]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
Merge branch 'perf/urgent' into perf/core, to pick up fixes
[linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
96 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159
160 #define KVM_NR_SHARED_MSRS 16
161
162 struct kvm_shared_msrs_global {
163         int nr;
164         u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166
167 struct kvm_shared_msrs {
168         struct user_return_notifier urn;
169         bool registered;
170         struct kvm_shared_msr_values {
171                 u64 host;
172                 u64 curr;
173         } values[KVM_NR_SHARED_MSRS];
174 };
175
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180         { "pf_fixed", VCPU_STAT(pf_fixed) },
181         { "pf_guest", VCPU_STAT(pf_guest) },
182         { "tlb_flush", VCPU_STAT(tlb_flush) },
183         { "invlpg", VCPU_STAT(invlpg) },
184         { "exits", VCPU_STAT(exits) },
185         { "io_exits", VCPU_STAT(io_exits) },
186         { "mmio_exits", VCPU_STAT(mmio_exits) },
187         { "signal_exits", VCPU_STAT(signal_exits) },
188         { "irq_window", VCPU_STAT(irq_window_exits) },
189         { "nmi_window", VCPU_STAT(nmi_window_exits) },
190         { "halt_exits", VCPU_STAT(halt_exits) },
191         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
195         { "hypercalls", VCPU_STAT(hypercalls) },
196         { "request_irq", VCPU_STAT(request_irq_exits) },
197         { "irq_exits", VCPU_STAT(irq_exits) },
198         { "host_state_reload", VCPU_STAT(host_state_reload) },
199         { "fpu_reload", VCPU_STAT(fpu_reload) },
200         { "insn_emulation", VCPU_STAT(insn_emulation) },
201         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202         { "irq_injections", VCPU_STAT(irq_injections) },
203         { "nmi_injections", VCPU_STAT(nmi_injections) },
204         { "req_event", VCPU_STAT(req_event) },
205         { "l1d_flush", VCPU_STAT(l1d_flush) },
206         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
208         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210         { "mmu_flooded", VM_STAT(mmu_flooded) },
211         { "mmu_recycled", VM_STAT(mmu_recycled) },
212         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213         { "mmu_unsync", VM_STAT(mmu_unsync) },
214         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215         { "largepages", VM_STAT(lpages, .mode = 0444) },
216         { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
217         { "max_mmu_page_hash_collisions",
218                 VM_STAT(max_mmu_page_hash_collisions) },
219         { NULL }
220 };
221
222 u64 __read_mostly host_xcr0;
223
224 struct kmem_cache *x86_fpu_cache;
225 EXPORT_SYMBOL_GPL(x86_fpu_cache);
226
227 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
228
229 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
230 {
231         int i;
232         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
233                 vcpu->arch.apf.gfns[i] = ~0;
234 }
235
236 static void kvm_on_user_return(struct user_return_notifier *urn)
237 {
238         unsigned slot;
239         struct kvm_shared_msrs *locals
240                 = container_of(urn, struct kvm_shared_msrs, urn);
241         struct kvm_shared_msr_values *values;
242         unsigned long flags;
243
244         /*
245          * Disabling irqs at this point since the following code could be
246          * interrupted and executed through kvm_arch_hardware_disable()
247          */
248         local_irq_save(flags);
249         if (locals->registered) {
250                 locals->registered = false;
251                 user_return_notifier_unregister(urn);
252         }
253         local_irq_restore(flags);
254         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
255                 values = &locals->values[slot];
256                 if (values->host != values->curr) {
257                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
258                         values->curr = values->host;
259                 }
260         }
261 }
262
263 static void shared_msr_update(unsigned slot, u32 msr)
264 {
265         u64 value;
266         unsigned int cpu = smp_processor_id();
267         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
268
269         /* only read, and nobody should modify it at this time,
270          * so don't need lock */
271         if (slot >= shared_msrs_global.nr) {
272                 printk(KERN_ERR "kvm: invalid MSR slot!");
273                 return;
274         }
275         rdmsrl_safe(msr, &value);
276         smsr->values[slot].host = value;
277         smsr->values[slot].curr = value;
278 }
279
280 void kvm_define_shared_msr(unsigned slot, u32 msr)
281 {
282         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
283         shared_msrs_global.msrs[slot] = msr;
284         if (slot >= shared_msrs_global.nr)
285                 shared_msrs_global.nr = slot + 1;
286 }
287 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
288
289 static void kvm_shared_msr_cpu_online(void)
290 {
291         unsigned i;
292
293         for (i = 0; i < shared_msrs_global.nr; ++i)
294                 shared_msr_update(i, shared_msrs_global.msrs[i]);
295 }
296
297 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
298 {
299         unsigned int cpu = smp_processor_id();
300         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301         int err;
302
303         if (((value ^ smsr->values[slot].curr) & mask) == 0)
304                 return 0;
305         smsr->values[slot].curr = value;
306         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
307         if (err)
308                 return 1;
309
310         if (!smsr->registered) {
311                 smsr->urn.on_user_return = kvm_on_user_return;
312                 user_return_notifier_register(&smsr->urn);
313                 smsr->registered = true;
314         }
315         return 0;
316 }
317 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
318
319 static void drop_user_return_notifiers(void)
320 {
321         unsigned int cpu = smp_processor_id();
322         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
323
324         if (smsr->registered)
325                 kvm_on_user_return(&smsr->urn);
326 }
327
328 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
329 {
330         return vcpu->arch.apic_base;
331 }
332 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
333
334 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
335 {
336         return kvm_apic_mode(kvm_get_apic_base(vcpu));
337 }
338 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
339
340 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
341 {
342         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
343         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
344         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
345                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
346
347         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
348                 return 1;
349         if (!msr_info->host_initiated) {
350                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
351                         return 1;
352                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
353                         return 1;
354         }
355
356         kvm_lapic_set_base(vcpu, msr_info->data);
357         return 0;
358 }
359 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
360
361 asmlinkage __visible void kvm_spurious_fault(void)
362 {
363         /* Fault while not rebooting.  We want the trace. */
364         BUG_ON(!kvm_rebooting);
365 }
366 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
367
368 #define EXCPT_BENIGN            0
369 #define EXCPT_CONTRIBUTORY      1
370 #define EXCPT_PF                2
371
372 static int exception_class(int vector)
373 {
374         switch (vector) {
375         case PF_VECTOR:
376                 return EXCPT_PF;
377         case DE_VECTOR:
378         case TS_VECTOR:
379         case NP_VECTOR:
380         case SS_VECTOR:
381         case GP_VECTOR:
382                 return EXCPT_CONTRIBUTORY;
383         default:
384                 break;
385         }
386         return EXCPT_BENIGN;
387 }
388
389 #define EXCPT_FAULT             0
390 #define EXCPT_TRAP              1
391 #define EXCPT_ABORT             2
392 #define EXCPT_INTERRUPT         3
393
394 static int exception_type(int vector)
395 {
396         unsigned int mask;
397
398         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
399                 return EXCPT_INTERRUPT;
400
401         mask = 1 << vector;
402
403         /* #DB is trap, as instruction watchpoints are handled elsewhere */
404         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
405                 return EXCPT_TRAP;
406
407         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
408                 return EXCPT_ABORT;
409
410         /* Reserved exceptions will result in fault */
411         return EXCPT_FAULT;
412 }
413
414 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
415 {
416         unsigned nr = vcpu->arch.exception.nr;
417         bool has_payload = vcpu->arch.exception.has_payload;
418         unsigned long payload = vcpu->arch.exception.payload;
419
420         if (!has_payload)
421                 return;
422
423         switch (nr) {
424         case DB_VECTOR:
425                 /*
426                  * "Certain debug exceptions may clear bit 0-3.  The
427                  * remaining contents of the DR6 register are never
428                  * cleared by the processor".
429                  */
430                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
431                 /*
432                  * DR6.RTM is set by all #DB exceptions that don't clear it.
433                  */
434                 vcpu->arch.dr6 |= DR6_RTM;
435                 vcpu->arch.dr6 |= payload;
436                 /*
437                  * Bit 16 should be set in the payload whenever the #DB
438                  * exception should clear DR6.RTM. This makes the payload
439                  * compatible with the pending debug exceptions under VMX.
440                  * Though not currently documented in the SDM, this also
441                  * makes the payload compatible with the exit qualification
442                  * for #DB exceptions under VMX.
443                  */
444                 vcpu->arch.dr6 ^= payload & DR6_RTM;
445                 break;
446         case PF_VECTOR:
447                 vcpu->arch.cr2 = payload;
448                 break;
449         }
450
451         vcpu->arch.exception.has_payload = false;
452         vcpu->arch.exception.payload = 0;
453 }
454 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
455
456 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
457                 unsigned nr, bool has_error, u32 error_code,
458                 bool has_payload, unsigned long payload, bool reinject)
459 {
460         u32 prev_nr;
461         int class1, class2;
462
463         kvm_make_request(KVM_REQ_EVENT, vcpu);
464
465         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
466         queue:
467                 if (has_error && !is_protmode(vcpu))
468                         has_error = false;
469                 if (reinject) {
470                         /*
471                          * On vmentry, vcpu->arch.exception.pending is only
472                          * true if an event injection was blocked by
473                          * nested_run_pending.  In that case, however,
474                          * vcpu_enter_guest requests an immediate exit,
475                          * and the guest shouldn't proceed far enough to
476                          * need reinjection.
477                          */
478                         WARN_ON_ONCE(vcpu->arch.exception.pending);
479                         vcpu->arch.exception.injected = true;
480                         if (WARN_ON_ONCE(has_payload)) {
481                                 /*
482                                  * A reinjected event has already
483                                  * delivered its payload.
484                                  */
485                                 has_payload = false;
486                                 payload = 0;
487                         }
488                 } else {
489                         vcpu->arch.exception.pending = true;
490                         vcpu->arch.exception.injected = false;
491                 }
492                 vcpu->arch.exception.has_error_code = has_error;
493                 vcpu->arch.exception.nr = nr;
494                 vcpu->arch.exception.error_code = error_code;
495                 vcpu->arch.exception.has_payload = has_payload;
496                 vcpu->arch.exception.payload = payload;
497                 /*
498                  * In guest mode, payload delivery should be deferred,
499                  * so that the L1 hypervisor can intercept #PF before
500                  * CR2 is modified (or intercept #DB before DR6 is
501                  * modified under nVMX).  However, for ABI
502                  * compatibility with KVM_GET_VCPU_EVENTS and
503                  * KVM_SET_VCPU_EVENTS, we can't delay payload
504                  * delivery unless userspace has enabled this
505                  * functionality via the per-VM capability,
506                  * KVM_CAP_EXCEPTION_PAYLOAD.
507                  */
508                 if (!vcpu->kvm->arch.exception_payload_enabled ||
509                     !is_guest_mode(vcpu))
510                         kvm_deliver_exception_payload(vcpu);
511                 return;
512         }
513
514         /* to check exception */
515         prev_nr = vcpu->arch.exception.nr;
516         if (prev_nr == DF_VECTOR) {
517                 /* triple fault -> shutdown */
518                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
519                 return;
520         }
521         class1 = exception_class(prev_nr);
522         class2 = exception_class(nr);
523         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
524                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
525                 /*
526                  * Generate double fault per SDM Table 5-5.  Set
527                  * exception.pending = true so that the double fault
528                  * can trigger a nested vmexit.
529                  */
530                 vcpu->arch.exception.pending = true;
531                 vcpu->arch.exception.injected = false;
532                 vcpu->arch.exception.has_error_code = true;
533                 vcpu->arch.exception.nr = DF_VECTOR;
534                 vcpu->arch.exception.error_code = 0;
535                 vcpu->arch.exception.has_payload = false;
536                 vcpu->arch.exception.payload = 0;
537         } else
538                 /* replace previous exception with a new one in a hope
539                    that instruction re-execution will regenerate lost
540                    exception */
541                 goto queue;
542 }
543
544 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
545 {
546         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
547 }
548 EXPORT_SYMBOL_GPL(kvm_queue_exception);
549
550 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
551 {
552         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
553 }
554 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
555
556 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
557                                   unsigned long payload)
558 {
559         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
560 }
561
562 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
563                                     u32 error_code, unsigned long payload)
564 {
565         kvm_multiple_exception(vcpu, nr, true, error_code,
566                                true, payload, false);
567 }
568
569 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
570 {
571         if (err)
572                 kvm_inject_gp(vcpu, 0);
573         else
574                 return kvm_skip_emulated_instruction(vcpu);
575
576         return 1;
577 }
578 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
579
580 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
581 {
582         ++vcpu->stat.pf_guest;
583         vcpu->arch.exception.nested_apf =
584                 is_guest_mode(vcpu) && fault->async_page_fault;
585         if (vcpu->arch.exception.nested_apf) {
586                 vcpu->arch.apf.nested_apf_token = fault->address;
587                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
588         } else {
589                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
590                                         fault->address);
591         }
592 }
593 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
594
595 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
596 {
597         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
598                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
599         else
600                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
601
602         return fault->nested_page_fault;
603 }
604
605 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
606 {
607         atomic_inc(&vcpu->arch.nmi_queued);
608         kvm_make_request(KVM_REQ_NMI, vcpu);
609 }
610 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
611
612 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
613 {
614         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
615 }
616 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
617
618 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
619 {
620         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
621 }
622 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
623
624 /*
625  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
626  * a #GP and return false.
627  */
628 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
629 {
630         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
631                 return true;
632         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
633         return false;
634 }
635 EXPORT_SYMBOL_GPL(kvm_require_cpl);
636
637 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
638 {
639         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
640                 return true;
641
642         kvm_queue_exception(vcpu, UD_VECTOR);
643         return false;
644 }
645 EXPORT_SYMBOL_GPL(kvm_require_dr);
646
647 /*
648  * This function will be used to read from the physical memory of the currently
649  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
650  * can read from guest physical or from the guest's guest physical memory.
651  */
652 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
653                             gfn_t ngfn, void *data, int offset, int len,
654                             u32 access)
655 {
656         struct x86_exception exception;
657         gfn_t real_gfn;
658         gpa_t ngpa;
659
660         ngpa     = gfn_to_gpa(ngfn);
661         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
662         if (real_gfn == UNMAPPED_GVA)
663                 return -EFAULT;
664
665         real_gfn = gpa_to_gfn(real_gfn);
666
667         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
668 }
669 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
670
671 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
672                                void *data, int offset, int len, u32 access)
673 {
674         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
675                                        data, offset, len, access);
676 }
677
678 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
679 {
680         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
681                rsvd_bits(1, 2);
682 }
683
684 /*
685  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
686  */
687 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
688 {
689         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
690         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
691         int i;
692         int ret;
693         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
694
695         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
696                                       offset * sizeof(u64), sizeof(pdpte),
697                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
698         if (ret < 0) {
699                 ret = 0;
700                 goto out;
701         }
702         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
703                 if ((pdpte[i] & PT_PRESENT_MASK) &&
704                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
705                         ret = 0;
706                         goto out;
707                 }
708         }
709         ret = 1;
710
711         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
712         __set_bit(VCPU_EXREG_PDPTR,
713                   (unsigned long *)&vcpu->arch.regs_avail);
714         __set_bit(VCPU_EXREG_PDPTR,
715                   (unsigned long *)&vcpu->arch.regs_dirty);
716 out:
717
718         return ret;
719 }
720 EXPORT_SYMBOL_GPL(load_pdptrs);
721
722 bool pdptrs_changed(struct kvm_vcpu *vcpu)
723 {
724         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
725         bool changed = true;
726         int offset;
727         gfn_t gfn;
728         int r;
729
730         if (!is_pae_paging(vcpu))
731                 return false;
732
733         if (!test_bit(VCPU_EXREG_PDPTR,
734                       (unsigned long *)&vcpu->arch.regs_avail))
735                 return true;
736
737         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
738         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
739         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
740                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
741         if (r < 0)
742                 goto out;
743         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
744 out:
745
746         return changed;
747 }
748 EXPORT_SYMBOL_GPL(pdptrs_changed);
749
750 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
751 {
752         unsigned long old_cr0 = kvm_read_cr0(vcpu);
753         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
754
755         cr0 |= X86_CR0_ET;
756
757 #ifdef CONFIG_X86_64
758         if (cr0 & 0xffffffff00000000UL)
759                 return 1;
760 #endif
761
762         cr0 &= ~CR0_RESERVED_BITS;
763
764         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
765                 return 1;
766
767         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
768                 return 1;
769
770         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
771 #ifdef CONFIG_X86_64
772                 if ((vcpu->arch.efer & EFER_LME)) {
773                         int cs_db, cs_l;
774
775                         if (!is_pae(vcpu))
776                                 return 1;
777                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
778                         if (cs_l)
779                                 return 1;
780                 } else
781 #endif
782                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
783                                                  kvm_read_cr3(vcpu)))
784                         return 1;
785         }
786
787         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
788                 return 1;
789
790         kvm_x86_ops->set_cr0(vcpu, cr0);
791
792         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
793                 kvm_clear_async_pf_completion_queue(vcpu);
794                 kvm_async_pf_hash_reset(vcpu);
795         }
796
797         if ((cr0 ^ old_cr0) & update_bits)
798                 kvm_mmu_reset_context(vcpu);
799
800         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
801             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
802             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
803                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
804
805         return 0;
806 }
807 EXPORT_SYMBOL_GPL(kvm_set_cr0);
808
809 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
810 {
811         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
812 }
813 EXPORT_SYMBOL_GPL(kvm_lmsw);
814
815 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
816 {
817         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
818                         !vcpu->guest_xcr0_loaded) {
819                 /* kvm_set_xcr() also depends on this */
820                 if (vcpu->arch.xcr0 != host_xcr0)
821                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
822                 vcpu->guest_xcr0_loaded = 1;
823         }
824 }
825 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
826
827 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
828 {
829         if (vcpu->guest_xcr0_loaded) {
830                 if (vcpu->arch.xcr0 != host_xcr0)
831                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
832                 vcpu->guest_xcr0_loaded = 0;
833         }
834 }
835 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
836
837 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
838 {
839         u64 xcr0 = xcr;
840         u64 old_xcr0 = vcpu->arch.xcr0;
841         u64 valid_bits;
842
843         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
844         if (index != XCR_XFEATURE_ENABLED_MASK)
845                 return 1;
846         if (!(xcr0 & XFEATURE_MASK_FP))
847                 return 1;
848         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
849                 return 1;
850
851         /*
852          * Do not allow the guest to set bits that we do not support
853          * saving.  However, xcr0 bit 0 is always set, even if the
854          * emulated CPU does not support XSAVE (see fx_init).
855          */
856         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
857         if (xcr0 & ~valid_bits)
858                 return 1;
859
860         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
861             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
862                 return 1;
863
864         if (xcr0 & XFEATURE_MASK_AVX512) {
865                 if (!(xcr0 & XFEATURE_MASK_YMM))
866                         return 1;
867                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
868                         return 1;
869         }
870         vcpu->arch.xcr0 = xcr0;
871
872         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
873                 kvm_update_cpuid(vcpu);
874         return 0;
875 }
876
877 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
878 {
879         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
880             __kvm_set_xcr(vcpu, index, xcr)) {
881                 kvm_inject_gp(vcpu, 0);
882                 return 1;
883         }
884         return 0;
885 }
886 EXPORT_SYMBOL_GPL(kvm_set_xcr);
887
888 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
889 {
890         if (cr4 & CR4_RESERVED_BITS)
891                 return -EINVAL;
892
893         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
894                 return -EINVAL;
895
896         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
897                 return -EINVAL;
898
899         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
900                 return -EINVAL;
901
902         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
903                 return -EINVAL;
904
905         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
906                 return -EINVAL;
907
908         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
909                 return -EINVAL;
910
911         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
912                 return -EINVAL;
913
914         return 0;
915 }
916
917 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
918 {
919         unsigned long old_cr4 = kvm_read_cr4(vcpu);
920         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
921                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
922
923         if (kvm_valid_cr4(vcpu, cr4))
924                 return 1;
925
926         if (is_long_mode(vcpu)) {
927                 if (!(cr4 & X86_CR4_PAE))
928                         return 1;
929         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
930                    && ((cr4 ^ old_cr4) & pdptr_bits)
931                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
932                                    kvm_read_cr3(vcpu)))
933                 return 1;
934
935         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
936                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
937                         return 1;
938
939                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
940                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
941                         return 1;
942         }
943
944         if (kvm_x86_ops->set_cr4(vcpu, cr4))
945                 return 1;
946
947         if (((cr4 ^ old_cr4) & pdptr_bits) ||
948             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
949                 kvm_mmu_reset_context(vcpu);
950
951         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
952                 kvm_update_cpuid(vcpu);
953
954         return 0;
955 }
956 EXPORT_SYMBOL_GPL(kvm_set_cr4);
957
958 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
959 {
960         bool skip_tlb_flush = false;
961 #ifdef CONFIG_X86_64
962         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
963
964         if (pcid_enabled) {
965                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
966                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
967         }
968 #endif
969
970         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
971                 if (!skip_tlb_flush) {
972                         kvm_mmu_sync_roots(vcpu);
973                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
974                 }
975                 return 0;
976         }
977
978         if (is_long_mode(vcpu) &&
979             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
980                 return 1;
981         else if (is_pae_paging(vcpu) &&
982                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
983                 return 1;
984
985         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
986         vcpu->arch.cr3 = cr3;
987         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
988
989         return 0;
990 }
991 EXPORT_SYMBOL_GPL(kvm_set_cr3);
992
993 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
994 {
995         if (cr8 & CR8_RESERVED_BITS)
996                 return 1;
997         if (lapic_in_kernel(vcpu))
998                 kvm_lapic_set_tpr(vcpu, cr8);
999         else
1000                 vcpu->arch.cr8 = cr8;
1001         return 0;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1004
1005 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1006 {
1007         if (lapic_in_kernel(vcpu))
1008                 return kvm_lapic_get_cr8(vcpu);
1009         else
1010                 return vcpu->arch.cr8;
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1013
1014 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1015 {
1016         int i;
1017
1018         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1019                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1020                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1021                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1022         }
1023 }
1024
1025 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1026 {
1027         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1028                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1029 }
1030
1031 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1032 {
1033         unsigned long dr7;
1034
1035         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1036                 dr7 = vcpu->arch.guest_debug_dr7;
1037         else
1038                 dr7 = vcpu->arch.dr7;
1039         kvm_x86_ops->set_dr7(vcpu, dr7);
1040         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1041         if (dr7 & DR7_BP_EN_MASK)
1042                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1043 }
1044
1045 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1046 {
1047         u64 fixed = DR6_FIXED_1;
1048
1049         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1050                 fixed |= DR6_RTM;
1051         return fixed;
1052 }
1053
1054 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1055 {
1056         switch (dr) {
1057         case 0 ... 3:
1058                 vcpu->arch.db[dr] = val;
1059                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1060                         vcpu->arch.eff_db[dr] = val;
1061                 break;
1062         case 4:
1063                 /* fall through */
1064         case 6:
1065                 if (val & 0xffffffff00000000ULL)
1066                         return -1; /* #GP */
1067                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1068                 kvm_update_dr6(vcpu);
1069                 break;
1070         case 5:
1071                 /* fall through */
1072         default: /* 7 */
1073                 if (val & 0xffffffff00000000ULL)
1074                         return -1; /* #GP */
1075                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1076                 kvm_update_dr7(vcpu);
1077                 break;
1078         }
1079
1080         return 0;
1081 }
1082
1083 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1084 {
1085         if (__kvm_set_dr(vcpu, dr, val)) {
1086                 kvm_inject_gp(vcpu, 0);
1087                 return 1;
1088         }
1089         return 0;
1090 }
1091 EXPORT_SYMBOL_GPL(kvm_set_dr);
1092
1093 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1094 {
1095         switch (dr) {
1096         case 0 ... 3:
1097                 *val = vcpu->arch.db[dr];
1098                 break;
1099         case 4:
1100                 /* fall through */
1101         case 6:
1102                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1103                         *val = vcpu->arch.dr6;
1104                 else
1105                         *val = kvm_x86_ops->get_dr6(vcpu);
1106                 break;
1107         case 5:
1108                 /* fall through */
1109         default: /* 7 */
1110                 *val = vcpu->arch.dr7;
1111                 break;
1112         }
1113         return 0;
1114 }
1115 EXPORT_SYMBOL_GPL(kvm_get_dr);
1116
1117 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1118 {
1119         u32 ecx = kvm_rcx_read(vcpu);
1120         u64 data;
1121         int err;
1122
1123         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1124         if (err)
1125                 return err;
1126         kvm_rax_write(vcpu, (u32)data);
1127         kvm_rdx_write(vcpu, data >> 32);
1128         return err;
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1131
1132 /*
1133  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1134  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1135  *
1136  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1137  * extract the supported MSRs from the related const lists.
1138  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1139  * capabilities of the host cpu. This capabilities test skips MSRs that are
1140  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1141  * may depend on host virtualization features rather than host cpu features.
1142  */
1143
1144 static const u32 msrs_to_save_all[] = {
1145         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1146         MSR_STAR,
1147 #ifdef CONFIG_X86_64
1148         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1149 #endif
1150         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1151         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1152         MSR_IA32_SPEC_CTRL,
1153         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1154         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1155         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1156         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1157         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1158         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1159         MSR_IA32_UMWAIT_CONTROL,
1160
1161         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1162         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1163         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1164         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1165         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1166         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1167         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1168         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1169         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1170         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1171         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1172         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1173         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1174         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1175         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1176         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1177         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1178         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1179         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1180         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1181         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1182         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1183 };
1184
1185 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1186 static unsigned num_msrs_to_save;
1187
1188 static const u32 emulated_msrs_all[] = {
1189         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1190         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1191         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1192         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1193         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1194         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1195         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1196         HV_X64_MSR_RESET,
1197         HV_X64_MSR_VP_INDEX,
1198         HV_X64_MSR_VP_RUNTIME,
1199         HV_X64_MSR_SCONTROL,
1200         HV_X64_MSR_STIMER0_CONFIG,
1201         HV_X64_MSR_VP_ASSIST_PAGE,
1202         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1203         HV_X64_MSR_TSC_EMULATION_STATUS,
1204
1205         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1206         MSR_KVM_PV_EOI_EN,
1207
1208         MSR_IA32_TSC_ADJUST,
1209         MSR_IA32_TSCDEADLINE,
1210         MSR_IA32_ARCH_CAPABILITIES,
1211         MSR_IA32_MISC_ENABLE,
1212         MSR_IA32_MCG_STATUS,
1213         MSR_IA32_MCG_CTL,
1214         MSR_IA32_MCG_EXT_CTL,
1215         MSR_IA32_SMBASE,
1216         MSR_SMI_COUNT,
1217         MSR_PLATFORM_INFO,
1218         MSR_MISC_FEATURES_ENABLES,
1219         MSR_AMD64_VIRT_SPEC_CTRL,
1220         MSR_IA32_POWER_CTL,
1221
1222         /*
1223          * The following list leaves out MSRs whose values are determined
1224          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1225          * We always support the "true" VMX control MSRs, even if the host
1226          * processor does not, so I am putting these registers here rather
1227          * than in msrs_to_save_all.
1228          */
1229         MSR_IA32_VMX_BASIC,
1230         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1231         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1232         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1233         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1234         MSR_IA32_VMX_MISC,
1235         MSR_IA32_VMX_CR0_FIXED0,
1236         MSR_IA32_VMX_CR4_FIXED0,
1237         MSR_IA32_VMX_VMCS_ENUM,
1238         MSR_IA32_VMX_PROCBASED_CTLS2,
1239         MSR_IA32_VMX_EPT_VPID_CAP,
1240         MSR_IA32_VMX_VMFUNC,
1241
1242         MSR_K7_HWCR,
1243         MSR_KVM_POLL_CONTROL,
1244 };
1245
1246 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1247 static unsigned num_emulated_msrs;
1248
1249 /*
1250  * List of msr numbers which are used to expose MSR-based features that
1251  * can be used by a hypervisor to validate requested CPU features.
1252  */
1253 static const u32 msr_based_features_all[] = {
1254         MSR_IA32_VMX_BASIC,
1255         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1256         MSR_IA32_VMX_PINBASED_CTLS,
1257         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1258         MSR_IA32_VMX_PROCBASED_CTLS,
1259         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1260         MSR_IA32_VMX_EXIT_CTLS,
1261         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1262         MSR_IA32_VMX_ENTRY_CTLS,
1263         MSR_IA32_VMX_MISC,
1264         MSR_IA32_VMX_CR0_FIXED0,
1265         MSR_IA32_VMX_CR0_FIXED1,
1266         MSR_IA32_VMX_CR4_FIXED0,
1267         MSR_IA32_VMX_CR4_FIXED1,
1268         MSR_IA32_VMX_VMCS_ENUM,
1269         MSR_IA32_VMX_PROCBASED_CTLS2,
1270         MSR_IA32_VMX_EPT_VPID_CAP,
1271         MSR_IA32_VMX_VMFUNC,
1272
1273         MSR_F10H_DECFG,
1274         MSR_IA32_UCODE_REV,
1275         MSR_IA32_ARCH_CAPABILITIES,
1276 };
1277
1278 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1279 static unsigned int num_msr_based_features;
1280
1281 static u64 kvm_get_arch_capabilities(void)
1282 {
1283         u64 data = 0;
1284
1285         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1286                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1287
1288         /*
1289          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1290          * the nested hypervisor runs with NX huge pages.  If it is not,
1291          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1292          * L1 guests, so it need not worry about its own (L2) guests.
1293          */
1294         data |= ARCH_CAP_PSCHANGE_MC_NO;
1295
1296         /*
1297          * If we're doing cache flushes (either "always" or "cond")
1298          * we will do one whenever the guest does a vmlaunch/vmresume.
1299          * If an outer hypervisor is doing the cache flush for us
1300          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1301          * capability to the guest too, and if EPT is disabled we're not
1302          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1303          * require a nested hypervisor to do a flush of its own.
1304          */
1305         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1306                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1307
1308         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1309                 data |= ARCH_CAP_RDCL_NO;
1310         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1311                 data |= ARCH_CAP_SSB_NO;
1312         if (!boot_cpu_has_bug(X86_BUG_MDS))
1313                 data |= ARCH_CAP_MDS_NO;
1314
1315         /*
1316          * On TAA affected systems, export MDS_NO=0 when:
1317          *      - TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
1318          *      - Updated microcode is present. This is detected by
1319          *        the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
1320          *        that VERW clears CPU buffers.
1321          *
1322          * When MDS_NO=0 is exported, guests deploy clear CPU buffer
1323          * mitigation and don't complain:
1324          *
1325          *      "Vulnerable: Clear CPU buffers attempted, no microcode"
1326          *
1327          * If TSX is disabled on the system, guests are also mitigated against
1328          * TAA and clear CPU buffer mitigation is not required for guests.
1329          */
1330         if (boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM) &&
1331             (data & ARCH_CAP_TSX_CTRL_MSR))
1332                 data &= ~ARCH_CAP_MDS_NO;
1333
1334         return data;
1335 }
1336
1337 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1338 {
1339         switch (msr->index) {
1340         case MSR_IA32_ARCH_CAPABILITIES:
1341                 msr->data = kvm_get_arch_capabilities();
1342                 break;
1343         case MSR_IA32_UCODE_REV:
1344                 rdmsrl_safe(msr->index, &msr->data);
1345                 break;
1346         default:
1347                 if (kvm_x86_ops->get_msr_feature(msr))
1348                         return 1;
1349         }
1350         return 0;
1351 }
1352
1353 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1354 {
1355         struct kvm_msr_entry msr;
1356         int r;
1357
1358         msr.index = index;
1359         r = kvm_get_msr_feature(&msr);
1360         if (r)
1361                 return r;
1362
1363         *data = msr.data;
1364
1365         return 0;
1366 }
1367
1368 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1369 {
1370         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1371                 return false;
1372
1373         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1374                 return false;
1375
1376         if (efer & (EFER_LME | EFER_LMA) &&
1377             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1378                 return false;
1379
1380         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1381                 return false;
1382
1383         return true;
1384
1385 }
1386 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1387 {
1388         if (efer & efer_reserved_bits)
1389                 return false;
1390
1391         return __kvm_valid_efer(vcpu, efer);
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1394
1395 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1396 {
1397         u64 old_efer = vcpu->arch.efer;
1398         u64 efer = msr_info->data;
1399
1400         if (efer & efer_reserved_bits)
1401                 return 1;
1402
1403         if (!msr_info->host_initiated) {
1404                 if (!__kvm_valid_efer(vcpu, efer))
1405                         return 1;
1406
1407                 if (is_paging(vcpu) &&
1408                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1409                         return 1;
1410         }
1411
1412         efer &= ~EFER_LMA;
1413         efer |= vcpu->arch.efer & EFER_LMA;
1414
1415         kvm_x86_ops->set_efer(vcpu, efer);
1416
1417         /* Update reserved bits */
1418         if ((efer ^ old_efer) & EFER_NX)
1419                 kvm_mmu_reset_context(vcpu);
1420
1421         return 0;
1422 }
1423
1424 void kvm_enable_efer_bits(u64 mask)
1425 {
1426        efer_reserved_bits &= ~mask;
1427 }
1428 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1429
1430 /*
1431  * Write @data into the MSR specified by @index.  Select MSR specific fault
1432  * checks are bypassed if @host_initiated is %true.
1433  * Returns 0 on success, non-0 otherwise.
1434  * Assumes vcpu_load() was already called.
1435  */
1436 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1437                          bool host_initiated)
1438 {
1439         struct msr_data msr;
1440
1441         switch (index) {
1442         case MSR_FS_BASE:
1443         case MSR_GS_BASE:
1444         case MSR_KERNEL_GS_BASE:
1445         case MSR_CSTAR:
1446         case MSR_LSTAR:
1447                 if (is_noncanonical_address(data, vcpu))
1448                         return 1;
1449                 break;
1450         case MSR_IA32_SYSENTER_EIP:
1451         case MSR_IA32_SYSENTER_ESP:
1452                 /*
1453                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1454                  * non-canonical address is written on Intel but not on
1455                  * AMD (which ignores the top 32-bits, because it does
1456                  * not implement 64-bit SYSENTER).
1457                  *
1458                  * 64-bit code should hence be able to write a non-canonical
1459                  * value on AMD.  Making the address canonical ensures that
1460                  * vmentry does not fail on Intel after writing a non-canonical
1461                  * value, and that something deterministic happens if the guest
1462                  * invokes 64-bit SYSENTER.
1463                  */
1464                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1465         }
1466
1467         msr.data = data;
1468         msr.index = index;
1469         msr.host_initiated = host_initiated;
1470
1471         return kvm_x86_ops->set_msr(vcpu, &msr);
1472 }
1473
1474 /*
1475  * Read the MSR specified by @index into @data.  Select MSR specific fault
1476  * checks are bypassed if @host_initiated is %true.
1477  * Returns 0 on success, non-0 otherwise.
1478  * Assumes vcpu_load() was already called.
1479  */
1480 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1481                          bool host_initiated)
1482 {
1483         struct msr_data msr;
1484         int ret;
1485
1486         msr.index = index;
1487         msr.host_initiated = host_initiated;
1488
1489         ret = kvm_x86_ops->get_msr(vcpu, &msr);
1490         if (!ret)
1491                 *data = msr.data;
1492         return ret;
1493 }
1494
1495 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1496 {
1497         return __kvm_get_msr(vcpu, index, data, false);
1498 }
1499 EXPORT_SYMBOL_GPL(kvm_get_msr);
1500
1501 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1502 {
1503         return __kvm_set_msr(vcpu, index, data, false);
1504 }
1505 EXPORT_SYMBOL_GPL(kvm_set_msr);
1506
1507 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1508 {
1509         u32 ecx = kvm_rcx_read(vcpu);
1510         u64 data;
1511
1512         if (kvm_get_msr(vcpu, ecx, &data)) {
1513                 trace_kvm_msr_read_ex(ecx);
1514                 kvm_inject_gp(vcpu, 0);
1515                 return 1;
1516         }
1517
1518         trace_kvm_msr_read(ecx, data);
1519
1520         kvm_rax_write(vcpu, data & -1u);
1521         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1522         return kvm_skip_emulated_instruction(vcpu);
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1525
1526 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1527 {
1528         u32 ecx = kvm_rcx_read(vcpu);
1529         u64 data = kvm_read_edx_eax(vcpu);
1530
1531         if (kvm_set_msr(vcpu, ecx, data)) {
1532                 trace_kvm_msr_write_ex(ecx, data);
1533                 kvm_inject_gp(vcpu, 0);
1534                 return 1;
1535         }
1536
1537         trace_kvm_msr_write(ecx, data);
1538         return kvm_skip_emulated_instruction(vcpu);
1539 }
1540 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1541
1542 /*
1543  * Adapt set_msr() to msr_io()'s calling convention
1544  */
1545 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1546 {
1547         return __kvm_get_msr(vcpu, index, data, true);
1548 }
1549
1550 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1551 {
1552         return __kvm_set_msr(vcpu, index, *data, true);
1553 }
1554
1555 #ifdef CONFIG_X86_64
1556 struct pvclock_gtod_data {
1557         seqcount_t      seq;
1558
1559         struct { /* extract of a clocksource struct */
1560                 int vclock_mode;
1561                 u64     cycle_last;
1562                 u64     mask;
1563                 u32     mult;
1564                 u32     shift;
1565         } clock;
1566
1567         u64             boot_ns;
1568         u64             nsec_base;
1569         u64             wall_time_sec;
1570 };
1571
1572 static struct pvclock_gtod_data pvclock_gtod_data;
1573
1574 static void update_pvclock_gtod(struct timekeeper *tk)
1575 {
1576         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1577         u64 boot_ns;
1578
1579         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1580
1581         write_seqcount_begin(&vdata->seq);
1582
1583         /* copy pvclock gtod data */
1584         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1585         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1586         vdata->clock.mask               = tk->tkr_mono.mask;
1587         vdata->clock.mult               = tk->tkr_mono.mult;
1588         vdata->clock.shift              = tk->tkr_mono.shift;
1589
1590         vdata->boot_ns                  = boot_ns;
1591         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1592
1593         vdata->wall_time_sec            = tk->xtime_sec;
1594
1595         write_seqcount_end(&vdata->seq);
1596 }
1597 #endif
1598
1599 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1600 {
1601         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1602         kvm_vcpu_kick(vcpu);
1603 }
1604
1605 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1606 {
1607         int version;
1608         int r;
1609         struct pvclock_wall_clock wc;
1610         struct timespec64 boot;
1611
1612         if (!wall_clock)
1613                 return;
1614
1615         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1616         if (r)
1617                 return;
1618
1619         if (version & 1)
1620                 ++version;  /* first time write, random junk */
1621
1622         ++version;
1623
1624         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1625                 return;
1626
1627         /*
1628          * The guest calculates current wall clock time by adding
1629          * system time (updated by kvm_guest_time_update below) to the
1630          * wall clock specified here.  guest system time equals host
1631          * system time for us, thus we must fill in host boot time here.
1632          */
1633         getboottime64(&boot);
1634
1635         if (kvm->arch.kvmclock_offset) {
1636                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1637                 boot = timespec64_sub(boot, ts);
1638         }
1639         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1640         wc.nsec = boot.tv_nsec;
1641         wc.version = version;
1642
1643         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1644
1645         version++;
1646         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1647 }
1648
1649 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1650 {
1651         do_shl32_div32(dividend, divisor);
1652         return dividend;
1653 }
1654
1655 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1656                                s8 *pshift, u32 *pmultiplier)
1657 {
1658         uint64_t scaled64;
1659         int32_t  shift = 0;
1660         uint64_t tps64;
1661         uint32_t tps32;
1662
1663         tps64 = base_hz;
1664         scaled64 = scaled_hz;
1665         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1666                 tps64 >>= 1;
1667                 shift--;
1668         }
1669
1670         tps32 = (uint32_t)tps64;
1671         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1672                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1673                         scaled64 >>= 1;
1674                 else
1675                         tps32 <<= 1;
1676                 shift++;
1677         }
1678
1679         *pshift = shift;
1680         *pmultiplier = div_frac(scaled64, tps32);
1681 }
1682
1683 #ifdef CONFIG_X86_64
1684 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1685 #endif
1686
1687 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1688 static unsigned long max_tsc_khz;
1689
1690 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1691 {
1692         u64 v = (u64)khz * (1000000 + ppm);
1693         do_div(v, 1000000);
1694         return v;
1695 }
1696
1697 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1698 {
1699         u64 ratio;
1700
1701         /* Guest TSC same frequency as host TSC? */
1702         if (!scale) {
1703                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1704                 return 0;
1705         }
1706
1707         /* TSC scaling supported? */
1708         if (!kvm_has_tsc_control) {
1709                 if (user_tsc_khz > tsc_khz) {
1710                         vcpu->arch.tsc_catchup = 1;
1711                         vcpu->arch.tsc_always_catchup = 1;
1712                         return 0;
1713                 } else {
1714                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1715                         return -1;
1716                 }
1717         }
1718
1719         /* TSC scaling required  - calculate ratio */
1720         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1721                                 user_tsc_khz, tsc_khz);
1722
1723         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1724                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1725                                     user_tsc_khz);
1726                 return -1;
1727         }
1728
1729         vcpu->arch.tsc_scaling_ratio = ratio;
1730         return 0;
1731 }
1732
1733 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1734 {
1735         u32 thresh_lo, thresh_hi;
1736         int use_scaling = 0;
1737
1738         /* tsc_khz can be zero if TSC calibration fails */
1739         if (user_tsc_khz == 0) {
1740                 /* set tsc_scaling_ratio to a safe value */
1741                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1742                 return -1;
1743         }
1744
1745         /* Compute a scale to convert nanoseconds in TSC cycles */
1746         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1747                            &vcpu->arch.virtual_tsc_shift,
1748                            &vcpu->arch.virtual_tsc_mult);
1749         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1750
1751         /*
1752          * Compute the variation in TSC rate which is acceptable
1753          * within the range of tolerance and decide if the
1754          * rate being applied is within that bounds of the hardware
1755          * rate.  If so, no scaling or compensation need be done.
1756          */
1757         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1758         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1759         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1760                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1761                 use_scaling = 1;
1762         }
1763         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1764 }
1765
1766 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1767 {
1768         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1769                                       vcpu->arch.virtual_tsc_mult,
1770                                       vcpu->arch.virtual_tsc_shift);
1771         tsc += vcpu->arch.this_tsc_write;
1772         return tsc;
1773 }
1774
1775 static inline int gtod_is_based_on_tsc(int mode)
1776 {
1777         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1778 }
1779
1780 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1781 {
1782 #ifdef CONFIG_X86_64
1783         bool vcpus_matched;
1784         struct kvm_arch *ka = &vcpu->kvm->arch;
1785         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1786
1787         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1788                          atomic_read(&vcpu->kvm->online_vcpus));
1789
1790         /*
1791          * Once the masterclock is enabled, always perform request in
1792          * order to update it.
1793          *
1794          * In order to enable masterclock, the host clocksource must be TSC
1795          * and the vcpus need to have matched TSCs.  When that happens,
1796          * perform request to enable masterclock.
1797          */
1798         if (ka->use_master_clock ||
1799             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1800                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1801
1802         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1803                             atomic_read(&vcpu->kvm->online_vcpus),
1804                             ka->use_master_clock, gtod->clock.vclock_mode);
1805 #endif
1806 }
1807
1808 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1809 {
1810         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1811         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1812 }
1813
1814 /*
1815  * Multiply tsc by a fixed point number represented by ratio.
1816  *
1817  * The most significant 64-N bits (mult) of ratio represent the
1818  * integral part of the fixed point number; the remaining N bits
1819  * (frac) represent the fractional part, ie. ratio represents a fixed
1820  * point number (mult + frac * 2^(-N)).
1821  *
1822  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1823  */
1824 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1825 {
1826         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1827 }
1828
1829 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1830 {
1831         u64 _tsc = tsc;
1832         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1833
1834         if (ratio != kvm_default_tsc_scaling_ratio)
1835                 _tsc = __scale_tsc(ratio, tsc);
1836
1837         return _tsc;
1838 }
1839 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1840
1841 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1842 {
1843         u64 tsc;
1844
1845         tsc = kvm_scale_tsc(vcpu, rdtsc());
1846
1847         return target_tsc - tsc;
1848 }
1849
1850 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1851 {
1852         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1853
1854         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1857
1858 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1859 {
1860         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1861 }
1862
1863 static inline bool kvm_check_tsc_unstable(void)
1864 {
1865 #ifdef CONFIG_X86_64
1866         /*
1867          * TSC is marked unstable when we're running on Hyper-V,
1868          * 'TSC page' clocksource is good.
1869          */
1870         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1871                 return false;
1872 #endif
1873         return check_tsc_unstable();
1874 }
1875
1876 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1877 {
1878         struct kvm *kvm = vcpu->kvm;
1879         u64 offset, ns, elapsed;
1880         unsigned long flags;
1881         bool matched;
1882         bool already_matched;
1883         u64 data = msr->data;
1884         bool synchronizing = false;
1885
1886         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1887         offset = kvm_compute_tsc_offset(vcpu, data);
1888         ns = ktime_get_boottime_ns();
1889         elapsed = ns - kvm->arch.last_tsc_nsec;
1890
1891         if (vcpu->arch.virtual_tsc_khz) {
1892                 if (data == 0 && msr->host_initiated) {
1893                         /*
1894                          * detection of vcpu initialization -- need to sync
1895                          * with other vCPUs. This particularly helps to keep
1896                          * kvm_clock stable after CPU hotplug
1897                          */
1898                         synchronizing = true;
1899                 } else {
1900                         u64 tsc_exp = kvm->arch.last_tsc_write +
1901                                                 nsec_to_cycles(vcpu, elapsed);
1902                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1903                         /*
1904                          * Special case: TSC write with a small delta (1 second)
1905                          * of virtual cycle time against real time is
1906                          * interpreted as an attempt to synchronize the CPU.
1907                          */
1908                         synchronizing = data < tsc_exp + tsc_hz &&
1909                                         data + tsc_hz > tsc_exp;
1910                 }
1911         }
1912
1913         /*
1914          * For a reliable TSC, we can match TSC offsets, and for an unstable
1915          * TSC, we add elapsed time in this computation.  We could let the
1916          * compensation code attempt to catch up if we fall behind, but
1917          * it's better to try to match offsets from the beginning.
1918          */
1919         if (synchronizing &&
1920             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1921                 if (!kvm_check_tsc_unstable()) {
1922                         offset = kvm->arch.cur_tsc_offset;
1923                 } else {
1924                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1925                         data += delta;
1926                         offset = kvm_compute_tsc_offset(vcpu, data);
1927                 }
1928                 matched = true;
1929                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1930         } else {
1931                 /*
1932                  * We split periods of matched TSC writes into generations.
1933                  * For each generation, we track the original measured
1934                  * nanosecond time, offset, and write, so if TSCs are in
1935                  * sync, we can match exact offset, and if not, we can match
1936                  * exact software computation in compute_guest_tsc()
1937                  *
1938                  * These values are tracked in kvm->arch.cur_xxx variables.
1939                  */
1940                 kvm->arch.cur_tsc_generation++;
1941                 kvm->arch.cur_tsc_nsec = ns;
1942                 kvm->arch.cur_tsc_write = data;
1943                 kvm->arch.cur_tsc_offset = offset;
1944                 matched = false;
1945         }
1946
1947         /*
1948          * We also track th most recent recorded KHZ, write and time to
1949          * allow the matching interval to be extended at each write.
1950          */
1951         kvm->arch.last_tsc_nsec = ns;
1952         kvm->arch.last_tsc_write = data;
1953         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1954
1955         vcpu->arch.last_guest_tsc = data;
1956
1957         /* Keep track of which generation this VCPU has synchronized to */
1958         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1959         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1960         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1961
1962         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1963                 update_ia32_tsc_adjust_msr(vcpu, offset);
1964
1965         kvm_vcpu_write_tsc_offset(vcpu, offset);
1966         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1967
1968         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1969         if (!matched) {
1970                 kvm->arch.nr_vcpus_matched_tsc = 0;
1971         } else if (!already_matched) {
1972                 kvm->arch.nr_vcpus_matched_tsc++;
1973         }
1974
1975         kvm_track_tsc_matching(vcpu);
1976         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1977 }
1978
1979 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1980
1981 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1982                                            s64 adjustment)
1983 {
1984         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1985         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1986 }
1987
1988 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1989 {
1990         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1991                 WARN_ON(adjustment < 0);
1992         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1993         adjust_tsc_offset_guest(vcpu, adjustment);
1994 }
1995
1996 #ifdef CONFIG_X86_64
1997
1998 static u64 read_tsc(void)
1999 {
2000         u64 ret = (u64)rdtsc_ordered();
2001         u64 last = pvclock_gtod_data.clock.cycle_last;
2002
2003         if (likely(ret >= last))
2004                 return ret;
2005
2006         /*
2007          * GCC likes to generate cmov here, but this branch is extremely
2008          * predictable (it's just a function of time and the likely is
2009          * very likely) and there's a data dependence, so force GCC
2010          * to generate a branch instead.  I don't barrier() because
2011          * we don't actually need a barrier, and if this function
2012          * ever gets inlined it will generate worse code.
2013          */
2014         asm volatile ("");
2015         return last;
2016 }
2017
2018 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
2019 {
2020         long v;
2021         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2022         u64 tsc_pg_val;
2023
2024         switch (gtod->clock.vclock_mode) {
2025         case VCLOCK_HVCLOCK:
2026                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2027                                                   tsc_timestamp);
2028                 if (tsc_pg_val != U64_MAX) {
2029                         /* TSC page valid */
2030                         *mode = VCLOCK_HVCLOCK;
2031                         v = (tsc_pg_val - gtod->clock.cycle_last) &
2032                                 gtod->clock.mask;
2033                 } else {
2034                         /* TSC page invalid */
2035                         *mode = VCLOCK_NONE;
2036                 }
2037                 break;
2038         case VCLOCK_TSC:
2039                 *mode = VCLOCK_TSC;
2040                 *tsc_timestamp = read_tsc();
2041                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
2042                         gtod->clock.mask;
2043                 break;
2044         default:
2045                 *mode = VCLOCK_NONE;
2046         }
2047
2048         if (*mode == VCLOCK_NONE)
2049                 *tsc_timestamp = v = 0;
2050
2051         return v * gtod->clock.mult;
2052 }
2053
2054 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
2055 {
2056         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2057         unsigned long seq;
2058         int mode;
2059         u64 ns;
2060
2061         do {
2062                 seq = read_seqcount_begin(&gtod->seq);
2063                 ns = gtod->nsec_base;
2064                 ns += vgettsc(tsc_timestamp, &mode);
2065                 ns >>= gtod->clock.shift;
2066                 ns += gtod->boot_ns;
2067         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2068         *t = ns;
2069
2070         return mode;
2071 }
2072
2073 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2074 {
2075         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2076         unsigned long seq;
2077         int mode;
2078         u64 ns;
2079
2080         do {
2081                 seq = read_seqcount_begin(&gtod->seq);
2082                 ts->tv_sec = gtod->wall_time_sec;
2083                 ns = gtod->nsec_base;
2084                 ns += vgettsc(tsc_timestamp, &mode);
2085                 ns >>= gtod->clock.shift;
2086         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2087
2088         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2089         ts->tv_nsec = ns;
2090
2091         return mode;
2092 }
2093
2094 /* returns true if host is using TSC based clocksource */
2095 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2096 {
2097         /* checked again under seqlock below */
2098         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2099                 return false;
2100
2101         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
2102                                                       tsc_timestamp));
2103 }
2104
2105 /* returns true if host is using TSC based clocksource */
2106 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2107                                            u64 *tsc_timestamp)
2108 {
2109         /* checked again under seqlock below */
2110         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2111                 return false;
2112
2113         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2114 }
2115 #endif
2116
2117 /*
2118  *
2119  * Assuming a stable TSC across physical CPUS, and a stable TSC
2120  * across virtual CPUs, the following condition is possible.
2121  * Each numbered line represents an event visible to both
2122  * CPUs at the next numbered event.
2123  *
2124  * "timespecX" represents host monotonic time. "tscX" represents
2125  * RDTSC value.
2126  *
2127  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2128  *
2129  * 1.  read timespec0,tsc0
2130  * 2.                                   | timespec1 = timespec0 + N
2131  *                                      | tsc1 = tsc0 + M
2132  * 3. transition to guest               | transition to guest
2133  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2134  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2135  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2136  *
2137  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2138  *
2139  *      - ret0 < ret1
2140  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2141  *              ...
2142  *      - 0 < N - M => M < N
2143  *
2144  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2145  * always the case (the difference between two distinct xtime instances
2146  * might be smaller then the difference between corresponding TSC reads,
2147  * when updating guest vcpus pvclock areas).
2148  *
2149  * To avoid that problem, do not allow visibility of distinct
2150  * system_timestamp/tsc_timestamp values simultaneously: use a master
2151  * copy of host monotonic time values. Update that master copy
2152  * in lockstep.
2153  *
2154  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2155  *
2156  */
2157
2158 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2159 {
2160 #ifdef CONFIG_X86_64
2161         struct kvm_arch *ka = &kvm->arch;
2162         int vclock_mode;
2163         bool host_tsc_clocksource, vcpus_matched;
2164
2165         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2166                         atomic_read(&kvm->online_vcpus));
2167
2168         /*
2169          * If the host uses TSC clock, then passthrough TSC as stable
2170          * to the guest.
2171          */
2172         host_tsc_clocksource = kvm_get_time_and_clockread(
2173                                         &ka->master_kernel_ns,
2174                                         &ka->master_cycle_now);
2175
2176         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2177                                 && !ka->backwards_tsc_observed
2178                                 && !ka->boot_vcpu_runs_old_kvmclock;
2179
2180         if (ka->use_master_clock)
2181                 atomic_set(&kvm_guest_has_master_clock, 1);
2182
2183         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2184         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2185                                         vcpus_matched);
2186 #endif
2187 }
2188
2189 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2190 {
2191         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2192 }
2193
2194 static void kvm_gen_update_masterclock(struct kvm *kvm)
2195 {
2196 #ifdef CONFIG_X86_64
2197         int i;
2198         struct kvm_vcpu *vcpu;
2199         struct kvm_arch *ka = &kvm->arch;
2200
2201         spin_lock(&ka->pvclock_gtod_sync_lock);
2202         kvm_make_mclock_inprogress_request(kvm);
2203         /* no guest entries from this point */
2204         pvclock_update_vm_gtod_copy(kvm);
2205
2206         kvm_for_each_vcpu(i, vcpu, kvm)
2207                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2208
2209         /* guest entries allowed */
2210         kvm_for_each_vcpu(i, vcpu, kvm)
2211                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2212
2213         spin_unlock(&ka->pvclock_gtod_sync_lock);
2214 #endif
2215 }
2216
2217 u64 get_kvmclock_ns(struct kvm *kvm)
2218 {
2219         struct kvm_arch *ka = &kvm->arch;
2220         struct pvclock_vcpu_time_info hv_clock;
2221         u64 ret;
2222
2223         spin_lock(&ka->pvclock_gtod_sync_lock);
2224         if (!ka->use_master_clock) {
2225                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2226                 return ktime_get_boottime_ns() + ka->kvmclock_offset;
2227         }
2228
2229         hv_clock.tsc_timestamp = ka->master_cycle_now;
2230         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2231         spin_unlock(&ka->pvclock_gtod_sync_lock);
2232
2233         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2234         get_cpu();
2235
2236         if (__this_cpu_read(cpu_tsc_khz)) {
2237                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2238                                    &hv_clock.tsc_shift,
2239                                    &hv_clock.tsc_to_system_mul);
2240                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2241         } else
2242                 ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2243
2244         put_cpu();
2245
2246         return ret;
2247 }
2248
2249 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2250 {
2251         struct kvm_vcpu_arch *vcpu = &v->arch;
2252         struct pvclock_vcpu_time_info guest_hv_clock;
2253
2254         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2255                 &guest_hv_clock, sizeof(guest_hv_clock))))
2256                 return;
2257
2258         /* This VCPU is paused, but it's legal for a guest to read another
2259          * VCPU's kvmclock, so we really have to follow the specification where
2260          * it says that version is odd if data is being modified, and even after
2261          * it is consistent.
2262          *
2263          * Version field updates must be kept separate.  This is because
2264          * kvm_write_guest_cached might use a "rep movs" instruction, and
2265          * writes within a string instruction are weakly ordered.  So there
2266          * are three writes overall.
2267          *
2268          * As a small optimization, only write the version field in the first
2269          * and third write.  The vcpu->pv_time cache is still valid, because the
2270          * version field is the first in the struct.
2271          */
2272         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2273
2274         if (guest_hv_clock.version & 1)
2275                 ++guest_hv_clock.version;  /* first time write, random junk */
2276
2277         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2278         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2279                                 &vcpu->hv_clock,
2280                                 sizeof(vcpu->hv_clock.version));
2281
2282         smp_wmb();
2283
2284         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2285         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2286
2287         if (vcpu->pvclock_set_guest_stopped_request) {
2288                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2289                 vcpu->pvclock_set_guest_stopped_request = false;
2290         }
2291
2292         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2293
2294         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2295                                 &vcpu->hv_clock,
2296                                 sizeof(vcpu->hv_clock));
2297
2298         smp_wmb();
2299
2300         vcpu->hv_clock.version++;
2301         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2302                                 &vcpu->hv_clock,
2303                                 sizeof(vcpu->hv_clock.version));
2304 }
2305
2306 static int kvm_guest_time_update(struct kvm_vcpu *v)
2307 {
2308         unsigned long flags, tgt_tsc_khz;
2309         struct kvm_vcpu_arch *vcpu = &v->arch;
2310         struct kvm_arch *ka = &v->kvm->arch;
2311         s64 kernel_ns;
2312         u64 tsc_timestamp, host_tsc;
2313         u8 pvclock_flags;
2314         bool use_master_clock;
2315
2316         kernel_ns = 0;
2317         host_tsc = 0;
2318
2319         /*
2320          * If the host uses TSC clock, then passthrough TSC as stable
2321          * to the guest.
2322          */
2323         spin_lock(&ka->pvclock_gtod_sync_lock);
2324         use_master_clock = ka->use_master_clock;
2325         if (use_master_clock) {
2326                 host_tsc = ka->master_cycle_now;
2327                 kernel_ns = ka->master_kernel_ns;
2328         }
2329         spin_unlock(&ka->pvclock_gtod_sync_lock);
2330
2331         /* Keep irq disabled to prevent changes to the clock */
2332         local_irq_save(flags);
2333         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2334         if (unlikely(tgt_tsc_khz == 0)) {
2335                 local_irq_restore(flags);
2336                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2337                 return 1;
2338         }
2339         if (!use_master_clock) {
2340                 host_tsc = rdtsc();
2341                 kernel_ns = ktime_get_boottime_ns();
2342         }
2343
2344         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2345
2346         /*
2347          * We may have to catch up the TSC to match elapsed wall clock
2348          * time for two reasons, even if kvmclock is used.
2349          *   1) CPU could have been running below the maximum TSC rate
2350          *   2) Broken TSC compensation resets the base at each VCPU
2351          *      entry to avoid unknown leaps of TSC even when running
2352          *      again on the same CPU.  This may cause apparent elapsed
2353          *      time to disappear, and the guest to stand still or run
2354          *      very slowly.
2355          */
2356         if (vcpu->tsc_catchup) {
2357                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2358                 if (tsc > tsc_timestamp) {
2359                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2360                         tsc_timestamp = tsc;
2361                 }
2362         }
2363
2364         local_irq_restore(flags);
2365
2366         /* With all the info we got, fill in the values */
2367
2368         if (kvm_has_tsc_control)
2369                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2370
2371         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2372                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2373                                    &vcpu->hv_clock.tsc_shift,
2374                                    &vcpu->hv_clock.tsc_to_system_mul);
2375                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2376         }
2377
2378         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2379         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2380         vcpu->last_guest_tsc = tsc_timestamp;
2381
2382         /* If the host uses TSC clocksource, then it is stable */
2383         pvclock_flags = 0;
2384         if (use_master_clock)
2385                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2386
2387         vcpu->hv_clock.flags = pvclock_flags;
2388
2389         if (vcpu->pv_time_enabled)
2390                 kvm_setup_pvclock_page(v);
2391         if (v == kvm_get_vcpu(v->kvm, 0))
2392                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2393         return 0;
2394 }
2395
2396 /*
2397  * kvmclock updates which are isolated to a given vcpu, such as
2398  * vcpu->cpu migration, should not allow system_timestamp from
2399  * the rest of the vcpus to remain static. Otherwise ntp frequency
2400  * correction applies to one vcpu's system_timestamp but not
2401  * the others.
2402  *
2403  * So in those cases, request a kvmclock update for all vcpus.
2404  * We need to rate-limit these requests though, as they can
2405  * considerably slow guests that have a large number of vcpus.
2406  * The time for a remote vcpu to update its kvmclock is bound
2407  * by the delay we use to rate-limit the updates.
2408  */
2409
2410 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2411
2412 static void kvmclock_update_fn(struct work_struct *work)
2413 {
2414         int i;
2415         struct delayed_work *dwork = to_delayed_work(work);
2416         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2417                                            kvmclock_update_work);
2418         struct kvm *kvm = container_of(ka, struct kvm, arch);
2419         struct kvm_vcpu *vcpu;
2420
2421         kvm_for_each_vcpu(i, vcpu, kvm) {
2422                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2423                 kvm_vcpu_kick(vcpu);
2424         }
2425 }
2426
2427 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2428 {
2429         struct kvm *kvm = v->kvm;
2430
2431         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2432         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2433                                         KVMCLOCK_UPDATE_DELAY);
2434 }
2435
2436 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2437
2438 static void kvmclock_sync_fn(struct work_struct *work)
2439 {
2440         struct delayed_work *dwork = to_delayed_work(work);
2441         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2442                                            kvmclock_sync_work);
2443         struct kvm *kvm = container_of(ka, struct kvm, arch);
2444
2445         if (!kvmclock_periodic_sync)
2446                 return;
2447
2448         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2449         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2450                                         KVMCLOCK_SYNC_PERIOD);
2451 }
2452
2453 /*
2454  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2455  */
2456 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2457 {
2458         /* McStatusWrEn enabled? */
2459         if (guest_cpuid_is_amd(vcpu))
2460                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2461
2462         return false;
2463 }
2464
2465 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2466 {
2467         u64 mcg_cap = vcpu->arch.mcg_cap;
2468         unsigned bank_num = mcg_cap & 0xff;
2469         u32 msr = msr_info->index;
2470         u64 data = msr_info->data;
2471
2472         switch (msr) {
2473         case MSR_IA32_MCG_STATUS:
2474                 vcpu->arch.mcg_status = data;
2475                 break;
2476         case MSR_IA32_MCG_CTL:
2477                 if (!(mcg_cap & MCG_CTL_P) &&
2478                     (data || !msr_info->host_initiated))
2479                         return 1;
2480                 if (data != 0 && data != ~(u64)0)
2481                         return 1;
2482                 vcpu->arch.mcg_ctl = data;
2483                 break;
2484         default:
2485                 if (msr >= MSR_IA32_MC0_CTL &&
2486                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2487                         u32 offset = msr - MSR_IA32_MC0_CTL;
2488                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2489                          * some Linux kernels though clear bit 10 in bank 4 to
2490                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2491                          * this to avoid an uncatched #GP in the guest
2492                          */
2493                         if ((offset & 0x3) == 0 &&
2494                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2495                                 return -1;
2496
2497                         /* MCi_STATUS */
2498                         if (!msr_info->host_initiated &&
2499                             (offset & 0x3) == 1 && data != 0) {
2500                                 if (!can_set_mci_status(vcpu))
2501                                         return -1;
2502                         }
2503
2504                         vcpu->arch.mce_banks[offset] = data;
2505                         break;
2506                 }
2507                 return 1;
2508         }
2509         return 0;
2510 }
2511
2512 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2513 {
2514         struct kvm *kvm = vcpu->kvm;
2515         int lm = is_long_mode(vcpu);
2516         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2517                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2518         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2519                 : kvm->arch.xen_hvm_config.blob_size_32;
2520         u32 page_num = data & ~PAGE_MASK;
2521         u64 page_addr = data & PAGE_MASK;
2522         u8 *page;
2523         int r;
2524
2525         r = -E2BIG;
2526         if (page_num >= blob_size)
2527                 goto out;
2528         r = -ENOMEM;
2529         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2530         if (IS_ERR(page)) {
2531                 r = PTR_ERR(page);
2532                 goto out;
2533         }
2534         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2535                 goto out_free;
2536         r = 0;
2537 out_free:
2538         kfree(page);
2539 out:
2540         return r;
2541 }
2542
2543 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2544 {
2545         gpa_t gpa = data & ~0x3f;
2546
2547         /* Bits 3:5 are reserved, Should be zero */
2548         if (data & 0x38)
2549                 return 1;
2550
2551         vcpu->arch.apf.msr_val = data;
2552
2553         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2554                 kvm_clear_async_pf_completion_queue(vcpu);
2555                 kvm_async_pf_hash_reset(vcpu);
2556                 return 0;
2557         }
2558
2559         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2560                                         sizeof(u32)))
2561                 return 1;
2562
2563         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2564         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2565         kvm_async_pf_wakeup_all(vcpu);
2566         return 0;
2567 }
2568
2569 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2570 {
2571         vcpu->arch.pv_time_enabled = false;
2572         vcpu->arch.time = 0;
2573 }
2574
2575 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2576 {
2577         ++vcpu->stat.tlb_flush;
2578         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2579 }
2580
2581 static void record_steal_time(struct kvm_vcpu *vcpu)
2582 {
2583         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2584                 return;
2585
2586         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2587                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2588                 return;
2589
2590         /*
2591          * Doing a TLB flush here, on the guest's behalf, can avoid
2592          * expensive IPIs.
2593          */
2594         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2595                 vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2596         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2597                 kvm_vcpu_flush_tlb(vcpu, false);
2598
2599         if (vcpu->arch.st.steal.version & 1)
2600                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2601
2602         vcpu->arch.st.steal.version += 1;
2603
2604         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2605                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2606
2607         smp_wmb();
2608
2609         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2610                 vcpu->arch.st.last_steal;
2611         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2612
2613         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2614                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2615
2616         smp_wmb();
2617
2618         vcpu->arch.st.steal.version += 1;
2619
2620         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2621                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2622 }
2623
2624 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2625 {
2626         bool pr = false;
2627         u32 msr = msr_info->index;
2628         u64 data = msr_info->data;
2629
2630         switch (msr) {
2631         case MSR_AMD64_NB_CFG:
2632         case MSR_IA32_UCODE_WRITE:
2633         case MSR_VM_HSAVE_PA:
2634         case MSR_AMD64_PATCH_LOADER:
2635         case MSR_AMD64_BU_CFG2:
2636         case MSR_AMD64_DC_CFG:
2637         case MSR_F15H_EX_CFG:
2638                 break;
2639
2640         case MSR_IA32_UCODE_REV:
2641                 if (msr_info->host_initiated)
2642                         vcpu->arch.microcode_version = data;
2643                 break;
2644         case MSR_IA32_ARCH_CAPABILITIES:
2645                 if (!msr_info->host_initiated)
2646                         return 1;
2647                 vcpu->arch.arch_capabilities = data;
2648                 break;
2649         case MSR_EFER:
2650                 return set_efer(vcpu, msr_info);
2651         case MSR_K7_HWCR:
2652                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2653                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2654                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2655
2656                 /* Handle McStatusWrEn */
2657                 if (data == BIT_ULL(18)) {
2658                         vcpu->arch.msr_hwcr = data;
2659                 } else if (data != 0) {
2660                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2661                                     data);
2662                         return 1;
2663                 }
2664                 break;
2665         case MSR_FAM10H_MMIO_CONF_BASE:
2666                 if (data != 0) {
2667                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2668                                     "0x%llx\n", data);
2669                         return 1;
2670                 }
2671                 break;
2672         case MSR_IA32_DEBUGCTLMSR:
2673                 if (!data) {
2674                         /* We support the non-activated case already */
2675                         break;
2676                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2677                         /* Values other than LBR and BTF are vendor-specific,
2678                            thus reserved and should throw a #GP */
2679                         return 1;
2680                 }
2681                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2682                             __func__, data);
2683                 break;
2684         case 0x200 ... 0x2ff:
2685                 return kvm_mtrr_set_msr(vcpu, msr, data);
2686         case MSR_IA32_APICBASE:
2687                 return kvm_set_apic_base(vcpu, msr_info);
2688         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2689                 return kvm_x2apic_msr_write(vcpu, msr, data);
2690         case MSR_IA32_TSCDEADLINE:
2691                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2692                 break;
2693         case MSR_IA32_TSC_ADJUST:
2694                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2695                         if (!msr_info->host_initiated) {
2696                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2697                                 adjust_tsc_offset_guest(vcpu, adj);
2698                         }
2699                         vcpu->arch.ia32_tsc_adjust_msr = data;
2700                 }
2701                 break;
2702         case MSR_IA32_MISC_ENABLE:
2703                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2704                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2705                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2706                                 return 1;
2707                         vcpu->arch.ia32_misc_enable_msr = data;
2708                         kvm_update_cpuid(vcpu);
2709                 } else {
2710                         vcpu->arch.ia32_misc_enable_msr = data;
2711                 }
2712                 break;
2713         case MSR_IA32_SMBASE:
2714                 if (!msr_info->host_initiated)
2715                         return 1;
2716                 vcpu->arch.smbase = data;
2717                 break;
2718         case MSR_IA32_POWER_CTL:
2719                 vcpu->arch.msr_ia32_power_ctl = data;
2720                 break;
2721         case MSR_IA32_TSC:
2722                 kvm_write_tsc(vcpu, msr_info);
2723                 break;
2724         case MSR_SMI_COUNT:
2725                 if (!msr_info->host_initiated)
2726                         return 1;
2727                 vcpu->arch.smi_count = data;
2728                 break;
2729         case MSR_KVM_WALL_CLOCK_NEW:
2730         case MSR_KVM_WALL_CLOCK:
2731                 vcpu->kvm->arch.wall_clock = data;
2732                 kvm_write_wall_clock(vcpu->kvm, data);
2733                 break;
2734         case MSR_KVM_SYSTEM_TIME_NEW:
2735         case MSR_KVM_SYSTEM_TIME: {
2736                 struct kvm_arch *ka = &vcpu->kvm->arch;
2737
2738                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2739                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2740
2741                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2742                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2743
2744                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2745                 }
2746
2747                 vcpu->arch.time = data;
2748                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2749
2750                 /* we verify if the enable bit is set... */
2751                 vcpu->arch.pv_time_enabled = false;
2752                 if (!(data & 1))
2753                         break;
2754
2755                 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2756                      &vcpu->arch.pv_time, data & ~1ULL,
2757                      sizeof(struct pvclock_vcpu_time_info)))
2758                         vcpu->arch.pv_time_enabled = true;
2759
2760                 break;
2761         }
2762         case MSR_KVM_ASYNC_PF_EN:
2763                 if (kvm_pv_enable_async_pf(vcpu, data))
2764                         return 1;
2765                 break;
2766         case MSR_KVM_STEAL_TIME:
2767
2768                 if (unlikely(!sched_info_on()))
2769                         return 1;
2770
2771                 if (data & KVM_STEAL_RESERVED_MASK)
2772                         return 1;
2773
2774                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2775                                                 data & KVM_STEAL_VALID_BITS,
2776                                                 sizeof(struct kvm_steal_time)))
2777                         return 1;
2778
2779                 vcpu->arch.st.msr_val = data;
2780
2781                 if (!(data & KVM_MSR_ENABLED))
2782                         break;
2783
2784                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2785
2786                 break;
2787         case MSR_KVM_PV_EOI_EN:
2788                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2789                         return 1;
2790                 break;
2791
2792         case MSR_KVM_POLL_CONTROL:
2793                 /* only enable bit supported */
2794                 if (data & (-1ULL << 1))
2795                         return 1;
2796
2797                 vcpu->arch.msr_kvm_poll_control = data;
2798                 break;
2799
2800         case MSR_IA32_MCG_CTL:
2801         case MSR_IA32_MCG_STATUS:
2802         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2803                 return set_msr_mce(vcpu, msr_info);
2804
2805         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2806         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2807                 pr = true; /* fall through */
2808         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2809         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2810                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2811                         return kvm_pmu_set_msr(vcpu, msr_info);
2812
2813                 if (pr || data != 0)
2814                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2815                                     "0x%x data 0x%llx\n", msr, data);
2816                 break;
2817         case MSR_K7_CLK_CTL:
2818                 /*
2819                  * Ignore all writes to this no longer documented MSR.
2820                  * Writes are only relevant for old K7 processors,
2821                  * all pre-dating SVM, but a recommended workaround from
2822                  * AMD for these chips. It is possible to specify the
2823                  * affected processor models on the command line, hence
2824                  * the need to ignore the workaround.
2825                  */
2826                 break;
2827         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2828         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2829         case HV_X64_MSR_CRASH_CTL:
2830         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2831         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2832         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2833         case HV_X64_MSR_TSC_EMULATION_STATUS:
2834                 return kvm_hv_set_msr_common(vcpu, msr, data,
2835                                              msr_info->host_initiated);
2836         case MSR_IA32_BBL_CR_CTL3:
2837                 /* Drop writes to this legacy MSR -- see rdmsr
2838                  * counterpart for further detail.
2839                  */
2840                 if (report_ignored_msrs)
2841                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2842                                 msr, data);
2843                 break;
2844         case MSR_AMD64_OSVW_ID_LENGTH:
2845                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2846                         return 1;
2847                 vcpu->arch.osvw.length = data;
2848                 break;
2849         case MSR_AMD64_OSVW_STATUS:
2850                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2851                         return 1;
2852                 vcpu->arch.osvw.status = data;
2853                 break;
2854         case MSR_PLATFORM_INFO:
2855                 if (!msr_info->host_initiated ||
2856                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2857                      cpuid_fault_enabled(vcpu)))
2858                         return 1;
2859                 vcpu->arch.msr_platform_info = data;
2860                 break;
2861         case MSR_MISC_FEATURES_ENABLES:
2862                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2863                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2864                      !supports_cpuid_fault(vcpu)))
2865                         return 1;
2866                 vcpu->arch.msr_misc_features_enables = data;
2867                 break;
2868         default:
2869                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2870                         return xen_hvm_config(vcpu, data);
2871                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2872                         return kvm_pmu_set_msr(vcpu, msr_info);
2873                 if (!ignore_msrs) {
2874                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2875                                     msr, data);
2876                         return 1;
2877                 } else {
2878                         if (report_ignored_msrs)
2879                                 vcpu_unimpl(vcpu,
2880                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2881                                         msr, data);
2882                         break;
2883                 }
2884         }
2885         return 0;
2886 }
2887 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2888
2889 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2890 {
2891         u64 data;
2892         u64 mcg_cap = vcpu->arch.mcg_cap;
2893         unsigned bank_num = mcg_cap & 0xff;
2894
2895         switch (msr) {
2896         case MSR_IA32_P5_MC_ADDR:
2897         case MSR_IA32_P5_MC_TYPE:
2898                 data = 0;
2899                 break;
2900         case MSR_IA32_MCG_CAP:
2901                 data = vcpu->arch.mcg_cap;
2902                 break;
2903         case MSR_IA32_MCG_CTL:
2904                 if (!(mcg_cap & MCG_CTL_P) && !host)
2905                         return 1;
2906                 data = vcpu->arch.mcg_ctl;
2907                 break;
2908         case MSR_IA32_MCG_STATUS:
2909                 data = vcpu->arch.mcg_status;
2910                 break;
2911         default:
2912                 if (msr >= MSR_IA32_MC0_CTL &&
2913                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2914                         u32 offset = msr - MSR_IA32_MC0_CTL;
2915                         data = vcpu->arch.mce_banks[offset];
2916                         break;
2917                 }
2918                 return 1;
2919         }
2920         *pdata = data;
2921         return 0;
2922 }
2923
2924 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2925 {
2926         switch (msr_info->index) {
2927         case MSR_IA32_PLATFORM_ID:
2928         case MSR_IA32_EBL_CR_POWERON:
2929         case MSR_IA32_DEBUGCTLMSR:
2930         case MSR_IA32_LASTBRANCHFROMIP:
2931         case MSR_IA32_LASTBRANCHTOIP:
2932         case MSR_IA32_LASTINTFROMIP:
2933         case MSR_IA32_LASTINTTOIP:
2934         case MSR_K8_SYSCFG:
2935         case MSR_K8_TSEG_ADDR:
2936         case MSR_K8_TSEG_MASK:
2937         case MSR_VM_HSAVE_PA:
2938         case MSR_K8_INT_PENDING_MSG:
2939         case MSR_AMD64_NB_CFG:
2940         case MSR_FAM10H_MMIO_CONF_BASE:
2941         case MSR_AMD64_BU_CFG2:
2942         case MSR_IA32_PERF_CTL:
2943         case MSR_AMD64_DC_CFG:
2944         case MSR_F15H_EX_CFG:
2945                 msr_info->data = 0;
2946                 break;
2947         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2948         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2949         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2950         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2951         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2952                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2953                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2954                 msr_info->data = 0;
2955                 break;
2956         case MSR_IA32_UCODE_REV:
2957                 msr_info->data = vcpu->arch.microcode_version;
2958                 break;
2959         case MSR_IA32_ARCH_CAPABILITIES:
2960                 if (!msr_info->host_initiated &&
2961                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2962                         return 1;
2963                 msr_info->data = vcpu->arch.arch_capabilities;
2964                 break;
2965         case MSR_IA32_POWER_CTL:
2966                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2967                 break;
2968         case MSR_IA32_TSC:
2969                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2970                 break;
2971         case MSR_MTRRcap:
2972         case 0x200 ... 0x2ff:
2973                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2974         case 0xcd: /* fsb frequency */
2975                 msr_info->data = 3;
2976                 break;
2977                 /*
2978                  * MSR_EBC_FREQUENCY_ID
2979                  * Conservative value valid for even the basic CPU models.
2980                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2981                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2982                  * and 266MHz for model 3, or 4. Set Core Clock
2983                  * Frequency to System Bus Frequency Ratio to 1 (bits
2984                  * 31:24) even though these are only valid for CPU
2985                  * models > 2, however guests may end up dividing or
2986                  * multiplying by zero otherwise.
2987                  */
2988         case MSR_EBC_FREQUENCY_ID:
2989                 msr_info->data = 1 << 24;
2990                 break;
2991         case MSR_IA32_APICBASE:
2992                 msr_info->data = kvm_get_apic_base(vcpu);
2993                 break;
2994         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2995                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2996                 break;
2997         case MSR_IA32_TSCDEADLINE:
2998                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2999                 break;
3000         case MSR_IA32_TSC_ADJUST:
3001                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3002                 break;
3003         case MSR_IA32_MISC_ENABLE:
3004                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3005                 break;
3006         case MSR_IA32_SMBASE:
3007                 if (!msr_info->host_initiated)
3008                         return 1;
3009                 msr_info->data = vcpu->arch.smbase;
3010                 break;
3011         case MSR_SMI_COUNT:
3012                 msr_info->data = vcpu->arch.smi_count;
3013                 break;
3014         case MSR_IA32_PERF_STATUS:
3015                 /* TSC increment by tick */
3016                 msr_info->data = 1000ULL;
3017                 /* CPU multiplier */
3018                 msr_info->data |= (((uint64_t)4ULL) << 40);
3019                 break;
3020         case MSR_EFER:
3021                 msr_info->data = vcpu->arch.efer;
3022                 break;
3023         case MSR_KVM_WALL_CLOCK:
3024         case MSR_KVM_WALL_CLOCK_NEW:
3025                 msr_info->data = vcpu->kvm->arch.wall_clock;
3026                 break;
3027         case MSR_KVM_SYSTEM_TIME:
3028         case MSR_KVM_SYSTEM_TIME_NEW:
3029                 msr_info->data = vcpu->arch.time;
3030                 break;
3031         case MSR_KVM_ASYNC_PF_EN:
3032                 msr_info->data = vcpu->arch.apf.msr_val;
3033                 break;
3034         case MSR_KVM_STEAL_TIME:
3035                 msr_info->data = vcpu->arch.st.msr_val;
3036                 break;
3037         case MSR_KVM_PV_EOI_EN:
3038                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3039                 break;
3040         case MSR_KVM_POLL_CONTROL:
3041                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3042                 break;
3043         case MSR_IA32_P5_MC_ADDR:
3044         case MSR_IA32_P5_MC_TYPE:
3045         case MSR_IA32_MCG_CAP:
3046         case MSR_IA32_MCG_CTL:
3047         case MSR_IA32_MCG_STATUS:
3048         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3049                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3050                                    msr_info->host_initiated);
3051         case MSR_K7_CLK_CTL:
3052                 /*
3053                  * Provide expected ramp-up count for K7. All other
3054                  * are set to zero, indicating minimum divisors for
3055                  * every field.
3056                  *
3057                  * This prevents guest kernels on AMD host with CPU
3058                  * type 6, model 8 and higher from exploding due to
3059                  * the rdmsr failing.
3060                  */
3061                 msr_info->data = 0x20000000;
3062                 break;
3063         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3064         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3065         case HV_X64_MSR_CRASH_CTL:
3066         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3067         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3068         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3069         case HV_X64_MSR_TSC_EMULATION_STATUS:
3070                 return kvm_hv_get_msr_common(vcpu,
3071                                              msr_info->index, &msr_info->data,
3072                                              msr_info->host_initiated);
3073                 break;
3074         case MSR_IA32_BBL_CR_CTL3:
3075                 /* This legacy MSR exists but isn't fully documented in current
3076                  * silicon.  It is however accessed by winxp in very narrow
3077                  * scenarios where it sets bit #19, itself documented as
3078                  * a "reserved" bit.  Best effort attempt to source coherent
3079                  * read data here should the balance of the register be
3080                  * interpreted by the guest:
3081                  *
3082                  * L2 cache control register 3: 64GB range, 256KB size,
3083                  * enabled, latency 0x1, configured
3084                  */
3085                 msr_info->data = 0xbe702111;
3086                 break;
3087         case MSR_AMD64_OSVW_ID_LENGTH:
3088                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3089                         return 1;
3090                 msr_info->data = vcpu->arch.osvw.length;
3091                 break;
3092         case MSR_AMD64_OSVW_STATUS:
3093                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3094                         return 1;
3095                 msr_info->data = vcpu->arch.osvw.status;
3096                 break;
3097         case MSR_PLATFORM_INFO:
3098                 if (!msr_info->host_initiated &&
3099                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3100                         return 1;
3101                 msr_info->data = vcpu->arch.msr_platform_info;
3102                 break;
3103         case MSR_MISC_FEATURES_ENABLES:
3104                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3105                 break;
3106         case MSR_K7_HWCR:
3107                 msr_info->data = vcpu->arch.msr_hwcr;
3108                 break;
3109         default:
3110                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3111                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3112                 if (!ignore_msrs) {
3113                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3114                                                msr_info->index);
3115                         return 1;
3116                 } else {
3117                         if (report_ignored_msrs)
3118                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3119                                         msr_info->index);
3120                         msr_info->data = 0;
3121                 }
3122                 break;
3123         }
3124         return 0;
3125 }
3126 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3127
3128 /*
3129  * Read or write a bunch of msrs. All parameters are kernel addresses.
3130  *
3131  * @return number of msrs set successfully.
3132  */
3133 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3134                     struct kvm_msr_entry *entries,
3135                     int (*do_msr)(struct kvm_vcpu *vcpu,
3136                                   unsigned index, u64 *data))
3137 {
3138         int i;
3139
3140         for (i = 0; i < msrs->nmsrs; ++i)
3141                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3142                         break;
3143
3144         return i;
3145 }
3146
3147 /*
3148  * Read or write a bunch of msrs. Parameters are user addresses.
3149  *
3150  * @return number of msrs set successfully.
3151  */
3152 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3153                   int (*do_msr)(struct kvm_vcpu *vcpu,
3154                                 unsigned index, u64 *data),
3155                   int writeback)
3156 {
3157         struct kvm_msrs msrs;
3158         struct kvm_msr_entry *entries;
3159         int r, n;
3160         unsigned size;
3161
3162         r = -EFAULT;
3163         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3164                 goto out;
3165
3166         r = -E2BIG;
3167         if (msrs.nmsrs >= MAX_IO_MSRS)
3168                 goto out;
3169
3170         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3171         entries = memdup_user(user_msrs->entries, size);
3172         if (IS_ERR(entries)) {
3173                 r = PTR_ERR(entries);
3174                 goto out;
3175         }
3176
3177         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3178         if (r < 0)
3179                 goto out_free;
3180
3181         r = -EFAULT;
3182         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3183                 goto out_free;
3184
3185         r = n;
3186
3187 out_free:
3188         kfree(entries);
3189 out:
3190         return r;
3191 }
3192
3193 static inline bool kvm_can_mwait_in_guest(void)
3194 {
3195         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3196                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3197                 boot_cpu_has(X86_FEATURE_ARAT);
3198 }
3199
3200 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3201 {
3202         int r = 0;
3203
3204         switch (ext) {
3205         case KVM_CAP_IRQCHIP:
3206         case KVM_CAP_HLT:
3207         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3208         case KVM_CAP_SET_TSS_ADDR:
3209         case KVM_CAP_EXT_CPUID:
3210         case KVM_CAP_EXT_EMUL_CPUID:
3211         case KVM_CAP_CLOCKSOURCE:
3212         case KVM_CAP_PIT:
3213         case KVM_CAP_NOP_IO_DELAY:
3214         case KVM_CAP_MP_STATE:
3215         case KVM_CAP_SYNC_MMU:
3216         case KVM_CAP_USER_NMI:
3217         case KVM_CAP_REINJECT_CONTROL:
3218         case KVM_CAP_IRQ_INJECT_STATUS:
3219         case KVM_CAP_IOEVENTFD:
3220         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3221         case KVM_CAP_PIT2:
3222         case KVM_CAP_PIT_STATE2:
3223         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3224         case KVM_CAP_XEN_HVM:
3225         case KVM_CAP_VCPU_EVENTS:
3226         case KVM_CAP_HYPERV:
3227         case KVM_CAP_HYPERV_VAPIC:
3228         case KVM_CAP_HYPERV_SPIN:
3229         case KVM_CAP_HYPERV_SYNIC:
3230         case KVM_CAP_HYPERV_SYNIC2:
3231         case KVM_CAP_HYPERV_VP_INDEX:
3232         case KVM_CAP_HYPERV_EVENTFD:
3233         case KVM_CAP_HYPERV_TLBFLUSH:
3234         case KVM_CAP_HYPERV_SEND_IPI:
3235         case KVM_CAP_HYPERV_CPUID:
3236         case KVM_CAP_PCI_SEGMENT:
3237         case KVM_CAP_DEBUGREGS:
3238         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3239         case KVM_CAP_XSAVE:
3240         case KVM_CAP_ASYNC_PF:
3241         case KVM_CAP_GET_TSC_KHZ:
3242         case KVM_CAP_KVMCLOCK_CTRL:
3243         case KVM_CAP_READONLY_MEM:
3244         case KVM_CAP_HYPERV_TIME:
3245         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3246         case KVM_CAP_TSC_DEADLINE_TIMER:
3247         case KVM_CAP_DISABLE_QUIRKS:
3248         case KVM_CAP_SET_BOOT_CPU_ID:
3249         case KVM_CAP_SPLIT_IRQCHIP:
3250         case KVM_CAP_IMMEDIATE_EXIT:
3251         case KVM_CAP_PMU_EVENT_FILTER:
3252         case KVM_CAP_GET_MSR_FEATURES:
3253         case KVM_CAP_MSR_PLATFORM_INFO:
3254         case KVM_CAP_EXCEPTION_PAYLOAD:
3255                 r = 1;
3256                 break;
3257         case KVM_CAP_SYNC_REGS:
3258                 r = KVM_SYNC_X86_VALID_FIELDS;
3259                 break;
3260         case KVM_CAP_ADJUST_CLOCK:
3261                 r = KVM_CLOCK_TSC_STABLE;
3262                 break;
3263         case KVM_CAP_X86_DISABLE_EXITS:
3264                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3265                       KVM_X86_DISABLE_EXITS_CSTATE;
3266                 if(kvm_can_mwait_in_guest())
3267                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3268                 break;
3269         case KVM_CAP_X86_SMM:
3270                 /* SMBASE is usually relocated above 1M on modern chipsets,
3271                  * and SMM handlers might indeed rely on 4G segment limits,
3272                  * so do not report SMM to be available if real mode is
3273                  * emulated via vm86 mode.  Still, do not go to great lengths
3274                  * to avoid userspace's usage of the feature, because it is a
3275                  * fringe case that is not enabled except via specific settings
3276                  * of the module parameters.
3277                  */
3278                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3279                 break;
3280         case KVM_CAP_VAPIC:
3281                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3282                 break;
3283         case KVM_CAP_NR_VCPUS:
3284                 r = KVM_SOFT_MAX_VCPUS;
3285                 break;
3286         case KVM_CAP_MAX_VCPUS:
3287                 r = KVM_MAX_VCPUS;
3288                 break;
3289         case KVM_CAP_MAX_VCPU_ID:
3290                 r = KVM_MAX_VCPU_ID;
3291                 break;
3292         case KVM_CAP_PV_MMU:    /* obsolete */
3293                 r = 0;
3294                 break;
3295         case KVM_CAP_MCE:
3296                 r = KVM_MAX_MCE_BANKS;
3297                 break;
3298         case KVM_CAP_XCRS:
3299                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3300                 break;
3301         case KVM_CAP_TSC_CONTROL:
3302                 r = kvm_has_tsc_control;
3303                 break;
3304         case KVM_CAP_X2APIC_API:
3305                 r = KVM_X2APIC_API_VALID_FLAGS;
3306                 break;
3307         case KVM_CAP_NESTED_STATE:
3308                 r = kvm_x86_ops->get_nested_state ?
3309                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3310                 break;
3311         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3312                 r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3313                 break;
3314         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3315                 r = kvm_x86_ops->nested_enable_evmcs != NULL;
3316                 break;
3317         default:
3318                 break;
3319         }
3320         return r;
3321
3322 }
3323
3324 long kvm_arch_dev_ioctl(struct file *filp,
3325                         unsigned int ioctl, unsigned long arg)
3326 {
3327         void __user *argp = (void __user *)arg;
3328         long r;
3329
3330         switch (ioctl) {
3331         case KVM_GET_MSR_INDEX_LIST: {
3332                 struct kvm_msr_list __user *user_msr_list = argp;
3333                 struct kvm_msr_list msr_list;
3334                 unsigned n;
3335
3336                 r = -EFAULT;
3337                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3338                         goto out;
3339                 n = msr_list.nmsrs;
3340                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3341                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3342                         goto out;
3343                 r = -E2BIG;
3344                 if (n < msr_list.nmsrs)
3345                         goto out;
3346                 r = -EFAULT;
3347                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3348                                  num_msrs_to_save * sizeof(u32)))
3349                         goto out;
3350                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3351                                  &emulated_msrs,
3352                                  num_emulated_msrs * sizeof(u32)))
3353                         goto out;
3354                 r = 0;
3355                 break;
3356         }
3357         case KVM_GET_SUPPORTED_CPUID:
3358         case KVM_GET_EMULATED_CPUID: {
3359                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3360                 struct kvm_cpuid2 cpuid;
3361
3362                 r = -EFAULT;
3363                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3364                         goto out;
3365
3366                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3367                                             ioctl);
3368                 if (r)
3369                         goto out;
3370
3371                 r = -EFAULT;
3372                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3373                         goto out;
3374                 r = 0;
3375                 break;
3376         }
3377         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3378                 r = -EFAULT;
3379                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3380                                  sizeof(kvm_mce_cap_supported)))
3381                         goto out;
3382                 r = 0;
3383                 break;
3384         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3385                 struct kvm_msr_list __user *user_msr_list = argp;
3386                 struct kvm_msr_list msr_list;
3387                 unsigned int n;
3388
3389                 r = -EFAULT;
3390                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3391                         goto out;
3392                 n = msr_list.nmsrs;
3393                 msr_list.nmsrs = num_msr_based_features;
3394                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3395                         goto out;
3396                 r = -E2BIG;
3397                 if (n < msr_list.nmsrs)
3398                         goto out;
3399                 r = -EFAULT;
3400                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3401                                  num_msr_based_features * sizeof(u32)))
3402                         goto out;
3403                 r = 0;
3404                 break;
3405         }
3406         case KVM_GET_MSRS:
3407                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3408                 break;
3409         }
3410         default:
3411                 r = -EINVAL;
3412         }
3413 out:
3414         return r;
3415 }
3416
3417 static void wbinvd_ipi(void *garbage)
3418 {
3419         wbinvd();
3420 }
3421
3422 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3423 {
3424         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3425 }
3426
3427 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3428 {
3429         /* Address WBINVD may be executed by guest */
3430         if (need_emulate_wbinvd(vcpu)) {
3431                 if (kvm_x86_ops->has_wbinvd_exit())
3432                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3433                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3434                         smp_call_function_single(vcpu->cpu,
3435                                         wbinvd_ipi, NULL, 1);
3436         }
3437
3438         kvm_x86_ops->vcpu_load(vcpu, cpu);
3439
3440         fpregs_assert_state_consistent();
3441         if (test_thread_flag(TIF_NEED_FPU_LOAD))
3442                 switch_fpu_return();
3443
3444         /* Apply any externally detected TSC adjustments (due to suspend) */
3445         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3446                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3447                 vcpu->arch.tsc_offset_adjustment = 0;
3448                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3449         }
3450
3451         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3452                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3453                                 rdtsc() - vcpu->arch.last_host_tsc;
3454                 if (tsc_delta < 0)
3455                         mark_tsc_unstable("KVM discovered backwards TSC");
3456
3457                 if (kvm_check_tsc_unstable()) {
3458                         u64 offset = kvm_compute_tsc_offset(vcpu,
3459                                                 vcpu->arch.last_guest_tsc);
3460                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3461                         vcpu->arch.tsc_catchup = 1;
3462                 }
3463
3464                 if (kvm_lapic_hv_timer_in_use(vcpu))
3465                         kvm_lapic_restart_hv_timer(vcpu);
3466
3467                 /*
3468                  * On a host with synchronized TSC, there is no need to update
3469                  * kvmclock on vcpu->cpu migration
3470                  */
3471                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3472                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3473                 if (vcpu->cpu != cpu)
3474                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3475                 vcpu->cpu = cpu;
3476         }
3477
3478         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3479 }
3480
3481 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3482 {
3483         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3484                 return;
3485
3486         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3487
3488         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3489                         &vcpu->arch.st.steal.preempted,
3490                         offsetof(struct kvm_steal_time, preempted),
3491                         sizeof(vcpu->arch.st.steal.preempted));
3492 }
3493
3494 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3495 {
3496         int idx;
3497
3498         if (vcpu->preempted)
3499                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3500
3501         /*
3502          * Disable page faults because we're in atomic context here.
3503          * kvm_write_guest_offset_cached() would call might_fault()
3504          * that relies on pagefault_disable() to tell if there's a
3505          * bug. NOTE: the write to guest memory may not go through if
3506          * during postcopy live migration or if there's heavy guest
3507          * paging.
3508          */
3509         pagefault_disable();
3510         /*
3511          * kvm_memslots() will be called by
3512          * kvm_write_guest_offset_cached() so take the srcu lock.
3513          */
3514         idx = srcu_read_lock(&vcpu->kvm->srcu);
3515         kvm_steal_time_set_preempted(vcpu);
3516         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3517         pagefault_enable();
3518         kvm_x86_ops->vcpu_put(vcpu);
3519         vcpu->arch.last_host_tsc = rdtsc();
3520         /*
3521          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3522          * on every vmexit, but if not, we might have a stale dr6 from the
3523          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3524          */
3525         set_debugreg(0, 6);
3526 }
3527
3528 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3529                                     struct kvm_lapic_state *s)
3530 {
3531         if (vcpu->arch.apicv_active)
3532                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3533
3534         return kvm_apic_get_state(vcpu, s);
3535 }
3536
3537 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3538                                     struct kvm_lapic_state *s)
3539 {
3540         int r;
3541
3542         r = kvm_apic_set_state(vcpu, s);
3543         if (r)
3544                 return r;
3545         update_cr8_intercept(vcpu);
3546
3547         return 0;
3548 }
3549
3550 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3551 {
3552         return (!lapic_in_kernel(vcpu) ||
3553                 kvm_apic_accept_pic_intr(vcpu));
3554 }
3555
3556 /*
3557  * if userspace requested an interrupt window, check that the
3558  * interrupt window is open.
3559  *
3560  * No need to exit to userspace if we already have an interrupt queued.
3561  */
3562 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3563 {
3564         return kvm_arch_interrupt_allowed(vcpu) &&
3565                 !kvm_cpu_has_interrupt(vcpu) &&
3566                 !kvm_event_needs_reinjection(vcpu) &&
3567                 kvm_cpu_accept_dm_intr(vcpu);
3568 }
3569
3570 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3571                                     struct kvm_interrupt *irq)
3572 {
3573         if (irq->irq >= KVM_NR_INTERRUPTS)
3574                 return -EINVAL;
3575
3576         if (!irqchip_in_kernel(vcpu->kvm)) {
3577                 kvm_queue_interrupt(vcpu, irq->irq, false);
3578                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3579                 return 0;
3580         }
3581
3582         /*
3583          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3584          * fail for in-kernel 8259.
3585          */
3586         if (pic_in_kernel(vcpu->kvm))
3587                 return -ENXIO;
3588
3589         if (vcpu->arch.pending_external_vector != -1)
3590                 return -EEXIST;
3591
3592         vcpu->arch.pending_external_vector = irq->irq;
3593         kvm_make_request(KVM_REQ_EVENT, vcpu);
3594         return 0;
3595 }
3596
3597 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3598 {
3599         kvm_inject_nmi(vcpu);
3600
3601         return 0;
3602 }
3603
3604 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3605 {
3606         kvm_make_request(KVM_REQ_SMI, vcpu);
3607
3608         return 0;
3609 }
3610
3611 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3612                                            struct kvm_tpr_access_ctl *tac)
3613 {
3614         if (tac->flags)
3615                 return -EINVAL;
3616         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3617         return 0;
3618 }
3619
3620 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3621                                         u64 mcg_cap)
3622 {
3623         int r;
3624         unsigned bank_num = mcg_cap & 0xff, bank;
3625
3626         r = -EINVAL;
3627         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3628                 goto out;
3629         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3630                 goto out;
3631         r = 0;
3632         vcpu->arch.mcg_cap = mcg_cap;
3633         /* Init IA32_MCG_CTL to all 1s */
3634         if (mcg_cap & MCG_CTL_P)
3635                 vcpu->arch.mcg_ctl = ~(u64)0;
3636         /* Init IA32_MCi_CTL to all 1s */
3637         for (bank = 0; bank < bank_num; bank++)
3638                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3639
3640         kvm_x86_ops->setup_mce(vcpu);
3641 out:
3642         return r;
3643 }
3644
3645 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3646                                       struct kvm_x86_mce *mce)
3647 {
3648         u64 mcg_cap = vcpu->arch.mcg_cap;
3649         unsigned bank_num = mcg_cap & 0xff;
3650         u64 *banks = vcpu->arch.mce_banks;
3651
3652         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3653                 return -EINVAL;
3654         /*
3655          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3656          * reporting is disabled
3657          */
3658         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3659             vcpu->arch.mcg_ctl != ~(u64)0)
3660                 return 0;
3661         banks += 4 * mce->bank;
3662         /*
3663          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3664          * reporting is disabled for the bank
3665          */
3666         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3667                 return 0;
3668         if (mce->status & MCI_STATUS_UC) {
3669                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3670                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3671                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3672                         return 0;
3673                 }
3674                 if (banks[1] & MCI_STATUS_VAL)
3675                         mce->status |= MCI_STATUS_OVER;
3676                 banks[2] = mce->addr;
3677                 banks[3] = mce->misc;
3678                 vcpu->arch.mcg_status = mce->mcg_status;
3679                 banks[1] = mce->status;
3680                 kvm_queue_exception(vcpu, MC_VECTOR);
3681         } else if (!(banks[1] & MCI_STATUS_VAL)
3682                    || !(banks[1] & MCI_STATUS_UC)) {
3683                 if (banks[1] & MCI_STATUS_VAL)
3684                         mce->status |= MCI_STATUS_OVER;
3685                 banks[2] = mce->addr;
3686                 banks[3] = mce->misc;
3687                 banks[1] = mce->status;
3688         } else
3689                 banks[1] |= MCI_STATUS_OVER;
3690         return 0;
3691 }
3692
3693 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3694                                                struct kvm_vcpu_events *events)
3695 {
3696         process_nmi(vcpu);
3697
3698         /*
3699          * The API doesn't provide the instruction length for software
3700          * exceptions, so don't report them. As long as the guest RIP
3701          * isn't advanced, we should expect to encounter the exception
3702          * again.
3703          */
3704         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3705                 events->exception.injected = 0;
3706                 events->exception.pending = 0;
3707         } else {
3708                 events->exception.injected = vcpu->arch.exception.injected;
3709                 events->exception.pending = vcpu->arch.exception.pending;
3710                 /*
3711                  * For ABI compatibility, deliberately conflate
3712                  * pending and injected exceptions when
3713                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3714                  */
3715                 if (!vcpu->kvm->arch.exception_payload_enabled)
3716                         events->exception.injected |=
3717                                 vcpu->arch.exception.pending;
3718         }
3719         events->exception.nr = vcpu->arch.exception.nr;
3720         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3721         events->exception.error_code = vcpu->arch.exception.error_code;
3722         events->exception_has_payload = vcpu->arch.exception.has_payload;
3723         events->exception_payload = vcpu->arch.exception.payload;
3724
3725         events->interrupt.injected =
3726                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3727         events->interrupt.nr = vcpu->arch.interrupt.nr;
3728         events->interrupt.soft = 0;
3729         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3730
3731         events->nmi.injected = vcpu->arch.nmi_injected;
3732         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3733         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3734         events->nmi.pad = 0;
3735
3736         events->sipi_vector = 0; /* never valid when reporting to user space */
3737
3738         events->smi.smm = is_smm(vcpu);
3739         events->smi.pending = vcpu->arch.smi_pending;
3740         events->smi.smm_inside_nmi =
3741                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3742         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3743
3744         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3745                          | KVM_VCPUEVENT_VALID_SHADOW
3746                          | KVM_VCPUEVENT_VALID_SMM);
3747         if (vcpu->kvm->arch.exception_payload_enabled)
3748                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3749
3750         memset(&events->reserved, 0, sizeof(events->reserved));
3751 }
3752
3753 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3754
3755 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3756                                               struct kvm_vcpu_events *events)
3757 {
3758         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3759                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3760                               | KVM_VCPUEVENT_VALID_SHADOW
3761                               | KVM_VCPUEVENT_VALID_SMM
3762                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3763                 return -EINVAL;
3764
3765         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3766                 if (!vcpu->kvm->arch.exception_payload_enabled)
3767                         return -EINVAL;
3768                 if (events->exception.pending)
3769                         events->exception.injected = 0;
3770                 else
3771                         events->exception_has_payload = 0;
3772         } else {
3773                 events->exception.pending = 0;
3774                 events->exception_has_payload = 0;
3775         }
3776
3777         if ((events->exception.injected || events->exception.pending) &&
3778             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3779                 return -EINVAL;
3780
3781         /* INITs are latched while in SMM */
3782         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3783             (events->smi.smm || events->smi.pending) &&
3784             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3785                 return -EINVAL;
3786
3787         process_nmi(vcpu);
3788         vcpu->arch.exception.injected = events->exception.injected;
3789         vcpu->arch.exception.pending = events->exception.pending;
3790         vcpu->arch.exception.nr = events->exception.nr;
3791         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3792         vcpu->arch.exception.error_code = events->exception.error_code;
3793         vcpu->arch.exception.has_payload = events->exception_has_payload;
3794         vcpu->arch.exception.payload = events->exception_payload;
3795
3796         vcpu->arch.interrupt.injected = events->interrupt.injected;
3797         vcpu->arch.interrupt.nr = events->interrupt.nr;
3798         vcpu->arch.interrupt.soft = events->interrupt.soft;
3799         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3800                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3801                                                   events->interrupt.shadow);
3802
3803         vcpu->arch.nmi_injected = events->nmi.injected;
3804         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3805                 vcpu->arch.nmi_pending = events->nmi.pending;
3806         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3807
3808         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3809             lapic_in_kernel(vcpu))
3810                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3811
3812         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3813                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3814                         if (events->smi.smm)
3815                                 vcpu->arch.hflags |= HF_SMM_MASK;
3816                         else
3817                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3818                         kvm_smm_changed(vcpu);
3819                 }
3820
3821                 vcpu->arch.smi_pending = events->smi.pending;
3822
3823                 if (events->smi.smm) {
3824                         if (events->smi.smm_inside_nmi)
3825                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3826                         else
3827                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3828                         if (lapic_in_kernel(vcpu)) {
3829                                 if (events->smi.latched_init)
3830                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3831                                 else
3832                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3833                         }
3834                 }
3835         }
3836
3837         kvm_make_request(KVM_REQ_EVENT, vcpu);
3838
3839         return 0;
3840 }
3841
3842 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3843                                              struct kvm_debugregs *dbgregs)
3844 {
3845         unsigned long val;
3846
3847         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3848         kvm_get_dr(vcpu, 6, &val);
3849         dbgregs->dr6 = val;
3850         dbgregs->dr7 = vcpu->arch.dr7;
3851         dbgregs->flags = 0;
3852         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3853 }
3854
3855 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3856                                             struct kvm_debugregs *dbgregs)
3857 {
3858         if (dbgregs->flags)
3859                 return -EINVAL;
3860
3861         if (dbgregs->dr6 & ~0xffffffffull)
3862                 return -EINVAL;
3863         if (dbgregs->dr7 & ~0xffffffffull)
3864                 return -EINVAL;
3865
3866         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3867         kvm_update_dr0123(vcpu);
3868         vcpu->arch.dr6 = dbgregs->dr6;
3869         kvm_update_dr6(vcpu);
3870         vcpu->arch.dr7 = dbgregs->dr7;
3871         kvm_update_dr7(vcpu);
3872
3873         return 0;
3874 }
3875
3876 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3877
3878 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3879 {
3880         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3881         u64 xstate_bv = xsave->header.xfeatures;
3882         u64 valid;
3883
3884         /*
3885          * Copy legacy XSAVE area, to avoid complications with CPUID
3886          * leaves 0 and 1 in the loop below.
3887          */
3888         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3889
3890         /* Set XSTATE_BV */
3891         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3892         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3893
3894         /*
3895          * Copy each region from the possibly compacted offset to the
3896          * non-compacted offset.
3897          */
3898         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3899         while (valid) {
3900                 u64 xfeature_mask = valid & -valid;
3901                 int xfeature_nr = fls64(xfeature_mask) - 1;
3902                 void *src = get_xsave_addr(xsave, xfeature_nr);
3903
3904                 if (src) {
3905                         u32 size, offset, ecx, edx;
3906                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3907                                     &size, &offset, &ecx, &edx);
3908                         if (xfeature_nr == XFEATURE_PKRU)
3909                                 memcpy(dest + offset, &vcpu->arch.pkru,
3910                                        sizeof(vcpu->arch.pkru));
3911                         else
3912                                 memcpy(dest + offset, src, size);
3913
3914                 }
3915
3916                 valid -= xfeature_mask;
3917         }
3918 }
3919
3920 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3921 {
3922         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3923         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3924         u64 valid;
3925
3926         /*
3927          * Copy legacy XSAVE area, to avoid complications with CPUID
3928          * leaves 0 and 1 in the loop below.
3929          */
3930         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3931
3932         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3933         xsave->header.xfeatures = xstate_bv;
3934         if (boot_cpu_has(X86_FEATURE_XSAVES))
3935                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3936
3937         /*
3938          * Copy each region from the non-compacted offset to the
3939          * possibly compacted offset.
3940          */
3941         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3942         while (valid) {
3943                 u64 xfeature_mask = valid & -valid;
3944                 int xfeature_nr = fls64(xfeature_mask) - 1;
3945                 void *dest = get_xsave_addr(xsave, xfeature_nr);
3946
3947                 if (dest) {
3948                         u32 size, offset, ecx, edx;
3949                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3950                                     &size, &offset, &ecx, &edx);
3951                         if (xfeature_nr == XFEATURE_PKRU)
3952                                 memcpy(&vcpu->arch.pkru, src + offset,
3953                                        sizeof(vcpu->arch.pkru));
3954                         else
3955                                 memcpy(dest, src + offset, size);
3956                 }
3957
3958                 valid -= xfeature_mask;
3959         }
3960 }
3961
3962 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3963                                          struct kvm_xsave *guest_xsave)
3964 {
3965         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3966                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3967                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3968         } else {
3969                 memcpy(guest_xsave->region,
3970                         &vcpu->arch.guest_fpu->state.fxsave,
3971                         sizeof(struct fxregs_state));
3972                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3973                         XFEATURE_MASK_FPSSE;
3974         }
3975 }
3976
3977 #define XSAVE_MXCSR_OFFSET 24
3978
3979 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3980                                         struct kvm_xsave *guest_xsave)
3981 {
3982         u64 xstate_bv =
3983                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3984         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3985
3986         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3987                 /*
3988                  * Here we allow setting states that are not present in
3989                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3990                  * with old userspace.
3991                  */
3992                 if (xstate_bv & ~kvm_supported_xcr0() ||
3993                         mxcsr & ~mxcsr_feature_mask)
3994                         return -EINVAL;
3995                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3996         } else {
3997                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3998                         mxcsr & ~mxcsr_feature_mask)
3999                         return -EINVAL;
4000                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4001                         guest_xsave->region, sizeof(struct fxregs_state));
4002         }
4003         return 0;
4004 }
4005
4006 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4007                                         struct kvm_xcrs *guest_xcrs)
4008 {
4009         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4010                 guest_xcrs->nr_xcrs = 0;
4011                 return;
4012         }
4013
4014         guest_xcrs->nr_xcrs = 1;
4015         guest_xcrs->flags = 0;
4016         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4017         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4018 }
4019
4020 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4021                                        struct kvm_xcrs *guest_xcrs)
4022 {
4023         int i, r = 0;
4024
4025         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4026                 return -EINVAL;
4027
4028         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4029                 return -EINVAL;
4030
4031         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4032                 /* Only support XCR0 currently */
4033                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4034                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4035                                 guest_xcrs->xcrs[i].value);
4036                         break;
4037                 }
4038         if (r)
4039                 r = -EINVAL;
4040         return r;
4041 }
4042
4043 /*
4044  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4045  * stopped by the hypervisor.  This function will be called from the host only.
4046  * EINVAL is returned when the host attempts to set the flag for a guest that
4047  * does not support pv clocks.
4048  */
4049 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4050 {
4051         if (!vcpu->arch.pv_time_enabled)
4052                 return -EINVAL;
4053         vcpu->arch.pvclock_set_guest_stopped_request = true;
4054         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4055         return 0;
4056 }
4057
4058 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4059                                      struct kvm_enable_cap *cap)
4060 {
4061         int r;
4062         uint16_t vmcs_version;
4063         void __user *user_ptr;
4064
4065         if (cap->flags)
4066                 return -EINVAL;
4067
4068         switch (cap->cap) {
4069         case KVM_CAP_HYPERV_SYNIC2:
4070                 if (cap->args[0])
4071                         return -EINVAL;
4072                 /* fall through */
4073
4074         case KVM_CAP_HYPERV_SYNIC:
4075                 if (!irqchip_in_kernel(vcpu->kvm))
4076                         return -EINVAL;
4077                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4078                                              KVM_CAP_HYPERV_SYNIC2);
4079         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4080                 if (!kvm_x86_ops->nested_enable_evmcs)
4081                         return -ENOTTY;
4082                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4083                 if (!r) {
4084                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4085                         if (copy_to_user(user_ptr, &vmcs_version,
4086                                          sizeof(vmcs_version)))
4087                                 r = -EFAULT;
4088                 }
4089                 return r;
4090         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4091                 if (!kvm_x86_ops->enable_direct_tlbflush)
4092                         return -ENOTTY;
4093
4094                 return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4095
4096         default:
4097                 return -EINVAL;
4098         }
4099 }
4100
4101 long kvm_arch_vcpu_ioctl(struct file *filp,
4102                          unsigned int ioctl, unsigned long arg)
4103 {
4104         struct kvm_vcpu *vcpu = filp->private_data;
4105         void __user *argp = (void __user *)arg;
4106         int r;
4107         union {
4108                 struct kvm_lapic_state *lapic;
4109                 struct kvm_xsave *xsave;
4110                 struct kvm_xcrs *xcrs;
4111                 void *buffer;
4112         } u;
4113
4114         vcpu_load(vcpu);
4115
4116         u.buffer = NULL;
4117         switch (ioctl) {
4118         case KVM_GET_LAPIC: {
4119                 r = -EINVAL;
4120                 if (!lapic_in_kernel(vcpu))
4121                         goto out;
4122                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4123                                 GFP_KERNEL_ACCOUNT);
4124
4125                 r = -ENOMEM;
4126                 if (!u.lapic)
4127                         goto out;
4128                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4129                 if (r)
4130                         goto out;
4131                 r = -EFAULT;
4132                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4133                         goto out;
4134                 r = 0;
4135                 break;
4136         }
4137         case KVM_SET_LAPIC: {
4138                 r = -EINVAL;
4139                 if (!lapic_in_kernel(vcpu))
4140                         goto out;
4141                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4142                 if (IS_ERR(u.lapic)) {
4143                         r = PTR_ERR(u.lapic);
4144                         goto out_nofree;
4145                 }
4146
4147                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4148                 break;
4149         }
4150         case KVM_INTERRUPT: {
4151                 struct kvm_interrupt irq;
4152
4153                 r = -EFAULT;
4154                 if (copy_from_user(&irq, argp, sizeof(irq)))
4155                         goto out;
4156                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4157                 break;
4158         }
4159         case KVM_NMI: {
4160                 r = kvm_vcpu_ioctl_nmi(vcpu);
4161                 break;
4162         }
4163         case KVM_SMI: {
4164                 r = kvm_vcpu_ioctl_smi(vcpu);
4165                 break;
4166         }
4167         case KVM_SET_CPUID: {
4168                 struct kvm_cpuid __user *cpuid_arg = argp;
4169                 struct kvm_cpuid cpuid;
4170
4171                 r = -EFAULT;
4172                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4173                         goto out;
4174                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4175                 break;
4176         }
4177         case KVM_SET_CPUID2: {
4178                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4179                 struct kvm_cpuid2 cpuid;
4180
4181                 r = -EFAULT;
4182                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4183                         goto out;
4184                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4185                                               cpuid_arg->entries);
4186                 break;
4187         }
4188         case KVM_GET_CPUID2: {
4189                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4190                 struct kvm_cpuid2 cpuid;
4191
4192                 r = -EFAULT;
4193                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4194                         goto out;
4195                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4196                                               cpuid_arg->entries);
4197                 if (r)
4198                         goto out;
4199                 r = -EFAULT;
4200                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4201                         goto out;
4202                 r = 0;
4203                 break;
4204         }
4205         case KVM_GET_MSRS: {
4206                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4207                 r = msr_io(vcpu, argp, do_get_msr, 1);
4208                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4209                 break;
4210         }
4211         case KVM_SET_MSRS: {
4212                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4213                 r = msr_io(vcpu, argp, do_set_msr, 0);
4214                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4215                 break;
4216         }
4217         case KVM_TPR_ACCESS_REPORTING: {
4218                 struct kvm_tpr_access_ctl tac;
4219
4220                 r = -EFAULT;
4221                 if (copy_from_user(&tac, argp, sizeof(tac)))
4222                         goto out;
4223                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4224                 if (r)
4225                         goto out;
4226                 r = -EFAULT;
4227                 if (copy_to_user(argp, &tac, sizeof(tac)))
4228                         goto out;
4229                 r = 0;
4230                 break;
4231         };
4232         case KVM_SET_VAPIC_ADDR: {
4233                 struct kvm_vapic_addr va;
4234                 int idx;
4235
4236                 r = -EINVAL;
4237                 if (!lapic_in_kernel(vcpu))
4238                         goto out;
4239                 r = -EFAULT;
4240                 if (copy_from_user(&va, argp, sizeof(va)))
4241                         goto out;
4242                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4243                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4244                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4245                 break;
4246         }
4247         case KVM_X86_SETUP_MCE: {
4248                 u64 mcg_cap;
4249
4250                 r = -EFAULT;
4251                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4252                         goto out;
4253                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4254                 break;
4255         }
4256         case KVM_X86_SET_MCE: {
4257                 struct kvm_x86_mce mce;
4258
4259                 r = -EFAULT;
4260                 if (copy_from_user(&mce, argp, sizeof(mce)))
4261                         goto out;
4262                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4263                 break;
4264         }
4265         case KVM_GET_VCPU_EVENTS: {
4266                 struct kvm_vcpu_events events;
4267
4268                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4269
4270                 r = -EFAULT;
4271                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4272                         break;
4273                 r = 0;
4274                 break;
4275         }
4276         case KVM_SET_VCPU_EVENTS: {
4277                 struct kvm_vcpu_events events;
4278
4279                 r = -EFAULT;
4280                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4281                         break;
4282
4283                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4284                 break;
4285         }
4286         case KVM_GET_DEBUGREGS: {
4287                 struct kvm_debugregs dbgregs;
4288
4289                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4290
4291                 r = -EFAULT;
4292                 if (copy_to_user(argp, &dbgregs,
4293                                  sizeof(struct kvm_debugregs)))
4294                         break;
4295                 r = 0;
4296                 break;
4297         }
4298         case KVM_SET_DEBUGREGS: {
4299                 struct kvm_debugregs dbgregs;
4300
4301                 r = -EFAULT;
4302                 if (copy_from_user(&dbgregs, argp,
4303                                    sizeof(struct kvm_debugregs)))
4304                         break;
4305
4306                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4307                 break;
4308         }
4309         case KVM_GET_XSAVE: {
4310                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4311                 r = -ENOMEM;
4312                 if (!u.xsave)
4313                         break;
4314
4315                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4316
4317                 r = -EFAULT;
4318                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4319                         break;
4320                 r = 0;
4321                 break;
4322         }
4323         case KVM_SET_XSAVE: {
4324                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4325                 if (IS_ERR(u.xsave)) {
4326                         r = PTR_ERR(u.xsave);
4327                         goto out_nofree;
4328                 }
4329
4330                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4331                 break;
4332         }
4333         case KVM_GET_XCRS: {
4334                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4335                 r = -ENOMEM;
4336                 if (!u.xcrs)
4337                         break;
4338
4339                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4340
4341                 r = -EFAULT;
4342                 if (copy_to_user(argp, u.xcrs,
4343                                  sizeof(struct kvm_xcrs)))
4344                         break;
4345                 r = 0;
4346                 break;
4347         }
4348         case KVM_SET_XCRS: {
4349                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4350                 if (IS_ERR(u.xcrs)) {
4351                         r = PTR_ERR(u.xcrs);
4352                         goto out_nofree;
4353                 }
4354
4355                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4356                 break;
4357         }
4358         case KVM_SET_TSC_KHZ: {
4359                 u32 user_tsc_khz;
4360
4361                 r = -EINVAL;
4362                 user_tsc_khz = (u32)arg;
4363
4364                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4365                         goto out;
4366
4367                 if (user_tsc_khz == 0)
4368                         user_tsc_khz = tsc_khz;
4369
4370                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4371                         r = 0;
4372
4373                 goto out;
4374         }
4375         case KVM_GET_TSC_KHZ: {
4376                 r = vcpu->arch.virtual_tsc_khz;
4377                 goto out;
4378         }
4379         case KVM_KVMCLOCK_CTRL: {
4380                 r = kvm_set_guest_paused(vcpu);
4381                 goto out;
4382         }
4383         case KVM_ENABLE_CAP: {
4384                 struct kvm_enable_cap cap;
4385
4386                 r = -EFAULT;
4387                 if (copy_from_user(&cap, argp, sizeof(cap)))
4388                         goto out;
4389                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4390                 break;
4391         }
4392         case KVM_GET_NESTED_STATE: {
4393                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4394                 u32 user_data_size;
4395
4396                 r = -EINVAL;
4397                 if (!kvm_x86_ops->get_nested_state)
4398                         break;
4399
4400                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4401                 r = -EFAULT;
4402                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4403                         break;
4404
4405                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4406                                                   user_data_size);
4407                 if (r < 0)
4408                         break;
4409
4410                 if (r > user_data_size) {
4411                         if (put_user(r, &user_kvm_nested_state->size))
4412                                 r = -EFAULT;
4413                         else
4414                                 r = -E2BIG;
4415                         break;
4416                 }
4417
4418                 r = 0;
4419                 break;
4420         }
4421         case KVM_SET_NESTED_STATE: {
4422                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4423                 struct kvm_nested_state kvm_state;
4424
4425                 r = -EINVAL;
4426                 if (!kvm_x86_ops->set_nested_state)
4427                         break;
4428
4429                 r = -EFAULT;
4430                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4431                         break;
4432
4433                 r = -EINVAL;
4434                 if (kvm_state.size < sizeof(kvm_state))
4435                         break;
4436
4437                 if (kvm_state.flags &
4438                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4439                       | KVM_STATE_NESTED_EVMCS))
4440                         break;
4441
4442                 /* nested_run_pending implies guest_mode.  */
4443                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4444                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4445                         break;
4446
4447                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4448                 break;
4449         }
4450         case KVM_GET_SUPPORTED_HV_CPUID: {
4451                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4452                 struct kvm_cpuid2 cpuid;
4453
4454                 r = -EFAULT;
4455                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4456                         goto out;
4457
4458                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4459                                                 cpuid_arg->entries);
4460                 if (r)
4461                         goto out;
4462
4463                 r = -EFAULT;
4464                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4465                         goto out;
4466                 r = 0;
4467                 break;
4468         }
4469         default:
4470                 r = -EINVAL;
4471         }
4472 out:
4473         kfree(u.buffer);
4474 out_nofree:
4475         vcpu_put(vcpu);
4476         return r;
4477 }
4478
4479 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4480 {
4481         return VM_FAULT_SIGBUS;
4482 }
4483
4484 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4485 {
4486         int ret;
4487
4488         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4489                 return -EINVAL;
4490         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4491         return ret;
4492 }
4493
4494 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4495                                               u64 ident_addr)
4496 {
4497         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4498 }
4499
4500 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4501                                          unsigned long kvm_nr_mmu_pages)
4502 {
4503         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4504                 return -EINVAL;
4505
4506         mutex_lock(&kvm->slots_lock);
4507
4508         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4509         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4510
4511         mutex_unlock(&kvm->slots_lock);
4512         return 0;
4513 }
4514
4515 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4516 {
4517         return kvm->arch.n_max_mmu_pages;
4518 }
4519
4520 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4521 {
4522         struct kvm_pic *pic = kvm->arch.vpic;
4523         int r;
4524
4525         r = 0;
4526         switch (chip->chip_id) {
4527         case KVM_IRQCHIP_PIC_MASTER:
4528                 memcpy(&chip->chip.pic, &pic->pics[0],
4529                         sizeof(struct kvm_pic_state));
4530                 break;
4531         case KVM_IRQCHIP_PIC_SLAVE:
4532                 memcpy(&chip->chip.pic, &pic->pics[1],
4533                         sizeof(struct kvm_pic_state));
4534                 break;
4535         case KVM_IRQCHIP_IOAPIC:
4536                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4537                 break;
4538         default:
4539                 r = -EINVAL;
4540                 break;
4541         }
4542         return r;
4543 }
4544
4545 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4546 {
4547         struct kvm_pic *pic = kvm->arch.vpic;
4548         int r;
4549
4550         r = 0;
4551         switch (chip->chip_id) {
4552         case KVM_IRQCHIP_PIC_MASTER:
4553                 spin_lock(&pic->lock);
4554                 memcpy(&pic->pics[0], &chip->chip.pic,
4555                         sizeof(struct kvm_pic_state));
4556                 spin_unlock(&pic->lock);
4557                 break;
4558         case KVM_IRQCHIP_PIC_SLAVE:
4559                 spin_lock(&pic->lock);
4560                 memcpy(&pic->pics[1], &chip->chip.pic,
4561                         sizeof(struct kvm_pic_state));
4562                 spin_unlock(&pic->lock);
4563                 break;
4564         case KVM_IRQCHIP_IOAPIC:
4565                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4566                 break;
4567         default:
4568                 r = -EINVAL;
4569                 break;
4570         }
4571         kvm_pic_update_irq(pic);
4572         return r;
4573 }
4574
4575 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4576 {
4577         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4578
4579         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4580
4581         mutex_lock(&kps->lock);
4582         memcpy(ps, &kps->channels, sizeof(*ps));
4583         mutex_unlock(&kps->lock);
4584         return 0;
4585 }
4586
4587 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4588 {
4589         int i;
4590         struct kvm_pit *pit = kvm->arch.vpit;
4591
4592         mutex_lock(&pit->pit_state.lock);
4593         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4594         for (i = 0; i < 3; i++)
4595                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4596         mutex_unlock(&pit->pit_state.lock);
4597         return 0;
4598 }
4599
4600 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4601 {
4602         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4603         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4604                 sizeof(ps->channels));
4605         ps->flags = kvm->arch.vpit->pit_state.flags;
4606         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4607         memset(&ps->reserved, 0, sizeof(ps->reserved));
4608         return 0;
4609 }
4610
4611 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4612 {
4613         int start = 0;
4614         int i;
4615         u32 prev_legacy, cur_legacy;
4616         struct kvm_pit *pit = kvm->arch.vpit;
4617
4618         mutex_lock(&pit->pit_state.lock);
4619         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4620         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4621         if (!prev_legacy && cur_legacy)
4622                 start = 1;
4623         memcpy(&pit->pit_state.channels, &ps->channels,
4624                sizeof(pit->pit_state.channels));
4625         pit->pit_state.flags = ps->flags;
4626         for (i = 0; i < 3; i++)
4627                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4628                                    start && i == 0);
4629         mutex_unlock(&pit->pit_state.lock);
4630         return 0;
4631 }
4632
4633 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4634                                  struct kvm_reinject_control *control)
4635 {
4636         struct kvm_pit *pit = kvm->arch.vpit;
4637
4638         if (!pit)
4639                 return -ENXIO;
4640
4641         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4642          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4643          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4644          */
4645         mutex_lock(&pit->pit_state.lock);
4646         kvm_pit_set_reinject(pit, control->pit_reinject);
4647         mutex_unlock(&pit->pit_state.lock);
4648
4649         return 0;
4650 }
4651
4652 /**
4653  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4654  * @kvm: kvm instance
4655  * @log: slot id and address to which we copy the log
4656  *
4657  * Steps 1-4 below provide general overview of dirty page logging. See
4658  * kvm_get_dirty_log_protect() function description for additional details.
4659  *
4660  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4661  * always flush the TLB (step 4) even if previous step failed  and the dirty
4662  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4663  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4664  * writes will be marked dirty for next log read.
4665  *
4666  *   1. Take a snapshot of the bit and clear it if needed.
4667  *   2. Write protect the corresponding page.
4668  *   3. Copy the snapshot to the userspace.
4669  *   4. Flush TLB's if needed.
4670  */
4671 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4672 {
4673         bool flush = false;
4674         int r;
4675
4676         mutex_lock(&kvm->slots_lock);
4677
4678         /*
4679          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4680          */
4681         if (kvm_x86_ops->flush_log_dirty)
4682                 kvm_x86_ops->flush_log_dirty(kvm);
4683
4684         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4685
4686         /*
4687          * All the TLBs can be flushed out of mmu lock, see the comments in
4688          * kvm_mmu_slot_remove_write_access().
4689          */
4690         lockdep_assert_held(&kvm->slots_lock);
4691         if (flush)
4692                 kvm_flush_remote_tlbs(kvm);
4693
4694         mutex_unlock(&kvm->slots_lock);
4695         return r;
4696 }
4697
4698 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4699 {
4700         bool flush = false;
4701         int r;
4702
4703         mutex_lock(&kvm->slots_lock);
4704
4705         /*
4706          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4707          */
4708         if (kvm_x86_ops->flush_log_dirty)
4709                 kvm_x86_ops->flush_log_dirty(kvm);
4710
4711         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4712
4713         /*
4714          * All the TLBs can be flushed out of mmu lock, see the comments in
4715          * kvm_mmu_slot_remove_write_access().
4716          */
4717         lockdep_assert_held(&kvm->slots_lock);
4718         if (flush)
4719                 kvm_flush_remote_tlbs(kvm);
4720
4721         mutex_unlock(&kvm->slots_lock);
4722         return r;
4723 }
4724
4725 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4726                         bool line_status)
4727 {
4728         if (!irqchip_in_kernel(kvm))
4729                 return -ENXIO;
4730
4731         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4732                                         irq_event->irq, irq_event->level,
4733                                         line_status);
4734         return 0;
4735 }
4736
4737 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4738                             struct kvm_enable_cap *cap)
4739 {
4740         int r;
4741
4742         if (cap->flags)
4743                 return -EINVAL;
4744
4745         switch (cap->cap) {
4746         case KVM_CAP_DISABLE_QUIRKS:
4747                 kvm->arch.disabled_quirks = cap->args[0];
4748                 r = 0;
4749                 break;
4750         case KVM_CAP_SPLIT_IRQCHIP: {
4751                 mutex_lock(&kvm->lock);
4752                 r = -EINVAL;
4753                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4754                         goto split_irqchip_unlock;
4755                 r = -EEXIST;
4756                 if (irqchip_in_kernel(kvm))
4757                         goto split_irqchip_unlock;
4758                 if (kvm->created_vcpus)
4759                         goto split_irqchip_unlock;
4760                 r = kvm_setup_empty_irq_routing(kvm);
4761                 if (r)
4762                         goto split_irqchip_unlock;
4763                 /* Pairs with irqchip_in_kernel. */
4764                 smp_wmb();
4765                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4766                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4767                 r = 0;
4768 split_irqchip_unlock:
4769                 mutex_unlock(&kvm->lock);
4770                 break;
4771         }
4772         case KVM_CAP_X2APIC_API:
4773                 r = -EINVAL;
4774                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4775                         break;
4776
4777                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4778                         kvm->arch.x2apic_format = true;
4779                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4780                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4781
4782                 r = 0;
4783                 break;
4784         case KVM_CAP_X86_DISABLE_EXITS:
4785                 r = -EINVAL;
4786                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4787                         break;
4788
4789                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4790                         kvm_can_mwait_in_guest())
4791                         kvm->arch.mwait_in_guest = true;
4792                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4793                         kvm->arch.hlt_in_guest = true;
4794                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4795                         kvm->arch.pause_in_guest = true;
4796                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4797                         kvm->arch.cstate_in_guest = true;
4798                 r = 0;
4799                 break;
4800         case KVM_CAP_MSR_PLATFORM_INFO:
4801                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4802                 r = 0;
4803                 break;
4804         case KVM_CAP_EXCEPTION_PAYLOAD:
4805                 kvm->arch.exception_payload_enabled = cap->args[0];
4806                 r = 0;
4807                 break;
4808         default:
4809                 r = -EINVAL;
4810                 break;
4811         }
4812         return r;
4813 }
4814
4815 long kvm_arch_vm_ioctl(struct file *filp,
4816                        unsigned int ioctl, unsigned long arg)
4817 {
4818         struct kvm *kvm = filp->private_data;
4819         void __user *argp = (void __user *)arg;
4820         int r = -ENOTTY;
4821         /*
4822          * This union makes it completely explicit to gcc-3.x
4823          * that these two variables' stack usage should be
4824          * combined, not added together.
4825          */
4826         union {
4827                 struct kvm_pit_state ps;
4828                 struct kvm_pit_state2 ps2;
4829                 struct kvm_pit_config pit_config;
4830         } u;
4831
4832         switch (ioctl) {
4833         case KVM_SET_TSS_ADDR:
4834                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4835                 break;
4836         case KVM_SET_IDENTITY_MAP_ADDR: {
4837                 u64 ident_addr;
4838
4839                 mutex_lock(&kvm->lock);
4840                 r = -EINVAL;
4841                 if (kvm->created_vcpus)
4842                         goto set_identity_unlock;
4843                 r = -EFAULT;
4844                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4845                         goto set_identity_unlock;
4846                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4847 set_identity_unlock:
4848                 mutex_unlock(&kvm->lock);
4849                 break;
4850         }
4851         case KVM_SET_NR_MMU_PAGES:
4852                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4853                 break;
4854         case KVM_GET_NR_MMU_PAGES:
4855                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4856                 break;
4857         case KVM_CREATE_IRQCHIP: {
4858                 mutex_lock(&kvm->lock);
4859
4860                 r = -EEXIST;
4861                 if (irqchip_in_kernel(kvm))
4862                         goto create_irqchip_unlock;
4863
4864                 r = -EINVAL;
4865                 if (kvm->created_vcpus)
4866                         goto create_irqchip_unlock;
4867
4868                 r = kvm_pic_init(kvm);
4869                 if (r)
4870                         goto create_irqchip_unlock;
4871
4872                 r = kvm_ioapic_init(kvm);
4873                 if (r) {
4874                         kvm_pic_destroy(kvm);
4875                         goto create_irqchip_unlock;
4876                 }
4877
4878                 r = kvm_setup_default_irq_routing(kvm);
4879                 if (r) {
4880                         kvm_ioapic_destroy(kvm);
4881                         kvm_pic_destroy(kvm);
4882                         goto create_irqchip_unlock;
4883                 }
4884                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4885                 smp_wmb();
4886                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4887         create_irqchip_unlock:
4888                 mutex_unlock(&kvm->lock);
4889                 break;
4890         }
4891         case KVM_CREATE_PIT:
4892                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4893                 goto create_pit;
4894         case KVM_CREATE_PIT2:
4895                 r = -EFAULT;
4896                 if (copy_from_user(&u.pit_config, argp,
4897                                    sizeof(struct kvm_pit_config)))
4898                         goto out;
4899         create_pit:
4900                 mutex_lock(&kvm->lock);
4901                 r = -EEXIST;
4902                 if (kvm->arch.vpit)
4903                         goto create_pit_unlock;
4904                 r = -ENOMEM;
4905                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4906                 if (kvm->arch.vpit)
4907                         r = 0;
4908         create_pit_unlock:
4909                 mutex_unlock(&kvm->lock);
4910                 break;
4911         case KVM_GET_IRQCHIP: {
4912                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4913                 struct kvm_irqchip *chip;
4914
4915                 chip = memdup_user(argp, sizeof(*chip));
4916                 if (IS_ERR(chip)) {
4917                         r = PTR_ERR(chip);
4918                         goto out;
4919                 }
4920
4921                 r = -ENXIO;
4922                 if (!irqchip_kernel(kvm))
4923                         goto get_irqchip_out;
4924                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4925                 if (r)
4926                         goto get_irqchip_out;
4927                 r = -EFAULT;
4928                 if (copy_to_user(argp, chip, sizeof(*chip)))
4929                         goto get_irqchip_out;
4930                 r = 0;
4931         get_irqchip_out:
4932                 kfree(chip);
4933                 break;
4934         }
4935         case KVM_SET_IRQCHIP: {
4936                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4937                 struct kvm_irqchip *chip;
4938
4939                 chip = memdup_user(argp, sizeof(*chip));
4940                 if (IS_ERR(chip)) {
4941                         r = PTR_ERR(chip);
4942                         goto out;
4943                 }
4944
4945                 r = -ENXIO;
4946                 if (!irqchip_kernel(kvm))
4947                         goto set_irqchip_out;
4948                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4949                 if (r)
4950                         goto set_irqchip_out;
4951                 r = 0;
4952         set_irqchip_out:
4953                 kfree(chip);
4954                 break;
4955         }
4956         case KVM_GET_PIT: {
4957                 r = -EFAULT;
4958                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4959                         goto out;
4960                 r = -ENXIO;
4961                 if (!kvm->arch.vpit)
4962                         goto out;
4963                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4964                 if (r)
4965                         goto out;
4966                 r = -EFAULT;
4967                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4968                         goto out;
4969                 r = 0;
4970                 break;
4971         }
4972         case KVM_SET_PIT: {
4973                 r = -EFAULT;
4974                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4975                         goto out;
4976                 r = -ENXIO;
4977                 if (!kvm->arch.vpit)
4978                         goto out;
4979                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4980                 break;
4981         }
4982         case KVM_GET_PIT2: {
4983                 r = -ENXIO;
4984                 if (!kvm->arch.vpit)
4985                         goto out;
4986                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4987                 if (r)
4988                         goto out;
4989                 r = -EFAULT;
4990                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4991                         goto out;
4992                 r = 0;
4993                 break;
4994         }
4995         case KVM_SET_PIT2: {
4996                 r = -EFAULT;
4997                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4998                         goto out;
4999                 r = -ENXIO;
5000                 if (!kvm->arch.vpit)
5001                         goto out;
5002                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5003                 break;
5004         }
5005         case KVM_REINJECT_CONTROL: {
5006                 struct kvm_reinject_control control;
5007                 r =  -EFAULT;
5008                 if (copy_from_user(&control, argp, sizeof(control)))
5009                         goto out;
5010                 r = kvm_vm_ioctl_reinject(kvm, &control);
5011                 break;
5012         }
5013         case KVM_SET_BOOT_CPU_ID:
5014                 r = 0;
5015                 mutex_lock(&kvm->lock);
5016                 if (kvm->created_vcpus)
5017                         r = -EBUSY;
5018                 else
5019                         kvm->arch.bsp_vcpu_id = arg;
5020                 mutex_unlock(&kvm->lock);
5021                 break;
5022         case KVM_XEN_HVM_CONFIG: {
5023                 struct kvm_xen_hvm_config xhc;
5024                 r = -EFAULT;
5025                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5026                         goto out;
5027                 r = -EINVAL;
5028                 if (xhc.flags)
5029                         goto out;
5030                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5031                 r = 0;
5032                 break;
5033         }
5034         case KVM_SET_CLOCK: {
5035                 struct kvm_clock_data user_ns;
5036                 u64 now_ns;
5037
5038                 r = -EFAULT;
5039                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5040                         goto out;
5041
5042                 r = -EINVAL;
5043                 if (user_ns.flags)
5044                         goto out;
5045
5046                 r = 0;
5047                 /*
5048                  * TODO: userspace has to take care of races with VCPU_RUN, so
5049                  * kvm_gen_update_masterclock() can be cut down to locked
5050                  * pvclock_update_vm_gtod_copy().
5051                  */
5052                 kvm_gen_update_masterclock(kvm);
5053                 now_ns = get_kvmclock_ns(kvm);
5054                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5055                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5056                 break;
5057         }
5058         case KVM_GET_CLOCK: {
5059                 struct kvm_clock_data user_ns;
5060                 u64 now_ns;
5061
5062                 now_ns = get_kvmclock_ns(kvm);
5063                 user_ns.clock = now_ns;
5064                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5065                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5066
5067                 r = -EFAULT;
5068                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5069                         goto out;
5070                 r = 0;
5071                 break;
5072         }
5073         case KVM_MEMORY_ENCRYPT_OP: {
5074                 r = -ENOTTY;
5075                 if (kvm_x86_ops->mem_enc_op)
5076                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
5077                 break;
5078         }
5079         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5080                 struct kvm_enc_region region;
5081
5082                 r = -EFAULT;
5083                 if (copy_from_user(&region, argp, sizeof(region)))
5084                         goto out;
5085
5086                 r = -ENOTTY;
5087                 if (kvm_x86_ops->mem_enc_reg_region)
5088                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5089                 break;
5090         }
5091         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5092                 struct kvm_enc_region region;
5093
5094                 r = -EFAULT;
5095                 if (copy_from_user(&region, argp, sizeof(region)))
5096                         goto out;
5097
5098                 r = -ENOTTY;
5099                 if (kvm_x86_ops->mem_enc_unreg_region)
5100                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5101                 break;
5102         }
5103         case KVM_HYPERV_EVENTFD: {
5104                 struct kvm_hyperv_eventfd hvevfd;
5105
5106                 r = -EFAULT;
5107                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5108                         goto out;
5109                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5110                 break;
5111         }
5112         case KVM_SET_PMU_EVENT_FILTER:
5113                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5114                 break;
5115         default:
5116                 r = -ENOTTY;
5117         }
5118 out:
5119         return r;
5120 }
5121
5122 static void kvm_init_msr_list(void)
5123 {
5124         struct x86_pmu_capability x86_pmu;
5125         u32 dummy[2];
5126         unsigned i;
5127
5128         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5129                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5130
5131         perf_get_x86_pmu_capability(&x86_pmu);
5132
5133         num_msrs_to_save = 0;
5134         num_emulated_msrs = 0;
5135         num_msr_based_features = 0;
5136
5137         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5138                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5139                         continue;
5140
5141                 /*
5142                  * Even MSRs that are valid in the host may not be exposed
5143                  * to the guests in some cases.
5144                  */
5145                 switch (msrs_to_save_all[i]) {
5146                 case MSR_IA32_BNDCFGS:
5147                         if (!kvm_mpx_supported())
5148                                 continue;
5149                         break;
5150                 case MSR_TSC_AUX:
5151                         if (!kvm_x86_ops->rdtscp_supported())
5152                                 continue;
5153                         break;
5154                 case MSR_IA32_RTIT_CTL:
5155                 case MSR_IA32_RTIT_STATUS:
5156                         if (!kvm_x86_ops->pt_supported())
5157                                 continue;
5158                         break;
5159                 case MSR_IA32_RTIT_CR3_MATCH:
5160                         if (!kvm_x86_ops->pt_supported() ||
5161                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5162                                 continue;
5163                         break;
5164                 case MSR_IA32_RTIT_OUTPUT_BASE:
5165                 case MSR_IA32_RTIT_OUTPUT_MASK:
5166                         if (!kvm_x86_ops->pt_supported() ||
5167                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5168                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5169                                 continue;
5170                         break;
5171                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5172                         if (!kvm_x86_ops->pt_supported() ||
5173                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5174                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5175                                 continue;
5176                         break;
5177                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5178                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5179                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5180                                 continue;
5181                         break;
5182                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5183                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5184                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5185                                 continue;
5186                 }
5187                 default:
5188                         break;
5189                 }
5190
5191                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5192         }
5193
5194         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5195                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5196                         continue;
5197
5198                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5199         }
5200
5201         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5202                 struct kvm_msr_entry msr;
5203
5204                 msr.index = msr_based_features_all[i];
5205                 if (kvm_get_msr_feature(&msr))
5206                         continue;
5207
5208                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5209         }
5210 }
5211
5212 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5213                            const void *v)
5214 {
5215         int handled = 0;
5216         int n;
5217
5218         do {
5219                 n = min(len, 8);
5220                 if (!(lapic_in_kernel(vcpu) &&
5221                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5222                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5223                         break;
5224                 handled += n;
5225                 addr += n;
5226                 len -= n;
5227                 v += n;
5228         } while (len);
5229
5230         return handled;
5231 }
5232
5233 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5234 {
5235         int handled = 0;
5236         int n;
5237
5238         do {
5239                 n = min(len, 8);
5240                 if (!(lapic_in_kernel(vcpu) &&
5241                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5242                                          addr, n, v))
5243                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5244                         break;
5245                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5246                 handled += n;
5247                 addr += n;
5248                 len -= n;
5249                 v += n;
5250         } while (len);
5251
5252         return handled;
5253 }
5254
5255 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5256                         struct kvm_segment *var, int seg)
5257 {
5258         kvm_x86_ops->set_segment(vcpu, var, seg);
5259 }
5260
5261 void kvm_get_segment(struct kvm_vcpu *vcpu,
5262                      struct kvm_segment *var, int seg)
5263 {
5264         kvm_x86_ops->get_segment(vcpu, var, seg);
5265 }
5266
5267 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5268                            struct x86_exception *exception)
5269 {
5270         gpa_t t_gpa;
5271
5272         BUG_ON(!mmu_is_nested(vcpu));
5273
5274         /* NPT walks are always user-walks */
5275         access |= PFERR_USER_MASK;
5276         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5277
5278         return t_gpa;
5279 }
5280
5281 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5282                               struct x86_exception *exception)
5283 {
5284         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5285         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5286 }
5287
5288  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5289                                 struct x86_exception *exception)
5290 {
5291         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5292         access |= PFERR_FETCH_MASK;
5293         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5294 }
5295
5296 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5297                                struct x86_exception *exception)
5298 {
5299         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5300         access |= PFERR_WRITE_MASK;
5301         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5302 }
5303
5304 /* uses this to access any guest's mapped memory without checking CPL */
5305 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5306                                 struct x86_exception *exception)
5307 {
5308         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5309 }
5310
5311 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5312                                       struct kvm_vcpu *vcpu, u32 access,
5313                                       struct x86_exception *exception)
5314 {
5315         void *data = val;
5316         int r = X86EMUL_CONTINUE;
5317
5318         while (bytes) {
5319                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5320                                                             exception);
5321                 unsigned offset = addr & (PAGE_SIZE-1);
5322                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5323                 int ret;
5324
5325                 if (gpa == UNMAPPED_GVA)
5326                         return X86EMUL_PROPAGATE_FAULT;
5327                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5328                                                offset, toread);
5329                 if (ret < 0) {
5330                         r = X86EMUL_IO_NEEDED;
5331                         goto out;
5332                 }
5333
5334                 bytes -= toread;
5335                 data += toread;
5336                 addr += toread;
5337         }
5338 out:
5339         return r;
5340 }
5341
5342 /* used for instruction fetching */
5343 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5344                                 gva_t addr, void *val, unsigned int bytes,
5345                                 struct x86_exception *exception)
5346 {
5347         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5348         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5349         unsigned offset;
5350         int ret;
5351
5352         /* Inline kvm_read_guest_virt_helper for speed.  */
5353         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5354                                                     exception);
5355         if (unlikely(gpa == UNMAPPED_GVA))
5356                 return X86EMUL_PROPAGATE_FAULT;
5357
5358         offset = addr & (PAGE_SIZE-1);
5359         if (WARN_ON(offset + bytes > PAGE_SIZE))
5360                 bytes = (unsigned)PAGE_SIZE - offset;
5361         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5362                                        offset, bytes);
5363         if (unlikely(ret < 0))
5364                 return X86EMUL_IO_NEEDED;
5365
5366         return X86EMUL_CONTINUE;
5367 }
5368
5369 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5370                                gva_t addr, void *val, unsigned int bytes,
5371                                struct x86_exception *exception)
5372 {
5373         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5374
5375         /*
5376          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5377          * is returned, but our callers are not ready for that and they blindly
5378          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5379          * uninitialized kernel stack memory into cr2 and error code.
5380          */
5381         memset(exception, 0, sizeof(*exception));
5382         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5383                                           exception);
5384 }
5385 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5386
5387 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5388                              gva_t addr, void *val, unsigned int bytes,
5389                              struct x86_exception *exception, bool system)
5390 {
5391         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5392         u32 access = 0;
5393
5394         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5395                 access |= PFERR_USER_MASK;
5396
5397         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5398 }
5399
5400 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5401                 unsigned long addr, void *val, unsigned int bytes)
5402 {
5403         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5404         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5405
5406         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5407 }
5408
5409 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5410                                       struct kvm_vcpu *vcpu, u32 access,
5411                                       struct x86_exception *exception)
5412 {
5413         void *data = val;
5414         int r = X86EMUL_CONTINUE;
5415
5416         while (bytes) {
5417                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5418                                                              access,
5419                                                              exception);
5420                 unsigned offset = addr & (PAGE_SIZE-1);
5421                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5422                 int ret;
5423
5424                 if (gpa == UNMAPPED_GVA)
5425                         return X86EMUL_PROPAGATE_FAULT;
5426                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5427                 if (ret < 0) {
5428                         r = X86EMUL_IO_NEEDED;
5429                         goto out;
5430                 }
5431
5432                 bytes -= towrite;
5433                 data += towrite;
5434                 addr += towrite;
5435         }
5436 out:
5437         return r;
5438 }
5439
5440 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5441                               unsigned int bytes, struct x86_exception *exception,
5442                               bool system)
5443 {
5444         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5445         u32 access = PFERR_WRITE_MASK;
5446
5447         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5448                 access |= PFERR_USER_MASK;
5449
5450         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5451                                            access, exception);
5452 }
5453
5454 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5455                                 unsigned int bytes, struct x86_exception *exception)
5456 {
5457         /* kvm_write_guest_virt_system can pull in tons of pages. */
5458         vcpu->arch.l1tf_flush_l1d = true;
5459
5460         /*
5461          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5462          * is returned, but our callers are not ready for that and they blindly
5463          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5464          * uninitialized kernel stack memory into cr2 and error code.
5465          */
5466         memset(exception, 0, sizeof(*exception));
5467         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5468                                            PFERR_WRITE_MASK, exception);
5469 }
5470 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5471
5472 int handle_ud(struct kvm_vcpu *vcpu)
5473 {
5474         int emul_type = EMULTYPE_TRAP_UD;
5475         char sig[5]; /* ud2; .ascii "kvm" */
5476         struct x86_exception e;
5477
5478         if (force_emulation_prefix &&
5479             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5480                                 sig, sizeof(sig), &e) == 0 &&
5481             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5482                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5483                 emul_type = EMULTYPE_TRAP_UD_FORCED;
5484         }
5485
5486         return kvm_emulate_instruction(vcpu, emul_type);
5487 }
5488 EXPORT_SYMBOL_GPL(handle_ud);
5489
5490 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5491                             gpa_t gpa, bool write)
5492 {
5493         /* For APIC access vmexit */
5494         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5495                 return 1;
5496
5497         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5498                 trace_vcpu_match_mmio(gva, gpa, write, true);
5499                 return 1;
5500         }
5501
5502         return 0;
5503 }
5504
5505 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5506                                 gpa_t *gpa, struct x86_exception *exception,
5507                                 bool write)
5508 {
5509         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5510                 | (write ? PFERR_WRITE_MASK : 0);
5511
5512         /*
5513          * currently PKRU is only applied to ept enabled guest so
5514          * there is no pkey in EPT page table for L1 guest or EPT
5515          * shadow page table for L2 guest.
5516          */
5517         if (vcpu_match_mmio_gva(vcpu, gva)
5518             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5519                                  vcpu->arch.mmio_access, 0, access)) {
5520                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5521                                         (gva & (PAGE_SIZE - 1));
5522                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5523                 return 1;
5524         }
5525
5526         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5527
5528         if (*gpa == UNMAPPED_GVA)
5529                 return -1;
5530
5531         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5532 }
5533
5534 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5535                         const void *val, int bytes)
5536 {
5537         int ret;
5538
5539         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5540         if (ret < 0)
5541                 return 0;
5542         kvm_page_track_write(vcpu, gpa, val, bytes);
5543         return 1;
5544 }
5545
5546 struct read_write_emulator_ops {
5547         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5548                                   int bytes);
5549         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5550                                   void *val, int bytes);
5551         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5552                                int bytes, void *val);
5553         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5554                                     void *val, int bytes);
5555         bool write;
5556 };
5557
5558 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5559 {
5560         if (vcpu->mmio_read_completed) {
5561                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5562                                vcpu->mmio_fragments[0].gpa, val);
5563                 vcpu->mmio_read_completed = 0;
5564                 return 1;
5565         }
5566
5567         return 0;
5568 }
5569
5570 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5571                         void *val, int bytes)
5572 {
5573         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5574 }
5575
5576 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5577                          void *val, int bytes)
5578 {
5579         return emulator_write_phys(vcpu, gpa, val, bytes);
5580 }
5581
5582 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5583 {
5584         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5585         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5586 }
5587
5588 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5589                           void *val, int bytes)
5590 {
5591         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5592         return X86EMUL_IO_NEEDED;
5593 }
5594
5595 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5596                            void *val, int bytes)
5597 {
5598         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5599
5600         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5601         return X86EMUL_CONTINUE;
5602 }
5603
5604 static const struct read_write_emulator_ops read_emultor = {
5605         .read_write_prepare = read_prepare,
5606         .read_write_emulate = read_emulate,
5607         .read_write_mmio = vcpu_mmio_read,
5608         .read_write_exit_mmio = read_exit_mmio,
5609 };
5610
5611 static const struct read_write_emulator_ops write_emultor = {
5612         .read_write_emulate = write_emulate,
5613         .read_write_mmio = write_mmio,
5614         .read_write_exit_mmio = write_exit_mmio,
5615         .write = true,
5616 };
5617
5618 static int emulator_read_write_onepage(unsigned long addr, void *val,
5619                                        unsigned int bytes,
5620                                        struct x86_exception *exception,
5621                                        struct kvm_vcpu *vcpu,
5622                                        const struct read_write_emulator_ops *ops)
5623 {
5624         gpa_t gpa;
5625         int handled, ret;
5626         bool write = ops->write;
5627         struct kvm_mmio_fragment *frag;
5628         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5629
5630         /*
5631          * If the exit was due to a NPF we may already have a GPA.
5632          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5633          * Note, this cannot be used on string operations since string
5634          * operation using rep will only have the initial GPA from the NPF
5635          * occurred.
5636          */
5637         if (vcpu->arch.gpa_available &&
5638             emulator_can_use_gpa(ctxt) &&
5639             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5640                 gpa = vcpu->arch.gpa_val;
5641                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5642         } else {
5643                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5644                 if (ret < 0)
5645                         return X86EMUL_PROPAGATE_FAULT;
5646         }
5647
5648         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5649                 return X86EMUL_CONTINUE;
5650
5651         /*
5652          * Is this MMIO handled locally?
5653          */
5654         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5655         if (handled == bytes)
5656                 return X86EMUL_CONTINUE;
5657
5658         gpa += handled;
5659         bytes -= handled;
5660         val += handled;
5661
5662         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5663         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5664         frag->gpa = gpa;
5665         frag->data = val;
5666         frag->len = bytes;
5667         return X86EMUL_CONTINUE;
5668 }
5669
5670 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5671                         unsigned long addr,
5672                         void *val, unsigned int bytes,
5673                         struct x86_exception *exception,
5674                         const struct read_write_emulator_ops *ops)
5675 {
5676         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5677         gpa_t gpa;
5678         int rc;
5679
5680         if (ops->read_write_prepare &&
5681                   ops->read_write_prepare(vcpu, val, bytes))
5682                 return X86EMUL_CONTINUE;
5683
5684         vcpu->mmio_nr_fragments = 0;
5685
5686         /* Crossing a page boundary? */
5687         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5688                 int now;
5689
5690                 now = -addr & ~PAGE_MASK;
5691                 rc = emulator_read_write_onepage(addr, val, now, exception,
5692                                                  vcpu, ops);
5693
5694                 if (rc != X86EMUL_CONTINUE)
5695                         return rc;
5696                 addr += now;
5697                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5698                         addr = (u32)addr;
5699                 val += now;
5700                 bytes -= now;
5701         }
5702
5703         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5704                                          vcpu, ops);
5705         if (rc != X86EMUL_CONTINUE)
5706                 return rc;
5707
5708         if (!vcpu->mmio_nr_fragments)
5709                 return rc;
5710
5711         gpa = vcpu->mmio_fragments[0].gpa;
5712
5713         vcpu->mmio_needed = 1;
5714         vcpu->mmio_cur_fragment = 0;
5715
5716         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5717         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5718         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5719         vcpu->run->mmio.phys_addr = gpa;
5720
5721         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5722 }
5723
5724 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5725                                   unsigned long addr,
5726                                   void *val,
5727                                   unsigned int bytes,
5728                                   struct x86_exception *exception)
5729 {
5730         return emulator_read_write(ctxt, addr, val, bytes,
5731                                    exception, &read_emultor);
5732 }
5733
5734 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5735                             unsigned long addr,
5736                             const void *val,
5737                             unsigned int bytes,
5738                             struct x86_exception *exception)
5739 {
5740         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5741                                    exception, &write_emultor);
5742 }
5743
5744 #define CMPXCHG_TYPE(t, ptr, old, new) \
5745         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5746
5747 #ifdef CONFIG_X86_64
5748 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5749 #else
5750 #  define CMPXCHG64(ptr, old, new) \
5751         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5752 #endif
5753
5754 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5755                                      unsigned long addr,
5756                                      const void *old,
5757                                      const void *new,
5758                                      unsigned int bytes,
5759                                      struct x86_exception *exception)
5760 {
5761         struct kvm_host_map map;
5762         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5763         gpa_t gpa;
5764         char *kaddr;
5765         bool exchanged;
5766
5767         /* guests cmpxchg8b have to be emulated atomically */
5768         if (bytes > 8 || (bytes & (bytes - 1)))
5769                 goto emul_write;
5770
5771         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5772
5773         if (gpa == UNMAPPED_GVA ||
5774             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5775                 goto emul_write;
5776
5777         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5778                 goto emul_write;
5779
5780         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5781                 goto emul_write;
5782
5783         kaddr = map.hva + offset_in_page(gpa);
5784
5785         switch (bytes) {
5786         case 1:
5787                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5788                 break;
5789         case 2:
5790                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5791                 break;
5792         case 4:
5793                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5794                 break;
5795         case 8:
5796                 exchanged = CMPXCHG64(kaddr, old, new);
5797                 break;
5798         default:
5799                 BUG();
5800         }
5801
5802         kvm_vcpu_unmap(vcpu, &map, true);
5803
5804         if (!exchanged)
5805                 return X86EMUL_CMPXCHG_FAILED;
5806
5807         kvm_page_track_write(vcpu, gpa, new, bytes);
5808
5809         return X86EMUL_CONTINUE;
5810
5811 emul_write:
5812         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5813
5814         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5815 }
5816
5817 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5818 {
5819         int r = 0, i;
5820
5821         for (i = 0; i < vcpu->arch.pio.count; i++) {
5822                 if (vcpu->arch.pio.in)
5823                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5824                                             vcpu->arch.pio.size, pd);
5825                 else
5826                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5827                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5828                                              pd);
5829                 if (r)
5830                         break;
5831                 pd += vcpu->arch.pio.size;
5832         }
5833         return r;
5834 }
5835
5836 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5837                                unsigned short port, void *val,
5838                                unsigned int count, bool in)
5839 {
5840         vcpu->arch.pio.port = port;
5841         vcpu->arch.pio.in = in;
5842         vcpu->arch.pio.count  = count;
5843         vcpu->arch.pio.size = size;
5844
5845         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5846                 vcpu->arch.pio.count = 0;
5847                 return 1;
5848         }
5849
5850         vcpu->run->exit_reason = KVM_EXIT_IO;
5851         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5852         vcpu->run->io.size = size;
5853         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5854         vcpu->run->io.count = count;
5855         vcpu->run->io.port = port;
5856
5857         return 0;
5858 }
5859
5860 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5861                                     int size, unsigned short port, void *val,
5862                                     unsigned int count)
5863 {
5864         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5865         int ret;
5866
5867         if (vcpu->arch.pio.count)
5868                 goto data_avail;
5869
5870         memset(vcpu->arch.pio_data, 0, size * count);
5871
5872         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5873         if (ret) {
5874 data_avail:
5875                 memcpy(val, vcpu->arch.pio_data, size * count);
5876                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5877                 vcpu->arch.pio.count = 0;
5878                 return 1;
5879         }
5880
5881         return 0;
5882 }
5883
5884 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5885                                      int size, unsigned short port,
5886                                      const void *val, unsigned int count)
5887 {
5888         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5889
5890         memcpy(vcpu->arch.pio_data, val, size * count);
5891         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5892         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5893 }
5894
5895 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5896 {
5897         return kvm_x86_ops->get_segment_base(vcpu, seg);
5898 }
5899
5900 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5901 {
5902         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5903 }
5904
5905 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5906 {
5907         if (!need_emulate_wbinvd(vcpu))
5908                 return X86EMUL_CONTINUE;
5909
5910         if (kvm_x86_ops->has_wbinvd_exit()) {
5911                 int cpu = get_cpu();
5912
5913                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5914                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5915                                 wbinvd_ipi, NULL, 1);
5916                 put_cpu();
5917                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5918         } else
5919                 wbinvd();
5920         return X86EMUL_CONTINUE;
5921 }
5922
5923 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5924 {
5925         kvm_emulate_wbinvd_noskip(vcpu);
5926         return kvm_skip_emulated_instruction(vcpu);
5927 }
5928 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5929
5930
5931
5932 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5933 {
5934         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5935 }
5936
5937 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5938                            unsigned long *dest)
5939 {
5940         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5941 }
5942
5943 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5944                            unsigned long value)
5945 {
5946
5947         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5948 }
5949
5950 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5951 {
5952         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5953 }
5954
5955 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5956 {
5957         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5958         unsigned long value;
5959
5960         switch (cr) {
5961         case 0:
5962                 value = kvm_read_cr0(vcpu);
5963                 break;
5964         case 2:
5965                 value = vcpu->arch.cr2;
5966                 break;
5967         case 3:
5968                 value = kvm_read_cr3(vcpu);
5969                 break;
5970         case 4:
5971                 value = kvm_read_cr4(vcpu);
5972                 break;
5973         case 8:
5974                 value = kvm_get_cr8(vcpu);
5975                 break;
5976         default:
5977                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5978                 return 0;
5979         }
5980
5981         return value;
5982 }
5983
5984 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5985 {
5986         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5987         int res = 0;
5988
5989         switch (cr) {
5990         case 0:
5991                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5992                 break;
5993         case 2:
5994                 vcpu->arch.cr2 = val;
5995                 break;
5996         case 3:
5997                 res = kvm_set_cr3(vcpu, val);
5998                 break;
5999         case 4:
6000                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6001                 break;
6002         case 8:
6003                 res = kvm_set_cr8(vcpu, val);
6004                 break;
6005         default:
6006                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6007                 res = -1;
6008         }
6009
6010         return res;
6011 }
6012
6013 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6014 {
6015         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6016 }
6017
6018 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6019 {
6020         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6021 }
6022
6023 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6024 {
6025         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6026 }
6027
6028 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6029 {
6030         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6031 }
6032
6033 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6034 {
6035         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6036 }
6037
6038 static unsigned long emulator_get_cached_segment_base(
6039         struct x86_emulate_ctxt *ctxt, int seg)
6040 {
6041         return get_segment_base(emul_to_vcpu(ctxt), seg);
6042 }
6043
6044 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6045                                  struct desc_struct *desc, u32 *base3,
6046                                  int seg)
6047 {
6048         struct kvm_segment var;
6049
6050         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6051         *selector = var.selector;
6052
6053         if (var.unusable) {
6054                 memset(desc, 0, sizeof(*desc));
6055                 if (base3)
6056                         *base3 = 0;
6057                 return false;
6058         }
6059
6060         if (var.g)
6061                 var.limit >>= 12;
6062         set_desc_limit(desc, var.limit);
6063         set_desc_base(desc, (unsigned long)var.base);
6064 #ifdef CONFIG_X86_64
6065         if (base3)
6066                 *base3 = var.base >> 32;
6067 #endif
6068         desc->type = var.type;
6069         desc->s = var.s;
6070         desc->dpl = var.dpl;
6071         desc->p = var.present;
6072         desc->avl = var.avl;
6073         desc->l = var.l;
6074         desc->d = var.db;
6075         desc->g = var.g;
6076
6077         return true;
6078 }
6079
6080 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6081                                  struct desc_struct *desc, u32 base3,
6082                                  int seg)
6083 {
6084         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6085         struct kvm_segment var;
6086
6087         var.selector = selector;
6088         var.base = get_desc_base(desc);
6089 #ifdef CONFIG_X86_64
6090         var.base |= ((u64)base3) << 32;
6091 #endif
6092         var.limit = get_desc_limit(desc);
6093         if (desc->g)
6094                 var.limit = (var.limit << 12) | 0xfff;
6095         var.type = desc->type;
6096         var.dpl = desc->dpl;
6097         var.db = desc->d;
6098         var.s = desc->s;
6099         var.l = desc->l;
6100         var.g = desc->g;
6101         var.avl = desc->avl;
6102         var.present = desc->p;
6103         var.unusable = !var.present;
6104         var.padding = 0;
6105
6106         kvm_set_segment(vcpu, &var, seg);
6107         return;
6108 }
6109
6110 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6111                             u32 msr_index, u64 *pdata)
6112 {
6113         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6114 }
6115
6116 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6117                             u32 msr_index, u64 data)
6118 {
6119         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6120 }
6121
6122 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6123 {
6124         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6125
6126         return vcpu->arch.smbase;
6127 }
6128
6129 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6130 {
6131         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6132
6133         vcpu->arch.smbase = smbase;
6134 }
6135
6136 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6137                               u32 pmc)
6138 {
6139         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6140 }
6141
6142 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6143                              u32 pmc, u64 *pdata)
6144 {
6145         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6146 }
6147
6148 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6149 {
6150         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6151 }
6152
6153 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6154                               struct x86_instruction_info *info,
6155                               enum x86_intercept_stage stage)
6156 {
6157         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6158 }
6159
6160 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6161                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6162 {
6163         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6164 }
6165
6166 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6167 {
6168         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6169 }
6170
6171 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6172 {
6173         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6174 }
6175
6176 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6177 {
6178         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6179 }
6180
6181 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6182 {
6183         return emul_to_vcpu(ctxt)->arch.hflags;
6184 }
6185
6186 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6187 {
6188         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6189 }
6190
6191 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6192                                   const char *smstate)
6193 {
6194         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6195 }
6196
6197 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6198 {
6199         kvm_smm_changed(emul_to_vcpu(ctxt));
6200 }
6201
6202 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6203 {
6204         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6205 }
6206
6207 static const struct x86_emulate_ops emulate_ops = {
6208         .read_gpr            = emulator_read_gpr,
6209         .write_gpr           = emulator_write_gpr,
6210         .read_std            = emulator_read_std,
6211         .write_std           = emulator_write_std,
6212         .read_phys           = kvm_read_guest_phys_system,
6213         .fetch               = kvm_fetch_guest_virt,
6214         .read_emulated       = emulator_read_emulated,
6215         .write_emulated      = emulator_write_emulated,
6216         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6217         .invlpg              = emulator_invlpg,
6218         .pio_in_emulated     = emulator_pio_in_emulated,
6219         .pio_out_emulated    = emulator_pio_out_emulated,
6220         .get_segment         = emulator_get_segment,
6221         .set_segment         = emulator_set_segment,
6222         .get_cached_segment_base = emulator_get_cached_segment_base,
6223         .get_gdt             = emulator_get_gdt,
6224         .get_idt             = emulator_get_idt,
6225         .set_gdt             = emulator_set_gdt,
6226         .set_idt             = emulator_set_idt,
6227         .get_cr              = emulator_get_cr,
6228         .set_cr              = emulator_set_cr,
6229         .cpl                 = emulator_get_cpl,
6230         .get_dr              = emulator_get_dr,
6231         .set_dr              = emulator_set_dr,
6232         .get_smbase          = emulator_get_smbase,
6233         .set_smbase          = emulator_set_smbase,
6234         .set_msr             = emulator_set_msr,
6235         .get_msr             = emulator_get_msr,
6236         .check_pmc           = emulator_check_pmc,
6237         .read_pmc            = emulator_read_pmc,
6238         .halt                = emulator_halt,
6239         .wbinvd              = emulator_wbinvd,
6240         .fix_hypercall       = emulator_fix_hypercall,
6241         .intercept           = emulator_intercept,
6242         .get_cpuid           = emulator_get_cpuid,
6243         .set_nmi_mask        = emulator_set_nmi_mask,
6244         .get_hflags          = emulator_get_hflags,
6245         .set_hflags          = emulator_set_hflags,
6246         .pre_leave_smm       = emulator_pre_leave_smm,
6247         .post_leave_smm      = emulator_post_leave_smm,
6248         .set_xcr             = emulator_set_xcr,
6249 };
6250
6251 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6252 {
6253         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6254         /*
6255          * an sti; sti; sequence only disable interrupts for the first
6256          * instruction. So, if the last instruction, be it emulated or
6257          * not, left the system with the INT_STI flag enabled, it
6258          * means that the last instruction is an sti. We should not
6259          * leave the flag on in this case. The same goes for mov ss
6260          */
6261         if (int_shadow & mask)
6262                 mask = 0;
6263         if (unlikely(int_shadow || mask)) {
6264                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6265                 if (!mask)
6266                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6267         }
6268 }
6269
6270 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6271 {
6272         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6273         if (ctxt->exception.vector == PF_VECTOR)
6274                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6275
6276         if (ctxt->exception.error_code_valid)
6277                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6278                                       ctxt->exception.error_code);
6279         else
6280                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6281         return false;
6282 }
6283
6284 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6285 {
6286         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6287         int cs_db, cs_l;
6288
6289         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6290
6291         ctxt->eflags = kvm_get_rflags(vcpu);
6292         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6293
6294         ctxt->eip = kvm_rip_read(vcpu);
6295         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6296                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6297                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6298                      cs_db                              ? X86EMUL_MODE_PROT32 :
6299                                                           X86EMUL_MODE_PROT16;
6300         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6301         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6302         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6303
6304         init_decode_cache(ctxt);
6305         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6306 }
6307
6308 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6309 {
6310         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6311         int ret;
6312
6313         init_emulate_ctxt(vcpu);
6314
6315         ctxt->op_bytes = 2;
6316         ctxt->ad_bytes = 2;
6317         ctxt->_eip = ctxt->eip + inc_eip;
6318         ret = emulate_int_real(ctxt, irq);
6319
6320         if (ret != X86EMUL_CONTINUE) {
6321                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6322         } else {
6323                 ctxt->eip = ctxt->_eip;
6324                 kvm_rip_write(vcpu, ctxt->eip);
6325                 kvm_set_rflags(vcpu, ctxt->eflags);
6326         }
6327 }
6328 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6329
6330 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6331 {
6332         ++vcpu->stat.insn_emulation_fail;
6333         trace_kvm_emulate_insn_failed(vcpu);
6334
6335         if (emulation_type & EMULTYPE_VMWARE_GP) {
6336                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6337                 return 1;
6338         }
6339
6340         if (emulation_type & EMULTYPE_SKIP) {
6341                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6342                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6343                 vcpu->run->internal.ndata = 0;
6344                 return 0;
6345         }
6346
6347         kvm_queue_exception(vcpu, UD_VECTOR);
6348
6349         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6350                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6351                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6352                 vcpu->run->internal.ndata = 0;
6353                 return 0;
6354         }
6355
6356         return 1;
6357 }
6358
6359 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6360                                   bool write_fault_to_shadow_pgtable,
6361                                   int emulation_type)
6362 {
6363         gpa_t gpa = cr2;
6364         kvm_pfn_t pfn;
6365
6366         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6367                 return false;
6368
6369         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6370                 return false;
6371
6372         if (!vcpu->arch.mmu->direct_map) {
6373                 /*
6374                  * Write permission should be allowed since only
6375                  * write access need to be emulated.
6376                  */
6377                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6378
6379                 /*
6380                  * If the mapping is invalid in guest, let cpu retry
6381                  * it to generate fault.
6382                  */
6383                 if (gpa == UNMAPPED_GVA)
6384                         return true;
6385         }
6386
6387         /*
6388          * Do not retry the unhandleable instruction if it faults on the
6389          * readonly host memory, otherwise it will goto a infinite loop:
6390          * retry instruction -> write #PF -> emulation fail -> retry
6391          * instruction -> ...
6392          */
6393         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6394
6395         /*
6396          * If the instruction failed on the error pfn, it can not be fixed,
6397          * report the error to userspace.
6398          */
6399         if (is_error_noslot_pfn(pfn))
6400                 return false;
6401
6402         kvm_release_pfn_clean(pfn);
6403
6404         /* The instructions are well-emulated on direct mmu. */
6405         if (vcpu->arch.mmu->direct_map) {
6406                 unsigned int indirect_shadow_pages;
6407
6408                 spin_lock(&vcpu->kvm->mmu_lock);
6409                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6410                 spin_unlock(&vcpu->kvm->mmu_lock);
6411
6412                 if (indirect_shadow_pages)
6413                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6414
6415                 return true;
6416         }
6417
6418         /*
6419          * if emulation was due to access to shadowed page table
6420          * and it failed try to unshadow page and re-enter the
6421          * guest to let CPU execute the instruction.
6422          */
6423         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6424
6425         /*
6426          * If the access faults on its page table, it can not
6427          * be fixed by unprotecting shadow page and it should
6428          * be reported to userspace.
6429          */
6430         return !write_fault_to_shadow_pgtable;
6431 }
6432
6433 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6434                               unsigned long cr2,  int emulation_type)
6435 {
6436         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6437         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6438
6439         last_retry_eip = vcpu->arch.last_retry_eip;
6440         last_retry_addr = vcpu->arch.last_retry_addr;
6441
6442         /*
6443          * If the emulation is caused by #PF and it is non-page_table
6444          * writing instruction, it means the VM-EXIT is caused by shadow
6445          * page protected, we can zap the shadow page and retry this
6446          * instruction directly.
6447          *
6448          * Note: if the guest uses a non-page-table modifying instruction
6449          * on the PDE that points to the instruction, then we will unmap
6450          * the instruction and go to an infinite loop. So, we cache the
6451          * last retried eip and the last fault address, if we meet the eip
6452          * and the address again, we can break out of the potential infinite
6453          * loop.
6454          */
6455         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6456
6457         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6458                 return false;
6459
6460         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6461                 return false;
6462
6463         if (x86_page_table_writing_insn(ctxt))
6464                 return false;
6465
6466         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6467                 return false;
6468
6469         vcpu->arch.last_retry_eip = ctxt->eip;
6470         vcpu->arch.last_retry_addr = cr2;
6471
6472         if (!vcpu->arch.mmu->direct_map)
6473                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6474
6475         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6476
6477         return true;
6478 }
6479
6480 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6481 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6482
6483 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6484 {
6485         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6486                 /* This is a good place to trace that we are exiting SMM.  */
6487                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6488
6489                 /* Process a latched INIT or SMI, if any.  */
6490                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6491         }
6492
6493         kvm_mmu_reset_context(vcpu);
6494 }
6495
6496 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6497                                 unsigned long *db)
6498 {
6499         u32 dr6 = 0;
6500         int i;
6501         u32 enable, rwlen;
6502
6503         enable = dr7;
6504         rwlen = dr7 >> 16;
6505         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6506                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6507                         dr6 |= (1 << i);
6508         return dr6;
6509 }
6510
6511 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6512 {
6513         struct kvm_run *kvm_run = vcpu->run;
6514
6515         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6516                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6517                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6518                 kvm_run->debug.arch.exception = DB_VECTOR;
6519                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6520                 return 0;
6521         }
6522         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6523         return 1;
6524 }
6525
6526 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6527 {
6528         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6529         int r;
6530
6531         r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6532         if (unlikely(!r))
6533                 return 0;
6534
6535         /*
6536          * rflags is the old, "raw" value of the flags.  The new value has
6537          * not been saved yet.
6538          *
6539          * This is correct even for TF set by the guest, because "the
6540          * processor will not generate this exception after the instruction
6541          * that sets the TF flag".
6542          */
6543         if (unlikely(rflags & X86_EFLAGS_TF))
6544                 r = kvm_vcpu_do_singlestep(vcpu);
6545         return r;
6546 }
6547 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6548
6549 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6550 {
6551         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6552             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6553                 struct kvm_run *kvm_run = vcpu->run;
6554                 unsigned long eip = kvm_get_linear_rip(vcpu);
6555                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6556                                            vcpu->arch.guest_debug_dr7,
6557                                            vcpu->arch.eff_db);
6558
6559                 if (dr6 != 0) {
6560                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6561                         kvm_run->debug.arch.pc = eip;
6562                         kvm_run->debug.arch.exception = DB_VECTOR;
6563                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6564                         *r = 0;
6565                         return true;
6566                 }
6567         }
6568
6569         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6570             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6571                 unsigned long eip = kvm_get_linear_rip(vcpu);
6572                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6573                                            vcpu->arch.dr7,
6574                                            vcpu->arch.db);
6575
6576                 if (dr6 != 0) {
6577                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6578                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6579                         kvm_queue_exception(vcpu, DB_VECTOR);
6580                         *r = 1;
6581                         return true;
6582                 }
6583         }
6584
6585         return false;
6586 }
6587
6588 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6589 {
6590         switch (ctxt->opcode_len) {
6591         case 1:
6592                 switch (ctxt->b) {
6593                 case 0xe4:      /* IN */
6594                 case 0xe5:
6595                 case 0xec:
6596                 case 0xed:
6597                 case 0xe6:      /* OUT */
6598                 case 0xe7:
6599                 case 0xee:
6600                 case 0xef:
6601                 case 0x6c:      /* INS */
6602                 case 0x6d:
6603                 case 0x6e:      /* OUTS */
6604                 case 0x6f:
6605                         return true;
6606                 }
6607                 break;
6608         case 2:
6609                 switch (ctxt->b) {
6610                 case 0x33:      /* RDPMC */
6611                         return true;
6612                 }
6613                 break;
6614         }
6615
6616         return false;
6617 }
6618
6619 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6620                             unsigned long cr2,
6621                             int emulation_type,
6622                             void *insn,
6623                             int insn_len)
6624 {
6625         int r;
6626         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6627         bool writeback = true;
6628         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6629
6630         vcpu->arch.l1tf_flush_l1d = true;
6631
6632         /*
6633          * Clear write_fault_to_shadow_pgtable here to ensure it is
6634          * never reused.
6635          */
6636         vcpu->arch.write_fault_to_shadow_pgtable = false;
6637         kvm_clear_exception_queue(vcpu);
6638
6639         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6640                 init_emulate_ctxt(vcpu);
6641
6642                 /*
6643                  * We will reenter on the same instruction since
6644                  * we do not set complete_userspace_io.  This does not
6645                  * handle watchpoints yet, those would be handled in
6646                  * the emulate_ops.
6647                  */
6648                 if (!(emulation_type & EMULTYPE_SKIP) &&
6649                     kvm_vcpu_check_breakpoint(vcpu, &r))
6650                         return r;
6651
6652                 ctxt->interruptibility = 0;
6653                 ctxt->have_exception = false;
6654                 ctxt->exception.vector = -1;
6655                 ctxt->perm_ok = false;
6656
6657                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6658
6659                 r = x86_decode_insn(ctxt, insn, insn_len);
6660
6661                 trace_kvm_emulate_insn_start(vcpu);
6662                 ++vcpu->stat.insn_emulation;
6663                 if (r != EMULATION_OK)  {
6664                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
6665                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6666                                 kvm_queue_exception(vcpu, UD_VECTOR);
6667                                 return 1;
6668                         }
6669                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6670                                                 emulation_type))
6671                                 return 1;
6672                         if (ctxt->have_exception) {
6673                                 /*
6674                                  * #UD should result in just EMULATION_FAILED, and trap-like
6675                                  * exception should not be encountered during decode.
6676                                  */
6677                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6678                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6679                                 inject_emulated_exception(vcpu);
6680                                 return 1;
6681                         }
6682                         return handle_emulation_failure(vcpu, emulation_type);
6683                 }
6684         }
6685
6686         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6687             !is_vmware_backdoor_opcode(ctxt)) {
6688                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6689                 return 1;
6690         }
6691
6692         /*
6693          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6694          * for kvm_skip_emulated_instruction().  The caller is responsible for
6695          * updating interruptibility state and injecting single-step #DBs.
6696          */
6697         if (emulation_type & EMULTYPE_SKIP) {
6698                 kvm_rip_write(vcpu, ctxt->_eip);
6699                 if (ctxt->eflags & X86_EFLAGS_RF)
6700                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6701                 return 1;
6702         }
6703
6704         if (retry_instruction(ctxt, cr2, emulation_type))
6705                 return 1;
6706
6707         /* this is needed for vmware backdoor interface to work since it
6708            changes registers values  during IO operation */
6709         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6710                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6711                 emulator_invalidate_register_cache(ctxt);
6712         }
6713
6714 restart:
6715         /* Save the faulting GPA (cr2) in the address field */
6716         ctxt->exception.address = cr2;
6717
6718         r = x86_emulate_insn(ctxt);
6719
6720         if (r == EMULATION_INTERCEPTED)
6721                 return 1;
6722
6723         if (r == EMULATION_FAILED) {
6724                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6725                                         emulation_type))
6726                         return 1;
6727
6728                 return handle_emulation_failure(vcpu, emulation_type);
6729         }
6730
6731         if (ctxt->have_exception) {
6732                 r = 1;
6733                 if (inject_emulated_exception(vcpu))
6734                         return r;
6735         } else if (vcpu->arch.pio.count) {
6736                 if (!vcpu->arch.pio.in) {
6737                         /* FIXME: return into emulator if single-stepping.  */
6738                         vcpu->arch.pio.count = 0;
6739                 } else {
6740                         writeback = false;
6741                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6742                 }
6743                 r = 0;
6744         } else if (vcpu->mmio_needed) {
6745                 ++vcpu->stat.mmio_exits;
6746
6747                 if (!vcpu->mmio_is_write)
6748                         writeback = false;
6749                 r = 0;
6750                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6751         } else if (r == EMULATION_RESTART)
6752                 goto restart;
6753         else
6754                 r = 1;
6755
6756         if (writeback) {
6757                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6758                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6759                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6760                 if (!ctxt->have_exception ||
6761                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6762                         kvm_rip_write(vcpu, ctxt->eip);
6763                         if (r && ctxt->tf)
6764                                 r = kvm_vcpu_do_singlestep(vcpu);
6765                         __kvm_set_rflags(vcpu, ctxt->eflags);
6766                 }
6767
6768                 /*
6769                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6770                  * do nothing, and it will be requested again as soon as
6771                  * the shadow expires.  But we still need to check here,
6772                  * because POPF has no interrupt shadow.
6773                  */
6774                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6775                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6776         } else
6777                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6778
6779         return r;
6780 }
6781
6782 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6783 {
6784         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6785 }
6786 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6787
6788 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6789                                         void *insn, int insn_len)
6790 {
6791         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6792 }
6793 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6794
6795 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6796 {
6797         vcpu->arch.pio.count = 0;
6798         return 1;
6799 }
6800
6801 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6802 {
6803         vcpu->arch.pio.count = 0;
6804
6805         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6806                 return 1;
6807
6808         return kvm_skip_emulated_instruction(vcpu);
6809 }
6810
6811 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6812                             unsigned short port)
6813 {
6814         unsigned long val = kvm_rax_read(vcpu);
6815         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6816                                             size, port, &val, 1);
6817         if (ret)
6818                 return ret;
6819
6820         /*
6821          * Workaround userspace that relies on old KVM behavior of %rip being
6822          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6823          */
6824         if (port == 0x7e &&
6825             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6826                 vcpu->arch.complete_userspace_io =
6827                         complete_fast_pio_out_port_0x7e;
6828                 kvm_skip_emulated_instruction(vcpu);
6829         } else {
6830                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6831                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6832         }
6833         return 0;
6834 }
6835
6836 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6837 {
6838         unsigned long val;
6839
6840         /* We should only ever be called with arch.pio.count equal to 1 */
6841         BUG_ON(vcpu->arch.pio.count != 1);
6842
6843         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6844                 vcpu->arch.pio.count = 0;
6845                 return 1;
6846         }
6847
6848         /* For size less than 4 we merge, else we zero extend */
6849         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6850
6851         /*
6852          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6853          * the copy and tracing
6854          */
6855         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6856                                  vcpu->arch.pio.port, &val, 1);
6857         kvm_rax_write(vcpu, val);
6858
6859         return kvm_skip_emulated_instruction(vcpu);
6860 }
6861
6862 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6863                            unsigned short port)
6864 {
6865         unsigned long val;
6866         int ret;
6867
6868         /* For size less than 4 we merge, else we zero extend */
6869         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6870
6871         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6872                                        &val, 1);
6873         if (ret) {
6874                 kvm_rax_write(vcpu, val);
6875                 return ret;
6876         }
6877
6878         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6879         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6880
6881         return 0;
6882 }
6883
6884 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6885 {
6886         int ret;
6887
6888         if (in)
6889                 ret = kvm_fast_pio_in(vcpu, size, port);
6890         else
6891                 ret = kvm_fast_pio_out(vcpu, size, port);
6892         return ret && kvm_skip_emulated_instruction(vcpu);
6893 }
6894 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6895
6896 static int kvmclock_cpu_down_prep(unsigned int cpu)
6897 {
6898         __this_cpu_write(cpu_tsc_khz, 0);
6899         return 0;
6900 }
6901
6902 static void tsc_khz_changed(void *data)
6903 {
6904         struct cpufreq_freqs *freq = data;
6905         unsigned long khz = 0;
6906
6907         if (data)
6908                 khz = freq->new;
6909         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6910                 khz = cpufreq_quick_get(raw_smp_processor_id());
6911         if (!khz)
6912                 khz = tsc_khz;
6913         __this_cpu_write(cpu_tsc_khz, khz);
6914 }
6915
6916 #ifdef CONFIG_X86_64
6917 static void kvm_hyperv_tsc_notifier(void)
6918 {
6919         struct kvm *kvm;
6920         struct kvm_vcpu *vcpu;
6921         int cpu;
6922
6923         mutex_lock(&kvm_lock);
6924         list_for_each_entry(kvm, &vm_list, vm_list)
6925                 kvm_make_mclock_inprogress_request(kvm);
6926
6927         hyperv_stop_tsc_emulation();
6928
6929         /* TSC frequency always matches when on Hyper-V */
6930         for_each_present_cpu(cpu)
6931                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6932         kvm_max_guest_tsc_khz = tsc_khz;
6933
6934         list_for_each_entry(kvm, &vm_list, vm_list) {
6935                 struct kvm_arch *ka = &kvm->arch;
6936
6937                 spin_lock(&ka->pvclock_gtod_sync_lock);
6938
6939                 pvclock_update_vm_gtod_copy(kvm);
6940
6941                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6942                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6943
6944                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6945                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6946
6947                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6948         }
6949         mutex_unlock(&kvm_lock);
6950 }
6951 #endif
6952
6953 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6954 {
6955         struct kvm *kvm;
6956         struct kvm_vcpu *vcpu;
6957         int i, send_ipi = 0;
6958
6959         /*
6960          * We allow guests to temporarily run on slowing clocks,
6961          * provided we notify them after, or to run on accelerating
6962          * clocks, provided we notify them before.  Thus time never
6963          * goes backwards.
6964          *
6965          * However, we have a problem.  We can't atomically update
6966          * the frequency of a given CPU from this function; it is
6967          * merely a notifier, which can be called from any CPU.
6968          * Changing the TSC frequency at arbitrary points in time
6969          * requires a recomputation of local variables related to
6970          * the TSC for each VCPU.  We must flag these local variables
6971          * to be updated and be sure the update takes place with the
6972          * new frequency before any guests proceed.
6973          *
6974          * Unfortunately, the combination of hotplug CPU and frequency
6975          * change creates an intractable locking scenario; the order
6976          * of when these callouts happen is undefined with respect to
6977          * CPU hotplug, and they can race with each other.  As such,
6978          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6979          * undefined; you can actually have a CPU frequency change take
6980          * place in between the computation of X and the setting of the
6981          * variable.  To protect against this problem, all updates of
6982          * the per_cpu tsc_khz variable are done in an interrupt
6983          * protected IPI, and all callers wishing to update the value
6984          * must wait for a synchronous IPI to complete (which is trivial
6985          * if the caller is on the CPU already).  This establishes the
6986          * necessary total order on variable updates.
6987          *
6988          * Note that because a guest time update may take place
6989          * anytime after the setting of the VCPU's request bit, the
6990          * correct TSC value must be set before the request.  However,
6991          * to ensure the update actually makes it to any guest which
6992          * starts running in hardware virtualization between the set
6993          * and the acquisition of the spinlock, we must also ping the
6994          * CPU after setting the request bit.
6995          *
6996          */
6997
6998         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6999
7000         mutex_lock(&kvm_lock);
7001         list_for_each_entry(kvm, &vm_list, vm_list) {
7002                 kvm_for_each_vcpu(i, vcpu, kvm) {
7003                         if (vcpu->cpu != cpu)
7004                                 continue;
7005                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7006                         if (vcpu->cpu != raw_smp_processor_id())
7007                                 send_ipi = 1;
7008                 }
7009         }
7010         mutex_unlock(&kvm_lock);
7011
7012         if (freq->old < freq->new && send_ipi) {
7013                 /*
7014                  * We upscale the frequency.  Must make the guest
7015                  * doesn't see old kvmclock values while running with
7016                  * the new frequency, otherwise we risk the guest sees
7017                  * time go backwards.
7018                  *
7019                  * In case we update the frequency for another cpu
7020                  * (which might be in guest context) send an interrupt
7021                  * to kick the cpu out of guest context.  Next time
7022                  * guest context is entered kvmclock will be updated,
7023                  * so the guest will not see stale values.
7024                  */
7025                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7026         }
7027 }
7028
7029 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7030                                      void *data)
7031 {
7032         struct cpufreq_freqs *freq = data;
7033         int cpu;
7034
7035         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7036                 return 0;
7037         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7038                 return 0;
7039
7040         for_each_cpu(cpu, freq->policy->cpus)
7041                 __kvmclock_cpufreq_notifier(freq, cpu);
7042
7043         return 0;
7044 }
7045
7046 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7047         .notifier_call  = kvmclock_cpufreq_notifier
7048 };
7049
7050 static int kvmclock_cpu_online(unsigned int cpu)
7051 {
7052         tsc_khz_changed(NULL);
7053         return 0;
7054 }
7055
7056 static void kvm_timer_init(void)
7057 {
7058         max_tsc_khz = tsc_khz;
7059
7060         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7061 #ifdef CONFIG_CPU_FREQ
7062                 struct cpufreq_policy policy;
7063                 int cpu;
7064
7065                 memset(&policy, 0, sizeof(policy));
7066                 cpu = get_cpu();
7067                 cpufreq_get_policy(&policy, cpu);
7068                 if (policy.cpuinfo.max_freq)
7069                         max_tsc_khz = policy.cpuinfo.max_freq;
7070                 put_cpu();
7071 #endif
7072                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7073                                           CPUFREQ_TRANSITION_NOTIFIER);
7074         }
7075
7076         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7077                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7078 }
7079
7080 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7081 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7082
7083 int kvm_is_in_guest(void)
7084 {
7085         return __this_cpu_read(current_vcpu) != NULL;
7086 }
7087
7088 static int kvm_is_user_mode(void)
7089 {
7090         int user_mode = 3;
7091
7092         if (__this_cpu_read(current_vcpu))
7093                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7094
7095         return user_mode != 0;
7096 }
7097
7098 static unsigned long kvm_get_guest_ip(void)
7099 {
7100         unsigned long ip = 0;
7101
7102         if (__this_cpu_read(current_vcpu))
7103                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7104
7105         return ip;
7106 }
7107
7108 static void kvm_handle_intel_pt_intr(void)
7109 {
7110         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7111
7112         kvm_make_request(KVM_REQ_PMI, vcpu);
7113         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7114                         (unsigned long *)&vcpu->arch.pmu.global_status);
7115 }
7116
7117 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7118         .is_in_guest            = kvm_is_in_guest,
7119         .is_user_mode           = kvm_is_user_mode,
7120         .get_guest_ip           = kvm_get_guest_ip,
7121         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7122 };
7123
7124 #ifdef CONFIG_X86_64
7125 static void pvclock_gtod_update_fn(struct work_struct *work)
7126 {
7127         struct kvm *kvm;
7128
7129         struct kvm_vcpu *vcpu;
7130         int i;
7131
7132         mutex_lock(&kvm_lock);
7133         list_for_each_entry(kvm, &vm_list, vm_list)
7134                 kvm_for_each_vcpu(i, vcpu, kvm)
7135                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7136         atomic_set(&kvm_guest_has_master_clock, 0);
7137         mutex_unlock(&kvm_lock);
7138 }
7139
7140 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7141
7142 /*
7143  * Notification about pvclock gtod data update.
7144  */
7145 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7146                                void *priv)
7147 {
7148         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7149         struct timekeeper *tk = priv;
7150
7151         update_pvclock_gtod(tk);
7152
7153         /* disable master clock if host does not trust, or does not
7154          * use, TSC based clocksource.
7155          */
7156         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7157             atomic_read(&kvm_guest_has_master_clock) != 0)
7158                 queue_work(system_long_wq, &pvclock_gtod_work);
7159
7160         return 0;
7161 }
7162
7163 static struct notifier_block pvclock_gtod_notifier = {
7164         .notifier_call = pvclock_gtod_notify,
7165 };
7166 #endif
7167
7168 int kvm_arch_init(void *opaque)
7169 {
7170         int r;
7171         struct kvm_x86_ops *ops = opaque;
7172
7173         if (kvm_x86_ops) {
7174                 printk(KERN_ERR "kvm: already loaded the other module\n");
7175                 r = -EEXIST;
7176                 goto out;
7177         }
7178
7179         if (!ops->cpu_has_kvm_support()) {
7180                 printk(KERN_ERR "kvm: no hardware support\n");
7181                 r = -EOPNOTSUPP;
7182                 goto out;
7183         }
7184         if (ops->disabled_by_bios()) {
7185                 printk(KERN_ERR "kvm: disabled by bios\n");
7186                 r = -EOPNOTSUPP;
7187                 goto out;
7188         }
7189
7190         /*
7191          * KVM explicitly assumes that the guest has an FPU and
7192          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7193          * vCPU's FPU state as a fxregs_state struct.
7194          */
7195         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7196                 printk(KERN_ERR "kvm: inadequate fpu\n");
7197                 r = -EOPNOTSUPP;
7198                 goto out;
7199         }
7200
7201         r = -ENOMEM;
7202         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7203                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7204                                           NULL);
7205         if (!x86_fpu_cache) {
7206                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7207                 goto out;
7208         }
7209
7210         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7211         if (!shared_msrs) {
7212                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7213                 goto out_free_x86_fpu_cache;
7214         }
7215
7216         r = kvm_mmu_module_init();
7217         if (r)
7218                 goto out_free_percpu;
7219
7220         kvm_x86_ops = ops;
7221
7222         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7223                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7224                         PT_PRESENT_MASK, 0, sme_me_mask);
7225         kvm_timer_init();
7226
7227         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7228
7229         if (boot_cpu_has(X86_FEATURE_XSAVE))
7230                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7231
7232         kvm_lapic_init();
7233         if (pi_inject_timer == -1)
7234                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7235 #ifdef CONFIG_X86_64
7236         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7237
7238         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7239                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7240 #endif
7241
7242         return 0;
7243
7244 out_free_percpu:
7245         free_percpu(shared_msrs);
7246 out_free_x86_fpu_cache:
7247         kmem_cache_destroy(x86_fpu_cache);
7248 out:
7249         return r;
7250 }
7251
7252 void kvm_arch_exit(void)
7253 {
7254 #ifdef CONFIG_X86_64
7255         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7256                 clear_hv_tscchange_cb();
7257 #endif
7258         kvm_lapic_exit();
7259         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7260
7261         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7262                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7263                                             CPUFREQ_TRANSITION_NOTIFIER);
7264         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7265 #ifdef CONFIG_X86_64
7266         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7267 #endif
7268         kvm_x86_ops = NULL;
7269         kvm_mmu_module_exit();
7270         free_percpu(shared_msrs);
7271         kmem_cache_destroy(x86_fpu_cache);
7272 }
7273
7274 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7275 {
7276         ++vcpu->stat.halt_exits;
7277         if (lapic_in_kernel(vcpu)) {
7278                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7279                 return 1;
7280         } else {
7281                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7282                 return 0;
7283         }
7284 }
7285 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7286
7287 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7288 {
7289         int ret = kvm_skip_emulated_instruction(vcpu);
7290         /*
7291          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7292          * KVM_EXIT_DEBUG here.
7293          */
7294         return kvm_vcpu_halt(vcpu) && ret;
7295 }
7296 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7297
7298 #ifdef CONFIG_X86_64
7299 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7300                                 unsigned long clock_type)
7301 {
7302         struct kvm_clock_pairing clock_pairing;
7303         struct timespec64 ts;
7304         u64 cycle;
7305         int ret;
7306
7307         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7308                 return -KVM_EOPNOTSUPP;
7309
7310         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7311                 return -KVM_EOPNOTSUPP;
7312
7313         clock_pairing.sec = ts.tv_sec;
7314         clock_pairing.nsec = ts.tv_nsec;
7315         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7316         clock_pairing.flags = 0;
7317         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7318
7319         ret = 0;
7320         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7321                             sizeof(struct kvm_clock_pairing)))
7322                 ret = -KVM_EFAULT;
7323
7324         return ret;
7325 }
7326 #endif
7327
7328 /*
7329  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7330  *
7331  * @apicid - apicid of vcpu to be kicked.
7332  */
7333 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7334 {
7335         struct kvm_lapic_irq lapic_irq;
7336
7337         lapic_irq.shorthand = 0;
7338         lapic_irq.dest_mode = 0;
7339         lapic_irq.level = 0;
7340         lapic_irq.dest_id = apicid;
7341         lapic_irq.msi_redir_hint = false;
7342
7343         lapic_irq.delivery_mode = APIC_DM_REMRD;
7344         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7345 }
7346
7347 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7348 {
7349         if (!lapic_in_kernel(vcpu)) {
7350                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7351                 return;
7352         }
7353         if (!vcpu->arch.apicv_active)
7354                 return;
7355
7356         vcpu->arch.apicv_active = false;
7357         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7358 }
7359
7360 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7361 {
7362         struct kvm_vcpu *target = NULL;
7363         struct kvm_apic_map *map;
7364
7365         rcu_read_lock();
7366         map = rcu_dereference(kvm->arch.apic_map);
7367
7368         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7369                 target = map->phys_map[dest_id]->vcpu;
7370
7371         rcu_read_unlock();
7372
7373         if (target && READ_ONCE(target->ready))
7374                 kvm_vcpu_yield_to(target);
7375 }
7376
7377 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7378 {
7379         unsigned long nr, a0, a1, a2, a3, ret;
7380         int op_64_bit;
7381
7382         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7383                 return kvm_hv_hypercall(vcpu);
7384
7385         nr = kvm_rax_read(vcpu);
7386         a0 = kvm_rbx_read(vcpu);
7387         a1 = kvm_rcx_read(vcpu);
7388         a2 = kvm_rdx_read(vcpu);
7389         a3 = kvm_rsi_read(vcpu);
7390
7391         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7392
7393         op_64_bit = is_64_bit_mode(vcpu);
7394         if (!op_64_bit) {
7395                 nr &= 0xFFFFFFFF;
7396                 a0 &= 0xFFFFFFFF;
7397                 a1 &= 0xFFFFFFFF;
7398                 a2 &= 0xFFFFFFFF;
7399                 a3 &= 0xFFFFFFFF;
7400         }
7401
7402         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7403                 ret = -KVM_EPERM;
7404                 goto out;
7405         }
7406
7407         switch (nr) {
7408         case KVM_HC_VAPIC_POLL_IRQ:
7409                 ret = 0;
7410                 break;
7411         case KVM_HC_KICK_CPU:
7412                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7413                 kvm_sched_yield(vcpu->kvm, a1);
7414                 ret = 0;
7415                 break;
7416 #ifdef CONFIG_X86_64
7417         case KVM_HC_CLOCK_PAIRING:
7418                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7419                 break;
7420 #endif
7421         case KVM_HC_SEND_IPI:
7422                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7423                 break;
7424         case KVM_HC_SCHED_YIELD:
7425                 kvm_sched_yield(vcpu->kvm, a0);
7426                 ret = 0;
7427                 break;
7428         default:
7429                 ret = -KVM_ENOSYS;
7430                 break;
7431         }
7432 out:
7433         if (!op_64_bit)
7434                 ret = (u32)ret;
7435         kvm_rax_write(vcpu, ret);
7436
7437         ++vcpu->stat.hypercalls;
7438         return kvm_skip_emulated_instruction(vcpu);
7439 }
7440 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7441
7442 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7443 {
7444         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7445         char instruction[3];
7446         unsigned long rip = kvm_rip_read(vcpu);
7447
7448         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7449
7450         return emulator_write_emulated(ctxt, rip, instruction, 3,
7451                 &ctxt->exception);
7452 }
7453
7454 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7455 {
7456         return vcpu->run->request_interrupt_window &&
7457                 likely(!pic_in_kernel(vcpu->kvm));
7458 }
7459
7460 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7461 {
7462         struct kvm_run *kvm_run = vcpu->run;
7463
7464         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7465         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7466         kvm_run->cr8 = kvm_get_cr8(vcpu);
7467         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7468         kvm_run->ready_for_interrupt_injection =
7469                 pic_in_kernel(vcpu->kvm) ||
7470                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7471 }
7472
7473 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7474 {
7475         int max_irr, tpr;
7476
7477         if (!kvm_x86_ops->update_cr8_intercept)
7478                 return;
7479
7480         if (!lapic_in_kernel(vcpu))
7481                 return;
7482
7483         if (vcpu->arch.apicv_active)
7484                 return;
7485
7486         if (!vcpu->arch.apic->vapic_addr)
7487                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7488         else
7489                 max_irr = -1;
7490
7491         if (max_irr != -1)
7492                 max_irr >>= 4;
7493
7494         tpr = kvm_lapic_get_cr8(vcpu);
7495
7496         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7497 }
7498
7499 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7500 {
7501         int r;
7502
7503         /* try to reinject previous events if any */
7504
7505         if (vcpu->arch.exception.injected)
7506                 kvm_x86_ops->queue_exception(vcpu);
7507         /*
7508          * Do not inject an NMI or interrupt if there is a pending
7509          * exception.  Exceptions and interrupts are recognized at
7510          * instruction boundaries, i.e. the start of an instruction.
7511          * Trap-like exceptions, e.g. #DB, have higher priority than
7512          * NMIs and interrupts, i.e. traps are recognized before an
7513          * NMI/interrupt that's pending on the same instruction.
7514          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7515          * priority, but are only generated (pended) during instruction
7516          * execution, i.e. a pending fault-like exception means the
7517          * fault occurred on the *previous* instruction and must be
7518          * serviced prior to recognizing any new events in order to
7519          * fully complete the previous instruction.
7520          */
7521         else if (!vcpu->arch.exception.pending) {
7522                 if (vcpu->arch.nmi_injected)
7523                         kvm_x86_ops->set_nmi(vcpu);
7524                 else if (vcpu->arch.interrupt.injected)
7525                         kvm_x86_ops->set_irq(vcpu);
7526         }
7527
7528         /*
7529          * Call check_nested_events() even if we reinjected a previous event
7530          * in order for caller to determine if it should require immediate-exit
7531          * from L2 to L1 due to pending L1 events which require exit
7532          * from L2 to L1.
7533          */
7534         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7535                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7536                 if (r != 0)
7537                         return r;
7538         }
7539
7540         /* try to inject new event if pending */
7541         if (vcpu->arch.exception.pending) {
7542                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7543                                         vcpu->arch.exception.has_error_code,
7544                                         vcpu->arch.exception.error_code);
7545
7546                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7547                 vcpu->arch.exception.pending = false;
7548                 vcpu->arch.exception.injected = true;
7549
7550                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7551                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7552                                              X86_EFLAGS_RF);
7553
7554                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7555                         /*
7556                          * This code assumes that nSVM doesn't use
7557                          * check_nested_events(). If it does, the
7558                          * DR6/DR7 changes should happen before L1
7559                          * gets a #VMEXIT for an intercepted #DB in
7560                          * L2.  (Under VMX, on the other hand, the
7561                          * DR6/DR7 changes should not happen in the
7562                          * event of a VM-exit to L1 for an intercepted
7563                          * #DB in L2.)
7564                          */
7565                         kvm_deliver_exception_payload(vcpu);
7566                         if (vcpu->arch.dr7 & DR7_GD) {
7567                                 vcpu->arch.dr7 &= ~DR7_GD;
7568                                 kvm_update_dr7(vcpu);
7569                         }
7570                 }
7571
7572                 kvm_x86_ops->queue_exception(vcpu);
7573         }
7574
7575         /* Don't consider new event if we re-injected an event */
7576         if (kvm_event_needs_reinjection(vcpu))
7577                 return 0;
7578
7579         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7580             kvm_x86_ops->smi_allowed(vcpu)) {
7581                 vcpu->arch.smi_pending = false;
7582                 ++vcpu->arch.smi_count;
7583                 enter_smm(vcpu);
7584         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7585                 --vcpu->arch.nmi_pending;
7586                 vcpu->arch.nmi_injected = true;
7587                 kvm_x86_ops->set_nmi(vcpu);
7588         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7589                 /*
7590                  * Because interrupts can be injected asynchronously, we are
7591                  * calling check_nested_events again here to avoid a race condition.
7592                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7593                  * proposal and current concerns.  Perhaps we should be setting
7594                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7595                  */
7596                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7597                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7598                         if (r != 0)
7599                                 return r;
7600                 }
7601                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7602                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7603                                             false);
7604                         kvm_x86_ops->set_irq(vcpu);
7605                 }
7606         }
7607
7608         return 0;
7609 }
7610
7611 static void process_nmi(struct kvm_vcpu *vcpu)
7612 {
7613         unsigned limit = 2;
7614
7615         /*
7616          * x86 is limited to one NMI running, and one NMI pending after it.
7617          * If an NMI is already in progress, limit further NMIs to just one.
7618          * Otherwise, allow two (and we'll inject the first one immediately).
7619          */
7620         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7621                 limit = 1;
7622
7623         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7624         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7625         kvm_make_request(KVM_REQ_EVENT, vcpu);
7626 }
7627
7628 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7629 {
7630         u32 flags = 0;
7631         flags |= seg->g       << 23;
7632         flags |= seg->db      << 22;
7633         flags |= seg->l       << 21;
7634         flags |= seg->avl     << 20;
7635         flags |= seg->present << 15;
7636         flags |= seg->dpl     << 13;
7637         flags |= seg->s       << 12;
7638         flags |= seg->type    << 8;
7639         return flags;
7640 }
7641
7642 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7643 {
7644         struct kvm_segment seg;
7645         int offset;
7646
7647         kvm_get_segment(vcpu, &seg, n);
7648         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7649
7650         if (n < 3)
7651                 offset = 0x7f84 + n * 12;
7652         else
7653                 offset = 0x7f2c + (n - 3) * 12;
7654
7655         put_smstate(u32, buf, offset + 8, seg.base);
7656         put_smstate(u32, buf, offset + 4, seg.limit);
7657         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7658 }
7659
7660 #ifdef CONFIG_X86_64
7661 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7662 {
7663         struct kvm_segment seg;
7664         int offset;
7665         u16 flags;
7666
7667         kvm_get_segment(vcpu, &seg, n);
7668         offset = 0x7e00 + n * 16;
7669
7670         flags = enter_smm_get_segment_flags(&seg) >> 8;
7671         put_smstate(u16, buf, offset, seg.selector);
7672         put_smstate(u16, buf, offset + 2, flags);
7673         put_smstate(u32, buf, offset + 4, seg.limit);
7674         put_smstate(u64, buf, offset + 8, seg.base);
7675 }
7676 #endif
7677
7678 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7679 {
7680         struct desc_ptr dt;
7681         struct kvm_segment seg;
7682         unsigned long val;
7683         int i;
7684
7685         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7686         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7687         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7688         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7689
7690         for (i = 0; i < 8; i++)
7691                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7692
7693         kvm_get_dr(vcpu, 6, &val);
7694         put_smstate(u32, buf, 0x7fcc, (u32)val);
7695         kvm_get_dr(vcpu, 7, &val);
7696         put_smstate(u32, buf, 0x7fc8, (u32)val);
7697
7698         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7699         put_smstate(u32, buf, 0x7fc4, seg.selector);
7700         put_smstate(u32, buf, 0x7f64, seg.base);
7701         put_smstate(u32, buf, 0x7f60, seg.limit);
7702         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7703
7704         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7705         put_smstate(u32, buf, 0x7fc0, seg.selector);
7706         put_smstate(u32, buf, 0x7f80, seg.base);
7707         put_smstate(u32, buf, 0x7f7c, seg.limit);
7708         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7709
7710         kvm_x86_ops->get_gdt(vcpu, &dt);
7711         put_smstate(u32, buf, 0x7f74, dt.address);
7712         put_smstate(u32, buf, 0x7f70, dt.size);
7713
7714         kvm_x86_ops->get_idt(vcpu, &dt);
7715         put_smstate(u32, buf, 0x7f58, dt.address);
7716         put_smstate(u32, buf, 0x7f54, dt.size);
7717
7718         for (i = 0; i < 6; i++)
7719                 enter_smm_save_seg_32(vcpu, buf, i);
7720
7721         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7722
7723         /* revision id */
7724         put_smstate(u32, buf, 0x7efc, 0x00020000);
7725         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7726 }
7727
7728 #ifdef CONFIG_X86_64
7729 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7730 {
7731         struct desc_ptr dt;
7732         struct kvm_segment seg;
7733         unsigned long val;
7734         int i;
7735
7736         for (i = 0; i < 16; i++)
7737                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7738
7739         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7740         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7741
7742         kvm_get_dr(vcpu, 6, &val);
7743         put_smstate(u64, buf, 0x7f68, val);
7744         kvm_get_dr(vcpu, 7, &val);
7745         put_smstate(u64, buf, 0x7f60, val);
7746
7747         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7748         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7749         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7750
7751         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7752
7753         /* revision id */
7754         put_smstate(u32, buf, 0x7efc, 0x00020064);
7755
7756         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7757
7758         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7759         put_smstate(u16, buf, 0x7e90, seg.selector);
7760         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7761         put_smstate(u32, buf, 0x7e94, seg.limit);
7762         put_smstate(u64, buf, 0x7e98, seg.base);
7763
7764         kvm_x86_ops->get_idt(vcpu, &dt);
7765         put_smstate(u32, buf, 0x7e84, dt.size);
7766         put_smstate(u64, buf, 0x7e88, dt.address);
7767
7768         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7769         put_smstate(u16, buf, 0x7e70, seg.selector);
7770         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7771         put_smstate(u32, buf, 0x7e74, seg.limit);
7772         put_smstate(u64, buf, 0x7e78, seg.base);
7773
7774         kvm_x86_ops->get_gdt(vcpu, &dt);
7775         put_smstate(u32, buf, 0x7e64, dt.size);
7776         put_smstate(u64, buf, 0x7e68, dt.address);
7777
7778         for (i = 0; i < 6; i++)
7779                 enter_smm_save_seg_64(vcpu, buf, i);
7780 }
7781 #endif
7782
7783 static void enter_smm(struct kvm_vcpu *vcpu)
7784 {
7785         struct kvm_segment cs, ds;
7786         struct desc_ptr dt;
7787         char buf[512];
7788         u32 cr0;
7789
7790         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7791         memset(buf, 0, 512);
7792 #ifdef CONFIG_X86_64
7793         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7794                 enter_smm_save_state_64(vcpu, buf);
7795         else
7796 #endif
7797                 enter_smm_save_state_32(vcpu, buf);
7798
7799         /*
7800          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7801          * vCPU state (e.g. leave guest mode) after we've saved the state into
7802          * the SMM state-save area.
7803          */
7804         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7805
7806         vcpu->arch.hflags |= HF_SMM_MASK;
7807         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7808
7809         if (kvm_x86_ops->get_nmi_mask(vcpu))
7810                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7811         else
7812                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7813
7814         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7815         kvm_rip_write(vcpu, 0x8000);
7816
7817         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7818         kvm_x86_ops->set_cr0(vcpu, cr0);
7819         vcpu->arch.cr0 = cr0;
7820
7821         kvm_x86_ops->set_cr4(vcpu, 0);
7822
7823         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7824         dt.address = dt.size = 0;
7825         kvm_x86_ops->set_idt(vcpu, &dt);
7826
7827         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7828
7829         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7830         cs.base = vcpu->arch.smbase;
7831
7832         ds.selector = 0;
7833         ds.base = 0;
7834
7835         cs.limit    = ds.limit = 0xffffffff;
7836         cs.type     = ds.type = 0x3;
7837         cs.dpl      = ds.dpl = 0;
7838         cs.db       = ds.db = 0;
7839         cs.s        = ds.s = 1;
7840         cs.l        = ds.l = 0;
7841         cs.g        = ds.g = 1;
7842         cs.avl      = ds.avl = 0;
7843         cs.present  = ds.present = 1;
7844         cs.unusable = ds.unusable = 0;
7845         cs.padding  = ds.padding = 0;
7846
7847         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7848         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7849         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7850         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7851         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7852         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7853
7854 #ifdef CONFIG_X86_64
7855         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7856                 kvm_x86_ops->set_efer(vcpu, 0);
7857 #endif
7858
7859         kvm_update_cpuid(vcpu);
7860         kvm_mmu_reset_context(vcpu);
7861 }
7862
7863 static void process_smi(struct kvm_vcpu *vcpu)
7864 {
7865         vcpu->arch.smi_pending = true;
7866         kvm_make_request(KVM_REQ_EVENT, vcpu);
7867 }
7868
7869 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7870 {
7871         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7872 }
7873
7874 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7875 {
7876         if (!kvm_apic_present(vcpu))
7877                 return;
7878
7879         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7880
7881         if (irqchip_split(vcpu->kvm))
7882                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7883         else {
7884                 if (vcpu->arch.apicv_active)
7885                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7886                 if (ioapic_in_kernel(vcpu->kvm))
7887                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7888         }
7889
7890         if (is_guest_mode(vcpu))
7891                 vcpu->arch.load_eoi_exitmap_pending = true;
7892         else
7893                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7894 }
7895
7896 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7897 {
7898         u64 eoi_exit_bitmap[4];
7899
7900         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7901                 return;
7902
7903         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7904                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7905         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7906 }
7907
7908 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7909                 unsigned long start, unsigned long end,
7910                 bool blockable)
7911 {
7912         unsigned long apic_address;
7913
7914         /*
7915          * The physical address of apic access page is stored in the VMCS.
7916          * Update it when it becomes invalid.
7917          */
7918         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7919         if (start <= apic_address && apic_address < end)
7920                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7921
7922         return 0;
7923 }
7924
7925 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7926 {
7927         struct page *page = NULL;
7928
7929         if (!lapic_in_kernel(vcpu))
7930                 return;
7931
7932         if (!kvm_x86_ops->set_apic_access_page_addr)
7933                 return;
7934
7935         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7936         if (is_error_page(page))
7937                 return;
7938         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7939
7940         /*
7941          * Do not pin apic access page in memory, the MMU notifier
7942          * will call us again if it is migrated or swapped out.
7943          */
7944         put_page(page);
7945 }
7946 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7947
7948 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7949 {
7950         smp_send_reschedule(vcpu->cpu);
7951 }
7952 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7953
7954 /*
7955  * Returns 1 to let vcpu_run() continue the guest execution loop without
7956  * exiting to the userspace.  Otherwise, the value will be returned to the
7957  * userspace.
7958  */
7959 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7960 {
7961         int r;
7962         bool req_int_win =
7963                 dm_request_for_irq_injection(vcpu) &&
7964                 kvm_cpu_accept_dm_intr(vcpu);
7965
7966         bool req_immediate_exit = false;
7967
7968         if (kvm_request_pending(vcpu)) {
7969                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
7970                         if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
7971                                 r = 0;
7972                                 goto out;
7973                         }
7974                 }
7975                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7976                         kvm_mmu_unload(vcpu);
7977                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7978                         __kvm_migrate_timers(vcpu);
7979                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7980                         kvm_gen_update_masterclock(vcpu->kvm);
7981                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7982                         kvm_gen_kvmclock_update(vcpu);
7983                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7984                         r = kvm_guest_time_update(vcpu);
7985                         if (unlikely(r))
7986                                 goto out;
7987                 }
7988                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7989                         kvm_mmu_sync_roots(vcpu);
7990                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7991                         kvm_mmu_load_cr3(vcpu);
7992                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7993                         kvm_vcpu_flush_tlb(vcpu, true);
7994                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7995                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7996                         r = 0;
7997                         goto out;
7998                 }
7999                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8000                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8001                         vcpu->mmio_needed = 0;
8002                         r = 0;
8003                         goto out;
8004                 }
8005                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8006                         /* Page is swapped out. Do synthetic halt */
8007                         vcpu->arch.apf.halted = true;
8008                         r = 1;
8009                         goto out;
8010                 }
8011                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8012                         record_steal_time(vcpu);
8013                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8014                         process_smi(vcpu);
8015                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8016                         process_nmi(vcpu);
8017                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8018                         kvm_pmu_handle_event(vcpu);
8019                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8020                         kvm_pmu_deliver_pmi(vcpu);
8021                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8022                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8023                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8024                                      vcpu->arch.ioapic_handled_vectors)) {
8025                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8026                                 vcpu->run->eoi.vector =
8027                                                 vcpu->arch.pending_ioapic_eoi;
8028                                 r = 0;
8029                                 goto out;
8030                         }
8031                 }
8032                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8033                         vcpu_scan_ioapic(vcpu);
8034                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8035                         vcpu_load_eoi_exitmap(vcpu);
8036                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8037                         kvm_vcpu_reload_apic_access_page(vcpu);
8038                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8039                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8040                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8041                         r = 0;
8042                         goto out;
8043                 }
8044                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8045                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8046                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8047                         r = 0;
8048                         goto out;
8049                 }
8050                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8051                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8052                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8053                         r = 0;
8054                         goto out;
8055                 }
8056
8057                 /*
8058                  * KVM_REQ_HV_STIMER has to be processed after
8059                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8060                  * depend on the guest clock being up-to-date
8061                  */
8062                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8063                         kvm_hv_process_stimers(vcpu);
8064         }
8065
8066         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8067                 ++vcpu->stat.req_event;
8068                 kvm_apic_accept_events(vcpu);
8069                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8070                         r = 1;
8071                         goto out;
8072                 }
8073
8074                 if (inject_pending_event(vcpu, req_int_win) != 0)
8075                         req_immediate_exit = true;
8076                 else {
8077                         /* Enable SMI/NMI/IRQ window open exits if needed.
8078                          *
8079                          * SMIs have three cases:
8080                          * 1) They can be nested, and then there is nothing to
8081                          *    do here because RSM will cause a vmexit anyway.
8082                          * 2) There is an ISA-specific reason why SMI cannot be
8083                          *    injected, and the moment when this changes can be
8084                          *    intercepted.
8085                          * 3) Or the SMI can be pending because
8086                          *    inject_pending_event has completed the injection
8087                          *    of an IRQ or NMI from the previous vmexit, and
8088                          *    then we request an immediate exit to inject the
8089                          *    SMI.
8090                          */
8091                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
8092                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
8093                                         req_immediate_exit = true;
8094                         if (vcpu->arch.nmi_pending)
8095                                 kvm_x86_ops->enable_nmi_window(vcpu);
8096                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8097                                 kvm_x86_ops->enable_irq_window(vcpu);
8098                         WARN_ON(vcpu->arch.exception.pending);
8099                 }
8100
8101                 if (kvm_lapic_enabled(vcpu)) {
8102                         update_cr8_intercept(vcpu);
8103                         kvm_lapic_sync_to_vapic(vcpu);
8104                 }
8105         }
8106
8107         r = kvm_mmu_reload(vcpu);
8108         if (unlikely(r)) {
8109                 goto cancel_injection;
8110         }
8111
8112         preempt_disable();
8113
8114         kvm_x86_ops->prepare_guest_switch(vcpu);
8115
8116         /*
8117          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8118          * IPI are then delayed after guest entry, which ensures that they
8119          * result in virtual interrupt delivery.
8120          */
8121         local_irq_disable();
8122         vcpu->mode = IN_GUEST_MODE;
8123
8124         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8125
8126         /*
8127          * 1) We should set ->mode before checking ->requests.  Please see
8128          * the comment in kvm_vcpu_exiting_guest_mode().
8129          *
8130          * 2) For APICv, we should set ->mode before checking PID.ON. This
8131          * pairs with the memory barrier implicit in pi_test_and_set_on
8132          * (see vmx_deliver_posted_interrupt).
8133          *
8134          * 3) This also orders the write to mode from any reads to the page
8135          * tables done while the VCPU is running.  Please see the comment
8136          * in kvm_flush_remote_tlbs.
8137          */
8138         smp_mb__after_srcu_read_unlock();
8139
8140         /*
8141          * This handles the case where a posted interrupt was
8142          * notified with kvm_vcpu_kick.
8143          */
8144         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8145                 kvm_x86_ops->sync_pir_to_irr(vcpu);
8146
8147         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8148             || need_resched() || signal_pending(current)) {
8149                 vcpu->mode = OUTSIDE_GUEST_MODE;
8150                 smp_wmb();
8151                 local_irq_enable();
8152                 preempt_enable();
8153                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8154                 r = 1;
8155                 goto cancel_injection;
8156         }
8157
8158         if (req_immediate_exit) {
8159                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8160                 kvm_x86_ops->request_immediate_exit(vcpu);
8161         }
8162
8163         trace_kvm_entry(vcpu->vcpu_id);
8164         guest_enter_irqoff();
8165
8166         /* The preempt notifier should have taken care of the FPU already.  */
8167         WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8168
8169         if (unlikely(vcpu->arch.switch_db_regs)) {
8170                 set_debugreg(0, 7);
8171                 set_debugreg(vcpu->arch.eff_db[0], 0);
8172                 set_debugreg(vcpu->arch.eff_db[1], 1);
8173                 set_debugreg(vcpu->arch.eff_db[2], 2);
8174                 set_debugreg(vcpu->arch.eff_db[3], 3);
8175                 set_debugreg(vcpu->arch.dr6, 6);
8176                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8177         }
8178
8179         kvm_x86_ops->run(vcpu);
8180
8181         /*
8182          * Do this here before restoring debug registers on the host.  And
8183          * since we do this before handling the vmexit, a DR access vmexit
8184          * can (a) read the correct value of the debug registers, (b) set
8185          * KVM_DEBUGREG_WONT_EXIT again.
8186          */
8187         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8188                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8189                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8190                 kvm_update_dr0123(vcpu);
8191                 kvm_update_dr6(vcpu);
8192                 kvm_update_dr7(vcpu);
8193                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8194         }
8195
8196         /*
8197          * If the guest has used debug registers, at least dr7
8198          * will be disabled while returning to the host.
8199          * If we don't have active breakpoints in the host, we don't
8200          * care about the messed up debug address registers. But if
8201          * we have some of them active, restore the old state.
8202          */
8203         if (hw_breakpoint_active())
8204                 hw_breakpoint_restore();
8205
8206         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8207
8208         vcpu->mode = OUTSIDE_GUEST_MODE;
8209         smp_wmb();
8210
8211         kvm_x86_ops->handle_exit_irqoff(vcpu);
8212
8213         /*
8214          * Consume any pending interrupts, including the possible source of
8215          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8216          * An instruction is required after local_irq_enable() to fully unblock
8217          * interrupts on processors that implement an interrupt shadow, the
8218          * stat.exits increment will do nicely.
8219          */
8220         kvm_before_interrupt(vcpu);
8221         local_irq_enable();
8222         ++vcpu->stat.exits;
8223         local_irq_disable();
8224         kvm_after_interrupt(vcpu);
8225
8226         guest_exit_irqoff();
8227         if (lapic_in_kernel(vcpu)) {
8228                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8229                 if (delta != S64_MIN) {
8230                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8231                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8232                 }
8233         }
8234
8235         local_irq_enable();
8236         preempt_enable();
8237
8238         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8239
8240         /*
8241          * Profile KVM exit RIPs:
8242          */
8243         if (unlikely(prof_on == KVM_PROFILING)) {
8244                 unsigned long rip = kvm_rip_read(vcpu);
8245                 profile_hit(KVM_PROFILING, (void *)rip);
8246         }
8247
8248         if (unlikely(vcpu->arch.tsc_always_catchup))
8249                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8250
8251         if (vcpu->arch.apic_attention)
8252                 kvm_lapic_sync_from_vapic(vcpu);
8253
8254         vcpu->arch.gpa_available = false;
8255         r = kvm_x86_ops->handle_exit(vcpu);
8256         return r;
8257
8258 cancel_injection:
8259         kvm_x86_ops->cancel_injection(vcpu);
8260         if (unlikely(vcpu->arch.apic_attention))
8261                 kvm_lapic_sync_from_vapic(vcpu);
8262 out:
8263         return r;
8264 }
8265
8266 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8267 {
8268         if (!kvm_arch_vcpu_runnable(vcpu) &&
8269             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8270                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8271                 kvm_vcpu_block(vcpu);
8272                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8273
8274                 if (kvm_x86_ops->post_block)
8275                         kvm_x86_ops->post_block(vcpu);
8276
8277                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8278                         return 1;
8279         }
8280
8281         kvm_apic_accept_events(vcpu);
8282         switch(vcpu->arch.mp_state) {
8283         case KVM_MP_STATE_HALTED:
8284                 vcpu->arch.pv.pv_unhalted = false;
8285                 vcpu->arch.mp_state =
8286                         KVM_MP_STATE_RUNNABLE;
8287                 /* fall through */
8288         case KVM_MP_STATE_RUNNABLE:
8289                 vcpu->arch.apf.halted = false;
8290                 break;
8291         case KVM_MP_STATE_INIT_RECEIVED:
8292                 break;
8293         default:
8294                 return -EINTR;
8295                 break;
8296         }
8297         return 1;
8298 }
8299
8300 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8301 {
8302         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8303                 kvm_x86_ops->check_nested_events(vcpu, false);
8304
8305         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8306                 !vcpu->arch.apf.halted);
8307 }
8308
8309 static int vcpu_run(struct kvm_vcpu *vcpu)
8310 {
8311         int r;
8312         struct kvm *kvm = vcpu->kvm;
8313
8314         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8315         vcpu->arch.l1tf_flush_l1d = true;
8316
8317         for (;;) {
8318                 if (kvm_vcpu_running(vcpu)) {
8319                         r = vcpu_enter_guest(vcpu);
8320                 } else {
8321                         r = vcpu_block(kvm, vcpu);
8322                 }
8323
8324                 if (r <= 0)
8325                         break;
8326
8327                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8328                 if (kvm_cpu_has_pending_timer(vcpu))
8329                         kvm_inject_pending_timer_irqs(vcpu);
8330
8331                 if (dm_request_for_irq_injection(vcpu) &&
8332                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8333                         r = 0;
8334                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8335                         ++vcpu->stat.request_irq_exits;
8336                         break;
8337                 }
8338
8339                 kvm_check_async_pf_completion(vcpu);
8340
8341                 if (signal_pending(current)) {
8342                         r = -EINTR;
8343                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8344                         ++vcpu->stat.signal_exits;
8345                         break;
8346                 }
8347                 if (need_resched()) {
8348                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8349                         cond_resched();
8350                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8351                 }
8352         }
8353
8354         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8355
8356         return r;
8357 }
8358
8359 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8360 {
8361         int r;
8362
8363         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8364         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8365         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8366         return r;
8367 }
8368
8369 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8370 {
8371         BUG_ON(!vcpu->arch.pio.count);
8372
8373         return complete_emulated_io(vcpu);
8374 }
8375
8376 /*
8377  * Implements the following, as a state machine:
8378  *
8379  * read:
8380  *   for each fragment
8381  *     for each mmio piece in the fragment
8382  *       write gpa, len
8383  *       exit
8384  *       copy data
8385  *   execute insn
8386  *
8387  * write:
8388  *   for each fragment
8389  *     for each mmio piece in the fragment
8390  *       write gpa, len
8391  *       copy data
8392  *       exit
8393  */
8394 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8395 {
8396         struct kvm_run *run = vcpu->run;
8397         struct kvm_mmio_fragment *frag;
8398         unsigned len;
8399
8400         BUG_ON(!vcpu->mmio_needed);
8401
8402         /* Complete previous fragment */
8403         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8404         len = min(8u, frag->len);
8405         if (!vcpu->mmio_is_write)
8406                 memcpy(frag->data, run->mmio.data, len);
8407
8408         if (frag->len <= 8) {
8409                 /* Switch to the next fragment. */
8410                 frag++;
8411                 vcpu->mmio_cur_fragment++;
8412         } else {
8413                 /* Go forward to the next mmio piece. */
8414                 frag->data += len;
8415                 frag->gpa += len;
8416                 frag->len -= len;
8417         }
8418
8419         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8420                 vcpu->mmio_needed = 0;
8421
8422                 /* FIXME: return into emulator if single-stepping.  */
8423                 if (vcpu->mmio_is_write)
8424                         return 1;
8425                 vcpu->mmio_read_completed = 1;
8426                 return complete_emulated_io(vcpu);
8427         }
8428
8429         run->exit_reason = KVM_EXIT_MMIO;
8430         run->mmio.phys_addr = frag->gpa;
8431         if (vcpu->mmio_is_write)
8432                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8433         run->mmio.len = min(8u, frag->len);
8434         run->mmio.is_write = vcpu->mmio_is_write;
8435         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8436         return 0;
8437 }
8438
8439 /* Swap (qemu) user FPU context for the guest FPU context. */
8440 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8441 {
8442         fpregs_lock();
8443
8444         copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8445         /* PKRU is separately restored in kvm_x86_ops->run.  */
8446         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8447                                 ~XFEATURE_MASK_PKRU);
8448
8449         fpregs_mark_activate();
8450         fpregs_unlock();
8451
8452         trace_kvm_fpu(1);
8453 }
8454
8455 /* When vcpu_run ends, restore user space FPU context. */
8456 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8457 {
8458         fpregs_lock();
8459
8460         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8461         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8462
8463         fpregs_mark_activate();
8464         fpregs_unlock();
8465
8466         ++vcpu->stat.fpu_reload;
8467         trace_kvm_fpu(0);
8468 }
8469
8470 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8471 {
8472         int r;
8473
8474         vcpu_load(vcpu);
8475         kvm_sigset_activate(vcpu);
8476         kvm_load_guest_fpu(vcpu);
8477
8478         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8479                 if (kvm_run->immediate_exit) {
8480                         r = -EINTR;
8481                         goto out;
8482                 }
8483                 kvm_vcpu_block(vcpu);
8484                 kvm_apic_accept_events(vcpu);
8485                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8486                 r = -EAGAIN;
8487                 if (signal_pending(current)) {
8488                         r = -EINTR;
8489                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8490                         ++vcpu->stat.signal_exits;
8491                 }
8492                 goto out;
8493         }
8494
8495         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8496                 r = -EINVAL;
8497                 goto out;
8498         }
8499
8500         if (vcpu->run->kvm_dirty_regs) {
8501                 r = sync_regs(vcpu);
8502                 if (r != 0)
8503                         goto out;
8504         }
8505
8506         /* re-sync apic's tpr */
8507         if (!lapic_in_kernel(vcpu)) {
8508                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8509                         r = -EINVAL;
8510                         goto out;
8511                 }
8512         }
8513
8514         if (unlikely(vcpu->arch.complete_userspace_io)) {
8515                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8516                 vcpu->arch.complete_userspace_io = NULL;
8517                 r = cui(vcpu);
8518                 if (r <= 0)
8519                         goto out;
8520         } else
8521                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8522
8523         if (kvm_run->immediate_exit)
8524                 r = -EINTR;
8525         else
8526                 r = vcpu_run(vcpu);
8527
8528 out:
8529         kvm_put_guest_fpu(vcpu);
8530         if (vcpu->run->kvm_valid_regs)
8531                 store_regs(vcpu);
8532         post_kvm_run_save(vcpu);
8533         kvm_sigset_deactivate(vcpu);
8534
8535         vcpu_put(vcpu);
8536         return r;
8537 }
8538
8539 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8540 {
8541         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8542                 /*
8543                  * We are here if userspace calls get_regs() in the middle of
8544                  * instruction emulation. Registers state needs to be copied
8545                  * back from emulation context to vcpu. Userspace shouldn't do
8546                  * that usually, but some bad designed PV devices (vmware
8547                  * backdoor interface) need this to work
8548                  */
8549                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8550                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8551         }
8552         regs->rax = kvm_rax_read(vcpu);
8553         regs->rbx = kvm_rbx_read(vcpu);
8554         regs->rcx = kvm_rcx_read(vcpu);
8555         regs->rdx = kvm_rdx_read(vcpu);
8556         regs->rsi = kvm_rsi_read(vcpu);
8557         regs->rdi = kvm_rdi_read(vcpu);
8558         regs->rsp = kvm_rsp_read(vcpu);
8559         regs->rbp = kvm_rbp_read(vcpu);
8560 #ifdef CONFIG_X86_64
8561         regs->r8 = kvm_r8_read(vcpu);
8562         regs->r9 = kvm_r9_read(vcpu);
8563         regs->r10 = kvm_r10_read(vcpu);
8564         regs->r11 = kvm_r11_read(vcpu);
8565         regs->r12 = kvm_r12_read(vcpu);
8566         regs->r13 = kvm_r13_read(vcpu);
8567         regs->r14 = kvm_r14_read(vcpu);
8568         regs->r15 = kvm_r15_read(vcpu);
8569 #endif
8570
8571         regs->rip = kvm_rip_read(vcpu);
8572         regs->rflags = kvm_get_rflags(vcpu);
8573 }
8574
8575 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8576 {
8577         vcpu_load(vcpu);
8578         __get_regs(vcpu, regs);
8579         vcpu_put(vcpu);
8580         return 0;
8581 }
8582
8583 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8584 {
8585         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8586         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8587
8588         kvm_rax_write(vcpu, regs->rax);
8589         kvm_rbx_write(vcpu, regs->rbx);
8590         kvm_rcx_write(vcpu, regs->rcx);
8591         kvm_rdx_write(vcpu, regs->rdx);
8592         kvm_rsi_write(vcpu, regs->rsi);
8593         kvm_rdi_write(vcpu, regs->rdi);
8594         kvm_rsp_write(vcpu, regs->rsp);
8595         kvm_rbp_write(vcpu, regs->rbp);
8596 #ifdef CONFIG_X86_64
8597         kvm_r8_write(vcpu, regs->r8);
8598         kvm_r9_write(vcpu, regs->r9);
8599         kvm_r10_write(vcpu, regs->r10);
8600         kvm_r11_write(vcpu, regs->r11);
8601         kvm_r12_write(vcpu, regs->r12);
8602         kvm_r13_write(vcpu, regs->r13);
8603         kvm_r14_write(vcpu, regs->r14);
8604         kvm_r15_write(vcpu, regs->r15);
8605 #endif
8606
8607         kvm_rip_write(vcpu, regs->rip);
8608         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8609
8610         vcpu->arch.exception.pending = false;
8611
8612         kvm_make_request(KVM_REQ_EVENT, vcpu);
8613 }
8614
8615 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8616 {
8617         vcpu_load(vcpu);
8618         __set_regs(vcpu, regs);
8619         vcpu_put(vcpu);
8620         return 0;
8621 }
8622
8623 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8624 {
8625         struct kvm_segment cs;
8626
8627         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8628         *db = cs.db;
8629         *l = cs.l;
8630 }
8631 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8632
8633 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8634 {
8635         struct desc_ptr dt;
8636
8637         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8638         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8639         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8640         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8641         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8642         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8643
8644         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8645         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8646
8647         kvm_x86_ops->get_idt(vcpu, &dt);
8648         sregs->idt.limit = dt.size;
8649         sregs->idt.base = dt.address;
8650         kvm_x86_ops->get_gdt(vcpu, &dt);
8651         sregs->gdt.limit = dt.size;
8652         sregs->gdt.base = dt.address;
8653
8654         sregs->cr0 = kvm_read_cr0(vcpu);
8655         sregs->cr2 = vcpu->arch.cr2;
8656         sregs->cr3 = kvm_read_cr3(vcpu);
8657         sregs->cr4 = kvm_read_cr4(vcpu);
8658         sregs->cr8 = kvm_get_cr8(vcpu);
8659         sregs->efer = vcpu->arch.efer;
8660         sregs->apic_base = kvm_get_apic_base(vcpu);
8661
8662         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8663
8664         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8665                 set_bit(vcpu->arch.interrupt.nr,
8666                         (unsigned long *)sregs->interrupt_bitmap);
8667 }
8668
8669 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8670                                   struct kvm_sregs *sregs)
8671 {
8672         vcpu_load(vcpu);
8673         __get_sregs(vcpu, sregs);
8674         vcpu_put(vcpu);
8675         return 0;
8676 }
8677
8678 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8679                                     struct kvm_mp_state *mp_state)
8680 {
8681         vcpu_load(vcpu);
8682
8683         kvm_apic_accept_events(vcpu);
8684         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8685                                         vcpu->arch.pv.pv_unhalted)
8686                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8687         else
8688                 mp_state->mp_state = vcpu->arch.mp_state;
8689
8690         vcpu_put(vcpu);
8691         return 0;
8692 }
8693
8694 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8695                                     struct kvm_mp_state *mp_state)
8696 {
8697         int ret = -EINVAL;
8698
8699         vcpu_load(vcpu);
8700
8701         if (!lapic_in_kernel(vcpu) &&
8702             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8703                 goto out;
8704
8705         /* INITs are latched while in SMM */
8706         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8707             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8708              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8709                 goto out;
8710
8711         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8712                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8713                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8714         } else
8715                 vcpu->arch.mp_state = mp_state->mp_state;
8716         kvm_make_request(KVM_REQ_EVENT, vcpu);
8717
8718         ret = 0;
8719 out:
8720         vcpu_put(vcpu);
8721         return ret;
8722 }
8723
8724 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8725                     int reason, bool has_error_code, u32 error_code)
8726 {
8727         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8728         int ret;
8729
8730         init_emulate_ctxt(vcpu);
8731
8732         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8733                                    has_error_code, error_code);
8734         if (ret) {
8735                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8736                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8737                 vcpu->run->internal.ndata = 0;
8738                 return 0;
8739         }
8740
8741         kvm_rip_write(vcpu, ctxt->eip);
8742         kvm_set_rflags(vcpu, ctxt->eflags);
8743         kvm_make_request(KVM_REQ_EVENT, vcpu);
8744         return 1;
8745 }
8746 EXPORT_SYMBOL_GPL(kvm_task_switch);
8747
8748 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8749 {
8750         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8751                 /*
8752                  * When EFER.LME and CR0.PG are set, the processor is in
8753                  * 64-bit mode (though maybe in a 32-bit code segment).
8754                  * CR4.PAE and EFER.LMA must be set.
8755                  */
8756                 if (!(sregs->cr4 & X86_CR4_PAE)
8757                     || !(sregs->efer & EFER_LMA))
8758                         return -EINVAL;
8759         } else {
8760                 /*
8761                  * Not in 64-bit mode: EFER.LMA is clear and the code
8762                  * segment cannot be 64-bit.
8763                  */
8764                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8765                         return -EINVAL;
8766         }
8767
8768         return kvm_valid_cr4(vcpu, sregs->cr4);
8769 }
8770
8771 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8772 {
8773         struct msr_data apic_base_msr;
8774         int mmu_reset_needed = 0;
8775         int cpuid_update_needed = 0;
8776         int pending_vec, max_bits, idx;
8777         struct desc_ptr dt;
8778         int ret = -EINVAL;
8779
8780         if (kvm_valid_sregs(vcpu, sregs))
8781                 goto out;
8782
8783         apic_base_msr.data = sregs->apic_base;
8784         apic_base_msr.host_initiated = true;
8785         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8786                 goto out;
8787
8788         dt.size = sregs->idt.limit;
8789         dt.address = sregs->idt.base;
8790         kvm_x86_ops->set_idt(vcpu, &dt);
8791         dt.size = sregs->gdt.limit;
8792         dt.address = sregs->gdt.base;
8793         kvm_x86_ops->set_gdt(vcpu, &dt);
8794
8795         vcpu->arch.cr2 = sregs->cr2;
8796         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8797         vcpu->arch.cr3 = sregs->cr3;
8798         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8799
8800         kvm_set_cr8(vcpu, sregs->cr8);
8801
8802         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8803         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8804
8805         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8806         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8807         vcpu->arch.cr0 = sregs->cr0;
8808
8809         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8810         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8811                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8812         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8813         if (cpuid_update_needed)
8814                 kvm_update_cpuid(vcpu);
8815
8816         idx = srcu_read_lock(&vcpu->kvm->srcu);
8817         if (is_pae_paging(vcpu)) {
8818                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8819                 mmu_reset_needed = 1;
8820         }
8821         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8822
8823         if (mmu_reset_needed)
8824                 kvm_mmu_reset_context(vcpu);
8825
8826         max_bits = KVM_NR_INTERRUPTS;
8827         pending_vec = find_first_bit(
8828                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8829         if (pending_vec < max_bits) {
8830                 kvm_queue_interrupt(vcpu, pending_vec, false);
8831                 pr_debug("Set back pending irq %d\n", pending_vec);
8832         }
8833
8834         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8835         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8836         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8837         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8838         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8839         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8840
8841         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8842         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8843
8844         update_cr8_intercept(vcpu);
8845
8846         /* Older userspace won't unhalt the vcpu on reset. */
8847         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8848             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8849             !is_protmode(vcpu))
8850                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8851
8852         kvm_make_request(KVM_REQ_EVENT, vcpu);
8853
8854         ret = 0;
8855 out:
8856         return ret;
8857 }
8858
8859 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8860                                   struct kvm_sregs *sregs)
8861 {
8862         int ret;
8863
8864         vcpu_load(vcpu);
8865         ret = __set_sregs(vcpu, sregs);
8866         vcpu_put(vcpu);
8867         return ret;
8868 }
8869
8870 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8871                                         struct kvm_guest_debug *dbg)
8872 {
8873         unsigned long rflags;
8874         int i, r;
8875
8876         vcpu_load(vcpu);
8877
8878         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8879                 r = -EBUSY;
8880                 if (vcpu->arch.exception.pending)
8881                         goto out;
8882                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8883                         kvm_queue_exception(vcpu, DB_VECTOR);
8884                 else
8885                         kvm_queue_exception(vcpu, BP_VECTOR);
8886         }
8887
8888         /*
8889          * Read rflags as long as potentially injected trace flags are still
8890          * filtered out.
8891          */
8892         rflags = kvm_get_rflags(vcpu);
8893
8894         vcpu->guest_debug = dbg->control;
8895         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8896                 vcpu->guest_debug = 0;
8897
8898         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8899                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8900                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8901                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8902         } else {
8903                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8904                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8905         }
8906         kvm_update_dr7(vcpu);
8907
8908         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8909                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8910                         get_segment_base(vcpu, VCPU_SREG_CS);
8911
8912         /*
8913          * Trigger an rflags update that will inject or remove the trace
8914          * flags.
8915          */
8916         kvm_set_rflags(vcpu, rflags);
8917
8918         kvm_x86_ops->update_bp_intercept(vcpu);
8919
8920         r = 0;
8921
8922 out:
8923         vcpu_put(vcpu);
8924         return r;
8925 }
8926
8927 /*
8928  * Translate a guest virtual address to a guest physical address.
8929  */
8930 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8931                                     struct kvm_translation *tr)
8932 {
8933         unsigned long vaddr = tr->linear_address;
8934         gpa_t gpa;
8935         int idx;
8936
8937         vcpu_load(vcpu);
8938
8939         idx = srcu_read_lock(&vcpu->kvm->srcu);
8940         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8941         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8942         tr->physical_address = gpa;
8943         tr->valid = gpa != UNMAPPED_GVA;
8944         tr->writeable = 1;
8945         tr->usermode = 0;
8946
8947         vcpu_put(vcpu);
8948         return 0;
8949 }
8950
8951 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8952 {
8953         struct fxregs_state *fxsave;
8954
8955         vcpu_load(vcpu);
8956
8957         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8958         memcpy(fpu->fpr, fxsave->st_space, 128);
8959         fpu->fcw = fxsave->cwd;
8960         fpu->fsw = fxsave->swd;
8961         fpu->ftwx = fxsave->twd;
8962         fpu->last_opcode = fxsave->fop;
8963         fpu->last_ip = fxsave->rip;
8964         fpu->last_dp = fxsave->rdp;
8965         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8966
8967         vcpu_put(vcpu);
8968         return 0;
8969 }
8970
8971 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8972 {
8973         struct fxregs_state *fxsave;
8974
8975         vcpu_load(vcpu);
8976
8977         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8978
8979         memcpy(fxsave->st_space, fpu->fpr, 128);
8980         fxsave->cwd = fpu->fcw;
8981         fxsave->swd = fpu->fsw;
8982         fxsave->twd = fpu->ftwx;
8983         fxsave->fop = fpu->last_opcode;
8984         fxsave->rip = fpu->last_ip;
8985         fxsave->rdp = fpu->last_dp;
8986         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8987
8988         vcpu_put(vcpu);
8989         return 0;
8990 }
8991
8992 static void store_regs(struct kvm_vcpu *vcpu)
8993 {
8994         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8995
8996         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8997                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8998
8999         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9000                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9001
9002         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9003                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9004                                 vcpu, &vcpu->run->s.regs.events);
9005 }
9006
9007 static int sync_regs(struct kvm_vcpu *vcpu)
9008 {
9009         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9010                 return -EINVAL;
9011
9012         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9013                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9014                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9015         }
9016         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9017                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9018                         return -EINVAL;
9019                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9020         }
9021         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9022                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9023                                 vcpu, &vcpu->run->s.regs.events))
9024                         return -EINVAL;
9025                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9026         }
9027
9028         return 0;
9029 }
9030
9031 static void fx_init(struct kvm_vcpu *vcpu)
9032 {
9033         fpstate_init(&vcpu->arch.guest_fpu->state);
9034         if (boot_cpu_has(X86_FEATURE_XSAVES))
9035                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9036                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9037
9038         /*
9039          * Ensure guest xcr0 is valid for loading
9040          */
9041         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9042
9043         vcpu->arch.cr0 |= X86_CR0_ET;
9044 }
9045
9046 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
9047 {
9048         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
9049
9050         kvmclock_reset(vcpu);
9051
9052         kvm_x86_ops->vcpu_free(vcpu);
9053         free_cpumask_var(wbinvd_dirty_mask);
9054 }
9055
9056 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
9057                                                 unsigned int id)
9058 {
9059         struct kvm_vcpu *vcpu;
9060
9061         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9062                 printk_once(KERN_WARNING
9063                 "kvm: SMP vm created on host with unstable TSC; "
9064                 "guest TSC will not be reliable\n");
9065
9066         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
9067
9068         return vcpu;
9069 }
9070
9071 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
9072 {
9073         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9074         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9075         kvm_vcpu_mtrr_init(vcpu);
9076         vcpu_load(vcpu);
9077         kvm_vcpu_reset(vcpu, false);
9078         kvm_init_mmu(vcpu, false);
9079         vcpu_put(vcpu);
9080         return 0;
9081 }
9082
9083 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9084 {
9085         struct msr_data msr;
9086         struct kvm *kvm = vcpu->kvm;
9087
9088         kvm_hv_vcpu_postcreate(vcpu);
9089
9090         if (mutex_lock_killable(&vcpu->mutex))
9091                 return;
9092         vcpu_load(vcpu);
9093         msr.data = 0x0;
9094         msr.index = MSR_IA32_TSC;
9095         msr.host_initiated = true;
9096         kvm_write_tsc(vcpu, &msr);
9097         vcpu_put(vcpu);
9098
9099         /* poll control enabled by default */
9100         vcpu->arch.msr_kvm_poll_control = 1;
9101
9102         mutex_unlock(&vcpu->mutex);
9103
9104         if (!kvmclock_periodic_sync)
9105                 return;
9106
9107         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9108                                         KVMCLOCK_SYNC_PERIOD);
9109 }
9110
9111 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9112 {
9113         vcpu->arch.apf.msr_val = 0;
9114
9115         vcpu_load(vcpu);
9116         kvm_mmu_unload(vcpu);
9117         vcpu_put(vcpu);
9118
9119         kvm_x86_ops->vcpu_free(vcpu);
9120 }
9121
9122 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9123 {
9124         kvm_lapic_reset(vcpu, init_event);
9125
9126         vcpu->arch.hflags = 0;
9127
9128         vcpu->arch.smi_pending = 0;
9129         vcpu->arch.smi_count = 0;
9130         atomic_set(&vcpu->arch.nmi_queued, 0);
9131         vcpu->arch.nmi_pending = 0;
9132         vcpu->arch.nmi_injected = false;
9133         kvm_clear_interrupt_queue(vcpu);
9134         kvm_clear_exception_queue(vcpu);
9135         vcpu->arch.exception.pending = false;
9136
9137         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9138         kvm_update_dr0123(vcpu);
9139         vcpu->arch.dr6 = DR6_INIT;
9140         kvm_update_dr6(vcpu);
9141         vcpu->arch.dr7 = DR7_FIXED_1;
9142         kvm_update_dr7(vcpu);
9143
9144         vcpu->arch.cr2 = 0;
9145
9146         kvm_make_request(KVM_REQ_EVENT, vcpu);
9147         vcpu->arch.apf.msr_val = 0;
9148         vcpu->arch.st.msr_val = 0;
9149
9150         kvmclock_reset(vcpu);
9151
9152         kvm_clear_async_pf_completion_queue(vcpu);
9153         kvm_async_pf_hash_reset(vcpu);
9154         vcpu->arch.apf.halted = false;
9155
9156         if (kvm_mpx_supported()) {
9157                 void *mpx_state_buffer;
9158
9159                 /*
9160                  * To avoid have the INIT path from kvm_apic_has_events() that be
9161                  * called with loaded FPU and does not let userspace fix the state.
9162                  */
9163                 if (init_event)
9164                         kvm_put_guest_fpu(vcpu);
9165                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9166                                         XFEATURE_BNDREGS);
9167                 if (mpx_state_buffer)
9168                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9169                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9170                                         XFEATURE_BNDCSR);
9171                 if (mpx_state_buffer)
9172                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9173                 if (init_event)
9174                         kvm_load_guest_fpu(vcpu);
9175         }
9176
9177         if (!init_event) {
9178                 kvm_pmu_reset(vcpu);
9179                 vcpu->arch.smbase = 0x30000;
9180
9181                 vcpu->arch.msr_misc_features_enables = 0;
9182
9183                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9184         }
9185
9186         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9187         vcpu->arch.regs_avail = ~0;
9188         vcpu->arch.regs_dirty = ~0;
9189
9190         vcpu->arch.ia32_xss = 0;
9191
9192         kvm_x86_ops->vcpu_reset(vcpu, init_event);
9193 }
9194
9195 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9196 {
9197         struct kvm_segment cs;
9198
9199         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9200         cs.selector = vector << 8;
9201         cs.base = vector << 12;
9202         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9203         kvm_rip_write(vcpu, 0);
9204 }
9205
9206 int kvm_arch_hardware_enable(void)
9207 {
9208         struct kvm *kvm;
9209         struct kvm_vcpu *vcpu;
9210         int i;
9211         int ret;
9212         u64 local_tsc;
9213         u64 max_tsc = 0;
9214         bool stable, backwards_tsc = false;
9215
9216         kvm_shared_msr_cpu_online();
9217         ret = kvm_x86_ops->hardware_enable();
9218         if (ret != 0)
9219                 return ret;
9220
9221         local_tsc = rdtsc();
9222         stable = !kvm_check_tsc_unstable();
9223         list_for_each_entry(kvm, &vm_list, vm_list) {
9224                 kvm_for_each_vcpu(i, vcpu, kvm) {
9225                         if (!stable && vcpu->cpu == smp_processor_id())
9226                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9227                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9228                                 backwards_tsc = true;
9229                                 if (vcpu->arch.last_host_tsc > max_tsc)
9230                                         max_tsc = vcpu->arch.last_host_tsc;
9231                         }
9232                 }
9233         }
9234
9235         /*
9236          * Sometimes, even reliable TSCs go backwards.  This happens on
9237          * platforms that reset TSC during suspend or hibernate actions, but
9238          * maintain synchronization.  We must compensate.  Fortunately, we can
9239          * detect that condition here, which happens early in CPU bringup,
9240          * before any KVM threads can be running.  Unfortunately, we can't
9241          * bring the TSCs fully up to date with real time, as we aren't yet far
9242          * enough into CPU bringup that we know how much real time has actually
9243          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9244          * variables that haven't been updated yet.
9245          *
9246          * So we simply find the maximum observed TSC above, then record the
9247          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9248          * the adjustment will be applied.  Note that we accumulate
9249          * adjustments, in case multiple suspend cycles happen before some VCPU
9250          * gets a chance to run again.  In the event that no KVM threads get a
9251          * chance to run, we will miss the entire elapsed period, as we'll have
9252          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9253          * loose cycle time.  This isn't too big a deal, since the loss will be
9254          * uniform across all VCPUs (not to mention the scenario is extremely
9255          * unlikely). It is possible that a second hibernate recovery happens
9256          * much faster than a first, causing the observed TSC here to be
9257          * smaller; this would require additional padding adjustment, which is
9258          * why we set last_host_tsc to the local tsc observed here.
9259          *
9260          * N.B. - this code below runs only on platforms with reliable TSC,
9261          * as that is the only way backwards_tsc is set above.  Also note
9262          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9263          * have the same delta_cyc adjustment applied if backwards_tsc
9264          * is detected.  Note further, this adjustment is only done once,
9265          * as we reset last_host_tsc on all VCPUs to stop this from being
9266          * called multiple times (one for each physical CPU bringup).
9267          *
9268          * Platforms with unreliable TSCs don't have to deal with this, they
9269          * will be compensated by the logic in vcpu_load, which sets the TSC to
9270          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9271          * guarantee that they stay in perfect synchronization.
9272          */
9273         if (backwards_tsc) {
9274                 u64 delta_cyc = max_tsc - local_tsc;
9275                 list_for_each_entry(kvm, &vm_list, vm_list) {
9276                         kvm->arch.backwards_tsc_observed = true;
9277                         kvm_for_each_vcpu(i, vcpu, kvm) {
9278                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9279                                 vcpu->arch.last_host_tsc = local_tsc;
9280                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9281                         }
9282
9283                         /*
9284                          * We have to disable TSC offset matching.. if you were
9285                          * booting a VM while issuing an S4 host suspend....
9286                          * you may have some problem.  Solving this issue is
9287                          * left as an exercise to the reader.
9288                          */
9289                         kvm->arch.last_tsc_nsec = 0;
9290                         kvm->arch.last_tsc_write = 0;
9291                 }
9292
9293         }
9294         return 0;
9295 }
9296
9297 void kvm_arch_hardware_disable(void)
9298 {
9299         kvm_x86_ops->hardware_disable();
9300         drop_user_return_notifiers();
9301 }
9302
9303 int kvm_arch_hardware_setup(void)
9304 {
9305         int r;
9306
9307         r = kvm_x86_ops->hardware_setup();
9308         if (r != 0)
9309                 return r;
9310
9311         if (kvm_has_tsc_control) {
9312                 /*
9313                  * Make sure the user can only configure tsc_khz values that
9314                  * fit into a signed integer.
9315                  * A min value is not calculated because it will always
9316                  * be 1 on all machines.
9317                  */
9318                 u64 max = min(0x7fffffffULL,
9319                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9320                 kvm_max_guest_tsc_khz = max;
9321
9322                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9323         }
9324
9325         kvm_init_msr_list();
9326         return 0;
9327 }
9328
9329 void kvm_arch_hardware_unsetup(void)
9330 {
9331         kvm_x86_ops->hardware_unsetup();
9332 }
9333
9334 int kvm_arch_check_processor_compat(void)
9335 {
9336         return kvm_x86_ops->check_processor_compatibility();
9337 }
9338
9339 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9340 {
9341         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9342 }
9343 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9344
9345 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9346 {
9347         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9348 }
9349
9350 struct static_key kvm_no_apic_vcpu __read_mostly;
9351 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9352
9353 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9354 {
9355         struct page *page;
9356         int r;
9357
9358         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9359         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9360                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9361         else
9362                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9363
9364         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9365         if (!page) {
9366                 r = -ENOMEM;
9367                 goto fail;
9368         }
9369         vcpu->arch.pio_data = page_address(page);
9370
9371         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9372
9373         r = kvm_mmu_create(vcpu);
9374         if (r < 0)
9375                 goto fail_free_pio_data;
9376
9377         if (irqchip_in_kernel(vcpu->kvm)) {
9378                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9379                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9380                 if (r < 0)
9381                         goto fail_mmu_destroy;
9382         } else
9383                 static_key_slow_inc(&kvm_no_apic_vcpu);
9384
9385         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9386                                        GFP_KERNEL_ACCOUNT);
9387         if (!vcpu->arch.mce_banks) {
9388                 r = -ENOMEM;
9389                 goto fail_free_lapic;
9390         }
9391         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9392
9393         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9394                                 GFP_KERNEL_ACCOUNT)) {
9395                 r = -ENOMEM;
9396                 goto fail_free_mce_banks;
9397         }
9398
9399         fx_init(vcpu);
9400
9401         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9402
9403         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9404
9405         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9406
9407         kvm_async_pf_hash_reset(vcpu);
9408         kvm_pmu_init(vcpu);
9409
9410         vcpu->arch.pending_external_vector = -1;
9411         vcpu->arch.preempted_in_kernel = false;
9412
9413         kvm_hv_vcpu_init(vcpu);
9414
9415         return 0;
9416
9417 fail_free_mce_banks:
9418         kfree(vcpu->arch.mce_banks);
9419 fail_free_lapic:
9420         kvm_free_lapic(vcpu);
9421 fail_mmu_destroy:
9422         kvm_mmu_destroy(vcpu);
9423 fail_free_pio_data:
9424         free_page((unsigned long)vcpu->arch.pio_data);
9425 fail:
9426         return r;
9427 }
9428
9429 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9430 {
9431         int idx;
9432
9433         kvm_hv_vcpu_uninit(vcpu);
9434         kvm_pmu_destroy(vcpu);
9435         kfree(vcpu->arch.mce_banks);
9436         kvm_free_lapic(vcpu);
9437         idx = srcu_read_lock(&vcpu->kvm->srcu);
9438         kvm_mmu_destroy(vcpu);
9439         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9440         free_page((unsigned long)vcpu->arch.pio_data);
9441         if (!lapic_in_kernel(vcpu))
9442                 static_key_slow_dec(&kvm_no_apic_vcpu);
9443 }
9444
9445 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9446 {
9447         vcpu->arch.l1tf_flush_l1d = true;
9448         kvm_x86_ops->sched_in(vcpu, cpu);
9449 }
9450
9451 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9452 {
9453         if (type)
9454                 return -EINVAL;
9455
9456         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9457         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9458         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9459         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9460         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9461         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9462
9463         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9464         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9465         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9466         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9467                 &kvm->arch.irq_sources_bitmap);
9468
9469         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9470         mutex_init(&kvm->arch.apic_map_lock);
9471         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9472
9473         kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9474         pvclock_update_vm_gtod_copy(kvm);
9475
9476         kvm->arch.guest_can_read_msr_platform_info = true;
9477
9478         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9479         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9480
9481         kvm_hv_init_vm(kvm);
9482         kvm_page_track_init(kvm);
9483         kvm_mmu_init_vm(kvm);
9484
9485         return kvm_x86_ops->vm_init(kvm);
9486 }
9487
9488 int kvm_arch_post_init_vm(struct kvm *kvm)
9489 {
9490         return kvm_mmu_post_init_vm(kvm);
9491 }
9492
9493 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9494 {
9495         vcpu_load(vcpu);
9496         kvm_mmu_unload(vcpu);
9497         vcpu_put(vcpu);
9498 }
9499
9500 static void kvm_free_vcpus(struct kvm *kvm)
9501 {
9502         unsigned int i;
9503         struct kvm_vcpu *vcpu;
9504
9505         /*
9506          * Unpin any mmu pages first.
9507          */
9508         kvm_for_each_vcpu(i, vcpu, kvm) {
9509                 kvm_clear_async_pf_completion_queue(vcpu);
9510                 kvm_unload_vcpu_mmu(vcpu);
9511         }
9512         kvm_for_each_vcpu(i, vcpu, kvm)
9513                 kvm_arch_vcpu_free(vcpu);
9514
9515         mutex_lock(&kvm->lock);
9516         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9517                 kvm->vcpus[i] = NULL;
9518
9519         atomic_set(&kvm->online_vcpus, 0);
9520         mutex_unlock(&kvm->lock);
9521 }
9522
9523 void kvm_arch_sync_events(struct kvm *kvm)
9524 {
9525         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9526         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9527         kvm_free_pit(kvm);
9528 }
9529
9530 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9531 {
9532         int i, r;
9533         unsigned long hva;
9534         struct kvm_memslots *slots = kvm_memslots(kvm);
9535         struct kvm_memory_slot *slot, old;
9536
9537         /* Called with kvm->slots_lock held.  */
9538         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9539                 return -EINVAL;
9540
9541         slot = id_to_memslot(slots, id);
9542         if (size) {
9543                 if (slot->npages)
9544                         return -EEXIST;
9545
9546                 /*
9547                  * MAP_SHARED to prevent internal slot pages from being moved
9548                  * by fork()/COW.
9549                  */
9550                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9551                               MAP_SHARED | MAP_ANONYMOUS, 0);
9552                 if (IS_ERR((void *)hva))
9553                         return PTR_ERR((void *)hva);
9554         } else {
9555                 if (!slot->npages)
9556                         return 0;
9557
9558                 hva = 0;
9559         }
9560
9561         old = *slot;
9562         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9563                 struct kvm_userspace_memory_region m;
9564
9565                 m.slot = id | (i << 16);
9566                 m.flags = 0;
9567                 m.guest_phys_addr = gpa;
9568                 m.userspace_addr = hva;
9569                 m.memory_size = size;
9570                 r = __kvm_set_memory_region(kvm, &m);
9571                 if (r < 0)
9572                         return r;
9573         }
9574
9575         if (!size)
9576                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9577
9578         return 0;
9579 }
9580 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9581
9582 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9583 {
9584         int r;
9585
9586         mutex_lock(&kvm->slots_lock);
9587         r = __x86_set_memory_region(kvm, id, gpa, size);
9588         mutex_unlock(&kvm->slots_lock);
9589
9590         return r;
9591 }
9592 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9593
9594 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9595 {
9596         kvm_mmu_pre_destroy_vm(kvm);
9597 }
9598
9599 void kvm_arch_destroy_vm(struct kvm *kvm)
9600 {
9601         if (current->mm == kvm->mm) {
9602                 /*
9603                  * Free memory regions allocated on behalf of userspace,
9604                  * unless the the memory map has changed due to process exit
9605                  * or fd copying.
9606                  */
9607                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9608                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9609                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9610         }
9611         if (kvm_x86_ops->vm_destroy)
9612                 kvm_x86_ops->vm_destroy(kvm);
9613         kvm_pic_destroy(kvm);
9614         kvm_ioapic_destroy(kvm);
9615         kvm_free_vcpus(kvm);
9616         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9617         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9618         kvm_mmu_uninit_vm(kvm);
9619         kvm_page_track_cleanup(kvm);
9620         kvm_hv_destroy_vm(kvm);
9621 }
9622
9623 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9624                            struct kvm_memory_slot *dont)
9625 {
9626         int i;
9627
9628         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9629                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9630                         kvfree(free->arch.rmap[i]);
9631                         free->arch.rmap[i] = NULL;
9632                 }
9633                 if (i == 0)
9634                         continue;
9635
9636                 if (!dont || free->arch.lpage_info[i - 1] !=
9637                              dont->arch.lpage_info[i - 1]) {
9638                         kvfree(free->arch.lpage_info[i - 1]);
9639                         free->arch.lpage_info[i - 1] = NULL;
9640                 }
9641         }
9642
9643         kvm_page_track_free_memslot(free, dont);
9644 }
9645
9646 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9647                             unsigned long npages)
9648 {
9649         int i;
9650
9651         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9652                 struct kvm_lpage_info *linfo;
9653                 unsigned long ugfn;
9654                 int lpages;
9655                 int level = i + 1;
9656
9657                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9658                                       slot->base_gfn, level) + 1;
9659
9660                 slot->arch.rmap[i] =
9661                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9662                                  GFP_KERNEL_ACCOUNT);
9663                 if (!slot->arch.rmap[i])
9664                         goto out_free;
9665                 if (i == 0)
9666                         continue;
9667
9668                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9669                 if (!linfo)
9670                         goto out_free;
9671
9672                 slot->arch.lpage_info[i - 1] = linfo;
9673
9674                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9675                         linfo[0].disallow_lpage = 1;
9676                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9677                         linfo[lpages - 1].disallow_lpage = 1;
9678                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9679                 /*
9680                  * If the gfn and userspace address are not aligned wrt each
9681                  * other, or if explicitly asked to, disable large page
9682                  * support for this slot
9683                  */
9684                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9685                     !kvm_largepages_enabled()) {
9686                         unsigned long j;
9687
9688                         for (j = 0; j < lpages; ++j)
9689                                 linfo[j].disallow_lpage = 1;
9690                 }
9691         }
9692
9693         if (kvm_page_track_create_memslot(slot, npages))
9694                 goto out_free;
9695
9696         return 0;
9697
9698 out_free:
9699         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9700                 kvfree(slot->arch.rmap[i]);
9701                 slot->arch.rmap[i] = NULL;
9702                 if (i == 0)
9703                         continue;
9704
9705                 kvfree(slot->arch.lpage_info[i - 1]);
9706                 slot->arch.lpage_info[i - 1] = NULL;
9707         }
9708         return -ENOMEM;
9709 }
9710
9711 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9712 {
9713         /*
9714          * memslots->generation has been incremented.
9715          * mmio generation may have reached its maximum value.
9716          */
9717         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9718 }
9719
9720 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9721                                 struct kvm_memory_slot *memslot,
9722                                 const struct kvm_userspace_memory_region *mem,
9723                                 enum kvm_mr_change change)
9724 {
9725         return 0;
9726 }
9727
9728 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9729                                      struct kvm_memory_slot *new)
9730 {
9731         /* Still write protect RO slot */
9732         if (new->flags & KVM_MEM_READONLY) {
9733                 kvm_mmu_slot_remove_write_access(kvm, new);
9734                 return;
9735         }
9736
9737         /*
9738          * Call kvm_x86_ops dirty logging hooks when they are valid.
9739          *
9740          * kvm_x86_ops->slot_disable_log_dirty is called when:
9741          *
9742          *  - KVM_MR_CREATE with dirty logging is disabled
9743          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9744          *
9745          * The reason is, in case of PML, we need to set D-bit for any slots
9746          * with dirty logging disabled in order to eliminate unnecessary GPA
9747          * logging in PML buffer (and potential PML buffer full VMEXT). This
9748          * guarantees leaving PML enabled during guest's lifetime won't have
9749          * any additional overhead from PML when guest is running with dirty
9750          * logging disabled for memory slots.
9751          *
9752          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9753          * to dirty logging mode.
9754          *
9755          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9756          *
9757          * In case of write protect:
9758          *
9759          * Write protect all pages for dirty logging.
9760          *
9761          * All the sptes including the large sptes which point to this
9762          * slot are set to readonly. We can not create any new large
9763          * spte on this slot until the end of the logging.
9764          *
9765          * See the comments in fast_page_fault().
9766          */
9767         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9768                 if (kvm_x86_ops->slot_enable_log_dirty)
9769                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9770                 else
9771                         kvm_mmu_slot_remove_write_access(kvm, new);
9772         } else {
9773                 if (kvm_x86_ops->slot_disable_log_dirty)
9774                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9775         }
9776 }
9777
9778 void kvm_arch_commit_memory_region(struct kvm *kvm,
9779                                 const struct kvm_userspace_memory_region *mem,
9780                                 const struct kvm_memory_slot *old,
9781                                 const struct kvm_memory_slot *new,
9782                                 enum kvm_mr_change change)
9783 {
9784         if (!kvm->arch.n_requested_mmu_pages)
9785                 kvm_mmu_change_mmu_pages(kvm,
9786                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9787
9788         /*
9789          * Dirty logging tracks sptes in 4k granularity, meaning that large
9790          * sptes have to be split.  If live migration is successful, the guest
9791          * in the source machine will be destroyed and large sptes will be
9792          * created in the destination. However, if the guest continues to run
9793          * in the source machine (for example if live migration fails), small
9794          * sptes will remain around and cause bad performance.
9795          *
9796          * Scan sptes if dirty logging has been stopped, dropping those
9797          * which can be collapsed into a single large-page spte.  Later
9798          * page faults will create the large-page sptes.
9799          *
9800          * There is no need to do this in any of the following cases:
9801          * CREATE:      No dirty mappings will already exist.
9802          * MOVE/DELETE: The old mappings will already have been cleaned up by
9803          *              kvm_arch_flush_shadow_memslot()
9804          */
9805         if (change == KVM_MR_FLAGS_ONLY &&
9806                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9807                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9808                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9809
9810         /*
9811          * Set up write protection and/or dirty logging for the new slot.
9812          *
9813          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9814          * been zapped so no dirty logging staff is needed for old slot. For
9815          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9816          * new and it's also covered when dealing with the new slot.
9817          *
9818          * FIXME: const-ify all uses of struct kvm_memory_slot.
9819          */
9820         if (change != KVM_MR_DELETE)
9821                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9822 }
9823
9824 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9825 {
9826         kvm_mmu_zap_all(kvm);
9827 }
9828
9829 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9830                                    struct kvm_memory_slot *slot)
9831 {
9832         kvm_page_track_flush_slot(kvm, slot);
9833 }
9834
9835 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9836 {
9837         return (is_guest_mode(vcpu) &&
9838                         kvm_x86_ops->guest_apic_has_interrupt &&
9839                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9840 }
9841
9842 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9843 {
9844         if (!list_empty_careful(&vcpu->async_pf.done))
9845                 return true;
9846
9847         if (kvm_apic_has_events(vcpu))
9848                 return true;
9849
9850         if (vcpu->arch.pv.pv_unhalted)
9851                 return true;
9852
9853         if (vcpu->arch.exception.pending)
9854                 return true;
9855
9856         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9857             (vcpu->arch.nmi_pending &&
9858              kvm_x86_ops->nmi_allowed(vcpu)))
9859                 return true;
9860
9861         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9862             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9863                 return true;
9864
9865         if (kvm_arch_interrupt_allowed(vcpu) &&
9866             (kvm_cpu_has_interrupt(vcpu) ||
9867             kvm_guest_apic_has_interrupt(vcpu)))
9868                 return true;
9869
9870         if (kvm_hv_has_stimer_pending(vcpu))
9871                 return true;
9872
9873         return false;
9874 }
9875
9876 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9877 {
9878         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9879 }
9880
9881 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9882 {
9883         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9884                 return true;
9885
9886         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9887                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
9888                  kvm_test_request(KVM_REQ_EVENT, vcpu))
9889                 return true;
9890
9891         if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9892                 return true;
9893
9894         return false;
9895 }
9896
9897 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9898 {
9899         return vcpu->arch.preempted_in_kernel;
9900 }
9901
9902 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9903 {
9904         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9905 }
9906
9907 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9908 {
9909         return kvm_x86_ops->interrupt_allowed(vcpu);
9910 }
9911
9912 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9913 {
9914         if (is_64_bit_mode(vcpu))
9915                 return kvm_rip_read(vcpu);
9916         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9917                      kvm_rip_read(vcpu));
9918 }
9919 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9920
9921 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9922 {
9923         return kvm_get_linear_rip(vcpu) == linear_rip;
9924 }
9925 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9926
9927 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9928 {
9929         unsigned long rflags;
9930
9931         rflags = kvm_x86_ops->get_rflags(vcpu);
9932         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9933                 rflags &= ~X86_EFLAGS_TF;
9934         return rflags;
9935 }
9936 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9937
9938 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9939 {
9940         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9941             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9942                 rflags |= X86_EFLAGS_TF;
9943         kvm_x86_ops->set_rflags(vcpu, rflags);
9944 }
9945
9946 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9947 {
9948         __kvm_set_rflags(vcpu, rflags);
9949         kvm_make_request(KVM_REQ_EVENT, vcpu);
9950 }
9951 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9952
9953 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9954 {
9955         int r;
9956
9957         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9958               work->wakeup_all)
9959                 return;
9960
9961         r = kvm_mmu_reload(vcpu);
9962         if (unlikely(r))
9963                 return;
9964
9965         if (!vcpu->arch.mmu->direct_map &&
9966               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9967                 return;
9968
9969         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9970 }
9971
9972 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9973 {
9974         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9975 }
9976
9977 static inline u32 kvm_async_pf_next_probe(u32 key)
9978 {
9979         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9980 }
9981
9982 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9983 {
9984         u32 key = kvm_async_pf_hash_fn(gfn);
9985
9986         while (vcpu->arch.apf.gfns[key] != ~0)
9987                 key = kvm_async_pf_next_probe(key);
9988
9989         vcpu->arch.apf.gfns[key] = gfn;
9990 }
9991
9992 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9993 {
9994         int i;
9995         u32 key = kvm_async_pf_hash_fn(gfn);
9996
9997         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9998                      (vcpu->arch.apf.gfns[key] != gfn &&
9999                       vcpu->arch.apf.gfns[key] != ~0); i++)
10000                 key = kvm_async_pf_next_probe(key);
10001
10002         return key;
10003 }
10004
10005 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10006 {
10007         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10008 }
10009
10010 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10011 {
10012         u32 i, j, k;
10013
10014         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10015         while (true) {
10016                 vcpu->arch.apf.gfns[i] = ~0;
10017                 do {
10018                         j = kvm_async_pf_next_probe(j);
10019                         if (vcpu->arch.apf.gfns[j] == ~0)
10020                                 return;
10021                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10022                         /*
10023                          * k lies cyclically in ]i,j]
10024                          * |    i.k.j |
10025                          * |....j i.k.| or  |.k..j i...|
10026                          */
10027                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10028                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10029                 i = j;
10030         }
10031 }
10032
10033 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10034 {
10035
10036         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10037                                       sizeof(val));
10038 }
10039
10040 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10041 {
10042
10043         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10044                                       sizeof(u32));
10045 }
10046
10047 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10048 {
10049         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10050                 return false;
10051
10052         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10053             (vcpu->arch.apf.send_user_only &&
10054              kvm_x86_ops->get_cpl(vcpu) == 0))
10055                 return false;
10056
10057         return true;
10058 }
10059
10060 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10061 {
10062         if (unlikely(!lapic_in_kernel(vcpu) ||
10063                      kvm_event_needs_reinjection(vcpu) ||
10064                      vcpu->arch.exception.pending))
10065                 return false;
10066
10067         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10068                 return false;
10069
10070         /*
10071          * If interrupts are off we cannot even use an artificial
10072          * halt state.
10073          */
10074         return kvm_x86_ops->interrupt_allowed(vcpu);
10075 }
10076
10077 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10078                                      struct kvm_async_pf *work)
10079 {
10080         struct x86_exception fault;
10081
10082         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
10083         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10084
10085         if (kvm_can_deliver_async_pf(vcpu) &&
10086             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10087                 fault.vector = PF_VECTOR;
10088                 fault.error_code_valid = true;
10089                 fault.error_code = 0;
10090                 fault.nested_page_fault = false;
10091                 fault.address = work->arch.token;
10092                 fault.async_page_fault = true;
10093                 kvm_inject_page_fault(vcpu, &fault);
10094         } else {
10095                 /*
10096                  * It is not possible to deliver a paravirtualized asynchronous
10097                  * page fault, but putting the guest in an artificial halt state
10098                  * can be beneficial nevertheless: if an interrupt arrives, we
10099                  * can deliver it timely and perhaps the guest will schedule
10100                  * another process.  When the instruction that triggered a page
10101                  * fault is retried, hopefully the page will be ready in the host.
10102                  */
10103                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10104         }
10105 }
10106
10107 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10108                                  struct kvm_async_pf *work)
10109 {
10110         struct x86_exception fault;
10111         u32 val;
10112
10113         if (work->wakeup_all)
10114                 work->arch.token = ~0; /* broadcast wakeup */
10115         else
10116                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10117         trace_kvm_async_pf_ready(work->arch.token, work->gva);
10118
10119         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10120             !apf_get_user(vcpu, &val)) {
10121                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10122                     vcpu->arch.exception.pending &&
10123                     vcpu->arch.exception.nr == PF_VECTOR &&
10124                     !apf_put_user(vcpu, 0)) {
10125                         vcpu->arch.exception.injected = false;
10126                         vcpu->arch.exception.pending = false;
10127                         vcpu->arch.exception.nr = 0;
10128                         vcpu->arch.exception.has_error_code = false;
10129                         vcpu->arch.exception.error_code = 0;
10130                         vcpu->arch.exception.has_payload = false;
10131                         vcpu->arch.exception.payload = 0;
10132                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10133                         fault.vector = PF_VECTOR;
10134                         fault.error_code_valid = true;
10135                         fault.error_code = 0;
10136                         fault.nested_page_fault = false;
10137                         fault.address = work->arch.token;
10138                         fault.async_page_fault = true;
10139                         kvm_inject_page_fault(vcpu, &fault);
10140                 }
10141         }
10142         vcpu->arch.apf.halted = false;
10143         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10144 }
10145
10146 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10147 {
10148         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10149                 return true;
10150         else
10151                 return kvm_can_do_async_pf(vcpu);
10152 }
10153
10154 void kvm_arch_start_assignment(struct kvm *kvm)
10155 {
10156         atomic_inc(&kvm->arch.assigned_device_count);
10157 }
10158 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10159
10160 void kvm_arch_end_assignment(struct kvm *kvm)
10161 {
10162         atomic_dec(&kvm->arch.assigned_device_count);
10163 }
10164 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10165
10166 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10167 {
10168         return atomic_read(&kvm->arch.assigned_device_count);
10169 }
10170 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10171
10172 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10173 {
10174         atomic_inc(&kvm->arch.noncoherent_dma_count);
10175 }
10176 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10177
10178 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10179 {
10180         atomic_dec(&kvm->arch.noncoherent_dma_count);
10181 }
10182 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10183
10184 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10185 {
10186         return atomic_read(&kvm->arch.noncoherent_dma_count);
10187 }
10188 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10189
10190 bool kvm_arch_has_irq_bypass(void)
10191 {
10192         return true;
10193 }
10194
10195 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10196                                       struct irq_bypass_producer *prod)
10197 {
10198         struct kvm_kernel_irqfd *irqfd =
10199                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10200
10201         irqfd->producer = prod;
10202
10203         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10204                                            prod->irq, irqfd->gsi, 1);
10205 }
10206
10207 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10208                                       struct irq_bypass_producer *prod)
10209 {
10210         int ret;
10211         struct kvm_kernel_irqfd *irqfd =
10212                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10213
10214         WARN_ON(irqfd->producer != prod);
10215         irqfd->producer = NULL;
10216
10217         /*
10218          * When producer of consumer is unregistered, we change back to
10219          * remapped mode, so we can re-use the current implementation
10220          * when the irq is masked/disabled or the consumer side (KVM
10221          * int this case doesn't want to receive the interrupts.
10222         */
10223         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10224         if (ret)
10225                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10226                        " fails: %d\n", irqfd->consumer.token, ret);
10227 }
10228
10229 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10230                                    uint32_t guest_irq, bool set)
10231 {
10232         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10233 }
10234
10235 bool kvm_vector_hashing_enabled(void)
10236 {
10237         return vector_hashing;
10238 }
10239 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10240
10241 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10242 {
10243         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10244 }
10245 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10246
10247
10248 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10249 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10250 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10251 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10252 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10253 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10254 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10255 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10256 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10257 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10258 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);