_eip = vcpu->arch.last_retry_eip;
6139         last_retry_addr = vcpu->arch.last_retry_addr;
6140
6141         /*
6142          * If the emulation is caused by #PF and it is non-page_table
6143          * writing instruction, it means the VM-EXIT is caused by shadow
6144          * page protected, we can zap the shadow page and retry this
6145          * instruction directly.
6146          *
6147          * Note: if the guest uses a non-page-table modifying instruction
6148          * on the PDE that points to the instruction, then we will unmap
6149          * the instruction and go to an infinite loop. So, we cache the
6150          * last retried eip and the last fault address, if we meet the eip
6151          * and the address again, we can break out of the potential infinite
6152          * loop.
6153          */
6154         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6155
6156         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6157                 return false;
6158
6159         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6160                 return false;
6161
6162         if (x86_page_table_writing_insn(ctxt))
6163                 return false;
6164
6165         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6166                 return false;
6167
6168         vcpu->arch.last_retry_eip = ctxt->eip;
6169         vcpu->arch.last_retry_addr = cr2;
6170
6171         if (!vcpu->arch.mmu->direct_map)
6172                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6173
6174         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6175
6176         return true;
6177 }
6178
6179 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6180 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6181
6182 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6183 {
6184         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6185                 /* This is a good place to trace that we are exiting SMM.  */
6186                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6187
6188                 /* Process a latched INIT or SMI, if any.  */
6189                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6190         }
6191
6192         kvm_mmu_reset_context(vcpu);
6193 }
6194
6195 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6196 {
6197         unsigned changed = vcpu->arch.hflags ^ emul_flags;
6198
6199         vcpu->arch.hflags = emul_flags;
6200
6201         if (changed & HF_SMM_MASK)
6202                 kvm_smm_changed(vcpu);
6203 }
6204
6205 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6206                                 unsigned long *db)
6207 {
6208         u32 dr6 = 0;
6209         int i;
6210         u32 enable, rwlen;
6211
6212         enable = dr7;
6213         rwlen = dr7 >> 16;
6214         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6215                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6216                         dr6 |= (1 << i);
6217         return dr6;
6218 }
6219
6220 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6221 {
6222         struct kvm_run *kvm_run = vcpu->run;
6223
6224         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6225                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6226                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6227                 kvm_run->debug.arch.exception = DB_VECTOR;
6228                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6229                 *r = EMULATE_USER_EXIT;
6230         } else {
6231                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6232         }
6233 }
6234
6235 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6236 {
6237         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6238         int r = EMULATE_DONE;
6239
6240         kvm_x86_ops->skip_emulated_instruction(vcpu);
6241
6242         /*
6243          * rflags is the old, "raw" value of the flags.  The new value has
6244          * not been saved yet.
6245          *
6246          * This is correct even for TF set by the guest, because "the
6247          * processor will not generate this exception after the instruction
6248          * that sets the TF flag".
6249          */
6250         if (unlikely(rflags & X86_EFLAGS_TF))
6251                 kvm_vcpu_do_singlestep(vcpu, &r);
6252         return r == EMULATE_DONE;
6253 }
6254 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6255
6256 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6257 {
6258         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6259             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6260                 struct kvm_run *kvm_run = vcpu->run;
6261                 unsigned long eip = kvm_get_linear_rip(vcpu);
6262                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6263                                            vcpu->arch.guest_debug_dr7,
6264                                            vcpu->arch.eff_db);
6265
6266                 if (dr6 != 0) {
6267                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6268                         kvm_run->debug.arch.pc = eip;
6269                         kvm_run->debug.arch.exception = DB_VECTOR;
6270                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6271                         *r = EMULATE_USER_EXIT;
6272                         return true;
6273                 }
6274         }
6275
6276         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6277             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6278                 unsigned long eip = kvm_get_linear_rip(vcpu);
6279                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6280                                            vcpu->arch.dr7,
6281                                            vcpu->arch.db);
6282
6283                 if (dr6 != 0) {
6284                         vcpu->arch.dr6 &= ~15;
6285                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6286                         kvm_queue_exception(vcpu, DB_VECTOR);
6287                         *r = EMULATE_DONE;
6288                         return true;
6289                 }
6290         }
6291
6292         return false;
6293 }
6294
6295 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6296 {
6297         switch (ctxt->opcode_len) {
6298         case 1:
6299                 switch (ctxt->b) {
6300                 case 0xe4:      /* IN */
6301                 case 0xe5:
6302                 case 0xec:
6303                 case 0xed:
6304                 case 0xe6:      /* OUT */
6305                 case 0xe7:
6306                 case 0xee:
6307                 case 0xef:
6308                 case 0x6c:      /* INS */
6309                 case 0x6d:
6310                 case 0x6e:      /* OUTS */
6311                 case 0x6f:
6312                         return true;
6313                 }
6314                 break;
6315         case 2:
6316                 switch (ctxt->b) {
6317                 case 0x33:      /* RDPMC */
6318                         return true;
6319                 }
6320                 break;
6321         }
6322
6323         return false;
6324 }
6325
6326 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6327                             unsigned long cr2,
6328                             int emulation_type,
6329                             void *insn,
6330                             int insn_len)
6331 {
6332         int r;
6333         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6334         bool writeback = true;
6335         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6336
6337         vcpu->arch.l1tf_flush_l1d = true;
6338
6339         /*
6340          * Clear write_fault_to_shadow_pgtable here to ensure it is
6341          * never reused.
6342          */
6343         vcpu->arch.write_fault_to_shadow_pgtable = false;
6344         kvm_clear_exception_queue(vcpu);
6345
6346         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6347                 init_emulate_ctxt(vcpu);
6348
6349                 /*
6350                  * We will reenter on the same instruction since
6351                  * we do not set complete_userspace_io.  This does not
6352                  * handle watchpoints yet, those would be handled in
6353                  * the emulate_ops.
6354                  */
6355                 if (!(emulation_type & EMULTYPE_SKIP) &&
6356                     kvm_vcpu_check_breakpoint(vcpu, &r))
6357                         return r;
6358
6359                 ctxt->interruptibility = 0;
6360                 ctxt->have_exception = false;
6361                 ctxt->exception.vector = -1;
6362                 ctxt->perm_ok = false;
6363
6364                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6365
6366                 r = x86_decode_insn(ctxt, insn, insn_len);
6367
6368                 trace_kvm_emulate_insn_start(vcpu);
6369                 ++vcpu->stat.insn_emulation;
6370                 if (r != EMULATION_OK)  {
6371                         if (emulation_type & EMULTYPE_TRAP_UD)
6372                                 return EMULATE_FAIL;
6373                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6374                                                 emulation_type))
6375                                 return EMULATE_DONE;
6376                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6377                                 return EMULATE_DONE;
6378                         if (emulation_type & EMULTYPE_SKIP)
6379                                 return EMULATE_FAIL;
6380                         return handle_emulation_failure(vcpu, emulation_type);
6381                 }
6382         }
6383
6384         if ((emulation_type & EMULTYPE_VMWARE) &&
6385             !is_vmware_backdoor_opcode(ctxt))
6386                 return EMULATE_FAIL;
6387
6388         if (emulation_type & EMULTYPE_SKIP) {
6389                 kvm_rip_write(vcpu, ctxt->_eip);
6390                 if (ctxt->eflags & X86_EFLAGS_RF)
6391                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6392                 return EMULATE_DONE;
6393         }
6394
6395         if (retry_instruction(ctxt, cr2, emulation_type))
6396                 return EMULATE_DONE;
6397
6398         /* this is needed for vmware backdoor interface to work since it
6399            changes registers values  during IO operation */
6400         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6401                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6402                 emulator_invalidate_register_cache(ctxt);
6403         }
6404
6405 restart:
6406         /* Save the faulting GPA (cr2) in the address field */
6407         ctxt->exception.address = cr2;
6408
6409         r = x86_emulate_insn(ctxt);
6410
6411         if (r == EMULATION_INTERCEPTED)
6412                 return EMULATE_DONE;
6413
6414         if (r == EMULATION_FAILED) {
6415                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6416                                         emulation_type))
6417                         return EMULATE_DONE;
6418
6419                 return handle_emulation_failure(vcpu, emulation_type);
6420         }
6421
6422         if (ctxt->have_exception) {
6423                 r = EMULATE_DONE;
6424                 if (inject_emulated_exception(vcpu))
6425                         return r;
6426         } else if (vcpu->arch.pio.count) {
6427                 if (!vcpu->arch.pio.in) {
6428                         /* FIXME: return into emulator if single-stepping.  */
6429                         vcpu->arch.pio.count = 0;
6430                 } else {
6431                         writeback = false;
6432                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6433                 }
6434                 r = EMULATE_USER_EXIT;
6435         } else if (vcpu->mmio_needed) {
6436                 if (!vcpu->mmio_is_write)
6437                         writeback = false;
6438                 r = EMULATE_USER_EXIT;
6439                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6440         } else if (r == EMULATION_RESTART)
6441                 goto restart;
6442         else
6443                 r = EMULATE_DONE;
6444
6445         if (writeback) {
6446                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6447                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6448                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6449                 kvm_rip_write(vcpu, ctxt->eip);
6450                 if (r == EMULATE_DONE &&
6451                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6452                         kvm_vcpu_do_singlestep(vcpu, &r);
6453                 if (!ctxt->have_exception ||
6454                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6455                         __kvm_set_rflags(vcpu, ctxt->eflags);
6456
6457                 /*
6458                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6459                  * do nothing, and it will be requested again as soon as
6460                  * the shadow expires.  But we still need to check here,
6461                  * because POPF has no interrupt shadow.
6462                  */
6463                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6464                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6465         } else
6466                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6467
6468         return r;
6469 }
6470
6471 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6472 {
6473         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6474 }
6475 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6476
6477 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6478                                         void *insn, int insn_len)
6479 {
6480         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6481 }
6482 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6483
6484 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6485                             unsigned short port)
6486 {
6487         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6488         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6489                                             size, port, &val, 1);
6490         /* do not return to emulator after return from userspace */
6491         vcpu->arch.pio.count = 0;
6492         return ret;
6493 }
6494
6495 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6496 {
6497         unsigned long val;
6498
6499         /* We should only ever be called with arch.pio.count equal to 1 */
6500         BUG_ON(vcpu->arch.pio.count != 1);
6501
6502         /* For size less than 4 we merge, else we zero extend */
6503         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6504                                         : 0;
6505
6506         /*
6507          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6508          * the copy and tracing
6509          */
6510         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6511                                  vcpu->arch.pio.port, &val, 1);
6512         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6513
6514         return 1;
6515 }
6516
6517 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6518                            unsigned short port)
6519 {
6520         unsigned long val;
6521         int ret;
6522
6523         /* For size less than 4 we merge, else we zero extend */
6524         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6525
6526         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6527                                        &val, 1);
6528         if (ret) {
6529                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6530                 return ret;
6531         }
6532
6533         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6534
6535         return 0;
6536 }
6537
6538 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6539 {
6540         int ret = kvm_skip_emulated_instruction(vcpu);
6541
6542         /*
6543          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6544          * KVM_EXIT_DEBUG here.
6545          */
6546         if (in)
6547                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6548         else
6549                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6550 }
6551 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6552
6553 static int kvmclock_cpu_down_prep(unsigned int cpu)
6554 {
6555         __this_cpu_write(cpu_tsc_khz, 0);
6556         return 0;
6557 }
6558
6559 static void tsc_khz_changed(void *data)
6560 {
6561         struct cpufreq_freqs *freq = data;
6562         unsigned long khz = 0;
6563
6564         if (data)
6565                 khz = freq->new;
6566         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6567                 khz = cpufreq_quick_get(raw_smp_processor_id());
6568         if (!khz)
6569                 khz = tsc_khz;
6570         __this_cpu_write(cpu_tsc_khz, khz);
6571 }
6572
6573 #ifdef CONFIG_X86_64
6574 static void kvm_hyperv_tsc_notifier(void)
6575 {
6576         struct kvm *kvm;
6577         struct kvm_vcpu *vcpu;
6578         int cpu;
6579
6580         spin_lock(&kvm_lock);
6581         list_for_each_entry(kvm, &vm_list, vm_list)
6582                 kvm_make_mclock_inprogress_request(kvm);
6583
6584         hyperv_stop_tsc_emulation();
6585
6586         /* TSC frequency always matches when on Hyper-V */
6587         for_each_present_cpu(cpu)
6588                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6589         kvm_max_guest_tsc_khz = tsc_khz;
6590
6591         list_for_each_entry(kvm, &vm_list, vm_list) {
6592                 struct kvm_arch *ka = &kvm->arch;
6593
6594                 spin_lock(&ka->pvclock_gtod_sync_lock);
6595
6596                 pvclock_update_vm_gtod_copy(kvm);
6597
6598                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6599                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6600
6601                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6602                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6603
6604                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6605         }
6606         spin_unlock(&kvm_lock);
6607 }
6608 #endif
6609
6610 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6611                                      void *data)
6612 {
6613         struct cpufreq_freqs *freq = data;
6614         struct kvm *kvm;
6615         struct kvm_vcpu *vcpu;
6616         int i, send_ipi = 0;
6617
6618         /*
6619          * We allow guests to temporarily run on slowing clocks,
6620          * provided we notify them after, or to run on accelerating
6621          * clocks, provided we notify them before.  Thus time never
6622          * goes backwards.
6623          *
6624          * However, we have a problem.  We can't atomically update
6625          * the frequency of a given CPU from this function; it is
6626          * merely a notifier, which can be called from any CPU.
6627          * Changing the TSC frequency at arbitrary points in time
6628          * requires a recomputation of local variables related to
6629          * the TSC for each VCPU.  We must flag these local variables
6630          * to be updated and be sure the update takes place with the
6631          * new frequency before any guests proceed.
6632          *
6633          * Unfortunately, the combination of hotplug CPU and frequency
6634          * change creates an intractable locking scenario; the order
6635          * of when these callouts happen is undefined with respect to
6636          * CPU hotplug, and they can race with each other.  As such,
6637          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6638          * undefined; you can actually have a CPU frequency change take
6639          * place in between the computation of X and the setting of the
6640          * variable.  To protect against this problem, all updates of
6641          * the per_cpu tsc_khz variable are done in an interrupt
6642          * protected IPI, and all callers wishing to update the value
6643          * must wait for a synchronous IPI to complete (which is trivial
6644          * if the caller is on the CPU already).  This establishes the
6645          * necessary total order on variable updates.
6646          *
6647          * Note that because a guest time update may take place
6648          * anytime after the setting of the VCPU's request bit, the
6649          * correct TSC value must be set before the request.  However,
6650          * to ensure the update actually makes it to any guest which
6651          * starts running in hardware virtualization between the set
6652          * and the acquisition of the spinlock, we must also ping the
6653          * CPU after setting the request bit.
6654          *
6655          */
6656
6657         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6658                 return 0;
6659         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6660                 return 0;
6661
6662         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6663
6664         spin_lock(&kvm_lock);
6665         list_for_each_entry(kvm, &vm_list, vm_list) {
6666                 kvm_for_each_vcpu(i, vcpu, kvm) {
6667                         if (vcpu->cpu != freq->cpu)
6668                                 continue;
6669                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6670                         if (vcpu->cpu != smp_processor_id())
6671                                 send_ipi = 1;
6672                 }
6673         }
6674         spin_unlock(&kvm_lock);
6675
6676         if (freq->old < freq->new && send_ipi) {
6677                 /*
6678                  * We upscale the frequency.  Must make the guest
6679                  * doesn't see old kvmclock values while running with
6680                  * the new frequency, otherwise we risk the guest sees
6681                  * time go backwards.
6682                  *
6683                  * In case we update the frequency for another cpu
6684                  * (which might be in guest context) send an interrupt
6685                  * to kick the cpu out of guest context.  Next time
6686                  * guest context is entered kvmclock will be updated,
6687                  * so the guest will not see stale values.
6688                  */
6689                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6690         }
6691         return 0;
6692 }
6693
6694 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6695         .notifier_call  = kvmclock_cpufreq_notifier
6696 };
6697
6698 static int kvmclock_cpu_online(unsigned int cpu)
6699 {
6700         tsc_khz_changed(NULL);
6701         return 0;
6702 }
6703
6704 static void kvm_timer_init(void)
6705 {
6706         max_tsc_khz = tsc_khz;
6707
6708         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6709 #ifdef CONFIG_CPU_FREQ
6710                 struct cpufreq_policy policy;
6711                 int cpu;
6712
6713                 memset(&policy, 0, sizeof(policy));
6714                 cpu = get_cpu();
6715                 cpufreq_get_policy(&policy, cpu);
6716                 if (policy.cpuinfo.max_freq)
6717                         max_tsc_khz = policy.cpuinfo.max_freq;
6718                 put_cpu();
6719 #endif
6720                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6721                                           CPUFREQ_TRANSITION_NOTIFIER);
6722         }
6723         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6724
6725         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6726                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6727 }
6728
6729 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6730 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6731
6732 int kvm_is_in_guest(void)
6733 {
6734         return __this_cpu_read(current_vcpu) != NULL;
6735 }
6736
6737 static int kvm_is_user_mode(void)
6738 {
6739         int user_mode = 3;
6740
6741         if (__this_cpu_read(current_vcpu))
6742                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6743
6744         return user_mode != 0;
6745 }
6746
6747 static unsigned long kvm_get_guest_ip(void)
6748 {
6749         unsigned long ip = 0;
6750
6751         if (__this_cpu_read(current_vcpu))
6752                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6753
6754         return ip;
6755 }
6756
6757 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6758         .is_in_guest            = kvm_is_in_guest,
6759         .is_user_mode           = kvm_is_user_mode,
6760         .get_guest_ip           = kvm_get_guest_ip,
6761 };
6762
6763 static void kvm_set_mmio_spte_mask(void)
6764 {
6765         u64 mask;
6766         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6767
6768         /*
6769          * Set the reserved bits and the present bit of an paging-structure
6770          * entry to generate page fault with PFER.RSV = 1.
6771          */
6772
6773         /*
6774          * Mask the uppermost physical address bit, which would be reserved as
6775          * long as the supported physical address width is less than 52.
6776          */
6777         mask = 1ull << 51;
6778
6779         /* Set the present bit. */
6780         mask |= 1ull;
6781
6782         /*
6783          * If reserved bit is not supported, clear the present bit to disable
6784          * mmio page fault.
6785          */
6786         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6787                 mask &= ~1ull;
6788
6789         kvm_mmu_set_mmio_spte_mask(mask, mask);
6790 }
6791
6792 #ifdef CONFIG_X86_64
6793 static void pvclock_gtod_update_fn(struct work_struct *work)
6794 {
6795         struct kvm *kvm;
6796
6797         struct kvm_vcpu *vcpu;
6798         int i;
6799
6800         spin_lock(&kvm_lock);
6801         list_for_each_entry(kvm, &vm_list, vm_list)
6802                 kvm_for_each_vcpu(i, vcpu, kvm)
6803                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6804         atomic_set(&kvm_guest_has_master_clock, 0);
6805         spin_unlock(&kvm_lock);
6806 }
6807
6808 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6809
6810 /*
6811  * Notification about pvclock gtod data update.
6812  */
6813 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6814                                void *priv)
6815 {
6816         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6817         struct timekeeper *tk = priv;
6818
6819         update_pvclock_gtod(tk);
6820
6821         /* disable master clock if host does not trust, or does not
6822          * use, TSC based clocksource.
6823          */
6824         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6825             atomic_read(&kvm_guest_has_master_clock) != 0)
6826                 queue_work(system_long_wq, &pvclock_gtod_work);
6827
6828         return 0;
6829 }
6830
6831 static struct notifier_block pvclock_gtod_notifier = {
6832         .notifier_call = pvclock_gtod_notify,
6833 };
6834 #endif
6835
6836 int kvm_arch_init(void *opaque)
6837 {
6838         int r;
6839         struct kvm_x86_ops *ops = opaque;
6840
6841         if (kvm_x86_ops) {
6842                 printk(KERN_ERR "kvm: already loaded the other module\n");
6843                 r = -EEXIST;
6844                 goto out;
6845         }
6846
6847         if (!ops->cpu_has_kvm_support()) {
6848                 printk(KERN_ERR "kvm: no hardware support\n");
6849                 r = -EOPNOTSUPP;
6850                 goto out;
6851         }
6852         if (ops->disabled_by_bios()) {
6853                 printk(KERN_ERR "kvm: disabled by bios\n");
6854                 r = -EOPNOTSUPP;
6855                 goto out;
6856         }
6857
6858         /*
6859          * KVM explicitly assumes that the guest has an FPU and
6860          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
6861          * vCPU's FPU state as a fxregs_state struct.
6862          */
6863         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
6864                 printk(KERN_ERR "kvm: inadequate fpu\n");
6865                 r = -EOPNOTSUPP;
6866                 goto out;
6867         }
6868
6869         r = -ENOMEM;
6870         x86_fpu_cache = kmem_cache_create("x86_fpu", fpu_kernel_xstate_size,
6871                                           __alignof__(struct fpu), SLAB_ACCOUNT,
6872                                           NULL);
6873         if (!x86_fpu_cache) {
6874                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
6875                 goto out;
6876         }
6877
6878         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6879         if (!shared_msrs) {
6880                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6881                 goto out_free_x86_fpu_cache;
6882         }
6883
6884         r = kvm_mmu_module_init();
6885         if (r)
6886                 goto out_free_percpu;
6887
6888         kvm_set_mmio_spte_mask();
6889
6890         kvm_x86_ops = ops;
6891
6892         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6893                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6894                         PT_PRESENT_MASK, 0, sme_me_mask);
6895         kvm_timer_init();
6896
6897         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6898
6899         if (boot_cpu_has(X86_FEATURE_XSAVE))
6900                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6901
6902         kvm_lapic_init();
6903 #ifdef CONFIG_X86_64
6904         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6905
6906         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6907                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6908 #endif
6909
6910         return 0;
6911
6912 out_free_percpu:
6913         free_percpu(shared_msrs);
6914 out_free_x86_fpu_cache:
6915         kmem_cache_destroy(x86_fpu_cache);
6916 out:
6917         return r;
6918 }
6919
6920 void kvm_arch_exit(void)
6921 {
6922 #ifdef CONFIG_X86_64
6923         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6924                 clear_hv_tscchange_cb();
6925 #endif
6926         kvm_lapic_exit();
6927         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6928
6929         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6930                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6931                                             CPUFREQ_TRANSITION_NOTIFIER);
6932         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6933 #ifdef CONFIG_X86_64
6934         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6935 #endif
6936         kvm_x86_ops = NULL;
6937         kvm_mmu_module_exit();
6938         free_percpu(shared_msrs);
6939         kmem_cache_destroy(x86_fpu_cache);
6940 }
6941
6942 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6943 {
6944         ++vcpu->stat.halt_exits;
6945         if (lapic_in_kernel(vcpu)) {
6946                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6947                 return 1;
6948         } else {
6949                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6950                 return 0;
6951         }
6952 }
6953 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6954
6955 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6956 {
6957         int ret = kvm_skip_emulated_instruction(vcpu);
6958         /*
6959          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6960          * KVM_EXIT_DEBUG here.
6961          */
6962         return kvm_vcpu_halt(vcpu) && ret;
6963 }
6964 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6965
6966 #ifdef CONFIG_X86_64
6967 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6968                                 unsigned long clock_type)
6969 {
6970         struct kvm_clock_pairing clock_pairing;
6971         struct timespec64 ts;
6972         u64 cycle;
6973         int ret;
6974
6975         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6976                 return -KVM_EOPNOTSUPP;
6977
6978         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6979                 return -KVM_EOPNOTSUPP;
6980
6981         clock_pairing.sec = ts.tv_sec;
6982         clock_pairing.nsec = ts.tv_nsec;
6983         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6984         clock_pairing.flags = 0;
6985         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
6986
6987         ret = 0;
6988         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6989                             sizeof(struct kvm_clock_pairing)))
6990                 ret = -KVM_EFAULT;
6991
6992         return ret;
6993 }
6994 #endif
6995
6996 /*
6997  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6998  *
6999  * @apicid - apicid of vcpu to be kicked.
7000  */
7001 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7002 {
7003         struct kvm_lapic_irq lapic_irq;
7004
7005         lapic_irq.shorthand = 0;
7006         lapic_irq.dest_mode = 0;
7007         lapic_irq.level = 0;
7008         lapic_irq.dest_id = apicid;
7009         lapic_irq.msi_redir_hint = false;
7010
7011         lapic_irq.delivery_mode = APIC_DM_REMRD;
7012         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7013 }
7014
7015 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7016 {
7017         vcpu->arch.apicv_active = false;
7018         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7019 }
7020
7021 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7022 {
7023         unsigned long nr, a0, a1, a2, a3, ret;
7024         int op_64_bit;
7025
7026         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7027                 return kvm_hv_hypercall(vcpu);
7028
7029         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
7030         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
7031         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
7032         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
7033         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
7034
7035         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7036
7037         op_64_bit = is_64_bit_mode(vcpu);
7038         if (!op_64_bit) {
7039                 nr &= 0xFFFFFFFF;
7040                 a0 &= 0xFFFFFFFF;
7041                 a1 &= 0xFFFFFFFF;
7042                 a2 &= 0xFFFFFFFF;
7043                 a3 &= 0xFFFFFFFF;
7044         }
7045
7046         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7047                 ret = -KVM_EPERM;
7048                 goto out;
7049         }
7050
7051         switch (nr) {
7052         case KVM_HC_VAPIC_POLL_IRQ:
7053                 ret = 0;
7054                 break;
7055         case KVM_HC_KICK_CPU:
7056                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7057                 ret = 0;
7058                 break;
7059 #ifdef CONFIG_X86_64
7060         case KVM_HC_CLOCK_PAIRING:
7061                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7062                 break;
7063         case KVM_HC_SEND_IPI:
7064                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7065                 break;
7066 #endif
7067         default:
7068                 ret = -KVM_ENOSYS;
7069                 break;
7070         }
7071 out:
7072         if (!op_64_bit)
7073                 ret = (u32)ret;
7074         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7075
7076         ++vcpu->stat.hypercalls;
7077         return kvm_skip_emulated_instruction(vcpu);
7078 }
7079 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7080
7081 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7082 {
7083         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7084         char instruction[3];
7085         unsigned long rip = kvm_rip_read(vcpu);
7086
7087         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7088
7089         return emulator_write_emulated(ctxt, rip, instruction, 3,
7090                 &ctxt->exception);
7091 }
7092
7093 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7094 {
7095         return vcpu->run->request_interrupt_window &&
7096                 likely(!pic_in_kernel(vcpu->kvm));
7097 }
7098
7099 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7100 {
7101         struct kvm_run *kvm_run = vcpu->run;
7102
7103         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7104         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7105         kvm_run->cr8 = kvm_get_cr8(vcpu);
7106         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7107         kvm_run->ready_for_interrupt_injection =
7108                 pic_in_kernel(vcpu->kvm) ||
7109                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7110 }
7111
7112 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7113 {
7114         int max_irr, tpr;
7115
7116         if (!kvm_x86_ops->update_cr8_intercept)
7117                 return;
7118
7119         if (!lapic_in_kernel(vcpu))
7120                 return;
7121
7122         if (vcpu->arch.apicv_active)
7123                 return;
7124
7125         if (!vcpu->arch.apic->vapic_addr)
7126                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7127         else
7128                 max_irr = -1;
7129
7130         if (max_irr != -1)
7131                 max_irr >>= 4;
7132
7133         tpr = kvm_lapic_get_cr8(vcpu);
7134
7135         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7136 }
7137
7138 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7139 {
7140         int r;
7141
7142         /* try to reinject previous events if any */
7143
7144         if (vcpu->arch.exception.injected)
7145                 kvm_x86_ops->queue_exception(vcpu);
7146         /*
7147          * Do not inject an NMI or interrupt if there is a pending
7148          * exception.  Exceptions and interrupts are recognized at
7149          * instruction boundaries, i.e. the start of an instruction.
7150          * Trap-like exceptions, e.g. #DB, have higher priority than
7151          * NMIs and interrupts, i.e. traps are recognized before an
7152          * NMI/interrupt that's pending on the same instruction.
7153          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7154          * priority, but are only generated (pended) during instruction
7155          * execution, i.e. a pending fault-like exception means the
7156          * fault occurred on the *previous* instruction and must be
7157          * serviced prior to recognizing any new events in order to
7158          * fully complete the previous instruction.
7159          */
7160         else if (!vcpu->arch.exception.pending) {
7161                 if (vcpu->arch.nmi_injected)
7162                         kvm_x86_ops->set_nmi(vcpu);
7163                 else if (vcpu->arch.interrupt.injected)
7164                         kvm_x86_ops->set_irq(vcpu);
7165         }
7166
7167         /*
7168          * Call check_nested_events() even if we reinjected a previous event
7169          * in order for caller to determine if it should require immediate-exit
7170          * from L2 to L1 due to pending L1 events which require exit
7171          * from L2 to L1.
7172          */
7173         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7174                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7175                 if (r != 0)
7176                         return r;
7177         }
7178
7179         /* try to inject new event if pending */
7180         if (vcpu->arch.exception.pending) {
7181                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7182                                         vcpu->arch.exception.has_error_code,
7183                                         vcpu->arch.exception.error_code);
7184
7185                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7186                 vcpu->arch.exception.pending = false;
7187                 vcpu->arch.exception.injected = true;
7188
7189                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7190                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7191                                              X86_EFLAGS_RF);
7192
7193                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7194                         /*
7195                          * This code assumes that nSVM doesn't use
7196                          * check_nested_events(). If it does, the
7197                          * DR6/DR7 changes should happen before L1
7198                          * gets a #VMEXIT for an intercepted #DB in
7199                          * L2.  (Under VMX, on the other hand, the
7200                          * DR6/DR7 changes should not happen in the
7201                          * event of a VM-exit to L1 for an intercepted
7202                          * #DB in L2.)
7203                          */
7204                         kvm_deliver_exception_payload(vcpu);
7205                         if (vcpu->arch.dr7 & DR7_GD) {
7206                                 vcpu->arch.dr7 &= ~DR7_GD;
7207                                 kvm_update_dr7(vcpu);
7208                         }
7209                 }
7210
7211                 kvm_x86_ops->queue_exception(vcpu);
7212         }
7213
7214         /* Don't consider new event if we re-injected an event */
7215         if (kvm_event_needs_reinjection(vcpu))
7216                 return 0;
7217
7218         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7219             kvm_x86_ops->smi_allowed(vcpu)) {
7220                 vcpu->arch.smi_pending = false;
7221                 ++vcpu->arch.smi_count;
7222                 enter_smm(vcpu);
7223         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7224                 --vcpu->arch.nmi_pending;
7225                 vcpu->arch.nmi_injected = true;
7226                 kvm_x86_ops->set_nmi(vcpu);
7227         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7228                 /*
7229                  * Because interrupts can be injected asynchronously, we are
7230                  * calling check_nested_events again here to avoid a race condition.
7231                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7232                  * proposal and current concerns.  Perhaps we should be setting
7233                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7234                  */
7235                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7236                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7237                         if (r != 0)
7238                                 return r;
7239                 }
7240                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7241                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7242                                             false);
7243                         kvm_x86_ops->set_irq(vcpu);
7244                 }
7245         }
7246
7247         return 0;
7248 }
7249
7250 static void process_nmi(struct kvm_vcpu *vcpu)
7251 {
7252         unsigned limit = 2;
7253
7254         /*
7255          * x86 is limited to one NMI running, and one NMI pending after it.
7256          * If an NMI is already in progress, limit further NMIs to just one.
7257          * Otherwise, allow two (and we'll inject the first one immediately).
7258          */
7259         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7260                 limit = 1;
7261
7262         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7263         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7264         kvm_make_request(KVM_REQ_EVENT, vcpu);
7265 }
7266
7267 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7268 {
7269         u32 flags = 0;
7270         flags |= seg->g       << 23;
7271         flags |= seg->db      << 22;
7272         flags |= seg->l       << 21;
7273         flags |= seg->avl     << 20;
7274         flags |= seg->present << 15;
7275         flags |= seg->dpl     << 13;
7276         flags |= seg->s       << 12;
7277         flags |= seg->type    << 8;
7278         return flags;
7279 }
7280
7281 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7282 {
7283         struct kvm_segment seg;
7284         int offset;
7285
7286         kvm_get_segment(vcpu, &seg, n);
7287         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7288
7289         if (n < 3)
7290                 offset = 0x7f84 + n * 12;
7291         else
7292                 offset = 0x7f2c + (n - 3) * 12;
7293
7294         put_smstate(u32, buf, offset + 8, seg.base);
7295         put_smstate(u32, buf, offset + 4, seg.limit);
7296         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7297 }
7298
7299 #ifdef CONFIG_X86_64
7300 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7301 {
7302         struct kvm_segment seg;
7303         int offset;
7304         u16 flags;
7305
7306         kvm_get_segment(vcpu, &seg, n);
7307         offset = 0x7e00 + n * 16;
7308
7309         flags = enter_smm_get_segment_flags(&seg) >> 8;
7310         put_smstate(u16, buf, offset, seg.selector);
7311         put_smstate(u16, buf, offset + 2, flags);
7312         put_smstate(u32, buf, offset + 4, seg.limit);
7313         put_smstate(u64, buf, offset + 8, seg.base);
7314 }
7315 #endif
7316
7317 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7318 {
7319         struct desc_ptr dt;
7320         struct kvm_segment seg;
7321         unsigned long val;
7322         int i;
7323
7324         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7325         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7326         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7327         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7328
7329         for (i = 0; i < 8; i++)
7330                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7331
7332         kvm_get_dr(vcpu, 6, &val);
7333         put_smstate(u32, buf, 0x7fcc, (u32)val);
7334         kvm_get_dr(vcpu, 7, &val);
7335         put_smstate(u32, buf, 0x7fc8, (u32)val);
7336
7337         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7338         put_smstate(u32, buf, 0x7fc4, seg.selector);
7339         put_smstate(u32, buf, 0x7f64, seg.base);
7340         put_smstate(u32, buf, 0x7f60, seg.limit);
7341         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7342
7343         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7344         put_smstate(u32, buf, 0x7fc0, seg.selector);
7345         put_smstate(u32, buf, 0x7f80, seg.base);
7346         put_smstate(u32, buf, 0x7f7c, seg.limit);
7347         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7348
7349         kvm_x86_ops->get_gdt(vcpu, &dt);
7350         put_smstate(u32, buf, 0x7f74, dt.address);
7351         put_smstate(u32, buf, 0x7f70, dt.size);
7352
7353         kvm_x86_ops->get_idt(vcpu, &dt);
7354         put_smstate(u32, buf, 0x7f58, dt.address);
7355         put_smstate(u32, buf, 0x7f54, dt.size);
7356
7357         for (i = 0; i < 6; i++)
7358                 enter_smm_save_seg_32(vcpu, buf, i);
7359
7360         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7361
7362         /* revision id */
7363         put_smstate(u32, buf, 0x7efc, 0x00020000);
7364         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7365 }
7366
7367 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7368 {
7369 #ifdef CONFIG_X86_64
7370         struct desc_ptr dt;
7371         struct kvm_segment seg;
7372         unsigned long val;
7373         int i;
7374
7375         for (i = 0; i < 16; i++)
7376                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7377
7378         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7379         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7380
7381         kvm_get_dr(vcpu, 6, &val);
7382         put_smstate(u64, buf, 0x7f68, val);
7383         kvm_get_dr(vcpu, 7, &val);
7384         put_smstate(u64, buf, 0x7f60, val);
7385
7386         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7387         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7388         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7389
7390         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7391
7392         /* revision id */
7393         put_smstate(u32, buf, 0x7efc, 0x00020064);
7394
7395         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7396
7397         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7398         put_smstate(u16, buf, 0x7e90, seg.selector);
7399         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7400         put_smstate(u32, buf, 0x7e94, seg.limit);
7401         put_smstate(u64, buf, 0x7e98, seg.base);
7402
7403         kvm_x86_ops->get_idt(vcpu, &dt);
7404         put_smstate(u32, buf, 0x7e84, dt.size);
7405         put_smstate(u64, buf, 0x7e88, dt.address);
7406
7407         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7408         put_smstate(u16, buf, 0x7e70, seg.selector);
7409         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7410         put_smstate(u32, buf, 0x7e74, seg.limit);
7411         put_smstate(u64, buf, 0x7e78, seg.base);
7412
7413         kvm_x86_ops->get_gdt(vcpu, &dt);
7414         put_smstate(u32, buf, 0x7e64, dt.size);
7415         put_smstate(u64, buf, 0x7e68, dt.address);
7416
7417         for (i = 0; i < 6; i++)
7418                 enter_smm_save_seg_64(vcpu, buf, i);
7419 #else
7420         WARN_ON_ONCE(1);
7421 #endif
7422 }
7423
7424 static void enter_smm(struct kvm_vcpu *vcpu)
7425 {
7426         struct kvm_segment cs, ds;
7427         struct desc_ptr dt;
7428         char buf[512];
7429         u32 cr0;
7430
7431         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7432         memset(buf, 0, 512);
7433         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7434                 enter_smm_save_state_64(vcpu, buf);
7435         else
7436                 enter_smm_save_state_32(vcpu, buf);
7437
7438         /*
7439          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7440          * vCPU state (e.g. leave guest mode) after we've saved the state into
7441          * the SMM state-save area.
7442          */
7443         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7444
7445         vcpu->arch.hflags |= HF_SMM_MASK;
7446         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7447
7448         if (kvm_x86_ops->get_nmi_mask(vcpu))
7449                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7450         else
7451                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7452
7453         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7454         kvm_rip_write(vcpu, 0x8000);
7455
7456         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7457         kvm_x86_ops->set_cr0(vcpu, cr0);
7458         vcpu->arch.cr0 = cr0;
7459
7460         kvm_x86_ops->set_cr4(vcpu, 0);
7461
7462         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7463         dt.address = dt.size = 0;
7464         kvm_x86_ops->set_idt(vcpu, &dt);
7465
7466         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7467
7468         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7469         cs.base = vcpu->arch.smbase;
7470
7471         ds.selector = 0;
7472         ds.base = 0;
7473
7474         cs.limit    = ds.limit = 0xffffffff;
7475         cs.type     = ds.type = 0x3;
7476         cs.dpl      = ds.dpl = 0;
7477         cs.db       = ds.db = 0;
7478         cs.s        = ds.s = 1;
7479         cs.l        = ds.l = 0;
7480         cs.g        = ds.g = 1;
7481         cs.avl      = ds.avl = 0;
7482         cs.present  = ds.present = 1;
7483         cs.unusable = ds.unusable = 0;
7484         cs.padding  = ds.padding = 0;
7485
7486         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7487         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7488         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7489         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7490         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7491         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7492
7493         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7494                 kvm_x86_ops->set_efer(vcpu, 0);
7495
7496         kvm_update_cpuid(vcpu);
7497         kvm_mmu_reset_context(vcpu);
7498 }
7499
7500 static void process_smi(struct kvm_vcpu *vcpu)
7501 {
7502         vcpu->arch.smi_pending = true;
7503         kvm_make_request(KVM_REQ_EVENT, vcpu);
7504 }
7505
7506 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7507 {
7508         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7509 }
7510
7511 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7512 {
7513         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7514                 return;
7515
7516         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7517
7518         if (irqchip_split(vcpu->kvm))
7519                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7520         else {
7521                 if (vcpu->arch.apicv_active)
7522                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7523                 if (ioapic_in_kernel(vcpu->kvm))
7524                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7525         }
7526
7527         if (is_guest_mode(vcpu))
7528                 vcpu->arch.load_eoi_exitmap_pending = true;
7529         else
7530                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7531 }
7532
7533 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7534 {
7535         u64 eoi_exit_bitmap[4];
7536
7537         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7538                 return;
7539
7540         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7541                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7542         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7543 }
7544
7545 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7546                 unsigned long start, unsigned long end,
7547                 bool blockable)
7548 {
7549         unsigned long apic_address;
7550
7551         /*
7552          * The physical address of apic access page is stored in the VMCS.
7553          * Update it when it becomes invalid.
7554          */
7555         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7556         if (start <= apic_address && apic_address < end)
7557                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7558
7559         return 0;
7560 }
7561
7562 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7563 {
7564         struct page *page = NULL;
7565
7566         if (!lapic_in_kernel(vcpu))
7567                 return;
7568
7569         if (!kvm_x86_ops->set_apic_access_page_addr)
7570                 return;
7571
7572         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7573         if (is_error_page(page))
7574                 return;
7575         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7576
7577         /*
7578          * Do not pin apic access page in memory, the MMU notifier
7579          * will call us again if it is migrated or swapped out.
7580          */
7581         put_page(page);
7582 }
7583 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7584
7585 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7586 {
7587         smp_send_reschedule(vcpu->cpu);
7588 }
7589 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7590
7591 /*
7592  * Returns 1 to let vcpu_run() continue the guest execution loop without
7593  * exiting to the userspace.  Otherwise, the value will be returned to the
7594  * userspace.
7595  */
7596 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7597 {
7598         int r;
7599         bool req_int_win =
7600                 dm_request_for_irq_injection(vcpu) &&
7601                 kvm_cpu_accept_dm_intr(vcpu);
7602
7603         bool req_immediate_exit = false;
7604
7605         if (kvm_request_pending(vcpu)) {
7606                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7607                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7608                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7609                         kvm_mmu_unload(vcpu);
7610                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7611                         __kvm_migrate_timers(vcpu);
7612                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7613                         kvm_gen_update_masterclock(vcpu->kvm);
7614                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7615                         kvm_gen_kvmclock_update(vcpu);
7616                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7617                         r = kvm_guest_time_update(vcpu);
7618                         if (unlikely(r))
7619                                 goto out;
7620                 }
7621                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7622                         kvm_mmu_sync_roots(vcpu);
7623                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7624                         kvm_mmu_load_cr3(vcpu);
7625                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7626                         kvm_vcpu_flush_tlb(vcpu, true);
7627                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7628                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7629                         r = 0;
7630                         goto out;
7631                 }
7632                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7633                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7634                         vcpu->mmio_needed = 0;
7635                         r = 0;
7636                         goto out;
7637                 }
7638                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7639                         /* Page is swapped out. Do synthetic halt */
7640                         vcpu->arch.apf.halted = true;
7641                         r = 1;
7642                         goto out;
7643                 }
7644                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7645                         record_steal_time(vcpu);
7646                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7647                         process_smi(vcpu);
7648                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7649                         process_nmi(vcpu);
7650                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7651                         kvm_pmu_handle_event(vcpu);
7652                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7653                         kvm_pmu_deliver_pmi(vcpu);
7654                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7655                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7656                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7657                                      vcpu->arch.ioapic_handled_vectors)) {
7658                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7659                                 vcpu->run->eoi.vector =
7660                                                 vcpu->arch.pending_ioapic_eoi;
7661                                 r = 0;
7662                                 goto out;
7663                         }
7664                 }
7665                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7666                         vcpu_scan_ioapic(vcpu);
7667                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7668                         vcpu_load_eoi_exitmap(vcpu);
7669                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7670                         kvm_vcpu_reload_apic_access_page(vcpu);
7671                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7672                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7673                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7674                         r = 0;
7675                         goto out;
7676                 }
7677                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7678                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7679                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7680                         r = 0;
7681                         goto out;
7682                 }
7683                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7684                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7685                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7686                         r = 0;
7687                         goto out;
7688                 }
7689
7690                 /*
7691                  * KVM_REQ_HV_STIMER has to be processed after
7692                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7693                  * depend on the guest clock being up-to-date
7694                  */
7695                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7696                         kvm_hv_process_stimers(vcpu);
7697         }
7698
7699         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7700                 ++vcpu->stat.req_event;
7701                 kvm_apic_accept_events(vcpu);
7702                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7703                         r = 1;
7704                         goto out;
7705                 }
7706
7707                 if (inject_pending_event(vcpu, req_int_win) != 0)
7708                         req_immediate_exit = true;
7709                 else {
7710                         /* Enable SMI/NMI/IRQ window open exits if needed.
7711                          *
7712                          * SMIs have three cases:
7713                          * 1) They can be nested, and then there is nothing to
7714                          *    do here because RSM will cause a vmexit anyway.
7715                          * 2) There is an ISA-specific reason why SMI cannot be
7716                          *    injected, and the moment when this changes can be
7717                          *    intercepted.
7718                          * 3) Or the SMI can be pending because
7719                          *    inject_pending_event has completed the injection
7720                          *    of an IRQ or NMI from the previous vmexit, and
7721                          *    then we request an immediate exit to inject the
7722                          *    SMI.
7723                          */
7724                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7725                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7726                                         req_immediate_exit = true;
7727                         if (vcpu->arch.nmi_pending)
7728                                 kvm_x86_ops->enable_nmi_window(vcpu);
7729                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7730                                 kvm_x86_ops->enable_irq_window(vcpu);
7731                         WARN_ON(vcpu->arch.exception.pending);
7732                 }
7733
7734                 if (kvm_lapic_enabled(vcpu)) {
7735                         update_cr8_intercept(vcpu);
7736                         kvm_lapic_sync_to_vapic(vcpu);
7737                 }
7738         }
7739
7740         r = kvm_mmu_reload(vcpu);
7741         if (unlikely(r)) {
7742                 goto cancel_injection;
7743         }
7744
7745         preempt_disable();
7746
7747         kvm_x86_ops->prepare_guest_switch(vcpu);
7748
7749         /*
7750          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7751          * IPI are then delayed after guest entry, which ensures that they
7752          * result in virtual interrupt delivery.
7753          */
7754         local_irq_disable();
7755         vcpu->mode = IN_GUEST_MODE;
7756
7757         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7758
7759         /*
7760          * 1) We should set ->mode before checking ->requests.  Please see
7761          * the comment in kvm_vcpu_exiting_guest_mode().
7762          *
7763          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7764          * pairs with the memory barrier implicit in pi_test_and_set_on
7765          * (see vmx_deliver_posted_interrupt).
7766          *
7767          * 3) This also orders the write to mode from any reads to the page
7768          * tables done while the VCPU is running.  Please see the comment
7769          * in kvm_flush_remote_tlbs.
7770          */
7771         smp_mb__after_srcu_read_unlock();
7772
7773         /*
7774          * This handles the case where a posted interrupt was
7775          * notified with kvm_vcpu_kick.
7776          */
7777         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7778                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7779
7780         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7781             || need_resched() || signal_pending(current)) {
7782                 vcpu->mode = OUTSIDE_GUEST_MODE;
7783                 smp_wmb();
7784                 local_irq_enable();
7785                 preempt_enable();
7786                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7787                 r = 1;
7788                 goto cancel_injection;
7789         }
7790
7791         kvm_load_guest_xcr0(vcpu);
7792
7793         if (req_immediate_exit) {
7794                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7795                 kvm_x86_ops->request_immediate_exit(vcpu);
7796         }
7797
7798         trace_kvm_entry(vcpu->vcpu_id);
7799         if (lapic_timer_advance_ns)
7800                 wait_lapic_expire(vcpu);
7801         guest_enter_irqoff();
7802
7803         if (unlikely(vcpu->arch.switch_db_regs)) {
7804                 set_debugreg(0, 7);
7805                 set_debugreg(vcpu->arch.eff_db[0], 0);
7806                 set_debugreg(vcpu->arch.eff_db[1], 1);
7807                 set_debugreg(vcpu->arch.eff_db[2], 2);
7808                 set_debugreg(vcpu->arch.eff_db[3], 3);
7809                 set_debugreg(vcpu->arch.dr6, 6);
7810                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7811         }
7812
7813         kvm_x86_ops->run(vcpu);
7814
7815         /*
7816          * Do this here before restoring debug registers on the host.  And
7817          * since we do this before handling the vmexit, a DR access vmexit
7818          * can (a) read the correct value of the debug registers, (b) set
7819          * KVM_DEBUGREG_WONT_EXIT again.
7820          */
7821         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7822                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7823                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7824                 kvm_update_dr0123(vcpu);
7825                 kvm_update_dr6(vcpu);
7826                 kvm_update_dr7(vcpu);
7827                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7828         }
7829
7830         /*
7831          * If the guest has used debug registers, at least dr7
7832          * will be disabled while returning to the host.
7833          * If we don't have active breakpoints in the host, we don't
7834          * care about the messed up debug address registers. But if
7835          * we have some of them active, restore the old state.
7836          */
7837         if (hw_breakpoint_active())
7838                 hw_breakpoint_restore();
7839
7840         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7841
7842         vcpu->mode = OUTSIDE_GUEST_MODE;
7843         smp_wmb();
7844
7845         kvm_put_guest_xcr0(vcpu);
7846
7847         kvm_before_interrupt(vcpu);
7848         kvm_x86_ops->handle_external_intr(vcpu);
7849         kvm_after_interrupt(vcpu);
7850
7851         ++vcpu->stat.exits;
7852
7853         guest_exit_irqoff();
7854
7855         local_irq_enable();
7856         preempt_enable();
7857
7858         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7859
7860         /*
7861          * Profile KVM exit RIPs:
7862          */
7863         if (unlikely(prof_on == KVM_PROFILING)) {
7864                 unsigned long rip = kvm_rip_read(vcpu);
7865                 profile_hit(KVM_PROFILING, (void *)rip);
7866         }
7867
7868         if (unlikely(vcpu->arch.tsc_always_catchup))
7869                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7870
7871         if (vcpu->arch.apic_attention)
7872                 kvm_lapic_sync_from_vapic(vcpu);
7873
7874         vcpu->arch.gpa_available = false;
7875         r = kvm_x86_ops->handle_exit(vcpu);
7876         return r;
7877
7878 cancel_injection:
7879         kvm_x86_ops->cancel_injection(vcpu);
7880         if (unlikely(vcpu->arch.apic_attention))
7881                 kvm_lapic_sync_from_vapic(vcpu);
7882 out:
7883         return r;
7884 }
7885
7886 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7887 {
7888         if (!kvm_arch_vcpu_runnable(vcpu) &&
7889             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7890                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7891                 kvm_vcpu_block(vcpu);
7892                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7893
7894                 if (kvm_x86_ops->post_block)
7895                         kvm_x86_ops->post_block(vcpu);
7896
7897                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7898                         return 1;
7899         }
7900
7901         kvm_apic_accept_events(vcpu);
7902         switch(vcpu->arch.mp_state) {
7903         case KVM_MP_STATE_HALTED:
7904                 vcpu->arch.pv.pv_unhalted = false;
7905                 vcpu->arch.mp_state =
7906                         KVM_MP_STATE_RUNNABLE;
7907         case KVM_MP_STATE_RUNNABLE:
7908                 vcpu->arch.apf.halted = false;
7909                 break;
7910         case KVM_MP_STATE_INIT_RECEIVED:
7911                 break;
7912         default:
7913                 return -EINTR;
7914                 break;
7915         }
7916         return 1;
7917 }
7918
7919 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7920 {
7921         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7922                 kvm_x86_ops->check_nested_events(vcpu, false);
7923
7924         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7925                 !vcpu->arch.apf.halted);
7926 }
7927
7928 static int vcpu_run(struct kvm_vcpu *vcpu)
7929 {
7930         int r;
7931         struct kvm *kvm = vcpu->kvm;
7932
7933         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7934         vcpu->arch.l1tf_flush_l1d = true;
7935
7936         for (;;) {
7937                 if (kvm_vcpu_running(vcpu)) {
7938                         r = vcpu_enter_guest(vcpu);
7939                 } else {
7940                         r = vcpu_block(kvm, vcpu);
7941                 }
7942
7943                 if (r <= 0)
7944                         break;
7945
7946                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7947                 if (kvm_cpu_has_pending_timer(vcpu))
7948                         kvm_inject_pending_timer_irqs(vcpu);
7949
7950                 if (dm_request_for_irq_injection(vcpu) &&
7951                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7952                         r = 0;
7953                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7954                         ++vcpu->stat.request_irq_exits;
7955                         break;
7956                 }
7957
7958                 kvm_check_async_pf_completion(vcpu);
7959
7960                 if (signal_pending(current)) {
7961                         r = -EINTR;
7962                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7963                         ++vcpu->stat.signal_exits;
7964                         break;
7965                 }
7966                 if (need_resched()) {
7967                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7968                         cond_resched();
7969                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7970                 }
7971         }
7972
7973         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7974
7975         return r;
7976 }
7977
7978 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7979 {
7980         int r;
7981         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7982         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7983         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7984         if (r != EMULATE_DONE)
7985                 return 0;
7986         return 1;
7987 }
7988
7989 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7990 {
7991         BUG_ON(!vcpu->arch.pio.count);
7992
7993         return complete_emulated_io(vcpu);
7994 }
7995
7996 /*
7997  * Implements the following, as a state machine:
7998  *
7999  * read:
8000  *   for each fragment
8001  *     for each mmio piece in the fragment
8002  *       write gpa, len
8003  *       exit
8004  *       copy data
8005  *   execute insn
8006  *
8007  * write:
8008  *   for each fragment
8009  *     for each mmio piece in the fragment
8010  *       write gpa, len
8011  *       copy data
8012  *       exit
8013  */
8014 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8015 {
8016         struct kvm_run *run = vcpu->run;
8017         struct kvm_mmio_fragment *frag;
8018         unsigned len;
8019
8020         BUG_ON(!vcpu->mmio_needed);
8021
8022         /* Complete previous fragment */
8023         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8024         len = min(8u, frag->len);
8025         if (!vcpu->mmio_is_write)
8026                 memcpy(frag->data, run->mmio.data, len);
8027
8028         if (frag->len <= 8) {
8029                 /* Switch to the next fragment. */
8030                 frag++;
8031                 vcpu->mmio_cur_fragment++;
8032         } else {
8033                 /* Go forward to the next mmio piece. */
8034                 frag->data += len;
8035                 frag->gpa += len;
8036                 frag->len -= len;
8037         }
8038
8039         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8040                 vcpu->mmio_needed = 0;
8041
8042                 /* FIXME: return into emulator if single-stepping.  */
8043                 if (vcpu->mmio_is_write)
8044                         return 1;
8045                 vcpu->mmio_read_completed = 1;
8046                 return complete_emulated_io(vcpu);
8047         }
8048
8049         run->exit_reason = KVM_EXIT_MMIO;
8050         run->mmio.phys_addr = frag->gpa;
8051         if (vcpu->mmio_is_write)
8052                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8053         run->mmio.len = min(8u, frag->len);
8054         run->mmio.is_write = vcpu->mmio_is_write;
8055         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8056         return 0;
8057 }
8058
8059 /* Swap (qemu) user FPU context for the guest FPU context. */
8060 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8061 {
8062         preempt_disable();
8063         copy_fpregs_to_fpstate(&current->thread.fpu);
8064         /* PKRU is separately restored in kvm_x86_ops->run.  */
8065         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8066                                 ~XFEATURE_MASK_PKRU);
8067         preempt_enable();
8068         trace_kvm_fpu(1);
8069 }
8070
8071 /* When vcpu_run ends, restore user space FPU context. */
8072 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8073 {
8074         preempt_disable();
8075         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8076         copy_kernel_to_fpregs(&current->thread.fpu.state);
8077         preempt_enable();
8078         ++vcpu->stat.fpu_reload;
8079         trace_kvm_fpu(0);
8080 }
8081
8082 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8083 {
8084         int r;
8085
8086         vcpu_load(vcpu);
8087         kvm_sigset_activate(vcpu);
8088         kvm_load_guest_fpu(vcpu);
8089
8090         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8091                 if (kvm_run->immediate_exit) {
8092                         r = -EINTR;
8093                         goto out;
8094                 }
8095                 kvm_vcpu_block(vcpu);
8096                 kvm_apic_accept_events(vcpu);
8097                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8098                 r = -EAGAIN;
8099                 if (signal_pending(current)) {
8100                         r = -EINTR;
8101                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8102                         ++vcpu->stat.signal_exits;
8103                 }
8104                 goto out;
8105         }
8106
8107         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8108                 r = -EINVAL;
8109                 goto out;
8110         }
8111
8112         if (vcpu->run->kvm_dirty_regs) {
8113                 r = sync_regs(vcpu);
8114                 if (r != 0)
8115                         goto out;
8116         }
8117
8118         /* re-sync apic's tpr */
8119         if (!lapic_in_kernel(vcpu)) {
8120                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8121                         r = -EINVAL;
8122                         goto out;
8123                 }
8124         }
8125
8126         if (unlikely(vcpu->arch.complete_userspace_io)) {
8127                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8128                 vcpu->arch.complete_userspace_io = NULL;
8129                 r = cui(vcpu);
8130                 if (r <= 0)
8131                         goto out;
8132         } else
8133                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8134
8135         if (kvm_run->immediate_exit)
8136                 r = -EINTR;
8137         else
8138                 r = vcpu_run(vcpu);
8139
8140 out:
8141         kvm_put_guest_fpu(vcpu);
8142         if (vcpu->run->kvm_valid_regs)
8143                 store_regs(vcpu);
8144         post_kvm_run_save(vcpu);
8145         kvm_sigset_deactivate(vcpu);
8146
8147         vcpu_put(vcpu);
8148         return r;
8149 }
8150
8151 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8152 {
8153         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8154                 /*
8155                  * We are here if userspace calls get_regs() in the middle of
8156                  * instruction emulation. Registers state needs to be copied
8157                  * back from emulation context to vcpu. Userspace shouldn't do
8158                  * that usually, but some bad designed PV devices (vmware
8159                  * backdoor interface) need this to work
8160                  */
8161                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8162                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8163         }
8164         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8165         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8166         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8167         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8168         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8169         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8170         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8171         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8172 #ifdef CONFIG_X86_64
8173         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8174         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8175         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8176         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8177         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8178         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8179         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8180         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8181 #endif
8182
8183         regs->rip = kvm_rip_read(vcpu);
8184         regs->rflags = kvm_get_rflags(vcpu);
8185 }
8186
8187 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8188 {
8189         vcpu_load(vcpu);
8190         __get_regs(vcpu, regs);
8191         vcpu_put(vcpu);
8192         return 0;
8193 }
8194
8195 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8196 {
8197         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8198         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8199
8200         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8201         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8202         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8203         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8204         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8205         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8206         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8207         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8208 #ifdef CONFIG_X86_64
8209         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8210         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8211         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8212         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8213         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8214         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8215         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8216         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8217 #endif
8218
8219         kvm_rip_write(vcpu, regs->rip);
8220         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8221
8222         vcpu->arch.exception.pending = false;
8223
8224         kvm_make_request(KVM_REQ_EVENT, vcpu);
8225 }
8226
8227 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8228 {
8229         vcpu_load(vcpu);
8230         __set_regs(vcpu, regs);
8231         vcpu_put(vcpu);
8232         return 0;
8233 }
8234
8235 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8236 {
8237         struct kvm_segment cs;
8238
8239         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8240         *db = cs.db;
8241         *l = cs.l;
8242 }
8243 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8244
8245 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8246 {
8247         struct desc_ptr dt;
8248
8249         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8250         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8251         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8252         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8253         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8254         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8255
8256         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8257         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8258
8259         kvm_x86_ops->get_idt(vcpu, &dt);
8260         sregs->idt.limit = dt.size;
8261         sregs->idt.base = dt.address;
8262         kvm_x86_ops->get_gdt(vcpu, &dt);
8263         sregs->gdt.limit = dt.size;
8264         sregs->gdt.base = dt.address;
8265
8266         sregs->cr0 = kvm_read_cr0(vcpu);
8267         sregs->cr2 = vcpu->arch.cr2;
8268         sregs->cr3 = kvm_read_cr3(vcpu);
8269         sregs->cr4 = kvm_read_cr4(vcpu);
8270         sregs->cr8 = kvm_get_cr8(vcpu);
8271         sregs->efer = vcpu->arch.efer;
8272         sregs->apic_base = kvm_get_apic_base(vcpu);
8273
8274         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8275
8276         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8277                 set_bit(vcpu->arch.interrupt.nr,
8278                         (unsigned long *)sregs->interrupt_bitmap);
8279 }
8280
8281 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8282                                   struct kvm_sregs *sregs)
8283 {
8284         vcpu_load(vcpu);
8285         __get_sregs(vcpu, sregs);
8286         vcpu_put(vcpu);
8287         return 0;
8288 }
8289
8290 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8291                                     struct kvm_mp_state *mp_state)
8292 {
8293         vcpu_load(vcpu);
8294
8295         kvm_apic_accept_events(vcpu);
8296         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8297                                         vcpu->arch.pv.pv_unhalted)
8298                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8299         else
8300                 mp_state->mp_state = vcpu->arch.mp_state;
8301
8302         vcpu_put(vcpu);
8303         return 0;
8304 }
8305
8306 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8307                                     struct kvm_mp_state *mp_state)
8308 {
8309         int ret = -EINVAL;
8310
8311         vcpu_load(vcpu);
8312
8313         if (!lapic_in_kernel(vcpu) &&
8314             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8315                 goto out;
8316
8317         /* INITs are latched while in SMM */
8318         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8319             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8320              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8321                 goto out;
8322
8323         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8324                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8325                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8326         } else
8327                 vcpu->arch.mp_state = mp_state->mp_state;
8328         kvm_make_request(KVM_REQ_EVENT, vcpu);
8329
8330         ret = 0;
8331 out:
8332         vcpu_put(vcpu);
8333         return ret;
8334 }
8335
8336 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8337                     int reason, bool has_error_code, u32 error_code)
8338 {
8339         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8340         int ret;
8341
8342         init_emulate_ctxt(vcpu);
8343
8344         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8345                                    has_error_code, error_code);
8346
8347         if (ret)
8348                 return EMULATE_FAIL;
8349
8350         kvm_rip_write(vcpu, ctxt->eip);
8351         kvm_set_rflags(vcpu, ctxt->eflags);
8352         kvm_make_request(KVM_REQ_EVENT, vcpu);
8353         return EMULATE_DONE;
8354 }
8355 EXPORT_SYMBOL_GPL(kvm_task_switch);
8356
8357 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8358 {
8359         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8360                         (sregs->cr4 & X86_CR4_OSXSAVE))
8361                 return  -EINVAL;
8362
8363         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8364                 /*
8365                  * When EFER.LME and CR0.PG are set, the processor is in
8366                  * 64-bit mode (though maybe in a 32-bit code segment).
8367                  * CR4.PAE and EFER.LMA must be set.
8368                  */
8369                 if (!(sregs->cr4 & X86_CR4_PAE)
8370                     || !(sregs->efer & EFER_LMA))
8371                         return -EINVAL;
8372         } else {
8373                 /*
8374                  * Not in 64-bit mode: EFER.LMA is clear and the code
8375                  * segment cannot be 64-bit.
8376                  */
8377                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8378                         return -EINVAL;
8379         }
8380
8381         return 0;
8382 }
8383
8384 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8385 {
8386         struct msr_data apic_base_msr;
8387         int mmu_reset_needed = 0;
8388         int cpuid_update_needed = 0;
8389         int pending_vec, max_bits, idx;
8390         struct desc_ptr dt;
8391         int ret = -EINVAL;
8392
8393         if (kvm_valid_sregs(vcpu, sregs))
8394                 goto out;
8395
8396         apic_base_msr.data = sregs->apic_base;
8397         apic_base_msr.host_initiated = true;
8398         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8399                 goto out;
8400
8401         dt.size = sregs->idt.limit;
8402         dt.address = sregs->idt.base;
8403         kvm_x86_ops->set_idt(vcpu, &dt);
8404         dt.size = sregs->gdt.limit;
8405         dt.address = sregs->gdt.base;
8406         kvm_x86_ops->set_gdt(vcpu, &dt);
8407
8408         vcpu->arch.cr2 = sregs->cr2;
8409         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8410         vcpu->arch.cr3 = sregs->cr3;
8411         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8412
8413         kvm_set_cr8(vcpu, sregs->cr8);
8414
8415         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8416         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8417
8418         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8419         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8420         vcpu->arch.cr0 = sregs->cr0;
8421
8422         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8423         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8424                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8425         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8426         if (cpuid_update_needed)
8427                 kvm_update_cpuid(vcpu);
8428
8429         idx = srcu_read_lock(&vcpu->kvm->srcu);
8430         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8431                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8432                 mmu_reset_needed = 1;
8433         }
8434         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8435
8436         if (mmu_reset_needed)
8437                 kvm_mmu_reset_context(vcpu);
8438
8439         max_bits = KVM_NR_INTERRUPTS;
8440         pending_vec = find_first_bit(
8441                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8442         if (pending_vec < max_bits) {
8443                 kvm_queue_interrupt(vcpu, pending_vec, false);
8444                 pr_debug("Set back pending irq %d\n", pending_vec);
8445         }
8446
8447         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8448         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8449         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8450         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8451         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8452         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8453
8454         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8455         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8456
8457         update_cr8_intercept(vcpu);
8458
8459         /* Older userspace won't unhalt the vcpu on reset. */
8460         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8461             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8462             !is_protmode(vcpu))
8463                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8464
8465         kvm_make_request(KVM_REQ_EVENT, vcpu);
8466
8467         ret = 0;
8468 out:
8469         return ret;
8470 }
8471
8472 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8473                                   struct kvm_sregs *sregs)
8474 {
8475         int ret;
8476
8477         vcpu_load(vcpu);
8478         ret = __set_sregs(vcpu, sregs);
8479         vcpu_put(vcpu);
8480         return ret;
8481 }
8482
8483 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8484                                         struct kvm_guest_debug *dbg)
8485 {
8486         unsigned long rflags;
8487         int i, r;
8488
8489         vcpu_load(vcpu);
8490
8491         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8492                 r = -EBUSY;
8493                 if (vcpu->arch.exception.pending)
8494                         goto out;
8495                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8496                         kvm_queue_exception(vcpu, DB_VECTOR);
8497                 else
8498                         kvm_queue_exception(vcpu, BP_VECTOR);
8499         }
8500
8501         /*
8502          * Read rflags as long as potentially injected trace flags are still
8503          * filtered out.
8504          */
8505         rflags = kvm_get_rflags(vcpu);
8506
8507         vcpu->guest_debug = dbg->control;
8508         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8509                 vcpu->guest_debug = 0;
8510
8511         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8512                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8513                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8514                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8515         } else {
8516                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8517                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8518         }
8519         kvm_update_dr7(vcpu);
8520
8521         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8522                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8523                         get_segment_base(vcpu, VCPU_SREG_CS);
8524
8525         /*
8526          * Trigger an rflags update that will inject or remove the trace
8527          * flags.
8528          */
8529         kvm_set_rflags(vcpu, rflags);
8530
8531         kvm_x86_ops->update_bp_intercept(vcpu);
8532
8533         r = 0;
8534
8535 out:
8536         vcpu_put(vcpu);
8537         return r;
8538 }
8539
8540 /*
8541  * Translate a guest virtual address to a guest physical address.
8542  */
8543 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8544                                     struct kvm_translation *tr)
8545 {
8546         unsigned long vaddr = tr->linear_address;
8547         gpa_t gpa;
8548         int idx;
8549
8550         vcpu_load(vcpu);
8551
8552         idx = srcu_read_lock(&vcpu->kvm->srcu);
8553         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8554         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8555         tr->physical_address = gpa;
8556         tr->valid = gpa != UNMAPPED_GVA;
8557         tr->writeable = 1;
8558         tr->usermode = 0;
8559
8560         vcpu_put(vcpu);
8561         return 0;
8562 }
8563
8564 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8565 {
8566         struct fxregs_state *fxsave;
8567
8568         vcpu_load(vcpu);
8569
8570         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8571         memcpy(fpu->fpr, fxsave->st_space, 128);
8572         fpu->fcw = fxsave->cwd;
8573         fpu->fsw = fxsave->swd;
8574         fpu->ftwx = fxsave->twd;
8575         fpu->last_opcode = fxsave->fop;
8576         fpu->last_ip = fxsave->rip;
8577         fpu->last_dp = fxsave->rdp;
8578         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8579
8580         vcpu_put(vcpu);
8581         return 0;
8582 }
8583
8584 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8585 {
8586         struct fxregs_state *fxsave;
8587
8588         vcpu_load(vcpu);
8589
8590         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8591
8592         memcpy(fxsave->st_space, fpu->fpr, 128);
8593         fxsave->cwd = fpu->fcw;
8594         fxsave->swd = fpu->fsw;
8595         fxsave->twd = fpu->ftwx;
8596         fxsave->fop = fpu->last_opcode;
8597         fxsave->rip = fpu->last_ip;
8598         fxsave->rdp = fpu->last_dp;
8599         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8600
8601         vcpu_put(vcpu);
8602         return 0;
8603 }
8604
8605 static void store_regs(struct kvm_vcpu *vcpu)
8606 {
8607         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8608
8609         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8610                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8611
8612         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8613                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8614
8615         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8616                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8617                                 vcpu, &vcpu->run->s.regs.events);
8618 }
8619
8620 static int sync_regs(struct kvm_vcpu *vcpu)
8621 {
8622         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8623                 return -EINVAL;
8624
8625         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8626                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8627                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8628         }
8629         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8630                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8631                         return -EINVAL;
8632                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8633         }
8634         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8635                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8636                                 vcpu, &vcpu->run->s.regs.events))
8637                         return -EINVAL;
8638                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8639         }
8640
8641         return 0;
8642 }
8643
8644 static void fx_init(struct kvm_vcpu *vcpu)
8645 {
8646         fpstate_init(&vcpu->arch.guest_fpu->state);
8647         if (boot_cpu_has(X86_FEATURE_XSAVES))
8648                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8649                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8650
8651         /*
8652          * Ensure guest xcr0 is valid for loading
8653          */
8654         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8655
8656         vcpu->arch.cr0 |= X86_CR0_ET;
8657 }
8658
8659 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8660 {
8661         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8662
8663         kvmclock_reset(vcpu);
8664
8665         kvm_x86_ops->vcpu_free(vcpu);
8666         free_cpumask_var(wbinvd_dirty_mask);
8667 }
8668
8669 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8670                                                 unsigned int id)
8671 {
8672         struct kvm_vcpu *vcpu;
8673
8674         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8675                 printk_once(KERN_WARNING
8676                 "kvm: SMP vm created on host with unstable TSC; "
8677                 "guest TSC will not be reliable\n");
8678
8679         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8680
8681         return vcpu;
8682 }
8683
8684 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8685 {
8686         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8687         kvm_vcpu_mtrr_init(vcpu);
8688         vcpu_load(vcpu);
8689         kvm_vcpu_reset(vcpu, false);
8690         kvm_init_mmu(vcpu, false);
8691         vcpu_put(vcpu);
8692         return 0;
8693 }
8694
8695 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8696 {
8697         struct msr_data msr;
8698         struct kvm *kvm = vcpu->kvm;
8699
8700         kvm_hv_vcpu_postcreate(vcpu);
8701
8702         if (mutex_lock_killable(&vcpu->mutex))
8703                 return;
8704         vcpu_load(vcpu);
8705         msr.data = 0x0;
8706         msr.index = MSR_IA32_TSC;
8707         msr.host_initiated = true;
8708         kvm_write_tsc(vcpu, &msr);
8709         vcpu_put(vcpu);
8710         mutex_unlock(&vcpu->mutex);
8711
8712         if (!kvmclock_periodic_sync)
8713                 return;
8714
8715         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8716                                         KVMCLOCK_SYNC_PERIOD);
8717 }
8718
8719 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8720 {
8721         vcpu->arch.apf.msr_val = 0;
8722
8723         vcpu_load(vcpu);
8724         kvm_mmu_unload(vcpu);
8725         vcpu_put(vcpu);
8726
8727         kvm_x86_ops->vcpu_free(vcpu);
8728 }
8729
8730 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8731 {
8732         kvm_lapic_reset(vcpu, init_event);
8733
8734         vcpu->arch.hflags = 0;
8735
8736         vcpu->arch.smi_pending = 0;
8737         vcpu->arch.smi_count = 0;
8738         atomic_set(&vcpu->arch.nmi_queued, 0);
8739         vcpu->arch.nmi_pending = 0;
8740         vcpu->arch.nmi_injected = false;
8741         kvm_clear_interrupt_queue(vcpu);
8742         kvm_clear_exception_queue(vcpu);
8743         vcpu->arch.exception.pending = false;
8744
8745         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8746         kvm_update_dr0123(vcpu);
8747         vcpu->arch.dr6 = DR6_INIT;
8748         kvm_update_dr6(vcpu);
8749         vcpu->arch.dr7 = DR7_FIXED_1;
8750         kvm_update_dr7(vcpu);
8751
8752         vcpu->arch.cr2 = 0;
8753
8754         kvm_make_request(KVM_REQ_EVENT, vcpu);
8755         vcpu->arch.apf.msr_val = 0;
8756         vcpu->arch.st.msr_val = 0;
8757
8758         kvmclock_reset(vcpu);
8759
8760         kvm_clear_async_pf_completion_queue(vcpu);
8761         kvm_async_pf_hash_reset(vcpu);
8762         vcpu->arch.apf.halted = false;
8763
8764         if (kvm_mpx_supported()) {
8765                 void *mpx_state_buffer;
8766
8767                 /*
8768                  * To avoid have the INIT path from kvm_apic_has_events() that be
8769                  * called with loaded FPU and does not let userspace fix the state.
8770                  */
8771                 if (init_event)
8772                         kvm_put_guest_fpu(vcpu);
8773                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8774                                         XFEATURE_MASK_BNDREGS);
8775                 if (mpx_state_buffer)
8776                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8777                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8778                                         XFEATURE_MASK_BNDCSR);
8779                 if (mpx_state_buffer)
8780                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8781                 if (init_event)
8782                         kvm_load_guest_fpu(vcpu);
8783         }
8784
8785         if (!init_event) {
8786                 kvm_pmu_reset(vcpu);
8787                 vcpu->arch.smbase = 0x30000;
8788
8789                 vcpu->arch.msr_misc_features_enables = 0;
8790
8791                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8792         }
8793
8794         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8795         vcpu->arch.regs_avail = ~0;
8796         vcpu->arch.regs_dirty = ~0;
8797
8798         vcpu->arch.ia32_xss = 0;
8799
8800         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8801 }
8802
8803 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8804 {
8805         struct kvm_segment cs;
8806
8807         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8808         cs.selector = vector << 8;
8809         cs.base = vector << 12;
8810         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8811         kvm_rip_write(vcpu, 0);
8812 }
8813
8814 int kvm_arch_hardware_enable(void)
8815 {
8816         struct kvm *kvm;
8817         struct kvm_vcpu *vcpu;
8818         int i;
8819         int ret;
8820         u64 local_tsc;
8821         u64 max_tsc = 0;
8822         bool stable, backwards_tsc = false;
8823
8824         kvm_shared_msr_cpu_online();
8825         ret = kvm_x86_ops->hardware_enable();
8826         if (ret != 0)
8827                 return ret;
8828
8829         local_tsc = rdtsc();
8830         stable = !kvm_check_tsc_unstable();
8831         list_for_each_entry(kvm, &vm_list, vm_list) {
8832                 kvm_for_each_vcpu(i, vcpu, kvm) {
8833                         if (!stable && vcpu->cpu == smp_processor_id())
8834                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8835                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8836                                 backwards_tsc = true;
8837                                 if (vcpu->arch.last_host_tsc > max_tsc)
8838                                         max_tsc = vcpu->arch.last_host_tsc;
8839                         }
8840                 }
8841         }
8842
8843         /*
8844          * Sometimes, even reliable TSCs go backwards.  This happens on
8845          * platforms that reset TSC during suspend or hibernate actions, but
8846          * maintain synchronization.  We must compensate.  Fortunately, we can
8847          * detect that condition here, which happens early in CPU bringup,
8848          * before any KVM threads can be running.  Unfortunately, we can't
8849          * bring the TSCs fully up to date with real time, as we aren't yet far
8850          * enough into CPU bringup that we know how much real time has actually
8851          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8852          * variables that haven't been updated yet.
8853          *
8854          * So we simply find the maximum observed TSC above, then record the
8855          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8856          * the adjustment will be applied.  Note that we accumulate
8857          * adjustments, in case multiple suspend cycles happen before some VCPU
8858          * gets a chance to run again.  In the event that no KVM threads get a
8859          * chance to run, we will miss the entire elapsed period, as we'll have
8860          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8861          * loose cycle time.  This isn't too big a deal, since the loss will be
8862          * uniform across all VCPUs (not to mention the scenario is extremely
8863          * unlikely). It is possible that a second hibernate recovery happens
8864          * much faster than a first, causing the observed TSC here to be
8865          * smaller; this would require additional padding adjustment, which is
8866          * why we set last_host_tsc to the local tsc observed here.
8867          *
8868          * N.B. - this code below runs only on platforms with reliable TSC,
8869          * as that is the only way backwards_tsc is set above.  Also note
8870          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8871          * have the same delta_cyc adjustment applied if backwards_tsc
8872          * is detected.  Note further, this adjustment is only done once,
8873          * as we reset last_host_tsc on all VCPUs to stop this from being
8874          * called multiple times (one for each physical CPU bringup).
8875          *
8876          * Platforms with unreliable TSCs don't have to deal with this, they
8877          * will be compensated by the logic in vcpu_load, which sets the TSC to
8878          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8879          * guarantee that they stay in perfect synchronization.
8880          */
8881         if (backwards_tsc) {
8882                 u64 delta_cyc = max_tsc - local_tsc;
8883                 list_for_each_entry(kvm, &vm_list, vm_list) {
8884                         kvm->arch.backwards_tsc_observed = true;
8885                         kvm_for_each_vcpu(i, vcpu, kvm) {
8886                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8887                                 vcpu->arch.last_host_tsc = local_tsc;
8888                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8889                         }
8890
8891                         /*
8892                          * We have to disable TSC offset matching.. if you were
8893                          * booting a VM while issuing an S4 host suspend....
8894                          * you may have some problem.  Solving this issue is
8895                          * left as an exercise to the reader.
8896                          */
8897                         kvm->arch.last_tsc_nsec = 0;
8898                         kvm->arch.last_tsc_write = 0;
8899                 }
8900
8901         }
8902         return 0;
8903 }
8904
8905 void kvm_arch_hardware_disable(void)
8906 {
8907         kvm_x86_ops->hardware_disable();
8908         drop_user_return_notifiers();
8909 }
8910
8911 int kvm_arch_hardware_setup(void)
8912 {
8913         int r;
8914
8915         r = kvm_x86_ops->hardware_setup();
8916         if (r != 0)
8917                 return r;
8918
8919         if (kvm_has_tsc_control) {
8920                 /*
8921                  * Make sure the user can only configure tsc_khz values that
8922                  * fit into a signed integer.
8923                  * A min value is not calculated because it will always
8924                  * be 1 on all machines.
8925                  */
8926                 u64 max = min(0x7fffffffULL,
8927                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8928                 kvm_max_guest_tsc_khz = max;
8929
8930                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8931         }
8932
8933         kvm_init_msr_list();
8934         return 0;
8935 }
8936
8937 void kvm_arch_hardware_unsetup(void)
8938 {
8939         kvm_x86_ops->hardware_unsetup();
8940 }
8941
8942 void kvm_arch_check_processor_compat(void *rtn)
8943 {
8944         kvm_x86_ops->check_processor_compatibility(rtn);
8945 }
8946
8947 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8948 {
8949         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8950 }
8951 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8952
8953 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8954 {
8955         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8956 }
8957
8958 struct static_key kvm_no_apic_vcpu __read_mostly;
8959 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8960
8961 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8962 {
8963         struct page *page;
8964         int r;
8965
8966         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8967         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8968         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8969                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8970         else
8971                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8972
8973         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8974         if (!page) {
8975                 r = -ENOMEM;
8976                 goto fail;
8977         }
8978         vcpu->arch.pio_data = page_address(page);
8979
8980         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8981
8982         r = kvm_mmu_create(vcpu);
8983         if (r < 0)
8984                 goto fail_free_pio_data;
8985
8986         if (irqchip_in_kernel(vcpu->kvm)) {
8987                 r = kvm_create_lapic(vcpu);
8988                 if (r < 0)
8989                         goto fail_mmu_destroy;
8990         } else
8991                 static_key_slow_inc(&kvm_no_apic_vcpu);
8992
8993         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8994                                        GFP_KERNEL);
8995         if (!vcpu->arch.mce_banks) {
8996                 r = -ENOMEM;
8997                 goto fail_free_lapic;
8998         }
8999         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9000
9001         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
9002                 r = -ENOMEM;
9003                 goto fail_free_mce_banks;
9004         }
9005
9006         fx_init(vcpu);
9007
9008         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9009
9010         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9011
9012         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9013
9014         kvm_async_pf_hash_reset(vcpu);
9015         kvm_pmu_init(vcpu);
9016
9017         vcpu->arch.pending_external_vector = -1;
9018         vcpu->arch.preempted_in_kernel = false;
9019
9020         kvm_hv_vcpu_init(vcpu);
9021
9022         return 0;
9023
9024 fail_free_mce_banks:
9025         kfree(vcpu->arch.mce_banks);
9026 fail_free_lapic:
9027         kvm_free_lapic(vcpu);
9028 fail_mmu_destroy:
9029         kvm_mmu_destroy(vcpu);
9030 fail_free_pio_data:
9031         free_page((unsigned long)vcpu->arch.pio_data);
9032 fail:
9033         return r;
9034 }
9035
9036 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9037 {
9038         int idx;
9039
9040         kvm_hv_vcpu_uninit(vcpu);
9041         kvm_pmu_destroy(vcpu);
9042         kfree(vcpu->arch.mce_banks);
9043         kvm_free_lapic(vcpu);
9044         idx = srcu_read_lock(&vcpu->kvm->srcu);
9045         kvm_mmu_destroy(vcpu);
9046         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9047         free_page((unsigned long)vcpu->arch.pio_data);
9048         if (!lapic_in_kernel(vcpu))
9049                 static_key_slow_dec(&kvm_no_apic_vcpu);
9050 }
9051
9052 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9053 {
9054         vcpu->arch.l1tf_flush_l1d = true;
9055         kvm_x86_ops->sched_in(vcpu, cpu);
9056 }
9057
9058 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9059 {
9060         if (type)
9061                 return -EINVAL;
9062
9063         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9064         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9065         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9066         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9067         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9068
9069         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9070         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9071         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9072         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9073                 &kvm->arch.irq_sources_bitmap);
9074
9075         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9076         mutex_init(&kvm->arch.apic_map_lock);
9077         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9078
9079         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9080         pvclock_update_vm_gtod_copy(kvm);
9081
9082         kvm->arch.guest_can_read_msr_platform_info = true;
9083
9084         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9085         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9086
9087         kvm_hv_init_vm(kvm);
9088         kvm_page_track_init(kvm);
9089         kvm_mmu_init_vm(kvm);
9090
9091         if (kvm_x86_ops->vm_init)
9092                 return kvm_x86_ops->vm_init(kvm);
9093
9094         return 0;
9095 }
9096
9097 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9098 {
9099         vcpu_load(vcpu);
9100         kvm_mmu_unload(vcpu);
9101         vcpu_put(vcpu);
9102 }
9103
9104 static void kvm_free_vcpus(struct kvm *kvm)
9105 {
9106         unsigned int i;
9107         struct kvm_vcpu *vcpu;
9108
9109         /*
9110          * Unpin any mmu pages first.
9111          */
9112         kvm_for_each_vcpu(i, vcpu, kvm) {
9113                 kvm_clear_async_pf_completion_queue(vcpu);
9114                 kvm_unload_vcpu_mmu(vcpu);
9115         }
9116         kvm_for_each_vcpu(i, vcpu, kvm)
9117                 kvm_arch_vcpu_free(vcpu);
9118
9119         mutex_lock(&kvm->lock);
9120         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9121                 kvm->vcpus[i] = NULL;
9122
9123         atomic_set(&kvm->online_vcpus, 0);
9124         mutex_unlock(&kvm->lock);
9125 }
9126
9127 void kvm_arch_sync_events(struct kvm *kvm)
9128 {
9129         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9130         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9131         kvm_free_pit(kvm);
9132 }
9133
9134 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9135 {
9136         int i, r;
9137         unsigned long hva;
9138         struct kvm_memslots *slots = kvm_memslots(kvm);
9139         struct kvm_memory_slot *slot, old;
9140
9141         /* Called with kvm->slots_lock held.  */
9142         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9143                 return -EINVAL;
9144
9145         slot = id_to_memslot(slots, id);
9146         if (size) {
9147                 if (slot->npages)
9148                         return -EEXIST;
9149
9150                 /*
9151                  * MAP_SHARED to prevent internal slot pages from being moved
9152                  * by fork()/COW.
9153                  */
9154                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9155                               MAP_SHARED | MAP_ANONYMOUS, 0);
9156                 if (IS_ERR((void *)hva))
9157                         return PTR_ERR((void *)hva);
9158         } else {
9159                 if (!slot->npages)
9160                         return 0;
9161
9162                 hva = 0;
9163         }
9164
9165         old = *slot;
9166         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9167                 struct kvm_userspace_memory_region m;
9168
9169                 m.slot = id | (i << 16);
9170                 m.flags = 0;
9171                 m.guest_phys_addr = gpa;
9172                 m.userspace_addr = hva;
9173                 m.memory_size = size;
9174                 r = __kvm_set_memory_region(kvm, &m);
9175                 if (r < 0)
9176                         return r;
9177         }
9178
9179         if (!size)
9180                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9181
9182         return 0;
9183 }
9184 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9185
9186 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9187 {
9188         int r;
9189
9190         mutex_lock(&kvm->slots_lock);
9191         r = __x86_set_memory_region(kvm, id, gpa, size);
9192         mutex_unlock(&kvm->slots_lock);
9193
9194         return r;
9195 }
9196 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9197
9198 void kvm_arch_destroy_vm(struct kvm *kvm)
9199 {
9200         if (current->mm == kvm->mm) {
9201                 /*
9202                  * Free memory regions allocated on behalf of userspace,
9203                  * unless the the memory map has changed due to process exit
9204                  * or fd copying.
9205                  */
9206                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9207                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9208                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9209         }
9210         if (kvm_x86_ops->vm_destroy)
9211                 kvm_x86_ops->vm_destroy(kvm);
9212         kvm_pic_destroy(kvm);
9213         kvm_ioapic_destroy(kvm);
9214         kvm_free_vcpus(kvm);
9215         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9216         kvm_mmu_uninit_vm(kvm);
9217         kvm_page_track_cleanup(kvm);
9218         kvm_hv_destroy_vm(kvm);
9219 }
9220
9221 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9222                            struct kvm_memory_slot *dont)
9223 {
9224         int i;
9225
9226         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9227                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9228                         kvfree(free->arch.rmap[i]);
9229                         free->arch.rmap[i] = NULL;
9230                 }
9231                 if (i == 0)
9232                         continue;
9233
9234                 if (!dont || free->arch.lpage_info[i - 1] !=
9235                              dont->arch.lpage_info[i - 1]) {
9236                         kvfree(free->arch.lpage_info[i - 1]);
9237                         free->arch.lpage_info[i - 1] = NULL;
9238                 }
9239         }
9240
9241         kvm_page_track_free_memslot(free, dont);
9242 }
9243
9244 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9245                             unsigned long npages)
9246 {
9247         int i;
9248
9249         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9250                 struct kvm_lpage_info *linfo;
9251                 unsigned long ugfn;
9252                 int lpages;
9253                 int level = i + 1;
9254
9255                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9256                                       slot->base_gfn, level) + 1;
9257
9258                 slot->arch.rmap[i] =
9259                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9260                                  GFP_KERNEL);
9261                 if (!slot->arch.rmap[i])
9262                         goto out_free;
9263                 if (i == 0)
9264                         continue;
9265
9266                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9267                 if (!linfo)
9268                         goto out_free;
9269
9270                 slot->arch.lpage_info[i - 1] = linfo;
9271
9272                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9273                         linfo[0].disallow_lpage = 1;
9274                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9275                         linfo[lpages - 1].disallow_lpage = 1;
9276                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9277                 /*
9278                  * If the gfn and userspace address are not aligned wrt each
9279                  * other, or if explicitly asked to, disable large page
9280                  * support for this slot
9281                  */
9282                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9283                     !kvm_largepages_enabled()) {
9284                         unsigned long j;
9285
9286                         for (j = 0; j < lpages; ++j)
9287                                 linfo[j].disallow_lpage = 1;
9288                 }
9289         }
9290
9291         if (kvm_page_track_create_memslot(slot, npages))
9292                 goto out_free;
9293
9294         return 0;
9295
9296 out_free:
9297         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9298                 kvfree(slot->arch.rmap[i]);
9299                 slot->arch.rmap[i] = NULL;
9300                 if (i == 0)
9301                         continue;
9302
9303                 kvfree(slot->arch.lpage_info[i - 1]);
9304                 slot->arch.lpage_info[i - 1] = NULL;
9305         }
9306         return -ENOMEM;
9307 }
9308
9309 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9310 {
9311         /*
9312          * memslots->generation has been incremented.
9313          * mmio generation may have reached its maximum value.
9314          */
9315         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9316 }
9317
9318 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9319                                 struct kvm_memory_slot *memslot,
9320                                 const struct kvm_userspace_memory_region *mem,
9321                                 enum kvm_mr_change change)
9322 {
9323         return 0;
9324 }
9325
9326 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9327                                      struct kvm_memory_slot *new)
9328 {
9329         /* Still write protect RO slot */
9330         if (new->flags & KVM_MEM_READONLY) {
9331                 kvm_mmu_slot_remove_write_access(kvm, new);
9332                 return;
9333         }
9334
9335         /*
9336          * Call kvm_x86_ops dirty logging hooks when they are valid.
9337          *
9338          * kvm_x86_ops->slot_disable_log_dirty is called when:
9339          *
9340          *  - KVM_MR_CREATE with dirty logging is disabled
9341          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9342          *
9343          * The reason is, in case of PML, we need to set D-bit for any slots
9344          * with dirty logging disabled in order to eliminate unnecessary GPA
9345          * logging in PML buffer (and potential PML buffer full VMEXT). This
9346          * guarantees leaving PML enabled during guest's lifetime won't have
9347          * any additonal overhead from PML when guest is running with dirty
9348          * logging disabled for memory slots.
9349          *
9350          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9351          * to dirty logging mode.
9352          *
9353          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9354          *
9355          * In case of write protect:
9356          *
9357          * Write protect all pages for dirty logging.
9358          *
9359          * All the sptes including the large sptes which point to this
9360          * slot are set to readonly. We can not create any new large
9361          * spte on this slot until the end of the logging.
9362          *
9363          * See the comments in fast_page_fault().
9364          */
9365         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9366                 if (kvm_x86_ops->slot_enable_log_dirty)
9367                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9368                 else
9369                         kvm_mmu_slot_remove_write_access(kvm, new);
9370         } else {
9371                 if (kvm_x86_ops->slot_disable_log_dirty)
9372                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9373         }
9374 }
9375
9376 void kvm_arch_commit_memory_region(struct kvm *kvm,
9377                                 const struct kvm_userspace_memory_region *mem,
9378                                 const struct kvm_memory_slot *old,
9379                                 const struct kvm_memory_slot *new,
9380                                 enum kvm_mr_change change)
9381 {
9382         int nr_mmu_pages = 0;
9383
9384         if (!kvm->arch.n_requested_mmu_pages)
9385                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9386
9387         if (nr_mmu_pages)
9388                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9389
9390         /*
9391          * Dirty logging tracks sptes in 4k granularity, meaning that large
9392          * sptes have to be split.  If live migration is successful, the guest
9393          * in the source machine will be destroyed and large sptes will be
9394          * created in the destination. However, if the guest continues to run
9395          * in the source machine (for example if live migration fails), small
9396          * sptes will remain around and cause bad performance.
9397          *
9398          * Scan sptes if dirty logging has been stopped, dropping those
9399          * which can be collapsed into a single large-page spte.  Later
9400          * page faults will create the large-page sptes.
9401          */
9402         if ((change != KVM_MR_DELETE) &&
9403                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9404                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9405                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9406
9407         /*
9408          * Set up write protection and/or dirty logging for the new slot.
9409          *
9410          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9411          * been zapped so no dirty logging staff is needed for old slot. For
9412          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9413          * new and it's also covered when dealing with the new slot.
9414          *
9415          * FIXME: const-ify all uses of struct kvm_memory_slot.
9416          */
9417         if (change != KVM_MR_DELETE)
9418                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9419 }
9420
9421 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9422 {
9423         kvm_mmu_invalidate_zap_all_pages(kvm);
9424 }
9425
9426 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9427                                    struct kvm_memory_slot *slot)
9428 {
9429         kvm_page_track_flush_slot(kvm, slot);
9430 }
9431
9432 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9433 {
9434         return (is_guest_mode(vcpu) &&
9435                         kvm_x86_ops->guest_apic_has_interrupt &&
9436                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9437 }
9438
9439 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9440 {
9441         if (!list_empty_careful(&vcpu->async_pf.done))
9442                 return true;
9443
9444         if (kvm_apic_has_events(vcpu))
9445                 return true;
9446
9447         if (vcpu->arch.pv.pv_unhalted)
9448                 return true;
9449
9450         if (vcpu->arch.exception.pending)
9451                 return true;
9452
9453         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9454             (vcpu->arch.nmi_pending &&
9455              kvm_x86_ops->nmi_allowed(vcpu)))
9456                 return true;
9457
9458         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9459             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9460                 return true;
9461
9462         if (kvm_arch_interrupt_allowed(vcpu) &&
9463             (kvm_cpu_has_interrupt(vcpu) ||
9464             kvm_guest_apic_has_interrupt(vcpu)))
9465                 return true;
9466
9467         if (kvm_hv_has_stimer_pending(vcpu))
9468                 return true;
9469
9470         return false;
9471 }
9472
9473 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9474 {
9475         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9476 }
9477
9478 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9479 {
9480         return vcpu->arch.preempted_in_kernel;
9481 }
9482
9483 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9484 {
9485         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9486 }
9487
9488 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9489 {
9490         return kvm_x86_ops->interrupt_allowed(vcpu);
9491 }
9492
9493 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9494 {
9495         if (is_64_bit_mode(vcpu))
9496                 return kvm_rip_read(vcpu);
9497         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9498                      kvm_rip_read(vcpu));
9499 }
9500 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9501
9502 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9503 {
9504         return kvm_get_linear_rip(vcpu) == linear_rip;
9505 }
9506 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9507
9508 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9509 {
9510         unsigned long rflags;
9511
9512         rflags = kvm_x86_ops->get_rflags(vcpu);
9513         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9514                 rflags &= ~X86_EFLAGS_TF;
9515         return rflags;
9516 }
9517 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9518
9519 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9520 {
9521         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9522             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9523                 rflags |= X86_EFLAGS_TF;
9524         kvm_x86_ops->set_rflags(vcpu, rflags);
9525 }
9526
9527 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9528 {
9529         __kvm_set_rflags(vcpu, rflags);
9530         kvm_make_request(KVM_REQ_EVENT, vcpu);
9531 }
9532 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9533
9534 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9535 {
9536         int r;
9537
9538         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9539               work->wakeup_all)
9540                 return;
9541
9542         r = kvm_mmu_reload(vcpu);
9543         if (unlikely(r))
9544                 return;
9545
9546         if (!vcpu->arch.mmu->direct_map &&
9547               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9548                 return;
9549
9550         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9551 }
9552
9553 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9554 {
9555         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9556 }
9557
9558 static inline u32 kvm_async_pf_next_probe(u32 key)
9559 {
9560         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9561 }
9562
9563 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9564 {
9565         u32 key = kvm_async_pf_hash_fn(gfn);
9566
9567         while (vcpu->arch.apf.gfns[key] != ~0)
9568                 key = kvm_async_pf_next_probe(key);
9569
9570         vcpu->arch.apf.gfns[key] = gfn;
9571 }
9572
9573 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9574 {
9575         int i;
9576         u32 key = kvm_async_pf_hash_fn(gfn);
9577
9578         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9579                      (vcpu->arch.apf.gfns[key] != gfn &&
9580                       vcpu->arch.apf.gfns[key] != ~0); i++)
9581                 key = kvm_async_pf_next_probe(key);
9582
9583         return key;
9584 }
9585
9586 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9587 {
9588         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9589 }
9590
9591 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9592 {
9593         u32 i, j, k;
9594
9595         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9596         while (true) {
9597                 vcpu->arch.apf.gfns[i] = ~0;
9598                 do {
9599                         j = kvm_async_pf_next_probe(j);
9600                         if (vcpu->arch.apf.gfns[j] == ~0)
9601                                 return;
9602                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9603                         /*
9604                          * k lies cyclically in ]i,j]
9605                          * |    i.k.j |
9606                          * |....j i.k.| or  |.k..j i...|
9607                          */
9608                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9609                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9610                 i = j;
9611         }
9612 }
9613
9614 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9615 {
9616
9617         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9618                                       sizeof(val));
9619 }
9620
9621 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9622 {
9623
9624         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9625                                       sizeof(u32));
9626 }
9627
9628 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9629                                      struct kvm_async_pf *work)
9630 {
9631         struct x86_exception fault;
9632
9633         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9634         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9635
9636         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9637             (vcpu->arch.apf.send_user_only &&
9638              kvm_x86_ops->get_cpl(vcpu) == 0))
9639                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9640         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9641                 fault.vector = PF_VECTOR;
9642                 fault.error_code_valid = true;
9643                 fault.error_code = 0;
9644                 fault.nested_page_fault = false;
9645                 fault.address = work->arch.token;
9646                 fault.async_page_fault = true;
9647                 kvm_inject_page_fault(vcpu, &fault);
9648         }
9649 }
9650
9651 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9652                                  struct kvm_async_pf *work)
9653 {
9654         struct x86_exception fault;
9655         u32 val;
9656
9657         if (work->wakeup_all)
9658                 work->arch.token = ~0; /* broadcast wakeup */
9659         else
9660                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9661         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9662
9663         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9664             !apf_get_user(vcpu, &val)) {
9665                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9666                     vcpu->arch.exception.pending &&
9667                     vcpu->arch.exception.nr == PF_VECTOR &&
9668                     !apf_put_user(vcpu, 0)) {
9669                         vcpu->arch.exception.injected = false;
9670                         vcpu->arch.exception.pending = false;
9671                         vcpu->arch.exception.nr = 0;
9672                         vcpu->arch.exception.has_error_code = false;
9673                         vcpu->arch.exception.error_code = 0;
9674                         vcpu->arch.exception.has_payload = false;
9675                         vcpu->arch.exception.payload = 0;
9676                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9677                         fault.vector = PF_VECTOR;
9678                         fault.error_code_valid = true;
9679                         fault.error_code = 0;
9680                         fault.nested_page_fault = false;
9681                         fault.address = work->arch.token;
9682                         fault.async_page_fault = true;
9683                         kvm_inject_page_fault(vcpu, &fault);
9684                 }
9685         }
9686         vcpu->arch.apf.halted = false;
9687         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9688 }
9689
9690 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9691 {
9692         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9693                 return true;
9694         else
9695                 return kvm_can_do_async_pf(vcpu);
9696 }
9697
9698 void kvm_arch_start_assignment(struct kvm *kvm)
9699 {
9700         atomic_inc(&kvm->arch.assigned_device_count);
9701 }
9702 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9703
9704 void kvm_arch_end_assignment(struct kvm *kvm)
9705 {
9706         atomic_dec(&kvm->arch.assigned_device_count);
9707 }
9708 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9709
9710 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9711 {
9712         return atomic_read(&kvm->arch.assigned_device_count);
9713 }
9714 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9715
9716 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9717 {
9718         atomic_inc(&kvm->arch.noncoherent_dma_count);
9719 }
9720 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9721
9722 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9723 {
9724         atomic_dec(&kvm->arch.noncoherent_dma_count);
9725 }
9726 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9727
9728 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9729 {
9730         return atomic_read(&kvm->arch.noncoherent_dma_count);
9731 }
9732 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9733
9734 bool kvm_arch_has_irq_bypass(void)
9735 {
9736         return kvm_x86_ops->update_pi_irte != NULL;
9737 }
9738
9739 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9740                                       struct irq_bypass_producer *prod)
9741 {
9742         struct kvm_kernel_irqfd *irqfd =
9743                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9744
9745         irqfd->producer = prod;
9746
9747         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9748                                            prod->irq, irqfd->gsi, 1);
9749 }
9750
9751 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9752                                       struct irq_bypass_producer *prod)
9753 {
9754         int ret;
9755         struct kvm_kernel_irqfd *irqfd =
9756                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9757
9758         WARN_ON(irqfd->producer != prod);
9759         irqfd->producer = NULL;
9760
9761         /*
9762          * When producer of consumer is unregistered, we change back to
9763          * remapped mode, so we can re-use the current implementation
9764          * when the irq is masked/disabled or the consumer side (KVM
9765          * int this case doesn't want to receive the interrupts.
9766         */
9767         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9768         if (ret)
9769                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9770                        " fails: %d\n", irqfd->consumer.token, ret);
9771 }
9772
9773 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9774                                    uint32_t guest_irq, bool set)
9775 {
9776         if (!kvm_x86_ops->update_pi_irte)
9777                 return -EINVAL;
9778
9779         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9780 }
9781
9782 bool kvm_vector_hashing_enabled(void)
9783 {
9784         return vector_hashing;
9785 }
9786 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9787
9788 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9789 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9790 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9791 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9792 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9793 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9794 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9795 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9796 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9797 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9798 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9799 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9800 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9801 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9802 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9803 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9804 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9805 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9806 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);