]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
Merge ath-next from git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/ath.git
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141
142 static bool __read_mostly vector_hashing = true;
143 module_param(vector_hashing, bool, S_IRUGO);
144
145 bool __read_mostly enable_vmware_backdoor = false;
146 module_param(enable_vmware_backdoor, bool, S_IRUGO);
147 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
148
149 static bool __read_mostly force_emulation_prefix = false;
150 module_param(force_emulation_prefix, bool, S_IRUGO);
151
152 #define KVM_NR_SHARED_MSRS 16
153
154 struct kvm_shared_msrs_global {
155         int nr;
156         u32 msrs[KVM_NR_SHARED_MSRS];
157 };
158
159 struct kvm_shared_msrs {
160         struct user_return_notifier urn;
161         bool registered;
162         struct kvm_shared_msr_values {
163                 u64 host;
164                 u64 curr;
165         } values[KVM_NR_SHARED_MSRS];
166 };
167
168 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
169 static struct kvm_shared_msrs __percpu *shared_msrs;
170
171 struct kvm_stats_debugfs_item debugfs_entries[] = {
172         { "pf_fixed", VCPU_STAT(pf_fixed) },
173         { "pf_guest", VCPU_STAT(pf_guest) },
174         { "tlb_flush", VCPU_STAT(tlb_flush) },
175         { "invlpg", VCPU_STAT(invlpg) },
176         { "exits", VCPU_STAT(exits) },
177         { "io_exits", VCPU_STAT(io_exits) },
178         { "mmio_exits", VCPU_STAT(mmio_exits) },
179         { "signal_exits", VCPU_STAT(signal_exits) },
180         { "irq_window", VCPU_STAT(irq_window_exits) },
181         { "nmi_window", VCPU_STAT(nmi_window_exits) },
182         { "halt_exits", VCPU_STAT(halt_exits) },
183         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
184         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
185         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
186         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
187         { "hypercalls", VCPU_STAT(hypercalls) },
188         { "request_irq", VCPU_STAT(request_irq_exits) },
189         { "irq_exits", VCPU_STAT(irq_exits) },
190         { "host_state_reload", VCPU_STAT(host_state_reload) },
191         { "fpu_reload", VCPU_STAT(fpu_reload) },
192         { "insn_emulation", VCPU_STAT(insn_emulation) },
193         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
194         { "irq_injections", VCPU_STAT(irq_injections) },
195         { "nmi_injections", VCPU_STAT(nmi_injections) },
196         { "req_event", VCPU_STAT(req_event) },
197         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
198         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
199         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
200         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
201         { "mmu_flooded", VM_STAT(mmu_flooded) },
202         { "mmu_recycled", VM_STAT(mmu_recycled) },
203         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
204         { "mmu_unsync", VM_STAT(mmu_unsync) },
205         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
206         { "largepages", VM_STAT(lpages) },
207         { "max_mmu_page_hash_collisions",
208                 VM_STAT(max_mmu_page_hash_collisions) },
209         { NULL }
210 };
211
212 u64 __read_mostly host_xcr0;
213
214 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
215
216 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
217 {
218         int i;
219         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
220                 vcpu->arch.apf.gfns[i] = ~0;
221 }
222
223 static void kvm_on_user_return(struct user_return_notifier *urn)
224 {
225         unsigned slot;
226         struct kvm_shared_msrs *locals
227                 = container_of(urn, struct kvm_shared_msrs, urn);
228         struct kvm_shared_msr_values *values;
229         unsigned long flags;
230
231         /*
232          * Disabling irqs at this point since the following code could be
233          * interrupted and executed through kvm_arch_hardware_disable()
234          */
235         local_irq_save(flags);
236         if (locals->registered) {
237                 locals->registered = false;
238                 user_return_notifier_unregister(urn);
239         }
240         local_irq_restore(flags);
241         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
242                 values = &locals->values[slot];
243                 if (values->host != values->curr) {
244                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
245                         values->curr = values->host;
246                 }
247         }
248 }
249
250 static void shared_msr_update(unsigned slot, u32 msr)
251 {
252         u64 value;
253         unsigned int cpu = smp_processor_id();
254         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255
256         /* only read, and nobody should modify it at this time,
257          * so don't need lock */
258         if (slot >= shared_msrs_global.nr) {
259                 printk(KERN_ERR "kvm: invalid MSR slot!");
260                 return;
261         }
262         rdmsrl_safe(msr, &value);
263         smsr->values[slot].host = value;
264         smsr->values[slot].curr = value;
265 }
266
267 void kvm_define_shared_msr(unsigned slot, u32 msr)
268 {
269         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
270         shared_msrs_global.msrs[slot] = msr;
271         if (slot >= shared_msrs_global.nr)
272                 shared_msrs_global.nr = slot + 1;
273 }
274 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
275
276 static void kvm_shared_msr_cpu_online(void)
277 {
278         unsigned i;
279
280         for (i = 0; i < shared_msrs_global.nr; ++i)
281                 shared_msr_update(i, shared_msrs_global.msrs[i]);
282 }
283
284 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
285 {
286         unsigned int cpu = smp_processor_id();
287         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
288         int err;
289
290         if (((value ^ smsr->values[slot].curr) & mask) == 0)
291                 return 0;
292         smsr->values[slot].curr = value;
293         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
294         if (err)
295                 return 1;
296
297         if (!smsr->registered) {
298                 smsr->urn.on_user_return = kvm_on_user_return;
299                 user_return_notifier_register(&smsr->urn);
300                 smsr->registered = true;
301         }
302         return 0;
303 }
304 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
305
306 static void drop_user_return_notifiers(void)
307 {
308         unsigned int cpu = smp_processor_id();
309         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
310
311         if (smsr->registered)
312                 kvm_on_user_return(&smsr->urn);
313 }
314
315 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
316 {
317         return vcpu->arch.apic_base;
318 }
319 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
320
321 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
322 {
323         u64 old_state = vcpu->arch.apic_base &
324                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
325         u64 new_state = msr_info->data &
326                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
327         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
328                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
329
330         if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
331                 return 1;
332         if (!msr_info->host_initiated &&
333             ((new_state == MSR_IA32_APICBASE_ENABLE &&
334               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
335              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
336               old_state == 0)))
337                 return 1;
338
339         kvm_lapic_set_base(vcpu, msr_info->data);
340         return 0;
341 }
342 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
343
344 asmlinkage __visible void kvm_spurious_fault(void)
345 {
346         /* Fault while not rebooting.  We want the trace. */
347         BUG();
348 }
349 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
350
351 #define EXCPT_BENIGN            0
352 #define EXCPT_CONTRIBUTORY      1
353 #define EXCPT_PF                2
354
355 static int exception_class(int vector)
356 {
357         switch (vector) {
358         case PF_VECTOR:
359                 return EXCPT_PF;
360         case DE_VECTOR:
361         case TS_VECTOR:
362         case NP_VECTOR:
363         case SS_VECTOR:
364         case GP_VECTOR:
365                 return EXCPT_CONTRIBUTORY;
366         default:
367                 break;
368         }
369         return EXCPT_BENIGN;
370 }
371
372 #define EXCPT_FAULT             0
373 #define EXCPT_TRAP              1
374 #define EXCPT_ABORT             2
375 #define EXCPT_INTERRUPT         3
376
377 static int exception_type(int vector)
378 {
379         unsigned int mask;
380
381         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
382                 return EXCPT_INTERRUPT;
383
384         mask = 1 << vector;
385
386         /* #DB is trap, as instruction watchpoints are handled elsewhere */
387         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
388                 return EXCPT_TRAP;
389
390         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
391                 return EXCPT_ABORT;
392
393         /* Reserved exceptions will result in fault */
394         return EXCPT_FAULT;
395 }
396
397 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
398                 unsigned nr, bool has_error, u32 error_code,
399                 bool reinject)
400 {
401         u32 prev_nr;
402         int class1, class2;
403
404         kvm_make_request(KVM_REQ_EVENT, vcpu);
405
406         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
407         queue:
408                 if (has_error && !is_protmode(vcpu))
409                         has_error = false;
410                 if (reinject) {
411                         /*
412                          * On vmentry, vcpu->arch.exception.pending is only
413                          * true if an event injection was blocked by
414                          * nested_run_pending.  In that case, however,
415                          * vcpu_enter_guest requests an immediate exit,
416                          * and the guest shouldn't proceed far enough to
417                          * need reinjection.
418                          */
419                         WARN_ON_ONCE(vcpu->arch.exception.pending);
420                         vcpu->arch.exception.injected = true;
421                 } else {
422                         vcpu->arch.exception.pending = true;
423                         vcpu->arch.exception.injected = false;
424                 }
425                 vcpu->arch.exception.has_error_code = has_error;
426                 vcpu->arch.exception.nr = nr;
427                 vcpu->arch.exception.error_code = error_code;
428                 return;
429         }
430
431         /* to check exception */
432         prev_nr = vcpu->arch.exception.nr;
433         if (prev_nr == DF_VECTOR) {
434                 /* triple fault -> shutdown */
435                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
436                 return;
437         }
438         class1 = exception_class(prev_nr);
439         class2 = exception_class(nr);
440         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
441                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
442                 /*
443                  * Generate double fault per SDM Table 5-5.  Set
444                  * exception.pending = true so that the double fault
445                  * can trigger a nested vmexit.
446                  */
447                 vcpu->arch.exception.pending = true;
448                 vcpu->arch.exception.injected = false;
449                 vcpu->arch.exception.has_error_code = true;
450                 vcpu->arch.exception.nr = DF_VECTOR;
451                 vcpu->arch.exception.error_code = 0;
452         } else
453                 /* replace previous exception with a new one in a hope
454                    that instruction re-execution will regenerate lost
455                    exception */
456                 goto queue;
457 }
458
459 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
460 {
461         kvm_multiple_exception(vcpu, nr, false, 0, false);
462 }
463 EXPORT_SYMBOL_GPL(kvm_queue_exception);
464
465 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
466 {
467         kvm_multiple_exception(vcpu, nr, false, 0, true);
468 }
469 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
470
471 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
472 {
473         if (err)
474                 kvm_inject_gp(vcpu, 0);
475         else
476                 return kvm_skip_emulated_instruction(vcpu);
477
478         return 1;
479 }
480 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
481
482 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
483 {
484         ++vcpu->stat.pf_guest;
485         vcpu->arch.exception.nested_apf =
486                 is_guest_mode(vcpu) && fault->async_page_fault;
487         if (vcpu->arch.exception.nested_apf)
488                 vcpu->arch.apf.nested_apf_token = fault->address;
489         else
490                 vcpu->arch.cr2 = fault->address;
491         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
492 }
493 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
494
495 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
496 {
497         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
498                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
499         else
500                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
501
502         return fault->nested_page_fault;
503 }
504
505 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
506 {
507         atomic_inc(&vcpu->arch.nmi_queued);
508         kvm_make_request(KVM_REQ_NMI, vcpu);
509 }
510 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
511
512 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
513 {
514         kvm_multiple_exception(vcpu, nr, true, error_code, false);
515 }
516 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
517
518 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
519 {
520         kvm_multiple_exception(vcpu, nr, true, error_code, true);
521 }
522 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
523
524 /*
525  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
526  * a #GP and return false.
527  */
528 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
529 {
530         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
531                 return true;
532         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
533         return false;
534 }
535 EXPORT_SYMBOL_GPL(kvm_require_cpl);
536
537 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
538 {
539         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
540                 return true;
541
542         kvm_queue_exception(vcpu, UD_VECTOR);
543         return false;
544 }
545 EXPORT_SYMBOL_GPL(kvm_require_dr);
546
547 /*
548  * This function will be used to read from the physical memory of the currently
549  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
550  * can read from guest physical or from the guest's guest physical memory.
551  */
552 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
553                             gfn_t ngfn, void *data, int offset, int len,
554                             u32 access)
555 {
556         struct x86_exception exception;
557         gfn_t real_gfn;
558         gpa_t ngpa;
559
560         ngpa     = gfn_to_gpa(ngfn);
561         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
562         if (real_gfn == UNMAPPED_GVA)
563                 return -EFAULT;
564
565         real_gfn = gpa_to_gfn(real_gfn);
566
567         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
568 }
569 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
570
571 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
572                                void *data, int offset, int len, u32 access)
573 {
574         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
575                                        data, offset, len, access);
576 }
577
578 /*
579  * Load the pae pdptrs.  Return true is they are all valid.
580  */
581 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
582 {
583         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
584         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
585         int i;
586         int ret;
587         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
588
589         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
590                                       offset * sizeof(u64), sizeof(pdpte),
591                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
592         if (ret < 0) {
593                 ret = 0;
594                 goto out;
595         }
596         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
597                 if ((pdpte[i] & PT_PRESENT_MASK) &&
598                     (pdpte[i] &
599                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
600                         ret = 0;
601                         goto out;
602                 }
603         }
604         ret = 1;
605
606         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
607         __set_bit(VCPU_EXREG_PDPTR,
608                   (unsigned long *)&vcpu->arch.regs_avail);
609         __set_bit(VCPU_EXREG_PDPTR,
610                   (unsigned long *)&vcpu->arch.regs_dirty);
611 out:
612
613         return ret;
614 }
615 EXPORT_SYMBOL_GPL(load_pdptrs);
616
617 bool pdptrs_changed(struct kvm_vcpu *vcpu)
618 {
619         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
620         bool changed = true;
621         int offset;
622         gfn_t gfn;
623         int r;
624
625         if (is_long_mode(vcpu) || !is_pae(vcpu))
626                 return false;
627
628         if (!test_bit(VCPU_EXREG_PDPTR,
629                       (unsigned long *)&vcpu->arch.regs_avail))
630                 return true;
631
632         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
633         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
634         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
635                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
636         if (r < 0)
637                 goto out;
638         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
639 out:
640
641         return changed;
642 }
643 EXPORT_SYMBOL_GPL(pdptrs_changed);
644
645 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
646 {
647         unsigned long old_cr0 = kvm_read_cr0(vcpu);
648         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
649
650         cr0 |= X86_CR0_ET;
651
652 #ifdef CONFIG_X86_64
653         if (cr0 & 0xffffffff00000000UL)
654                 return 1;
655 #endif
656
657         cr0 &= ~CR0_RESERVED_BITS;
658
659         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
660                 return 1;
661
662         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
663                 return 1;
664
665         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
666 #ifdef CONFIG_X86_64
667                 if ((vcpu->arch.efer & EFER_LME)) {
668                         int cs_db, cs_l;
669
670                         if (!is_pae(vcpu))
671                                 return 1;
672                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
673                         if (cs_l)
674                                 return 1;
675                 } else
676 #endif
677                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
678                                                  kvm_read_cr3(vcpu)))
679                         return 1;
680         }
681
682         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
683                 return 1;
684
685         kvm_x86_ops->set_cr0(vcpu, cr0);
686
687         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
688                 kvm_clear_async_pf_completion_queue(vcpu);
689                 kvm_async_pf_hash_reset(vcpu);
690         }
691
692         if ((cr0 ^ old_cr0) & update_bits)
693                 kvm_mmu_reset_context(vcpu);
694
695         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
696             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
697             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
698                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
699
700         return 0;
701 }
702 EXPORT_SYMBOL_GPL(kvm_set_cr0);
703
704 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
705 {
706         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
707 }
708 EXPORT_SYMBOL_GPL(kvm_lmsw);
709
710 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
711 {
712         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
713                         !vcpu->guest_xcr0_loaded) {
714                 /* kvm_set_xcr() also depends on this */
715                 if (vcpu->arch.xcr0 != host_xcr0)
716                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
717                 vcpu->guest_xcr0_loaded = 1;
718         }
719 }
720
721 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
722 {
723         if (vcpu->guest_xcr0_loaded) {
724                 if (vcpu->arch.xcr0 != host_xcr0)
725                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
726                 vcpu->guest_xcr0_loaded = 0;
727         }
728 }
729
730 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732         u64 xcr0 = xcr;
733         u64 old_xcr0 = vcpu->arch.xcr0;
734         u64 valid_bits;
735
736         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
737         if (index != XCR_XFEATURE_ENABLED_MASK)
738                 return 1;
739         if (!(xcr0 & XFEATURE_MASK_FP))
740                 return 1;
741         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
742                 return 1;
743
744         /*
745          * Do not allow the guest to set bits that we do not support
746          * saving.  However, xcr0 bit 0 is always set, even if the
747          * emulated CPU does not support XSAVE (see fx_init).
748          */
749         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
750         if (xcr0 & ~valid_bits)
751                 return 1;
752
753         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
754             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
755                 return 1;
756
757         if (xcr0 & XFEATURE_MASK_AVX512) {
758                 if (!(xcr0 & XFEATURE_MASK_YMM))
759                         return 1;
760                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
761                         return 1;
762         }
763         vcpu->arch.xcr0 = xcr0;
764
765         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
766                 kvm_update_cpuid(vcpu);
767         return 0;
768 }
769
770 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
771 {
772         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
773             __kvm_set_xcr(vcpu, index, xcr)) {
774                 kvm_inject_gp(vcpu, 0);
775                 return 1;
776         }
777         return 0;
778 }
779 EXPORT_SYMBOL_GPL(kvm_set_xcr);
780
781 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
782 {
783         unsigned long old_cr4 = kvm_read_cr4(vcpu);
784         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
785                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
786
787         if (cr4 & CR4_RESERVED_BITS)
788                 return 1;
789
790         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
791                 return 1;
792
793         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
794                 return 1;
795
796         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
797                 return 1;
798
799         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
800                 return 1;
801
802         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
803                 return 1;
804
805         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
806                 return 1;
807
808         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
809                 return 1;
810
811         if (is_long_mode(vcpu)) {
812                 if (!(cr4 & X86_CR4_PAE))
813                         return 1;
814         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
815                    && ((cr4 ^ old_cr4) & pdptr_bits)
816                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
817                                    kvm_read_cr3(vcpu)))
818                 return 1;
819
820         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
821                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
822                         return 1;
823
824                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
825                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
826                         return 1;
827         }
828
829         if (kvm_x86_ops->set_cr4(vcpu, cr4))
830                 return 1;
831
832         if (((cr4 ^ old_cr4) & pdptr_bits) ||
833             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
834                 kvm_mmu_reset_context(vcpu);
835
836         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
837                 kvm_update_cpuid(vcpu);
838
839         return 0;
840 }
841 EXPORT_SYMBOL_GPL(kvm_set_cr4);
842
843 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
844 {
845 #ifdef CONFIG_X86_64
846         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
847
848         if (pcid_enabled)
849                 cr3 &= ~CR3_PCID_INVD;
850 #endif
851
852         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
853                 kvm_mmu_sync_roots(vcpu);
854                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
855                 return 0;
856         }
857
858         if (is_long_mode(vcpu) &&
859             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
860                 return 1;
861         else if (is_pae(vcpu) && is_paging(vcpu) &&
862                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
863                 return 1;
864
865         vcpu->arch.cr3 = cr3;
866         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
867         kvm_mmu_new_cr3(vcpu);
868         return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_cr3);
871
872 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
873 {
874         if (cr8 & CR8_RESERVED_BITS)
875                 return 1;
876         if (lapic_in_kernel(vcpu))
877                 kvm_lapic_set_tpr(vcpu, cr8);
878         else
879                 vcpu->arch.cr8 = cr8;
880         return 0;
881 }
882 EXPORT_SYMBOL_GPL(kvm_set_cr8);
883
884 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
885 {
886         if (lapic_in_kernel(vcpu))
887                 return kvm_lapic_get_cr8(vcpu);
888         else
889                 return vcpu->arch.cr8;
890 }
891 EXPORT_SYMBOL_GPL(kvm_get_cr8);
892
893 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
894 {
895         int i;
896
897         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
898                 for (i = 0; i < KVM_NR_DB_REGS; i++)
899                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
900                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
901         }
902 }
903
904 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
905 {
906         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
907                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
908 }
909
910 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
911 {
912         unsigned long dr7;
913
914         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
915                 dr7 = vcpu->arch.guest_debug_dr7;
916         else
917                 dr7 = vcpu->arch.dr7;
918         kvm_x86_ops->set_dr7(vcpu, dr7);
919         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
920         if (dr7 & DR7_BP_EN_MASK)
921                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
922 }
923
924 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
925 {
926         u64 fixed = DR6_FIXED_1;
927
928         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
929                 fixed |= DR6_RTM;
930         return fixed;
931 }
932
933 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
934 {
935         switch (dr) {
936         case 0 ... 3:
937                 vcpu->arch.db[dr] = val;
938                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
939                         vcpu->arch.eff_db[dr] = val;
940                 break;
941         case 4:
942                 /* fall through */
943         case 6:
944                 if (val & 0xffffffff00000000ULL)
945                         return -1; /* #GP */
946                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
947                 kvm_update_dr6(vcpu);
948                 break;
949         case 5:
950                 /* fall through */
951         default: /* 7 */
952                 if (val & 0xffffffff00000000ULL)
953                         return -1; /* #GP */
954                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
955                 kvm_update_dr7(vcpu);
956                 break;
957         }
958
959         return 0;
960 }
961
962 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
963 {
964         if (__kvm_set_dr(vcpu, dr, val)) {
965                 kvm_inject_gp(vcpu, 0);
966                 return 1;
967         }
968         return 0;
969 }
970 EXPORT_SYMBOL_GPL(kvm_set_dr);
971
972 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
973 {
974         switch (dr) {
975         case 0 ... 3:
976                 *val = vcpu->arch.db[dr];
977                 break;
978         case 4:
979                 /* fall through */
980         case 6:
981                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
982                         *val = vcpu->arch.dr6;
983                 else
984                         *val = kvm_x86_ops->get_dr6(vcpu);
985                 break;
986         case 5:
987                 /* fall through */
988         default: /* 7 */
989                 *val = vcpu->arch.dr7;
990                 break;
991         }
992         return 0;
993 }
994 EXPORT_SYMBOL_GPL(kvm_get_dr);
995
996 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
997 {
998         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
999         u64 data;
1000         int err;
1001
1002         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1003         if (err)
1004                 return err;
1005         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1006         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1007         return err;
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1010
1011 /*
1012  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1013  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1014  *
1015  * This list is modified at module load time to reflect the
1016  * capabilities of the host cpu. This capabilities test skips MSRs that are
1017  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1018  * may depend on host virtualization features rather than host cpu features.
1019  */
1020
1021 static u32 msrs_to_save[] = {
1022         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1023         MSR_STAR,
1024 #ifdef CONFIG_X86_64
1025         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1026 #endif
1027         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1028         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1029         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1030 };
1031
1032 static unsigned num_msrs_to_save;
1033
1034 static u32 emulated_msrs[] = {
1035         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1036         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1037         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1038         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1039         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1040         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1041         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1042         HV_X64_MSR_RESET,
1043         HV_X64_MSR_VP_INDEX,
1044         HV_X64_MSR_VP_RUNTIME,
1045         HV_X64_MSR_SCONTROL,
1046         HV_X64_MSR_STIMER0_CONFIG,
1047         HV_X64_MSR_VP_ASSIST_PAGE,
1048         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1049         HV_X64_MSR_TSC_EMULATION_STATUS,
1050
1051         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1052         MSR_KVM_PV_EOI_EN,
1053
1054         MSR_IA32_TSC_ADJUST,
1055         MSR_IA32_TSCDEADLINE,
1056         MSR_IA32_MISC_ENABLE,
1057         MSR_IA32_MCG_STATUS,
1058         MSR_IA32_MCG_CTL,
1059         MSR_IA32_MCG_EXT_CTL,
1060         MSR_IA32_SMBASE,
1061         MSR_SMI_COUNT,
1062         MSR_PLATFORM_INFO,
1063         MSR_MISC_FEATURES_ENABLES,
1064 };
1065
1066 static unsigned num_emulated_msrs;
1067
1068 /*
1069  * List of msr numbers which are used to expose MSR-based features that
1070  * can be used by a hypervisor to validate requested CPU features.
1071  */
1072 static u32 msr_based_features[] = {
1073         MSR_IA32_VMX_BASIC,
1074         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1075         MSR_IA32_VMX_PINBASED_CTLS,
1076         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1077         MSR_IA32_VMX_PROCBASED_CTLS,
1078         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1079         MSR_IA32_VMX_EXIT_CTLS,
1080         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1081         MSR_IA32_VMX_ENTRY_CTLS,
1082         MSR_IA32_VMX_MISC,
1083         MSR_IA32_VMX_CR0_FIXED0,
1084         MSR_IA32_VMX_CR0_FIXED1,
1085         MSR_IA32_VMX_CR4_FIXED0,
1086         MSR_IA32_VMX_CR4_FIXED1,
1087         MSR_IA32_VMX_VMCS_ENUM,
1088         MSR_IA32_VMX_PROCBASED_CTLS2,
1089         MSR_IA32_VMX_EPT_VPID_CAP,
1090         MSR_IA32_VMX_VMFUNC,
1091
1092         MSR_F10H_DECFG,
1093         MSR_IA32_UCODE_REV,
1094 };
1095
1096 static unsigned int num_msr_based_features;
1097
1098 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1099 {
1100         switch (msr->index) {
1101         case MSR_IA32_UCODE_REV:
1102                 rdmsrl(msr->index, msr->data);
1103                 break;
1104         default:
1105                 if (kvm_x86_ops->get_msr_feature(msr))
1106                         return 1;
1107         }
1108         return 0;
1109 }
1110
1111 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1112 {
1113         struct kvm_msr_entry msr;
1114         int r;
1115
1116         msr.index = index;
1117         r = kvm_get_msr_feature(&msr);
1118         if (r)
1119                 return r;
1120
1121         *data = msr.data;
1122
1123         return 0;
1124 }
1125
1126 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1127 {
1128         if (efer & efer_reserved_bits)
1129                 return false;
1130
1131         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1132                         return false;
1133
1134         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1135                         return false;
1136
1137         return true;
1138 }
1139 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1140
1141 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1142 {
1143         u64 old_efer = vcpu->arch.efer;
1144
1145         if (!kvm_valid_efer(vcpu, efer))
1146                 return 1;
1147
1148         if (is_paging(vcpu)
1149             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1150                 return 1;
1151
1152         efer &= ~EFER_LMA;
1153         efer |= vcpu->arch.efer & EFER_LMA;
1154
1155         kvm_x86_ops->set_efer(vcpu, efer);
1156
1157         /* Update reserved bits */
1158         if ((efer ^ old_efer) & EFER_NX)
1159                 kvm_mmu_reset_context(vcpu);
1160
1161         return 0;
1162 }
1163
1164 void kvm_enable_efer_bits(u64 mask)
1165 {
1166        efer_reserved_bits &= ~mask;
1167 }
1168 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1169
1170 /*
1171  * Writes msr value into into the appropriate "register".
1172  * Returns 0 on success, non-0 otherwise.
1173  * Assumes vcpu_load() was already called.
1174  */
1175 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1176 {
1177         switch (msr->index) {
1178         case MSR_FS_BASE:
1179         case MSR_GS_BASE:
1180         case MSR_KERNEL_GS_BASE:
1181         case MSR_CSTAR:
1182         case MSR_LSTAR:
1183                 if (is_noncanonical_address(msr->data, vcpu))
1184                         return 1;
1185                 break;
1186         case MSR_IA32_SYSENTER_EIP:
1187         case MSR_IA32_SYSENTER_ESP:
1188                 /*
1189                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1190                  * non-canonical address is written on Intel but not on
1191                  * AMD (which ignores the top 32-bits, because it does
1192                  * not implement 64-bit SYSENTER).
1193                  *
1194                  * 64-bit code should hence be able to write a non-canonical
1195                  * value on AMD.  Making the address canonical ensures that
1196                  * vmentry does not fail on Intel after writing a non-canonical
1197                  * value, and that something deterministic happens if the guest
1198                  * invokes 64-bit SYSENTER.
1199                  */
1200                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1201         }
1202         return kvm_x86_ops->set_msr(vcpu, msr);
1203 }
1204 EXPORT_SYMBOL_GPL(kvm_set_msr);
1205
1206 /*
1207  * Adapt set_msr() to msr_io()'s calling convention
1208  */
1209 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1210 {
1211         struct msr_data msr;
1212         int r;
1213
1214         msr.index = index;
1215         msr.host_initiated = true;
1216         r = kvm_get_msr(vcpu, &msr);
1217         if (r)
1218                 return r;
1219
1220         *data = msr.data;
1221         return 0;
1222 }
1223
1224 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1225 {
1226         struct msr_data msr;
1227
1228         msr.data = *data;
1229         msr.index = index;
1230         msr.host_initiated = true;
1231         return kvm_set_msr(vcpu, &msr);
1232 }
1233
1234 #ifdef CONFIG_X86_64
1235 struct pvclock_gtod_data {
1236         seqcount_t      seq;
1237
1238         struct { /* extract of a clocksource struct */
1239                 int vclock_mode;
1240                 u64     cycle_last;
1241                 u64     mask;
1242                 u32     mult;
1243                 u32     shift;
1244         } clock;
1245
1246         u64             boot_ns;
1247         u64             nsec_base;
1248         u64             wall_time_sec;
1249 };
1250
1251 static struct pvclock_gtod_data pvclock_gtod_data;
1252
1253 static void update_pvclock_gtod(struct timekeeper *tk)
1254 {
1255         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1256         u64 boot_ns;
1257
1258         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1259
1260         write_seqcount_begin(&vdata->seq);
1261
1262         /* copy pvclock gtod data */
1263         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1264         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1265         vdata->clock.mask               = tk->tkr_mono.mask;
1266         vdata->clock.mult               = tk->tkr_mono.mult;
1267         vdata->clock.shift              = tk->tkr_mono.shift;
1268
1269         vdata->boot_ns                  = boot_ns;
1270         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1271
1272         vdata->wall_time_sec            = tk->xtime_sec;
1273
1274         write_seqcount_end(&vdata->seq);
1275 }
1276 #endif
1277
1278 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1279 {
1280         /*
1281          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1282          * vcpu_enter_guest.  This function is only called from
1283          * the physical CPU that is running vcpu.
1284          */
1285         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1286 }
1287
1288 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1289 {
1290         int version;
1291         int r;
1292         struct pvclock_wall_clock wc;
1293         struct timespec64 boot;
1294
1295         if (!wall_clock)
1296                 return;
1297
1298         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1299         if (r)
1300                 return;
1301
1302         if (version & 1)
1303                 ++version;  /* first time write, random junk */
1304
1305         ++version;
1306
1307         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1308                 return;
1309
1310         /*
1311          * The guest calculates current wall clock time by adding
1312          * system time (updated by kvm_guest_time_update below) to the
1313          * wall clock specified here.  guest system time equals host
1314          * system time for us, thus we must fill in host boot time here.
1315          */
1316         getboottime64(&boot);
1317
1318         if (kvm->arch.kvmclock_offset) {
1319                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1320                 boot = timespec64_sub(boot, ts);
1321         }
1322         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1323         wc.nsec = boot.tv_nsec;
1324         wc.version = version;
1325
1326         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1327
1328         version++;
1329         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1330 }
1331
1332 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1333 {
1334         do_shl32_div32(dividend, divisor);
1335         return dividend;
1336 }
1337
1338 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1339                                s8 *pshift, u32 *pmultiplier)
1340 {
1341         uint64_t scaled64;
1342         int32_t  shift = 0;
1343         uint64_t tps64;
1344         uint32_t tps32;
1345
1346         tps64 = base_hz;
1347         scaled64 = scaled_hz;
1348         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1349                 tps64 >>= 1;
1350                 shift--;
1351         }
1352
1353         tps32 = (uint32_t)tps64;
1354         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1355                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1356                         scaled64 >>= 1;
1357                 else
1358                         tps32 <<= 1;
1359                 shift++;
1360         }
1361
1362         *pshift = shift;
1363         *pmultiplier = div_frac(scaled64, tps32);
1364
1365         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1366                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1367 }
1368
1369 #ifdef CONFIG_X86_64
1370 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1371 #endif
1372
1373 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1374 static unsigned long max_tsc_khz;
1375
1376 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1377 {
1378         u64 v = (u64)khz * (1000000 + ppm);
1379         do_div(v, 1000000);
1380         return v;
1381 }
1382
1383 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1384 {
1385         u64 ratio;
1386
1387         /* Guest TSC same frequency as host TSC? */
1388         if (!scale) {
1389                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1390                 return 0;
1391         }
1392
1393         /* TSC scaling supported? */
1394         if (!kvm_has_tsc_control) {
1395                 if (user_tsc_khz > tsc_khz) {
1396                         vcpu->arch.tsc_catchup = 1;
1397                         vcpu->arch.tsc_always_catchup = 1;
1398                         return 0;
1399                 } else {
1400                         WARN(1, "user requested TSC rate below hardware speed\n");
1401                         return -1;
1402                 }
1403         }
1404
1405         /* TSC scaling required  - calculate ratio */
1406         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1407                                 user_tsc_khz, tsc_khz);
1408
1409         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1410                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1411                           user_tsc_khz);
1412                 return -1;
1413         }
1414
1415         vcpu->arch.tsc_scaling_ratio = ratio;
1416         return 0;
1417 }
1418
1419 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1420 {
1421         u32 thresh_lo, thresh_hi;
1422         int use_scaling = 0;
1423
1424         /* tsc_khz can be zero if TSC calibration fails */
1425         if (user_tsc_khz == 0) {
1426                 /* set tsc_scaling_ratio to a safe value */
1427                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1428                 return -1;
1429         }
1430
1431         /* Compute a scale to convert nanoseconds in TSC cycles */
1432         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1433                            &vcpu->arch.virtual_tsc_shift,
1434                            &vcpu->arch.virtual_tsc_mult);
1435         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1436
1437         /*
1438          * Compute the variation in TSC rate which is acceptable
1439          * within the range of tolerance and decide if the
1440          * rate being applied is within that bounds of the hardware
1441          * rate.  If so, no scaling or compensation need be done.
1442          */
1443         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1444         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1445         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1446                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1447                 use_scaling = 1;
1448         }
1449         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1450 }
1451
1452 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1453 {
1454         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1455                                       vcpu->arch.virtual_tsc_mult,
1456                                       vcpu->arch.virtual_tsc_shift);
1457         tsc += vcpu->arch.this_tsc_write;
1458         return tsc;
1459 }
1460
1461 static inline int gtod_is_based_on_tsc(int mode)
1462 {
1463         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1464 }
1465
1466 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1467 {
1468 #ifdef CONFIG_X86_64
1469         bool vcpus_matched;
1470         struct kvm_arch *ka = &vcpu->kvm->arch;
1471         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1472
1473         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1474                          atomic_read(&vcpu->kvm->online_vcpus));
1475
1476         /*
1477          * Once the masterclock is enabled, always perform request in
1478          * order to update it.
1479          *
1480          * In order to enable masterclock, the host clocksource must be TSC
1481          * and the vcpus need to have matched TSCs.  When that happens,
1482          * perform request to enable masterclock.
1483          */
1484         if (ka->use_master_clock ||
1485             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1486                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1487
1488         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1489                             atomic_read(&vcpu->kvm->online_vcpus),
1490                             ka->use_master_clock, gtod->clock.vclock_mode);
1491 #endif
1492 }
1493
1494 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1495 {
1496         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1497         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1498 }
1499
1500 /*
1501  * Multiply tsc by a fixed point number represented by ratio.
1502  *
1503  * The most significant 64-N bits (mult) of ratio represent the
1504  * integral part of the fixed point number; the remaining N bits
1505  * (frac) represent the fractional part, ie. ratio represents a fixed
1506  * point number (mult + frac * 2^(-N)).
1507  *
1508  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1509  */
1510 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1511 {
1512         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1513 }
1514
1515 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1516 {
1517         u64 _tsc = tsc;
1518         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1519
1520         if (ratio != kvm_default_tsc_scaling_ratio)
1521                 _tsc = __scale_tsc(ratio, tsc);
1522
1523         return _tsc;
1524 }
1525 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1526
1527 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1528 {
1529         u64 tsc;
1530
1531         tsc = kvm_scale_tsc(vcpu, rdtsc());
1532
1533         return target_tsc - tsc;
1534 }
1535
1536 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1537 {
1538         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1539
1540         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1541 }
1542 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1543
1544 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1545 {
1546         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1547         vcpu->arch.tsc_offset = offset;
1548 }
1549
1550 static inline bool kvm_check_tsc_unstable(void)
1551 {
1552 #ifdef CONFIG_X86_64
1553         /*
1554          * TSC is marked unstable when we're running on Hyper-V,
1555          * 'TSC page' clocksource is good.
1556          */
1557         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1558                 return false;
1559 #endif
1560         return check_tsc_unstable();
1561 }
1562
1563 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1564 {
1565         struct kvm *kvm = vcpu->kvm;
1566         u64 offset, ns, elapsed;
1567         unsigned long flags;
1568         bool matched;
1569         bool already_matched;
1570         u64 data = msr->data;
1571         bool synchronizing = false;
1572
1573         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1574         offset = kvm_compute_tsc_offset(vcpu, data);
1575         ns = ktime_get_boot_ns();
1576         elapsed = ns - kvm->arch.last_tsc_nsec;
1577
1578         if (vcpu->arch.virtual_tsc_khz) {
1579                 if (data == 0 && msr->host_initiated) {
1580                         /*
1581                          * detection of vcpu initialization -- need to sync
1582                          * with other vCPUs. This particularly helps to keep
1583                          * kvm_clock stable after CPU hotplug
1584                          */
1585                         synchronizing = true;
1586                 } else {
1587                         u64 tsc_exp = kvm->arch.last_tsc_write +
1588                                                 nsec_to_cycles(vcpu, elapsed);
1589                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1590                         /*
1591                          * Special case: TSC write with a small delta (1 second)
1592                          * of virtual cycle time against real time is
1593                          * interpreted as an attempt to synchronize the CPU.
1594                          */
1595                         synchronizing = data < tsc_exp + tsc_hz &&
1596                                         data + tsc_hz > tsc_exp;
1597                 }
1598         }
1599
1600         /*
1601          * For a reliable TSC, we can match TSC offsets, and for an unstable
1602          * TSC, we add elapsed time in this computation.  We could let the
1603          * compensation code attempt to catch up if we fall behind, but
1604          * it's better to try to match offsets from the beginning.
1605          */
1606         if (synchronizing &&
1607             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1608                 if (!kvm_check_tsc_unstable()) {
1609                         offset = kvm->arch.cur_tsc_offset;
1610                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1611                 } else {
1612                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1613                         data += delta;
1614                         offset = kvm_compute_tsc_offset(vcpu, data);
1615                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1616                 }
1617                 matched = true;
1618                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1619         } else {
1620                 /*
1621                  * We split periods of matched TSC writes into generations.
1622                  * For each generation, we track the original measured
1623                  * nanosecond time, offset, and write, so if TSCs are in
1624                  * sync, we can match exact offset, and if not, we can match
1625                  * exact software computation in compute_guest_tsc()
1626                  *
1627                  * These values are tracked in kvm->arch.cur_xxx variables.
1628                  */
1629                 kvm->arch.cur_tsc_generation++;
1630                 kvm->arch.cur_tsc_nsec = ns;
1631                 kvm->arch.cur_tsc_write = data;
1632                 kvm->arch.cur_tsc_offset = offset;
1633                 matched = false;
1634                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1635                          kvm->arch.cur_tsc_generation, data);
1636         }
1637
1638         /*
1639          * We also track th most recent recorded KHZ, write and time to
1640          * allow the matching interval to be extended at each write.
1641          */
1642         kvm->arch.last_tsc_nsec = ns;
1643         kvm->arch.last_tsc_write = data;
1644         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1645
1646         vcpu->arch.last_guest_tsc = data;
1647
1648         /* Keep track of which generation this VCPU has synchronized to */
1649         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1650         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1651         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1652
1653         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1654                 update_ia32_tsc_adjust_msr(vcpu, offset);
1655
1656         kvm_vcpu_write_tsc_offset(vcpu, offset);
1657         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1658
1659         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1660         if (!matched) {
1661                 kvm->arch.nr_vcpus_matched_tsc = 0;
1662         } else if (!already_matched) {
1663                 kvm->arch.nr_vcpus_matched_tsc++;
1664         }
1665
1666         kvm_track_tsc_matching(vcpu);
1667         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1668 }
1669
1670 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1671
1672 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1673                                            s64 adjustment)
1674 {
1675         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1676 }
1677
1678 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1679 {
1680         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1681                 WARN_ON(adjustment < 0);
1682         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1683         adjust_tsc_offset_guest(vcpu, adjustment);
1684 }
1685
1686 #ifdef CONFIG_X86_64
1687
1688 static u64 read_tsc(void)
1689 {
1690         u64 ret = (u64)rdtsc_ordered();
1691         u64 last = pvclock_gtod_data.clock.cycle_last;
1692
1693         if (likely(ret >= last))
1694                 return ret;
1695
1696         /*
1697          * GCC likes to generate cmov here, but this branch is extremely
1698          * predictable (it's just a function of time and the likely is
1699          * very likely) and there's a data dependence, so force GCC
1700          * to generate a branch instead.  I don't barrier() because
1701          * we don't actually need a barrier, and if this function
1702          * ever gets inlined it will generate worse code.
1703          */
1704         asm volatile ("");
1705         return last;
1706 }
1707
1708 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1709 {
1710         long v;
1711         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1712         u64 tsc_pg_val;
1713
1714         switch (gtod->clock.vclock_mode) {
1715         case VCLOCK_HVCLOCK:
1716                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1717                                                   tsc_timestamp);
1718                 if (tsc_pg_val != U64_MAX) {
1719                         /* TSC page valid */
1720                         *mode = VCLOCK_HVCLOCK;
1721                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1722                                 gtod->clock.mask;
1723                 } else {
1724                         /* TSC page invalid */
1725                         *mode = VCLOCK_NONE;
1726                 }
1727                 break;
1728         case VCLOCK_TSC:
1729                 *mode = VCLOCK_TSC;
1730                 *tsc_timestamp = read_tsc();
1731                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1732                         gtod->clock.mask;
1733                 break;
1734         default:
1735                 *mode = VCLOCK_NONE;
1736         }
1737
1738         if (*mode == VCLOCK_NONE)
1739                 *tsc_timestamp = v = 0;
1740
1741         return v * gtod->clock.mult;
1742 }
1743
1744 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1745 {
1746         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1747         unsigned long seq;
1748         int mode;
1749         u64 ns;
1750
1751         do {
1752                 seq = read_seqcount_begin(&gtod->seq);
1753                 ns = gtod->nsec_base;
1754                 ns += vgettsc(tsc_timestamp, &mode);
1755                 ns >>= gtod->clock.shift;
1756                 ns += gtod->boot_ns;
1757         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1758         *t = ns;
1759
1760         return mode;
1761 }
1762
1763 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1764 {
1765         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1766         unsigned long seq;
1767         int mode;
1768         u64 ns;
1769
1770         do {
1771                 seq = read_seqcount_begin(&gtod->seq);
1772                 ts->tv_sec = gtod->wall_time_sec;
1773                 ns = gtod->nsec_base;
1774                 ns += vgettsc(tsc_timestamp, &mode);
1775                 ns >>= gtod->clock.shift;
1776         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1777
1778         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1779         ts->tv_nsec = ns;
1780
1781         return mode;
1782 }
1783
1784 /* returns true if host is using TSC based clocksource */
1785 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1786 {
1787         /* checked again under seqlock below */
1788         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1789                 return false;
1790
1791         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1792                                                       tsc_timestamp));
1793 }
1794
1795 /* returns true if host is using TSC based clocksource */
1796 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1797                                            u64 *tsc_timestamp)
1798 {
1799         /* checked again under seqlock below */
1800         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1801                 return false;
1802
1803         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1804 }
1805 #endif
1806
1807 /*
1808  *
1809  * Assuming a stable TSC across physical CPUS, and a stable TSC
1810  * across virtual CPUs, the following condition is possible.
1811  * Each numbered line represents an event visible to both
1812  * CPUs at the next numbered event.
1813  *
1814  * "timespecX" represents host monotonic time. "tscX" represents
1815  * RDTSC value.
1816  *
1817  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1818  *
1819  * 1.  read timespec0,tsc0
1820  * 2.                                   | timespec1 = timespec0 + N
1821  *                                      | tsc1 = tsc0 + M
1822  * 3. transition to guest               | transition to guest
1823  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1824  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1825  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1826  *
1827  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1828  *
1829  *      - ret0 < ret1
1830  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1831  *              ...
1832  *      - 0 < N - M => M < N
1833  *
1834  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1835  * always the case (the difference between two distinct xtime instances
1836  * might be smaller then the difference between corresponding TSC reads,
1837  * when updating guest vcpus pvclock areas).
1838  *
1839  * To avoid that problem, do not allow visibility of distinct
1840  * system_timestamp/tsc_timestamp values simultaneously: use a master
1841  * copy of host monotonic time values. Update that master copy
1842  * in lockstep.
1843  *
1844  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1845  *
1846  */
1847
1848 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1849 {
1850 #ifdef CONFIG_X86_64
1851         struct kvm_arch *ka = &kvm->arch;
1852         int vclock_mode;
1853         bool host_tsc_clocksource, vcpus_matched;
1854
1855         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1856                         atomic_read(&kvm->online_vcpus));
1857
1858         /*
1859          * If the host uses TSC clock, then passthrough TSC as stable
1860          * to the guest.
1861          */
1862         host_tsc_clocksource = kvm_get_time_and_clockread(
1863                                         &ka->master_kernel_ns,
1864                                         &ka->master_cycle_now);
1865
1866         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1867                                 && !ka->backwards_tsc_observed
1868                                 && !ka->boot_vcpu_runs_old_kvmclock;
1869
1870         if (ka->use_master_clock)
1871                 atomic_set(&kvm_guest_has_master_clock, 1);
1872
1873         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1874         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1875                                         vcpus_matched);
1876 #endif
1877 }
1878
1879 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1880 {
1881         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1882 }
1883
1884 static void kvm_gen_update_masterclock(struct kvm *kvm)
1885 {
1886 #ifdef CONFIG_X86_64
1887         int i;
1888         struct kvm_vcpu *vcpu;
1889         struct kvm_arch *ka = &kvm->arch;
1890
1891         spin_lock(&ka->pvclock_gtod_sync_lock);
1892         kvm_make_mclock_inprogress_request(kvm);
1893         /* no guest entries from this point */
1894         pvclock_update_vm_gtod_copy(kvm);
1895
1896         kvm_for_each_vcpu(i, vcpu, kvm)
1897                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1898
1899         /* guest entries allowed */
1900         kvm_for_each_vcpu(i, vcpu, kvm)
1901                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1902
1903         spin_unlock(&ka->pvclock_gtod_sync_lock);
1904 #endif
1905 }
1906
1907 u64 get_kvmclock_ns(struct kvm *kvm)
1908 {
1909         struct kvm_arch *ka = &kvm->arch;
1910         struct pvclock_vcpu_time_info hv_clock;
1911         u64 ret;
1912
1913         spin_lock(&ka->pvclock_gtod_sync_lock);
1914         if (!ka->use_master_clock) {
1915                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1916                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1917         }
1918
1919         hv_clock.tsc_timestamp = ka->master_cycle_now;
1920         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1921         spin_unlock(&ka->pvclock_gtod_sync_lock);
1922
1923         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1924         get_cpu();
1925
1926         if (__this_cpu_read(cpu_tsc_khz)) {
1927                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1928                                    &hv_clock.tsc_shift,
1929                                    &hv_clock.tsc_to_system_mul);
1930                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1931         } else
1932                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1933
1934         put_cpu();
1935
1936         return ret;
1937 }
1938
1939 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1940 {
1941         struct kvm_vcpu_arch *vcpu = &v->arch;
1942         struct pvclock_vcpu_time_info guest_hv_clock;
1943
1944         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1945                 &guest_hv_clock, sizeof(guest_hv_clock))))
1946                 return;
1947
1948         /* This VCPU is paused, but it's legal for a guest to read another
1949          * VCPU's kvmclock, so we really have to follow the specification where
1950          * it says that version is odd if data is being modified, and even after
1951          * it is consistent.
1952          *
1953          * Version field updates must be kept separate.  This is because
1954          * kvm_write_guest_cached might use a "rep movs" instruction, and
1955          * writes within a string instruction are weakly ordered.  So there
1956          * are three writes overall.
1957          *
1958          * As a small optimization, only write the version field in the first
1959          * and third write.  The vcpu->pv_time cache is still valid, because the
1960          * version field is the first in the struct.
1961          */
1962         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1963
1964         if (guest_hv_clock.version & 1)
1965                 ++guest_hv_clock.version;  /* first time write, random junk */
1966
1967         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1968         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1969                                 &vcpu->hv_clock,
1970                                 sizeof(vcpu->hv_clock.version));
1971
1972         smp_wmb();
1973
1974         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1975         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1976
1977         if (vcpu->pvclock_set_guest_stopped_request) {
1978                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1979                 vcpu->pvclock_set_guest_stopped_request = false;
1980         }
1981
1982         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1983
1984         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1985                                 &vcpu->hv_clock,
1986                                 sizeof(vcpu->hv_clock));
1987
1988         smp_wmb();
1989
1990         vcpu->hv_clock.version++;
1991         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1992                                 &vcpu->hv_clock,
1993                                 sizeof(vcpu->hv_clock.version));
1994 }
1995
1996 static int kvm_guest_time_update(struct kvm_vcpu *v)
1997 {
1998         unsigned long flags, tgt_tsc_khz;
1999         struct kvm_vcpu_arch *vcpu = &v->arch;
2000         struct kvm_arch *ka = &v->kvm->arch;
2001         s64 kernel_ns;
2002         u64 tsc_timestamp, host_tsc;
2003         u8 pvclock_flags;
2004         bool use_master_clock;
2005
2006         kernel_ns = 0;
2007         host_tsc = 0;
2008
2009         /*
2010          * If the host uses TSC clock, then passthrough TSC as stable
2011          * to the guest.
2012          */
2013         spin_lock(&ka->pvclock_gtod_sync_lock);
2014         use_master_clock = ka->use_master_clock;
2015         if (use_master_clock) {
2016                 host_tsc = ka->master_cycle_now;
2017                 kernel_ns = ka->master_kernel_ns;
2018         }
2019         spin_unlock(&ka->pvclock_gtod_sync_lock);
2020
2021         /* Keep irq disabled to prevent changes to the clock */
2022         local_irq_save(flags);
2023         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2024         if (unlikely(tgt_tsc_khz == 0)) {
2025                 local_irq_restore(flags);
2026                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2027                 return 1;
2028         }
2029         if (!use_master_clock) {
2030                 host_tsc = rdtsc();
2031                 kernel_ns = ktime_get_boot_ns();
2032         }
2033
2034         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2035
2036         /*
2037          * We may have to catch up the TSC to match elapsed wall clock
2038          * time for two reasons, even if kvmclock is used.
2039          *   1) CPU could have been running below the maximum TSC rate
2040          *   2) Broken TSC compensation resets the base at each VCPU
2041          *      entry to avoid unknown leaps of TSC even when running
2042          *      again on the same CPU.  This may cause apparent elapsed
2043          *      time to disappear, and the guest to stand still or run
2044          *      very slowly.
2045          */
2046         if (vcpu->tsc_catchup) {
2047                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2048                 if (tsc > tsc_timestamp) {
2049                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2050                         tsc_timestamp = tsc;
2051                 }
2052         }
2053
2054         local_irq_restore(flags);
2055
2056         /* With all the info we got, fill in the values */
2057
2058         if (kvm_has_tsc_control)
2059                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2060
2061         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2062                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2063                                    &vcpu->hv_clock.tsc_shift,
2064                                    &vcpu->hv_clock.tsc_to_system_mul);
2065                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2066         }
2067
2068         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2069         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2070         vcpu->last_guest_tsc = tsc_timestamp;
2071
2072         /* If the host uses TSC clocksource, then it is stable */
2073         pvclock_flags = 0;
2074         if (use_master_clock)
2075                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2076
2077         vcpu->hv_clock.flags = pvclock_flags;
2078
2079         if (vcpu->pv_time_enabled)
2080                 kvm_setup_pvclock_page(v);
2081         if (v == kvm_get_vcpu(v->kvm, 0))
2082                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2083         return 0;
2084 }
2085
2086 /*
2087  * kvmclock updates which are isolated to a given vcpu, such as
2088  * vcpu->cpu migration, should not allow system_timestamp from
2089  * the rest of the vcpus to remain static. Otherwise ntp frequency
2090  * correction applies to one vcpu's system_timestamp but not
2091  * the others.
2092  *
2093  * So in those cases, request a kvmclock update for all vcpus.
2094  * We need to rate-limit these requests though, as they can
2095  * considerably slow guests that have a large number of vcpus.
2096  * The time for a remote vcpu to update its kvmclock is bound
2097  * by the delay we use to rate-limit the updates.
2098  */
2099
2100 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2101
2102 static void kvmclock_update_fn(struct work_struct *work)
2103 {
2104         int i;
2105         struct delayed_work *dwork = to_delayed_work(work);
2106         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2107                                            kvmclock_update_work);
2108         struct kvm *kvm = container_of(ka, struct kvm, arch);
2109         struct kvm_vcpu *vcpu;
2110
2111         kvm_for_each_vcpu(i, vcpu, kvm) {
2112                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2113                 kvm_vcpu_kick(vcpu);
2114         }
2115 }
2116
2117 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2118 {
2119         struct kvm *kvm = v->kvm;
2120
2121         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2122         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2123                                         KVMCLOCK_UPDATE_DELAY);
2124 }
2125
2126 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2127
2128 static void kvmclock_sync_fn(struct work_struct *work)
2129 {
2130         struct delayed_work *dwork = to_delayed_work(work);
2131         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2132                                            kvmclock_sync_work);
2133         struct kvm *kvm = container_of(ka, struct kvm, arch);
2134
2135         if (!kvmclock_periodic_sync)
2136                 return;
2137
2138         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2139         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2140                                         KVMCLOCK_SYNC_PERIOD);
2141 }
2142
2143 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2144 {
2145         u64 mcg_cap = vcpu->arch.mcg_cap;
2146         unsigned bank_num = mcg_cap & 0xff;
2147         u32 msr = msr_info->index;
2148         u64 data = msr_info->data;
2149
2150         switch (msr) {
2151         case MSR_IA32_MCG_STATUS:
2152                 vcpu->arch.mcg_status = data;
2153                 break;
2154         case MSR_IA32_MCG_CTL:
2155                 if (!(mcg_cap & MCG_CTL_P))
2156                         return 1;
2157                 if (data != 0 && data != ~(u64)0)
2158                         return -1;
2159                 vcpu->arch.mcg_ctl = data;
2160                 break;
2161         default:
2162                 if (msr >= MSR_IA32_MC0_CTL &&
2163                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2164                         u32 offset = msr - MSR_IA32_MC0_CTL;
2165                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2166                          * some Linux kernels though clear bit 10 in bank 4 to
2167                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2168                          * this to avoid an uncatched #GP in the guest
2169                          */
2170                         if ((offset & 0x3) == 0 &&
2171                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2172                                 return -1;
2173                         if (!msr_info->host_initiated &&
2174                                 (offset & 0x3) == 1 && data != 0)
2175                                 return -1;
2176                         vcpu->arch.mce_banks[offset] = data;
2177                         break;
2178                 }
2179                 return 1;
2180         }
2181         return 0;
2182 }
2183
2184 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2185 {
2186         struct kvm *kvm = vcpu->kvm;
2187         int lm = is_long_mode(vcpu);
2188         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2189                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2190         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2191                 : kvm->arch.xen_hvm_config.blob_size_32;
2192         u32 page_num = data & ~PAGE_MASK;
2193         u64 page_addr = data & PAGE_MASK;
2194         u8 *page;
2195         int r;
2196
2197         r = -E2BIG;
2198         if (page_num >= blob_size)
2199                 goto out;
2200         r = -ENOMEM;
2201         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2202         if (IS_ERR(page)) {
2203                 r = PTR_ERR(page);
2204                 goto out;
2205         }
2206         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2207                 goto out_free;
2208         r = 0;
2209 out_free:
2210         kfree(page);
2211 out:
2212         return r;
2213 }
2214
2215 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2216 {
2217         gpa_t gpa = data & ~0x3f;
2218
2219         /* Bits 3:5 are reserved, Should be zero */
2220         if (data & 0x38)
2221                 return 1;
2222
2223         vcpu->arch.apf.msr_val = data;
2224
2225         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2226                 kvm_clear_async_pf_completion_queue(vcpu);
2227                 kvm_async_pf_hash_reset(vcpu);
2228                 return 0;
2229         }
2230
2231         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2232                                         sizeof(u32)))
2233                 return 1;
2234
2235         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2236         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2237         kvm_async_pf_wakeup_all(vcpu);
2238         return 0;
2239 }
2240
2241 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2242 {
2243         vcpu->arch.pv_time_enabled = false;
2244 }
2245
2246 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2247 {
2248         ++vcpu->stat.tlb_flush;
2249         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2250 }
2251
2252 static void record_steal_time(struct kvm_vcpu *vcpu)
2253 {
2254         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2255                 return;
2256
2257         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2258                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2259                 return;
2260
2261         /*
2262          * Doing a TLB flush here, on the guest's behalf, can avoid
2263          * expensive IPIs.
2264          */
2265         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2266                 kvm_vcpu_flush_tlb(vcpu, false);
2267
2268         if (vcpu->arch.st.steal.version & 1)
2269                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2270
2271         vcpu->arch.st.steal.version += 1;
2272
2273         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2274                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2275
2276         smp_wmb();
2277
2278         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2279                 vcpu->arch.st.last_steal;
2280         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2281
2282         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2283                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2284
2285         smp_wmb();
2286
2287         vcpu->arch.st.steal.version += 1;
2288
2289         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2290                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2291 }
2292
2293 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2294 {
2295         bool pr = false;
2296         u32 msr = msr_info->index;
2297         u64 data = msr_info->data;
2298
2299         switch (msr) {
2300         case MSR_AMD64_NB_CFG:
2301         case MSR_IA32_UCODE_WRITE:
2302         case MSR_VM_HSAVE_PA:
2303         case MSR_AMD64_PATCH_LOADER:
2304         case MSR_AMD64_BU_CFG2:
2305         case MSR_AMD64_DC_CFG:
2306                 break;
2307
2308         case MSR_IA32_UCODE_REV:
2309                 if (msr_info->host_initiated)
2310                         vcpu->arch.microcode_version = data;
2311                 break;
2312         case MSR_EFER:
2313                 return set_efer(vcpu, data);
2314         case MSR_K7_HWCR:
2315                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2316                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2317                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2318                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2319                 if (data != 0) {
2320                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2321                                     data);
2322                         return 1;
2323                 }
2324                 break;
2325         case MSR_FAM10H_MMIO_CONF_BASE:
2326                 if (data != 0) {
2327                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2328                                     "0x%llx\n", data);
2329                         return 1;
2330                 }
2331                 break;
2332         case MSR_IA32_DEBUGCTLMSR:
2333                 if (!data) {
2334                         /* We support the non-activated case already */
2335                         break;
2336                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2337                         /* Values other than LBR and BTF are vendor-specific,
2338                            thus reserved and should throw a #GP */
2339                         return 1;
2340                 }
2341                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2342                             __func__, data);
2343                 break;
2344         case 0x200 ... 0x2ff:
2345                 return kvm_mtrr_set_msr(vcpu, msr, data);
2346         case MSR_IA32_APICBASE:
2347                 return kvm_set_apic_base(vcpu, msr_info);
2348         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2349                 return kvm_x2apic_msr_write(vcpu, msr, data);
2350         case MSR_IA32_TSCDEADLINE:
2351                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2352                 break;
2353         case MSR_IA32_TSC_ADJUST:
2354                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2355                         if (!msr_info->host_initiated) {
2356                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2357                                 adjust_tsc_offset_guest(vcpu, adj);
2358                         }
2359                         vcpu->arch.ia32_tsc_adjust_msr = data;
2360                 }
2361                 break;
2362         case MSR_IA32_MISC_ENABLE:
2363                 vcpu->arch.ia32_misc_enable_msr = data;
2364                 break;
2365         case MSR_IA32_SMBASE:
2366                 if (!msr_info->host_initiated)
2367                         return 1;
2368                 vcpu->arch.smbase = data;
2369                 break;
2370         case MSR_IA32_TSC:
2371                 kvm_write_tsc(vcpu, msr_info);
2372                 break;
2373         case MSR_SMI_COUNT:
2374                 if (!msr_info->host_initiated)
2375                         return 1;
2376                 vcpu->arch.smi_count = data;
2377                 break;
2378         case MSR_KVM_WALL_CLOCK_NEW:
2379         case MSR_KVM_WALL_CLOCK:
2380                 vcpu->kvm->arch.wall_clock = data;
2381                 kvm_write_wall_clock(vcpu->kvm, data);
2382                 break;
2383         case MSR_KVM_SYSTEM_TIME_NEW:
2384         case MSR_KVM_SYSTEM_TIME: {
2385                 struct kvm_arch *ka = &vcpu->kvm->arch;
2386
2387                 kvmclock_reset(vcpu);
2388
2389                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2390                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2391
2392                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2393                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2394
2395                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2396                 }
2397
2398                 vcpu->arch.time = data;
2399                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2400
2401                 /* we verify if the enable bit is set... */
2402                 if (!(data & 1))
2403                         break;
2404
2405                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2406                      &vcpu->arch.pv_time, data & ~1ULL,
2407                      sizeof(struct pvclock_vcpu_time_info)))
2408                         vcpu->arch.pv_time_enabled = false;
2409                 else
2410                         vcpu->arch.pv_time_enabled = true;
2411
2412                 break;
2413         }
2414         case MSR_KVM_ASYNC_PF_EN:
2415                 if (kvm_pv_enable_async_pf(vcpu, data))
2416                         return 1;
2417                 break;
2418         case MSR_KVM_STEAL_TIME:
2419
2420                 if (unlikely(!sched_info_on()))
2421                         return 1;
2422
2423                 if (data & KVM_STEAL_RESERVED_MASK)
2424                         return 1;
2425
2426                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2427                                                 data & KVM_STEAL_VALID_BITS,
2428                                                 sizeof(struct kvm_steal_time)))
2429                         return 1;
2430
2431                 vcpu->arch.st.msr_val = data;
2432
2433                 if (!(data & KVM_MSR_ENABLED))
2434                         break;
2435
2436                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2437
2438                 break;
2439         case MSR_KVM_PV_EOI_EN:
2440                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2441                         return 1;
2442                 break;
2443
2444         case MSR_IA32_MCG_CTL:
2445         case MSR_IA32_MCG_STATUS:
2446         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2447                 return set_msr_mce(vcpu, msr_info);
2448
2449         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2450         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2451                 pr = true; /* fall through */
2452         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2453         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2454                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2455                         return kvm_pmu_set_msr(vcpu, msr_info);
2456
2457                 if (pr || data != 0)
2458                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2459                                     "0x%x data 0x%llx\n", msr, data);
2460                 break;
2461         case MSR_K7_CLK_CTL:
2462                 /*
2463                  * Ignore all writes to this no longer documented MSR.
2464                  * Writes are only relevant for old K7 processors,
2465                  * all pre-dating SVM, but a recommended workaround from
2466                  * AMD for these chips. It is possible to specify the
2467                  * affected processor models on the command line, hence
2468                  * the need to ignore the workaround.
2469                  */
2470                 break;
2471         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2472         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2473         case HV_X64_MSR_CRASH_CTL:
2474         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2475         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2476         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2477         case HV_X64_MSR_TSC_EMULATION_STATUS:
2478                 return kvm_hv_set_msr_common(vcpu, msr, data,
2479                                              msr_info->host_initiated);
2480         case MSR_IA32_BBL_CR_CTL3:
2481                 /* Drop writes to this legacy MSR -- see rdmsr
2482                  * counterpart for further detail.
2483                  */
2484                 if (report_ignored_msrs)
2485                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2486                                 msr, data);
2487                 break;
2488         case MSR_AMD64_OSVW_ID_LENGTH:
2489                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2490                         return 1;
2491                 vcpu->arch.osvw.length = data;
2492                 break;
2493         case MSR_AMD64_OSVW_STATUS:
2494                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2495                         return 1;
2496                 vcpu->arch.osvw.status = data;
2497                 break;
2498         case MSR_PLATFORM_INFO:
2499                 if (!msr_info->host_initiated ||
2500                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2501                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2502                      cpuid_fault_enabled(vcpu)))
2503                         return 1;
2504                 vcpu->arch.msr_platform_info = data;
2505                 break;
2506         case MSR_MISC_FEATURES_ENABLES:
2507                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2508                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2509                      !supports_cpuid_fault(vcpu)))
2510                         return 1;
2511                 vcpu->arch.msr_misc_features_enables = data;
2512                 break;
2513         default:
2514                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2515                         return xen_hvm_config(vcpu, data);
2516                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2517                         return kvm_pmu_set_msr(vcpu, msr_info);
2518                 if (!ignore_msrs) {
2519                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2520                                     msr, data);
2521                         return 1;
2522                 } else {
2523                         if (report_ignored_msrs)
2524                                 vcpu_unimpl(vcpu,
2525                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2526                                         msr, data);
2527                         break;
2528                 }
2529         }
2530         return 0;
2531 }
2532 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2533
2534
2535 /*
2536  * Reads an msr value (of 'msr_index') into 'pdata'.
2537  * Returns 0 on success, non-0 otherwise.
2538  * Assumes vcpu_load() was already called.
2539  */
2540 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2541 {
2542         return kvm_x86_ops->get_msr(vcpu, msr);
2543 }
2544 EXPORT_SYMBOL_GPL(kvm_get_msr);
2545
2546 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2547 {
2548         u64 data;
2549         u64 mcg_cap = vcpu->arch.mcg_cap;
2550         unsigned bank_num = mcg_cap & 0xff;
2551
2552         switch (msr) {
2553         case MSR_IA32_P5_MC_ADDR:
2554         case MSR_IA32_P5_MC_TYPE:
2555                 data = 0;
2556                 break;
2557         case MSR_IA32_MCG_CAP:
2558                 data = vcpu->arch.mcg_cap;
2559                 break;
2560         case MSR_IA32_MCG_CTL:
2561                 if (!(mcg_cap & MCG_CTL_P))
2562                         return 1;
2563                 data = vcpu->arch.mcg_ctl;
2564                 break;
2565         case MSR_IA32_MCG_STATUS:
2566                 data = vcpu->arch.mcg_status;
2567                 break;
2568         default:
2569                 if (msr >= MSR_IA32_MC0_CTL &&
2570                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2571                         u32 offset = msr - MSR_IA32_MC0_CTL;
2572                         data = vcpu->arch.mce_banks[offset];
2573                         break;
2574                 }
2575                 return 1;
2576         }
2577         *pdata = data;
2578         return 0;
2579 }
2580
2581 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2582 {
2583         switch (msr_info->index) {
2584         case MSR_IA32_PLATFORM_ID:
2585         case MSR_IA32_EBL_CR_POWERON:
2586         case MSR_IA32_DEBUGCTLMSR:
2587         case MSR_IA32_LASTBRANCHFROMIP:
2588         case MSR_IA32_LASTBRANCHTOIP:
2589         case MSR_IA32_LASTINTFROMIP:
2590         case MSR_IA32_LASTINTTOIP:
2591         case MSR_K8_SYSCFG:
2592         case MSR_K8_TSEG_ADDR:
2593         case MSR_K8_TSEG_MASK:
2594         case MSR_K7_HWCR:
2595         case MSR_VM_HSAVE_PA:
2596         case MSR_K8_INT_PENDING_MSG:
2597         case MSR_AMD64_NB_CFG:
2598         case MSR_FAM10H_MMIO_CONF_BASE:
2599         case MSR_AMD64_BU_CFG2:
2600         case MSR_IA32_PERF_CTL:
2601         case MSR_AMD64_DC_CFG:
2602                 msr_info->data = 0;
2603                 break;
2604         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2605         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2606         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2607         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2608         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2609                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2610                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2611                 msr_info->data = 0;
2612                 break;
2613         case MSR_IA32_UCODE_REV:
2614                 msr_info->data = vcpu->arch.microcode_version;
2615                 break;
2616         case MSR_IA32_TSC:
2617                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2618                 break;
2619         case MSR_MTRRcap:
2620         case 0x200 ... 0x2ff:
2621                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2622         case 0xcd: /* fsb frequency */
2623                 msr_info->data = 3;
2624                 break;
2625                 /*
2626                  * MSR_EBC_FREQUENCY_ID
2627                  * Conservative value valid for even the basic CPU models.
2628                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2629                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2630                  * and 266MHz for model 3, or 4. Set Core Clock
2631                  * Frequency to System Bus Frequency Ratio to 1 (bits
2632                  * 31:24) even though these are only valid for CPU
2633                  * models > 2, however guests may end up dividing or
2634                  * multiplying by zero otherwise.
2635                  */
2636         case MSR_EBC_FREQUENCY_ID:
2637                 msr_info->data = 1 << 24;
2638                 break;
2639         case MSR_IA32_APICBASE:
2640                 msr_info->data = kvm_get_apic_base(vcpu);
2641                 break;
2642         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2643                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2644                 break;
2645         case MSR_IA32_TSCDEADLINE:
2646                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2647                 break;
2648         case MSR_IA32_TSC_ADJUST:
2649                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2650                 break;
2651         case MSR_IA32_MISC_ENABLE:
2652                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2653                 break;
2654         case MSR_IA32_SMBASE:
2655                 if (!msr_info->host_initiated)
2656                         return 1;
2657                 msr_info->data = vcpu->arch.smbase;
2658                 break;
2659         case MSR_SMI_COUNT:
2660                 msr_info->data = vcpu->arch.smi_count;
2661                 break;
2662         case MSR_IA32_PERF_STATUS:
2663                 /* TSC increment by tick */
2664                 msr_info->data = 1000ULL;
2665                 /* CPU multiplier */
2666                 msr_info->data |= (((uint64_t)4ULL) << 40);
2667                 break;
2668         case MSR_EFER:
2669                 msr_info->data = vcpu->arch.efer;
2670                 break;
2671         case MSR_KVM_WALL_CLOCK:
2672         case MSR_KVM_WALL_CLOCK_NEW:
2673                 msr_info->data = vcpu->kvm->arch.wall_clock;
2674                 break;
2675         case MSR_KVM_SYSTEM_TIME:
2676         case MSR_KVM_SYSTEM_TIME_NEW:
2677                 msr_info->data = vcpu->arch.time;
2678                 break;
2679         case MSR_KVM_ASYNC_PF_EN:
2680                 msr_info->data = vcpu->arch.apf.msr_val;
2681                 break;
2682         case MSR_KVM_STEAL_TIME:
2683                 msr_info->data = vcpu->arch.st.msr_val;
2684                 break;
2685         case MSR_KVM_PV_EOI_EN:
2686                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2687                 break;
2688         case MSR_IA32_P5_MC_ADDR:
2689         case MSR_IA32_P5_MC_TYPE:
2690         case MSR_IA32_MCG_CAP:
2691         case MSR_IA32_MCG_CTL:
2692         case MSR_IA32_MCG_STATUS:
2693         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2694                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2695         case MSR_K7_CLK_CTL:
2696                 /*
2697                  * Provide expected ramp-up count for K7. All other
2698                  * are set to zero, indicating minimum divisors for
2699                  * every field.
2700                  *
2701                  * This prevents guest kernels on AMD host with CPU
2702                  * type 6, model 8 and higher from exploding due to
2703                  * the rdmsr failing.
2704                  */
2705                 msr_info->data = 0x20000000;
2706                 break;
2707         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2708         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2709         case HV_X64_MSR_CRASH_CTL:
2710         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2711         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2712         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2713         case HV_X64_MSR_TSC_EMULATION_STATUS:
2714                 return kvm_hv_get_msr_common(vcpu,
2715                                              msr_info->index, &msr_info->data);
2716                 break;
2717         case MSR_IA32_BBL_CR_CTL3:
2718                 /* This legacy MSR exists but isn't fully documented in current
2719                  * silicon.  It is however accessed by winxp in very narrow
2720                  * scenarios where it sets bit #19, itself documented as
2721                  * a "reserved" bit.  Best effort attempt to source coherent
2722                  * read data here should the balance of the register be
2723                  * interpreted by the guest:
2724                  *
2725                  * L2 cache control register 3: 64GB range, 256KB size,
2726                  * enabled, latency 0x1, configured
2727                  */
2728                 msr_info->data = 0xbe702111;
2729                 break;
2730         case MSR_AMD64_OSVW_ID_LENGTH:
2731                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2732                         return 1;
2733                 msr_info->data = vcpu->arch.osvw.length;
2734                 break;
2735         case MSR_AMD64_OSVW_STATUS:
2736                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2737                         return 1;
2738                 msr_info->data = vcpu->arch.osvw.status;
2739                 break;
2740         case MSR_PLATFORM_INFO:
2741                 msr_info->data = vcpu->arch.msr_platform_info;
2742                 break;
2743         case MSR_MISC_FEATURES_ENABLES:
2744                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2745                 break;
2746         default:
2747                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2748                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2749                 if (!ignore_msrs) {
2750                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2751                                                msr_info->index);
2752                         return 1;
2753                 } else {
2754                         if (report_ignored_msrs)
2755                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2756                                         msr_info->index);
2757                         msr_info->data = 0;
2758                 }
2759                 break;
2760         }
2761         return 0;
2762 }
2763 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2764
2765 /*
2766  * Read or write a bunch of msrs. All parameters are kernel addresses.
2767  *
2768  * @return number of msrs set successfully.
2769  */
2770 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2771                     struct kvm_msr_entry *entries,
2772                     int (*do_msr)(struct kvm_vcpu *vcpu,
2773                                   unsigned index, u64 *data))
2774 {
2775         int i;
2776
2777         for (i = 0; i < msrs->nmsrs; ++i)
2778                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2779                         break;
2780
2781         return i;
2782 }
2783
2784 /*
2785  * Read or write a bunch of msrs. Parameters are user addresses.
2786  *
2787  * @return number of msrs set successfully.
2788  */
2789 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2790                   int (*do_msr)(struct kvm_vcpu *vcpu,
2791                                 unsigned index, u64 *data),
2792                   int writeback)
2793 {
2794         struct kvm_msrs msrs;
2795         struct kvm_msr_entry *entries;
2796         int r, n;
2797         unsigned size;
2798
2799         r = -EFAULT;
2800         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2801                 goto out;
2802
2803         r = -E2BIG;
2804         if (msrs.nmsrs >= MAX_IO_MSRS)
2805                 goto out;
2806
2807         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2808         entries = memdup_user(user_msrs->entries, size);
2809         if (IS_ERR(entries)) {
2810                 r = PTR_ERR(entries);
2811                 goto out;
2812         }
2813
2814         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2815         if (r < 0)
2816                 goto out_free;
2817
2818         r = -EFAULT;
2819         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2820                 goto out_free;
2821
2822         r = n;
2823
2824 out_free:
2825         kfree(entries);
2826 out:
2827         return r;
2828 }
2829
2830 static inline bool kvm_can_mwait_in_guest(void)
2831 {
2832         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2833                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2834                 boot_cpu_has(X86_FEATURE_ARAT);
2835 }
2836
2837 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2838 {
2839         int r = 0;
2840
2841         switch (ext) {
2842         case KVM_CAP_IRQCHIP:
2843         case KVM_CAP_HLT:
2844         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2845         case KVM_CAP_SET_TSS_ADDR:
2846         case KVM_CAP_EXT_CPUID:
2847         case KVM_CAP_EXT_EMUL_CPUID:
2848         case KVM_CAP_CLOCKSOURCE:
2849         case KVM_CAP_PIT:
2850         case KVM_CAP_NOP_IO_DELAY:
2851         case KVM_CAP_MP_STATE:
2852         case KVM_CAP_SYNC_MMU:
2853         case KVM_CAP_USER_NMI:
2854         case KVM_CAP_REINJECT_CONTROL:
2855         case KVM_CAP_IRQ_INJECT_STATUS:
2856         case KVM_CAP_IOEVENTFD:
2857         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2858         case KVM_CAP_PIT2:
2859         case KVM_CAP_PIT_STATE2:
2860         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2861         case KVM_CAP_XEN_HVM:
2862         case KVM_CAP_VCPU_EVENTS:
2863         case KVM_CAP_HYPERV:
2864         case KVM_CAP_HYPERV_VAPIC:
2865         case KVM_CAP_HYPERV_SPIN:
2866         case KVM_CAP_HYPERV_SYNIC:
2867         case KVM_CAP_HYPERV_SYNIC2:
2868         case KVM_CAP_HYPERV_VP_INDEX:
2869         case KVM_CAP_HYPERV_EVENTFD:
2870         case KVM_CAP_PCI_SEGMENT:
2871         case KVM_CAP_DEBUGREGS:
2872         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2873         case KVM_CAP_XSAVE:
2874         case KVM_CAP_ASYNC_PF:
2875         case KVM_CAP_GET_TSC_KHZ:
2876         case KVM_CAP_KVMCLOCK_CTRL:
2877         case KVM_CAP_READONLY_MEM:
2878         case KVM_CAP_HYPERV_TIME:
2879         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2880         case KVM_CAP_TSC_DEADLINE_TIMER:
2881         case KVM_CAP_ENABLE_CAP_VM:
2882         case KVM_CAP_DISABLE_QUIRKS:
2883         case KVM_CAP_SET_BOOT_CPU_ID:
2884         case KVM_CAP_SPLIT_IRQCHIP:
2885         case KVM_CAP_IMMEDIATE_EXIT:
2886         case KVM_CAP_GET_MSR_FEATURES:
2887                 r = 1;
2888                 break;
2889         case KVM_CAP_SYNC_REGS:
2890                 r = KVM_SYNC_X86_VALID_FIELDS;
2891                 break;
2892         case KVM_CAP_ADJUST_CLOCK:
2893                 r = KVM_CLOCK_TSC_STABLE;
2894                 break;
2895         case KVM_CAP_X86_DISABLE_EXITS:
2896                 r |=  KVM_X86_DISABLE_EXITS_HTL | KVM_X86_DISABLE_EXITS_PAUSE;
2897                 if(kvm_can_mwait_in_guest())
2898                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
2899                 break;
2900         case KVM_CAP_X86_SMM:
2901                 /* SMBASE is usually relocated above 1M on modern chipsets,
2902                  * and SMM handlers might indeed rely on 4G segment limits,
2903                  * so do not report SMM to be available if real mode is
2904                  * emulated via vm86 mode.  Still, do not go to great lengths
2905                  * to avoid userspace's usage of the feature, because it is a
2906                  * fringe case that is not enabled except via specific settings
2907                  * of the module parameters.
2908                  */
2909                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2910                 break;
2911         case KVM_CAP_VAPIC:
2912                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2913                 break;
2914         case KVM_CAP_NR_VCPUS:
2915                 r = KVM_SOFT_MAX_VCPUS;
2916                 break;
2917         case KVM_CAP_MAX_VCPUS:
2918                 r = KVM_MAX_VCPUS;
2919                 break;
2920         case KVM_CAP_NR_MEMSLOTS:
2921                 r = KVM_USER_MEM_SLOTS;
2922                 break;
2923         case KVM_CAP_PV_MMU:    /* obsolete */
2924                 r = 0;
2925                 break;
2926         case KVM_CAP_MCE:
2927                 r = KVM_MAX_MCE_BANKS;
2928                 break;
2929         case KVM_CAP_XCRS:
2930                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2931                 break;
2932         case KVM_CAP_TSC_CONTROL:
2933                 r = kvm_has_tsc_control;
2934                 break;
2935         case KVM_CAP_X2APIC_API:
2936                 r = KVM_X2APIC_API_VALID_FLAGS;
2937                 break;
2938         default:
2939                 break;
2940         }
2941         return r;
2942
2943 }
2944
2945 long kvm_arch_dev_ioctl(struct file *filp,
2946                         unsigned int ioctl, unsigned long arg)
2947 {
2948         void __user *argp = (void __user *)arg;
2949         long r;
2950
2951         switch (ioctl) {
2952         case KVM_GET_MSR_INDEX_LIST: {
2953                 struct kvm_msr_list __user *user_msr_list = argp;
2954                 struct kvm_msr_list msr_list;
2955                 unsigned n;
2956
2957                 r = -EFAULT;
2958                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2959                         goto out;
2960                 n = msr_list.nmsrs;
2961                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2962                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2963                         goto out;
2964                 r = -E2BIG;
2965                 if (n < msr_list.nmsrs)
2966                         goto out;
2967                 r = -EFAULT;
2968                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2969                                  num_msrs_to_save * sizeof(u32)))
2970                         goto out;
2971                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2972                                  &emulated_msrs,
2973                                  num_emulated_msrs * sizeof(u32)))
2974                         goto out;
2975                 r = 0;
2976                 break;
2977         }
2978         case KVM_GET_SUPPORTED_CPUID:
2979         case KVM_GET_EMULATED_CPUID: {
2980                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2981                 struct kvm_cpuid2 cpuid;
2982
2983                 r = -EFAULT;
2984                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2985                         goto out;
2986
2987                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2988                                             ioctl);
2989                 if (r)
2990                         goto out;
2991
2992                 r = -EFAULT;
2993                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2994                         goto out;
2995                 r = 0;
2996                 break;
2997         }
2998         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2999                 r = -EFAULT;
3000                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3001                                  sizeof(kvm_mce_cap_supported)))
3002                         goto out;
3003                 r = 0;
3004                 break;
3005         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3006                 struct kvm_msr_list __user *user_msr_list = argp;
3007                 struct kvm_msr_list msr_list;
3008                 unsigned int n;
3009
3010                 r = -EFAULT;
3011                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3012                         goto out;
3013                 n = msr_list.nmsrs;
3014                 msr_list.nmsrs = num_msr_based_features;
3015                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3016                         goto out;
3017                 r = -E2BIG;
3018                 if (n < msr_list.nmsrs)
3019                         goto out;
3020                 r = -EFAULT;
3021                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3022                                  num_msr_based_features * sizeof(u32)))
3023                         goto out;
3024                 r = 0;
3025                 break;
3026         }
3027         case KVM_GET_MSRS:
3028                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3029                 break;
3030         }
3031         default:
3032                 r = -EINVAL;
3033         }
3034 out:
3035         return r;
3036 }
3037
3038 static void wbinvd_ipi(void *garbage)
3039 {
3040         wbinvd();
3041 }
3042
3043 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3044 {
3045         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3046 }
3047
3048 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3049 {
3050         /* Address WBINVD may be executed by guest */
3051         if (need_emulate_wbinvd(vcpu)) {
3052                 if (kvm_x86_ops->has_wbinvd_exit())
3053                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3054                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3055                         smp_call_function_single(vcpu->cpu,
3056                                         wbinvd_ipi, NULL, 1);
3057         }
3058
3059         kvm_x86_ops->vcpu_load(vcpu, cpu);
3060
3061         /* Apply any externally detected TSC adjustments (due to suspend) */
3062         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3063                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3064                 vcpu->arch.tsc_offset_adjustment = 0;
3065                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3066         }
3067
3068         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3069                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3070                                 rdtsc() - vcpu->arch.last_host_tsc;
3071                 if (tsc_delta < 0)
3072                         mark_tsc_unstable("KVM discovered backwards TSC");
3073
3074                 if (kvm_check_tsc_unstable()) {
3075                         u64 offset = kvm_compute_tsc_offset(vcpu,
3076                                                 vcpu->arch.last_guest_tsc);
3077                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3078                         vcpu->arch.tsc_catchup = 1;
3079                 }
3080
3081                 if (kvm_lapic_hv_timer_in_use(vcpu))
3082                         kvm_lapic_restart_hv_timer(vcpu);
3083
3084                 /*
3085                  * On a host with synchronized TSC, there is no need to update
3086                  * kvmclock on vcpu->cpu migration
3087                  */
3088                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3089                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3090                 if (vcpu->cpu != cpu)
3091                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3092                 vcpu->cpu = cpu;
3093         }
3094
3095         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3096 }
3097
3098 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3099 {
3100         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3101                 return;
3102
3103         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3104
3105         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3106                         &vcpu->arch.st.steal.preempted,
3107                         offsetof(struct kvm_steal_time, preempted),
3108                         sizeof(vcpu->arch.st.steal.preempted));
3109 }
3110
3111 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3112 {
3113         int idx;
3114
3115         if (vcpu->preempted)
3116                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3117
3118         /*
3119          * Disable page faults because we're in atomic context here.
3120          * kvm_write_guest_offset_cached() would call might_fault()
3121          * that relies on pagefault_disable() to tell if there's a
3122          * bug. NOTE: the write to guest memory may not go through if
3123          * during postcopy live migration or if there's heavy guest
3124          * paging.
3125          */
3126         pagefault_disable();
3127         /*
3128          * kvm_memslots() will be called by
3129          * kvm_write_guest_offset_cached() so take the srcu lock.
3130          */
3131         idx = srcu_read_lock(&vcpu->kvm->srcu);
3132         kvm_steal_time_set_preempted(vcpu);
3133         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3134         pagefault_enable();
3135         kvm_x86_ops->vcpu_put(vcpu);
3136         vcpu->arch.last_host_tsc = rdtsc();
3137         /*
3138          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3139          * on every vmexit, but if not, we might have a stale dr6 from the
3140          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3141          */
3142         set_debugreg(0, 6);
3143 }
3144
3145 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3146                                     struct kvm_lapic_state *s)
3147 {
3148         if (vcpu->arch.apicv_active)
3149                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3150
3151         return kvm_apic_get_state(vcpu, s);
3152 }
3153
3154 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3155                                     struct kvm_lapic_state *s)
3156 {
3157         int r;
3158
3159         r = kvm_apic_set_state(vcpu, s);
3160         if (r)
3161                 return r;
3162         update_cr8_intercept(vcpu);
3163
3164         return 0;
3165 }
3166
3167 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3168 {
3169         return (!lapic_in_kernel(vcpu) ||
3170                 kvm_apic_accept_pic_intr(vcpu));
3171 }
3172
3173 /*
3174  * if userspace requested an interrupt window, check that the
3175  * interrupt window is open.
3176  *
3177  * No need to exit to userspace if we already have an interrupt queued.
3178  */
3179 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3180 {
3181         return kvm_arch_interrupt_allowed(vcpu) &&
3182                 !kvm_cpu_has_interrupt(vcpu) &&
3183                 !kvm_event_needs_reinjection(vcpu) &&
3184                 kvm_cpu_accept_dm_intr(vcpu);
3185 }
3186
3187 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3188                                     struct kvm_interrupt *irq)
3189 {
3190         if (irq->irq >= KVM_NR_INTERRUPTS)
3191                 return -EINVAL;
3192
3193         if (!irqchip_in_kernel(vcpu->kvm)) {
3194                 kvm_queue_interrupt(vcpu, irq->irq, false);
3195                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3196                 return 0;
3197         }
3198
3199         /*
3200          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3201          * fail for in-kernel 8259.
3202          */
3203         if (pic_in_kernel(vcpu->kvm))
3204                 return -ENXIO;
3205
3206         if (vcpu->arch.pending_external_vector != -1)
3207                 return -EEXIST;
3208
3209         vcpu->arch.pending_external_vector = irq->irq;
3210         kvm_make_request(KVM_REQ_EVENT, vcpu);
3211         return 0;
3212 }
3213
3214 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3215 {
3216         kvm_inject_nmi(vcpu);
3217
3218         return 0;
3219 }
3220
3221 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3222 {
3223         kvm_make_request(KVM_REQ_SMI, vcpu);
3224
3225         return 0;
3226 }
3227
3228 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3229                                            struct kvm_tpr_access_ctl *tac)
3230 {
3231         if (tac->flags)
3232                 return -EINVAL;
3233         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3234         return 0;
3235 }
3236
3237 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3238                                         u64 mcg_cap)
3239 {
3240         int r;
3241         unsigned bank_num = mcg_cap & 0xff, bank;
3242
3243         r = -EINVAL;
3244         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3245                 goto out;
3246         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3247                 goto out;
3248         r = 0;
3249         vcpu->arch.mcg_cap = mcg_cap;
3250         /* Init IA32_MCG_CTL to all 1s */
3251         if (mcg_cap & MCG_CTL_P)
3252                 vcpu->arch.mcg_ctl = ~(u64)0;
3253         /* Init IA32_MCi_CTL to all 1s */
3254         for (bank = 0; bank < bank_num; bank++)
3255                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3256
3257         if (kvm_x86_ops->setup_mce)
3258                 kvm_x86_ops->setup_mce(vcpu);
3259 out:
3260         return r;
3261 }
3262
3263 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3264                                       struct kvm_x86_mce *mce)
3265 {
3266         u64 mcg_cap = vcpu->arch.mcg_cap;
3267         unsigned bank_num = mcg_cap & 0xff;
3268         u64 *banks = vcpu->arch.mce_banks;
3269
3270         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3271                 return -EINVAL;
3272         /*
3273          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3274          * reporting is disabled
3275          */
3276         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3277             vcpu->arch.mcg_ctl != ~(u64)0)
3278                 return 0;
3279         banks += 4 * mce->bank;
3280         /*
3281          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3282          * reporting is disabled for the bank
3283          */
3284         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3285                 return 0;
3286         if (mce->status & MCI_STATUS_UC) {
3287                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3288                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3289                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3290                         return 0;
3291                 }
3292                 if (banks[1] & MCI_STATUS_VAL)
3293                         mce->status |= MCI_STATUS_OVER;
3294                 banks[2] = mce->addr;
3295                 banks[3] = mce->misc;
3296                 vcpu->arch.mcg_status = mce->mcg_status;
3297                 banks[1] = mce->status;
3298                 kvm_queue_exception(vcpu, MC_VECTOR);
3299         } else if (!(banks[1] & MCI_STATUS_VAL)
3300                    || !(banks[1] & MCI_STATUS_UC)) {
3301                 if (banks[1] & MCI_STATUS_VAL)
3302                         mce->status |= MCI_STATUS_OVER;
3303                 banks[2] = mce->addr;
3304                 banks[3] = mce->misc;
3305                 banks[1] = mce->status;
3306         } else
3307                 banks[1] |= MCI_STATUS_OVER;
3308         return 0;
3309 }
3310
3311 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3312                                                struct kvm_vcpu_events *events)
3313 {
3314         process_nmi(vcpu);
3315         /*
3316          * FIXME: pass injected and pending separately.  This is only
3317          * needed for nested virtualization, whose state cannot be
3318          * migrated yet.  For now we can combine them.
3319          */
3320         events->exception.injected =
3321                 (vcpu->arch.exception.pending ||
3322                  vcpu->arch.exception.injected) &&
3323                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3324         events->exception.nr = vcpu->arch.exception.nr;
3325         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3326         events->exception.pad = 0;
3327         events->exception.error_code = vcpu->arch.exception.error_code;
3328
3329         events->interrupt.injected =
3330                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3331         events->interrupt.nr = vcpu->arch.interrupt.nr;
3332         events->interrupt.soft = 0;
3333         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3334
3335         events->nmi.injected = vcpu->arch.nmi_injected;
3336         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3337         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3338         events->nmi.pad = 0;
3339
3340         events->sipi_vector = 0; /* never valid when reporting to user space */
3341
3342         events->smi.smm = is_smm(vcpu);
3343         events->smi.pending = vcpu->arch.smi_pending;
3344         events->smi.smm_inside_nmi =
3345                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3346         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3347
3348         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3349                          | KVM_VCPUEVENT_VALID_SHADOW
3350                          | KVM_VCPUEVENT_VALID_SMM);
3351         memset(&events->reserved, 0, sizeof(events->reserved));
3352 }
3353
3354 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3355
3356 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3357                                               struct kvm_vcpu_events *events)
3358 {
3359         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3360                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3361                               | KVM_VCPUEVENT_VALID_SHADOW
3362                               | KVM_VCPUEVENT_VALID_SMM))
3363                 return -EINVAL;
3364
3365         if (events->exception.injected &&
3366             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3367              is_guest_mode(vcpu)))
3368                 return -EINVAL;
3369
3370         /* INITs are latched while in SMM */
3371         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3372             (events->smi.smm || events->smi.pending) &&
3373             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3374                 return -EINVAL;
3375
3376         process_nmi(vcpu);
3377         vcpu->arch.exception.injected = false;
3378         vcpu->arch.exception.pending = events->exception.injected;
3379         vcpu->arch.exception.nr = events->exception.nr;
3380         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3381         vcpu->arch.exception.error_code = events->exception.error_code;
3382
3383         vcpu->arch.interrupt.injected = events->interrupt.injected;
3384         vcpu->arch.interrupt.nr = events->interrupt.nr;
3385         vcpu->arch.interrupt.soft = events->interrupt.soft;
3386         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3387                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3388                                                   events->interrupt.shadow);
3389
3390         vcpu->arch.nmi_injected = events->nmi.injected;
3391         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3392                 vcpu->arch.nmi_pending = events->nmi.pending;
3393         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3394
3395         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3396             lapic_in_kernel(vcpu))
3397                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3398
3399         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3400                 u32 hflags = vcpu->arch.hflags;
3401                 if (events->smi.smm)
3402                         hflags |= HF_SMM_MASK;
3403                 else
3404                         hflags &= ~HF_SMM_MASK;
3405                 kvm_set_hflags(vcpu, hflags);
3406
3407                 vcpu->arch.smi_pending = events->smi.pending;
3408
3409                 if (events->smi.smm) {
3410                         if (events->smi.smm_inside_nmi)
3411                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3412                         else
3413                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3414                         if (lapic_in_kernel(vcpu)) {
3415                                 if (events->smi.latched_init)
3416                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3417                                 else
3418                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3419                         }
3420                 }
3421         }
3422
3423         kvm_make_request(KVM_REQ_EVENT, vcpu);
3424
3425         return 0;
3426 }
3427
3428 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3429                                              struct kvm_debugregs *dbgregs)
3430 {
3431         unsigned long val;
3432
3433         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3434         kvm_get_dr(vcpu, 6, &val);
3435         dbgregs->dr6 = val;
3436         dbgregs->dr7 = vcpu->arch.dr7;
3437         dbgregs->flags = 0;
3438         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3439 }
3440
3441 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3442                                             struct kvm_debugregs *dbgregs)
3443 {
3444         if (dbgregs->flags)
3445                 return -EINVAL;
3446
3447         if (dbgregs->dr6 & ~0xffffffffull)
3448                 return -EINVAL;
3449         if (dbgregs->dr7 & ~0xffffffffull)
3450                 return -EINVAL;
3451
3452         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3453         kvm_update_dr0123(vcpu);
3454         vcpu->arch.dr6 = dbgregs->dr6;
3455         kvm_update_dr6(vcpu);
3456         vcpu->arch.dr7 = dbgregs->dr7;
3457         kvm_update_dr7(vcpu);
3458
3459         return 0;
3460 }
3461
3462 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3463
3464 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3465 {
3466         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3467         u64 xstate_bv = xsave->header.xfeatures;
3468         u64 valid;
3469
3470         /*
3471          * Copy legacy XSAVE area, to avoid complications with CPUID
3472          * leaves 0 and 1 in the loop below.
3473          */
3474         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3475
3476         /* Set XSTATE_BV */
3477         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3478         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3479
3480         /*
3481          * Copy each region from the possibly compacted offset to the
3482          * non-compacted offset.
3483          */
3484         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3485         while (valid) {
3486                 u64 feature = valid & -valid;
3487                 int index = fls64(feature) - 1;
3488                 void *src = get_xsave_addr(xsave, feature);
3489
3490                 if (src) {
3491                         u32 size, offset, ecx, edx;
3492                         cpuid_count(XSTATE_CPUID, index,
3493                                     &size, &offset, &ecx, &edx);
3494                         if (feature == XFEATURE_MASK_PKRU)
3495                                 memcpy(dest + offset, &vcpu->arch.pkru,
3496                                        sizeof(vcpu->arch.pkru));
3497                         else
3498                                 memcpy(dest + offset, src, size);
3499
3500                 }
3501
3502                 valid -= feature;
3503         }
3504 }
3505
3506 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3507 {
3508         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3509         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3510         u64 valid;
3511
3512         /*
3513          * Copy legacy XSAVE area, to avoid complications with CPUID
3514          * leaves 0 and 1 in the loop below.
3515          */
3516         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3517
3518         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3519         xsave->header.xfeatures = xstate_bv;
3520         if (boot_cpu_has(X86_FEATURE_XSAVES))
3521                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3522
3523         /*
3524          * Copy each region from the non-compacted offset to the
3525          * possibly compacted offset.
3526          */
3527         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3528         while (valid) {
3529                 u64 feature = valid & -valid;
3530                 int index = fls64(feature) - 1;
3531                 void *dest = get_xsave_addr(xsave, feature);
3532
3533                 if (dest) {
3534                         u32 size, offset, ecx, edx;
3535                         cpuid_count(XSTATE_CPUID, index,
3536                                     &size, &offset, &ecx, &edx);
3537                         if (feature == XFEATURE_MASK_PKRU)
3538                                 memcpy(&vcpu->arch.pkru, src + offset,
3539                                        sizeof(vcpu->arch.pkru));
3540                         else
3541                                 memcpy(dest, src + offset, size);
3542                 }
3543
3544                 valid -= feature;
3545         }
3546 }
3547
3548 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3549                                          struct kvm_xsave *guest_xsave)
3550 {
3551         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3552                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3553                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3554         } else {
3555                 memcpy(guest_xsave->region,
3556                         &vcpu->arch.guest_fpu.state.fxsave,
3557                         sizeof(struct fxregs_state));
3558                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3559                         XFEATURE_MASK_FPSSE;
3560         }
3561 }
3562
3563 #define XSAVE_MXCSR_OFFSET 24
3564
3565 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3566                                         struct kvm_xsave *guest_xsave)
3567 {
3568         u64 xstate_bv =
3569                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3570         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3571
3572         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3573                 /*
3574                  * Here we allow setting states that are not present in
3575                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3576                  * with old userspace.
3577                  */
3578                 if (xstate_bv & ~kvm_supported_xcr0() ||
3579                         mxcsr & ~mxcsr_feature_mask)
3580                         return -EINVAL;
3581                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3582         } else {
3583                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3584                         mxcsr & ~mxcsr_feature_mask)
3585                         return -EINVAL;
3586                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3587                         guest_xsave->region, sizeof(struct fxregs_state));
3588         }
3589         return 0;
3590 }
3591
3592 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3593                                         struct kvm_xcrs *guest_xcrs)
3594 {
3595         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3596                 guest_xcrs->nr_xcrs = 0;
3597                 return;
3598         }
3599
3600         guest_xcrs->nr_xcrs = 1;
3601         guest_xcrs->flags = 0;
3602         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3603         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3604 }
3605
3606 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3607                                        struct kvm_xcrs *guest_xcrs)
3608 {
3609         int i, r = 0;
3610
3611         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3612                 return -EINVAL;
3613
3614         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3615                 return -EINVAL;
3616
3617         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3618                 /* Only support XCR0 currently */
3619                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3620                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3621                                 guest_xcrs->xcrs[i].value);
3622                         break;
3623                 }
3624         if (r)
3625                 r = -EINVAL;
3626         return r;
3627 }
3628
3629 /*
3630  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3631  * stopped by the hypervisor.  This function will be called from the host only.
3632  * EINVAL is returned when the host attempts to set the flag for a guest that
3633  * does not support pv clocks.
3634  */
3635 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3636 {
3637         if (!vcpu->arch.pv_time_enabled)
3638                 return -EINVAL;
3639         vcpu->arch.pvclock_set_guest_stopped_request = true;
3640         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3641         return 0;
3642 }
3643
3644 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3645                                      struct kvm_enable_cap *cap)
3646 {
3647         if (cap->flags)
3648                 return -EINVAL;
3649
3650         switch (cap->cap) {
3651         case KVM_CAP_HYPERV_SYNIC2:
3652                 if (cap->args[0])
3653                         return -EINVAL;
3654         case KVM_CAP_HYPERV_SYNIC:
3655                 if (!irqchip_in_kernel(vcpu->kvm))
3656                         return -EINVAL;
3657                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3658                                              KVM_CAP_HYPERV_SYNIC2);
3659         default:
3660                 return -EINVAL;
3661         }
3662 }
3663
3664 long kvm_arch_vcpu_ioctl(struct file *filp,
3665                          unsigned int ioctl, unsigned long arg)
3666 {
3667         struct kvm_vcpu *vcpu = filp->private_data;
3668         void __user *argp = (void __user *)arg;
3669         int r;
3670         union {
3671                 struct kvm_lapic_state *lapic;
3672                 struct kvm_xsave *xsave;
3673                 struct kvm_xcrs *xcrs;
3674                 void *buffer;
3675         } u;
3676
3677         vcpu_load(vcpu);
3678
3679         u.buffer = NULL;
3680         switch (ioctl) {
3681         case KVM_GET_LAPIC: {
3682                 r = -EINVAL;
3683                 if (!lapic_in_kernel(vcpu))
3684                         goto out;
3685                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3686
3687                 r = -ENOMEM;
3688                 if (!u.lapic)
3689                         goto out;
3690                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3691                 if (r)
3692                         goto out;
3693                 r = -EFAULT;
3694                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3695                         goto out;
3696                 r = 0;
3697                 break;
3698         }
3699         case KVM_SET_LAPIC: {
3700                 r = -EINVAL;
3701                 if (!lapic_in_kernel(vcpu))
3702                         goto out;
3703                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3704                 if (IS_ERR(u.lapic)) {
3705                         r = PTR_ERR(u.lapic);
3706                         goto out_nofree;
3707                 }
3708
3709                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3710                 break;
3711         }
3712         case KVM_INTERRUPT: {
3713                 struct kvm_interrupt irq;
3714
3715                 r = -EFAULT;
3716                 if (copy_from_user(&irq, argp, sizeof irq))
3717                         goto out;
3718                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3719                 break;
3720         }
3721         case KVM_NMI: {
3722                 r = kvm_vcpu_ioctl_nmi(vcpu);
3723                 break;
3724         }
3725         case KVM_SMI: {
3726                 r = kvm_vcpu_ioctl_smi(vcpu);
3727                 break;
3728         }
3729         case KVM_SET_CPUID: {
3730                 struct kvm_cpuid __user *cpuid_arg = argp;
3731                 struct kvm_cpuid cpuid;
3732
3733                 r = -EFAULT;
3734                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3735                         goto out;
3736                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3737                 break;
3738         }
3739         case KVM_SET_CPUID2: {
3740                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3741                 struct kvm_cpuid2 cpuid;
3742
3743                 r = -EFAULT;
3744                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3745                         goto out;
3746                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3747                                               cpuid_arg->entries);
3748                 break;
3749         }
3750         case KVM_GET_CPUID2: {
3751                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3752                 struct kvm_cpuid2 cpuid;
3753
3754                 r = -EFAULT;
3755                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3756                         goto out;
3757                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3758                                               cpuid_arg->entries);
3759                 if (r)
3760                         goto out;
3761                 r = -EFAULT;
3762                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3763                         goto out;
3764                 r = 0;
3765                 break;
3766         }
3767         case KVM_GET_MSRS: {
3768                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3769                 r = msr_io(vcpu, argp, do_get_msr, 1);
3770                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3771                 break;
3772         }
3773         case KVM_SET_MSRS: {
3774                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3775                 r = msr_io(vcpu, argp, do_set_msr, 0);
3776                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3777                 break;
3778         }
3779         case KVM_TPR_ACCESS_REPORTING: {
3780                 struct kvm_tpr_access_ctl tac;
3781
3782                 r = -EFAULT;
3783                 if (copy_from_user(&tac, argp, sizeof tac))
3784                         goto out;
3785                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3786                 if (r)
3787                         goto out;
3788                 r = -EFAULT;
3789                 if (copy_to_user(argp, &tac, sizeof tac))
3790                         goto out;
3791                 r = 0;
3792                 break;
3793         };
3794         case KVM_SET_VAPIC_ADDR: {
3795                 struct kvm_vapic_addr va;
3796                 int idx;
3797
3798                 r = -EINVAL;
3799                 if (!lapic_in_kernel(vcpu))
3800                         goto out;
3801                 r = -EFAULT;
3802                 if (copy_from_user(&va, argp, sizeof va))
3803                         goto out;
3804                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3805                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3806                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3807                 break;
3808         }
3809         case KVM_X86_SETUP_MCE: {
3810                 u64 mcg_cap;
3811
3812                 r = -EFAULT;
3813                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3814                         goto out;
3815                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3816                 break;
3817         }
3818         case KVM_X86_SET_MCE: {
3819                 struct kvm_x86_mce mce;
3820
3821                 r = -EFAULT;
3822                 if (copy_from_user(&mce, argp, sizeof mce))
3823                         goto out;
3824                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3825                 break;
3826         }
3827         case KVM_GET_VCPU_EVENTS: {
3828                 struct kvm_vcpu_events events;
3829
3830                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3831
3832                 r = -EFAULT;
3833                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3834                         break;
3835                 r = 0;
3836                 break;
3837         }
3838         case KVM_SET_VCPU_EVENTS: {
3839                 struct kvm_vcpu_events events;
3840
3841                 r = -EFAULT;
3842                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3843                         break;
3844
3845                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3846                 break;
3847         }
3848         case KVM_GET_DEBUGREGS: {
3849                 struct kvm_debugregs dbgregs;
3850
3851                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3852
3853                 r = -EFAULT;
3854                 if (copy_to_user(argp, &dbgregs,
3855                                  sizeof(struct kvm_debugregs)))
3856                         break;
3857                 r = 0;
3858                 break;
3859         }
3860         case KVM_SET_DEBUGREGS: {
3861                 struct kvm_debugregs dbgregs;
3862
3863                 r = -EFAULT;
3864                 if (copy_from_user(&dbgregs, argp,
3865                                    sizeof(struct kvm_debugregs)))
3866                         break;
3867
3868                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3869                 break;
3870         }
3871         case KVM_GET_XSAVE: {
3872                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3873                 r = -ENOMEM;
3874                 if (!u.xsave)
3875                         break;
3876
3877                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3878
3879                 r = -EFAULT;
3880                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3881                         break;
3882                 r = 0;
3883                 break;
3884         }
3885         case KVM_SET_XSAVE: {
3886                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3887                 if (IS_ERR(u.xsave)) {
3888                         r = PTR_ERR(u.xsave);
3889                         goto out_nofree;
3890                 }
3891
3892                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3893                 break;
3894         }
3895         case KVM_GET_XCRS: {
3896                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3897                 r = -ENOMEM;
3898                 if (!u.xcrs)
3899                         break;
3900
3901                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3902
3903                 r = -EFAULT;
3904                 if (copy_to_user(argp, u.xcrs,
3905                                  sizeof(struct kvm_xcrs)))
3906                         break;
3907                 r = 0;
3908                 break;
3909         }
3910         case KVM_SET_XCRS: {
3911                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3912                 if (IS_ERR(u.xcrs)) {
3913                         r = PTR_ERR(u.xcrs);
3914                         goto out_nofree;
3915                 }
3916
3917                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3918                 break;
3919         }
3920         case KVM_SET_TSC_KHZ: {
3921                 u32 user_tsc_khz;
3922
3923                 r = -EINVAL;
3924                 user_tsc_khz = (u32)arg;
3925
3926                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3927                         goto out;
3928
3929                 if (user_tsc_khz == 0)
3930                         user_tsc_khz = tsc_khz;
3931
3932                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3933                         r = 0;
3934
3935                 goto out;
3936         }
3937         case KVM_GET_TSC_KHZ: {
3938                 r = vcpu->arch.virtual_tsc_khz;
3939                 goto out;
3940         }
3941         case KVM_KVMCLOCK_CTRL: {
3942                 r = kvm_set_guest_paused(vcpu);
3943                 goto out;
3944         }
3945         case KVM_ENABLE_CAP: {
3946                 struct kvm_enable_cap cap;
3947
3948                 r = -EFAULT;
3949                 if (copy_from_user(&cap, argp, sizeof(cap)))
3950                         goto out;
3951                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3952                 break;
3953         }
3954         default:
3955                 r = -EINVAL;
3956         }
3957 out:
3958         kfree(u.buffer);
3959 out_nofree:
3960         vcpu_put(vcpu);
3961         return r;
3962 }
3963
3964 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3965 {
3966         return VM_FAULT_SIGBUS;
3967 }
3968
3969 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3970 {
3971         int ret;
3972
3973         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3974                 return -EINVAL;
3975         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3976         return ret;
3977 }
3978
3979 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3980                                               u64 ident_addr)
3981 {
3982         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
3983 }
3984
3985 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3986                                           u32 kvm_nr_mmu_pages)
3987 {
3988         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3989                 return -EINVAL;
3990
3991         mutex_lock(&kvm->slots_lock);
3992
3993         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3994         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3995
3996         mutex_unlock(&kvm->slots_lock);
3997         return 0;
3998 }
3999
4000 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4001 {
4002         return kvm->arch.n_max_mmu_pages;
4003 }
4004
4005 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4006 {
4007         struct kvm_pic *pic = kvm->arch.vpic;
4008         int r;
4009
4010         r = 0;
4011         switch (chip->chip_id) {
4012         case KVM_IRQCHIP_PIC_MASTER:
4013                 memcpy(&chip->chip.pic, &pic->pics[0],
4014                         sizeof(struct kvm_pic_state));
4015                 break;
4016         case KVM_IRQCHIP_PIC_SLAVE:
4017                 memcpy(&chip->chip.pic, &pic->pics[1],
4018                         sizeof(struct kvm_pic_state));
4019                 break;
4020         case KVM_IRQCHIP_IOAPIC:
4021                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4022                 break;
4023         default:
4024                 r = -EINVAL;
4025                 break;
4026         }
4027         return r;
4028 }
4029
4030 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4031 {
4032         struct kvm_pic *pic = kvm->arch.vpic;
4033         int r;
4034
4035         r = 0;
4036         switch (chip->chip_id) {
4037         case KVM_IRQCHIP_PIC_MASTER:
4038                 spin_lock(&pic->lock);
4039                 memcpy(&pic->pics[0], &chip->chip.pic,
4040                         sizeof(struct kvm_pic_state));
4041                 spin_unlock(&pic->lock);
4042                 break;
4043         case KVM_IRQCHIP_PIC_SLAVE:
4044                 spin_lock(&pic->lock);
4045                 memcpy(&pic->pics[1], &chip->chip.pic,
4046                         sizeof(struct kvm_pic_state));
4047                 spin_unlock(&pic->lock);
4048                 break;
4049         case KVM_IRQCHIP_IOAPIC:
4050                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4051                 break;
4052         default:
4053                 r = -EINVAL;
4054                 break;
4055         }
4056         kvm_pic_update_irq(pic);
4057         return r;
4058 }
4059
4060 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4061 {
4062         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4063
4064         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4065
4066         mutex_lock(&kps->lock);
4067         memcpy(ps, &kps->channels, sizeof(*ps));
4068         mutex_unlock(&kps->lock);
4069         return 0;
4070 }
4071
4072 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4073 {
4074         int i;
4075         struct kvm_pit *pit = kvm->arch.vpit;
4076
4077         mutex_lock(&pit->pit_state.lock);
4078         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4079         for (i = 0; i < 3; i++)
4080                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4081         mutex_unlock(&pit->pit_state.lock);
4082         return 0;
4083 }
4084
4085 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4086 {
4087         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4088         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4089                 sizeof(ps->channels));
4090         ps->flags = kvm->arch.vpit->pit_state.flags;
4091         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4092         memset(&ps->reserved, 0, sizeof(ps->reserved));
4093         return 0;
4094 }
4095
4096 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4097 {
4098         int start = 0;
4099         int i;
4100         u32 prev_legacy, cur_legacy;
4101         struct kvm_pit *pit = kvm->arch.vpit;
4102
4103         mutex_lock(&pit->pit_state.lock);
4104         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4105         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4106         if (!prev_legacy && cur_legacy)
4107                 start = 1;
4108         memcpy(&pit->pit_state.channels, &ps->channels,
4109                sizeof(pit->pit_state.channels));
4110         pit->pit_state.flags = ps->flags;
4111         for (i = 0; i < 3; i++)
4112                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4113                                    start && i == 0);
4114         mutex_unlock(&pit->pit_state.lock);
4115         return 0;
4116 }
4117
4118 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4119                                  struct kvm_reinject_control *control)
4120 {
4121         struct kvm_pit *pit = kvm->arch.vpit;
4122
4123         if (!pit)
4124                 return -ENXIO;
4125
4126         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4127          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4128          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4129          */
4130         mutex_lock(&pit->pit_state.lock);
4131         kvm_pit_set_reinject(pit, control->pit_reinject);
4132         mutex_unlock(&pit->pit_state.lock);
4133
4134         return 0;
4135 }
4136
4137 /**
4138  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4139  * @kvm: kvm instance
4140  * @log: slot id and address to which we copy the log
4141  *
4142  * Steps 1-4 below provide general overview of dirty page logging. See
4143  * kvm_get_dirty_log_protect() function description for additional details.
4144  *
4145  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4146  * always flush the TLB (step 4) even if previous step failed  and the dirty
4147  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4148  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4149  * writes will be marked dirty for next log read.
4150  *
4151  *   1. Take a snapshot of the bit and clear it if needed.
4152  *   2. Write protect the corresponding page.
4153  *   3. Copy the snapshot to the userspace.
4154  *   4. Flush TLB's if needed.
4155  */
4156 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4157 {
4158         bool is_dirty = false;
4159         int r;
4160
4161         mutex_lock(&kvm->slots_lock);
4162
4163         /*
4164          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4165          */
4166         if (kvm_x86_ops->flush_log_dirty)
4167                 kvm_x86_ops->flush_log_dirty(kvm);
4168
4169         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4170
4171         /*
4172          * All the TLBs can be flushed out of mmu lock, see the comments in
4173          * kvm_mmu_slot_remove_write_access().
4174          */
4175         lockdep_assert_held(&kvm->slots_lock);
4176         if (is_dirty)
4177                 kvm_flush_remote_tlbs(kvm);
4178
4179         mutex_unlock(&kvm->slots_lock);
4180         return r;
4181 }
4182
4183 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4184                         bool line_status)
4185 {
4186         if (!irqchip_in_kernel(kvm))
4187                 return -ENXIO;
4188
4189         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4190                                         irq_event->irq, irq_event->level,
4191                                         line_status);
4192         return 0;
4193 }
4194
4195 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4196                                    struct kvm_enable_cap *cap)
4197 {
4198         int r;
4199
4200         if (cap->flags)
4201                 return -EINVAL;
4202
4203         switch (cap->cap) {
4204         case KVM_CAP_DISABLE_QUIRKS:
4205                 kvm->arch.disabled_quirks = cap->args[0];
4206                 r = 0;
4207                 break;
4208         case KVM_CAP_SPLIT_IRQCHIP: {
4209                 mutex_lock(&kvm->lock);
4210                 r = -EINVAL;
4211                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4212                         goto split_irqchip_unlock;
4213                 r = -EEXIST;
4214                 if (irqchip_in_kernel(kvm))
4215                         goto split_irqchip_unlock;
4216                 if (kvm->created_vcpus)
4217                         goto split_irqchip_unlock;
4218                 r = kvm_setup_empty_irq_routing(kvm);
4219                 if (r)
4220                         goto split_irqchip_unlock;
4221                 /* Pairs with irqchip_in_kernel. */
4222                 smp_wmb();
4223                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4224                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4225                 r = 0;
4226 split_irqchip_unlock:
4227                 mutex_unlock(&kvm->lock);
4228                 break;
4229         }
4230         case KVM_CAP_X2APIC_API:
4231                 r = -EINVAL;
4232                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4233                         break;
4234
4235                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4236                         kvm->arch.x2apic_format = true;
4237                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4238                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4239
4240                 r = 0;
4241                 break;
4242         case KVM_CAP_X86_DISABLE_EXITS:
4243                 r = -EINVAL;
4244                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4245                         break;
4246
4247                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4248                         kvm_can_mwait_in_guest())
4249                         kvm->arch.mwait_in_guest = true;
4250                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HTL)
4251                         kvm->arch.hlt_in_guest = true;
4252                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4253                         kvm->arch.pause_in_guest = true;
4254                 r = 0;
4255                 break;
4256         default:
4257                 r = -EINVAL;
4258                 break;
4259         }
4260         return r;
4261 }
4262
4263 long kvm_arch_vm_ioctl(struct file *filp,
4264                        unsigned int ioctl, unsigned long arg)
4265 {
4266         struct kvm *kvm = filp->private_data;
4267         void __user *argp = (void __user *)arg;
4268         int r = -ENOTTY;
4269         /*
4270          * This union makes it completely explicit to gcc-3.x
4271          * that these two variables' stack usage should be
4272          * combined, not added together.
4273          */
4274         union {
4275                 struct kvm_pit_state ps;
4276                 struct kvm_pit_state2 ps2;
4277                 struct kvm_pit_config pit_config;
4278         } u;
4279
4280         switch (ioctl) {
4281         case KVM_SET_TSS_ADDR:
4282                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4283                 break;
4284         case KVM_SET_IDENTITY_MAP_ADDR: {
4285                 u64 ident_addr;
4286
4287                 mutex_lock(&kvm->lock);
4288                 r = -EINVAL;
4289                 if (kvm->created_vcpus)
4290                         goto set_identity_unlock;
4291                 r = -EFAULT;
4292                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4293                         goto set_identity_unlock;
4294                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4295 set_identity_unlock:
4296                 mutex_unlock(&kvm->lock);
4297                 break;
4298         }
4299         case KVM_SET_NR_MMU_PAGES:
4300                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4301                 break;
4302         case KVM_GET_NR_MMU_PAGES:
4303                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4304                 break;
4305         case KVM_CREATE_IRQCHIP: {
4306                 mutex_lock(&kvm->lock);
4307
4308                 r = -EEXIST;
4309                 if (irqchip_in_kernel(kvm))
4310                         goto create_irqchip_unlock;
4311
4312                 r = -EINVAL;
4313                 if (kvm->created_vcpus)
4314                         goto create_irqchip_unlock;
4315
4316                 r = kvm_pic_init(kvm);
4317                 if (r)
4318                         goto create_irqchip_unlock;
4319
4320                 r = kvm_ioapic_init(kvm);
4321                 if (r) {
4322                         kvm_pic_destroy(kvm);
4323                         goto create_irqchip_unlock;
4324                 }
4325
4326                 r = kvm_setup_default_irq_routing(kvm);
4327                 if (r) {
4328                         kvm_ioapic_destroy(kvm);
4329                         kvm_pic_destroy(kvm);
4330                         goto create_irqchip_unlock;
4331                 }
4332                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4333                 smp_wmb();
4334                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4335         create_irqchip_unlock:
4336                 mutex_unlock(&kvm->lock);
4337                 break;
4338         }
4339         case KVM_CREATE_PIT:
4340                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4341                 goto create_pit;
4342         case KVM_CREATE_PIT2:
4343                 r = -EFAULT;
4344                 if (copy_from_user(&u.pit_config, argp,
4345                                    sizeof(struct kvm_pit_config)))
4346                         goto out;
4347         create_pit:
4348                 mutex_lock(&kvm->lock);
4349                 r = -EEXIST;
4350                 if (kvm->arch.vpit)
4351                         goto create_pit_unlock;
4352                 r = -ENOMEM;
4353                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4354                 if (kvm->arch.vpit)
4355                         r = 0;
4356         create_pit_unlock:
4357                 mutex_unlock(&kvm->lock);
4358                 break;
4359         case KVM_GET_IRQCHIP: {
4360                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4361                 struct kvm_irqchip *chip;
4362
4363                 chip = memdup_user(argp, sizeof(*chip));
4364                 if (IS_ERR(chip)) {
4365                         r = PTR_ERR(chip);
4366                         goto out;
4367                 }
4368
4369                 r = -ENXIO;
4370                 if (!irqchip_kernel(kvm))
4371                         goto get_irqchip_out;
4372                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4373                 if (r)
4374                         goto get_irqchip_out;
4375                 r = -EFAULT;
4376                 if (copy_to_user(argp, chip, sizeof *chip))
4377                         goto get_irqchip_out;
4378                 r = 0;
4379         get_irqchip_out:
4380                 kfree(chip);
4381                 break;
4382         }
4383         case KVM_SET_IRQCHIP: {
4384                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4385                 struct kvm_irqchip *chip;
4386
4387                 chip = memdup_user(argp, sizeof(*chip));
4388                 if (IS_ERR(chip)) {
4389                         r = PTR_ERR(chip);
4390                         goto out;
4391                 }
4392
4393                 r = -ENXIO;
4394                 if (!irqchip_kernel(kvm))
4395                         goto set_irqchip_out;
4396                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4397                 if (r)
4398                         goto set_irqchip_out;
4399                 r = 0;
4400         set_irqchip_out:
4401                 kfree(chip);
4402                 break;
4403         }
4404         case KVM_GET_PIT: {
4405                 r = -EFAULT;
4406                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4407                         goto out;
4408                 r = -ENXIO;
4409                 if (!kvm->arch.vpit)
4410                         goto out;
4411                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4412                 if (r)
4413                         goto out;
4414                 r = -EFAULT;
4415                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4416                         goto out;
4417                 r = 0;
4418                 break;
4419         }
4420         case KVM_SET_PIT: {
4421                 r = -EFAULT;
4422                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4423                         goto out;
4424                 r = -ENXIO;
4425                 if (!kvm->arch.vpit)
4426                         goto out;
4427                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4428                 break;
4429         }
4430         case KVM_GET_PIT2: {
4431                 r = -ENXIO;
4432                 if (!kvm->arch.vpit)
4433                         goto out;
4434                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4435                 if (r)
4436                         goto out;
4437                 r = -EFAULT;
4438                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4439                         goto out;
4440                 r = 0;
4441                 break;
4442         }
4443         case KVM_SET_PIT2: {
4444                 r = -EFAULT;
4445                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4446                         goto out;
4447                 r = -ENXIO;
4448                 if (!kvm->arch.vpit)
4449                         goto out;
4450                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4451                 break;
4452         }
4453         case KVM_REINJECT_CONTROL: {
4454                 struct kvm_reinject_control control;
4455                 r =  -EFAULT;
4456                 if (copy_from_user(&control, argp, sizeof(control)))
4457                         goto out;
4458                 r = kvm_vm_ioctl_reinject(kvm, &control);
4459                 break;
4460         }
4461         case KVM_SET_BOOT_CPU_ID:
4462                 r = 0;
4463                 mutex_lock(&kvm->lock);
4464                 if (kvm->created_vcpus)
4465                         r = -EBUSY;
4466                 else
4467                         kvm->arch.bsp_vcpu_id = arg;
4468                 mutex_unlock(&kvm->lock);
4469                 break;
4470         case KVM_XEN_HVM_CONFIG: {
4471                 struct kvm_xen_hvm_config xhc;
4472                 r = -EFAULT;
4473                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4474                         goto out;
4475                 r = -EINVAL;
4476                 if (xhc.flags)
4477                         goto out;
4478                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4479                 r = 0;
4480                 break;
4481         }
4482         case KVM_SET_CLOCK: {
4483                 struct kvm_clock_data user_ns;
4484                 u64 now_ns;
4485
4486                 r = -EFAULT;
4487                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4488                         goto out;
4489
4490                 r = -EINVAL;
4491                 if (user_ns.flags)
4492                         goto out;
4493
4494                 r = 0;
4495                 /*
4496                  * TODO: userspace has to take care of races with VCPU_RUN, so
4497                  * kvm_gen_update_masterclock() can be cut down to locked
4498                  * pvclock_update_vm_gtod_copy().
4499                  */
4500                 kvm_gen_update_masterclock(kvm);
4501                 now_ns = get_kvmclock_ns(kvm);
4502                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4503                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4504                 break;
4505         }
4506         case KVM_GET_CLOCK: {
4507                 struct kvm_clock_data user_ns;
4508                 u64 now_ns;
4509
4510                 now_ns = get_kvmclock_ns(kvm);
4511                 user_ns.clock = now_ns;
4512                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4513                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4514
4515                 r = -EFAULT;
4516                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4517                         goto out;
4518                 r = 0;
4519                 break;
4520         }
4521         case KVM_ENABLE_CAP: {
4522                 struct kvm_enable_cap cap;
4523
4524                 r = -EFAULT;
4525                 if (copy_from_user(&cap, argp, sizeof(cap)))
4526                         goto out;
4527                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4528                 break;
4529         }
4530         case KVM_MEMORY_ENCRYPT_OP: {
4531                 r = -ENOTTY;
4532                 if (kvm_x86_ops->mem_enc_op)
4533                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4534                 break;
4535         }
4536         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4537                 struct kvm_enc_region region;
4538
4539                 r = -EFAULT;
4540                 if (copy_from_user(&region, argp, sizeof(region)))
4541                         goto out;
4542
4543                 r = -ENOTTY;
4544                 if (kvm_x86_ops->mem_enc_reg_region)
4545                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4546                 break;
4547         }
4548         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4549                 struct kvm_enc_region region;
4550
4551                 r = -EFAULT;
4552                 if (copy_from_user(&region, argp, sizeof(region)))
4553                         goto out;
4554
4555                 r = -ENOTTY;
4556                 if (kvm_x86_ops->mem_enc_unreg_region)
4557                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4558                 break;
4559         }
4560         case KVM_HYPERV_EVENTFD: {
4561                 struct kvm_hyperv_eventfd hvevfd;
4562
4563                 r = -EFAULT;
4564                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4565                         goto out;
4566                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4567                 break;
4568         }
4569         default:
4570                 r = -ENOTTY;
4571         }
4572 out:
4573         return r;
4574 }
4575
4576 static void kvm_init_msr_list(void)
4577 {
4578         u32 dummy[2];
4579         unsigned i, j;
4580
4581         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4582                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4583                         continue;
4584
4585                 /*
4586                  * Even MSRs that are valid in the host may not be exposed
4587                  * to the guests in some cases.
4588                  */
4589                 switch (msrs_to_save[i]) {
4590                 case MSR_IA32_BNDCFGS:
4591                         if (!kvm_x86_ops->mpx_supported())
4592                                 continue;
4593                         break;
4594                 case MSR_TSC_AUX:
4595                         if (!kvm_x86_ops->rdtscp_supported())
4596                                 continue;
4597                         break;
4598                 default:
4599                         break;
4600                 }
4601
4602                 if (j < i)
4603                         msrs_to_save[j] = msrs_to_save[i];
4604                 j++;
4605         }
4606         num_msrs_to_save = j;
4607
4608         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4609                 switch (emulated_msrs[i]) {
4610                 case MSR_IA32_SMBASE:
4611                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4612                                 continue;
4613                         break;
4614                 default:
4615                         break;
4616                 }
4617
4618                 if (j < i)
4619                         emulated_msrs[j] = emulated_msrs[i];
4620                 j++;
4621         }
4622         num_emulated_msrs = j;
4623
4624         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4625                 struct kvm_msr_entry msr;
4626
4627                 msr.index = msr_based_features[i];
4628                 if (kvm_get_msr_feature(&msr))
4629                         continue;
4630
4631                 if (j < i)
4632                         msr_based_features[j] = msr_based_features[i];
4633                 j++;
4634         }
4635         num_msr_based_features = j;
4636 }
4637
4638 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4639                            const void *v)
4640 {
4641         int handled = 0;
4642         int n;
4643
4644         do {
4645                 n = min(len, 8);
4646                 if (!(lapic_in_kernel(vcpu) &&
4647                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4648                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4649                         break;
4650                 handled += n;
4651                 addr += n;
4652                 len -= n;
4653                 v += n;
4654         } while (len);
4655
4656         return handled;
4657 }
4658
4659 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4660 {
4661         int handled = 0;
4662         int n;
4663
4664         do {
4665                 n = min(len, 8);
4666                 if (!(lapic_in_kernel(vcpu) &&
4667                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4668                                          addr, n, v))
4669                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4670                         break;
4671                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4672                 handled += n;
4673                 addr += n;
4674                 len -= n;
4675                 v += n;
4676         } while (len);
4677
4678         return handled;
4679 }
4680
4681 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4682                         struct kvm_segment *var, int seg)
4683 {
4684         kvm_x86_ops->set_segment(vcpu, var, seg);
4685 }
4686
4687 void kvm_get_segment(struct kvm_vcpu *vcpu,
4688                      struct kvm_segment *var, int seg)
4689 {
4690         kvm_x86_ops->get_segment(vcpu, var, seg);
4691 }
4692
4693 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4694                            struct x86_exception *exception)
4695 {
4696         gpa_t t_gpa;
4697
4698         BUG_ON(!mmu_is_nested(vcpu));
4699
4700         /* NPT walks are always user-walks */
4701         access |= PFERR_USER_MASK;
4702         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4703
4704         return t_gpa;
4705 }
4706
4707 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4708                               struct x86_exception *exception)
4709 {
4710         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4711         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4712 }
4713
4714  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4715                                 struct x86_exception *exception)
4716 {
4717         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4718         access |= PFERR_FETCH_MASK;
4719         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4720 }
4721
4722 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4723                                struct x86_exception *exception)
4724 {
4725         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4726         access |= PFERR_WRITE_MASK;
4727         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4728 }
4729
4730 /* uses this to access any guest's mapped memory without checking CPL */
4731 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4732                                 struct x86_exception *exception)
4733 {
4734         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4735 }
4736
4737 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4738                                       struct kvm_vcpu *vcpu, u32 access,
4739                                       struct x86_exception *exception)
4740 {
4741         void *data = val;
4742         int r = X86EMUL_CONTINUE;
4743
4744         while (bytes) {
4745                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4746                                                             exception);
4747                 unsigned offset = addr & (PAGE_SIZE-1);
4748                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4749                 int ret;
4750
4751                 if (gpa == UNMAPPED_GVA)
4752                         return X86EMUL_PROPAGATE_FAULT;
4753                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4754                                                offset, toread);
4755                 if (ret < 0) {
4756                         r = X86EMUL_IO_NEEDED;
4757                         goto out;
4758                 }
4759
4760                 bytes -= toread;
4761                 data += toread;
4762                 addr += toread;
4763         }
4764 out:
4765         return r;
4766 }
4767
4768 /* used for instruction fetching */
4769 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4770                                 gva_t addr, void *val, unsigned int bytes,
4771                                 struct x86_exception *exception)
4772 {
4773         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4774         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4775         unsigned offset;
4776         int ret;
4777
4778         /* Inline kvm_read_guest_virt_helper for speed.  */
4779         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4780                                                     exception);
4781         if (unlikely(gpa == UNMAPPED_GVA))
4782                 return X86EMUL_PROPAGATE_FAULT;
4783
4784         offset = addr & (PAGE_SIZE-1);
4785         if (WARN_ON(offset + bytes > PAGE_SIZE))
4786                 bytes = (unsigned)PAGE_SIZE - offset;
4787         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4788                                        offset, bytes);
4789         if (unlikely(ret < 0))
4790                 return X86EMUL_IO_NEEDED;
4791
4792         return X86EMUL_CONTINUE;
4793 }
4794
4795 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4796                                gva_t addr, void *val, unsigned int bytes,
4797                                struct x86_exception *exception)
4798 {
4799         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4800         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4801
4802         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4803                                           exception);
4804 }
4805 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4806
4807 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4808                                       gva_t addr, void *val, unsigned int bytes,
4809                                       struct x86_exception *exception)
4810 {
4811         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4812         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4813 }
4814
4815 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4816                 unsigned long addr, void *val, unsigned int bytes)
4817 {
4818         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4819         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4820
4821         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4822 }
4823
4824 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4825                                        gva_t addr, void *val,
4826                                        unsigned int bytes,
4827                                        struct x86_exception *exception)
4828 {
4829         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4830         void *data = val;
4831         int r = X86EMUL_CONTINUE;
4832
4833         while (bytes) {
4834                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4835                                                              PFERR_WRITE_MASK,
4836                                                              exception);
4837                 unsigned offset = addr & (PAGE_SIZE-1);
4838                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4839                 int ret;
4840
4841                 if (gpa == UNMAPPED_GVA)
4842                         return X86EMUL_PROPAGATE_FAULT;
4843                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4844                 if (ret < 0) {
4845                         r = X86EMUL_IO_NEEDED;
4846                         goto out;
4847                 }
4848
4849                 bytes -= towrite;
4850                 data += towrite;
4851                 addr += towrite;
4852         }
4853 out:
4854         return r;
4855 }
4856 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4857
4858 int handle_ud(struct kvm_vcpu *vcpu)
4859 {
4860         int emul_type = EMULTYPE_TRAP_UD;
4861         enum emulation_result er;
4862         char sig[5]; /* ud2; .ascii "kvm" */
4863         struct x86_exception e;
4864
4865         if (force_emulation_prefix &&
4866             kvm_read_guest_virt(&vcpu->arch.emulate_ctxt,
4867                                 kvm_get_linear_rip(vcpu), sig, sizeof(sig), &e) == 0 &&
4868             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4869                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4870                 emul_type = 0;
4871         }
4872
4873         er = emulate_instruction(vcpu, emul_type);
4874         if (er == EMULATE_USER_EXIT)
4875                 return 0;
4876         if (er != EMULATE_DONE)
4877                 kvm_queue_exception(vcpu, UD_VECTOR);
4878         return 1;
4879 }
4880 EXPORT_SYMBOL_GPL(handle_ud);
4881
4882 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4883                             gpa_t gpa, bool write)
4884 {
4885         /* For APIC access vmexit */
4886         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4887                 return 1;
4888
4889         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4890                 trace_vcpu_match_mmio(gva, gpa, write, true);
4891                 return 1;
4892         }
4893
4894         return 0;
4895 }
4896
4897 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4898                                 gpa_t *gpa, struct x86_exception *exception,
4899                                 bool write)
4900 {
4901         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4902                 | (write ? PFERR_WRITE_MASK : 0);
4903
4904         /*
4905          * currently PKRU is only applied to ept enabled guest so
4906          * there is no pkey in EPT page table for L1 guest or EPT
4907          * shadow page table for L2 guest.
4908          */
4909         if (vcpu_match_mmio_gva(vcpu, gva)
4910             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4911                                  vcpu->arch.access, 0, access)) {
4912                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4913                                         (gva & (PAGE_SIZE - 1));
4914                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4915                 return 1;
4916         }
4917
4918         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4919
4920         if (*gpa == UNMAPPED_GVA)
4921                 return -1;
4922
4923         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4924 }
4925
4926 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4927                         const void *val, int bytes)
4928 {
4929         int ret;
4930
4931         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4932         if (ret < 0)
4933                 return 0;
4934         kvm_page_track_write(vcpu, gpa, val, bytes);
4935         return 1;
4936 }
4937
4938 struct read_write_emulator_ops {
4939         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4940                                   int bytes);
4941         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4942                                   void *val, int bytes);
4943         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4944                                int bytes, void *val);
4945         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4946                                     void *val, int bytes);
4947         bool write;
4948 };
4949
4950 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4951 {
4952         if (vcpu->mmio_read_completed) {
4953                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4954                                vcpu->mmio_fragments[0].gpa, val);
4955                 vcpu->mmio_read_completed = 0;
4956                 return 1;
4957         }
4958
4959         return 0;
4960 }
4961
4962 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4963                         void *val, int bytes)
4964 {
4965         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4966 }
4967
4968 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4969                          void *val, int bytes)
4970 {
4971         return emulator_write_phys(vcpu, gpa, val, bytes);
4972 }
4973
4974 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4975 {
4976         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4977         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4978 }
4979
4980 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4981                           void *val, int bytes)
4982 {
4983         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4984         return X86EMUL_IO_NEEDED;
4985 }
4986
4987 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4988                            void *val, int bytes)
4989 {
4990         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4991
4992         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4993         return X86EMUL_CONTINUE;
4994 }
4995
4996 static const struct read_write_emulator_ops read_emultor = {
4997         .read_write_prepare = read_prepare,
4998         .read_write_emulate = read_emulate,
4999         .read_write_mmio = vcpu_mmio_read,
5000         .read_write_exit_mmio = read_exit_mmio,
5001 };
5002
5003 static const struct read_write_emulator_ops write_emultor = {
5004         .read_write_emulate = write_emulate,
5005         .read_write_mmio = write_mmio,
5006         .read_write_exit_mmio = write_exit_mmio,
5007         .write = true,
5008 };
5009
5010 static int emulator_read_write_onepage(unsigned long addr, void *val,
5011                                        unsigned int bytes,
5012                                        struct x86_exception *exception,
5013                                        struct kvm_vcpu *vcpu,
5014                                        const struct read_write_emulator_ops *ops)
5015 {
5016         gpa_t gpa;
5017         int handled, ret;
5018         bool write = ops->write;
5019         struct kvm_mmio_fragment *frag;
5020         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5021
5022         /*
5023          * If the exit was due to a NPF we may already have a GPA.
5024          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5025          * Note, this cannot be used on string operations since string
5026          * operation using rep will only have the initial GPA from the NPF
5027          * occurred.
5028          */
5029         if (vcpu->arch.gpa_available &&
5030             emulator_can_use_gpa(ctxt) &&
5031             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5032                 gpa = vcpu->arch.gpa_val;
5033                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5034         } else {
5035                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5036                 if (ret < 0)
5037                         return X86EMUL_PROPAGATE_FAULT;
5038         }
5039
5040         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5041                 return X86EMUL_CONTINUE;
5042
5043         /*
5044          * Is this MMIO handled locally?
5045          */
5046         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5047         if (handled == bytes)
5048                 return X86EMUL_CONTINUE;
5049
5050         gpa += handled;
5051         bytes -= handled;
5052         val += handled;
5053
5054         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5055         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5056         frag->gpa = gpa;
5057         frag->data = val;
5058         frag->len = bytes;
5059         return X86EMUL_CONTINUE;
5060 }
5061
5062 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5063                         unsigned long addr,
5064                         void *val, unsigned int bytes,
5065                         struct x86_exception *exception,
5066                         const struct read_write_emulator_ops *ops)
5067 {
5068         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5069         gpa_t gpa;
5070         int rc;
5071
5072         if (ops->read_write_prepare &&
5073                   ops->read_write_prepare(vcpu, val, bytes))
5074                 return X86EMUL_CONTINUE;
5075
5076         vcpu->mmio_nr_fragments = 0;
5077
5078         /* Crossing a page boundary? */
5079         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5080                 int now;
5081
5082                 now = -addr & ~PAGE_MASK;
5083                 rc = emulator_read_write_onepage(addr, val, now, exception,
5084                                                  vcpu, ops);
5085
5086                 if (rc != X86EMUL_CONTINUE)
5087                         return rc;
5088                 addr += now;
5089                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5090                         addr = (u32)addr;
5091                 val += now;
5092                 bytes -= now;
5093         }
5094
5095         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5096                                          vcpu, ops);
5097         if (rc != X86EMUL_CONTINUE)
5098                 return rc;
5099
5100         if (!vcpu->mmio_nr_fragments)
5101                 return rc;
5102
5103         gpa = vcpu->mmio_fragments[0].gpa;
5104
5105         vcpu->mmio_needed = 1;
5106         vcpu->mmio_cur_fragment = 0;
5107
5108         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5109         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5110         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5111         vcpu->run->mmio.phys_addr = gpa;
5112
5113         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5114 }
5115
5116 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5117                                   unsigned long addr,
5118                                   void *val,
5119                                   unsigned int bytes,
5120                                   struct x86_exception *exception)
5121 {
5122         return emulator_read_write(ctxt, addr, val, bytes,
5123                                    exception, &read_emultor);
5124 }
5125
5126 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5127                             unsigned long addr,
5128                             const void *val,
5129                             unsigned int bytes,
5130                             struct x86_exception *exception)
5131 {
5132         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5133                                    exception, &write_emultor);
5134 }
5135
5136 #define CMPXCHG_TYPE(t, ptr, old, new) \
5137         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5138
5139 #ifdef CONFIG_X86_64
5140 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5141 #else
5142 #  define CMPXCHG64(ptr, old, new) \
5143         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5144 #endif
5145
5146 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5147                                      unsigned long addr,
5148                                      const void *old,
5149                                      const void *new,
5150                                      unsigned int bytes,
5151                                      struct x86_exception *exception)
5152 {
5153         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5154         gpa_t gpa;
5155         struct page *page;
5156         char *kaddr;
5157         bool exchanged;
5158
5159         /* guests cmpxchg8b have to be emulated atomically */
5160         if (bytes > 8 || (bytes & (bytes - 1)))
5161                 goto emul_write;
5162
5163         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5164
5165         if (gpa == UNMAPPED_GVA ||
5166             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5167                 goto emul_write;
5168
5169         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5170                 goto emul_write;
5171
5172         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5173         if (is_error_page(page))
5174                 goto emul_write;
5175
5176         kaddr = kmap_atomic(page);
5177         kaddr += offset_in_page(gpa);
5178         switch (bytes) {
5179         case 1:
5180                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5181                 break;
5182         case 2:
5183                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5184                 break;
5185         case 4:
5186                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5187                 break;
5188         case 8:
5189                 exchanged = CMPXCHG64(kaddr, old, new);
5190                 break;
5191         default:
5192                 BUG();
5193         }
5194         kunmap_atomic(kaddr);
5195         kvm_release_page_dirty(page);
5196
5197         if (!exchanged)
5198                 return X86EMUL_CMPXCHG_FAILED;
5199
5200         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5201         kvm_page_track_write(vcpu, gpa, new, bytes);
5202
5203         return X86EMUL_CONTINUE;
5204
5205 emul_write:
5206         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5207
5208         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5209 }
5210
5211 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5212 {
5213         int r = 0, i;
5214
5215         for (i = 0; i < vcpu->arch.pio.count; i++) {
5216                 if (vcpu->arch.pio.in)
5217                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5218                                             vcpu->arch.pio.size, pd);
5219                 else
5220                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5221                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5222                                              pd);
5223                 if (r)
5224                         break;
5225                 pd += vcpu->arch.pio.size;
5226         }
5227         return r;
5228 }
5229
5230 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5231                                unsigned short port, void *val,
5232                                unsigned int count, bool in)
5233 {
5234         vcpu->arch.pio.port = port;
5235         vcpu->arch.pio.in = in;
5236         vcpu->arch.pio.count  = count;
5237         vcpu->arch.pio.size = size;
5238
5239         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5240                 vcpu->arch.pio.count = 0;
5241                 return 1;
5242         }
5243
5244         vcpu->run->exit_reason = KVM_EXIT_IO;
5245         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5246         vcpu->run->io.size = size;
5247         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5248         vcpu->run->io.count = count;
5249         vcpu->run->io.port = port;
5250
5251         return 0;
5252 }
5253
5254 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5255                                     int size, unsigned short port, void *val,
5256                                     unsigned int count)
5257 {
5258         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5259         int ret;
5260
5261         if (vcpu->arch.pio.count)
5262                 goto data_avail;
5263
5264         memset(vcpu->arch.pio_data, 0, size * count);
5265
5266         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5267         if (ret) {
5268 data_avail:
5269                 memcpy(val, vcpu->arch.pio_data, size * count);
5270                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5271                 vcpu->arch.pio.count = 0;
5272                 return 1;
5273         }
5274
5275         return 0;
5276 }
5277
5278 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5279                                      int size, unsigned short port,
5280                                      const void *val, unsigned int count)
5281 {
5282         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5283
5284         memcpy(vcpu->arch.pio_data, val, size * count);
5285         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5286         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5287 }
5288
5289 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5290 {
5291         return kvm_x86_ops->get_segment_base(vcpu, seg);
5292 }
5293
5294 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5295 {
5296         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5297 }
5298
5299 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5300 {
5301         if (!need_emulate_wbinvd(vcpu))
5302                 return X86EMUL_CONTINUE;
5303
5304         if (kvm_x86_ops->has_wbinvd_exit()) {
5305                 int cpu = get_cpu();
5306
5307                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5308                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5309                                 wbinvd_ipi, NULL, 1);
5310                 put_cpu();
5311                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5312         } else
5313                 wbinvd();
5314         return X86EMUL_CONTINUE;
5315 }
5316
5317 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5318 {
5319         kvm_emulate_wbinvd_noskip(vcpu);
5320         return kvm_skip_emulated_instruction(vcpu);
5321 }
5322 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5323
5324
5325
5326 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5327 {
5328         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5329 }
5330
5331 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5332                            unsigned long *dest)
5333 {
5334         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5335 }
5336
5337 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5338                            unsigned long value)
5339 {
5340
5341         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5342 }
5343
5344 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5345 {
5346         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5347 }
5348
5349 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5350 {
5351         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5352         unsigned long value;
5353
5354         switch (cr) {
5355         case 0:
5356                 value = kvm_read_cr0(vcpu);
5357                 break;
5358         case 2:
5359                 value = vcpu->arch.cr2;
5360                 break;
5361         case 3:
5362                 value = kvm_read_cr3(vcpu);
5363                 break;
5364         case 4:
5365                 value = kvm_read_cr4(vcpu);
5366                 break;
5367         case 8:
5368                 value = kvm_get_cr8(vcpu);
5369                 break;
5370         default:
5371                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5372                 return 0;
5373         }
5374
5375         return value;
5376 }
5377
5378 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5379 {
5380         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5381         int res = 0;
5382
5383         switch (cr) {
5384         case 0:
5385                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5386                 break;
5387         case 2:
5388                 vcpu->arch.cr2 = val;
5389                 break;
5390         case 3:
5391                 res = kvm_set_cr3(vcpu, val);
5392                 break;
5393         case 4:
5394                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5395                 break;
5396         case 8:
5397                 res = kvm_set_cr8(vcpu, val);
5398                 break;
5399         default:
5400                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5401                 res = -1;
5402         }
5403
5404         return res;
5405 }
5406
5407 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5408 {
5409         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5410 }
5411
5412 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5413 {
5414         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5415 }
5416
5417 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5418 {
5419         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5420 }
5421
5422 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5423 {
5424         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5425 }
5426
5427 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5428 {
5429         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5430 }
5431
5432 static unsigned long emulator_get_cached_segment_base(
5433         struct x86_emulate_ctxt *ctxt, int seg)
5434 {
5435         return get_segment_base(emul_to_vcpu(ctxt), seg);
5436 }
5437
5438 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5439                                  struct desc_struct *desc, u32 *base3,
5440                                  int seg)
5441 {
5442         struct kvm_segment var;
5443
5444         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5445         *selector = var.selector;
5446
5447         if (var.unusable) {
5448                 memset(desc, 0, sizeof(*desc));
5449                 if (base3)
5450                         *base3 = 0;
5451                 return false;
5452         }
5453
5454         if (var.g)
5455                 var.limit >>= 12;
5456         set_desc_limit(desc, var.limit);
5457         set_desc_base(desc, (unsigned long)var.base);
5458 #ifdef CONFIG_X86_64
5459         if (base3)
5460                 *base3 = var.base >> 32;
5461 #endif
5462         desc->type = var.type;
5463         desc->s = var.s;
5464         desc->dpl = var.dpl;
5465         desc->p = var.present;
5466         desc->avl = var.avl;
5467         desc->l = var.l;
5468         desc->d = var.db;
5469         desc->g = var.g;
5470
5471         return true;
5472 }
5473
5474 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5475                                  struct desc_struct *desc, u32 base3,
5476                                  int seg)
5477 {
5478         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5479         struct kvm_segment var;
5480
5481         var.selector = selector;
5482         var.base = get_desc_base(desc);
5483 #ifdef CONFIG_X86_64
5484         var.base |= ((u64)base3) << 32;
5485 #endif
5486         var.limit = get_desc_limit(desc);
5487         if (desc->g)
5488                 var.limit = (var.limit << 12) | 0xfff;
5489         var.type = desc->type;
5490         var.dpl = desc->dpl;
5491         var.db = desc->d;
5492         var.s = desc->s;
5493         var.l = desc->l;
5494         var.g = desc->g;
5495         var.avl = desc->avl;
5496         var.present = desc->p;
5497         var.unusable = !var.present;
5498         var.padding = 0;
5499
5500         kvm_set_segment(vcpu, &var, seg);
5501         return;
5502 }
5503
5504 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5505                             u32 msr_index, u64 *pdata)
5506 {
5507         struct msr_data msr;
5508         int r;
5509
5510         msr.index = msr_index;
5511         msr.host_initiated = false;
5512         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5513         if (r)
5514                 return r;
5515
5516         *pdata = msr.data;
5517         return 0;
5518 }
5519
5520 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5521                             u32 msr_index, u64 data)
5522 {
5523         struct msr_data msr;
5524
5525         msr.data = data;
5526         msr.index = msr_index;
5527         msr.host_initiated = false;
5528         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5529 }
5530
5531 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5532 {
5533         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5534
5535         return vcpu->arch.smbase;
5536 }
5537
5538 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5539 {
5540         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5541
5542         vcpu->arch.smbase = smbase;
5543 }
5544
5545 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5546                               u32 pmc)
5547 {
5548         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5549 }
5550
5551 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5552                              u32 pmc, u64 *pdata)
5553 {
5554         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5555 }
5556
5557 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5558 {
5559         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5560 }
5561
5562 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5563                               struct x86_instruction_info *info,
5564                               enum x86_intercept_stage stage)
5565 {
5566         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5567 }
5568
5569 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5570                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5571 {
5572         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5573 }
5574
5575 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5576 {
5577         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5578 }
5579
5580 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5581 {
5582         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5583 }
5584
5585 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5586 {
5587         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5588 }
5589
5590 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5591 {
5592         return emul_to_vcpu(ctxt)->arch.hflags;
5593 }
5594
5595 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5596 {
5597         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5598 }
5599
5600 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5601 {
5602         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5603 }
5604
5605 static const struct x86_emulate_ops emulate_ops = {
5606         .read_gpr            = emulator_read_gpr,
5607         .write_gpr           = emulator_write_gpr,
5608         .read_std            = kvm_read_guest_virt_system,
5609         .write_std           = kvm_write_guest_virt_system,
5610         .read_phys           = kvm_read_guest_phys_system,
5611         .fetch               = kvm_fetch_guest_virt,
5612         .read_emulated       = emulator_read_emulated,
5613         .write_emulated      = emulator_write_emulated,
5614         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5615         .invlpg              = emulator_invlpg,
5616         .pio_in_emulated     = emulator_pio_in_emulated,
5617         .pio_out_emulated    = emulator_pio_out_emulated,
5618         .get_segment         = emulator_get_segment,
5619         .set_segment         = emulator_set_segment,
5620         .get_cached_segment_base = emulator_get_cached_segment_base,
5621         .get_gdt             = emulator_get_gdt,
5622         .get_idt             = emulator_get_idt,
5623         .set_gdt             = emulator_set_gdt,
5624         .set_idt             = emulator_set_idt,
5625         .get_cr              = emulator_get_cr,
5626         .set_cr              = emulator_set_cr,
5627         .cpl                 = emulator_get_cpl,
5628         .get_dr              = emulator_get_dr,
5629         .set_dr              = emulator_set_dr,
5630         .get_smbase          = emulator_get_smbase,
5631         .set_smbase          = emulator_set_smbase,
5632         .set_msr             = emulator_set_msr,
5633         .get_msr             = emulator_get_msr,
5634         .check_pmc           = emulator_check_pmc,
5635         .read_pmc            = emulator_read_pmc,
5636         .halt                = emulator_halt,
5637         .wbinvd              = emulator_wbinvd,
5638         .fix_hypercall       = emulator_fix_hypercall,
5639         .intercept           = emulator_intercept,
5640         .get_cpuid           = emulator_get_cpuid,
5641         .set_nmi_mask        = emulator_set_nmi_mask,
5642         .get_hflags          = emulator_get_hflags,
5643         .set_hflags          = emulator_set_hflags,
5644         .pre_leave_smm       = emulator_pre_leave_smm,
5645 };
5646
5647 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5648 {
5649         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5650         /*
5651          * an sti; sti; sequence only disable interrupts for the first
5652          * instruction. So, if the last instruction, be it emulated or
5653          * not, left the system with the INT_STI flag enabled, it
5654          * means that the last instruction is an sti. We should not
5655          * leave the flag on in this case. The same goes for mov ss
5656          */
5657         if (int_shadow & mask)
5658                 mask = 0;
5659         if (unlikely(int_shadow || mask)) {
5660                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5661                 if (!mask)
5662                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5663         }
5664 }
5665
5666 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5667 {
5668         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5669         if (ctxt->exception.vector == PF_VECTOR)
5670                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5671
5672         if (ctxt->exception.error_code_valid)
5673                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5674                                       ctxt->exception.error_code);
5675         else
5676                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5677         return false;
5678 }
5679
5680 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5681 {
5682         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5683         int cs_db, cs_l;
5684
5685         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5686
5687         ctxt->eflags = kvm_get_rflags(vcpu);
5688         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5689
5690         ctxt->eip = kvm_rip_read(vcpu);
5691         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5692                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5693                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5694                      cs_db                              ? X86EMUL_MODE_PROT32 :
5695                                                           X86EMUL_MODE_PROT16;
5696         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5697         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5698         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5699
5700         init_decode_cache(ctxt);
5701         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5702 }
5703
5704 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5705 {
5706         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5707         int ret;
5708
5709         init_emulate_ctxt(vcpu);
5710
5711         ctxt->op_bytes = 2;
5712         ctxt->ad_bytes = 2;
5713         ctxt->_eip = ctxt->eip + inc_eip;
5714         ret = emulate_int_real(ctxt, irq);
5715
5716         if (ret != X86EMUL_CONTINUE)
5717                 return EMULATE_FAIL;
5718
5719         ctxt->eip = ctxt->_eip;
5720         kvm_rip_write(vcpu, ctxt->eip);
5721         kvm_set_rflags(vcpu, ctxt->eflags);
5722
5723         return EMULATE_DONE;
5724 }
5725 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5726
5727 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5728 {
5729         int r = EMULATE_DONE;
5730
5731         ++vcpu->stat.insn_emulation_fail;
5732         trace_kvm_emulate_insn_failed(vcpu);
5733
5734         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5735                 return EMULATE_FAIL;
5736
5737         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5738                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5739                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5740                 vcpu->run->internal.ndata = 0;
5741                 r = EMULATE_USER_EXIT;
5742         }
5743
5744         kvm_queue_exception(vcpu, UD_VECTOR);
5745
5746         return r;
5747 }
5748
5749 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5750                                   bool write_fault_to_shadow_pgtable,
5751                                   int emulation_type)
5752 {
5753         gpa_t gpa = cr2;
5754         kvm_pfn_t pfn;
5755
5756         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5757                 return false;
5758
5759         if (!vcpu->arch.mmu.direct_map) {
5760                 /*
5761                  * Write permission should be allowed since only
5762                  * write access need to be emulated.
5763                  */
5764                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5765
5766                 /*
5767                  * If the mapping is invalid in guest, let cpu retry
5768                  * it to generate fault.
5769                  */
5770                 if (gpa == UNMAPPED_GVA)
5771                         return true;
5772         }
5773
5774         /*
5775          * Do not retry the unhandleable instruction if it faults on the
5776          * readonly host memory, otherwise it will goto a infinite loop:
5777          * retry instruction -> write #PF -> emulation fail -> retry
5778          * instruction -> ...
5779          */
5780         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5781
5782         /*
5783          * If the instruction failed on the error pfn, it can not be fixed,
5784          * report the error to userspace.
5785          */
5786         if (is_error_noslot_pfn(pfn))
5787                 return false;
5788
5789         kvm_release_pfn_clean(pfn);
5790
5791         /* The instructions are well-emulated on direct mmu. */
5792         if (vcpu->arch.mmu.direct_map) {
5793                 unsigned int indirect_shadow_pages;
5794
5795                 spin_lock(&vcpu->kvm->mmu_lock);
5796                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5797                 spin_unlock(&vcpu->kvm->mmu_lock);
5798
5799                 if (indirect_shadow_pages)
5800                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5801
5802                 return true;
5803         }
5804
5805         /*
5806          * if emulation was due to access to shadowed page table
5807          * and it failed try to unshadow page and re-enter the
5808          * guest to let CPU execute the instruction.
5809          */
5810         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5811
5812         /*
5813          * If the access faults on its page table, it can not
5814          * be fixed by unprotecting shadow page and it should
5815          * be reported to userspace.
5816          */
5817         return !write_fault_to_shadow_pgtable;
5818 }
5819
5820 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5821                               unsigned long cr2,  int emulation_type)
5822 {
5823         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5824         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5825
5826         last_retry_eip = vcpu->arch.last_retry_eip;
5827         last_retry_addr = vcpu->arch.last_retry_addr;
5828
5829         /*
5830          * If the emulation is caused by #PF and it is non-page_table
5831          * writing instruction, it means the VM-EXIT is caused by shadow
5832          * page protected, we can zap the shadow page and retry this
5833          * instruction directly.
5834          *
5835          * Note: if the guest uses a non-page-table modifying instruction
5836          * on the PDE that points to the instruction, then we will unmap
5837          * the instruction and go to an infinite loop. So, we cache the
5838          * last retried eip and the last fault address, if we meet the eip
5839          * and the address again, we can break out of the potential infinite
5840          * loop.
5841          */
5842         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5843
5844         if (!(emulation_type & EMULTYPE_RETRY))
5845                 return false;
5846
5847         if (x86_page_table_writing_insn(ctxt))
5848                 return false;
5849
5850         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5851                 return false;
5852
5853         vcpu->arch.last_retry_eip = ctxt->eip;
5854         vcpu->arch.last_retry_addr = cr2;
5855
5856         if (!vcpu->arch.mmu.direct_map)
5857                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5858
5859         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5860
5861         return true;
5862 }
5863
5864 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5865 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5866
5867 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5868 {
5869         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5870                 /* This is a good place to trace that we are exiting SMM.  */
5871                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5872
5873                 /* Process a latched INIT or SMI, if any.  */
5874                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5875         }
5876
5877         kvm_mmu_reset_context(vcpu);
5878 }
5879
5880 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5881 {
5882         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5883
5884         vcpu->arch.hflags = emul_flags;
5885
5886         if (changed & HF_SMM_MASK)
5887                 kvm_smm_changed(vcpu);
5888 }
5889
5890 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5891                                 unsigned long *db)
5892 {
5893         u32 dr6 = 0;
5894         int i;
5895         u32 enable, rwlen;
5896
5897         enable = dr7;
5898         rwlen = dr7 >> 16;
5899         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5900                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5901                         dr6 |= (1 << i);
5902         return dr6;
5903 }
5904
5905 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5906 {
5907         struct kvm_run *kvm_run = vcpu->run;
5908
5909         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5910                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5911                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5912                 kvm_run->debug.arch.exception = DB_VECTOR;
5913                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5914                 *r = EMULATE_USER_EXIT;
5915         } else {
5916                 /*
5917                  * "Certain debug exceptions may clear bit 0-3.  The
5918                  * remaining contents of the DR6 register are never
5919                  * cleared by the processor".
5920                  */
5921                 vcpu->arch.dr6 &= ~15;
5922                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5923                 kvm_queue_exception(vcpu, DB_VECTOR);
5924         }
5925 }
5926
5927 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5928 {
5929         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5930         int r = EMULATE_DONE;
5931
5932         kvm_x86_ops->skip_emulated_instruction(vcpu);
5933
5934         /*
5935          * rflags is the old, "raw" value of the flags.  The new value has
5936          * not been saved yet.
5937          *
5938          * This is correct even for TF set by the guest, because "the
5939          * processor will not generate this exception after the instruction
5940          * that sets the TF flag".
5941          */
5942         if (unlikely(rflags & X86_EFLAGS_TF))
5943                 kvm_vcpu_do_singlestep(vcpu, &r);
5944         return r == EMULATE_DONE;
5945 }
5946 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5947
5948 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5949 {
5950         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5951             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5952                 struct kvm_run *kvm_run = vcpu->run;
5953                 unsigned long eip = kvm_get_linear_rip(vcpu);
5954                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5955                                            vcpu->arch.guest_debug_dr7,
5956                                            vcpu->arch.eff_db);
5957
5958                 if (dr6 != 0) {
5959                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5960                         kvm_run->debug.arch.pc = eip;
5961                         kvm_run->debug.arch.exception = DB_VECTOR;
5962                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5963                         *r = EMULATE_USER_EXIT;
5964                         return true;
5965                 }
5966         }
5967
5968         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5969             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5970                 unsigned long eip = kvm_get_linear_rip(vcpu);
5971                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5972                                            vcpu->arch.dr7,
5973                                            vcpu->arch.db);
5974
5975                 if (dr6 != 0) {
5976                         vcpu->arch.dr6 &= ~15;
5977                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5978                         kvm_queue_exception(vcpu, DB_VECTOR);
5979                         *r = EMULATE_DONE;
5980                         return true;
5981                 }
5982         }
5983
5984         return false;
5985 }
5986
5987 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
5988 {
5989         switch (ctxt->opcode_len) {
5990         case 1:
5991                 switch (ctxt->b) {
5992                 case 0xe4:      /* IN */
5993                 case 0xe5:
5994                 case 0xec:
5995                 case 0xed:
5996                 case 0xe6:      /* OUT */
5997                 case 0xe7:
5998                 case 0xee:
5999                 case 0xef:
6000                 case 0x6c:      /* INS */
6001                 case 0x6d:
6002                 case 0x6e:      /* OUTS */
6003                 case 0x6f:
6004                         return true;
6005                 }
6006                 break;
6007         case 2:
6008                 switch (ctxt->b) {
6009                 case 0x33:      /* RDPMC */
6010                         return true;
6011                 }
6012                 break;
6013         }
6014
6015         return false;
6016 }
6017
6018 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6019                             unsigned long cr2,
6020                             int emulation_type,
6021                             void *insn,
6022                             int insn_len)
6023 {
6024         int r;
6025         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6026         bool writeback = true;
6027         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6028
6029         /*
6030          * Clear write_fault_to_shadow_pgtable here to ensure it is
6031          * never reused.
6032          */
6033         vcpu->arch.write_fault_to_shadow_pgtable = false;
6034         kvm_clear_exception_queue(vcpu);
6035
6036         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6037                 init_emulate_ctxt(vcpu);
6038
6039                 /*
6040                  * We will reenter on the same instruction since
6041                  * we do not set complete_userspace_io.  This does not
6042                  * handle watchpoints yet, those would be handled in
6043                  * the emulate_ops.
6044                  */
6045                 if (!(emulation_type & EMULTYPE_SKIP) &&
6046                     kvm_vcpu_check_breakpoint(vcpu, &r))
6047                         return r;
6048
6049                 ctxt->interruptibility = 0;
6050                 ctxt->have_exception = false;
6051                 ctxt->exception.vector = -1;
6052                 ctxt->perm_ok = false;
6053
6054                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6055
6056                 r = x86_decode_insn(ctxt, insn, insn_len);
6057
6058                 trace_kvm_emulate_insn_start(vcpu);
6059                 ++vcpu->stat.insn_emulation;
6060                 if (r != EMULATION_OK)  {
6061                         if (emulation_type & EMULTYPE_TRAP_UD)
6062                                 return EMULATE_FAIL;
6063                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6064                                                 emulation_type))
6065                                 return EMULATE_DONE;
6066                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6067                                 return EMULATE_DONE;
6068                         if (emulation_type & EMULTYPE_SKIP)
6069                                 return EMULATE_FAIL;
6070                         return handle_emulation_failure(vcpu, emulation_type);
6071                 }
6072         }
6073
6074         if ((emulation_type & EMULTYPE_VMWARE) &&
6075             !is_vmware_backdoor_opcode(ctxt))
6076                 return EMULATE_FAIL;
6077
6078         if (emulation_type & EMULTYPE_SKIP) {
6079                 kvm_rip_write(vcpu, ctxt->_eip);
6080                 if (ctxt->eflags & X86_EFLAGS_RF)
6081                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6082                 return EMULATE_DONE;
6083         }
6084
6085         if (retry_instruction(ctxt, cr2, emulation_type))
6086                 return EMULATE_DONE;
6087
6088         /* this is needed for vmware backdoor interface to work since it
6089            changes registers values  during IO operation */
6090         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6091                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6092                 emulator_invalidate_register_cache(ctxt);
6093         }
6094
6095 restart:
6096         /* Save the faulting GPA (cr2) in the address field */
6097         ctxt->exception.address = cr2;
6098
6099         r = x86_emulate_insn(ctxt);
6100
6101         if (r == EMULATION_INTERCEPTED)
6102                 return EMULATE_DONE;
6103
6104         if (r == EMULATION_FAILED) {
6105                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6106                                         emulation_type))
6107                         return EMULATE_DONE;
6108
6109                 return handle_emulation_failure(vcpu, emulation_type);
6110         }
6111
6112         if (ctxt->have_exception) {
6113                 r = EMULATE_DONE;
6114                 if (inject_emulated_exception(vcpu))
6115                         return r;
6116         } else if (vcpu->arch.pio.count) {
6117                 if (!vcpu->arch.pio.in) {
6118                         /* FIXME: return into emulator if single-stepping.  */
6119                         vcpu->arch.pio.count = 0;
6120                 } else {
6121                         writeback = false;
6122                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6123                 }
6124                 r = EMULATE_USER_EXIT;
6125         } else if (vcpu->mmio_needed) {
6126                 if (!vcpu->mmio_is_write)
6127                         writeback = false;
6128                 r = EMULATE_USER_EXIT;
6129                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6130         } else if (r == EMULATION_RESTART)
6131                 goto restart;
6132         else
6133                 r = EMULATE_DONE;
6134
6135         if (writeback) {
6136                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6137                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6138                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6139                 kvm_rip_write(vcpu, ctxt->eip);
6140                 if (r == EMULATE_DONE &&
6141                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6142                         kvm_vcpu_do_singlestep(vcpu, &r);
6143                 if (!ctxt->have_exception ||
6144                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6145                         __kvm_set_rflags(vcpu, ctxt->eflags);
6146
6147                 /*
6148                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6149                  * do nothing, and it will be requested again as soon as
6150                  * the shadow expires.  But we still need to check here,
6151                  * because POPF has no interrupt shadow.
6152                  */
6153                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6154                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6155         } else
6156                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6157
6158         return r;
6159 }
6160 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6161
6162 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6163                             unsigned short port)
6164 {
6165         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6166         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6167                                             size, port, &val, 1);
6168         /* do not return to emulator after return from userspace */
6169         vcpu->arch.pio.count = 0;
6170         return ret;
6171 }
6172
6173 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6174 {
6175         unsigned long val;
6176
6177         /* We should only ever be called with arch.pio.count equal to 1 */
6178         BUG_ON(vcpu->arch.pio.count != 1);
6179
6180         /* For size less than 4 we merge, else we zero extend */
6181         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6182                                         : 0;
6183
6184         /*
6185          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6186          * the copy and tracing
6187          */
6188         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6189                                  vcpu->arch.pio.port, &val, 1);
6190         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6191
6192         return 1;
6193 }
6194
6195 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6196                            unsigned short port)
6197 {
6198         unsigned long val;
6199         int ret;
6200
6201         /* For size less than 4 we merge, else we zero extend */
6202         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6203
6204         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6205                                        &val, 1);
6206         if (ret) {
6207                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6208                 return ret;
6209         }
6210
6211         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6212
6213         return 0;
6214 }
6215
6216 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6217 {
6218         int ret = kvm_skip_emulated_instruction(vcpu);
6219
6220         /*
6221          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6222          * KVM_EXIT_DEBUG here.
6223          */
6224         if (in)
6225                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6226         else
6227                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6228 }
6229 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6230
6231 static int kvmclock_cpu_down_prep(unsigned int cpu)
6232 {
6233         __this_cpu_write(cpu_tsc_khz, 0);
6234         return 0;
6235 }
6236
6237 static void tsc_khz_changed(void *data)
6238 {
6239         struct cpufreq_freqs *freq = data;
6240         unsigned long khz = 0;
6241
6242         if (data)
6243                 khz = freq->new;
6244         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6245                 khz = cpufreq_quick_get(raw_smp_processor_id());
6246         if (!khz)
6247                 khz = tsc_khz;
6248         __this_cpu_write(cpu_tsc_khz, khz);
6249 }
6250
6251 #ifdef CONFIG_X86_64
6252 static void kvm_hyperv_tsc_notifier(void)
6253 {
6254         struct kvm *kvm;
6255         struct kvm_vcpu *vcpu;
6256         int cpu;
6257
6258         spin_lock(&kvm_lock);
6259         list_for_each_entry(kvm, &vm_list, vm_list)
6260                 kvm_make_mclock_inprogress_request(kvm);
6261
6262         hyperv_stop_tsc_emulation();
6263
6264         /* TSC frequency always matches when on Hyper-V */
6265         for_each_present_cpu(cpu)
6266                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6267         kvm_max_guest_tsc_khz = tsc_khz;
6268
6269         list_for_each_entry(kvm, &vm_list, vm_list) {
6270                 struct kvm_arch *ka = &kvm->arch;
6271
6272                 spin_lock(&ka->pvclock_gtod_sync_lock);
6273
6274                 pvclock_update_vm_gtod_copy(kvm);
6275
6276                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6277                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6278
6279                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6280                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6281
6282                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6283         }
6284         spin_unlock(&kvm_lock);
6285 }
6286 #endif
6287
6288 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6289                                      void *data)
6290 {
6291         struct cpufreq_freqs *freq = data;
6292         struct kvm *kvm;
6293         struct kvm_vcpu *vcpu;
6294         int i, send_ipi = 0;
6295
6296         /*
6297          * We allow guests to temporarily run on slowing clocks,
6298          * provided we notify them after, or to run on accelerating
6299          * clocks, provided we notify them before.  Thus time never
6300          * goes backwards.
6301          *
6302          * However, we have a problem.  We can't atomically update
6303          * the frequency of a given CPU from this function; it is
6304          * merely a notifier, which can be called from any CPU.
6305          * Changing the TSC frequency at arbitrary points in time
6306          * requires a recomputation of local variables related to
6307          * the TSC for each VCPU.  We must flag these local variables
6308          * to be updated and be sure the update takes place with the
6309          * new frequency before any guests proceed.
6310          *
6311          * Unfortunately, the combination of hotplug CPU and frequency
6312          * change creates an intractable locking scenario; the order
6313          * of when these callouts happen is undefined with respect to
6314          * CPU hotplug, and they can race with each other.  As such,
6315          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6316          * undefined; you can actually have a CPU frequency change take
6317          * place in between the computation of X and the setting of the
6318          * variable.  To protect against this problem, all updates of
6319          * the per_cpu tsc_khz variable are done in an interrupt
6320          * protected IPI, and all callers wishing to update the value
6321          * must wait for a synchronous IPI to complete (which is trivial
6322          * if the caller is on the CPU already).  This establishes the
6323          * necessary total order on variable updates.
6324          *
6325          * Note that because a guest time update may take place
6326          * anytime after the setting of the VCPU's request bit, the
6327          * correct TSC value must be set before the request.  However,
6328          * to ensure the update actually makes it to any guest which
6329          * starts running in hardware virtualization between the set
6330          * and the acquisition of the spinlock, we must also ping the
6331          * CPU after setting the request bit.
6332          *
6333          */
6334
6335         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6336                 return 0;
6337         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6338                 return 0;
6339
6340         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6341
6342         spin_lock(&kvm_lock);
6343         list_for_each_entry(kvm, &vm_list, vm_list) {
6344                 kvm_for_each_vcpu(i, vcpu, kvm) {
6345                         if (vcpu->cpu != freq->cpu)
6346                                 continue;
6347                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6348                         if (vcpu->cpu != smp_processor_id())
6349                                 send_ipi = 1;
6350                 }
6351         }
6352         spin_unlock(&kvm_lock);
6353
6354         if (freq->old < freq->new && send_ipi) {
6355                 /*
6356                  * We upscale the frequency.  Must make the guest
6357                  * doesn't see old kvmclock values while running with
6358                  * the new frequency, otherwise we risk the guest sees
6359                  * time go backwards.
6360                  *
6361                  * In case we update the frequency for another cpu
6362                  * (which might be in guest context) send an interrupt
6363                  * to kick the cpu out of guest context.  Next time
6364                  * guest context is entered kvmclock will be updated,
6365                  * so the guest will not see stale values.
6366                  */
6367                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6368         }
6369         return 0;
6370 }
6371
6372 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6373         .notifier_call  = kvmclock_cpufreq_notifier
6374 };
6375
6376 static int kvmclock_cpu_online(unsigned int cpu)
6377 {
6378         tsc_khz_changed(NULL);
6379         return 0;
6380 }
6381
6382 static void kvm_timer_init(void)
6383 {
6384         max_tsc_khz = tsc_khz;
6385
6386         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6387 #ifdef CONFIG_CPU_FREQ
6388                 struct cpufreq_policy policy;
6389                 int cpu;
6390
6391                 memset(&policy, 0, sizeof(policy));
6392                 cpu = get_cpu();
6393                 cpufreq_get_policy(&policy, cpu);
6394                 if (policy.cpuinfo.max_freq)
6395                         max_tsc_khz = policy.cpuinfo.max_freq;
6396                 put_cpu();
6397 #endif
6398                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6399                                           CPUFREQ_TRANSITION_NOTIFIER);
6400         }
6401         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6402
6403         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6404                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6405 }
6406
6407 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6408 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6409
6410 int kvm_is_in_guest(void)
6411 {
6412         return __this_cpu_read(current_vcpu) != NULL;
6413 }
6414
6415 static int kvm_is_user_mode(void)
6416 {
6417         int user_mode = 3;
6418
6419         if (__this_cpu_read(current_vcpu))
6420                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6421
6422         return user_mode != 0;
6423 }
6424
6425 static unsigned long kvm_get_guest_ip(void)
6426 {
6427         unsigned long ip = 0;
6428
6429         if (__this_cpu_read(current_vcpu))
6430                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6431
6432         return ip;
6433 }
6434
6435 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6436         .is_in_guest            = kvm_is_in_guest,
6437         .is_user_mode           = kvm_is_user_mode,
6438         .get_guest_ip           = kvm_get_guest_ip,
6439 };
6440
6441 static void kvm_set_mmio_spte_mask(void)
6442 {
6443         u64 mask;
6444         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6445
6446         /*
6447          * Set the reserved bits and the present bit of an paging-structure
6448          * entry to generate page fault with PFER.RSV = 1.
6449          */
6450          /* Mask the reserved physical address bits. */
6451         mask = rsvd_bits(maxphyaddr, 51);
6452
6453         /* Set the present bit. */
6454         mask |= 1ull;
6455
6456 #ifdef CONFIG_X86_64
6457         /*
6458          * If reserved bit is not supported, clear the present bit to disable
6459          * mmio page fault.
6460          */
6461         if (maxphyaddr == 52)
6462                 mask &= ~1ull;
6463 #endif
6464
6465         kvm_mmu_set_mmio_spte_mask(mask, mask);
6466 }
6467
6468 #ifdef CONFIG_X86_64
6469 static void pvclock_gtod_update_fn(struct work_struct *work)
6470 {
6471         struct kvm *kvm;
6472
6473         struct kvm_vcpu *vcpu;
6474         int i;
6475
6476         spin_lock(&kvm_lock);
6477         list_for_each_entry(kvm, &vm_list, vm_list)
6478                 kvm_for_each_vcpu(i, vcpu, kvm)
6479                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6480         atomic_set(&kvm_guest_has_master_clock, 0);
6481         spin_unlock(&kvm_lock);
6482 }
6483
6484 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6485
6486 /*
6487  * Notification about pvclock gtod data update.
6488  */
6489 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6490                                void *priv)
6491 {
6492         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6493         struct timekeeper *tk = priv;
6494
6495         update_pvclock_gtod(tk);
6496
6497         /* disable master clock if host does not trust, or does not
6498          * use, TSC based clocksource.
6499          */
6500         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6501             atomic_read(&kvm_guest_has_master_clock) != 0)
6502                 queue_work(system_long_wq, &pvclock_gtod_work);
6503
6504         return 0;
6505 }
6506
6507 static struct notifier_block pvclock_gtod_notifier = {
6508         .notifier_call = pvclock_gtod_notify,
6509 };
6510 #endif
6511
6512 int kvm_arch_init(void *opaque)
6513 {
6514         int r;
6515         struct kvm_x86_ops *ops = opaque;
6516
6517         if (kvm_x86_ops) {
6518                 printk(KERN_ERR "kvm: already loaded the other module\n");
6519                 r = -EEXIST;
6520                 goto out;
6521         }
6522
6523         if (!ops->cpu_has_kvm_support()) {
6524                 printk(KERN_ERR "kvm: no hardware support\n");
6525                 r = -EOPNOTSUPP;
6526                 goto out;
6527         }
6528         if (ops->disabled_by_bios()) {
6529                 printk(KERN_ERR "kvm: disabled by bios\n");
6530                 r = -EOPNOTSUPP;
6531                 goto out;
6532         }
6533
6534         r = -ENOMEM;
6535         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6536         if (!shared_msrs) {
6537                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6538                 goto out;
6539         }
6540
6541         r = kvm_mmu_module_init();
6542         if (r)
6543                 goto out_free_percpu;
6544
6545         kvm_set_mmio_spte_mask();
6546
6547         kvm_x86_ops = ops;
6548
6549         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6550                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6551                         PT_PRESENT_MASK, 0, sme_me_mask);
6552         kvm_timer_init();
6553
6554         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6555
6556         if (boot_cpu_has(X86_FEATURE_XSAVE))
6557                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6558
6559         kvm_lapic_init();
6560 #ifdef CONFIG_X86_64
6561         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6562
6563         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6564                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6565 #endif
6566
6567         return 0;
6568
6569 out_free_percpu:
6570         free_percpu(shared_msrs);
6571 out:
6572         return r;
6573 }
6574
6575 void kvm_arch_exit(void)
6576 {
6577 #ifdef CONFIG_X86_64
6578         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6579                 clear_hv_tscchange_cb();
6580 #endif
6581         kvm_lapic_exit();
6582         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6583
6584         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6585                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6586                                             CPUFREQ_TRANSITION_NOTIFIER);
6587         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6588 #ifdef CONFIG_X86_64
6589         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6590 #endif
6591         kvm_x86_ops = NULL;
6592         kvm_mmu_module_exit();
6593         free_percpu(shared_msrs);
6594 }
6595
6596 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6597 {
6598         ++vcpu->stat.halt_exits;
6599         if (lapic_in_kernel(vcpu)) {
6600                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6601                 return 1;
6602         } else {
6603                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6604                 return 0;
6605         }
6606 }
6607 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6608
6609 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6610 {
6611         int ret = kvm_skip_emulated_instruction(vcpu);
6612         /*
6613          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6614          * KVM_EXIT_DEBUG here.
6615          */
6616         return kvm_vcpu_halt(vcpu) && ret;
6617 }
6618 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6619
6620 #ifdef CONFIG_X86_64
6621 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6622                                 unsigned long clock_type)
6623 {
6624         struct kvm_clock_pairing clock_pairing;
6625         struct timespec ts;
6626         u64 cycle;
6627         int ret;
6628
6629         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6630                 return -KVM_EOPNOTSUPP;
6631
6632         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6633                 return -KVM_EOPNOTSUPP;
6634
6635         clock_pairing.sec = ts.tv_sec;
6636         clock_pairing.nsec = ts.tv_nsec;
6637         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6638         clock_pairing.flags = 0;
6639
6640         ret = 0;
6641         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6642                             sizeof(struct kvm_clock_pairing)))
6643                 ret = -KVM_EFAULT;
6644
6645         return ret;
6646 }
6647 #endif
6648
6649 /*
6650  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6651  *
6652  * @apicid - apicid of vcpu to be kicked.
6653  */
6654 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6655 {
6656         struct kvm_lapic_irq lapic_irq;
6657
6658         lapic_irq.shorthand = 0;
6659         lapic_irq.dest_mode = 0;
6660         lapic_irq.level = 0;
6661         lapic_irq.dest_id = apicid;
6662         lapic_irq.msi_redir_hint = false;
6663
6664         lapic_irq.delivery_mode = APIC_DM_REMRD;
6665         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6666 }
6667
6668 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6669 {
6670         vcpu->arch.apicv_active = false;
6671         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6672 }
6673
6674 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6675 {
6676         unsigned long nr, a0, a1, a2, a3, ret;
6677         int op_64_bit;
6678
6679         if (kvm_hv_hypercall_enabled(vcpu->kvm)) {
6680                 if (!kvm_hv_hypercall(vcpu))
6681                         return 0;
6682                 goto out;
6683         }
6684
6685         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6686         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6687         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6688         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6689         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6690
6691         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6692
6693         op_64_bit = is_64_bit_mode(vcpu);
6694         if (!op_64_bit) {
6695                 nr &= 0xFFFFFFFF;
6696                 a0 &= 0xFFFFFFFF;
6697                 a1 &= 0xFFFFFFFF;
6698                 a2 &= 0xFFFFFFFF;
6699                 a3 &= 0xFFFFFFFF;
6700         }
6701
6702         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6703                 ret = -KVM_EPERM;
6704                 goto out_error;
6705         }
6706
6707         switch (nr) {
6708         case KVM_HC_VAPIC_POLL_IRQ:
6709                 ret = 0;
6710                 break;
6711         case KVM_HC_KICK_CPU:
6712                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6713                 ret = 0;
6714                 break;
6715 #ifdef CONFIG_X86_64
6716         case KVM_HC_CLOCK_PAIRING:
6717                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6718                 break;
6719 #endif
6720         default:
6721                 ret = -KVM_ENOSYS;
6722                 break;
6723         }
6724 out_error:
6725         if (!op_64_bit)
6726                 ret = (u32)ret;
6727         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6728
6729 out:
6730         ++vcpu->stat.hypercalls;
6731         return kvm_skip_emulated_instruction(vcpu);
6732 }
6733 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6734
6735 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6736 {
6737         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6738         char instruction[3];
6739         unsigned long rip = kvm_rip_read(vcpu);
6740
6741         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6742
6743         return emulator_write_emulated(ctxt, rip, instruction, 3,
6744                 &ctxt->exception);
6745 }
6746
6747 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6748 {
6749         return vcpu->run->request_interrupt_window &&
6750                 likely(!pic_in_kernel(vcpu->kvm));
6751 }
6752
6753 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6754 {
6755         struct kvm_run *kvm_run = vcpu->run;
6756
6757         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6758         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6759         kvm_run->cr8 = kvm_get_cr8(vcpu);
6760         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6761         kvm_run->ready_for_interrupt_injection =
6762                 pic_in_kernel(vcpu->kvm) ||
6763                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6764 }
6765
6766 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6767 {
6768         int max_irr, tpr;
6769
6770         if (!kvm_x86_ops->update_cr8_intercept)
6771                 return;
6772
6773         if (!lapic_in_kernel(vcpu))
6774                 return;
6775
6776         if (vcpu->arch.apicv_active)
6777                 return;
6778
6779         if (!vcpu->arch.apic->vapic_addr)
6780                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6781         else
6782                 max_irr = -1;
6783
6784         if (max_irr != -1)
6785                 max_irr >>= 4;
6786
6787         tpr = kvm_lapic_get_cr8(vcpu);
6788
6789         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6790 }
6791
6792 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6793 {
6794         int r;
6795
6796         /* try to reinject previous events if any */
6797
6798         if (vcpu->arch.exception.injected)
6799                 kvm_x86_ops->queue_exception(vcpu);
6800         /*
6801          * Do not inject an NMI or interrupt if there is a pending
6802          * exception.  Exceptions and interrupts are recognized at
6803          * instruction boundaries, i.e. the start of an instruction.
6804          * Trap-like exceptions, e.g. #DB, have higher priority than
6805          * NMIs and interrupts, i.e. traps are recognized before an
6806          * NMI/interrupt that's pending on the same instruction.
6807          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6808          * priority, but are only generated (pended) during instruction
6809          * execution, i.e. a pending fault-like exception means the
6810          * fault occurred on the *previous* instruction and must be
6811          * serviced prior to recognizing any new events in order to
6812          * fully complete the previous instruction.
6813          */
6814         else if (!vcpu->arch.exception.pending) {
6815                 if (vcpu->arch.nmi_injected)
6816                         kvm_x86_ops->set_nmi(vcpu);
6817                 else if (vcpu->arch.interrupt.injected)
6818                         kvm_x86_ops->set_irq(vcpu);
6819         }
6820
6821         /*
6822          * Call check_nested_events() even if we reinjected a previous event
6823          * in order for caller to determine if it should require immediate-exit
6824          * from L2 to L1 due to pending L1 events which require exit
6825          * from L2 to L1.
6826          */
6827         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6828                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6829                 if (r != 0)
6830                         return r;
6831         }
6832
6833         /* try to inject new event if pending */
6834         if (vcpu->arch.exception.pending) {
6835                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6836                                         vcpu->arch.exception.has_error_code,
6837                                         vcpu->arch.exception.error_code);
6838
6839                 WARN_ON_ONCE(vcpu->arch.exception.injected);
6840                 vcpu->arch.exception.pending = false;
6841                 vcpu->arch.exception.injected = true;
6842
6843                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6844                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6845                                              X86_EFLAGS_RF);
6846
6847                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6848                     (vcpu->arch.dr7 & DR7_GD)) {
6849                         vcpu->arch.dr7 &= ~DR7_GD;
6850                         kvm_update_dr7(vcpu);
6851                 }
6852
6853                 kvm_x86_ops->queue_exception(vcpu);
6854         }
6855
6856         /* Don't consider new event if we re-injected an event */
6857         if (kvm_event_needs_reinjection(vcpu))
6858                 return 0;
6859
6860         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6861             kvm_x86_ops->smi_allowed(vcpu)) {
6862                 vcpu->arch.smi_pending = false;
6863                 ++vcpu->arch.smi_count;
6864                 enter_smm(vcpu);
6865         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6866                 --vcpu->arch.nmi_pending;
6867                 vcpu->arch.nmi_injected = true;
6868                 kvm_x86_ops->set_nmi(vcpu);
6869         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6870                 /*
6871                  * Because interrupts can be injected asynchronously, we are
6872                  * calling check_nested_events again here to avoid a race condition.
6873                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6874                  * proposal and current concerns.  Perhaps we should be setting
6875                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6876                  */
6877                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6878                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6879                         if (r != 0)
6880                                 return r;
6881                 }
6882                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6883                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6884                                             false);
6885                         kvm_x86_ops->set_irq(vcpu);
6886                 }
6887         }
6888
6889         return 0;
6890 }
6891
6892 static void process_nmi(struct kvm_vcpu *vcpu)
6893 {
6894         unsigned limit = 2;
6895
6896         /*
6897          * x86 is limited to one NMI running, and one NMI pending after it.
6898          * If an NMI is already in progress, limit further NMIs to just one.
6899          * Otherwise, allow two (and we'll inject the first one immediately).
6900          */
6901         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6902                 limit = 1;
6903
6904         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6905         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6906         kvm_make_request(KVM_REQ_EVENT, vcpu);
6907 }
6908
6909 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6910 {
6911         u32 flags = 0;
6912         flags |= seg->g       << 23;
6913         flags |= seg->db      << 22;
6914         flags |= seg->l       << 21;
6915         flags |= seg->avl     << 20;
6916         flags |= seg->present << 15;
6917         flags |= seg->dpl     << 13;
6918         flags |= seg->s       << 12;
6919         flags |= seg->type    << 8;
6920         return flags;
6921 }
6922
6923 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6924 {
6925         struct kvm_segment seg;
6926         int offset;
6927
6928         kvm_get_segment(vcpu, &seg, n);
6929         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6930
6931         if (n < 3)
6932                 offset = 0x7f84 + n * 12;
6933         else
6934                 offset = 0x7f2c + (n - 3) * 12;
6935
6936         put_smstate(u32, buf, offset + 8, seg.base);
6937         put_smstate(u32, buf, offset + 4, seg.limit);
6938         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6939 }
6940
6941 #ifdef CONFIG_X86_64
6942 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6943 {
6944         struct kvm_segment seg;
6945         int offset;
6946         u16 flags;
6947
6948         kvm_get_segment(vcpu, &seg, n);
6949         offset = 0x7e00 + n * 16;
6950
6951         flags = enter_smm_get_segment_flags(&seg) >> 8;
6952         put_smstate(u16, buf, offset, seg.selector);
6953         put_smstate(u16, buf, offset + 2, flags);
6954         put_smstate(u32, buf, offset + 4, seg.limit);
6955         put_smstate(u64, buf, offset + 8, seg.base);
6956 }
6957 #endif
6958
6959 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6960 {
6961         struct desc_ptr dt;
6962         struct kvm_segment seg;
6963         unsigned long val;
6964         int i;
6965
6966         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6967         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6968         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6969         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6970
6971         for (i = 0; i < 8; i++)
6972                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6973
6974         kvm_get_dr(vcpu, 6, &val);
6975         put_smstate(u32, buf, 0x7fcc, (u32)val);
6976         kvm_get_dr(vcpu, 7, &val);
6977         put_smstate(u32, buf, 0x7fc8, (u32)val);
6978
6979         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6980         put_smstate(u32, buf, 0x7fc4, seg.selector);
6981         put_smstate(u32, buf, 0x7f64, seg.base);
6982         put_smstate(u32, buf, 0x7f60, seg.limit);
6983         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6984
6985         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6986         put_smstate(u32, buf, 0x7fc0, seg.selector);
6987         put_smstate(u32, buf, 0x7f80, seg.base);
6988         put_smstate(u32, buf, 0x7f7c, seg.limit);
6989         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6990
6991         kvm_x86_ops->get_gdt(vcpu, &dt);
6992         put_smstate(u32, buf, 0x7f74, dt.address);
6993         put_smstate(u32, buf, 0x7f70, dt.size);
6994
6995         kvm_x86_ops->get_idt(vcpu, &dt);
6996         put_smstate(u32, buf, 0x7f58, dt.address);
6997         put_smstate(u32, buf, 0x7f54, dt.size);
6998
6999         for (i = 0; i < 6; i++)
7000                 enter_smm_save_seg_32(vcpu, buf, i);
7001
7002         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7003
7004         /* revision id */
7005         put_smstate(u32, buf, 0x7efc, 0x00020000);
7006         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7007 }
7008
7009 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7010 {
7011 #ifdef CONFIG_X86_64
7012         struct desc_ptr dt;
7013         struct kvm_segment seg;
7014         unsigned long val;
7015         int i;
7016
7017         for (i = 0; i < 16; i++)
7018                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7019
7020         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7021         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7022
7023         kvm_get_dr(vcpu, 6, &val);
7024         put_smstate(u64, buf, 0x7f68, val);
7025         kvm_get_dr(vcpu, 7, &val);
7026         put_smstate(u64, buf, 0x7f60, val);
7027
7028         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7029         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7030         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7031
7032         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7033
7034         /* revision id */
7035         put_smstate(u32, buf, 0x7efc, 0x00020064);
7036
7037         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7038
7039         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7040         put_smstate(u16, buf, 0x7e90, seg.selector);
7041         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7042         put_smstate(u32, buf, 0x7e94, seg.limit);
7043         put_smstate(u64, buf, 0x7e98, seg.base);
7044
7045         kvm_x86_ops->get_idt(vcpu, &dt);
7046         put_smstate(u32, buf, 0x7e84, dt.size);
7047         put_smstate(u64, buf, 0x7e88, dt.address);
7048
7049         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7050         put_smstate(u16, buf, 0x7e70, seg.selector);
7051         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7052         put_smstate(u32, buf, 0x7e74, seg.limit);
7053         put_smstate(u64, buf, 0x7e78, seg.base);
7054
7055         kvm_x86_ops->get_gdt(vcpu, &dt);
7056         put_smstate(u32, buf, 0x7e64, dt.size);
7057         put_smstate(u64, buf, 0x7e68, dt.address);
7058
7059         for (i = 0; i < 6; i++)
7060                 enter_smm_save_seg_64(vcpu, buf, i);
7061 #else
7062         WARN_ON_ONCE(1);
7063 #endif
7064 }
7065
7066 static void enter_smm(struct kvm_vcpu *vcpu)
7067 {
7068         struct kvm_segment cs, ds;
7069         struct desc_ptr dt;
7070         char buf[512];
7071         u32 cr0;
7072
7073         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7074         memset(buf, 0, 512);
7075         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7076                 enter_smm_save_state_64(vcpu, buf);
7077         else
7078                 enter_smm_save_state_32(vcpu, buf);
7079
7080         /*
7081          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7082          * vCPU state (e.g. leave guest mode) after we've saved the state into
7083          * the SMM state-save area.
7084          */
7085         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7086
7087         vcpu->arch.hflags |= HF_SMM_MASK;
7088         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7089
7090         if (kvm_x86_ops->get_nmi_mask(vcpu))
7091                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7092         else
7093                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7094
7095         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7096         kvm_rip_write(vcpu, 0x8000);
7097
7098         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7099         kvm_x86_ops->set_cr0(vcpu, cr0);
7100         vcpu->arch.cr0 = cr0;
7101
7102         kvm_x86_ops->set_cr4(vcpu, 0);
7103
7104         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7105         dt.address = dt.size = 0;
7106         kvm_x86_ops->set_idt(vcpu, &dt);
7107
7108         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7109
7110         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7111         cs.base = vcpu->arch.smbase;
7112
7113         ds.selector = 0;
7114         ds.base = 0;
7115
7116         cs.limit    = ds.limit = 0xffffffff;
7117         cs.type     = ds.type = 0x3;
7118         cs.dpl      = ds.dpl = 0;
7119         cs.db       = ds.db = 0;
7120         cs.s        = ds.s = 1;
7121         cs.l        = ds.l = 0;
7122         cs.g        = ds.g = 1;
7123         cs.avl      = ds.avl = 0;
7124         cs.present  = ds.present = 1;
7125         cs.unusable = ds.unusable = 0;
7126         cs.padding  = ds.padding = 0;
7127
7128         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7129         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7130         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7131         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7132         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7133         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7134
7135         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7136                 kvm_x86_ops->set_efer(vcpu, 0);
7137
7138         kvm_update_cpuid(vcpu);
7139         kvm_mmu_reset_context(vcpu);
7140 }
7141
7142 static void process_smi(struct kvm_vcpu *vcpu)
7143 {
7144         vcpu->arch.smi_pending = true;
7145         kvm_make_request(KVM_REQ_EVENT, vcpu);
7146 }
7147
7148 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7149 {
7150         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7151 }
7152
7153 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7154 {
7155         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7156                 return;
7157
7158         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7159
7160         if (irqchip_split(vcpu->kvm))
7161                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7162         else {
7163                 if (vcpu->arch.apicv_active)
7164                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7165                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7166         }
7167
7168         if (is_guest_mode(vcpu))
7169                 vcpu->arch.load_eoi_exitmap_pending = true;
7170         else
7171                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7172 }
7173
7174 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7175 {
7176         u64 eoi_exit_bitmap[4];
7177
7178         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7179                 return;
7180
7181         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7182                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7183         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7184 }
7185
7186 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7187                 unsigned long start, unsigned long end)
7188 {
7189         unsigned long apic_address;
7190
7191         /*
7192          * The physical address of apic access page is stored in the VMCS.
7193          * Update it when it becomes invalid.
7194          */
7195         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7196         if (start <= apic_address && apic_address < end)
7197                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7198 }
7199
7200 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7201 {
7202         struct page *page = NULL;
7203
7204         if (!lapic_in_kernel(vcpu))
7205                 return;
7206
7207         if (!kvm_x86_ops->set_apic_access_page_addr)
7208                 return;
7209
7210         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7211         if (is_error_page(page))
7212                 return;
7213         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7214
7215         /*
7216          * Do not pin apic access page in memory, the MMU notifier
7217          * will call us again if it is migrated or swapped out.
7218          */
7219         put_page(page);
7220 }
7221 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7222
7223 /*
7224  * Returns 1 to let vcpu_run() continue the guest execution loop without
7225  * exiting to the userspace.  Otherwise, the value will be returned to the
7226  * userspace.
7227  */
7228 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7229 {
7230         int r;
7231         bool req_int_win =
7232                 dm_request_for_irq_injection(vcpu) &&
7233                 kvm_cpu_accept_dm_intr(vcpu);
7234
7235         bool req_immediate_exit = false;
7236
7237         if (kvm_request_pending(vcpu)) {
7238                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7239                         kvm_mmu_unload(vcpu);
7240                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7241                         __kvm_migrate_timers(vcpu);
7242                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7243                         kvm_gen_update_masterclock(vcpu->kvm);
7244                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7245                         kvm_gen_kvmclock_update(vcpu);
7246                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7247                         r = kvm_guest_time_update(vcpu);
7248                         if (unlikely(r))
7249                                 goto out;
7250                 }
7251                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7252                         kvm_mmu_sync_roots(vcpu);
7253                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7254                         kvm_vcpu_flush_tlb(vcpu, true);
7255                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7256                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7257                         r = 0;
7258                         goto out;
7259                 }
7260                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7261                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7262                         vcpu->mmio_needed = 0;
7263                         r = 0;
7264                         goto out;
7265                 }
7266                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7267                         /* Page is swapped out. Do synthetic halt */
7268                         vcpu->arch.apf.halted = true;
7269                         r = 1;
7270                         goto out;
7271                 }
7272                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7273                         record_steal_time(vcpu);
7274                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7275                         process_smi(vcpu);
7276                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7277                         process_nmi(vcpu);
7278                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7279                         kvm_pmu_handle_event(vcpu);
7280                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7281                         kvm_pmu_deliver_pmi(vcpu);
7282                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7283                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7284                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7285                                      vcpu->arch.ioapic_handled_vectors)) {
7286                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7287                                 vcpu->run->eoi.vector =
7288                                                 vcpu->arch.pending_ioapic_eoi;
7289                                 r = 0;
7290                                 goto out;
7291                         }
7292                 }
7293                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7294                         vcpu_scan_ioapic(vcpu);
7295                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7296                         vcpu_load_eoi_exitmap(vcpu);
7297                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7298                         kvm_vcpu_reload_apic_access_page(vcpu);
7299                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7300                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7301                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7302                         r = 0;
7303                         goto out;
7304                 }
7305                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7306                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7307                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7308                         r = 0;
7309                         goto out;
7310                 }
7311                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7312                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7313                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7314                         r = 0;
7315                         goto out;
7316                 }
7317
7318                 /*
7319                  * KVM_REQ_HV_STIMER has to be processed after
7320                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7321                  * depend on the guest clock being up-to-date
7322                  */
7323                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7324                         kvm_hv_process_stimers(vcpu);
7325         }
7326
7327         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7328                 ++vcpu->stat.req_event;
7329                 kvm_apic_accept_events(vcpu);
7330                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7331                         r = 1;
7332                         goto out;
7333                 }
7334
7335                 if (inject_pending_event(vcpu, req_int_win) != 0)
7336                         req_immediate_exit = true;
7337                 else {
7338                         /* Enable SMI/NMI/IRQ window open exits if needed.
7339                          *
7340                          * SMIs have three cases:
7341                          * 1) They can be nested, and then there is nothing to
7342                          *    do here because RSM will cause a vmexit anyway.
7343                          * 2) There is an ISA-specific reason why SMI cannot be
7344                          *    injected, and the moment when this changes can be
7345                          *    intercepted.
7346                          * 3) Or the SMI can be pending because
7347                          *    inject_pending_event has completed the injection
7348                          *    of an IRQ or NMI from the previous vmexit, and
7349                          *    then we request an immediate exit to inject the
7350                          *    SMI.
7351                          */
7352                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7353                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7354                                         req_immediate_exit = true;
7355                         if (vcpu->arch.nmi_pending)
7356                                 kvm_x86_ops->enable_nmi_window(vcpu);
7357                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7358                                 kvm_x86_ops->enable_irq_window(vcpu);
7359                         WARN_ON(vcpu->arch.exception.pending);
7360                 }
7361
7362                 if (kvm_lapic_enabled(vcpu)) {
7363                         update_cr8_intercept(vcpu);
7364                         kvm_lapic_sync_to_vapic(vcpu);
7365                 }
7366         }
7367
7368         r = kvm_mmu_reload(vcpu);
7369         if (unlikely(r)) {
7370                 goto cancel_injection;
7371         }
7372
7373         preempt_disable();
7374
7375         kvm_x86_ops->prepare_guest_switch(vcpu);
7376
7377         /*
7378          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7379          * IPI are then delayed after guest entry, which ensures that they
7380          * result in virtual interrupt delivery.
7381          */
7382         local_irq_disable();
7383         vcpu->mode = IN_GUEST_MODE;
7384
7385         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7386
7387         /*
7388          * 1) We should set ->mode before checking ->requests.  Please see
7389          * the comment in kvm_vcpu_exiting_guest_mode().
7390          *
7391          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7392          * pairs with the memory barrier implicit in pi_test_and_set_on
7393          * (see vmx_deliver_posted_interrupt).
7394          *
7395          * 3) This also orders the write to mode from any reads to the page
7396          * tables done while the VCPU is running.  Please see the comment
7397          * in kvm_flush_remote_tlbs.
7398          */
7399         smp_mb__after_srcu_read_unlock();
7400
7401         /*
7402          * This handles the case where a posted interrupt was
7403          * notified with kvm_vcpu_kick.
7404          */
7405         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7406                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7407
7408         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7409             || need_resched() || signal_pending(current)) {
7410                 vcpu->mode = OUTSIDE_GUEST_MODE;
7411                 smp_wmb();
7412                 local_irq_enable();
7413                 preempt_enable();
7414                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7415                 r = 1;
7416                 goto cancel_injection;
7417         }
7418
7419         kvm_load_guest_xcr0(vcpu);
7420
7421         if (req_immediate_exit) {
7422                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7423                 smp_send_reschedule(vcpu->cpu);
7424         }
7425
7426         trace_kvm_entry(vcpu->vcpu_id);
7427         if (lapic_timer_advance_ns)
7428                 wait_lapic_expire(vcpu);
7429         guest_enter_irqoff();
7430
7431         if (unlikely(vcpu->arch.switch_db_regs)) {
7432                 set_debugreg(0, 7);
7433                 set_debugreg(vcpu->arch.eff_db[0], 0);
7434                 set_debugreg(vcpu->arch.eff_db[1], 1);
7435                 set_debugreg(vcpu->arch.eff_db[2], 2);
7436                 set_debugreg(vcpu->arch.eff_db[3], 3);
7437                 set_debugreg(vcpu->arch.dr6, 6);
7438                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7439         }
7440
7441         kvm_x86_ops->run(vcpu);
7442
7443         /*
7444          * Do this here before restoring debug registers on the host.  And
7445          * since we do this before handling the vmexit, a DR access vmexit
7446          * can (a) read the correct value of the debug registers, (b) set
7447          * KVM_DEBUGREG_WONT_EXIT again.
7448          */
7449         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7450                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7451                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7452                 kvm_update_dr0123(vcpu);
7453                 kvm_update_dr6(vcpu);
7454                 kvm_update_dr7(vcpu);
7455                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7456         }
7457
7458         /*
7459          * If the guest has used debug registers, at least dr7
7460          * will be disabled while returning to the host.
7461          * If we don't have active breakpoints in the host, we don't
7462          * care about the messed up debug address registers. But if
7463          * we have some of them active, restore the old state.
7464          */
7465         if (hw_breakpoint_active())
7466                 hw_breakpoint_restore();
7467
7468         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7469
7470         vcpu->mode = OUTSIDE_GUEST_MODE;
7471         smp_wmb();
7472
7473         kvm_put_guest_xcr0(vcpu);
7474
7475         kvm_before_interrupt(vcpu);
7476         kvm_x86_ops->handle_external_intr(vcpu);
7477         kvm_after_interrupt(vcpu);
7478
7479         ++vcpu->stat.exits;
7480
7481         guest_exit_irqoff();
7482
7483         local_irq_enable();
7484         preempt_enable();
7485
7486         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7487
7488         /*
7489          * Profile KVM exit RIPs:
7490          */
7491         if (unlikely(prof_on == KVM_PROFILING)) {
7492                 unsigned long rip = kvm_rip_read(vcpu);
7493                 profile_hit(KVM_PROFILING, (void *)rip);
7494         }
7495
7496         if (unlikely(vcpu->arch.tsc_always_catchup))
7497                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7498
7499         if (vcpu->arch.apic_attention)
7500                 kvm_lapic_sync_from_vapic(vcpu);
7501
7502         vcpu->arch.gpa_available = false;
7503         r = kvm_x86_ops->handle_exit(vcpu);
7504         return r;
7505
7506 cancel_injection:
7507         kvm_x86_ops->cancel_injection(vcpu);
7508         if (unlikely(vcpu->arch.apic_attention))
7509                 kvm_lapic_sync_from_vapic(vcpu);
7510 out:
7511         return r;
7512 }
7513
7514 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7515 {
7516         if (!kvm_arch_vcpu_runnable(vcpu) &&
7517             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7518                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7519                 kvm_vcpu_block(vcpu);
7520                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7521
7522                 if (kvm_x86_ops->post_block)
7523                         kvm_x86_ops->post_block(vcpu);
7524
7525                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7526                         return 1;
7527         }
7528
7529         kvm_apic_accept_events(vcpu);
7530         switch(vcpu->arch.mp_state) {
7531         case KVM_MP_STATE_HALTED:
7532                 vcpu->arch.pv.pv_unhalted = false;
7533                 vcpu->arch.mp_state =
7534                         KVM_MP_STATE_RUNNABLE;
7535         case KVM_MP_STATE_RUNNABLE:
7536                 vcpu->arch.apf.halted = false;
7537                 break;
7538         case KVM_MP_STATE_INIT_RECEIVED:
7539                 break;
7540         default:
7541                 return -EINTR;
7542                 break;
7543         }
7544         return 1;
7545 }
7546
7547 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7548 {
7549         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7550                 kvm_x86_ops->check_nested_events(vcpu, false);
7551
7552         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7553                 !vcpu->arch.apf.halted);
7554 }
7555
7556 static int vcpu_run(struct kvm_vcpu *vcpu)
7557 {
7558         int r;
7559         struct kvm *kvm = vcpu->kvm;
7560
7561         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7562
7563         for (;;) {
7564                 if (kvm_vcpu_running(vcpu)) {
7565                         r = vcpu_enter_guest(vcpu);
7566                 } else {
7567                         r = vcpu_block(kvm, vcpu);
7568                 }
7569
7570                 if (r <= 0)
7571                         break;
7572
7573                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7574                 if (kvm_cpu_has_pending_timer(vcpu))
7575                         kvm_inject_pending_timer_irqs(vcpu);
7576
7577                 if (dm_request_for_irq_injection(vcpu) &&
7578                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7579                         r = 0;
7580                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7581                         ++vcpu->stat.request_irq_exits;
7582                         break;
7583                 }
7584
7585                 kvm_check_async_pf_completion(vcpu);
7586
7587                 if (signal_pending(current)) {
7588                         r = -EINTR;
7589                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7590                         ++vcpu->stat.signal_exits;
7591                         break;
7592                 }
7593                 if (need_resched()) {
7594                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7595                         cond_resched();
7596                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7597                 }
7598         }
7599
7600         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7601
7602         return r;
7603 }
7604
7605 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7606 {
7607         int r;
7608         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7609         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7610         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7611         if (r != EMULATE_DONE)
7612                 return 0;
7613         return 1;
7614 }
7615
7616 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7617 {
7618         BUG_ON(!vcpu->arch.pio.count);
7619
7620         return complete_emulated_io(vcpu);
7621 }
7622
7623 /*
7624  * Implements the following, as a state machine:
7625  *
7626  * read:
7627  *   for each fragment
7628  *     for each mmio piece in the fragment
7629  *       write gpa, len
7630  *       exit
7631  *       copy data
7632  *   execute insn
7633  *
7634  * write:
7635  *   for each fragment
7636  *     for each mmio piece in the fragment
7637  *       write gpa, len
7638  *       copy data
7639  *       exit
7640  */
7641 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7642 {
7643         struct kvm_run *run = vcpu->run;
7644         struct kvm_mmio_fragment *frag;
7645         unsigned len;
7646
7647         BUG_ON(!vcpu->mmio_needed);
7648
7649         /* Complete previous fragment */
7650         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7651         len = min(8u, frag->len);
7652         if (!vcpu->mmio_is_write)
7653                 memcpy(frag->data, run->mmio.data, len);
7654
7655         if (frag->len <= 8) {
7656                 /* Switch to the next fragment. */
7657                 frag++;
7658                 vcpu->mmio_cur_fragment++;
7659         } else {
7660                 /* Go forward to the next mmio piece. */
7661                 frag->data += len;
7662                 frag->gpa += len;
7663                 frag->len -= len;
7664         }
7665
7666         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7667                 vcpu->mmio_needed = 0;
7668
7669                 /* FIXME: return into emulator if single-stepping.  */
7670                 if (vcpu->mmio_is_write)
7671                         return 1;
7672                 vcpu->mmio_read_completed = 1;
7673                 return complete_emulated_io(vcpu);
7674         }
7675
7676         run->exit_reason = KVM_EXIT_MMIO;
7677         run->mmio.phys_addr = frag->gpa;
7678         if (vcpu->mmio_is_write)
7679                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7680         run->mmio.len = min(8u, frag->len);
7681         run->mmio.is_write = vcpu->mmio_is_write;
7682         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7683         return 0;
7684 }
7685
7686 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7687 {
7688         int r;
7689
7690         vcpu_load(vcpu);
7691         kvm_sigset_activate(vcpu);
7692         kvm_load_guest_fpu(vcpu);
7693
7694         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7695                 if (kvm_run->immediate_exit) {
7696                         r = -EINTR;
7697                         goto out;
7698                 }
7699                 kvm_vcpu_block(vcpu);
7700                 kvm_apic_accept_events(vcpu);
7701                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7702                 r = -EAGAIN;
7703                 if (signal_pending(current)) {
7704                         r = -EINTR;
7705                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7706                         ++vcpu->stat.signal_exits;
7707                 }
7708                 goto out;
7709         }
7710
7711         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7712                 r = -EINVAL;
7713                 goto out;
7714         }
7715
7716         if (vcpu->run->kvm_dirty_regs) {
7717                 r = sync_regs(vcpu);
7718                 if (r != 0)
7719                         goto out;
7720         }
7721
7722         /* re-sync apic's tpr */
7723         if (!lapic_in_kernel(vcpu)) {
7724                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7725                         r = -EINVAL;
7726                         goto out;
7727                 }
7728         }
7729
7730         if (unlikely(vcpu->arch.complete_userspace_io)) {
7731                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7732                 vcpu->arch.complete_userspace_io = NULL;
7733                 r = cui(vcpu);
7734                 if (r <= 0)
7735                         goto out;
7736         } else
7737                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7738
7739         if (kvm_run->immediate_exit)
7740                 r = -EINTR;
7741         else
7742                 r = vcpu_run(vcpu);
7743
7744 out:
7745         kvm_put_guest_fpu(vcpu);
7746         if (vcpu->run->kvm_valid_regs)
7747                 store_regs(vcpu);
7748         post_kvm_run_save(vcpu);
7749         kvm_sigset_deactivate(vcpu);
7750
7751         vcpu_put(vcpu);
7752         return r;
7753 }
7754
7755 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7756 {
7757         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7758                 /*
7759                  * We are here if userspace calls get_regs() in the middle of
7760                  * instruction emulation. Registers state needs to be copied
7761                  * back from emulation context to vcpu. Userspace shouldn't do
7762                  * that usually, but some bad designed PV devices (vmware
7763                  * backdoor interface) need this to work
7764                  */
7765                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7766                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7767         }
7768         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7769         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7770         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7771         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7772         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7773         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7774         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7775         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7776 #ifdef CONFIG_X86_64
7777         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7778         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7779         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7780         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7781         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7782         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7783         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7784         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7785 #endif
7786
7787         regs->rip = kvm_rip_read(vcpu);
7788         regs->rflags = kvm_get_rflags(vcpu);
7789 }
7790
7791 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7792 {
7793         vcpu_load(vcpu);
7794         __get_regs(vcpu, regs);
7795         vcpu_put(vcpu);
7796         return 0;
7797 }
7798
7799 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7800 {
7801         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7802         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7803
7804         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7805         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7806         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7807         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7808         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7809         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7810         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7811         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7812 #ifdef CONFIG_X86_64
7813         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7814         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7815         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7816         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7817         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7818         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7819         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7820         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7821 #endif
7822
7823         kvm_rip_write(vcpu, regs->rip);
7824         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7825
7826         vcpu->arch.exception.pending = false;
7827
7828         kvm_make_request(KVM_REQ_EVENT, vcpu);
7829 }
7830
7831 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7832 {
7833         vcpu_load(vcpu);
7834         __set_regs(vcpu, regs);
7835         vcpu_put(vcpu);
7836         return 0;
7837 }
7838
7839 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7840 {
7841         struct kvm_segment cs;
7842
7843         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7844         *db = cs.db;
7845         *l = cs.l;
7846 }
7847 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7848
7849 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7850 {
7851         struct desc_ptr dt;
7852
7853         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7854         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7855         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7856         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7857         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7858         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7859
7860         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7861         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7862
7863         kvm_x86_ops->get_idt(vcpu, &dt);
7864         sregs->idt.limit = dt.size;
7865         sregs->idt.base = dt.address;
7866         kvm_x86_ops->get_gdt(vcpu, &dt);
7867         sregs->gdt.limit = dt.size;
7868         sregs->gdt.base = dt.address;
7869
7870         sregs->cr0 = kvm_read_cr0(vcpu);
7871         sregs->cr2 = vcpu->arch.cr2;
7872         sregs->cr3 = kvm_read_cr3(vcpu);
7873         sregs->cr4 = kvm_read_cr4(vcpu);
7874         sregs->cr8 = kvm_get_cr8(vcpu);
7875         sregs->efer = vcpu->arch.efer;
7876         sregs->apic_base = kvm_get_apic_base(vcpu);
7877
7878         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7879
7880         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
7881                 set_bit(vcpu->arch.interrupt.nr,
7882                         (unsigned long *)sregs->interrupt_bitmap);
7883 }
7884
7885 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7886                                   struct kvm_sregs *sregs)
7887 {
7888         vcpu_load(vcpu);
7889         __get_sregs(vcpu, sregs);
7890         vcpu_put(vcpu);
7891         return 0;
7892 }
7893
7894 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7895                                     struct kvm_mp_state *mp_state)
7896 {
7897         vcpu_load(vcpu);
7898
7899         kvm_apic_accept_events(vcpu);
7900         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7901                                         vcpu->arch.pv.pv_unhalted)
7902                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7903         else
7904                 mp_state->mp_state = vcpu->arch.mp_state;
7905
7906         vcpu_put(vcpu);
7907         return 0;
7908 }
7909
7910 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7911                                     struct kvm_mp_state *mp_state)
7912 {
7913         int ret = -EINVAL;
7914
7915         vcpu_load(vcpu);
7916
7917         if (!lapic_in_kernel(vcpu) &&
7918             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7919                 goto out;
7920
7921         /* INITs are latched while in SMM */
7922         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7923             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7924              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7925                 goto out;
7926
7927         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7928                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7929                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7930         } else
7931                 vcpu->arch.mp_state = mp_state->mp_state;
7932         kvm_make_request(KVM_REQ_EVENT, vcpu);
7933
7934         ret = 0;
7935 out:
7936         vcpu_put(vcpu);
7937         return ret;
7938 }
7939
7940 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7941                     int reason, bool has_error_code, u32 error_code)
7942 {
7943         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7944         int ret;
7945
7946         init_emulate_ctxt(vcpu);
7947
7948         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7949                                    has_error_code, error_code);
7950
7951         if (ret)
7952                 return EMULATE_FAIL;
7953
7954         kvm_rip_write(vcpu, ctxt->eip);
7955         kvm_set_rflags(vcpu, ctxt->eflags);
7956         kvm_make_request(KVM_REQ_EVENT, vcpu);
7957         return EMULATE_DONE;
7958 }
7959 EXPORT_SYMBOL_GPL(kvm_task_switch);
7960
7961 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7962 {
7963         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7964                 /*
7965                  * When EFER.LME and CR0.PG are set, the processor is in
7966                  * 64-bit mode (though maybe in a 32-bit code segment).
7967                  * CR4.PAE and EFER.LMA must be set.
7968                  */
7969                 if (!(sregs->cr4 & X86_CR4_PAE)
7970                     || !(sregs->efer & EFER_LMA))
7971                         return -EINVAL;
7972         } else {
7973                 /*
7974                  * Not in 64-bit mode: EFER.LMA is clear and the code
7975                  * segment cannot be 64-bit.
7976                  */
7977                 if (sregs->efer & EFER_LMA || sregs->cs.l)
7978                         return -EINVAL;
7979         }
7980
7981         return 0;
7982 }
7983
7984 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7985 {
7986         struct msr_data apic_base_msr;
7987         int mmu_reset_needed = 0;
7988         int pending_vec, max_bits, idx;
7989         struct desc_ptr dt;
7990         int ret = -EINVAL;
7991
7992         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7993                         (sregs->cr4 & X86_CR4_OSXSAVE))
7994                 goto out;
7995
7996         if (kvm_valid_sregs(vcpu, sregs))
7997                 goto out;
7998
7999         apic_base_msr.data = sregs->apic_base;
8000         apic_base_msr.host_initiated = true;
8001         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8002                 goto out;
8003
8004         dt.size = sregs->idt.limit;
8005         dt.address = sregs->idt.base;
8006         kvm_x86_ops->set_idt(vcpu, &dt);
8007         dt.size = sregs->gdt.limit;
8008         dt.address = sregs->gdt.base;
8009         kvm_x86_ops->set_gdt(vcpu, &dt);
8010
8011         vcpu->arch.cr2 = sregs->cr2;
8012         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8013         vcpu->arch.cr3 = sregs->cr3;
8014         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8015
8016         kvm_set_cr8(vcpu, sregs->cr8);
8017
8018         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8019         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8020
8021         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8022         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8023         vcpu->arch.cr0 = sregs->cr0;
8024
8025         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8026         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8027         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
8028                 kvm_update_cpuid(vcpu);
8029
8030         idx = srcu_read_lock(&vcpu->kvm->srcu);
8031         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8032                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8033                 mmu_reset_needed = 1;
8034         }
8035         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8036
8037         if (mmu_reset_needed)
8038                 kvm_mmu_reset_context(vcpu);
8039
8040         max_bits = KVM_NR_INTERRUPTS;
8041         pending_vec = find_first_bit(
8042                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8043         if (pending_vec < max_bits) {
8044                 kvm_queue_interrupt(vcpu, pending_vec, false);
8045                 pr_debug("Set back pending irq %d\n", pending_vec);
8046         }
8047
8048         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8049         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8050         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8051         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8052         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8053         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8054
8055         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8056         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8057
8058         update_cr8_intercept(vcpu);
8059
8060         /* Older userspace won't unhalt the vcpu on reset. */
8061         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8062             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8063             !is_protmode(vcpu))
8064                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8065
8066         kvm_make_request(KVM_REQ_EVENT, vcpu);
8067
8068         ret = 0;
8069 out:
8070         return ret;
8071 }
8072
8073 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8074                                   struct kvm_sregs *sregs)
8075 {
8076         int ret;
8077
8078         vcpu_load(vcpu);
8079         ret = __set_sregs(vcpu, sregs);
8080         vcpu_put(vcpu);
8081         return ret;
8082 }
8083
8084 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8085                                         struct kvm_guest_debug *dbg)
8086 {
8087         unsigned long rflags;
8088         int i, r;
8089
8090         vcpu_load(vcpu);
8091
8092         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8093                 r = -EBUSY;
8094                 if (vcpu->arch.exception.pending)
8095                         goto out;
8096                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8097                         kvm_queue_exception(vcpu, DB_VECTOR);
8098                 else
8099                         kvm_queue_exception(vcpu, BP_VECTOR);
8100         }
8101
8102         /*
8103          * Read rflags as long as potentially injected trace flags are still
8104          * filtered out.
8105          */
8106         rflags = kvm_get_rflags(vcpu);
8107
8108         vcpu->guest_debug = dbg->control;
8109         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8110                 vcpu->guest_debug = 0;
8111
8112         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8113                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8114                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8115                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8116         } else {
8117                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8118                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8119         }
8120         kvm_update_dr7(vcpu);
8121
8122         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8123                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8124                         get_segment_base(vcpu, VCPU_SREG_CS);
8125
8126         /*
8127          * Trigger an rflags update that will inject or remove the trace
8128          * flags.
8129          */
8130         kvm_set_rflags(vcpu, rflags);
8131
8132         kvm_x86_ops->update_bp_intercept(vcpu);
8133
8134         r = 0;
8135
8136 out:
8137         vcpu_put(vcpu);
8138         return r;
8139 }
8140
8141 /*
8142  * Translate a guest virtual address to a guest physical address.
8143  */
8144 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8145                                     struct kvm_translation *tr)
8146 {
8147         unsigned long vaddr = tr->linear_address;
8148         gpa_t gpa;
8149         int idx;
8150
8151         vcpu_load(vcpu);
8152
8153         idx = srcu_read_lock(&vcpu->kvm->srcu);
8154         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8155         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8156         tr->physical_address = gpa;
8157         tr->valid = gpa != UNMAPPED_GVA;
8158         tr->writeable = 1;
8159         tr->usermode = 0;
8160
8161         vcpu_put(vcpu);
8162         return 0;
8163 }
8164
8165 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8166 {
8167         struct fxregs_state *fxsave;
8168
8169         vcpu_load(vcpu);
8170
8171         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8172         memcpy(fpu->fpr, fxsave->st_space, 128);
8173         fpu->fcw = fxsave->cwd;
8174         fpu->fsw = fxsave->swd;
8175         fpu->ftwx = fxsave->twd;
8176         fpu->last_opcode = fxsave->fop;
8177         fpu->last_ip = fxsave->rip;
8178         fpu->last_dp = fxsave->rdp;
8179         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8180
8181         vcpu_put(vcpu);
8182         return 0;
8183 }
8184
8185 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8186 {
8187         struct fxregs_state *fxsave;
8188
8189         vcpu_load(vcpu);
8190
8191         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8192
8193         memcpy(fxsave->st_space, fpu->fpr, 128);
8194         fxsave->cwd = fpu->fcw;
8195         fxsave->swd = fpu->fsw;
8196         fxsave->twd = fpu->ftwx;
8197         fxsave->fop = fpu->last_opcode;
8198         fxsave->rip = fpu->last_ip;
8199         fxsave->rdp = fpu->last_dp;
8200         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8201
8202         vcpu_put(vcpu);
8203         return 0;
8204 }
8205
8206 static void store_regs(struct kvm_vcpu *vcpu)
8207 {
8208         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8209
8210         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8211                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8212
8213         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8214                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8215
8216         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8217                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8218                                 vcpu, &vcpu->run->s.regs.events);
8219 }
8220
8221 static int sync_regs(struct kvm_vcpu *vcpu)
8222 {
8223         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8224                 return -EINVAL;
8225
8226         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8227                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8228                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8229         }
8230         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8231                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8232                         return -EINVAL;
8233                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8234         }
8235         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8236                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8237                                 vcpu, &vcpu->run->s.regs.events))
8238                         return -EINVAL;
8239                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8240         }
8241
8242         return 0;
8243 }
8244
8245 static void fx_init(struct kvm_vcpu *vcpu)
8246 {
8247         fpstate_init(&vcpu->arch.guest_fpu.state);
8248         if (boot_cpu_has(X86_FEATURE_XSAVES))
8249                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8250                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8251
8252         /*
8253          * Ensure guest xcr0 is valid for loading
8254          */
8255         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8256
8257         vcpu->arch.cr0 |= X86_CR0_ET;
8258 }
8259
8260 /* Swap (qemu) user FPU context for the guest FPU context. */
8261 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8262 {
8263         preempt_disable();
8264         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8265         /* PKRU is separately restored in kvm_x86_ops->run.  */
8266         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8267                                 ~XFEATURE_MASK_PKRU);
8268         preempt_enable();
8269         trace_kvm_fpu(1);
8270 }
8271
8272 /* When vcpu_run ends, restore user space FPU context. */
8273 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8274 {
8275         preempt_disable();
8276         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8277         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8278         preempt_enable();
8279         ++vcpu->stat.fpu_reload;
8280         trace_kvm_fpu(0);
8281 }
8282
8283 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8284 {
8285         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8286
8287         kvmclock_reset(vcpu);
8288
8289         kvm_x86_ops->vcpu_free(vcpu);
8290         free_cpumask_var(wbinvd_dirty_mask);
8291 }
8292
8293 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8294                                                 unsigned int id)
8295 {
8296         struct kvm_vcpu *vcpu;
8297
8298         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8299                 printk_once(KERN_WARNING
8300                 "kvm: SMP vm created on host with unstable TSC; "
8301                 "guest TSC will not be reliable\n");
8302
8303         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8304
8305         return vcpu;
8306 }
8307
8308 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8309 {
8310         kvm_vcpu_mtrr_init(vcpu);
8311         vcpu_load(vcpu);
8312         kvm_vcpu_reset(vcpu, false);
8313         kvm_mmu_setup(vcpu);
8314         vcpu_put(vcpu);
8315         return 0;
8316 }
8317
8318 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8319 {
8320         struct msr_data msr;
8321         struct kvm *kvm = vcpu->kvm;
8322
8323         kvm_hv_vcpu_postcreate(vcpu);
8324
8325         if (mutex_lock_killable(&vcpu->mutex))
8326                 return;
8327         vcpu_load(vcpu);
8328         msr.data = 0x0;
8329         msr.index = MSR_IA32_TSC;
8330         msr.host_initiated = true;
8331         kvm_write_tsc(vcpu, &msr);
8332         vcpu_put(vcpu);
8333         mutex_unlock(&vcpu->mutex);
8334
8335         if (!kvmclock_periodic_sync)
8336                 return;
8337
8338         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8339                                         KVMCLOCK_SYNC_PERIOD);
8340 }
8341
8342 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8343 {
8344         vcpu->arch.apf.msr_val = 0;
8345
8346         vcpu_load(vcpu);
8347         kvm_mmu_unload(vcpu);
8348         vcpu_put(vcpu);
8349
8350         kvm_x86_ops->vcpu_free(vcpu);
8351 }
8352
8353 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8354 {
8355         kvm_lapic_reset(vcpu, init_event);
8356
8357         vcpu->arch.hflags = 0;
8358
8359         vcpu->arch.smi_pending = 0;
8360         vcpu->arch.smi_count = 0;
8361         atomic_set(&vcpu->arch.nmi_queued, 0);
8362         vcpu->arch.nmi_pending = 0;
8363         vcpu->arch.nmi_injected = false;
8364         kvm_clear_interrupt_queue(vcpu);
8365         kvm_clear_exception_queue(vcpu);
8366         vcpu->arch.exception.pending = false;
8367
8368         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8369         kvm_update_dr0123(vcpu);
8370         vcpu->arch.dr6 = DR6_INIT;
8371         kvm_update_dr6(vcpu);
8372         vcpu->arch.dr7 = DR7_FIXED_1;
8373         kvm_update_dr7(vcpu);
8374
8375         vcpu->arch.cr2 = 0;
8376
8377         kvm_make_request(KVM_REQ_EVENT, vcpu);
8378         vcpu->arch.apf.msr_val = 0;
8379         vcpu->arch.st.msr_val = 0;
8380
8381         kvmclock_reset(vcpu);
8382
8383         kvm_clear_async_pf_completion_queue(vcpu);
8384         kvm_async_pf_hash_reset(vcpu);
8385         vcpu->arch.apf.halted = false;
8386
8387         if (kvm_mpx_supported()) {
8388                 void *mpx_state_buffer;
8389
8390                 /*
8391                  * To avoid have the INIT path from kvm_apic_has_events() that be
8392                  * called with loaded FPU and does not let userspace fix the state.
8393                  */
8394                 if (init_event)
8395                         kvm_put_guest_fpu(vcpu);
8396                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8397                                         XFEATURE_MASK_BNDREGS);
8398                 if (mpx_state_buffer)
8399                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8400                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8401                                         XFEATURE_MASK_BNDCSR);
8402                 if (mpx_state_buffer)
8403                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8404                 if (init_event)
8405                         kvm_load_guest_fpu(vcpu);
8406         }
8407
8408         if (!init_event) {
8409                 kvm_pmu_reset(vcpu);
8410                 vcpu->arch.smbase = 0x30000;
8411
8412                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8413                 vcpu->arch.msr_misc_features_enables = 0;
8414
8415                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8416         }
8417
8418         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8419         vcpu->arch.regs_avail = ~0;
8420         vcpu->arch.regs_dirty = ~0;
8421
8422         vcpu->arch.ia32_xss = 0;
8423
8424         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8425 }
8426
8427 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8428 {
8429         struct kvm_segment cs;
8430
8431         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8432         cs.selector = vector << 8;
8433         cs.base = vector << 12;
8434         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8435         kvm_rip_write(vcpu, 0);
8436 }
8437
8438 int kvm_arch_hardware_enable(void)
8439 {
8440         struct kvm *kvm;
8441         struct kvm_vcpu *vcpu;
8442         int i;
8443         int ret;
8444         u64 local_tsc;
8445         u64 max_tsc = 0;
8446         bool stable, backwards_tsc = false;
8447
8448         kvm_shared_msr_cpu_online();
8449         ret = kvm_x86_ops->hardware_enable();
8450         if (ret != 0)
8451                 return ret;
8452
8453         local_tsc = rdtsc();
8454         stable = !kvm_check_tsc_unstable();
8455         list_for_each_entry(kvm, &vm_list, vm_list) {
8456                 kvm_for_each_vcpu(i, vcpu, kvm) {
8457                         if (!stable && vcpu->cpu == smp_processor_id())
8458                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8459                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8460                                 backwards_tsc = true;
8461                                 if (vcpu->arch.last_host_tsc > max_tsc)
8462                                         max_tsc = vcpu->arch.last_host_tsc;
8463                         }
8464                 }
8465         }
8466
8467         /*
8468          * Sometimes, even reliable TSCs go backwards.  This happens on
8469          * platforms that reset TSC during suspend or hibernate actions, but
8470          * maintain synchronization.  We must compensate.  Fortunately, we can
8471          * detect that condition here, which happens early in CPU bringup,
8472          * before any KVM threads can be running.  Unfortunately, we can't
8473          * bring the TSCs fully up to date with real time, as we aren't yet far
8474          * enough into CPU bringup that we know how much real time has actually
8475          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8476          * variables that haven't been updated yet.
8477          *
8478          * So we simply find the maximum observed TSC above, then record the
8479          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8480          * the adjustment will be applied.  Note that we accumulate
8481          * adjustments, in case multiple suspend cycles happen before some VCPU
8482          * gets a chance to run again.  In the event that no KVM threads get a
8483          * chance to run, we will miss the entire elapsed period, as we'll have
8484          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8485          * loose cycle time.  This isn't too big a deal, since the loss will be
8486          * uniform across all VCPUs (not to mention the scenario is extremely
8487          * unlikely). It is possible that a second hibernate recovery happens
8488          * much faster than a first, causing the observed TSC here to be
8489          * smaller; this would require additional padding adjustment, which is
8490          * why we set last_host_tsc to the local tsc observed here.
8491          *
8492          * N.B. - this code below runs only on platforms with reliable TSC,
8493          * as that is the only way backwards_tsc is set above.  Also note
8494          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8495          * have the same delta_cyc adjustment applied if backwards_tsc
8496          * is detected.  Note further, this adjustment is only done once,
8497          * as we reset last_host_tsc on all VCPUs to stop this from being
8498          * called multiple times (one for each physical CPU bringup).
8499          *
8500          * Platforms with unreliable TSCs don't have to deal with this, they
8501          * will be compensated by the logic in vcpu_load, which sets the TSC to
8502          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8503          * guarantee that they stay in perfect synchronization.
8504          */
8505         if (backwards_tsc) {
8506                 u64 delta_cyc = max_tsc - local_tsc;
8507                 list_for_each_entry(kvm, &vm_list, vm_list) {
8508                         kvm->arch.backwards_tsc_observed = true;
8509                         kvm_for_each_vcpu(i, vcpu, kvm) {
8510                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8511                                 vcpu->arch.last_host_tsc = local_tsc;
8512                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8513                         }
8514
8515                         /*
8516                          * We have to disable TSC offset matching.. if you were
8517                          * booting a VM while issuing an S4 host suspend....
8518                          * you may have some problem.  Solving this issue is
8519                          * left as an exercise to the reader.
8520                          */
8521                         kvm->arch.last_tsc_nsec = 0;
8522                         kvm->arch.last_tsc_write = 0;
8523                 }
8524
8525         }
8526         return 0;
8527 }
8528
8529 void kvm_arch_hardware_disable(void)
8530 {
8531         kvm_x86_ops->hardware_disable();
8532         drop_user_return_notifiers();
8533 }
8534
8535 int kvm_arch_hardware_setup(void)
8536 {
8537         int r;
8538
8539         r = kvm_x86_ops->hardware_setup();
8540         if (r != 0)
8541                 return r;
8542
8543         if (kvm_has_tsc_control) {
8544                 /*
8545                  * Make sure the user can only configure tsc_khz values that
8546                  * fit into a signed integer.
8547                  * A min value is not calculated needed because it will always
8548                  * be 1 on all machines.
8549                  */
8550                 u64 max = min(0x7fffffffULL,
8551                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8552                 kvm_max_guest_tsc_khz = max;
8553
8554                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8555         }
8556
8557         kvm_init_msr_list();
8558         return 0;
8559 }
8560
8561 void kvm_arch_hardware_unsetup(void)
8562 {
8563         kvm_x86_ops->hardware_unsetup();
8564 }
8565
8566 void kvm_arch_check_processor_compat(void *rtn)
8567 {
8568         kvm_x86_ops->check_processor_compatibility(rtn);
8569 }
8570
8571 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8572 {
8573         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8574 }
8575 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8576
8577 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8578 {
8579         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8580 }
8581
8582 struct static_key kvm_no_apic_vcpu __read_mostly;
8583 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8584
8585 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8586 {
8587         struct page *page;
8588         int r;
8589
8590         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8591         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8592         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8593                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8594         else
8595                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8596
8597         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8598         if (!page) {
8599                 r = -ENOMEM;
8600                 goto fail;
8601         }
8602         vcpu->arch.pio_data = page_address(page);
8603
8604         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8605
8606         r = kvm_mmu_create(vcpu);
8607         if (r < 0)
8608                 goto fail_free_pio_data;
8609
8610         if (irqchip_in_kernel(vcpu->kvm)) {
8611                 r = kvm_create_lapic(vcpu);
8612                 if (r < 0)
8613                         goto fail_mmu_destroy;
8614         } else
8615                 static_key_slow_inc(&kvm_no_apic_vcpu);
8616
8617         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8618                                        GFP_KERNEL);
8619         if (!vcpu->arch.mce_banks) {
8620                 r = -ENOMEM;
8621                 goto fail_free_lapic;
8622         }
8623         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8624
8625         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8626                 r = -ENOMEM;
8627                 goto fail_free_mce_banks;
8628         }
8629
8630         fx_init(vcpu);
8631
8632         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8633
8634         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8635
8636         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8637
8638         kvm_async_pf_hash_reset(vcpu);
8639         kvm_pmu_init(vcpu);
8640
8641         vcpu->arch.pending_external_vector = -1;
8642         vcpu->arch.preempted_in_kernel = false;
8643
8644         kvm_hv_vcpu_init(vcpu);
8645
8646         return 0;
8647
8648 fail_free_mce_banks:
8649         kfree(vcpu->arch.mce_banks);
8650 fail_free_lapic:
8651         kvm_free_lapic(vcpu);
8652 fail_mmu_destroy:
8653         kvm_mmu_destroy(vcpu);
8654 fail_free_pio_data:
8655         free_page((unsigned long)vcpu->arch.pio_data);
8656 fail:
8657         return r;
8658 }
8659
8660 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8661 {
8662         int idx;
8663
8664         kvm_hv_vcpu_uninit(vcpu);
8665         kvm_pmu_destroy(vcpu);
8666         kfree(vcpu->arch.mce_banks);
8667         kvm_free_lapic(vcpu);
8668         idx = srcu_read_lock(&vcpu->kvm->srcu);
8669         kvm_mmu_destroy(vcpu);
8670         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8671         free_page((unsigned long)vcpu->arch.pio_data);
8672         if (!lapic_in_kernel(vcpu))
8673                 static_key_slow_dec(&kvm_no_apic_vcpu);
8674 }
8675
8676 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8677 {
8678         kvm_x86_ops->sched_in(vcpu, cpu);
8679 }
8680
8681 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8682 {
8683         if (type)
8684                 return -EINVAL;
8685
8686         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8687         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8688         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8689         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8690         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8691
8692         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8693         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8694         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8695         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8696                 &kvm->arch.irq_sources_bitmap);
8697
8698         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8699         mutex_init(&kvm->arch.apic_map_lock);
8700         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8701
8702         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8703         pvclock_update_vm_gtod_copy(kvm);
8704
8705         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8706         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8707
8708         kvm_hv_init_vm(kvm);
8709         kvm_page_track_init(kvm);
8710         kvm_mmu_init_vm(kvm);
8711
8712         if (kvm_x86_ops->vm_init)
8713                 return kvm_x86_ops->vm_init(kvm);
8714
8715         return 0;
8716 }
8717
8718 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8719 {
8720         vcpu_load(vcpu);
8721         kvm_mmu_unload(vcpu);
8722         vcpu_put(vcpu);
8723 }
8724
8725 static void kvm_free_vcpus(struct kvm *kvm)
8726 {
8727         unsigned int i;
8728         struct kvm_vcpu *vcpu;
8729
8730         /*
8731          * Unpin any mmu pages first.
8732          */
8733         kvm_for_each_vcpu(i, vcpu, kvm) {
8734                 kvm_clear_async_pf_completion_queue(vcpu);
8735                 kvm_unload_vcpu_mmu(vcpu);
8736         }
8737         kvm_for_each_vcpu(i, vcpu, kvm)
8738                 kvm_arch_vcpu_free(vcpu);
8739
8740         mutex_lock(&kvm->lock);
8741         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8742                 kvm->vcpus[i] = NULL;
8743
8744         atomic_set(&kvm->online_vcpus, 0);
8745         mutex_unlock(&kvm->lock);
8746 }
8747
8748 void kvm_arch_sync_events(struct kvm *kvm)
8749 {
8750         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8751         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8752         kvm_free_pit(kvm);
8753 }
8754
8755 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8756 {
8757         int i, r;
8758         unsigned long hva;
8759         struct kvm_memslots *slots = kvm_memslots(kvm);
8760         struct kvm_memory_slot *slot, old;
8761
8762         /* Called with kvm->slots_lock held.  */
8763         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8764                 return -EINVAL;
8765
8766         slot = id_to_memslot(slots, id);
8767         if (size) {
8768                 if (slot->npages)
8769                         return -EEXIST;
8770
8771                 /*
8772                  * MAP_SHARED to prevent internal slot pages from being moved
8773                  * by fork()/COW.
8774                  */
8775                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8776                               MAP_SHARED | MAP_ANONYMOUS, 0);
8777                 if (IS_ERR((void *)hva))
8778                         return PTR_ERR((void *)hva);
8779         } else {
8780                 if (!slot->npages)
8781                         return 0;
8782
8783                 hva = 0;
8784         }
8785
8786         old = *slot;
8787         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8788                 struct kvm_userspace_memory_region m;
8789
8790                 m.slot = id | (i << 16);
8791                 m.flags = 0;
8792                 m.guest_phys_addr = gpa;
8793                 m.userspace_addr = hva;
8794                 m.memory_size = size;
8795                 r = __kvm_set_memory_region(kvm, &m);
8796                 if (r < 0)
8797                         return r;
8798         }
8799
8800         if (!size)
8801                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8802
8803         return 0;
8804 }
8805 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8806
8807 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8808 {
8809         int r;
8810
8811         mutex_lock(&kvm->slots_lock);
8812         r = __x86_set_memory_region(kvm, id, gpa, size);
8813         mutex_unlock(&kvm->slots_lock);
8814
8815         return r;
8816 }
8817 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8818
8819 void kvm_arch_destroy_vm(struct kvm *kvm)
8820 {
8821         if (current->mm == kvm->mm) {
8822                 /*
8823                  * Free memory regions allocated on behalf of userspace,
8824                  * unless the the memory map has changed due to process exit
8825                  * or fd copying.
8826                  */
8827                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8828                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8829                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8830         }
8831         if (kvm_x86_ops->vm_destroy)
8832                 kvm_x86_ops->vm_destroy(kvm);
8833         kvm_pic_destroy(kvm);
8834         kvm_ioapic_destroy(kvm);
8835         kvm_free_vcpus(kvm);
8836         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8837         kvm_mmu_uninit_vm(kvm);
8838         kvm_page_track_cleanup(kvm);
8839         kvm_hv_destroy_vm(kvm);
8840 }
8841
8842 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8843                            struct kvm_memory_slot *dont)
8844 {
8845         int i;
8846
8847         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8848                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8849                         kvfree(free->arch.rmap[i]);
8850                         free->arch.rmap[i] = NULL;
8851                 }
8852                 if (i == 0)
8853                         continue;
8854
8855                 if (!dont || free->arch.lpage_info[i - 1] !=
8856                              dont->arch.lpage_info[i - 1]) {
8857                         kvfree(free->arch.lpage_info[i - 1]);
8858                         free->arch.lpage_info[i - 1] = NULL;
8859                 }
8860         }
8861
8862         kvm_page_track_free_memslot(free, dont);
8863 }
8864
8865 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8866                             unsigned long npages)
8867 {
8868         int i;
8869
8870         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8871                 struct kvm_lpage_info *linfo;
8872                 unsigned long ugfn;
8873                 int lpages;
8874                 int level = i + 1;
8875
8876                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8877                                       slot->base_gfn, level) + 1;
8878
8879                 slot->arch.rmap[i] =
8880                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8881                 if (!slot->arch.rmap[i])
8882                         goto out_free;
8883                 if (i == 0)
8884                         continue;
8885
8886                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8887                 if (!linfo)
8888                         goto out_free;
8889
8890                 slot->arch.lpage_info[i - 1] = linfo;
8891
8892                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8893                         linfo[0].disallow_lpage = 1;
8894                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8895                         linfo[lpages - 1].disallow_lpage = 1;
8896                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8897                 /*
8898                  * If the gfn and userspace address are not aligned wrt each
8899                  * other, or if explicitly asked to, disable large page
8900                  * support for this slot
8901                  */
8902                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8903                     !kvm_largepages_enabled()) {
8904                         unsigned long j;
8905
8906                         for (j = 0; j < lpages; ++j)
8907                                 linfo[j].disallow_lpage = 1;
8908                 }
8909         }
8910
8911         if (kvm_page_track_create_memslot(slot, npages))
8912                 goto out_free;
8913
8914         return 0;
8915
8916 out_free:
8917         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8918                 kvfree(slot->arch.rmap[i]);
8919                 slot->arch.rmap[i] = NULL;
8920                 if (i == 0)
8921                         continue;
8922
8923                 kvfree(slot->arch.lpage_info[i - 1]);
8924                 slot->arch.lpage_info[i - 1] = NULL;
8925         }
8926         return -ENOMEM;
8927 }
8928
8929 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8930 {
8931         /*
8932          * memslots->generation has been incremented.
8933          * mmio generation may have reached its maximum value.
8934          */
8935         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8936 }
8937
8938 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8939                                 struct kvm_memory_slot *memslot,
8940                                 const struct kvm_userspace_memory_region *mem,
8941                                 enum kvm_mr_change change)
8942 {
8943         return 0;
8944 }
8945
8946 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8947                                      struct kvm_memory_slot *new)
8948 {
8949         /* Still write protect RO slot */
8950         if (new->flags & KVM_MEM_READONLY) {
8951                 kvm_mmu_slot_remove_write_access(kvm, new);
8952                 return;
8953         }
8954
8955         /*
8956          * Call kvm_x86_ops dirty logging hooks when they are valid.
8957          *
8958          * kvm_x86_ops->slot_disable_log_dirty is called when:
8959          *
8960          *  - KVM_MR_CREATE with dirty logging is disabled
8961          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8962          *
8963          * The reason is, in case of PML, we need to set D-bit for any slots
8964          * with dirty logging disabled in order to eliminate unnecessary GPA
8965          * logging in PML buffer (and potential PML buffer full VMEXT). This
8966          * guarantees leaving PML enabled during guest's lifetime won't have
8967          * any additonal overhead from PML when guest is running with dirty
8968          * logging disabled for memory slots.
8969          *
8970          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8971          * to dirty logging mode.
8972          *
8973          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8974          *
8975          * In case of write protect:
8976          *
8977          * Write protect all pages for dirty logging.
8978          *
8979          * All the sptes including the large sptes which point to this
8980          * slot are set to readonly. We can not create any new large
8981          * spte on this slot until the end of the logging.
8982          *
8983          * See the comments in fast_page_fault().
8984          */
8985         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8986                 if (kvm_x86_ops->slot_enable_log_dirty)
8987                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8988                 else
8989                         kvm_mmu_slot_remove_write_access(kvm, new);
8990         } else {
8991                 if (kvm_x86_ops->slot_disable_log_dirty)
8992                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8993         }
8994 }
8995
8996 void kvm_arch_commit_memory_region(struct kvm *kvm,
8997                                 const struct kvm_userspace_memory_region *mem,
8998                                 const struct kvm_memory_slot *old,
8999                                 const struct kvm_memory_slot *new,
9000                                 enum kvm_mr_change change)
9001 {
9002         int nr_mmu_pages = 0;
9003
9004         if (!kvm->arch.n_requested_mmu_pages)
9005                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9006
9007         if (nr_mmu_pages)
9008                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9009
9010         /*
9011          * Dirty logging tracks sptes in 4k granularity, meaning that large
9012          * sptes have to be split.  If live migration is successful, the guest
9013          * in the source machine will be destroyed and large sptes will be
9014          * created in the destination. However, if the guest continues to run
9015          * in the source machine (for example if live migration fails), small
9016          * sptes will remain around and cause bad performance.
9017          *
9018          * Scan sptes if dirty logging has been stopped, dropping those
9019          * which can be collapsed into a single large-page spte.  Later
9020          * page faults will create the large-page sptes.
9021          */
9022         if ((change != KVM_MR_DELETE) &&
9023                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9024                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9025                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9026
9027         /*
9028          * Set up write protection and/or dirty logging for the new slot.
9029          *
9030          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9031          * been zapped so no dirty logging staff is needed for old slot. For
9032          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9033          * new and it's also covered when dealing with the new slot.
9034          *
9035          * FIXME: const-ify all uses of struct kvm_memory_slot.
9036          */
9037         if (change != KVM_MR_DELETE)
9038                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9039 }
9040
9041 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9042 {
9043         kvm_mmu_invalidate_zap_all_pages(kvm);
9044 }
9045
9046 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9047                                    struct kvm_memory_slot *slot)
9048 {
9049         kvm_page_track_flush_slot(kvm, slot);
9050 }
9051
9052 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9053 {
9054         if (!list_empty_careful(&vcpu->async_pf.done))
9055                 return true;
9056
9057         if (kvm_apic_has_events(vcpu))
9058                 return true;
9059
9060         if (vcpu->arch.pv.pv_unhalted)
9061                 return true;
9062
9063         if (vcpu->arch.exception.pending)
9064                 return true;
9065
9066         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9067             (vcpu->arch.nmi_pending &&
9068              kvm_x86_ops->nmi_allowed(vcpu)))
9069                 return true;
9070
9071         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9072             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9073                 return true;
9074
9075         if (kvm_arch_interrupt_allowed(vcpu) &&
9076             kvm_cpu_has_interrupt(vcpu))
9077                 return true;
9078
9079         if (kvm_hv_has_stimer_pending(vcpu))
9080                 return true;
9081
9082         return false;
9083 }
9084
9085 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9086 {
9087         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9088 }
9089
9090 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9091 {
9092         return vcpu->arch.preempted_in_kernel;
9093 }
9094
9095 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9096 {
9097         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9098 }
9099
9100 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9101 {
9102         return kvm_x86_ops->interrupt_allowed(vcpu);
9103 }
9104
9105 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9106 {
9107         if (is_64_bit_mode(vcpu))
9108                 return kvm_rip_read(vcpu);
9109         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9110                      kvm_rip_read(vcpu));
9111 }
9112 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9113
9114 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9115 {
9116         return kvm_get_linear_rip(vcpu) == linear_rip;
9117 }
9118 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9119
9120 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9121 {
9122         unsigned long rflags;
9123
9124         rflags = kvm_x86_ops->get_rflags(vcpu);
9125         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9126                 rflags &= ~X86_EFLAGS_TF;
9127         return rflags;
9128 }
9129 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9130
9131 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9132 {
9133         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9134             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9135                 rflags |= X86_EFLAGS_TF;
9136         kvm_x86_ops->set_rflags(vcpu, rflags);
9137 }
9138
9139 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9140 {
9141         __kvm_set_rflags(vcpu, rflags);
9142         kvm_make_request(KVM_REQ_EVENT, vcpu);
9143 }
9144 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9145
9146 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9147 {
9148         int r;
9149
9150         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9151               work->wakeup_all)
9152                 return;
9153
9154         r = kvm_mmu_reload(vcpu);
9155         if (unlikely(r))
9156                 return;
9157
9158         if (!vcpu->arch.mmu.direct_map &&
9159               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9160                 return;
9161
9162         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9163 }
9164
9165 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9166 {
9167         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9168 }
9169
9170 static inline u32 kvm_async_pf_next_probe(u32 key)
9171 {
9172         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9173 }
9174
9175 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9176 {
9177         u32 key = kvm_async_pf_hash_fn(gfn);
9178
9179         while (vcpu->arch.apf.gfns[key] != ~0)
9180                 key = kvm_async_pf_next_probe(key);
9181
9182         vcpu->arch.apf.gfns[key] = gfn;
9183 }
9184
9185 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9186 {
9187         int i;
9188         u32 key = kvm_async_pf_hash_fn(gfn);
9189
9190         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9191                      (vcpu->arch.apf.gfns[key] != gfn &&
9192                       vcpu->arch.apf.gfns[key] != ~0); i++)
9193                 key = kvm_async_pf_next_probe(key);
9194
9195         return key;
9196 }
9197
9198 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9199 {
9200         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9201 }
9202
9203 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9204 {
9205         u32 i, j, k;
9206
9207         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9208         while (true) {
9209                 vcpu->arch.apf.gfns[i] = ~0;
9210                 do {
9211                         j = kvm_async_pf_next_probe(j);
9212                         if (vcpu->arch.apf.gfns[j] == ~0)
9213                                 return;
9214                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9215                         /*
9216                          * k lies cyclically in ]i,j]
9217                          * |    i.k.j |
9218                          * |....j i.k.| or  |.k..j i...|
9219                          */
9220                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9221                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9222                 i = j;
9223         }
9224 }
9225
9226 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9227 {
9228
9229         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9230                                       sizeof(val));
9231 }
9232
9233 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9234 {
9235
9236         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9237                                       sizeof(u32));
9238 }
9239
9240 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9241                                      struct kvm_async_pf *work)
9242 {
9243         struct x86_exception fault;
9244
9245         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9246         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9247
9248         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9249             (vcpu->arch.apf.send_user_only &&
9250              kvm_x86_ops->get_cpl(vcpu) == 0))
9251                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9252         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9253                 fault.vector = PF_VECTOR;
9254                 fault.error_code_valid = true;
9255                 fault.error_code = 0;
9256                 fault.nested_page_fault = false;
9257                 fault.address = work->arch.token;
9258                 fault.async_page_fault = true;
9259                 kvm_inject_page_fault(vcpu, &fault);
9260         }
9261 }
9262
9263 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9264                                  struct kvm_async_pf *work)
9265 {
9266         struct x86_exception fault;
9267         u32 val;
9268
9269         if (work->wakeup_all)
9270                 work->arch.token = ~0; /* broadcast wakeup */
9271         else
9272                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9273         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9274
9275         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9276             !apf_get_user(vcpu, &val)) {
9277                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9278                     vcpu->arch.exception.pending &&
9279                     vcpu->arch.exception.nr == PF_VECTOR &&
9280                     !apf_put_user(vcpu, 0)) {
9281                         vcpu->arch.exception.injected = false;
9282                         vcpu->arch.exception.pending = false;
9283                         vcpu->arch.exception.nr = 0;
9284                         vcpu->arch.exception.has_error_code = false;
9285                         vcpu->arch.exception.error_code = 0;
9286                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9287                         fault.vector = PF_VECTOR;
9288                         fault.error_code_valid = true;
9289                         fault.error_code = 0;
9290                         fault.nested_page_fault = false;
9291                         fault.address = work->arch.token;
9292                         fault.async_page_fault = true;
9293                         kvm_inject_page_fault(vcpu, &fault);
9294                 }
9295         }
9296         vcpu->arch.apf.halted = false;
9297         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9298 }
9299
9300 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9301 {
9302         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9303                 return true;
9304         else
9305                 return kvm_can_do_async_pf(vcpu);
9306 }
9307
9308 void kvm_arch_start_assignment(struct kvm *kvm)
9309 {
9310         atomic_inc(&kvm->arch.assigned_device_count);
9311 }
9312 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9313
9314 void kvm_arch_end_assignment(struct kvm *kvm)
9315 {
9316         atomic_dec(&kvm->arch.assigned_device_count);
9317 }
9318 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9319
9320 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9321 {
9322         return atomic_read(&kvm->arch.assigned_device_count);
9323 }
9324 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9325
9326 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9327 {
9328         atomic_inc(&kvm->arch.noncoherent_dma_count);
9329 }
9330 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9331
9332 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9333 {
9334         atomic_dec(&kvm->arch.noncoherent_dma_count);
9335 }
9336 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9337
9338 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9339 {
9340         return atomic_read(&kvm->arch.noncoherent_dma_count);
9341 }
9342 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9343
9344 bool kvm_arch_has_irq_bypass(void)
9345 {
9346         return kvm_x86_ops->update_pi_irte != NULL;
9347 }
9348
9349 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9350                                       struct irq_bypass_producer *prod)
9351 {
9352         struct kvm_kernel_irqfd *irqfd =
9353                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9354
9355         irqfd->producer = prod;
9356
9357         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9358                                            prod->irq, irqfd->gsi, 1);
9359 }
9360
9361 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9362                                       struct irq_bypass_producer *prod)
9363 {
9364         int ret;
9365         struct kvm_kernel_irqfd *irqfd =
9366                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9367
9368         WARN_ON(irqfd->producer != prod);
9369         irqfd->producer = NULL;
9370
9371         /*
9372          * When producer of consumer is unregistered, we change back to
9373          * remapped mode, so we can re-use the current implementation
9374          * when the irq is masked/disabled or the consumer side (KVM
9375          * int this case doesn't want to receive the interrupts.
9376         */
9377         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9378         if (ret)
9379                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9380                        " fails: %d\n", irqfd->consumer.token, ret);
9381 }
9382
9383 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9384                                    uint32_t guest_irq, bool set)
9385 {
9386         if (!kvm_x86_ops->update_pi_irte)
9387                 return -EINVAL;
9388
9389         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9390 }
9391
9392 bool kvm_vector_hashing_enabled(void)
9393 {
9394         return vector_hashing;
9395 }
9396 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9397
9398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);