]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
6753f09827914a83946e20f012ca7e17cce446e7
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82  * - enable syscall per default because its emulated by KVM
83  * - enable LME and LMA per default on 64 bit KVM
84  */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32  __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64  __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 #define KVM_NR_SHARED_MSRS 16
138
139 struct kvm_shared_msrs_global {
140         int nr;
141         u32 msrs[KVM_NR_SHARED_MSRS];
142 };
143
144 struct kvm_shared_msrs {
145         struct user_return_notifier urn;
146         bool registered;
147         struct kvm_shared_msr_values {
148                 u64 host;
149                 u64 curr;
150         } values[KVM_NR_SHARED_MSRS];
151 };
152
153 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
154 static struct kvm_shared_msrs __percpu *shared_msrs;
155
156 struct kvm_stats_debugfs_item debugfs_entries[] = {
157         { "pf_fixed", VCPU_STAT(pf_fixed) },
158         { "pf_guest", VCPU_STAT(pf_guest) },
159         { "tlb_flush", VCPU_STAT(tlb_flush) },
160         { "invlpg", VCPU_STAT(invlpg) },
161         { "exits", VCPU_STAT(exits) },
162         { "io_exits", VCPU_STAT(io_exits) },
163         { "mmio_exits", VCPU_STAT(mmio_exits) },
164         { "signal_exits", VCPU_STAT(signal_exits) },
165         { "irq_window", VCPU_STAT(irq_window_exits) },
166         { "nmi_window", VCPU_STAT(nmi_window_exits) },
167         { "halt_exits", VCPU_STAT(halt_exits) },
168         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
169         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
170         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
171         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
172         { "hypercalls", VCPU_STAT(hypercalls) },
173         { "request_irq", VCPU_STAT(request_irq_exits) },
174         { "irq_exits", VCPU_STAT(irq_exits) },
175         { "host_state_reload", VCPU_STAT(host_state_reload) },
176         { "efer_reload", VCPU_STAT(efer_reload) },
177         { "fpu_reload", VCPU_STAT(fpu_reload) },
178         { "insn_emulation", VCPU_STAT(insn_emulation) },
179         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
180         { "irq_injections", VCPU_STAT(irq_injections) },
181         { "nmi_injections", VCPU_STAT(nmi_injections) },
182         { "req_event", VCPU_STAT(req_event) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { "max_mmu_page_hash_collisions",
194                 VM_STAT(max_mmu_page_hash_collisions) },
195         { NULL }
196 };
197
198 u64 __read_mostly host_xcr0;
199
200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
201
202 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
203 {
204         int i;
205         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
206                 vcpu->arch.apf.gfns[i] = ~0;
207 }
208
209 static void kvm_on_user_return(struct user_return_notifier *urn)
210 {
211         unsigned slot;
212         struct kvm_shared_msrs *locals
213                 = container_of(urn, struct kvm_shared_msrs, urn);
214         struct kvm_shared_msr_values *values;
215         unsigned long flags;
216
217         /*
218          * Disabling irqs at this point since the following code could be
219          * interrupted and executed through kvm_arch_hardware_disable()
220          */
221         local_irq_save(flags);
222         if (locals->registered) {
223                 locals->registered = false;
224                 user_return_notifier_unregister(urn);
225         }
226         local_irq_restore(flags);
227         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
228                 values = &locals->values[slot];
229                 if (values->host != values->curr) {
230                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
231                         values->curr = values->host;
232                 }
233         }
234 }
235
236 static void shared_msr_update(unsigned slot, u32 msr)
237 {
238         u64 value;
239         unsigned int cpu = smp_processor_id();
240         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
241
242         /* only read, and nobody should modify it at this time,
243          * so don't need lock */
244         if (slot >= shared_msrs_global.nr) {
245                 printk(KERN_ERR "kvm: invalid MSR slot!");
246                 return;
247         }
248         rdmsrl_safe(msr, &value);
249         smsr->values[slot].host = value;
250         smsr->values[slot].curr = value;
251 }
252
253 void kvm_define_shared_msr(unsigned slot, u32 msr)
254 {
255         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
256         shared_msrs_global.msrs[slot] = msr;
257         if (slot >= shared_msrs_global.nr)
258                 shared_msrs_global.nr = slot + 1;
259 }
260 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
261
262 static void kvm_shared_msr_cpu_online(void)
263 {
264         unsigned i;
265
266         for (i = 0; i < shared_msrs_global.nr; ++i)
267                 shared_msr_update(i, shared_msrs_global.msrs[i]);
268 }
269
270 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
271 {
272         unsigned int cpu = smp_processor_id();
273         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274         int err;
275
276         if (((value ^ smsr->values[slot].curr) & mask) == 0)
277                 return 0;
278         smsr->values[slot].curr = value;
279         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
280         if (err)
281                 return 1;
282
283         if (!smsr->registered) {
284                 smsr->urn.on_user_return = kvm_on_user_return;
285                 user_return_notifier_register(&smsr->urn);
286                 smsr->registered = true;
287         }
288         return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
291
292 static void drop_user_return_notifiers(void)
293 {
294         unsigned int cpu = smp_processor_id();
295         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296
297         if (smsr->registered)
298                 kvm_on_user_return(&smsr->urn);
299 }
300
301 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
302 {
303         return vcpu->arch.apic_base;
304 }
305 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
306
307 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
308 {
309         u64 old_state = vcpu->arch.apic_base &
310                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311         u64 new_state = msr_info->data &
312                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
314                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
315
316         if (!msr_info->host_initiated &&
317             ((msr_info->data & reserved_bits) != 0 ||
318              new_state == X2APIC_ENABLE ||
319              (new_state == MSR_IA32_APICBASE_ENABLE &&
320               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
321              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
322               old_state == 0)))
323                 return 1;
324
325         kvm_lapic_set_base(vcpu, msr_info->data);
326         return 0;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
329
330 asmlinkage __visible void kvm_spurious_fault(void)
331 {
332         /* Fault while not rebooting.  We want the trace. */
333         BUG();
334 }
335 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
336
337 #define EXCPT_BENIGN            0
338 #define EXCPT_CONTRIBUTORY      1
339 #define EXCPT_PF                2
340
341 static int exception_class(int vector)
342 {
343         switch (vector) {
344         case PF_VECTOR:
345                 return EXCPT_PF;
346         case DE_VECTOR:
347         case TS_VECTOR:
348         case NP_VECTOR:
349         case SS_VECTOR:
350         case GP_VECTOR:
351                 return EXCPT_CONTRIBUTORY;
352         default:
353                 break;
354         }
355         return EXCPT_BENIGN;
356 }
357
358 #define EXCPT_FAULT             0
359 #define EXCPT_TRAP              1
360 #define EXCPT_ABORT             2
361 #define EXCPT_INTERRUPT         3
362
363 static int exception_type(int vector)
364 {
365         unsigned int mask;
366
367         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
368                 return EXCPT_INTERRUPT;
369
370         mask = 1 << vector;
371
372         /* #DB is trap, as instruction watchpoints are handled elsewhere */
373         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
374                 return EXCPT_TRAP;
375
376         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
377                 return EXCPT_ABORT;
378
379         /* Reserved exceptions will result in fault */
380         return EXCPT_FAULT;
381 }
382
383 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
384                 unsigned nr, bool has_error, u32 error_code,
385                 bool reinject)
386 {
387         u32 prev_nr;
388         int class1, class2;
389
390         kvm_make_request(KVM_REQ_EVENT, vcpu);
391
392         if (!vcpu->arch.exception.pending) {
393         queue:
394                 if (has_error && !is_protmode(vcpu))
395                         has_error = false;
396                 vcpu->arch.exception.pending = true;
397                 vcpu->arch.exception.has_error_code = has_error;
398                 vcpu->arch.exception.nr = nr;
399                 vcpu->arch.exception.error_code = error_code;
400                 vcpu->arch.exception.reinject = reinject;
401                 return;
402         }
403
404         /* to check exception */
405         prev_nr = vcpu->arch.exception.nr;
406         if (prev_nr == DF_VECTOR) {
407                 /* triple fault -> shutdown */
408                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
409                 return;
410         }
411         class1 = exception_class(prev_nr);
412         class2 = exception_class(nr);
413         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
414                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
415                 /* generate double fault per SDM Table 5-5 */
416                 vcpu->arch.exception.pending = true;
417                 vcpu->arch.exception.has_error_code = true;
418                 vcpu->arch.exception.nr = DF_VECTOR;
419                 vcpu->arch.exception.error_code = 0;
420         } else
421                 /* replace previous exception with a new one in a hope
422                    that instruction re-execution will regenerate lost
423                    exception */
424                 goto queue;
425 }
426
427 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
428 {
429         kvm_multiple_exception(vcpu, nr, false, 0, false);
430 }
431 EXPORT_SYMBOL_GPL(kvm_queue_exception);
432
433 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
434 {
435         kvm_multiple_exception(vcpu, nr, false, 0, true);
436 }
437 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
438
439 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
440 {
441         if (err)
442                 kvm_inject_gp(vcpu, 0);
443         else
444                 return kvm_skip_emulated_instruction(vcpu);
445
446         return 1;
447 }
448 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
449
450 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
451 {
452         ++vcpu->stat.pf_guest;
453         vcpu->arch.exception.nested_apf =
454                 is_guest_mode(vcpu) && fault->async_page_fault;
455         if (vcpu->arch.exception.nested_apf)
456                 vcpu->arch.apf.nested_apf_token = fault->address;
457         else
458                 vcpu->arch.cr2 = fault->address;
459         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
460 }
461 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
462
463 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
464 {
465         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
466                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
467         else
468                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
469
470         return fault->nested_page_fault;
471 }
472
473 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
474 {
475         atomic_inc(&vcpu->arch.nmi_queued);
476         kvm_make_request(KVM_REQ_NMI, vcpu);
477 }
478 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
479
480 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
481 {
482         kvm_multiple_exception(vcpu, nr, true, error_code, false);
483 }
484 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
485
486 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
487 {
488         kvm_multiple_exception(vcpu, nr, true, error_code, true);
489 }
490 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
491
492 /*
493  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
494  * a #GP and return false.
495  */
496 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
497 {
498         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
499                 return true;
500         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
501         return false;
502 }
503 EXPORT_SYMBOL_GPL(kvm_require_cpl);
504
505 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
506 {
507         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
508                 return true;
509
510         kvm_queue_exception(vcpu, UD_VECTOR);
511         return false;
512 }
513 EXPORT_SYMBOL_GPL(kvm_require_dr);
514
515 /*
516  * This function will be used to read from the physical memory of the currently
517  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
518  * can read from guest physical or from the guest's guest physical memory.
519  */
520 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
521                             gfn_t ngfn, void *data, int offset, int len,
522                             u32 access)
523 {
524         struct x86_exception exception;
525         gfn_t real_gfn;
526         gpa_t ngpa;
527
528         ngpa     = gfn_to_gpa(ngfn);
529         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
530         if (real_gfn == UNMAPPED_GVA)
531                 return -EFAULT;
532
533         real_gfn = gpa_to_gfn(real_gfn);
534
535         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
536 }
537 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
538
539 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
540                                void *data, int offset, int len, u32 access)
541 {
542         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
543                                        data, offset, len, access);
544 }
545
546 /*
547  * Load the pae pdptrs.  Return true is they are all valid.
548  */
549 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
550 {
551         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
552         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
553         int i;
554         int ret;
555         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
556
557         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
558                                       offset * sizeof(u64), sizeof(pdpte),
559                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
560         if (ret < 0) {
561                 ret = 0;
562                 goto out;
563         }
564         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
565                 if ((pdpte[i] & PT_PRESENT_MASK) &&
566                     (pdpte[i] &
567                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
568                         ret = 0;
569                         goto out;
570                 }
571         }
572         ret = 1;
573
574         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
575         __set_bit(VCPU_EXREG_PDPTR,
576                   (unsigned long *)&vcpu->arch.regs_avail);
577         __set_bit(VCPU_EXREG_PDPTR,
578                   (unsigned long *)&vcpu->arch.regs_dirty);
579 out:
580
581         return ret;
582 }
583 EXPORT_SYMBOL_GPL(load_pdptrs);
584
585 bool pdptrs_changed(struct kvm_vcpu *vcpu)
586 {
587         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
588         bool changed = true;
589         int offset;
590         gfn_t gfn;
591         int r;
592
593         if (is_long_mode(vcpu) || !is_pae(vcpu))
594                 return false;
595
596         if (!test_bit(VCPU_EXREG_PDPTR,
597                       (unsigned long *)&vcpu->arch.regs_avail))
598                 return true;
599
600         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
601         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
602         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
603                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
604         if (r < 0)
605                 goto out;
606         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
607 out:
608
609         return changed;
610 }
611 EXPORT_SYMBOL_GPL(pdptrs_changed);
612
613 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
614 {
615         unsigned long old_cr0 = kvm_read_cr0(vcpu);
616         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
617
618         cr0 |= X86_CR0_ET;
619
620 #ifdef CONFIG_X86_64
621         if (cr0 & 0xffffffff00000000UL)
622                 return 1;
623 #endif
624
625         cr0 &= ~CR0_RESERVED_BITS;
626
627         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
628                 return 1;
629
630         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
631                 return 1;
632
633         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
634 #ifdef CONFIG_X86_64
635                 if ((vcpu->arch.efer & EFER_LME)) {
636                         int cs_db, cs_l;
637
638                         if (!is_pae(vcpu))
639                                 return 1;
640                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
641                         if (cs_l)
642                                 return 1;
643                 } else
644 #endif
645                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
646                                                  kvm_read_cr3(vcpu)))
647                         return 1;
648         }
649
650         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
651                 return 1;
652
653         kvm_x86_ops->set_cr0(vcpu, cr0);
654
655         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
656                 kvm_clear_async_pf_completion_queue(vcpu);
657                 kvm_async_pf_hash_reset(vcpu);
658         }
659
660         if ((cr0 ^ old_cr0) & update_bits)
661                 kvm_mmu_reset_context(vcpu);
662
663         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
664             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
665             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
666                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
667
668         return 0;
669 }
670 EXPORT_SYMBOL_GPL(kvm_set_cr0);
671
672 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
673 {
674         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
675 }
676 EXPORT_SYMBOL_GPL(kvm_lmsw);
677
678 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
679 {
680         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
681                         !vcpu->guest_xcr0_loaded) {
682                 /* kvm_set_xcr() also depends on this */
683                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
684                 vcpu->guest_xcr0_loaded = 1;
685         }
686 }
687
688 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
689 {
690         if (vcpu->guest_xcr0_loaded) {
691                 if (vcpu->arch.xcr0 != host_xcr0)
692                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
693                 vcpu->guest_xcr0_loaded = 0;
694         }
695 }
696
697 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699         u64 xcr0 = xcr;
700         u64 old_xcr0 = vcpu->arch.xcr0;
701         u64 valid_bits;
702
703         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
704         if (index != XCR_XFEATURE_ENABLED_MASK)
705                 return 1;
706         if (!(xcr0 & XFEATURE_MASK_FP))
707                 return 1;
708         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
709                 return 1;
710
711         /*
712          * Do not allow the guest to set bits that we do not support
713          * saving.  However, xcr0 bit 0 is always set, even if the
714          * emulated CPU does not support XSAVE (see fx_init).
715          */
716         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
717         if (xcr0 & ~valid_bits)
718                 return 1;
719
720         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
721             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
722                 return 1;
723
724         if (xcr0 & XFEATURE_MASK_AVX512) {
725                 if (!(xcr0 & XFEATURE_MASK_YMM))
726                         return 1;
727                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
728                         return 1;
729         }
730         vcpu->arch.xcr0 = xcr0;
731
732         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
733                 kvm_update_cpuid(vcpu);
734         return 0;
735 }
736
737 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
738 {
739         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
740             __kvm_set_xcr(vcpu, index, xcr)) {
741                 kvm_inject_gp(vcpu, 0);
742                 return 1;
743         }
744         return 0;
745 }
746 EXPORT_SYMBOL_GPL(kvm_set_xcr);
747
748 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
749 {
750         unsigned long old_cr4 = kvm_read_cr4(vcpu);
751         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
752                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
753
754         if (cr4 & CR4_RESERVED_BITS)
755                 return 1;
756
757         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
758                 return 1;
759
760         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
761                 return 1;
762
763         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
764                 return 1;
765
766         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
767                 return 1;
768
769         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
770                 return 1;
771
772         if (is_long_mode(vcpu)) {
773                 if (!(cr4 & X86_CR4_PAE))
774                         return 1;
775         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
776                    && ((cr4 ^ old_cr4) & pdptr_bits)
777                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
778                                    kvm_read_cr3(vcpu)))
779                 return 1;
780
781         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
782                 if (!guest_cpuid_has_pcid(vcpu))
783                         return 1;
784
785                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
786                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
787                         return 1;
788         }
789
790         if (kvm_x86_ops->set_cr4(vcpu, cr4))
791                 return 1;
792
793         if (((cr4 ^ old_cr4) & pdptr_bits) ||
794             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
795                 kvm_mmu_reset_context(vcpu);
796
797         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
798                 kvm_update_cpuid(vcpu);
799
800         return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr4);
803
804 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
805 {
806 #ifdef CONFIG_X86_64
807         cr3 &= ~CR3_PCID_INVD;
808 #endif
809
810         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
811                 kvm_mmu_sync_roots(vcpu);
812                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
813                 return 0;
814         }
815
816         if (is_long_mode(vcpu)) {
817                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
818                         return 1;
819         } else if (is_pae(vcpu) && is_paging(vcpu) &&
820                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
821                 return 1;
822
823         vcpu->arch.cr3 = cr3;
824         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
825         kvm_mmu_new_cr3(vcpu);
826         return 0;
827 }
828 EXPORT_SYMBOL_GPL(kvm_set_cr3);
829
830 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
831 {
832         if (cr8 & CR8_RESERVED_BITS)
833                 return 1;
834         if (lapic_in_kernel(vcpu))
835                 kvm_lapic_set_tpr(vcpu, cr8);
836         else
837                 vcpu->arch.cr8 = cr8;
838         return 0;
839 }
840 EXPORT_SYMBOL_GPL(kvm_set_cr8);
841
842 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
843 {
844         if (lapic_in_kernel(vcpu))
845                 return kvm_lapic_get_cr8(vcpu);
846         else
847                 return vcpu->arch.cr8;
848 }
849 EXPORT_SYMBOL_GPL(kvm_get_cr8);
850
851 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
852 {
853         int i;
854
855         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
856                 for (i = 0; i < KVM_NR_DB_REGS; i++)
857                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
858                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
859         }
860 }
861
862 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
863 {
864         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
866 }
867
868 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
869 {
870         unsigned long dr7;
871
872         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
873                 dr7 = vcpu->arch.guest_debug_dr7;
874         else
875                 dr7 = vcpu->arch.dr7;
876         kvm_x86_ops->set_dr7(vcpu, dr7);
877         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
878         if (dr7 & DR7_BP_EN_MASK)
879                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
880 }
881
882 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
883 {
884         u64 fixed = DR6_FIXED_1;
885
886         if (!guest_cpuid_has_rtm(vcpu))
887                 fixed |= DR6_RTM;
888         return fixed;
889 }
890
891 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893         switch (dr) {
894         case 0 ... 3:
895                 vcpu->arch.db[dr] = val;
896                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
897                         vcpu->arch.eff_db[dr] = val;
898                 break;
899         case 4:
900                 /* fall through */
901         case 6:
902                 if (val & 0xffffffff00000000ULL)
903                         return -1; /* #GP */
904                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
905                 kvm_update_dr6(vcpu);
906                 break;
907         case 5:
908                 /* fall through */
909         default: /* 7 */
910                 if (val & 0xffffffff00000000ULL)
911                         return -1; /* #GP */
912                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
913                 kvm_update_dr7(vcpu);
914                 break;
915         }
916
917         return 0;
918 }
919
920 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922         if (__kvm_set_dr(vcpu, dr, val)) {
923                 kvm_inject_gp(vcpu, 0);
924                 return 1;
925         }
926         return 0;
927 }
928 EXPORT_SYMBOL_GPL(kvm_set_dr);
929
930 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
931 {
932         switch (dr) {
933         case 0 ... 3:
934                 *val = vcpu->arch.db[dr];
935                 break;
936         case 4:
937                 /* fall through */
938         case 6:
939                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
940                         *val = vcpu->arch.dr6;
941                 else
942                         *val = kvm_x86_ops->get_dr6(vcpu);
943                 break;
944         case 5:
945                 /* fall through */
946         default: /* 7 */
947                 *val = vcpu->arch.dr7;
948                 break;
949         }
950         return 0;
951 }
952 EXPORT_SYMBOL_GPL(kvm_get_dr);
953
954 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
955 {
956         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
957         u64 data;
958         int err;
959
960         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
961         if (err)
962                 return err;
963         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
964         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
965         return err;
966 }
967 EXPORT_SYMBOL_GPL(kvm_rdpmc);
968
969 /*
970  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
971  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
972  *
973  * This list is modified at module load time to reflect the
974  * capabilities of the host cpu. This capabilities test skips MSRs that are
975  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
976  * may depend on host virtualization features rather than host cpu features.
977  */
978
979 static u32 msrs_to_save[] = {
980         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
981         MSR_STAR,
982 #ifdef CONFIG_X86_64
983         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
984 #endif
985         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
986         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
987 };
988
989 static unsigned num_msrs_to_save;
990
991 static u32 emulated_msrs[] = {
992         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
993         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
994         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
995         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
996         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
997         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
998         HV_X64_MSR_RESET,
999         HV_X64_MSR_VP_INDEX,
1000         HV_X64_MSR_VP_RUNTIME,
1001         HV_X64_MSR_SCONTROL,
1002         HV_X64_MSR_STIMER0_CONFIG,
1003         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1004         MSR_KVM_PV_EOI_EN,
1005
1006         MSR_IA32_TSC_ADJUST,
1007         MSR_IA32_TSCDEADLINE,
1008         MSR_IA32_MISC_ENABLE,
1009         MSR_IA32_MCG_STATUS,
1010         MSR_IA32_MCG_CTL,
1011         MSR_IA32_MCG_EXT_CTL,
1012         MSR_IA32_SMBASE,
1013         MSR_PLATFORM_INFO,
1014         MSR_MISC_FEATURES_ENABLES,
1015 };
1016
1017 static unsigned num_emulated_msrs;
1018
1019 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1020 {
1021         if (efer & efer_reserved_bits)
1022                 return false;
1023
1024         if (efer & EFER_FFXSR) {
1025                 struct kvm_cpuid_entry2 *feat;
1026
1027                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1028                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1029                         return false;
1030         }
1031
1032         if (efer & EFER_SVME) {
1033                 struct kvm_cpuid_entry2 *feat;
1034
1035                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1036                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1037                         return false;
1038         }
1039
1040         return true;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1043
1044 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1045 {
1046         u64 old_efer = vcpu->arch.efer;
1047
1048         if (!kvm_valid_efer(vcpu, efer))
1049                 return 1;
1050
1051         if (is_paging(vcpu)
1052             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1053                 return 1;
1054
1055         efer &= ~EFER_LMA;
1056         efer |= vcpu->arch.efer & EFER_LMA;
1057
1058         kvm_x86_ops->set_efer(vcpu, efer);
1059
1060         /* Update reserved bits */
1061         if ((efer ^ old_efer) & EFER_NX)
1062                 kvm_mmu_reset_context(vcpu);
1063
1064         return 0;
1065 }
1066
1067 void kvm_enable_efer_bits(u64 mask)
1068 {
1069        efer_reserved_bits &= ~mask;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1072
1073 /*
1074  * Writes msr value into into the appropriate "register".
1075  * Returns 0 on success, non-0 otherwise.
1076  * Assumes vcpu_load() was already called.
1077  */
1078 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1079 {
1080         switch (msr->index) {
1081         case MSR_FS_BASE:
1082         case MSR_GS_BASE:
1083         case MSR_KERNEL_GS_BASE:
1084         case MSR_CSTAR:
1085         case MSR_LSTAR:
1086                 if (is_noncanonical_address(msr->data))
1087                         return 1;
1088                 break;
1089         case MSR_IA32_SYSENTER_EIP:
1090         case MSR_IA32_SYSENTER_ESP:
1091                 /*
1092                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1093                  * non-canonical address is written on Intel but not on
1094                  * AMD (which ignores the top 32-bits, because it does
1095                  * not implement 64-bit SYSENTER).
1096                  *
1097                  * 64-bit code should hence be able to write a non-canonical
1098                  * value on AMD.  Making the address canonical ensures that
1099                  * vmentry does not fail on Intel after writing a non-canonical
1100                  * value, and that something deterministic happens if the guest
1101                  * invokes 64-bit SYSENTER.
1102                  */
1103                 msr->data = get_canonical(msr->data);
1104         }
1105         return kvm_x86_ops->set_msr(vcpu, msr);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_set_msr);
1108
1109 /*
1110  * Adapt set_msr() to msr_io()'s calling convention
1111  */
1112 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1113 {
1114         struct msr_data msr;
1115         int r;
1116
1117         msr.index = index;
1118         msr.host_initiated = true;
1119         r = kvm_get_msr(vcpu, &msr);
1120         if (r)
1121                 return r;
1122
1123         *data = msr.data;
1124         return 0;
1125 }
1126
1127 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1128 {
1129         struct msr_data msr;
1130
1131         msr.data = *data;
1132         msr.index = index;
1133         msr.host_initiated = true;
1134         return kvm_set_msr(vcpu, &msr);
1135 }
1136
1137 #ifdef CONFIG_X86_64
1138 struct pvclock_gtod_data {
1139         seqcount_t      seq;
1140
1141         struct { /* extract of a clocksource struct */
1142                 int vclock_mode;
1143                 u64     cycle_last;
1144                 u64     mask;
1145                 u32     mult;
1146                 u32     shift;
1147         } clock;
1148
1149         u64             boot_ns;
1150         u64             nsec_base;
1151         u64             wall_time_sec;
1152 };
1153
1154 static struct pvclock_gtod_data pvclock_gtod_data;
1155
1156 static void update_pvclock_gtod(struct timekeeper *tk)
1157 {
1158         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1159         u64 boot_ns;
1160
1161         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1162
1163         write_seqcount_begin(&vdata->seq);
1164
1165         /* copy pvclock gtod data */
1166         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1167         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1168         vdata->clock.mask               = tk->tkr_mono.mask;
1169         vdata->clock.mult               = tk->tkr_mono.mult;
1170         vdata->clock.shift              = tk->tkr_mono.shift;
1171
1172         vdata->boot_ns                  = boot_ns;
1173         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1174
1175         vdata->wall_time_sec            = tk->xtime_sec;
1176
1177         write_seqcount_end(&vdata->seq);
1178 }
1179 #endif
1180
1181 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1182 {
1183         /*
1184          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1185          * vcpu_enter_guest.  This function is only called from
1186          * the physical CPU that is running vcpu.
1187          */
1188         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1189 }
1190
1191 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1192 {
1193         int version;
1194         int r;
1195         struct pvclock_wall_clock wc;
1196         struct timespec64 boot;
1197
1198         if (!wall_clock)
1199                 return;
1200
1201         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1202         if (r)
1203                 return;
1204
1205         if (version & 1)
1206                 ++version;  /* first time write, random junk */
1207
1208         ++version;
1209
1210         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1211                 return;
1212
1213         /*
1214          * The guest calculates current wall clock time by adding
1215          * system time (updated by kvm_guest_time_update below) to the
1216          * wall clock specified here.  guest system time equals host
1217          * system time for us, thus we must fill in host boot time here.
1218          */
1219         getboottime64(&boot);
1220
1221         if (kvm->arch.kvmclock_offset) {
1222                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1223                 boot = timespec64_sub(boot, ts);
1224         }
1225         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1226         wc.nsec = boot.tv_nsec;
1227         wc.version = version;
1228
1229         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1230
1231         version++;
1232         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1233 }
1234
1235 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1236 {
1237         do_shl32_div32(dividend, divisor);
1238         return dividend;
1239 }
1240
1241 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1242                                s8 *pshift, u32 *pmultiplier)
1243 {
1244         uint64_t scaled64;
1245         int32_t  shift = 0;
1246         uint64_t tps64;
1247         uint32_t tps32;
1248
1249         tps64 = base_hz;
1250         scaled64 = scaled_hz;
1251         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1252                 tps64 >>= 1;
1253                 shift--;
1254         }
1255
1256         tps32 = (uint32_t)tps64;
1257         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1258                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1259                         scaled64 >>= 1;
1260                 else
1261                         tps32 <<= 1;
1262                 shift++;
1263         }
1264
1265         *pshift = shift;
1266         *pmultiplier = div_frac(scaled64, tps32);
1267
1268         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1269                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1270 }
1271
1272 #ifdef CONFIG_X86_64
1273 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1274 #endif
1275
1276 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1277 static unsigned long max_tsc_khz;
1278
1279 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1280 {
1281         u64 v = (u64)khz * (1000000 + ppm);
1282         do_div(v, 1000000);
1283         return v;
1284 }
1285
1286 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1287 {
1288         u64 ratio;
1289
1290         /* Guest TSC same frequency as host TSC? */
1291         if (!scale) {
1292                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1293                 return 0;
1294         }
1295
1296         /* TSC scaling supported? */
1297         if (!kvm_has_tsc_control) {
1298                 if (user_tsc_khz > tsc_khz) {
1299                         vcpu->arch.tsc_catchup = 1;
1300                         vcpu->arch.tsc_always_catchup = 1;
1301                         return 0;
1302                 } else {
1303                         WARN(1, "user requested TSC rate below hardware speed\n");
1304                         return -1;
1305                 }
1306         }
1307
1308         /* TSC scaling required  - calculate ratio */
1309         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1310                                 user_tsc_khz, tsc_khz);
1311
1312         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1313                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1314                           user_tsc_khz);
1315                 return -1;
1316         }
1317
1318         vcpu->arch.tsc_scaling_ratio = ratio;
1319         return 0;
1320 }
1321
1322 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1323 {
1324         u32 thresh_lo, thresh_hi;
1325         int use_scaling = 0;
1326
1327         /* tsc_khz can be zero if TSC calibration fails */
1328         if (user_tsc_khz == 0) {
1329                 /* set tsc_scaling_ratio to a safe value */
1330                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1331                 return -1;
1332         }
1333
1334         /* Compute a scale to convert nanoseconds in TSC cycles */
1335         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1336                            &vcpu->arch.virtual_tsc_shift,
1337                            &vcpu->arch.virtual_tsc_mult);
1338         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1339
1340         /*
1341          * Compute the variation in TSC rate which is acceptable
1342          * within the range of tolerance and decide if the
1343          * rate being applied is within that bounds of the hardware
1344          * rate.  If so, no scaling or compensation need be done.
1345          */
1346         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1347         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1348         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1349                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1350                 use_scaling = 1;
1351         }
1352         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1353 }
1354
1355 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1356 {
1357         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1358                                       vcpu->arch.virtual_tsc_mult,
1359                                       vcpu->arch.virtual_tsc_shift);
1360         tsc += vcpu->arch.this_tsc_write;
1361         return tsc;
1362 }
1363
1364 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1365 {
1366 #ifdef CONFIG_X86_64
1367         bool vcpus_matched;
1368         struct kvm_arch *ka = &vcpu->kvm->arch;
1369         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1370
1371         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1372                          atomic_read(&vcpu->kvm->online_vcpus));
1373
1374         /*
1375          * Once the masterclock is enabled, always perform request in
1376          * order to update it.
1377          *
1378          * In order to enable masterclock, the host clocksource must be TSC
1379          * and the vcpus need to have matched TSCs.  When that happens,
1380          * perform request to enable masterclock.
1381          */
1382         if (ka->use_master_clock ||
1383             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1384                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1385
1386         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1387                             atomic_read(&vcpu->kvm->online_vcpus),
1388                             ka->use_master_clock, gtod->clock.vclock_mode);
1389 #endif
1390 }
1391
1392 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1393 {
1394         u64 curr_offset = vcpu->arch.tsc_offset;
1395         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1396 }
1397
1398 /*
1399  * Multiply tsc by a fixed point number represented by ratio.
1400  *
1401  * The most significant 64-N bits (mult) of ratio represent the
1402  * integral part of the fixed point number; the remaining N bits
1403  * (frac) represent the fractional part, ie. ratio represents a fixed
1404  * point number (mult + frac * 2^(-N)).
1405  *
1406  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1407  */
1408 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1409 {
1410         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1411 }
1412
1413 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1414 {
1415         u64 _tsc = tsc;
1416         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1417
1418         if (ratio != kvm_default_tsc_scaling_ratio)
1419                 _tsc = __scale_tsc(ratio, tsc);
1420
1421         return _tsc;
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1424
1425 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1426 {
1427         u64 tsc;
1428
1429         tsc = kvm_scale_tsc(vcpu, rdtsc());
1430
1431         return target_tsc - tsc;
1432 }
1433
1434 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1435 {
1436         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1439
1440 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1441 {
1442         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1443         vcpu->arch.tsc_offset = offset;
1444 }
1445
1446 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1447 {
1448         struct kvm *kvm = vcpu->kvm;
1449         u64 offset, ns, elapsed;
1450         unsigned long flags;
1451         bool matched;
1452         bool already_matched;
1453         u64 data = msr->data;
1454         bool synchronizing = false;
1455
1456         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1457         offset = kvm_compute_tsc_offset(vcpu, data);
1458         ns = ktime_get_boot_ns();
1459         elapsed = ns - kvm->arch.last_tsc_nsec;
1460
1461         if (vcpu->arch.virtual_tsc_khz) {
1462                 if (data == 0 && msr->host_initiated) {
1463                         /*
1464                          * detection of vcpu initialization -- need to sync
1465                          * with other vCPUs. This particularly helps to keep
1466                          * kvm_clock stable after CPU hotplug
1467                          */
1468                         synchronizing = true;
1469                 } else {
1470                         u64 tsc_exp = kvm->arch.last_tsc_write +
1471                                                 nsec_to_cycles(vcpu, elapsed);
1472                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1473                         /*
1474                          * Special case: TSC write with a small delta (1 second)
1475                          * of virtual cycle time against real time is
1476                          * interpreted as an attempt to synchronize the CPU.
1477                          */
1478                         synchronizing = data < tsc_exp + tsc_hz &&
1479                                         data + tsc_hz > tsc_exp;
1480                 }
1481         }
1482
1483         /*
1484          * For a reliable TSC, we can match TSC offsets, and for an unstable
1485          * TSC, we add elapsed time in this computation.  We could let the
1486          * compensation code attempt to catch up if we fall behind, but
1487          * it's better to try to match offsets from the beginning.
1488          */
1489         if (synchronizing &&
1490             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1491                 if (!check_tsc_unstable()) {
1492                         offset = kvm->arch.cur_tsc_offset;
1493                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1494                 } else {
1495                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1496                         data += delta;
1497                         offset = kvm_compute_tsc_offset(vcpu, data);
1498                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1499                 }
1500                 matched = true;
1501                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1502         } else {
1503                 /*
1504                  * We split periods of matched TSC writes into generations.
1505                  * For each generation, we track the original measured
1506                  * nanosecond time, offset, and write, so if TSCs are in
1507                  * sync, we can match exact offset, and if not, we can match
1508                  * exact software computation in compute_guest_tsc()
1509                  *
1510                  * These values are tracked in kvm->arch.cur_xxx variables.
1511                  */
1512                 kvm->arch.cur_tsc_generation++;
1513                 kvm->arch.cur_tsc_nsec = ns;
1514                 kvm->arch.cur_tsc_write = data;
1515                 kvm->arch.cur_tsc_offset = offset;
1516                 matched = false;
1517                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1518                          kvm->arch.cur_tsc_generation, data);
1519         }
1520
1521         /*
1522          * We also track th most recent recorded KHZ, write and time to
1523          * allow the matching interval to be extended at each write.
1524          */
1525         kvm->arch.last_tsc_nsec = ns;
1526         kvm->arch.last_tsc_write = data;
1527         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1528
1529         vcpu->arch.last_guest_tsc = data;
1530
1531         /* Keep track of which generation this VCPU has synchronized to */
1532         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1533         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1534         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1535
1536         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1537                 update_ia32_tsc_adjust_msr(vcpu, offset);
1538         kvm_vcpu_write_tsc_offset(vcpu, offset);
1539         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1540
1541         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1542         if (!matched) {
1543                 kvm->arch.nr_vcpus_matched_tsc = 0;
1544         } else if (!already_matched) {
1545                 kvm->arch.nr_vcpus_matched_tsc++;
1546         }
1547
1548         kvm_track_tsc_matching(vcpu);
1549         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1550 }
1551
1552 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1553
1554 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1555                                            s64 adjustment)
1556 {
1557         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1558 }
1559
1560 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1561 {
1562         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1563                 WARN_ON(adjustment < 0);
1564         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1565         adjust_tsc_offset_guest(vcpu, adjustment);
1566 }
1567
1568 #ifdef CONFIG_X86_64
1569
1570 static u64 read_tsc(void)
1571 {
1572         u64 ret = (u64)rdtsc_ordered();
1573         u64 last = pvclock_gtod_data.clock.cycle_last;
1574
1575         if (likely(ret >= last))
1576                 return ret;
1577
1578         /*
1579          * GCC likes to generate cmov here, but this branch is extremely
1580          * predictable (it's just a function of time and the likely is
1581          * very likely) and there's a data dependence, so force GCC
1582          * to generate a branch instead.  I don't barrier() because
1583          * we don't actually need a barrier, and if this function
1584          * ever gets inlined it will generate worse code.
1585          */
1586         asm volatile ("");
1587         return last;
1588 }
1589
1590 static inline u64 vgettsc(u64 *cycle_now)
1591 {
1592         long v;
1593         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1594
1595         *cycle_now = read_tsc();
1596
1597         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1598         return v * gtod->clock.mult;
1599 }
1600
1601 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1602 {
1603         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1604         unsigned long seq;
1605         int mode;
1606         u64 ns;
1607
1608         do {
1609                 seq = read_seqcount_begin(&gtod->seq);
1610                 mode = gtod->clock.vclock_mode;
1611                 ns = gtod->nsec_base;
1612                 ns += vgettsc(cycle_now);
1613                 ns >>= gtod->clock.shift;
1614                 ns += gtod->boot_ns;
1615         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1616         *t = ns;
1617
1618         return mode;
1619 }
1620
1621 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1622 {
1623         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1624         unsigned long seq;
1625         int mode;
1626         u64 ns;
1627
1628         do {
1629                 seq = read_seqcount_begin(&gtod->seq);
1630                 mode = gtod->clock.vclock_mode;
1631                 ts->tv_sec = gtod->wall_time_sec;
1632                 ns = gtod->nsec_base;
1633                 ns += vgettsc(cycle_now);
1634                 ns >>= gtod->clock.shift;
1635         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1636
1637         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1638         ts->tv_nsec = ns;
1639
1640         return mode;
1641 }
1642
1643 /* returns true if host is using tsc clocksource */
1644 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1645 {
1646         /* checked again under seqlock below */
1647         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1648                 return false;
1649
1650         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1651 }
1652
1653 /* returns true if host is using tsc clocksource */
1654 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1655                                            u64 *cycle_now)
1656 {
1657         /* checked again under seqlock below */
1658         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1659                 return false;
1660
1661         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1662 }
1663 #endif
1664
1665 /*
1666  *
1667  * Assuming a stable TSC across physical CPUS, and a stable TSC
1668  * across virtual CPUs, the following condition is possible.
1669  * Each numbered line represents an event visible to both
1670  * CPUs at the next numbered event.
1671  *
1672  * "timespecX" represents host monotonic time. "tscX" represents
1673  * RDTSC value.
1674  *
1675  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1676  *
1677  * 1.  read timespec0,tsc0
1678  * 2.                                   | timespec1 = timespec0 + N
1679  *                                      | tsc1 = tsc0 + M
1680  * 3. transition to guest               | transition to guest
1681  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1682  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1683  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1684  *
1685  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1686  *
1687  *      - ret0 < ret1
1688  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1689  *              ...
1690  *      - 0 < N - M => M < N
1691  *
1692  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1693  * always the case (the difference between two distinct xtime instances
1694  * might be smaller then the difference between corresponding TSC reads,
1695  * when updating guest vcpus pvclock areas).
1696  *
1697  * To avoid that problem, do not allow visibility of distinct
1698  * system_timestamp/tsc_timestamp values simultaneously: use a master
1699  * copy of host monotonic time values. Update that master copy
1700  * in lockstep.
1701  *
1702  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1703  *
1704  */
1705
1706 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1707 {
1708 #ifdef CONFIG_X86_64
1709         struct kvm_arch *ka = &kvm->arch;
1710         int vclock_mode;
1711         bool host_tsc_clocksource, vcpus_matched;
1712
1713         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1714                         atomic_read(&kvm->online_vcpus));
1715
1716         /*
1717          * If the host uses TSC clock, then passthrough TSC as stable
1718          * to the guest.
1719          */
1720         host_tsc_clocksource = kvm_get_time_and_clockread(
1721                                         &ka->master_kernel_ns,
1722                                         &ka->master_cycle_now);
1723
1724         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1725                                 && !ka->backwards_tsc_observed
1726                                 && !ka->boot_vcpu_runs_old_kvmclock;
1727
1728         if (ka->use_master_clock)
1729                 atomic_set(&kvm_guest_has_master_clock, 1);
1730
1731         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1732         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1733                                         vcpus_matched);
1734 #endif
1735 }
1736
1737 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1738 {
1739         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1740 }
1741
1742 static void kvm_gen_update_masterclock(struct kvm *kvm)
1743 {
1744 #ifdef CONFIG_X86_64
1745         int i;
1746         struct kvm_vcpu *vcpu;
1747         struct kvm_arch *ka = &kvm->arch;
1748
1749         spin_lock(&ka->pvclock_gtod_sync_lock);
1750         kvm_make_mclock_inprogress_request(kvm);
1751         /* no guest entries from this point */
1752         pvclock_update_vm_gtod_copy(kvm);
1753
1754         kvm_for_each_vcpu(i, vcpu, kvm)
1755                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1756
1757         /* guest entries allowed */
1758         kvm_for_each_vcpu(i, vcpu, kvm)
1759                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1760
1761         spin_unlock(&ka->pvclock_gtod_sync_lock);
1762 #endif
1763 }
1764
1765 u64 get_kvmclock_ns(struct kvm *kvm)
1766 {
1767         struct kvm_arch *ka = &kvm->arch;
1768         struct pvclock_vcpu_time_info hv_clock;
1769         u64 ret;
1770
1771         spin_lock(&ka->pvclock_gtod_sync_lock);
1772         if (!ka->use_master_clock) {
1773                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1774                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1775         }
1776
1777         hv_clock.tsc_timestamp = ka->master_cycle_now;
1778         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1779         spin_unlock(&ka->pvclock_gtod_sync_lock);
1780
1781         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1782         get_cpu();
1783
1784         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1785                            &hv_clock.tsc_shift,
1786                            &hv_clock.tsc_to_system_mul);
1787         ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1788
1789         put_cpu();
1790
1791         return ret;
1792 }
1793
1794 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1795 {
1796         struct kvm_vcpu_arch *vcpu = &v->arch;
1797         struct pvclock_vcpu_time_info guest_hv_clock;
1798
1799         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1800                 &guest_hv_clock, sizeof(guest_hv_clock))))
1801                 return;
1802
1803         /* This VCPU is paused, but it's legal for a guest to read another
1804          * VCPU's kvmclock, so we really have to follow the specification where
1805          * it says that version is odd if data is being modified, and even after
1806          * it is consistent.
1807          *
1808          * Version field updates must be kept separate.  This is because
1809          * kvm_write_guest_cached might use a "rep movs" instruction, and
1810          * writes within a string instruction are weakly ordered.  So there
1811          * are three writes overall.
1812          *
1813          * As a small optimization, only write the version field in the first
1814          * and third write.  The vcpu->pv_time cache is still valid, because the
1815          * version field is the first in the struct.
1816          */
1817         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1818
1819         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1820         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1821                                 &vcpu->hv_clock,
1822                                 sizeof(vcpu->hv_clock.version));
1823
1824         smp_wmb();
1825
1826         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1827         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1828
1829         if (vcpu->pvclock_set_guest_stopped_request) {
1830                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1831                 vcpu->pvclock_set_guest_stopped_request = false;
1832         }
1833
1834         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1835
1836         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1837                                 &vcpu->hv_clock,
1838                                 sizeof(vcpu->hv_clock));
1839
1840         smp_wmb();
1841
1842         vcpu->hv_clock.version++;
1843         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844                                 &vcpu->hv_clock,
1845                                 sizeof(vcpu->hv_clock.version));
1846 }
1847
1848 static int kvm_guest_time_update(struct kvm_vcpu *v)
1849 {
1850         unsigned long flags, tgt_tsc_khz;
1851         struct kvm_vcpu_arch *vcpu = &v->arch;
1852         struct kvm_arch *ka = &v->kvm->arch;
1853         s64 kernel_ns;
1854         u64 tsc_timestamp, host_tsc;
1855         u8 pvclock_flags;
1856         bool use_master_clock;
1857
1858         kernel_ns = 0;
1859         host_tsc = 0;
1860
1861         /*
1862          * If the host uses TSC clock, then passthrough TSC as stable
1863          * to the guest.
1864          */
1865         spin_lock(&ka->pvclock_gtod_sync_lock);
1866         use_master_clock = ka->use_master_clock;
1867         if (use_master_clock) {
1868                 host_tsc = ka->master_cycle_now;
1869                 kernel_ns = ka->master_kernel_ns;
1870         }
1871         spin_unlock(&ka->pvclock_gtod_sync_lock);
1872
1873         /* Keep irq disabled to prevent changes to the clock */
1874         local_irq_save(flags);
1875         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1876         if (unlikely(tgt_tsc_khz == 0)) {
1877                 local_irq_restore(flags);
1878                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1879                 return 1;
1880         }
1881         if (!use_master_clock) {
1882                 host_tsc = rdtsc();
1883                 kernel_ns = ktime_get_boot_ns();
1884         }
1885
1886         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1887
1888         /*
1889          * We may have to catch up the TSC to match elapsed wall clock
1890          * time for two reasons, even if kvmclock is used.
1891          *   1) CPU could have been running below the maximum TSC rate
1892          *   2) Broken TSC compensation resets the base at each VCPU
1893          *      entry to avoid unknown leaps of TSC even when running
1894          *      again on the same CPU.  This may cause apparent elapsed
1895          *      time to disappear, and the guest to stand still or run
1896          *      very slowly.
1897          */
1898         if (vcpu->tsc_catchup) {
1899                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1900                 if (tsc > tsc_timestamp) {
1901                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1902                         tsc_timestamp = tsc;
1903                 }
1904         }
1905
1906         local_irq_restore(flags);
1907
1908         /* With all the info we got, fill in the values */
1909
1910         if (kvm_has_tsc_control)
1911                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1912
1913         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1914                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1915                                    &vcpu->hv_clock.tsc_shift,
1916                                    &vcpu->hv_clock.tsc_to_system_mul);
1917                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1918         }
1919
1920         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1921         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1922         vcpu->last_guest_tsc = tsc_timestamp;
1923
1924         /* If the host uses TSC clocksource, then it is stable */
1925         pvclock_flags = 0;
1926         if (use_master_clock)
1927                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1928
1929         vcpu->hv_clock.flags = pvclock_flags;
1930
1931         if (vcpu->pv_time_enabled)
1932                 kvm_setup_pvclock_page(v);
1933         if (v == kvm_get_vcpu(v->kvm, 0))
1934                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1935         return 0;
1936 }
1937
1938 /*
1939  * kvmclock updates which are isolated to a given vcpu, such as
1940  * vcpu->cpu migration, should not allow system_timestamp from
1941  * the rest of the vcpus to remain static. Otherwise ntp frequency
1942  * correction applies to one vcpu's system_timestamp but not
1943  * the others.
1944  *
1945  * So in those cases, request a kvmclock update for all vcpus.
1946  * We need to rate-limit these requests though, as they can
1947  * considerably slow guests that have a large number of vcpus.
1948  * The time for a remote vcpu to update its kvmclock is bound
1949  * by the delay we use to rate-limit the updates.
1950  */
1951
1952 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1953
1954 static void kvmclock_update_fn(struct work_struct *work)
1955 {
1956         int i;
1957         struct delayed_work *dwork = to_delayed_work(work);
1958         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1959                                            kvmclock_update_work);
1960         struct kvm *kvm = container_of(ka, struct kvm, arch);
1961         struct kvm_vcpu *vcpu;
1962
1963         kvm_for_each_vcpu(i, vcpu, kvm) {
1964                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1965                 kvm_vcpu_kick(vcpu);
1966         }
1967 }
1968
1969 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1970 {
1971         struct kvm *kvm = v->kvm;
1972
1973         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1974         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1975                                         KVMCLOCK_UPDATE_DELAY);
1976 }
1977
1978 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1979
1980 static void kvmclock_sync_fn(struct work_struct *work)
1981 {
1982         struct delayed_work *dwork = to_delayed_work(work);
1983         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1984                                            kvmclock_sync_work);
1985         struct kvm *kvm = container_of(ka, struct kvm, arch);
1986
1987         if (!kvmclock_periodic_sync)
1988                 return;
1989
1990         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1991         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1992                                         KVMCLOCK_SYNC_PERIOD);
1993 }
1994
1995 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1996 {
1997         u64 mcg_cap = vcpu->arch.mcg_cap;
1998         unsigned bank_num = mcg_cap & 0xff;
1999
2000         switch (msr) {
2001         case MSR_IA32_MCG_STATUS:
2002                 vcpu->arch.mcg_status = data;
2003                 break;
2004         case MSR_IA32_MCG_CTL:
2005                 if (!(mcg_cap & MCG_CTL_P))
2006                         return 1;
2007                 if (data != 0 && data != ~(u64)0)
2008                         return -1;
2009                 vcpu->arch.mcg_ctl = data;
2010                 break;
2011         default:
2012                 if (msr >= MSR_IA32_MC0_CTL &&
2013                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2014                         u32 offset = msr - MSR_IA32_MC0_CTL;
2015                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2016                          * some Linux kernels though clear bit 10 in bank 4 to
2017                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2018                          * this to avoid an uncatched #GP in the guest
2019                          */
2020                         if ((offset & 0x3) == 0 &&
2021                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2022                                 return -1;
2023                         vcpu->arch.mce_banks[offset] = data;
2024                         break;
2025                 }
2026                 return 1;
2027         }
2028         return 0;
2029 }
2030
2031 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2032 {
2033         struct kvm *kvm = vcpu->kvm;
2034         int lm = is_long_mode(vcpu);
2035         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2036                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2037         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2038                 : kvm->arch.xen_hvm_config.blob_size_32;
2039         u32 page_num = data & ~PAGE_MASK;
2040         u64 page_addr = data & PAGE_MASK;
2041         u8 *page;
2042         int r;
2043
2044         r = -E2BIG;
2045         if (page_num >= blob_size)
2046                 goto out;
2047         r = -ENOMEM;
2048         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2049         if (IS_ERR(page)) {
2050                 r = PTR_ERR(page);
2051                 goto out;
2052         }
2053         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2054                 goto out_free;
2055         r = 0;
2056 out_free:
2057         kfree(page);
2058 out:
2059         return r;
2060 }
2061
2062 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2063 {
2064         gpa_t gpa = data & ~0x3f;
2065
2066         /* Bits 3:5 are reserved, Should be zero */
2067         if (data & 0x38)
2068                 return 1;
2069
2070         vcpu->arch.apf.msr_val = data;
2071
2072         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2073                 kvm_clear_async_pf_completion_queue(vcpu);
2074                 kvm_async_pf_hash_reset(vcpu);
2075                 return 0;
2076         }
2077
2078         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2079                                         sizeof(u32)))
2080                 return 1;
2081
2082         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2083         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2084         kvm_async_pf_wakeup_all(vcpu);
2085         return 0;
2086 }
2087
2088 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2089 {
2090         vcpu->arch.pv_time_enabled = false;
2091 }
2092
2093 static void record_steal_time(struct kvm_vcpu *vcpu)
2094 {
2095         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2096                 return;
2097
2098         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2099                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2100                 return;
2101
2102         vcpu->arch.st.steal.preempted = 0;
2103
2104         if (vcpu->arch.st.steal.version & 1)
2105                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2106
2107         vcpu->arch.st.steal.version += 1;
2108
2109         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2110                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2111
2112         smp_wmb();
2113
2114         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2115                 vcpu->arch.st.last_steal;
2116         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2117
2118         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2119                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2120
2121         smp_wmb();
2122
2123         vcpu->arch.st.steal.version += 1;
2124
2125         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2126                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2127 }
2128
2129 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2130 {
2131         bool pr = false;
2132         u32 msr = msr_info->index;
2133         u64 data = msr_info->data;
2134
2135         switch (msr) {
2136         case MSR_AMD64_NB_CFG:
2137         case MSR_IA32_UCODE_REV:
2138         case MSR_IA32_UCODE_WRITE:
2139         case MSR_VM_HSAVE_PA:
2140         case MSR_AMD64_PATCH_LOADER:
2141         case MSR_AMD64_BU_CFG2:
2142         case MSR_AMD64_DC_CFG:
2143                 break;
2144
2145         case MSR_EFER:
2146                 return set_efer(vcpu, data);
2147         case MSR_K7_HWCR:
2148                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2149                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2150                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2151                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2152                 if (data != 0) {
2153                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2154                                     data);
2155                         return 1;
2156                 }
2157                 break;
2158         case MSR_FAM10H_MMIO_CONF_BASE:
2159                 if (data != 0) {
2160                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2161                                     "0x%llx\n", data);
2162                         return 1;
2163                 }
2164                 break;
2165         case MSR_IA32_DEBUGCTLMSR:
2166                 if (!data) {
2167                         /* We support the non-activated case already */
2168                         break;
2169                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2170                         /* Values other than LBR and BTF are vendor-specific,
2171                            thus reserved and should throw a #GP */
2172                         return 1;
2173                 }
2174                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2175                             __func__, data);
2176                 break;
2177         case 0x200 ... 0x2ff:
2178                 return kvm_mtrr_set_msr(vcpu, msr, data);
2179         case MSR_IA32_APICBASE:
2180                 return kvm_set_apic_base(vcpu, msr_info);
2181         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2182                 return kvm_x2apic_msr_write(vcpu, msr, data);
2183         case MSR_IA32_TSCDEADLINE:
2184                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2185                 break;
2186         case MSR_IA32_TSC_ADJUST:
2187                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2188                         if (!msr_info->host_initiated) {
2189                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2190                                 adjust_tsc_offset_guest(vcpu, adj);
2191                         }
2192                         vcpu->arch.ia32_tsc_adjust_msr = data;
2193                 }
2194                 break;
2195         case MSR_IA32_MISC_ENABLE:
2196                 vcpu->arch.ia32_misc_enable_msr = data;
2197                 break;
2198         case MSR_IA32_SMBASE:
2199                 if (!msr_info->host_initiated)
2200                         return 1;
2201                 vcpu->arch.smbase = data;
2202                 break;
2203         case MSR_KVM_WALL_CLOCK_NEW:
2204         case MSR_KVM_WALL_CLOCK:
2205                 vcpu->kvm->arch.wall_clock = data;
2206                 kvm_write_wall_clock(vcpu->kvm, data);
2207                 break;
2208         case MSR_KVM_SYSTEM_TIME_NEW:
2209         case MSR_KVM_SYSTEM_TIME: {
2210                 struct kvm_arch *ka = &vcpu->kvm->arch;
2211
2212                 kvmclock_reset(vcpu);
2213
2214                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2215                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2216
2217                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2218                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2219
2220                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2221                 }
2222
2223                 vcpu->arch.time = data;
2224                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2225
2226                 /* we verify if the enable bit is set... */
2227                 if (!(data & 1))
2228                         break;
2229
2230                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2231                      &vcpu->arch.pv_time, data & ~1ULL,
2232                      sizeof(struct pvclock_vcpu_time_info)))
2233                         vcpu->arch.pv_time_enabled = false;
2234                 else
2235                         vcpu->arch.pv_time_enabled = true;
2236
2237                 break;
2238         }
2239         case MSR_KVM_ASYNC_PF_EN:
2240                 if (kvm_pv_enable_async_pf(vcpu, data))
2241                         return 1;
2242                 break;
2243         case MSR_KVM_STEAL_TIME:
2244
2245                 if (unlikely(!sched_info_on()))
2246                         return 1;
2247
2248                 if (data & KVM_STEAL_RESERVED_MASK)
2249                         return 1;
2250
2251                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2252                                                 data & KVM_STEAL_VALID_BITS,
2253                                                 sizeof(struct kvm_steal_time)))
2254                         return 1;
2255
2256                 vcpu->arch.st.msr_val = data;
2257
2258                 if (!(data & KVM_MSR_ENABLED))
2259                         break;
2260
2261                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2262
2263                 break;
2264         case MSR_KVM_PV_EOI_EN:
2265                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2266                         return 1;
2267                 break;
2268
2269         case MSR_IA32_MCG_CTL:
2270         case MSR_IA32_MCG_STATUS:
2271         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2272                 return set_msr_mce(vcpu, msr, data);
2273
2274         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2275         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2276                 pr = true; /* fall through */
2277         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2278         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2279                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2280                         return kvm_pmu_set_msr(vcpu, msr_info);
2281
2282                 if (pr || data != 0)
2283                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2284                                     "0x%x data 0x%llx\n", msr, data);
2285                 break;
2286         case MSR_K7_CLK_CTL:
2287                 /*
2288                  * Ignore all writes to this no longer documented MSR.
2289                  * Writes are only relevant for old K7 processors,
2290                  * all pre-dating SVM, but a recommended workaround from
2291                  * AMD for these chips. It is possible to specify the
2292                  * affected processor models on the command line, hence
2293                  * the need to ignore the workaround.
2294                  */
2295                 break;
2296         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2297         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2298         case HV_X64_MSR_CRASH_CTL:
2299         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2300                 return kvm_hv_set_msr_common(vcpu, msr, data,
2301                                              msr_info->host_initiated);
2302         case MSR_IA32_BBL_CR_CTL3:
2303                 /* Drop writes to this legacy MSR -- see rdmsr
2304                  * counterpart for further detail.
2305                  */
2306                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2307                 break;
2308         case MSR_AMD64_OSVW_ID_LENGTH:
2309                 if (!guest_cpuid_has_osvw(vcpu))
2310                         return 1;
2311                 vcpu->arch.osvw.length = data;
2312                 break;
2313         case MSR_AMD64_OSVW_STATUS:
2314                 if (!guest_cpuid_has_osvw(vcpu))
2315                         return 1;
2316                 vcpu->arch.osvw.status = data;
2317                 break;
2318         case MSR_PLATFORM_INFO:
2319                 if (!msr_info->host_initiated ||
2320                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2321                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2322                      cpuid_fault_enabled(vcpu)))
2323                         return 1;
2324                 vcpu->arch.msr_platform_info = data;
2325                 break;
2326         case MSR_MISC_FEATURES_ENABLES:
2327                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2328                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2329                      !supports_cpuid_fault(vcpu)))
2330                         return 1;
2331                 vcpu->arch.msr_misc_features_enables = data;
2332                 break;
2333         default:
2334                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2335                         return xen_hvm_config(vcpu, data);
2336                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2337                         return kvm_pmu_set_msr(vcpu, msr_info);
2338                 if (!ignore_msrs) {
2339                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2340                                     msr, data);
2341                         return 1;
2342                 } else {
2343                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2344                                     msr, data);
2345                         break;
2346                 }
2347         }
2348         return 0;
2349 }
2350 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2351
2352
2353 /*
2354  * Reads an msr value (of 'msr_index') into 'pdata'.
2355  * Returns 0 on success, non-0 otherwise.
2356  * Assumes vcpu_load() was already called.
2357  */
2358 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2359 {
2360         return kvm_x86_ops->get_msr(vcpu, msr);
2361 }
2362 EXPORT_SYMBOL_GPL(kvm_get_msr);
2363
2364 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2365 {
2366         u64 data;
2367         u64 mcg_cap = vcpu->arch.mcg_cap;
2368         unsigned bank_num = mcg_cap & 0xff;
2369
2370         switch (msr) {
2371         case MSR_IA32_P5_MC_ADDR:
2372         case MSR_IA32_P5_MC_TYPE:
2373                 data = 0;
2374                 break;
2375         case MSR_IA32_MCG_CAP:
2376                 data = vcpu->arch.mcg_cap;
2377                 break;
2378         case MSR_IA32_MCG_CTL:
2379                 if (!(mcg_cap & MCG_CTL_P))
2380                         return 1;
2381                 data = vcpu->arch.mcg_ctl;
2382                 break;
2383         case MSR_IA32_MCG_STATUS:
2384                 data = vcpu->arch.mcg_status;
2385                 break;
2386         default:
2387                 if (msr >= MSR_IA32_MC0_CTL &&
2388                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2389                         u32 offset = msr - MSR_IA32_MC0_CTL;
2390                         data = vcpu->arch.mce_banks[offset];
2391                         break;
2392                 }
2393                 return 1;
2394         }
2395         *pdata = data;
2396         return 0;
2397 }
2398
2399 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2400 {
2401         switch (msr_info->index) {
2402         case MSR_IA32_PLATFORM_ID:
2403         case MSR_IA32_EBL_CR_POWERON:
2404         case MSR_IA32_DEBUGCTLMSR:
2405         case MSR_IA32_LASTBRANCHFROMIP:
2406         case MSR_IA32_LASTBRANCHTOIP:
2407         case MSR_IA32_LASTINTFROMIP:
2408         case MSR_IA32_LASTINTTOIP:
2409         case MSR_K8_SYSCFG:
2410         case MSR_K8_TSEG_ADDR:
2411         case MSR_K8_TSEG_MASK:
2412         case MSR_K7_HWCR:
2413         case MSR_VM_HSAVE_PA:
2414         case MSR_K8_INT_PENDING_MSG:
2415         case MSR_AMD64_NB_CFG:
2416         case MSR_FAM10H_MMIO_CONF_BASE:
2417         case MSR_AMD64_BU_CFG2:
2418         case MSR_IA32_PERF_CTL:
2419         case MSR_AMD64_DC_CFG:
2420                 msr_info->data = 0;
2421                 break;
2422         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2423         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2424         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2425         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2426                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2427                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2428                 msr_info->data = 0;
2429                 break;
2430         case MSR_IA32_UCODE_REV:
2431                 msr_info->data = 0x100000000ULL;
2432                 break;
2433         case MSR_MTRRcap:
2434         case 0x200 ... 0x2ff:
2435                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2436         case 0xcd: /* fsb frequency */
2437                 msr_info->data = 3;
2438                 break;
2439                 /*
2440                  * MSR_EBC_FREQUENCY_ID
2441                  * Conservative value valid for even the basic CPU models.
2442                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2443                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2444                  * and 266MHz for model 3, or 4. Set Core Clock
2445                  * Frequency to System Bus Frequency Ratio to 1 (bits
2446                  * 31:24) even though these are only valid for CPU
2447                  * models > 2, however guests may end up dividing or
2448                  * multiplying by zero otherwise.
2449                  */
2450         case MSR_EBC_FREQUENCY_ID:
2451                 msr_info->data = 1 << 24;
2452                 break;
2453         case MSR_IA32_APICBASE:
2454                 msr_info->data = kvm_get_apic_base(vcpu);
2455                 break;
2456         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2457                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2458                 break;
2459         case MSR_IA32_TSCDEADLINE:
2460                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2461                 break;
2462         case MSR_IA32_TSC_ADJUST:
2463                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2464                 break;
2465         case MSR_IA32_MISC_ENABLE:
2466                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2467                 break;
2468         case MSR_IA32_SMBASE:
2469                 if (!msr_info->host_initiated)
2470                         return 1;
2471                 msr_info->data = vcpu->arch.smbase;
2472                 break;
2473         case MSR_IA32_PERF_STATUS:
2474                 /* TSC increment by tick */
2475                 msr_info->data = 1000ULL;
2476                 /* CPU multiplier */
2477                 msr_info->data |= (((uint64_t)4ULL) << 40);
2478                 break;
2479         case MSR_EFER:
2480                 msr_info->data = vcpu->arch.efer;
2481                 break;
2482         case MSR_KVM_WALL_CLOCK:
2483         case MSR_KVM_WALL_CLOCK_NEW:
2484                 msr_info->data = vcpu->kvm->arch.wall_clock;
2485                 break;
2486         case MSR_KVM_SYSTEM_TIME:
2487         case MSR_KVM_SYSTEM_TIME_NEW:
2488                 msr_info->data = vcpu->arch.time;
2489                 break;
2490         case MSR_KVM_ASYNC_PF_EN:
2491                 msr_info->data = vcpu->arch.apf.msr_val;
2492                 break;
2493         case MSR_KVM_STEAL_TIME:
2494                 msr_info->data = vcpu->arch.st.msr_val;
2495                 break;
2496         case MSR_KVM_PV_EOI_EN:
2497                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2498                 break;
2499         case MSR_IA32_P5_MC_ADDR:
2500         case MSR_IA32_P5_MC_TYPE:
2501         case MSR_IA32_MCG_CAP:
2502         case MSR_IA32_MCG_CTL:
2503         case MSR_IA32_MCG_STATUS:
2504         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2505                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2506         case MSR_K7_CLK_CTL:
2507                 /*
2508                  * Provide expected ramp-up count for K7. All other
2509                  * are set to zero, indicating minimum divisors for
2510                  * every field.
2511                  *
2512                  * This prevents guest kernels on AMD host with CPU
2513                  * type 6, model 8 and higher from exploding due to
2514                  * the rdmsr failing.
2515                  */
2516                 msr_info->data = 0x20000000;
2517                 break;
2518         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2519         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2520         case HV_X64_MSR_CRASH_CTL:
2521         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2522                 return kvm_hv_get_msr_common(vcpu,
2523                                              msr_info->index, &msr_info->data);
2524                 break;
2525         case MSR_IA32_BBL_CR_CTL3:
2526                 /* This legacy MSR exists but isn't fully documented in current
2527                  * silicon.  It is however accessed by winxp in very narrow
2528                  * scenarios where it sets bit #19, itself documented as
2529                  * a "reserved" bit.  Best effort attempt to source coherent
2530                  * read data here should the balance of the register be
2531                  * interpreted by the guest:
2532                  *
2533                  * L2 cache control register 3: 64GB range, 256KB size,
2534                  * enabled, latency 0x1, configured
2535                  */
2536                 msr_info->data = 0xbe702111;
2537                 break;
2538         case MSR_AMD64_OSVW_ID_LENGTH:
2539                 if (!guest_cpuid_has_osvw(vcpu))
2540                         return 1;
2541                 msr_info->data = vcpu->arch.osvw.length;
2542                 break;
2543         case MSR_AMD64_OSVW_STATUS:
2544                 if (!guest_cpuid_has_osvw(vcpu))
2545                         return 1;
2546                 msr_info->data = vcpu->arch.osvw.status;
2547                 break;
2548         case MSR_PLATFORM_INFO:
2549                 msr_info->data = vcpu->arch.msr_platform_info;
2550                 break;
2551         case MSR_MISC_FEATURES_ENABLES:
2552                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2553                 break;
2554         default:
2555                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2556                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2557                 if (!ignore_msrs) {
2558                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2559                                                msr_info->index);
2560                         return 1;
2561                 } else {
2562                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2563                         msr_info->data = 0;
2564                 }
2565                 break;
2566         }
2567         return 0;
2568 }
2569 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2570
2571 /*
2572  * Read or write a bunch of msrs. All parameters are kernel addresses.
2573  *
2574  * @return number of msrs set successfully.
2575  */
2576 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2577                     struct kvm_msr_entry *entries,
2578                     int (*do_msr)(struct kvm_vcpu *vcpu,
2579                                   unsigned index, u64 *data))
2580 {
2581         int i, idx;
2582
2583         idx = srcu_read_lock(&vcpu->kvm->srcu);
2584         for (i = 0; i < msrs->nmsrs; ++i)
2585                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2586                         break;
2587         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2588
2589         return i;
2590 }
2591
2592 /*
2593  * Read or write a bunch of msrs. Parameters are user addresses.
2594  *
2595  * @return number of msrs set successfully.
2596  */
2597 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2598                   int (*do_msr)(struct kvm_vcpu *vcpu,
2599                                 unsigned index, u64 *data),
2600                   int writeback)
2601 {
2602         struct kvm_msrs msrs;
2603         struct kvm_msr_entry *entries;
2604         int r, n;
2605         unsigned size;
2606
2607         r = -EFAULT;
2608         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2609                 goto out;
2610
2611         r = -E2BIG;
2612         if (msrs.nmsrs >= MAX_IO_MSRS)
2613                 goto out;
2614
2615         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2616         entries = memdup_user(user_msrs->entries, size);
2617         if (IS_ERR(entries)) {
2618                 r = PTR_ERR(entries);
2619                 goto out;
2620         }
2621
2622         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2623         if (r < 0)
2624                 goto out_free;
2625
2626         r = -EFAULT;
2627         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2628                 goto out_free;
2629
2630         r = n;
2631
2632 out_free:
2633         kfree(entries);
2634 out:
2635         return r;
2636 }
2637
2638 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2639 {
2640         int r;
2641
2642         switch (ext) {
2643         case KVM_CAP_IRQCHIP:
2644         case KVM_CAP_HLT:
2645         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2646         case KVM_CAP_SET_TSS_ADDR:
2647         case KVM_CAP_EXT_CPUID:
2648         case KVM_CAP_EXT_EMUL_CPUID:
2649         case KVM_CAP_CLOCKSOURCE:
2650         case KVM_CAP_PIT:
2651         case KVM_CAP_NOP_IO_DELAY:
2652         case KVM_CAP_MP_STATE:
2653         case KVM_CAP_SYNC_MMU:
2654         case KVM_CAP_USER_NMI:
2655         case KVM_CAP_REINJECT_CONTROL:
2656         case KVM_CAP_IRQ_INJECT_STATUS:
2657         case KVM_CAP_IOEVENTFD:
2658         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2659         case KVM_CAP_PIT2:
2660         case KVM_CAP_PIT_STATE2:
2661         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2662         case KVM_CAP_XEN_HVM:
2663         case KVM_CAP_VCPU_EVENTS:
2664         case KVM_CAP_HYPERV:
2665         case KVM_CAP_HYPERV_VAPIC:
2666         case KVM_CAP_HYPERV_SPIN:
2667         case KVM_CAP_HYPERV_SYNIC:
2668         case KVM_CAP_HYPERV_SYNIC2:
2669         case KVM_CAP_PCI_SEGMENT:
2670         case KVM_CAP_DEBUGREGS:
2671         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2672         case KVM_CAP_XSAVE:
2673         case KVM_CAP_ASYNC_PF:
2674         case KVM_CAP_GET_TSC_KHZ:
2675         case KVM_CAP_KVMCLOCK_CTRL:
2676         case KVM_CAP_READONLY_MEM:
2677         case KVM_CAP_HYPERV_TIME:
2678         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2679         case KVM_CAP_TSC_DEADLINE_TIMER:
2680         case KVM_CAP_ENABLE_CAP_VM:
2681         case KVM_CAP_DISABLE_QUIRKS:
2682         case KVM_CAP_SET_BOOT_CPU_ID:
2683         case KVM_CAP_SPLIT_IRQCHIP:
2684         case KVM_CAP_IMMEDIATE_EXIT:
2685                 r = 1;
2686                 break;
2687         case KVM_CAP_ADJUST_CLOCK:
2688                 r = KVM_CLOCK_TSC_STABLE;
2689                 break;
2690         case KVM_CAP_X86_GUEST_MWAIT:
2691                 r = kvm_mwait_in_guest();
2692                 break;
2693         case KVM_CAP_X86_SMM:
2694                 /* SMBASE is usually relocated above 1M on modern chipsets,
2695                  * and SMM handlers might indeed rely on 4G segment limits,
2696                  * so do not report SMM to be available if real mode is
2697                  * emulated via vm86 mode.  Still, do not go to great lengths
2698                  * to avoid userspace's usage of the feature, because it is a
2699                  * fringe case that is not enabled except via specific settings
2700                  * of the module parameters.
2701                  */
2702                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2703                 break;
2704         case KVM_CAP_VAPIC:
2705                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2706                 break;
2707         case KVM_CAP_NR_VCPUS:
2708                 r = KVM_SOFT_MAX_VCPUS;
2709                 break;
2710         case KVM_CAP_MAX_VCPUS:
2711                 r = KVM_MAX_VCPUS;
2712                 break;
2713         case KVM_CAP_NR_MEMSLOTS:
2714                 r = KVM_USER_MEM_SLOTS;
2715                 break;
2716         case KVM_CAP_PV_MMU:    /* obsolete */
2717                 r = 0;
2718                 break;
2719         case KVM_CAP_MCE:
2720                 r = KVM_MAX_MCE_BANKS;
2721                 break;
2722         case KVM_CAP_XCRS:
2723                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2724                 break;
2725         case KVM_CAP_TSC_CONTROL:
2726                 r = kvm_has_tsc_control;
2727                 break;
2728         case KVM_CAP_X2APIC_API:
2729                 r = KVM_X2APIC_API_VALID_FLAGS;
2730                 break;
2731         default:
2732                 r = 0;
2733                 break;
2734         }
2735         return r;
2736
2737 }
2738
2739 long kvm_arch_dev_ioctl(struct file *filp,
2740                         unsigned int ioctl, unsigned long arg)
2741 {
2742         void __user *argp = (void __user *)arg;
2743         long r;
2744
2745         switch (ioctl) {
2746         case KVM_GET_MSR_INDEX_LIST: {
2747                 struct kvm_msr_list __user *user_msr_list = argp;
2748                 struct kvm_msr_list msr_list;
2749                 unsigned n;
2750
2751                 r = -EFAULT;
2752                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2753                         goto out;
2754                 n = msr_list.nmsrs;
2755                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2756                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2757                         goto out;
2758                 r = -E2BIG;
2759                 if (n < msr_list.nmsrs)
2760                         goto out;
2761                 r = -EFAULT;
2762                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2763                                  num_msrs_to_save * sizeof(u32)))
2764                         goto out;
2765                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2766                                  &emulated_msrs,
2767                                  num_emulated_msrs * sizeof(u32)))
2768                         goto out;
2769                 r = 0;
2770                 break;
2771         }
2772         case KVM_GET_SUPPORTED_CPUID:
2773         case KVM_GET_EMULATED_CPUID: {
2774                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2775                 struct kvm_cpuid2 cpuid;
2776
2777                 r = -EFAULT;
2778                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2779                         goto out;
2780
2781                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2782                                             ioctl);
2783                 if (r)
2784                         goto out;
2785
2786                 r = -EFAULT;
2787                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2788                         goto out;
2789                 r = 0;
2790                 break;
2791         }
2792         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2793                 r = -EFAULT;
2794                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2795                                  sizeof(kvm_mce_cap_supported)))
2796                         goto out;
2797                 r = 0;
2798                 break;
2799         }
2800         default:
2801                 r = -EINVAL;
2802         }
2803 out:
2804         return r;
2805 }
2806
2807 static void wbinvd_ipi(void *garbage)
2808 {
2809         wbinvd();
2810 }
2811
2812 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2813 {
2814         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2815 }
2816
2817 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2818 {
2819         /* Address WBINVD may be executed by guest */
2820         if (need_emulate_wbinvd(vcpu)) {
2821                 if (kvm_x86_ops->has_wbinvd_exit())
2822                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2823                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2824                         smp_call_function_single(vcpu->cpu,
2825                                         wbinvd_ipi, NULL, 1);
2826         }
2827
2828         kvm_x86_ops->vcpu_load(vcpu, cpu);
2829
2830         /* Apply any externally detected TSC adjustments (due to suspend) */
2831         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2832                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2833                 vcpu->arch.tsc_offset_adjustment = 0;
2834                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2835         }
2836
2837         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2838                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2839                                 rdtsc() - vcpu->arch.last_host_tsc;
2840                 if (tsc_delta < 0)
2841                         mark_tsc_unstable("KVM discovered backwards TSC");
2842
2843                 if (check_tsc_unstable()) {
2844                         u64 offset = kvm_compute_tsc_offset(vcpu,
2845                                                 vcpu->arch.last_guest_tsc);
2846                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2847                         vcpu->arch.tsc_catchup = 1;
2848                 }
2849
2850                 if (kvm_lapic_hv_timer_in_use(vcpu))
2851                         kvm_lapic_restart_hv_timer(vcpu);
2852
2853                 /*
2854                  * On a host with synchronized TSC, there is no need to update
2855                  * kvmclock on vcpu->cpu migration
2856                  */
2857                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2858                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2859                 if (vcpu->cpu != cpu)
2860                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2861                 vcpu->cpu = cpu;
2862         }
2863
2864         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2865 }
2866
2867 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2868 {
2869         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2870                 return;
2871
2872         vcpu->arch.st.steal.preempted = 1;
2873
2874         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2875                         &vcpu->arch.st.steal.preempted,
2876                         offsetof(struct kvm_steal_time, preempted),
2877                         sizeof(vcpu->arch.st.steal.preempted));
2878 }
2879
2880 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2881 {
2882         int idx;
2883         /*
2884          * Disable page faults because we're in atomic context here.
2885          * kvm_write_guest_offset_cached() would call might_fault()
2886          * that relies on pagefault_disable() to tell if there's a
2887          * bug. NOTE: the write to guest memory may not go through if
2888          * during postcopy live migration or if there's heavy guest
2889          * paging.
2890          */
2891         pagefault_disable();
2892         /*
2893          * kvm_memslots() will be called by
2894          * kvm_write_guest_offset_cached() so take the srcu lock.
2895          */
2896         idx = srcu_read_lock(&vcpu->kvm->srcu);
2897         kvm_steal_time_set_preempted(vcpu);
2898         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2899         pagefault_enable();
2900         kvm_x86_ops->vcpu_put(vcpu);
2901         kvm_put_guest_fpu(vcpu);
2902         vcpu->arch.last_host_tsc = rdtsc();
2903 }
2904
2905 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2906                                     struct kvm_lapic_state *s)
2907 {
2908         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2909                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2910
2911         return kvm_apic_get_state(vcpu, s);
2912 }
2913
2914 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2915                                     struct kvm_lapic_state *s)
2916 {
2917         int r;
2918
2919         r = kvm_apic_set_state(vcpu, s);
2920         if (r)
2921                 return r;
2922         update_cr8_intercept(vcpu);
2923
2924         return 0;
2925 }
2926
2927 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2928 {
2929         return (!lapic_in_kernel(vcpu) ||
2930                 kvm_apic_accept_pic_intr(vcpu));
2931 }
2932
2933 /*
2934  * if userspace requested an interrupt window, check that the
2935  * interrupt window is open.
2936  *
2937  * No need to exit to userspace if we already have an interrupt queued.
2938  */
2939 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2940 {
2941         return kvm_arch_interrupt_allowed(vcpu) &&
2942                 !kvm_cpu_has_interrupt(vcpu) &&
2943                 !kvm_event_needs_reinjection(vcpu) &&
2944                 kvm_cpu_accept_dm_intr(vcpu);
2945 }
2946
2947 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2948                                     struct kvm_interrupt *irq)
2949 {
2950         if (irq->irq >= KVM_NR_INTERRUPTS)
2951                 return -EINVAL;
2952
2953         if (!irqchip_in_kernel(vcpu->kvm)) {
2954                 kvm_queue_interrupt(vcpu, irq->irq, false);
2955                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2956                 return 0;
2957         }
2958
2959         /*
2960          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2961          * fail for in-kernel 8259.
2962          */
2963         if (pic_in_kernel(vcpu->kvm))
2964                 return -ENXIO;
2965
2966         if (vcpu->arch.pending_external_vector != -1)
2967                 return -EEXIST;
2968
2969         vcpu->arch.pending_external_vector = irq->irq;
2970         kvm_make_request(KVM_REQ_EVENT, vcpu);
2971         return 0;
2972 }
2973
2974 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2975 {
2976         kvm_inject_nmi(vcpu);
2977
2978         return 0;
2979 }
2980
2981 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2982 {
2983         kvm_make_request(KVM_REQ_SMI, vcpu);
2984
2985         return 0;
2986 }
2987
2988 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2989                                            struct kvm_tpr_access_ctl *tac)
2990 {
2991         if (tac->flags)
2992                 return -EINVAL;
2993         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2994         return 0;
2995 }
2996
2997 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2998                                         u64 mcg_cap)
2999 {
3000         int r;
3001         unsigned bank_num = mcg_cap & 0xff, bank;
3002
3003         r = -EINVAL;
3004         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3005                 goto out;
3006         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3007                 goto out;
3008         r = 0;
3009         vcpu->arch.mcg_cap = mcg_cap;
3010         /* Init IA32_MCG_CTL to all 1s */
3011         if (mcg_cap & MCG_CTL_P)
3012                 vcpu->arch.mcg_ctl = ~(u64)0;
3013         /* Init IA32_MCi_CTL to all 1s */
3014         for (bank = 0; bank < bank_num; bank++)
3015                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3016
3017         if (kvm_x86_ops->setup_mce)
3018                 kvm_x86_ops->setup_mce(vcpu);
3019 out:
3020         return r;
3021 }
3022
3023 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3024                                       struct kvm_x86_mce *mce)
3025 {
3026         u64 mcg_cap = vcpu->arch.mcg_cap;
3027         unsigned bank_num = mcg_cap & 0xff;
3028         u64 *banks = vcpu->arch.mce_banks;
3029
3030         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3031                 return -EINVAL;
3032         /*
3033          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3034          * reporting is disabled
3035          */
3036         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3037             vcpu->arch.mcg_ctl != ~(u64)0)
3038                 return 0;
3039         banks += 4 * mce->bank;
3040         /*
3041          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3042          * reporting is disabled for the bank
3043          */
3044         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3045                 return 0;
3046         if (mce->status & MCI_STATUS_UC) {
3047                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3048                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3049                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3050                         return 0;
3051                 }
3052                 if (banks[1] & MCI_STATUS_VAL)
3053                         mce->status |= MCI_STATUS_OVER;
3054                 banks[2] = mce->addr;
3055                 banks[3] = mce->misc;
3056                 vcpu->arch.mcg_status = mce->mcg_status;
3057                 banks[1] = mce->status;
3058                 kvm_queue_exception(vcpu, MC_VECTOR);
3059         } else if (!(banks[1] & MCI_STATUS_VAL)
3060                    || !(banks[1] & MCI_STATUS_UC)) {
3061                 if (banks[1] & MCI_STATUS_VAL)
3062                         mce->status |= MCI_STATUS_OVER;
3063                 banks[2] = mce->addr;
3064                 banks[3] = mce->misc;
3065                 banks[1] = mce->status;
3066         } else
3067                 banks[1] |= MCI_STATUS_OVER;
3068         return 0;
3069 }
3070
3071 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3072                                                struct kvm_vcpu_events *events)
3073 {
3074         process_nmi(vcpu);
3075         events->exception.injected =
3076                 vcpu->arch.exception.pending &&
3077                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3078         events->exception.nr = vcpu->arch.exception.nr;
3079         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3080         events->exception.pad = 0;
3081         events->exception.error_code = vcpu->arch.exception.error_code;
3082
3083         events->interrupt.injected =
3084                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3085         events->interrupt.nr = vcpu->arch.interrupt.nr;
3086         events->interrupt.soft = 0;
3087         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3088
3089         events->nmi.injected = vcpu->arch.nmi_injected;
3090         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3091         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3092         events->nmi.pad = 0;
3093
3094         events->sipi_vector = 0; /* never valid when reporting to user space */
3095
3096         events->smi.smm = is_smm(vcpu);
3097         events->smi.pending = vcpu->arch.smi_pending;
3098         events->smi.smm_inside_nmi =
3099                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3100         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3101
3102         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3103                          | KVM_VCPUEVENT_VALID_SHADOW
3104                          | KVM_VCPUEVENT_VALID_SMM);
3105         memset(&events->reserved, 0, sizeof(events->reserved));
3106 }
3107
3108 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3109
3110 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3111                                               struct kvm_vcpu_events *events)
3112 {
3113         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3114                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3115                               | KVM_VCPUEVENT_VALID_SHADOW
3116                               | KVM_VCPUEVENT_VALID_SMM))
3117                 return -EINVAL;
3118
3119         if (events->exception.injected &&
3120             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3121              is_guest_mode(vcpu)))
3122                 return -EINVAL;
3123
3124         /* INITs are latched while in SMM */
3125         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3126             (events->smi.smm || events->smi.pending) &&
3127             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3128                 return -EINVAL;
3129
3130         process_nmi(vcpu);
3131         vcpu->arch.exception.pending = events->exception.injected;
3132         vcpu->arch.exception.nr = events->exception.nr;
3133         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3134         vcpu->arch.exception.error_code = events->exception.error_code;
3135
3136         vcpu->arch.interrupt.pending = events->interrupt.injected;
3137         vcpu->arch.interrupt.nr = events->interrupt.nr;
3138         vcpu->arch.interrupt.soft = events->interrupt.soft;
3139         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3140                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3141                                                   events->interrupt.shadow);
3142
3143         vcpu->arch.nmi_injected = events->nmi.injected;
3144         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3145                 vcpu->arch.nmi_pending = events->nmi.pending;
3146         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3147
3148         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3149             lapic_in_kernel(vcpu))
3150                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3151
3152         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3153                 u32 hflags = vcpu->arch.hflags;
3154                 if (events->smi.smm)
3155                         hflags |= HF_SMM_MASK;
3156                 else
3157                         hflags &= ~HF_SMM_MASK;
3158                 kvm_set_hflags(vcpu, hflags);
3159
3160                 vcpu->arch.smi_pending = events->smi.pending;
3161                 if (events->smi.smm_inside_nmi)
3162                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3163                 else
3164                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3165                 if (lapic_in_kernel(vcpu)) {
3166                         if (events->smi.latched_init)
3167                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3168                         else
3169                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3170                 }
3171         }
3172
3173         kvm_make_request(KVM_REQ_EVENT, vcpu);
3174
3175         return 0;
3176 }
3177
3178 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3179                                              struct kvm_debugregs *dbgregs)
3180 {
3181         unsigned long val;
3182
3183         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3184         kvm_get_dr(vcpu, 6, &val);
3185         dbgregs->dr6 = val;
3186         dbgregs->dr7 = vcpu->arch.dr7;
3187         dbgregs->flags = 0;
3188         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3189 }
3190
3191 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3192                                             struct kvm_debugregs *dbgregs)
3193 {
3194         if (dbgregs->flags)
3195                 return -EINVAL;
3196
3197         if (dbgregs->dr6 & ~0xffffffffull)
3198                 return -EINVAL;
3199         if (dbgregs->dr7 & ~0xffffffffull)
3200                 return -EINVAL;
3201
3202         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3203         kvm_update_dr0123(vcpu);
3204         vcpu->arch.dr6 = dbgregs->dr6;
3205         kvm_update_dr6(vcpu);
3206         vcpu->arch.dr7 = dbgregs->dr7;
3207         kvm_update_dr7(vcpu);
3208
3209         return 0;
3210 }
3211
3212 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3213
3214 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3215 {
3216         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3217         u64 xstate_bv = xsave->header.xfeatures;
3218         u64 valid;
3219
3220         /*
3221          * Copy legacy XSAVE area, to avoid complications with CPUID
3222          * leaves 0 and 1 in the loop below.
3223          */
3224         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3225
3226         /* Set XSTATE_BV */
3227         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3228         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3229
3230         /*
3231          * Copy each region from the possibly compacted offset to the
3232          * non-compacted offset.
3233          */
3234         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3235         while (valid) {
3236                 u64 feature = valid & -valid;
3237                 int index = fls64(feature) - 1;
3238                 void *src = get_xsave_addr(xsave, feature);
3239
3240                 if (src) {
3241                         u32 size, offset, ecx, edx;
3242                         cpuid_count(XSTATE_CPUID, index,
3243                                     &size, &offset, &ecx, &edx);
3244                         memcpy(dest + offset, src, size);
3245                 }
3246
3247                 valid -= feature;
3248         }
3249 }
3250
3251 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3252 {
3253         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3254         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3255         u64 valid;
3256
3257         /*
3258          * Copy legacy XSAVE area, to avoid complications with CPUID
3259          * leaves 0 and 1 in the loop below.
3260          */
3261         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3262
3263         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3264         xsave->header.xfeatures = xstate_bv;
3265         if (boot_cpu_has(X86_FEATURE_XSAVES))
3266                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3267
3268         /*
3269          * Copy each region from the non-compacted offset to the
3270          * possibly compacted offset.
3271          */
3272         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3273         while (valid) {
3274                 u64 feature = valid & -valid;
3275                 int index = fls64(feature) - 1;
3276                 void *dest = get_xsave_addr(xsave, feature);
3277
3278                 if (dest) {
3279                         u32 size, offset, ecx, edx;
3280                         cpuid_count(XSTATE_CPUID, index,
3281                                     &size, &offset, &ecx, &edx);
3282                         memcpy(dest, src + offset, size);
3283                 }
3284
3285                 valid -= feature;
3286         }
3287 }
3288
3289 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3290                                          struct kvm_xsave *guest_xsave)
3291 {
3292         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3293                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3294                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3295         } else {
3296                 memcpy(guest_xsave->region,
3297                         &vcpu->arch.guest_fpu.state.fxsave,
3298                         sizeof(struct fxregs_state));
3299                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3300                         XFEATURE_MASK_FPSSE;
3301         }
3302 }
3303
3304 #define XSAVE_MXCSR_OFFSET 24
3305
3306 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3307                                         struct kvm_xsave *guest_xsave)
3308 {
3309         u64 xstate_bv =
3310                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3311         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3312
3313         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3314                 /*
3315                  * Here we allow setting states that are not present in
3316                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3317                  * with old userspace.
3318                  */
3319                 if (xstate_bv & ~kvm_supported_xcr0() ||
3320                         mxcsr & ~mxcsr_feature_mask)
3321                         return -EINVAL;
3322                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3323         } else {
3324                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3325                         mxcsr & ~mxcsr_feature_mask)
3326                         return -EINVAL;
3327                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3328                         guest_xsave->region, sizeof(struct fxregs_state));
3329         }
3330         return 0;
3331 }
3332
3333 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3334                                         struct kvm_xcrs *guest_xcrs)
3335 {
3336         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3337                 guest_xcrs->nr_xcrs = 0;
3338                 return;
3339         }
3340
3341         guest_xcrs->nr_xcrs = 1;
3342         guest_xcrs->flags = 0;
3343         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3344         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3345 }
3346
3347 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3348                                        struct kvm_xcrs *guest_xcrs)
3349 {
3350         int i, r = 0;
3351
3352         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3353                 return -EINVAL;
3354
3355         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3356                 return -EINVAL;
3357
3358         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3359                 /* Only support XCR0 currently */
3360                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3361                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3362                                 guest_xcrs->xcrs[i].value);
3363                         break;
3364                 }
3365         if (r)
3366                 r = -EINVAL;
3367         return r;
3368 }
3369
3370 /*
3371  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3372  * stopped by the hypervisor.  This function will be called from the host only.
3373  * EINVAL is returned when the host attempts to set the flag for a guest that
3374  * does not support pv clocks.
3375  */
3376 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3377 {
3378         if (!vcpu->arch.pv_time_enabled)
3379                 return -EINVAL;
3380         vcpu->arch.pvclock_set_guest_stopped_request = true;
3381         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3382         return 0;
3383 }
3384
3385 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3386                                      struct kvm_enable_cap *cap)
3387 {
3388         if (cap->flags)
3389                 return -EINVAL;
3390
3391         switch (cap->cap) {
3392         case KVM_CAP_HYPERV_SYNIC2:
3393                 if (cap->args[0])
3394                         return -EINVAL;
3395         case KVM_CAP_HYPERV_SYNIC:
3396                 if (!irqchip_in_kernel(vcpu->kvm))
3397                         return -EINVAL;
3398                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3399                                              KVM_CAP_HYPERV_SYNIC2);
3400         default:
3401                 return -EINVAL;
3402         }
3403 }
3404
3405 long kvm_arch_vcpu_ioctl(struct file *filp,
3406                          unsigned int ioctl, unsigned long arg)
3407 {
3408         struct kvm_vcpu *vcpu = filp->private_data;
3409         void __user *argp = (void __user *)arg;
3410         int r;
3411         union {
3412                 struct kvm_lapic_state *lapic;
3413                 struct kvm_xsave *xsave;
3414                 struct kvm_xcrs *xcrs;
3415                 void *buffer;
3416         } u;
3417
3418         u.buffer = NULL;
3419         switch (ioctl) {
3420         case KVM_GET_LAPIC: {
3421                 r = -EINVAL;
3422                 if (!lapic_in_kernel(vcpu))
3423                         goto out;
3424                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3425
3426                 r = -ENOMEM;
3427                 if (!u.lapic)
3428                         goto out;
3429                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3430                 if (r)
3431                         goto out;
3432                 r = -EFAULT;
3433                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3434                         goto out;
3435                 r = 0;
3436                 break;
3437         }
3438         case KVM_SET_LAPIC: {
3439                 r = -EINVAL;
3440                 if (!lapic_in_kernel(vcpu))
3441                         goto out;
3442                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3443                 if (IS_ERR(u.lapic))
3444                         return PTR_ERR(u.lapic);
3445
3446                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3447                 break;
3448         }
3449         case KVM_INTERRUPT: {
3450                 struct kvm_interrupt irq;
3451
3452                 r = -EFAULT;
3453                 if (copy_from_user(&irq, argp, sizeof irq))
3454                         goto out;
3455                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3456                 break;
3457         }
3458         case KVM_NMI: {
3459                 r = kvm_vcpu_ioctl_nmi(vcpu);
3460                 break;
3461         }
3462         case KVM_SMI: {
3463                 r = kvm_vcpu_ioctl_smi(vcpu);
3464                 break;
3465         }
3466         case KVM_SET_CPUID: {
3467                 struct kvm_cpuid __user *cpuid_arg = argp;
3468                 struct kvm_cpuid cpuid;
3469
3470                 r = -EFAULT;
3471                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3472                         goto out;
3473                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3474                 break;
3475         }
3476         case KVM_SET_CPUID2: {
3477                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3478                 struct kvm_cpuid2 cpuid;
3479
3480                 r = -EFAULT;
3481                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3482                         goto out;
3483                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3484                                               cpuid_arg->entries);
3485                 break;
3486         }
3487         case KVM_GET_CPUID2: {
3488                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3489                 struct kvm_cpuid2 cpuid;
3490
3491                 r = -EFAULT;
3492                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3493                         goto out;
3494                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3495                                               cpuid_arg->entries);
3496                 if (r)
3497                         goto out;
3498                 r = -EFAULT;
3499                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3500                         goto out;
3501                 r = 0;
3502                 break;
3503         }
3504         case KVM_GET_MSRS:
3505                 r = msr_io(vcpu, argp, do_get_msr, 1);
3506                 break;
3507         case KVM_SET_MSRS:
3508                 r = msr_io(vcpu, argp, do_set_msr, 0);
3509                 break;
3510         case KVM_TPR_ACCESS_REPORTING: {
3511                 struct kvm_tpr_access_ctl tac;
3512
3513                 r = -EFAULT;
3514                 if (copy_from_user(&tac, argp, sizeof tac))
3515                         goto out;
3516                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3517                 if (r)
3518                         goto out;
3519                 r = -EFAULT;
3520                 if (copy_to_user(argp, &tac, sizeof tac))
3521                         goto out;
3522                 r = 0;
3523                 break;
3524         };
3525         case KVM_SET_VAPIC_ADDR: {
3526                 struct kvm_vapic_addr va;
3527                 int idx;
3528
3529                 r = -EINVAL;
3530                 if (!lapic_in_kernel(vcpu))
3531                         goto out;
3532                 r = -EFAULT;
3533                 if (copy_from_user(&va, argp, sizeof va))
3534                         goto out;
3535                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3536                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3537                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3538                 break;
3539         }
3540         case KVM_X86_SETUP_MCE: {
3541                 u64 mcg_cap;
3542
3543                 r = -EFAULT;
3544                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3545                         goto out;
3546                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3547                 break;
3548         }
3549         case KVM_X86_SET_MCE: {
3550                 struct kvm_x86_mce mce;
3551
3552                 r = -EFAULT;
3553                 if (copy_from_user(&mce, argp, sizeof mce))
3554                         goto out;
3555                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3556                 break;
3557         }
3558         case KVM_GET_VCPU_EVENTS: {
3559                 struct kvm_vcpu_events events;
3560
3561                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3562
3563                 r = -EFAULT;
3564                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3565                         break;
3566                 r = 0;
3567                 break;
3568         }
3569         case KVM_SET_VCPU_EVENTS: {
3570                 struct kvm_vcpu_events events;
3571
3572                 r = -EFAULT;
3573                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3574                         break;
3575
3576                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3577                 break;
3578         }
3579         case KVM_GET_DEBUGREGS: {
3580                 struct kvm_debugregs dbgregs;
3581
3582                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3583
3584                 r = -EFAULT;
3585                 if (copy_to_user(argp, &dbgregs,
3586                                  sizeof(struct kvm_debugregs)))
3587                         break;
3588                 r = 0;
3589                 break;
3590         }
3591         case KVM_SET_DEBUGREGS: {
3592                 struct kvm_debugregs dbgregs;
3593
3594                 r = -EFAULT;
3595                 if (copy_from_user(&dbgregs, argp,
3596                                    sizeof(struct kvm_debugregs)))
3597                         break;
3598
3599                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3600                 break;
3601         }
3602         case KVM_GET_XSAVE: {
3603                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3604                 r = -ENOMEM;
3605                 if (!u.xsave)
3606                         break;
3607
3608                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3609
3610                 r = -EFAULT;
3611                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3612                         break;
3613                 r = 0;
3614                 break;
3615         }
3616         case KVM_SET_XSAVE: {
3617                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3618                 if (IS_ERR(u.xsave))
3619                         return PTR_ERR(u.xsave);
3620
3621                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3622                 break;
3623         }
3624         case KVM_GET_XCRS: {
3625                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3626                 r = -ENOMEM;
3627                 if (!u.xcrs)
3628                         break;
3629
3630                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3631
3632                 r = -EFAULT;
3633                 if (copy_to_user(argp, u.xcrs,
3634                                  sizeof(struct kvm_xcrs)))
3635                         break;
3636                 r = 0;
3637                 break;
3638         }
3639         case KVM_SET_XCRS: {
3640                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3641                 if (IS_ERR(u.xcrs))
3642                         return PTR_ERR(u.xcrs);
3643
3644                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3645                 break;
3646         }
3647         case KVM_SET_TSC_KHZ: {
3648                 u32 user_tsc_khz;
3649
3650                 r = -EINVAL;
3651                 user_tsc_khz = (u32)arg;
3652
3653                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3654                         goto out;
3655
3656                 if (user_tsc_khz == 0)
3657                         user_tsc_khz = tsc_khz;
3658
3659                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3660                         r = 0;
3661
3662                 goto out;
3663         }
3664         case KVM_GET_TSC_KHZ: {
3665                 r = vcpu->arch.virtual_tsc_khz;
3666                 goto out;
3667         }
3668         case KVM_KVMCLOCK_CTRL: {
3669                 r = kvm_set_guest_paused(vcpu);
3670                 goto out;
3671         }
3672         case KVM_ENABLE_CAP: {
3673                 struct kvm_enable_cap cap;
3674
3675                 r = -EFAULT;
3676                 if (copy_from_user(&cap, argp, sizeof(cap)))
3677                         goto out;
3678                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3679                 break;
3680         }
3681         default:
3682                 r = -EINVAL;
3683         }
3684 out:
3685         kfree(u.buffer);
3686         return r;
3687 }
3688
3689 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3690 {
3691         return VM_FAULT_SIGBUS;
3692 }
3693
3694 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3695 {
3696         int ret;
3697
3698         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3699                 return -EINVAL;
3700         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3701         return ret;
3702 }
3703
3704 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3705                                               u64 ident_addr)
3706 {
3707         kvm->arch.ept_identity_map_addr = ident_addr;
3708         return 0;
3709 }
3710
3711 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3712                                           u32 kvm_nr_mmu_pages)
3713 {
3714         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3715                 return -EINVAL;
3716
3717         mutex_lock(&kvm->slots_lock);
3718
3719         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3720         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3721
3722         mutex_unlock(&kvm->slots_lock);
3723         return 0;
3724 }
3725
3726 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3727 {
3728         return kvm->arch.n_max_mmu_pages;
3729 }
3730
3731 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3732 {
3733         struct kvm_pic *pic = kvm->arch.vpic;
3734         int r;
3735
3736         r = 0;
3737         switch (chip->chip_id) {
3738         case KVM_IRQCHIP_PIC_MASTER:
3739                 memcpy(&chip->chip.pic, &pic->pics[0],
3740                         sizeof(struct kvm_pic_state));
3741                 break;
3742         case KVM_IRQCHIP_PIC_SLAVE:
3743                 memcpy(&chip->chip.pic, &pic->pics[1],
3744                         sizeof(struct kvm_pic_state));
3745                 break;
3746         case KVM_IRQCHIP_IOAPIC:
3747                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3748                 break;
3749         default:
3750                 r = -EINVAL;
3751                 break;
3752         }
3753         return r;
3754 }
3755
3756 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3757 {
3758         struct kvm_pic *pic = kvm->arch.vpic;
3759         int r;
3760
3761         r = 0;
3762         switch (chip->chip_id) {
3763         case KVM_IRQCHIP_PIC_MASTER:
3764                 spin_lock(&pic->lock);
3765                 memcpy(&pic->pics[0], &chip->chip.pic,
3766                         sizeof(struct kvm_pic_state));
3767                 spin_unlock(&pic->lock);
3768                 break;
3769         case KVM_IRQCHIP_PIC_SLAVE:
3770                 spin_lock(&pic->lock);
3771                 memcpy(&pic->pics[1], &chip->chip.pic,
3772                         sizeof(struct kvm_pic_state));
3773                 spin_unlock(&pic->lock);
3774                 break;
3775         case KVM_IRQCHIP_IOAPIC:
3776                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3777                 break;
3778         default:
3779                 r = -EINVAL;
3780                 break;
3781         }
3782         kvm_pic_update_irq(pic);
3783         return r;
3784 }
3785
3786 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3787 {
3788         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3789
3790         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3791
3792         mutex_lock(&kps->lock);
3793         memcpy(ps, &kps->channels, sizeof(*ps));
3794         mutex_unlock(&kps->lock);
3795         return 0;
3796 }
3797
3798 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3799 {
3800         int i;
3801         struct kvm_pit *pit = kvm->arch.vpit;
3802
3803         mutex_lock(&pit->pit_state.lock);
3804         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3805         for (i = 0; i < 3; i++)
3806                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3807         mutex_unlock(&pit->pit_state.lock);
3808         return 0;
3809 }
3810
3811 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3812 {
3813         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3814         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3815                 sizeof(ps->channels));
3816         ps->flags = kvm->arch.vpit->pit_state.flags;
3817         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3818         memset(&ps->reserved, 0, sizeof(ps->reserved));
3819         return 0;
3820 }
3821
3822 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3823 {
3824         int start = 0;
3825         int i;
3826         u32 prev_legacy, cur_legacy;
3827         struct kvm_pit *pit = kvm->arch.vpit;
3828
3829         mutex_lock(&pit->pit_state.lock);
3830         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3831         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3832         if (!prev_legacy && cur_legacy)
3833                 start = 1;
3834         memcpy(&pit->pit_state.channels, &ps->channels,
3835                sizeof(pit->pit_state.channels));
3836         pit->pit_state.flags = ps->flags;
3837         for (i = 0; i < 3; i++)
3838                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3839                                    start && i == 0);
3840         mutex_unlock(&pit->pit_state.lock);
3841         return 0;
3842 }
3843
3844 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3845                                  struct kvm_reinject_control *control)
3846 {
3847         struct kvm_pit *pit = kvm->arch.vpit;
3848
3849         if (!pit)
3850                 return -ENXIO;
3851
3852         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3853          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3854          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3855          */
3856         mutex_lock(&pit->pit_state.lock);
3857         kvm_pit_set_reinject(pit, control->pit_reinject);
3858         mutex_unlock(&pit->pit_state.lock);
3859
3860         return 0;
3861 }
3862
3863 /**
3864  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3865  * @kvm: kvm instance
3866  * @log: slot id and address to which we copy the log
3867  *
3868  * Steps 1-4 below provide general overview of dirty page logging. See
3869  * kvm_get_dirty_log_protect() function description for additional details.
3870  *
3871  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3872  * always flush the TLB (step 4) even if previous step failed  and the dirty
3873  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3874  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3875  * writes will be marked dirty for next log read.
3876  *
3877  *   1. Take a snapshot of the bit and clear it if needed.
3878  *   2. Write protect the corresponding page.
3879  *   3. Copy the snapshot to the userspace.
3880  *   4. Flush TLB's if needed.
3881  */
3882 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3883 {
3884         bool is_dirty = false;
3885         int r;
3886
3887         mutex_lock(&kvm->slots_lock);
3888
3889         /*
3890          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3891          */
3892         if (kvm_x86_ops->flush_log_dirty)
3893                 kvm_x86_ops->flush_log_dirty(kvm);
3894
3895         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3896
3897         /*
3898          * All the TLBs can be flushed out of mmu lock, see the comments in
3899          * kvm_mmu_slot_remove_write_access().
3900          */
3901         lockdep_assert_held(&kvm->slots_lock);
3902         if (is_dirty)
3903                 kvm_flush_remote_tlbs(kvm);
3904
3905         mutex_unlock(&kvm->slots_lock);
3906         return r;
3907 }
3908
3909 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3910                         bool line_status)
3911 {
3912         if (!irqchip_in_kernel(kvm))
3913                 return -ENXIO;
3914
3915         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3916                                         irq_event->irq, irq_event->level,
3917                                         line_status);
3918         return 0;
3919 }
3920
3921 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3922                                    struct kvm_enable_cap *cap)
3923 {
3924         int r;
3925
3926         if (cap->flags)
3927                 return -EINVAL;
3928
3929         switch (cap->cap) {
3930         case KVM_CAP_DISABLE_QUIRKS:
3931                 kvm->arch.disabled_quirks = cap->args[0];
3932                 r = 0;
3933                 break;
3934         case KVM_CAP_SPLIT_IRQCHIP: {
3935                 mutex_lock(&kvm->lock);
3936                 r = -EINVAL;
3937                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3938                         goto split_irqchip_unlock;
3939                 r = -EEXIST;
3940                 if (irqchip_in_kernel(kvm))
3941                         goto split_irqchip_unlock;
3942                 if (kvm->created_vcpus)
3943                         goto split_irqchip_unlock;
3944                 r = kvm_setup_empty_irq_routing(kvm);
3945                 if (r)
3946                         goto split_irqchip_unlock;
3947                 /* Pairs with irqchip_in_kernel. */
3948                 smp_wmb();
3949                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3950                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3951                 r = 0;
3952 split_irqchip_unlock:
3953                 mutex_unlock(&kvm->lock);
3954                 break;
3955         }
3956         case KVM_CAP_X2APIC_API:
3957                 r = -EINVAL;
3958                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3959                         break;
3960
3961                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3962                         kvm->arch.x2apic_format = true;
3963                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3964                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3965
3966                 r = 0;
3967                 break;
3968         default:
3969                 r = -EINVAL;
3970                 break;
3971         }
3972         return r;
3973 }
3974
3975 long kvm_arch_vm_ioctl(struct file *filp,
3976                        unsigned int ioctl, unsigned long arg)
3977 {
3978         struct kvm *kvm = filp->private_data;
3979         void __user *argp = (void __user *)arg;
3980         int r = -ENOTTY;
3981         /*
3982          * This union makes it completely explicit to gcc-3.x
3983          * that these two variables' stack usage should be
3984          * combined, not added together.
3985          */
3986         union {
3987                 struct kvm_pit_state ps;
3988                 struct kvm_pit_state2 ps2;
3989                 struct kvm_pit_config pit_config;
3990         } u;
3991
3992         switch (ioctl) {
3993         case KVM_SET_TSS_ADDR:
3994                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3995                 break;
3996         case KVM_SET_IDENTITY_MAP_ADDR: {
3997                 u64 ident_addr;
3998
3999                 r = -EFAULT;
4000                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4001                         goto out;
4002                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4003                 break;
4004         }
4005         case KVM_SET_NR_MMU_PAGES:
4006                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4007                 break;
4008         case KVM_GET_NR_MMU_PAGES:
4009                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4010                 break;
4011         case KVM_CREATE_IRQCHIP: {
4012                 mutex_lock(&kvm->lock);
4013
4014                 r = -EEXIST;
4015                 if (irqchip_in_kernel(kvm))
4016                         goto create_irqchip_unlock;
4017
4018                 r = -EINVAL;
4019                 if (kvm->created_vcpus)
4020                         goto create_irqchip_unlock;
4021
4022                 r = kvm_pic_init(kvm);
4023                 if (r)
4024                         goto create_irqchip_unlock;
4025
4026                 r = kvm_ioapic_init(kvm);
4027                 if (r) {
4028                         kvm_pic_destroy(kvm);
4029                         goto create_irqchip_unlock;
4030                 }
4031
4032                 r = kvm_setup_default_irq_routing(kvm);
4033                 if (r) {
4034                         kvm_ioapic_destroy(kvm);
4035                         kvm_pic_destroy(kvm);
4036                         goto create_irqchip_unlock;
4037                 }
4038                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4039                 smp_wmb();
4040                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4041         create_irqchip_unlock:
4042                 mutex_unlock(&kvm->lock);
4043                 break;
4044         }
4045         case KVM_CREATE_PIT:
4046                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4047                 goto create_pit;
4048         case KVM_CREATE_PIT2:
4049                 r = -EFAULT;
4050                 if (copy_from_user(&u.pit_config, argp,
4051                                    sizeof(struct kvm_pit_config)))
4052                         goto out;
4053         create_pit:
4054                 mutex_lock(&kvm->lock);
4055                 r = -EEXIST;
4056                 if (kvm->arch.vpit)
4057                         goto create_pit_unlock;
4058                 r = -ENOMEM;
4059                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4060                 if (kvm->arch.vpit)
4061                         r = 0;
4062         create_pit_unlock:
4063                 mutex_unlock(&kvm->lock);
4064                 break;
4065         case KVM_GET_IRQCHIP: {
4066                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4067                 struct kvm_irqchip *chip;
4068
4069                 chip = memdup_user(argp, sizeof(*chip));
4070                 if (IS_ERR(chip)) {
4071                         r = PTR_ERR(chip);
4072                         goto out;
4073                 }
4074
4075                 r = -ENXIO;
4076                 if (!irqchip_kernel(kvm))
4077                         goto get_irqchip_out;
4078                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4079                 if (r)
4080                         goto get_irqchip_out;
4081                 r = -EFAULT;
4082                 if (copy_to_user(argp, chip, sizeof *chip))
4083                         goto get_irqchip_out;
4084                 r = 0;
4085         get_irqchip_out:
4086                 kfree(chip);
4087                 break;
4088         }
4089         case KVM_SET_IRQCHIP: {
4090                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4091                 struct kvm_irqchip *chip;
4092
4093                 chip = memdup_user(argp, sizeof(*chip));
4094                 if (IS_ERR(chip)) {
4095                         r = PTR_ERR(chip);
4096                         goto out;
4097                 }
4098
4099                 r = -ENXIO;
4100                 if (!irqchip_kernel(kvm))
4101                         goto set_irqchip_out;
4102                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4103                 if (r)
4104                         goto set_irqchip_out;
4105                 r = 0;
4106         set_irqchip_out:
4107                 kfree(chip);
4108                 break;
4109         }
4110         case KVM_GET_PIT: {
4111                 r = -EFAULT;
4112                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4113                         goto out;
4114                 r = -ENXIO;
4115                 if (!kvm->arch.vpit)
4116                         goto out;
4117                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4118                 if (r)
4119                         goto out;
4120                 r = -EFAULT;
4121                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4122                         goto out;
4123                 r = 0;
4124                 break;
4125         }
4126         case KVM_SET_PIT: {
4127                 r = -EFAULT;
4128                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4129                         goto out;
4130                 r = -ENXIO;
4131                 if (!kvm->arch.vpit)
4132                         goto out;
4133                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4134                 break;
4135         }
4136         case KVM_GET_PIT2: {
4137                 r = -ENXIO;
4138                 if (!kvm->arch.vpit)
4139                         goto out;
4140                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4141                 if (r)
4142                         goto out;
4143                 r = -EFAULT;
4144                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4145                         goto out;
4146                 r = 0;
4147                 break;
4148         }
4149         case KVM_SET_PIT2: {
4150                 r = -EFAULT;
4151                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4152                         goto out;
4153                 r = -ENXIO;
4154                 if (!kvm->arch.vpit)
4155                         goto out;
4156                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4157                 break;
4158         }
4159         case KVM_REINJECT_CONTROL: {
4160                 struct kvm_reinject_control control;
4161                 r =  -EFAULT;
4162                 if (copy_from_user(&control, argp, sizeof(control)))
4163                         goto out;
4164                 r = kvm_vm_ioctl_reinject(kvm, &control);
4165                 break;
4166         }
4167         case KVM_SET_BOOT_CPU_ID:
4168                 r = 0;
4169                 mutex_lock(&kvm->lock);
4170                 if (kvm->created_vcpus)
4171                         r = -EBUSY;
4172                 else
4173                         kvm->arch.bsp_vcpu_id = arg;
4174                 mutex_unlock(&kvm->lock);
4175                 break;
4176         case KVM_XEN_HVM_CONFIG: {
4177                 r = -EFAULT;
4178                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4179                                    sizeof(struct kvm_xen_hvm_config)))
4180                         goto out;
4181                 r = -EINVAL;
4182                 if (kvm->arch.xen_hvm_config.flags)
4183                         goto out;
4184                 r = 0;
4185                 break;
4186         }
4187         case KVM_SET_CLOCK: {
4188                 struct kvm_clock_data user_ns;
4189                 u64 now_ns;
4190
4191                 r = -EFAULT;
4192                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4193                         goto out;
4194
4195                 r = -EINVAL;
4196                 if (user_ns.flags)
4197                         goto out;
4198
4199                 r = 0;
4200                 /*
4201                  * TODO: userspace has to take care of races with VCPU_RUN, so
4202                  * kvm_gen_update_masterclock() can be cut down to locked
4203                  * pvclock_update_vm_gtod_copy().
4204                  */
4205                 kvm_gen_update_masterclock(kvm);
4206                 now_ns = get_kvmclock_ns(kvm);
4207                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4208                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4209                 break;
4210         }
4211         case KVM_GET_CLOCK: {
4212                 struct kvm_clock_data user_ns;
4213                 u64 now_ns;
4214
4215                 now_ns = get_kvmclock_ns(kvm);
4216                 user_ns.clock = now_ns;
4217                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4218                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4219
4220                 r = -EFAULT;
4221                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4222                         goto out;
4223                 r = 0;
4224                 break;
4225         }
4226         case KVM_ENABLE_CAP: {
4227                 struct kvm_enable_cap cap;
4228
4229                 r = -EFAULT;
4230                 if (copy_from_user(&cap, argp, sizeof(cap)))
4231                         goto out;
4232                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4233                 break;
4234         }
4235         default:
4236                 r = -ENOTTY;
4237         }
4238 out:
4239         return r;
4240 }
4241
4242 static void kvm_init_msr_list(void)
4243 {
4244         u32 dummy[2];
4245         unsigned i, j;
4246
4247         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4248                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4249                         continue;
4250
4251                 /*
4252                  * Even MSRs that are valid in the host may not be exposed
4253                  * to the guests in some cases.
4254                  */
4255                 switch (msrs_to_save[i]) {
4256                 case MSR_IA32_BNDCFGS:
4257                         if (!kvm_x86_ops->mpx_supported())
4258                                 continue;
4259                         break;
4260                 case MSR_TSC_AUX:
4261                         if (!kvm_x86_ops->rdtscp_supported())
4262                                 continue;
4263                         break;
4264                 default:
4265                         break;
4266                 }
4267
4268                 if (j < i)
4269                         msrs_to_save[j] = msrs_to_save[i];
4270                 j++;
4271         }
4272         num_msrs_to_save = j;
4273
4274         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4275                 switch (emulated_msrs[i]) {
4276                 case MSR_IA32_SMBASE:
4277                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4278                                 continue;
4279                         break;
4280                 default:
4281                         break;
4282                 }
4283
4284                 if (j < i)
4285                         emulated_msrs[j] = emulated_msrs[i];
4286                 j++;
4287         }
4288         num_emulated_msrs = j;
4289 }
4290
4291 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4292                            const void *v)
4293 {
4294         int handled = 0;
4295         int n;
4296
4297         do {
4298                 n = min(len, 8);
4299                 if (!(lapic_in_kernel(vcpu) &&
4300                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4301                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4302                         break;
4303                 handled += n;
4304                 addr += n;
4305                 len -= n;
4306                 v += n;
4307         } while (len);
4308
4309         return handled;
4310 }
4311
4312 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4313 {
4314         int handled = 0;
4315         int n;
4316
4317         do {
4318                 n = min(len, 8);
4319                 if (!(lapic_in_kernel(vcpu) &&
4320                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4321                                          addr, n, v))
4322                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4323                         break;
4324                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4325                 handled += n;
4326                 addr += n;
4327                 len -= n;
4328                 v += n;
4329         } while (len);
4330
4331         return handled;
4332 }
4333
4334 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4335                         struct kvm_segment *var, int seg)
4336 {
4337         kvm_x86_ops->set_segment(vcpu, var, seg);
4338 }
4339
4340 void kvm_get_segment(struct kvm_vcpu *vcpu,
4341                      struct kvm_segment *var, int seg)
4342 {
4343         kvm_x86_ops->get_segment(vcpu, var, seg);
4344 }
4345
4346 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4347                            struct x86_exception *exception)
4348 {
4349         gpa_t t_gpa;
4350
4351         BUG_ON(!mmu_is_nested(vcpu));
4352
4353         /* NPT walks are always user-walks */
4354         access |= PFERR_USER_MASK;
4355         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4356
4357         return t_gpa;
4358 }
4359
4360 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4361                               struct x86_exception *exception)
4362 {
4363         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4364         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4365 }
4366
4367  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4368                                 struct x86_exception *exception)
4369 {
4370         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4371         access |= PFERR_FETCH_MASK;
4372         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4373 }
4374
4375 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4376                                struct x86_exception *exception)
4377 {
4378         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4379         access |= PFERR_WRITE_MASK;
4380         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4381 }
4382
4383 /* uses this to access any guest's mapped memory without checking CPL */
4384 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4385                                 struct x86_exception *exception)
4386 {
4387         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4388 }
4389
4390 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4391                                       struct kvm_vcpu *vcpu, u32 access,
4392                                       struct x86_exception *exception)
4393 {
4394         void *data = val;
4395         int r = X86EMUL_CONTINUE;
4396
4397         while (bytes) {
4398                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4399                                                             exception);
4400                 unsigned offset = addr & (PAGE_SIZE-1);
4401                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4402                 int ret;
4403
4404                 if (gpa == UNMAPPED_GVA)
4405                         return X86EMUL_PROPAGATE_FAULT;
4406                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4407                                                offset, toread);
4408                 if (ret < 0) {
4409                         r = X86EMUL_IO_NEEDED;
4410                         goto out;
4411                 }
4412
4413                 bytes -= toread;
4414                 data += toread;
4415                 addr += toread;
4416         }
4417 out:
4418         return r;
4419 }
4420
4421 /* used for instruction fetching */
4422 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4423                                 gva_t addr, void *val, unsigned int bytes,
4424                                 struct x86_exception *exception)
4425 {
4426         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4427         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4428         unsigned offset;
4429         int ret;
4430
4431         /* Inline kvm_read_guest_virt_helper for speed.  */
4432         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4433                                                     exception);
4434         if (unlikely(gpa == UNMAPPED_GVA))
4435                 return X86EMUL_PROPAGATE_FAULT;
4436
4437         offset = addr & (PAGE_SIZE-1);
4438         if (WARN_ON(offset + bytes > PAGE_SIZE))
4439                 bytes = (unsigned)PAGE_SIZE - offset;
4440         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4441                                        offset, bytes);
4442         if (unlikely(ret < 0))
4443                 return X86EMUL_IO_NEEDED;
4444
4445         return X86EMUL_CONTINUE;
4446 }
4447
4448 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4449                                gva_t addr, void *val, unsigned int bytes,
4450                                struct x86_exception *exception)
4451 {
4452         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4453         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4454
4455         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4456                                           exception);
4457 }
4458 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4459
4460 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4461                                       gva_t addr, void *val, unsigned int bytes,
4462                                       struct x86_exception *exception)
4463 {
4464         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4465         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4466 }
4467
4468 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4469                 unsigned long addr, void *val, unsigned int bytes)
4470 {
4471         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4472         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4473
4474         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4475 }
4476
4477 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4478                                        gva_t addr, void *val,
4479                                        unsigned int bytes,
4480                                        struct x86_exception *exception)
4481 {
4482         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4483         void *data = val;
4484         int r = X86EMUL_CONTINUE;
4485
4486         while (bytes) {
4487                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4488                                                              PFERR_WRITE_MASK,
4489                                                              exception);
4490                 unsigned offset = addr & (PAGE_SIZE-1);
4491                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4492                 int ret;
4493
4494                 if (gpa == UNMAPPED_GVA)
4495                         return X86EMUL_PROPAGATE_FAULT;
4496                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4497                 if (ret < 0) {
4498                         r = X86EMUL_IO_NEEDED;
4499                         goto out;
4500                 }
4501
4502                 bytes -= towrite;
4503                 data += towrite;
4504                 addr += towrite;
4505         }
4506 out:
4507         return r;
4508 }
4509 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4510
4511 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4512                             gpa_t gpa, bool write)
4513 {
4514         /* For APIC access vmexit */
4515         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4516                 return 1;
4517
4518         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4519                 trace_vcpu_match_mmio(gva, gpa, write, true);
4520                 return 1;
4521         }
4522
4523         return 0;
4524 }
4525
4526 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4527                                 gpa_t *gpa, struct x86_exception *exception,
4528                                 bool write)
4529 {
4530         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4531                 | (write ? PFERR_WRITE_MASK : 0);
4532
4533         /*
4534          * currently PKRU is only applied to ept enabled guest so
4535          * there is no pkey in EPT page table for L1 guest or EPT
4536          * shadow page table for L2 guest.
4537          */
4538         if (vcpu_match_mmio_gva(vcpu, gva)
4539             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4540                                  vcpu->arch.access, 0, access)) {
4541                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4542                                         (gva & (PAGE_SIZE - 1));
4543                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4544                 return 1;
4545         }
4546
4547         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4548
4549         if (*gpa == UNMAPPED_GVA)
4550                 return -1;
4551
4552         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4553 }
4554
4555 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4556                         const void *val, int bytes)
4557 {
4558         int ret;
4559
4560         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4561         if (ret < 0)
4562                 return 0;
4563         kvm_page_track_write(vcpu, gpa, val, bytes);
4564         return 1;
4565 }
4566
4567 struct read_write_emulator_ops {
4568         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4569                                   int bytes);
4570         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4571                                   void *val, int bytes);
4572         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4573                                int bytes, void *val);
4574         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4575                                     void *val, int bytes);
4576         bool write;
4577 };
4578
4579 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4580 {
4581         if (vcpu->mmio_read_completed) {
4582                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4583                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4584                 vcpu->mmio_read_completed = 0;
4585                 return 1;
4586         }
4587
4588         return 0;
4589 }
4590
4591 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4592                         void *val, int bytes)
4593 {
4594         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4595 }
4596
4597 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4598                          void *val, int bytes)
4599 {
4600         return emulator_write_phys(vcpu, gpa, val, bytes);
4601 }
4602
4603 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4604 {
4605         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4606         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4607 }
4608
4609 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4610                           void *val, int bytes)
4611 {
4612         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4613         return X86EMUL_IO_NEEDED;
4614 }
4615
4616 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4617                            void *val, int bytes)
4618 {
4619         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4620
4621         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4622         return X86EMUL_CONTINUE;
4623 }
4624
4625 static const struct read_write_emulator_ops read_emultor = {
4626         .read_write_prepare = read_prepare,
4627         .read_write_emulate = read_emulate,
4628         .read_write_mmio = vcpu_mmio_read,
4629         .read_write_exit_mmio = read_exit_mmio,
4630 };
4631
4632 static const struct read_write_emulator_ops write_emultor = {
4633         .read_write_emulate = write_emulate,
4634         .read_write_mmio = write_mmio,
4635         .read_write_exit_mmio = write_exit_mmio,
4636         .write = true,
4637 };
4638
4639 static int emulator_read_write_onepage(unsigned long addr, void *val,
4640                                        unsigned int bytes,
4641                                        struct x86_exception *exception,
4642                                        struct kvm_vcpu *vcpu,
4643                                        const struct read_write_emulator_ops *ops)
4644 {
4645         gpa_t gpa;
4646         int handled, ret;
4647         bool write = ops->write;
4648         struct kvm_mmio_fragment *frag;
4649         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4650
4651         /*
4652          * If the exit was due to a NPF we may already have a GPA.
4653          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4654          * Note, this cannot be used on string operations since string
4655          * operation using rep will only have the initial GPA from the NPF
4656          * occurred.
4657          */
4658         if (vcpu->arch.gpa_available &&
4659             emulator_can_use_gpa(ctxt) &&
4660             vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4661             (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4662                 gpa = exception->address;
4663                 goto mmio;
4664         }
4665
4666         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4667
4668         if (ret < 0)
4669                 return X86EMUL_PROPAGATE_FAULT;
4670
4671         /* For APIC access vmexit */
4672         if (ret)
4673                 goto mmio;
4674
4675         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4676                 return X86EMUL_CONTINUE;
4677
4678 mmio:
4679         /*
4680          * Is this MMIO handled locally?
4681          */
4682         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4683         if (handled == bytes)
4684                 return X86EMUL_CONTINUE;
4685
4686         gpa += handled;
4687         bytes -= handled;
4688         val += handled;
4689
4690         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4691         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4692         frag->gpa = gpa;
4693         frag->data = val;
4694         frag->len = bytes;
4695         return X86EMUL_CONTINUE;
4696 }
4697
4698 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4699                         unsigned long addr,
4700                         void *val, unsigned int bytes,
4701                         struct x86_exception *exception,
4702                         const struct read_write_emulator_ops *ops)
4703 {
4704         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4705         gpa_t gpa;
4706         int rc;
4707
4708         if (ops->read_write_prepare &&
4709                   ops->read_write_prepare(vcpu, val, bytes))
4710                 return X86EMUL_CONTINUE;
4711
4712         vcpu->mmio_nr_fragments = 0;
4713
4714         /* Crossing a page boundary? */
4715         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4716                 int now;
4717
4718                 now = -addr & ~PAGE_MASK;
4719                 rc = emulator_read_write_onepage(addr, val, now, exception,
4720                                                  vcpu, ops);
4721
4722                 if (rc != X86EMUL_CONTINUE)
4723                         return rc;
4724                 addr += now;
4725                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4726                         addr = (u32)addr;
4727                 val += now;
4728                 bytes -= now;
4729         }
4730
4731         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4732                                          vcpu, ops);
4733         if (rc != X86EMUL_CONTINUE)
4734                 return rc;
4735
4736         if (!vcpu->mmio_nr_fragments)
4737                 return rc;
4738
4739         gpa = vcpu->mmio_fragments[0].gpa;
4740
4741         vcpu->mmio_needed = 1;
4742         vcpu->mmio_cur_fragment = 0;
4743
4744         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4745         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4746         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4747         vcpu->run->mmio.phys_addr = gpa;
4748
4749         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4750 }
4751
4752 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4753                                   unsigned long addr,
4754                                   void *val,
4755                                   unsigned int bytes,
4756                                   struct x86_exception *exception)
4757 {
4758         return emulator_read_write(ctxt, addr, val, bytes,
4759                                    exception, &read_emultor);
4760 }
4761
4762 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4763                             unsigned long addr,
4764                             const void *val,
4765                             unsigned int bytes,
4766                             struct x86_exception *exception)
4767 {
4768         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4769                                    exception, &write_emultor);
4770 }
4771
4772 #define CMPXCHG_TYPE(t, ptr, old, new) \
4773         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4774
4775 #ifdef CONFIG_X86_64
4776 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4777 #else
4778 #  define CMPXCHG64(ptr, old, new) \
4779         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4780 #endif
4781
4782 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4783                                      unsigned long addr,
4784                                      const void *old,
4785                                      const void *new,
4786                                      unsigned int bytes,
4787                                      struct x86_exception *exception)
4788 {
4789         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4790         gpa_t gpa;
4791         struct page *page;
4792         char *kaddr;
4793         bool exchanged;
4794
4795         /* guests cmpxchg8b have to be emulated atomically */
4796         if (bytes > 8 || (bytes & (bytes - 1)))
4797                 goto emul_write;
4798
4799         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4800
4801         if (gpa == UNMAPPED_GVA ||
4802             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4803                 goto emul_write;
4804
4805         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4806                 goto emul_write;
4807
4808         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4809         if (is_error_page(page))
4810                 goto emul_write;
4811
4812         kaddr = kmap_atomic(page);
4813         kaddr += offset_in_page(gpa);
4814         switch (bytes) {
4815         case 1:
4816                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4817                 break;
4818         case 2:
4819                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4820                 break;
4821         case 4:
4822                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4823                 break;
4824         case 8:
4825                 exchanged = CMPXCHG64(kaddr, old, new);
4826                 break;
4827         default:
4828                 BUG();
4829         }
4830         kunmap_atomic(kaddr);
4831         kvm_release_page_dirty(page);
4832
4833         if (!exchanged)
4834                 return X86EMUL_CMPXCHG_FAILED;
4835
4836         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4837         kvm_page_track_write(vcpu, gpa, new, bytes);
4838
4839         return X86EMUL_CONTINUE;
4840
4841 emul_write:
4842         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4843
4844         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4845 }
4846
4847 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4848 {
4849         int r = 0, i;
4850
4851         for (i = 0; i < vcpu->arch.pio.count; i++) {
4852                 if (vcpu->arch.pio.in)
4853                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4854                                             vcpu->arch.pio.size, pd);
4855                 else
4856                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4857                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
4858                                              pd);
4859                 if (r)
4860                         break;
4861                 pd += vcpu->arch.pio.size;
4862         }
4863         return r;
4864 }
4865
4866 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4867                                unsigned short port, void *val,
4868                                unsigned int count, bool in)
4869 {
4870         vcpu->arch.pio.port = port;
4871         vcpu->arch.pio.in = in;
4872         vcpu->arch.pio.count  = count;
4873         vcpu->arch.pio.size = size;
4874
4875         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4876                 vcpu->arch.pio.count = 0;
4877                 return 1;
4878         }
4879
4880         vcpu->run->exit_reason = KVM_EXIT_IO;
4881         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4882         vcpu->run->io.size = size;
4883         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4884         vcpu->run->io.count = count;
4885         vcpu->run->io.port = port;
4886
4887         return 0;
4888 }
4889
4890 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4891                                     int size, unsigned short port, void *val,
4892                                     unsigned int count)
4893 {
4894         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4895         int ret;
4896
4897         if (vcpu->arch.pio.count)
4898                 goto data_avail;
4899
4900         memset(vcpu->arch.pio_data, 0, size * count);
4901
4902         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4903         if (ret) {
4904 data_avail:
4905                 memcpy(val, vcpu->arch.pio_data, size * count);
4906                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4907                 vcpu->arch.pio.count = 0;
4908                 return 1;
4909         }
4910
4911         return 0;
4912 }
4913
4914 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4915                                      int size, unsigned short port,
4916                                      const void *val, unsigned int count)
4917 {
4918         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4919
4920         memcpy(vcpu->arch.pio_data, val, size * count);
4921         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4922         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4923 }
4924
4925 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4926 {
4927         return kvm_x86_ops->get_segment_base(vcpu, seg);
4928 }
4929
4930 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4931 {
4932         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4933 }
4934
4935 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4936 {
4937         if (!need_emulate_wbinvd(vcpu))
4938                 return X86EMUL_CONTINUE;
4939
4940         if (kvm_x86_ops->has_wbinvd_exit()) {
4941                 int cpu = get_cpu();
4942
4943                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4944                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4945                                 wbinvd_ipi, NULL, 1);
4946                 put_cpu();
4947                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4948         } else
4949                 wbinvd();
4950         return X86EMUL_CONTINUE;
4951 }
4952
4953 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4954 {
4955         kvm_emulate_wbinvd_noskip(vcpu);
4956         return kvm_skip_emulated_instruction(vcpu);
4957 }
4958 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4959
4960
4961
4962 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4963 {
4964         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4965 }
4966
4967 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4968                            unsigned long *dest)
4969 {
4970         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4971 }
4972
4973 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4974                            unsigned long value)
4975 {
4976
4977         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4978 }
4979
4980 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4981 {
4982         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4983 }
4984
4985 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4986 {
4987         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4988         unsigned long value;
4989
4990         switch (cr) {
4991         case 0:
4992                 value = kvm_read_cr0(vcpu);
4993                 break;
4994         case 2:
4995                 value = vcpu->arch.cr2;
4996                 break;
4997         case 3:
4998                 value = kvm_read_cr3(vcpu);
4999                 break;
5000         case 4:
5001                 value = kvm_read_cr4(vcpu);
5002                 break;
5003         case 8:
5004                 value = kvm_get_cr8(vcpu);
5005                 break;
5006         default:
5007                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5008                 return 0;
5009         }
5010
5011         return value;
5012 }
5013
5014 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5015 {
5016         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5017         int res = 0;
5018
5019         switch (cr) {
5020         case 0:
5021                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5022                 break;
5023         case 2:
5024                 vcpu->arch.cr2 = val;
5025                 break;
5026         case 3:
5027                 res = kvm_set_cr3(vcpu, val);
5028                 break;
5029         case 4:
5030                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5031                 break;
5032         case 8:
5033                 res = kvm_set_cr8(vcpu, val);
5034                 break;
5035         default:
5036                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5037                 res = -1;
5038         }
5039
5040         return res;
5041 }
5042
5043 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5044 {
5045         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5046 }
5047
5048 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5049 {
5050         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5051 }
5052
5053 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5054 {
5055         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5056 }
5057
5058 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5059 {
5060         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5061 }
5062
5063 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5064 {
5065         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5066 }
5067
5068 static unsigned long emulator_get_cached_segment_base(
5069         struct x86_emulate_ctxt *ctxt, int seg)
5070 {
5071         return get_segment_base(emul_to_vcpu(ctxt), seg);
5072 }
5073
5074 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5075                                  struct desc_struct *desc, u32 *base3,
5076                                  int seg)
5077 {
5078         struct kvm_segment var;
5079
5080         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5081         *selector = var.selector;
5082
5083         if (var.unusable) {
5084                 memset(desc, 0, sizeof(*desc));
5085                 if (base3)
5086                         *base3 = 0;
5087                 return false;
5088         }
5089
5090         if (var.g)
5091                 var.limit >>= 12;
5092         set_desc_limit(desc, var.limit);
5093         set_desc_base(desc, (unsigned long)var.base);
5094 #ifdef CONFIG_X86_64
5095         if (base3)
5096                 *base3 = var.base >> 32;
5097 #endif
5098         desc->type = var.type;
5099         desc->s = var.s;
5100         desc->dpl = var.dpl;
5101         desc->p = var.present;
5102         desc->avl = var.avl;
5103         desc->l = var.l;
5104         desc->d = var.db;
5105         desc->g = var.g;
5106
5107         return true;
5108 }
5109
5110 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5111                                  struct desc_struct *desc, u32 base3,
5112                                  int seg)
5113 {
5114         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5115         struct kvm_segment var;
5116
5117         var.selector = selector;
5118         var.base = get_desc_base(desc);
5119 #ifdef CONFIG_X86_64
5120         var.base |= ((u64)base3) << 32;
5121 #endif
5122         var.limit = get_desc_limit(desc);
5123         if (desc->g)
5124                 var.limit = (var.limit << 12) | 0xfff;
5125         var.type = desc->type;
5126         var.dpl = desc->dpl;
5127         var.db = desc->d;
5128         var.s = desc->s;
5129         var.l = desc->l;
5130         var.g = desc->g;
5131         var.avl = desc->avl;
5132         var.present = desc->p;
5133         var.unusable = !var.present;
5134         var.padding = 0;
5135
5136         kvm_set_segment(vcpu, &var, seg);
5137         return;
5138 }
5139
5140 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5141                             u32 msr_index, u64 *pdata)
5142 {
5143         struct msr_data msr;
5144         int r;
5145
5146         msr.index = msr_index;
5147         msr.host_initiated = false;
5148         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5149         if (r)
5150                 return r;
5151
5152         *pdata = msr.data;
5153         return 0;
5154 }
5155
5156 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5157                             u32 msr_index, u64 data)
5158 {
5159         struct msr_data msr;
5160
5161         msr.data = data;
5162         msr.index = msr_index;
5163         msr.host_initiated = false;
5164         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5165 }
5166
5167 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5168 {
5169         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5170
5171         return vcpu->arch.smbase;
5172 }
5173
5174 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5175 {
5176         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5177
5178         vcpu->arch.smbase = smbase;
5179 }
5180
5181 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5182                               u32 pmc)
5183 {
5184         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5185 }
5186
5187 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5188                              u32 pmc, u64 *pdata)
5189 {
5190         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5191 }
5192
5193 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5194 {
5195         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5196 }
5197
5198 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5199 {
5200         preempt_disable();
5201         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5202 }
5203
5204 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5205 {
5206         preempt_enable();
5207 }
5208
5209 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5210                               struct x86_instruction_info *info,
5211                               enum x86_intercept_stage stage)
5212 {
5213         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5214 }
5215
5216 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5217                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5218 {
5219         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5220 }
5221
5222 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5223 {
5224         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5225 }
5226
5227 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5228 {
5229         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5230 }
5231
5232 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5233 {
5234         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5235 }
5236
5237 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5238 {
5239         return emul_to_vcpu(ctxt)->arch.hflags;
5240 }
5241
5242 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5243 {
5244         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5245 }
5246
5247 static const struct x86_emulate_ops emulate_ops = {
5248         .read_gpr            = emulator_read_gpr,
5249         .write_gpr           = emulator_write_gpr,
5250         .read_std            = kvm_read_guest_virt_system,
5251         .write_std           = kvm_write_guest_virt_system,
5252         .read_phys           = kvm_read_guest_phys_system,
5253         .fetch               = kvm_fetch_guest_virt,
5254         .read_emulated       = emulator_read_emulated,
5255         .write_emulated      = emulator_write_emulated,
5256         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5257         .invlpg              = emulator_invlpg,
5258         .pio_in_emulated     = emulator_pio_in_emulated,
5259         .pio_out_emulated    = emulator_pio_out_emulated,
5260         .get_segment         = emulator_get_segment,
5261         .set_segment         = emulator_set_segment,
5262         .get_cached_segment_base = emulator_get_cached_segment_base,
5263         .get_gdt             = emulator_get_gdt,
5264         .get_idt             = emulator_get_idt,
5265         .set_gdt             = emulator_set_gdt,
5266         .set_idt             = emulator_set_idt,
5267         .get_cr              = emulator_get_cr,
5268         .set_cr              = emulator_set_cr,
5269         .cpl                 = emulator_get_cpl,
5270         .get_dr              = emulator_get_dr,
5271         .set_dr              = emulator_set_dr,
5272         .get_smbase          = emulator_get_smbase,
5273         .set_smbase          = emulator_set_smbase,
5274         .set_msr             = emulator_set_msr,
5275         .get_msr             = emulator_get_msr,
5276         .check_pmc           = emulator_check_pmc,
5277         .read_pmc            = emulator_read_pmc,
5278         .halt                = emulator_halt,
5279         .wbinvd              = emulator_wbinvd,
5280         .fix_hypercall       = emulator_fix_hypercall,
5281         .get_fpu             = emulator_get_fpu,
5282         .put_fpu             = emulator_put_fpu,
5283         .intercept           = emulator_intercept,
5284         .get_cpuid           = emulator_get_cpuid,
5285         .set_nmi_mask        = emulator_set_nmi_mask,
5286         .get_hflags          = emulator_get_hflags,
5287         .set_hflags          = emulator_set_hflags,
5288 };
5289
5290 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5291 {
5292         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5293         /*
5294          * an sti; sti; sequence only disable interrupts for the first
5295          * instruction. So, if the last instruction, be it emulated or
5296          * not, left the system with the INT_STI flag enabled, it
5297          * means that the last instruction is an sti. We should not
5298          * leave the flag on in this case. The same goes for mov ss
5299          */
5300         if (int_shadow & mask)
5301                 mask = 0;
5302         if (unlikely(int_shadow || mask)) {
5303                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5304                 if (!mask)
5305                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5306         }
5307 }
5308
5309 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5310 {
5311         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5312         if (ctxt->exception.vector == PF_VECTOR)
5313                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5314
5315         if (ctxt->exception.error_code_valid)
5316                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5317                                       ctxt->exception.error_code);
5318         else
5319                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5320         return false;
5321 }
5322
5323 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5324 {
5325         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5326         int cs_db, cs_l;
5327
5328         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5329
5330         ctxt->eflags = kvm_get_rflags(vcpu);
5331         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5332
5333         ctxt->eip = kvm_rip_read(vcpu);
5334         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5335                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5336                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5337                      cs_db                              ? X86EMUL_MODE_PROT32 :
5338                                                           X86EMUL_MODE_PROT16;
5339         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5340         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5341         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5342
5343         init_decode_cache(ctxt);
5344         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5345 }
5346
5347 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5348 {
5349         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5350         int ret;
5351
5352         init_emulate_ctxt(vcpu);
5353
5354         ctxt->op_bytes = 2;
5355         ctxt->ad_bytes = 2;
5356         ctxt->_eip = ctxt->eip + inc_eip;
5357         ret = emulate_int_real(ctxt, irq);
5358
5359         if (ret != X86EMUL_CONTINUE)
5360                 return EMULATE_FAIL;
5361
5362         ctxt->eip = ctxt->_eip;
5363         kvm_rip_write(vcpu, ctxt->eip);
5364         kvm_set_rflags(vcpu, ctxt->eflags);
5365
5366         if (irq == NMI_VECTOR)
5367                 vcpu->arch.nmi_pending = 0;
5368         else
5369                 vcpu->arch.interrupt.pending = false;
5370
5371         return EMULATE_DONE;
5372 }
5373 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5374
5375 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5376 {
5377         int r = EMULATE_DONE;
5378
5379         ++vcpu->stat.insn_emulation_fail;
5380         trace_kvm_emulate_insn_failed(vcpu);
5381         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5382                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5383                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5384                 vcpu->run->internal.ndata = 0;
5385                 r = EMULATE_FAIL;
5386         }
5387         kvm_queue_exception(vcpu, UD_VECTOR);
5388
5389         return r;
5390 }
5391
5392 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5393                                   bool write_fault_to_shadow_pgtable,
5394                                   int emulation_type)
5395 {
5396         gpa_t gpa = cr2;
5397         kvm_pfn_t pfn;
5398
5399         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5400                 return false;
5401
5402         if (!vcpu->arch.mmu.direct_map) {
5403                 /*
5404                  * Write permission should be allowed since only
5405                  * write access need to be emulated.
5406                  */
5407                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5408
5409                 /*
5410                  * If the mapping is invalid in guest, let cpu retry
5411                  * it to generate fault.
5412                  */
5413                 if (gpa == UNMAPPED_GVA)
5414                         return true;
5415         }
5416
5417         /*
5418          * Do not retry the unhandleable instruction if it faults on the
5419          * readonly host memory, otherwise it will goto a infinite loop:
5420          * retry instruction -> write #PF -> emulation fail -> retry
5421          * instruction -> ...
5422          */
5423         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5424
5425         /*
5426          * If the instruction failed on the error pfn, it can not be fixed,
5427          * report the error to userspace.
5428          */
5429         if (is_error_noslot_pfn(pfn))
5430                 return false;
5431
5432         kvm_release_pfn_clean(pfn);
5433
5434         /* The instructions are well-emulated on direct mmu. */
5435         if (vcpu->arch.mmu.direct_map) {
5436                 unsigned int indirect_shadow_pages;
5437
5438                 spin_lock(&vcpu->kvm->mmu_lock);
5439                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5440                 spin_unlock(&vcpu->kvm->mmu_lock);
5441
5442                 if (indirect_shadow_pages)
5443                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5444
5445                 return true;
5446         }
5447
5448         /*
5449          * if emulation was due to access to shadowed page table
5450          * and it failed try to unshadow page and re-enter the
5451          * guest to let CPU execute the instruction.
5452          */
5453         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5454
5455         /*
5456          * If the access faults on its page table, it can not
5457          * be fixed by unprotecting shadow page and it should
5458          * be reported to userspace.
5459          */
5460         return !write_fault_to_shadow_pgtable;
5461 }
5462
5463 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5464                               unsigned long cr2,  int emulation_type)
5465 {
5466         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5467         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5468
5469         last_retry_eip = vcpu->arch.last_retry_eip;
5470         last_retry_addr = vcpu->arch.last_retry_addr;
5471
5472         /*
5473          * If the emulation is caused by #PF and it is non-page_table
5474          * writing instruction, it means the VM-EXIT is caused by shadow
5475          * page protected, we can zap the shadow page and retry this
5476          * instruction directly.
5477          *
5478          * Note: if the guest uses a non-page-table modifying instruction
5479          * on the PDE that points to the instruction, then we will unmap
5480          * the instruction and go to an infinite loop. So, we cache the
5481          * last retried eip and the last fault address, if we meet the eip
5482          * and the address again, we can break out of the potential infinite
5483          * loop.
5484          */
5485         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5486
5487         if (!(emulation_type & EMULTYPE_RETRY))
5488                 return false;
5489
5490         if (x86_page_table_writing_insn(ctxt))
5491                 return false;
5492
5493         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5494                 return false;
5495
5496         vcpu->arch.last_retry_eip = ctxt->eip;
5497         vcpu->arch.last_retry_addr = cr2;
5498
5499         if (!vcpu->arch.mmu.direct_map)
5500                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5501
5502         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5503
5504         return true;
5505 }
5506
5507 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5508 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5509
5510 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5511 {
5512         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5513                 /* This is a good place to trace that we are exiting SMM.  */
5514                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5515
5516                 /* Process a latched INIT or SMI, if any.  */
5517                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5518         }
5519
5520         kvm_mmu_reset_context(vcpu);
5521 }
5522
5523 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5524 {
5525         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5526
5527         vcpu->arch.hflags = emul_flags;
5528
5529         if (changed & HF_SMM_MASK)
5530                 kvm_smm_changed(vcpu);
5531 }
5532
5533 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5534                                 unsigned long *db)
5535 {
5536         u32 dr6 = 0;
5537         int i;
5538         u32 enable, rwlen;
5539
5540         enable = dr7;
5541         rwlen = dr7 >> 16;
5542         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5543                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5544                         dr6 |= (1 << i);
5545         return dr6;
5546 }
5547
5548 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5549 {
5550         struct kvm_run *kvm_run = vcpu->run;
5551
5552         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5553                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5554                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5555                 kvm_run->debug.arch.exception = DB_VECTOR;
5556                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5557                 *r = EMULATE_USER_EXIT;
5558         } else {
5559                 /*
5560                  * "Certain debug exceptions may clear bit 0-3.  The
5561                  * remaining contents of the DR6 register are never
5562                  * cleared by the processor".
5563                  */
5564                 vcpu->arch.dr6 &= ~15;
5565                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5566                 kvm_queue_exception(vcpu, DB_VECTOR);
5567         }
5568 }
5569
5570 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5571 {
5572         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5573         int r = EMULATE_DONE;
5574
5575         kvm_x86_ops->skip_emulated_instruction(vcpu);
5576
5577         /*
5578          * rflags is the old, "raw" value of the flags.  The new value has
5579          * not been saved yet.
5580          *
5581          * This is correct even for TF set by the guest, because "the
5582          * processor will not generate this exception after the instruction
5583          * that sets the TF flag".
5584          */
5585         if (unlikely(rflags & X86_EFLAGS_TF))
5586                 kvm_vcpu_do_singlestep(vcpu, &r);
5587         return r == EMULATE_DONE;
5588 }
5589 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5590
5591 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5592 {
5593         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5594             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5595                 struct kvm_run *kvm_run = vcpu->run;
5596                 unsigned long eip = kvm_get_linear_rip(vcpu);
5597                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5598                                            vcpu->arch.guest_debug_dr7,
5599                                            vcpu->arch.eff_db);
5600
5601                 if (dr6 != 0) {
5602                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5603                         kvm_run->debug.arch.pc = eip;
5604                         kvm_run->debug.arch.exception = DB_VECTOR;
5605                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5606                         *r = EMULATE_USER_EXIT;
5607                         return true;
5608                 }
5609         }
5610
5611         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5612             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5613                 unsigned long eip = kvm_get_linear_rip(vcpu);
5614                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5615                                            vcpu->arch.dr7,
5616                                            vcpu->arch.db);
5617
5618                 if (dr6 != 0) {
5619                         vcpu->arch.dr6 &= ~15;
5620                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5621                         kvm_queue_exception(vcpu, DB_VECTOR);
5622                         *r = EMULATE_DONE;
5623                         return true;
5624                 }
5625         }
5626
5627         return false;
5628 }
5629
5630 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5631                             unsigned long cr2,
5632                             int emulation_type,
5633                             void *insn,
5634                             int insn_len)
5635 {
5636         int r;
5637         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5638         bool writeback = true;
5639         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5640
5641         /*
5642          * Clear write_fault_to_shadow_pgtable here to ensure it is
5643          * never reused.
5644          */
5645         vcpu->arch.write_fault_to_shadow_pgtable = false;
5646         kvm_clear_exception_queue(vcpu);
5647
5648         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5649                 init_emulate_ctxt(vcpu);
5650
5651                 /*
5652                  * We will reenter on the same instruction since
5653                  * we do not set complete_userspace_io.  This does not
5654                  * handle watchpoints yet, those would be handled in
5655                  * the emulate_ops.
5656                  */
5657                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5658                         return r;
5659
5660                 ctxt->interruptibility = 0;
5661                 ctxt->have_exception = false;
5662                 ctxt->exception.vector = -1;
5663                 ctxt->perm_ok = false;
5664
5665                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5666
5667                 r = x86_decode_insn(ctxt, insn, insn_len);
5668
5669                 trace_kvm_emulate_insn_start(vcpu);
5670                 ++vcpu->stat.insn_emulation;
5671                 if (r != EMULATION_OK)  {
5672                         if (emulation_type & EMULTYPE_TRAP_UD)
5673                                 return EMULATE_FAIL;
5674                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5675                                                 emulation_type))
5676                                 return EMULATE_DONE;
5677                         if (emulation_type & EMULTYPE_SKIP)
5678                                 return EMULATE_FAIL;
5679                         return handle_emulation_failure(vcpu);
5680                 }
5681         }
5682
5683         if (emulation_type & EMULTYPE_SKIP) {
5684                 kvm_rip_write(vcpu, ctxt->_eip);
5685                 if (ctxt->eflags & X86_EFLAGS_RF)
5686                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5687                 return EMULATE_DONE;
5688         }
5689
5690         if (retry_instruction(ctxt, cr2, emulation_type))
5691                 return EMULATE_DONE;
5692
5693         /* this is needed for vmware backdoor interface to work since it
5694            changes registers values  during IO operation */
5695         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5696                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5697                 emulator_invalidate_register_cache(ctxt);
5698         }
5699
5700 restart:
5701         /* Save the faulting GPA (cr2) in the address field */
5702         ctxt->exception.address = cr2;
5703
5704         r = x86_emulate_insn(ctxt);
5705
5706         if (r == EMULATION_INTERCEPTED)
5707                 return EMULATE_DONE;
5708
5709         if (r == EMULATION_FAILED) {
5710                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5711                                         emulation_type))
5712                         return EMULATE_DONE;
5713
5714                 return handle_emulation_failure(vcpu);
5715         }
5716
5717         if (ctxt->have_exception) {
5718                 r = EMULATE_DONE;
5719                 if (inject_emulated_exception(vcpu))
5720                         return r;
5721         } else if (vcpu->arch.pio.count) {
5722                 if (!vcpu->arch.pio.in) {
5723                         /* FIXME: return into emulator if single-stepping.  */
5724                         vcpu->arch.pio.count = 0;
5725                 } else {
5726                         writeback = false;
5727                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5728                 }
5729                 r = EMULATE_USER_EXIT;
5730         } else if (vcpu->mmio_needed) {
5731                 if (!vcpu->mmio_is_write)
5732                         writeback = false;
5733                 r = EMULATE_USER_EXIT;
5734                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5735         } else if (r == EMULATION_RESTART)
5736                 goto restart;
5737         else
5738                 r = EMULATE_DONE;
5739
5740         if (writeback) {
5741                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5742                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5743                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5744                 kvm_rip_write(vcpu, ctxt->eip);
5745                 if (r == EMULATE_DONE &&
5746                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5747                         kvm_vcpu_do_singlestep(vcpu, &r);
5748                 if (!ctxt->have_exception ||
5749                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5750                         __kvm_set_rflags(vcpu, ctxt->eflags);
5751
5752                 /*
5753                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5754                  * do nothing, and it will be requested again as soon as
5755                  * the shadow expires.  But we still need to check here,
5756                  * because POPF has no interrupt shadow.
5757                  */
5758                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5759                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5760         } else
5761                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5762
5763         return r;
5764 }
5765 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5766
5767 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5768 {
5769         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5770         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5771                                             size, port, &val, 1);
5772         /* do not return to emulator after return from userspace */
5773         vcpu->arch.pio.count = 0;
5774         return ret;
5775 }
5776 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5777
5778 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5779 {
5780         unsigned long val;
5781
5782         /* We should only ever be called with arch.pio.count equal to 1 */
5783         BUG_ON(vcpu->arch.pio.count != 1);
5784
5785         /* For size less than 4 we merge, else we zero extend */
5786         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5787                                         : 0;
5788
5789         /*
5790          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5791          * the copy and tracing
5792          */
5793         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5794                                  vcpu->arch.pio.port, &val, 1);
5795         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5796
5797         return 1;
5798 }
5799
5800 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5801 {
5802         unsigned long val;
5803         int ret;
5804
5805         /* For size less than 4 we merge, else we zero extend */
5806         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5807
5808         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5809                                        &val, 1);
5810         if (ret) {
5811                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5812                 return ret;
5813         }
5814
5815         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5816
5817         return 0;
5818 }
5819 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5820
5821 static int kvmclock_cpu_down_prep(unsigned int cpu)
5822 {
5823         __this_cpu_write(cpu_tsc_khz, 0);
5824         return 0;
5825 }
5826
5827 static void tsc_khz_changed(void *data)
5828 {
5829         struct cpufreq_freqs *freq = data;
5830         unsigned long khz = 0;
5831
5832         if (data)
5833                 khz = freq->new;
5834         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5835                 khz = cpufreq_quick_get(raw_smp_processor_id());
5836         if (!khz)
5837                 khz = tsc_khz;
5838         __this_cpu_write(cpu_tsc_khz, khz);
5839 }
5840
5841 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5842                                      void *data)
5843 {
5844         struct cpufreq_freqs *freq = data;
5845         struct kvm *kvm;
5846         struct kvm_vcpu *vcpu;
5847         int i, send_ipi = 0;
5848
5849         /*
5850          * We allow guests to temporarily run on slowing clocks,
5851          * provided we notify them after, or to run on accelerating
5852          * clocks, provided we notify them before.  Thus time never
5853          * goes backwards.
5854          *
5855          * However, we have a problem.  We can't atomically update
5856          * the frequency of a given CPU from this function; it is
5857          * merely a notifier, which can be called from any CPU.
5858          * Changing the TSC frequency at arbitrary points in time
5859          * requires a recomputation of local variables related to
5860          * the TSC for each VCPU.  We must flag these local variables
5861          * to be updated and be sure the update takes place with the
5862          * new frequency before any guests proceed.
5863          *
5864          * Unfortunately, the combination of hotplug CPU and frequency
5865          * change creates an intractable locking scenario; the order
5866          * of when these callouts happen is undefined with respect to
5867          * CPU hotplug, and they can race with each other.  As such,
5868          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5869          * undefined; you can actually have a CPU frequency change take
5870          * place in between the computation of X and the setting of the
5871          * variable.  To protect against this problem, all updates of
5872          * the per_cpu tsc_khz variable are done in an interrupt
5873          * protected IPI, and all callers wishing to update the value
5874          * must wait for a synchronous IPI to complete (which is trivial
5875          * if the caller is on the CPU already).  This establishes the
5876          * necessary total order on variable updates.
5877          *
5878          * Note that because a guest time update may take place
5879          * anytime after the setting of the VCPU's request bit, the
5880          * correct TSC value must be set before the request.  However,
5881          * to ensure the update actually makes it to any guest which
5882          * starts running in hardware virtualization between the set
5883          * and the acquisition of the spinlock, we must also ping the
5884          * CPU after setting the request bit.
5885          *
5886          */
5887
5888         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5889                 return 0;
5890         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5891                 return 0;
5892
5893         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5894
5895         spin_lock(&kvm_lock);
5896         list_for_each_entry(kvm, &vm_list, vm_list) {
5897                 kvm_for_each_vcpu(i, vcpu, kvm) {
5898                         if (vcpu->cpu != freq->cpu)
5899                                 continue;
5900                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5901                         if (vcpu->cpu != smp_processor_id())
5902                                 send_ipi = 1;
5903                 }
5904         }
5905         spin_unlock(&kvm_lock);
5906
5907         if (freq->old < freq->new && send_ipi) {
5908                 /*
5909                  * We upscale the frequency.  Must make the guest
5910                  * doesn't see old kvmclock values while running with
5911                  * the new frequency, otherwise we risk the guest sees
5912                  * time go backwards.
5913                  *
5914                  * In case we update the frequency for another cpu
5915                  * (which might be in guest context) send an interrupt
5916                  * to kick the cpu out of guest context.  Next time
5917                  * guest context is entered kvmclock will be updated,
5918                  * so the guest will not see stale values.
5919                  */
5920                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5921         }
5922         return 0;
5923 }
5924
5925 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5926         .notifier_call  = kvmclock_cpufreq_notifier
5927 };
5928
5929 static int kvmclock_cpu_online(unsigned int cpu)
5930 {
5931         tsc_khz_changed(NULL);
5932         return 0;
5933 }
5934
5935 static void kvm_timer_init(void)
5936 {
5937         max_tsc_khz = tsc_khz;
5938
5939         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5940 #ifdef CONFIG_CPU_FREQ
5941                 struct cpufreq_policy policy;
5942                 int cpu;
5943
5944                 memset(&policy, 0, sizeof(policy));
5945                 cpu = get_cpu();
5946                 cpufreq_get_policy(&policy, cpu);
5947                 if (policy.cpuinfo.max_freq)
5948                         max_tsc_khz = policy.cpuinfo.max_freq;
5949                 put_cpu();
5950 #endif
5951                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5952                                           CPUFREQ_TRANSITION_NOTIFIER);
5953         }
5954         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5955
5956         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5957                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5958 }
5959
5960 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5961
5962 int kvm_is_in_guest(void)
5963 {
5964         return __this_cpu_read(current_vcpu) != NULL;
5965 }
5966
5967 static int kvm_is_user_mode(void)
5968 {
5969         int user_mode = 3;
5970
5971         if (__this_cpu_read(current_vcpu))
5972                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5973
5974         return user_mode != 0;
5975 }
5976
5977 static unsigned long kvm_get_guest_ip(void)
5978 {
5979         unsigned long ip = 0;
5980
5981         if (__this_cpu_read(current_vcpu))
5982                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5983
5984         return ip;
5985 }
5986
5987 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5988         .is_in_guest            = kvm_is_in_guest,
5989         .is_user_mode           = kvm_is_user_mode,
5990         .get_guest_ip           = kvm_get_guest_ip,
5991 };
5992
5993 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5994 {
5995         __this_cpu_write(current_vcpu, vcpu);
5996 }
5997 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5998
5999 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6000 {
6001         __this_cpu_write(current_vcpu, NULL);
6002 }
6003 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6004
6005 static void kvm_set_mmio_spte_mask(void)
6006 {
6007         u64 mask;
6008         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6009
6010         /*
6011          * Set the reserved bits and the present bit of an paging-structure
6012          * entry to generate page fault with PFER.RSV = 1.
6013          */
6014          /* Mask the reserved physical address bits. */
6015         mask = rsvd_bits(maxphyaddr, 51);
6016
6017         /* Set the present bit. */
6018         mask |= 1ull;
6019
6020 #ifdef CONFIG_X86_64
6021         /*
6022          * If reserved bit is not supported, clear the present bit to disable
6023          * mmio page fault.
6024          */
6025         if (maxphyaddr == 52)
6026                 mask &= ~1ull;
6027 #endif
6028
6029         kvm_mmu_set_mmio_spte_mask(mask, mask);
6030 }
6031
6032 #ifdef CONFIG_X86_64
6033 static void pvclock_gtod_update_fn(struct work_struct *work)
6034 {
6035         struct kvm *kvm;
6036
6037         struct kvm_vcpu *vcpu;
6038         int i;
6039
6040         spin_lock(&kvm_lock);
6041         list_for_each_entry(kvm, &vm_list, vm_list)
6042                 kvm_for_each_vcpu(i, vcpu, kvm)
6043                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6044         atomic_set(&kvm_guest_has_master_clock, 0);
6045         spin_unlock(&kvm_lock);
6046 }
6047
6048 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6049
6050 /*
6051  * Notification about pvclock gtod data update.
6052  */
6053 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6054                                void *priv)
6055 {
6056         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6057         struct timekeeper *tk = priv;
6058
6059         update_pvclock_gtod(tk);
6060
6061         /* disable master clock if host does not trust, or does not
6062          * use, TSC clocksource
6063          */
6064         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6065             atomic_read(&kvm_guest_has_master_clock) != 0)
6066                 queue_work(system_long_wq, &pvclock_gtod_work);
6067
6068         return 0;
6069 }
6070
6071 static struct notifier_block pvclock_gtod_notifier = {
6072         .notifier_call = pvclock_gtod_notify,
6073 };
6074 #endif
6075
6076 int kvm_arch_init(void *opaque)
6077 {
6078         int r;
6079         struct kvm_x86_ops *ops = opaque;
6080
6081         if (kvm_x86_ops) {
6082                 printk(KERN_ERR "kvm: already loaded the other module\n");
6083                 r = -EEXIST;
6084                 goto out;
6085         }
6086
6087         if (!ops->cpu_has_kvm_support()) {
6088                 printk(KERN_ERR "kvm: no hardware support\n");
6089                 r = -EOPNOTSUPP;
6090                 goto out;
6091         }
6092         if (ops->disabled_by_bios()) {
6093                 printk(KERN_ERR "kvm: disabled by bios\n");
6094                 r = -EOPNOTSUPP;
6095                 goto out;
6096         }
6097
6098         r = -ENOMEM;
6099         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6100         if (!shared_msrs) {
6101                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6102                 goto out;
6103         }
6104
6105         r = kvm_mmu_module_init();
6106         if (r)
6107                 goto out_free_percpu;
6108
6109         kvm_set_mmio_spte_mask();
6110
6111         kvm_x86_ops = ops;
6112
6113         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6114                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6115                         PT_PRESENT_MASK, 0);
6116         kvm_timer_init();
6117
6118         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6119
6120         if (boot_cpu_has(X86_FEATURE_XSAVE))
6121                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6122
6123         kvm_lapic_init();
6124 #ifdef CONFIG_X86_64
6125         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6126 #endif
6127
6128         return 0;
6129
6130 out_free_percpu:
6131         free_percpu(shared_msrs);
6132 out:
6133         return r;
6134 }
6135
6136 void kvm_arch_exit(void)
6137 {
6138         kvm_lapic_exit();
6139         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6140
6141         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6142                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6143                                             CPUFREQ_TRANSITION_NOTIFIER);
6144         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6145 #ifdef CONFIG_X86_64
6146         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6147 #endif
6148         kvm_x86_ops = NULL;
6149         kvm_mmu_module_exit();
6150         free_percpu(shared_msrs);
6151 }
6152
6153 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6154 {
6155         ++vcpu->stat.halt_exits;
6156         if (lapic_in_kernel(vcpu)) {
6157                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6158                 return 1;
6159         } else {
6160                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6161                 return 0;
6162         }
6163 }
6164 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6165
6166 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6167 {
6168         int ret = kvm_skip_emulated_instruction(vcpu);
6169         /*
6170          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6171          * KVM_EXIT_DEBUG here.
6172          */
6173         return kvm_vcpu_halt(vcpu) && ret;
6174 }
6175 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6176
6177 #ifdef CONFIG_X86_64
6178 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6179                                 unsigned long clock_type)
6180 {
6181         struct kvm_clock_pairing clock_pairing;
6182         struct timespec ts;
6183         u64 cycle;
6184         int ret;
6185
6186         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6187                 return -KVM_EOPNOTSUPP;
6188
6189         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6190                 return -KVM_EOPNOTSUPP;
6191
6192         clock_pairing.sec = ts.tv_sec;
6193         clock_pairing.nsec = ts.tv_nsec;
6194         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6195         clock_pairing.flags = 0;
6196
6197         ret = 0;
6198         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6199                             sizeof(struct kvm_clock_pairing)))
6200                 ret = -KVM_EFAULT;
6201
6202         return ret;
6203 }
6204 #endif
6205
6206 /*
6207  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6208  *
6209  * @apicid - apicid of vcpu to be kicked.
6210  */
6211 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6212 {
6213         struct kvm_lapic_irq lapic_irq;
6214
6215         lapic_irq.shorthand = 0;
6216         lapic_irq.dest_mode = 0;
6217         lapic_irq.dest_id = apicid;
6218         lapic_irq.msi_redir_hint = false;
6219
6220         lapic_irq.delivery_mode = APIC_DM_REMRD;
6221         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6222 }
6223
6224 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6225 {
6226         vcpu->arch.apicv_active = false;
6227         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6228 }
6229
6230 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6231 {
6232         unsigned long nr, a0, a1, a2, a3, ret;
6233         int op_64_bit, r;
6234
6235         r = kvm_skip_emulated_instruction(vcpu);
6236
6237         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6238                 return kvm_hv_hypercall(vcpu);
6239
6240         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6241         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6242         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6243         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6244         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6245
6246         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6247
6248         op_64_bit = is_64_bit_mode(vcpu);
6249         if (!op_64_bit) {
6250                 nr &= 0xFFFFFFFF;
6251                 a0 &= 0xFFFFFFFF;
6252                 a1 &= 0xFFFFFFFF;
6253                 a2 &= 0xFFFFFFFF;
6254                 a3 &= 0xFFFFFFFF;
6255         }
6256
6257         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6258                 ret = -KVM_EPERM;
6259                 goto out;
6260         }
6261
6262         switch (nr) {
6263         case KVM_HC_VAPIC_POLL_IRQ:
6264                 ret = 0;
6265                 break;
6266         case KVM_HC_KICK_CPU:
6267                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6268                 ret = 0;
6269                 break;
6270 #ifdef CONFIG_X86_64
6271         case KVM_HC_CLOCK_PAIRING:
6272                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6273                 break;
6274 #endif
6275         default:
6276                 ret = -KVM_ENOSYS;
6277                 break;
6278         }
6279 out:
6280         if (!op_64_bit)
6281                 ret = (u32)ret;
6282         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6283         ++vcpu->stat.hypercalls;
6284         return r;
6285 }
6286 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6287
6288 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6289 {
6290         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6291         char instruction[3];
6292         unsigned long rip = kvm_rip_read(vcpu);
6293
6294         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6295
6296         return emulator_write_emulated(ctxt, rip, instruction, 3,
6297                 &ctxt->exception);
6298 }
6299
6300 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6301 {
6302         return vcpu->run->request_interrupt_window &&
6303                 likely(!pic_in_kernel(vcpu->kvm));
6304 }
6305
6306 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6307 {
6308         struct kvm_run *kvm_run = vcpu->run;
6309
6310         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6311         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6312         kvm_run->cr8 = kvm_get_cr8(vcpu);
6313         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6314         kvm_run->ready_for_interrupt_injection =
6315                 pic_in_kernel(vcpu->kvm) ||
6316                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6317 }
6318
6319 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6320 {
6321         int max_irr, tpr;
6322
6323         if (!kvm_x86_ops->update_cr8_intercept)
6324                 return;
6325
6326         if (!lapic_in_kernel(vcpu))
6327                 return;
6328
6329         if (vcpu->arch.apicv_active)
6330                 return;
6331
6332         if (!vcpu->arch.apic->vapic_addr)
6333                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6334         else
6335                 max_irr = -1;
6336
6337         if (max_irr != -1)
6338                 max_irr >>= 4;
6339
6340         tpr = kvm_lapic_get_cr8(vcpu);
6341
6342         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6343 }
6344
6345 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6346 {
6347         int r;
6348
6349         /* try to reinject previous events if any */
6350         if (vcpu->arch.exception.pending) {
6351                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6352                                         vcpu->arch.exception.has_error_code,
6353                                         vcpu->arch.exception.error_code);
6354
6355                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6356                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6357                                              X86_EFLAGS_RF);
6358
6359                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6360                     (vcpu->arch.dr7 & DR7_GD)) {
6361                         vcpu->arch.dr7 &= ~DR7_GD;
6362                         kvm_update_dr7(vcpu);
6363                 }
6364
6365                 kvm_x86_ops->queue_exception(vcpu);
6366                 return 0;
6367         }
6368
6369         if (vcpu->arch.nmi_injected) {
6370                 kvm_x86_ops->set_nmi(vcpu);
6371                 return 0;
6372         }
6373
6374         if (vcpu->arch.interrupt.pending) {
6375                 kvm_x86_ops->set_irq(vcpu);
6376                 return 0;
6377         }
6378
6379         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6380                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6381                 if (r != 0)
6382                         return r;
6383         }
6384
6385         /* try to inject new event if pending */
6386         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6387                 vcpu->arch.smi_pending = false;
6388                 enter_smm(vcpu);
6389         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6390                 --vcpu->arch.nmi_pending;
6391                 vcpu->arch.nmi_injected = true;
6392                 kvm_x86_ops->set_nmi(vcpu);
6393         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6394                 /*
6395                  * Because interrupts can be injected asynchronously, we are
6396                  * calling check_nested_events again here to avoid a race condition.
6397                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6398                  * proposal and current concerns.  Perhaps we should be setting
6399                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6400                  */
6401                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6402                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6403                         if (r != 0)
6404                                 return r;
6405                 }
6406                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6407                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6408                                             false);
6409                         kvm_x86_ops->set_irq(vcpu);
6410                 }
6411         }
6412
6413         return 0;
6414 }
6415
6416 static void process_nmi(struct kvm_vcpu *vcpu)
6417 {
6418         unsigned limit = 2;
6419
6420         /*
6421          * x86 is limited to one NMI running, and one NMI pending after it.
6422          * If an NMI is already in progress, limit further NMIs to just one.
6423          * Otherwise, allow two (and we'll inject the first one immediately).
6424          */
6425         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6426                 limit = 1;
6427
6428         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6429         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6430         kvm_make_request(KVM_REQ_EVENT, vcpu);
6431 }
6432
6433 #define put_smstate(type, buf, offset, val)                       \
6434         *(type *)((buf) + (offset) - 0x7e00) = val
6435
6436 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6437 {
6438         u32 flags = 0;
6439         flags |= seg->g       << 23;
6440         flags |= seg->db      << 22;
6441         flags |= seg->l       << 21;
6442         flags |= seg->avl     << 20;
6443         flags |= seg->present << 15;
6444         flags |= seg->dpl     << 13;
6445         flags |= seg->s       << 12;
6446         flags |= seg->type    << 8;
6447         return flags;
6448 }
6449
6450 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6451 {
6452         struct kvm_segment seg;
6453         int offset;
6454
6455         kvm_get_segment(vcpu, &seg, n);
6456         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6457
6458         if (n < 3)
6459                 offset = 0x7f84 + n * 12;
6460         else
6461                 offset = 0x7f2c + (n - 3) * 12;
6462
6463         put_smstate(u32, buf, offset + 8, seg.base);
6464         put_smstate(u32, buf, offset + 4, seg.limit);
6465         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6466 }
6467
6468 #ifdef CONFIG_X86_64
6469 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6470 {
6471         struct kvm_segment seg;
6472         int offset;
6473         u16 flags;
6474
6475         kvm_get_segment(vcpu, &seg, n);
6476         offset = 0x7e00 + n * 16;
6477
6478         flags = enter_smm_get_segment_flags(&seg) >> 8;
6479         put_smstate(u16, buf, offset, seg.selector);
6480         put_smstate(u16, buf, offset + 2, flags);
6481         put_smstate(u32, buf, offset + 4, seg.limit);
6482         put_smstate(u64, buf, offset + 8, seg.base);
6483 }
6484 #endif
6485
6486 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6487 {
6488         struct desc_ptr dt;
6489         struct kvm_segment seg;
6490         unsigned long val;
6491         int i;
6492
6493         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6494         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6495         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6496         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6497
6498         for (i = 0; i < 8; i++)
6499                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6500
6501         kvm_get_dr(vcpu, 6, &val);
6502         put_smstate(u32, buf, 0x7fcc, (u32)val);
6503         kvm_get_dr(vcpu, 7, &val);
6504         put_smstate(u32, buf, 0x7fc8, (u32)val);
6505
6506         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6507         put_smstate(u32, buf, 0x7fc4, seg.selector);
6508         put_smstate(u32, buf, 0x7f64, seg.base);
6509         put_smstate(u32, buf, 0x7f60, seg.limit);
6510         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6511
6512         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6513         put_smstate(u32, buf, 0x7fc0, seg.selector);
6514         put_smstate(u32, buf, 0x7f80, seg.base);
6515         put_smstate(u32, buf, 0x7f7c, seg.limit);
6516         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6517
6518         kvm_x86_ops->get_gdt(vcpu, &dt);
6519         put_smstate(u32, buf, 0x7f74, dt.address);
6520         put_smstate(u32, buf, 0x7f70, dt.size);
6521
6522         kvm_x86_ops->get_idt(vcpu, &dt);
6523         put_smstate(u32, buf, 0x7f58, dt.address);
6524         put_smstate(u32, buf, 0x7f54, dt.size);
6525
6526         for (i = 0; i < 6; i++)
6527                 enter_smm_save_seg_32(vcpu, buf, i);
6528
6529         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6530
6531         /* revision id */
6532         put_smstate(u32, buf, 0x7efc, 0x00020000);
6533         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6534 }
6535
6536 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6537 {
6538 #ifdef CONFIG_X86_64
6539         struct desc_ptr dt;
6540         struct kvm_segment seg;
6541         unsigned long val;
6542         int i;
6543
6544         for (i = 0; i < 16; i++)
6545                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6546
6547         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6548         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6549
6550         kvm_get_dr(vcpu, 6, &val);
6551         put_smstate(u64, buf, 0x7f68, val);
6552         kvm_get_dr(vcpu, 7, &val);
6553         put_smstate(u64, buf, 0x7f60, val);
6554
6555         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6556         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6557         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6558
6559         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6560
6561         /* revision id */
6562         put_smstate(u32, buf, 0x7efc, 0x00020064);
6563
6564         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6565
6566         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6567         put_smstate(u16, buf, 0x7e90, seg.selector);
6568         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6569         put_smstate(u32, buf, 0x7e94, seg.limit);
6570         put_smstate(u64, buf, 0x7e98, seg.base);
6571
6572         kvm_x86_ops->get_idt(vcpu, &dt);
6573         put_smstate(u32, buf, 0x7e84, dt.size);
6574         put_smstate(u64, buf, 0x7e88, dt.address);
6575
6576         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6577         put_smstate(u16, buf, 0x7e70, seg.selector);
6578         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6579         put_smstate(u32, buf, 0x7e74, seg.limit);
6580         put_smstate(u64, buf, 0x7e78, seg.base);
6581
6582         kvm_x86_ops->get_gdt(vcpu, &dt);
6583         put_smstate(u32, buf, 0x7e64, dt.size);
6584         put_smstate(u64, buf, 0x7e68, dt.address);
6585
6586         for (i = 0; i < 6; i++)
6587                 enter_smm_save_seg_64(vcpu, buf, i);
6588 #else
6589         WARN_ON_ONCE(1);
6590 #endif
6591 }
6592
6593 static void enter_smm(struct kvm_vcpu *vcpu)
6594 {
6595         struct kvm_segment cs, ds;
6596         struct desc_ptr dt;
6597         char buf[512];
6598         u32 cr0;
6599
6600         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6601         vcpu->arch.hflags |= HF_SMM_MASK;
6602         memset(buf, 0, 512);
6603         if (guest_cpuid_has_longmode(vcpu))
6604                 enter_smm_save_state_64(vcpu, buf);
6605         else
6606                 enter_smm_save_state_32(vcpu, buf);
6607
6608         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6609
6610         if (kvm_x86_ops->get_nmi_mask(vcpu))
6611                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6612         else
6613                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6614
6615         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6616         kvm_rip_write(vcpu, 0x8000);
6617
6618         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6619         kvm_x86_ops->set_cr0(vcpu, cr0);
6620         vcpu->arch.cr0 = cr0;
6621
6622         kvm_x86_ops->set_cr4(vcpu, 0);
6623
6624         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6625         dt.address = dt.size = 0;
6626         kvm_x86_ops->set_idt(vcpu, &dt);
6627
6628         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6629
6630         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6631         cs.base = vcpu->arch.smbase;
6632
6633         ds.selector = 0;
6634         ds.base = 0;
6635
6636         cs.limit    = ds.limit = 0xffffffff;
6637         cs.type     = ds.type = 0x3;
6638         cs.dpl      = ds.dpl = 0;
6639         cs.db       = ds.db = 0;
6640         cs.s        = ds.s = 1;
6641         cs.l        = ds.l = 0;
6642         cs.g        = ds.g = 1;
6643         cs.avl      = ds.avl = 0;
6644         cs.present  = ds.present = 1;
6645         cs.unusable = ds.unusable = 0;
6646         cs.padding  = ds.padding = 0;
6647
6648         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6649         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6650         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6651         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6652         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6653         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6654
6655         if (guest_cpuid_has_longmode(vcpu))
6656                 kvm_x86_ops->set_efer(vcpu, 0);
6657
6658         kvm_update_cpuid(vcpu);
6659         kvm_mmu_reset_context(vcpu);
6660 }
6661
6662 static void process_smi(struct kvm_vcpu *vcpu)
6663 {
6664         vcpu->arch.smi_pending = true;
6665         kvm_make_request(KVM_REQ_EVENT, vcpu);
6666 }
6667
6668 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6669 {
6670         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6671 }
6672
6673 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6674 {
6675         u64 eoi_exit_bitmap[4];
6676
6677         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6678                 return;
6679
6680         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6681
6682         if (irqchip_split(vcpu->kvm))
6683                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6684         else {
6685                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6686                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6687                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6688         }
6689         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6690                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6691         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6692 }
6693
6694 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6695 {
6696         ++vcpu->stat.tlb_flush;
6697         kvm_x86_ops->tlb_flush(vcpu);
6698 }
6699
6700 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6701 {
6702         struct page *page = NULL;
6703
6704         if (!lapic_in_kernel(vcpu))
6705                 return;
6706
6707         if (!kvm_x86_ops->set_apic_access_page_addr)
6708                 return;
6709
6710         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6711         if (is_error_page(page))
6712                 return;
6713         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6714
6715         /*
6716          * Do not pin apic access page in memory, the MMU notifier
6717          * will call us again if it is migrated or swapped out.
6718          */
6719         put_page(page);
6720 }
6721 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6722
6723 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6724                                            unsigned long address)
6725 {
6726         /*
6727          * The physical address of apic access page is stored in the VMCS.
6728          * Update it when it becomes invalid.
6729          */
6730         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6731                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6732 }
6733
6734 /*
6735  * Returns 1 to let vcpu_run() continue the guest execution loop without
6736  * exiting to the userspace.  Otherwise, the value will be returned to the
6737  * userspace.
6738  */
6739 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6740 {
6741         int r;
6742         bool req_int_win =
6743                 dm_request_for_irq_injection(vcpu) &&
6744                 kvm_cpu_accept_dm_intr(vcpu);
6745
6746         bool req_immediate_exit = false;
6747
6748         if (kvm_request_pending(vcpu)) {
6749                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6750                         kvm_mmu_unload(vcpu);
6751                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6752                         __kvm_migrate_timers(vcpu);
6753                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6754                         kvm_gen_update_masterclock(vcpu->kvm);
6755                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6756                         kvm_gen_kvmclock_update(vcpu);
6757                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6758                         r = kvm_guest_time_update(vcpu);
6759                         if (unlikely(r))
6760                                 goto out;
6761                 }
6762                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6763                         kvm_mmu_sync_roots(vcpu);
6764                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6765                         kvm_vcpu_flush_tlb(vcpu);
6766                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6767                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6768                         r = 0;
6769                         goto out;
6770                 }
6771                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6772                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6773                         r = 0;
6774                         goto out;
6775                 }
6776                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6777                         /* Page is swapped out. Do synthetic halt */
6778                         vcpu->arch.apf.halted = true;
6779                         r = 1;
6780                         goto out;
6781                 }
6782                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6783                         record_steal_time(vcpu);
6784                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6785                         process_smi(vcpu);
6786                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6787                         process_nmi(vcpu);
6788                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6789                         kvm_pmu_handle_event(vcpu);
6790                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6791                         kvm_pmu_deliver_pmi(vcpu);
6792                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6793                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6794                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6795                                      vcpu->arch.ioapic_handled_vectors)) {
6796                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6797                                 vcpu->run->eoi.vector =
6798                                                 vcpu->arch.pending_ioapic_eoi;
6799                                 r = 0;
6800                                 goto out;
6801                         }
6802                 }
6803                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6804                         vcpu_scan_ioapic(vcpu);
6805                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6806                         kvm_vcpu_reload_apic_access_page(vcpu);
6807                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6808                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6809                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6810                         r = 0;
6811                         goto out;
6812                 }
6813                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6814                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6815                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6816                         r = 0;
6817                         goto out;
6818                 }
6819                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6820                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6821                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6822                         r = 0;
6823                         goto out;
6824                 }
6825
6826                 /*
6827                  * KVM_REQ_HV_STIMER has to be processed after
6828                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6829                  * depend on the guest clock being up-to-date
6830                  */
6831                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6832                         kvm_hv_process_stimers(vcpu);
6833         }
6834
6835         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6836                 ++vcpu->stat.req_event;
6837                 kvm_apic_accept_events(vcpu);
6838                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6839                         r = 1;
6840                         goto out;
6841                 }
6842
6843                 if (inject_pending_event(vcpu, req_int_win) != 0)
6844                         req_immediate_exit = true;
6845                 else {
6846                         /* Enable NMI/IRQ window open exits if needed.
6847                          *
6848                          * SMIs have two cases: 1) they can be nested, and
6849                          * then there is nothing to do here because RSM will
6850                          * cause a vmexit anyway; 2) or the SMI can be pending
6851                          * because inject_pending_event has completed the
6852                          * injection of an IRQ or NMI from the previous vmexit,
6853                          * and then we request an immediate exit to inject the SMI.
6854                          */
6855                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6856                                 req_immediate_exit = true;
6857                         if (vcpu->arch.nmi_pending)
6858                                 kvm_x86_ops->enable_nmi_window(vcpu);
6859                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6860                                 kvm_x86_ops->enable_irq_window(vcpu);
6861                 }
6862
6863                 if (kvm_lapic_enabled(vcpu)) {
6864                         update_cr8_intercept(vcpu);
6865                         kvm_lapic_sync_to_vapic(vcpu);
6866                 }
6867         }
6868
6869         r = kvm_mmu_reload(vcpu);
6870         if (unlikely(r)) {
6871                 goto cancel_injection;
6872         }
6873
6874         preempt_disable();
6875
6876         kvm_x86_ops->prepare_guest_switch(vcpu);
6877         kvm_load_guest_fpu(vcpu);
6878
6879         /*
6880          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6881          * IPI are then delayed after guest entry, which ensures that they
6882          * result in virtual interrupt delivery.
6883          */
6884         local_irq_disable();
6885         vcpu->mode = IN_GUEST_MODE;
6886
6887         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6888
6889         /*
6890          * 1) We should set ->mode before checking ->requests.  Please see
6891          * the comment in kvm_vcpu_exiting_guest_mode().
6892          *
6893          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6894          * pairs with the memory barrier implicit in pi_test_and_set_on
6895          * (see vmx_deliver_posted_interrupt).
6896          *
6897          * 3) This also orders the write to mode from any reads to the page
6898          * tables done while the VCPU is running.  Please see the comment
6899          * in kvm_flush_remote_tlbs.
6900          */
6901         smp_mb__after_srcu_read_unlock();
6902
6903         /*
6904          * This handles the case where a posted interrupt was
6905          * notified with kvm_vcpu_kick.
6906          */
6907         if (kvm_lapic_enabled(vcpu)) {
6908                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6909                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6910         }
6911
6912         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6913             || need_resched() || signal_pending(current)) {
6914                 vcpu->mode = OUTSIDE_GUEST_MODE;
6915                 smp_wmb();
6916                 local_irq_enable();
6917                 preempt_enable();
6918                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6919                 r = 1;
6920                 goto cancel_injection;
6921         }
6922
6923         kvm_load_guest_xcr0(vcpu);
6924
6925         if (req_immediate_exit) {
6926                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6927                 smp_send_reschedule(vcpu->cpu);
6928         }
6929
6930         trace_kvm_entry(vcpu->vcpu_id);
6931         wait_lapic_expire(vcpu);
6932         guest_enter_irqoff();
6933
6934         if (unlikely(vcpu->arch.switch_db_regs)) {
6935                 set_debugreg(0, 7);
6936                 set_debugreg(vcpu->arch.eff_db[0], 0);
6937                 set_debugreg(vcpu->arch.eff_db[1], 1);
6938                 set_debugreg(vcpu->arch.eff_db[2], 2);
6939                 set_debugreg(vcpu->arch.eff_db[3], 3);
6940                 set_debugreg(vcpu->arch.dr6, 6);
6941                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6942         }
6943
6944         kvm_x86_ops->run(vcpu);
6945
6946         /*
6947          * Do this here before restoring debug registers on the host.  And
6948          * since we do this before handling the vmexit, a DR access vmexit
6949          * can (a) read the correct value of the debug registers, (b) set
6950          * KVM_DEBUGREG_WONT_EXIT again.
6951          */
6952         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6953                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6954                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6955                 kvm_update_dr0123(vcpu);
6956                 kvm_update_dr6(vcpu);
6957                 kvm_update_dr7(vcpu);
6958                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6959         }
6960
6961         /*
6962          * If the guest has used debug registers, at least dr7
6963          * will be disabled while returning to the host.
6964          * If we don't have active breakpoints in the host, we don't
6965          * care about the messed up debug address registers. But if
6966          * we have some of them active, restore the old state.
6967          */
6968         if (hw_breakpoint_active())
6969                 hw_breakpoint_restore();
6970
6971         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6972
6973         vcpu->mode = OUTSIDE_GUEST_MODE;
6974         smp_wmb();
6975
6976         kvm_put_guest_xcr0(vcpu);
6977
6978         kvm_x86_ops->handle_external_intr(vcpu);
6979
6980         ++vcpu->stat.exits;
6981
6982         guest_exit_irqoff();
6983
6984         local_irq_enable();
6985         preempt_enable();
6986
6987         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6988
6989         /*
6990          * Profile KVM exit RIPs:
6991          */
6992         if (unlikely(prof_on == KVM_PROFILING)) {
6993                 unsigned long rip = kvm_rip_read(vcpu);
6994                 profile_hit(KVM_PROFILING, (void *)rip);
6995         }
6996
6997         if (unlikely(vcpu->arch.tsc_always_catchup))
6998                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6999
7000         if (vcpu->arch.apic_attention)
7001                 kvm_lapic_sync_from_vapic(vcpu);
7002
7003         r = kvm_x86_ops->handle_exit(vcpu);
7004         return r;
7005
7006 cancel_injection:
7007         kvm_x86_ops->cancel_injection(vcpu);
7008         if (unlikely(vcpu->arch.apic_attention))
7009                 kvm_lapic_sync_from_vapic(vcpu);
7010 out:
7011         return r;
7012 }
7013
7014 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7015 {
7016         if (!kvm_arch_vcpu_runnable(vcpu) &&
7017             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7018                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7019                 kvm_vcpu_block(vcpu);
7020                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7021
7022                 if (kvm_x86_ops->post_block)
7023                         kvm_x86_ops->post_block(vcpu);
7024
7025                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7026                         return 1;
7027         }
7028
7029         kvm_apic_accept_events(vcpu);
7030         switch(vcpu->arch.mp_state) {
7031         case KVM_MP_STATE_HALTED:
7032                 vcpu->arch.pv.pv_unhalted = false;
7033                 vcpu->arch.mp_state =
7034                         KVM_MP_STATE_RUNNABLE;
7035         case KVM_MP_STATE_RUNNABLE:
7036                 vcpu->arch.apf.halted = false;
7037                 break;
7038         case KVM_MP_STATE_INIT_RECEIVED:
7039                 break;
7040         default:
7041                 return -EINTR;
7042                 break;
7043         }
7044         return 1;
7045 }
7046
7047 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7048 {
7049         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7050                 kvm_x86_ops->check_nested_events(vcpu, false);
7051
7052         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7053                 !vcpu->arch.apf.halted);
7054 }
7055
7056 static int vcpu_run(struct kvm_vcpu *vcpu)
7057 {
7058         int r;
7059         struct kvm *kvm = vcpu->kvm;
7060
7061         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7062
7063         for (;;) {
7064                 if (kvm_vcpu_running(vcpu)) {
7065                         r = vcpu_enter_guest(vcpu);
7066                 } else {
7067                         r = vcpu_block(kvm, vcpu);
7068                 }
7069
7070                 if (r <= 0)
7071                         break;
7072
7073                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7074                 if (kvm_cpu_has_pending_timer(vcpu))
7075                         kvm_inject_pending_timer_irqs(vcpu);
7076
7077                 if (dm_request_for_irq_injection(vcpu) &&
7078                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7079                         r = 0;
7080                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7081                         ++vcpu->stat.request_irq_exits;
7082                         break;
7083                 }
7084
7085                 kvm_check_async_pf_completion(vcpu);
7086
7087                 if (signal_pending(current)) {
7088                         r = -EINTR;
7089                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7090                         ++vcpu->stat.signal_exits;
7091                         break;
7092                 }
7093                 if (need_resched()) {
7094                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7095                         cond_resched();
7096                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7097                 }
7098         }
7099
7100         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7101
7102         return r;
7103 }
7104
7105 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7106 {
7107         int r;
7108         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7109         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7110         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7111         if (r != EMULATE_DONE)
7112                 return 0;
7113         return 1;
7114 }
7115
7116 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7117 {
7118         BUG_ON(!vcpu->arch.pio.count);
7119
7120         return complete_emulated_io(vcpu);
7121 }
7122
7123 /*
7124  * Implements the following, as a state machine:
7125  *
7126  * read:
7127  *   for each fragment
7128  *     for each mmio piece in the fragment
7129  *       write gpa, len
7130  *       exit
7131  *       copy data
7132  *   execute insn
7133  *
7134  * write:
7135  *   for each fragment
7136  *     for each mmio piece in the fragment
7137  *       write gpa, len
7138  *       copy data
7139  *       exit
7140  */
7141 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7142 {
7143         struct kvm_run *run = vcpu->run;
7144         struct kvm_mmio_fragment *frag;
7145         unsigned len;
7146
7147         BUG_ON(!vcpu->mmio_needed);
7148
7149         /* Complete previous fragment */
7150         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7151         len = min(8u, frag->len);
7152         if (!vcpu->mmio_is_write)
7153                 memcpy(frag->data, run->mmio.data, len);
7154
7155         if (frag->len <= 8) {
7156                 /* Switch to the next fragment. */
7157                 frag++;
7158                 vcpu->mmio_cur_fragment++;
7159         } else {
7160                 /* Go forward to the next mmio piece. */
7161                 frag->data += len;
7162                 frag->gpa += len;
7163                 frag->len -= len;
7164         }
7165
7166         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7167                 vcpu->mmio_needed = 0;
7168
7169                 /* FIXME: return into emulator if single-stepping.  */
7170                 if (vcpu->mmio_is_write)
7171                         return 1;
7172                 vcpu->mmio_read_completed = 1;
7173                 return complete_emulated_io(vcpu);
7174         }
7175
7176         run->exit_reason = KVM_EXIT_MMIO;
7177         run->mmio.phys_addr = frag->gpa;
7178         if (vcpu->mmio_is_write)
7179                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7180         run->mmio.len = min(8u, frag->len);
7181         run->mmio.is_write = vcpu->mmio_is_write;
7182         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7183         return 0;
7184 }
7185
7186
7187 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7188 {
7189         struct fpu *fpu = &current->thread.fpu;
7190         int r;
7191         sigset_t sigsaved;
7192
7193         fpu__activate_curr(fpu);
7194
7195         if (vcpu->sigset_active)
7196                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7197
7198         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7199                 kvm_vcpu_block(vcpu);
7200                 kvm_apic_accept_events(vcpu);
7201                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7202                 r = -EAGAIN;
7203                 goto out;
7204         }
7205
7206         /* re-sync apic's tpr */
7207         if (!lapic_in_kernel(vcpu)) {
7208                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7209                         r = -EINVAL;
7210                         goto out;
7211                 }
7212         }
7213
7214         if (unlikely(vcpu->arch.complete_userspace_io)) {
7215                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7216                 vcpu->arch.complete_userspace_io = NULL;
7217                 r = cui(vcpu);
7218                 if (r <= 0)
7219                         goto out;
7220         } else
7221                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7222
7223         if (kvm_run->immediate_exit)
7224                 r = -EINTR;
7225         else
7226                 r = vcpu_run(vcpu);
7227
7228 out:
7229         post_kvm_run_save(vcpu);
7230         if (vcpu->sigset_active)
7231                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7232
7233         return r;
7234 }
7235
7236 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7237 {
7238         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7239                 /*
7240                  * We are here if userspace calls get_regs() in the middle of
7241                  * instruction emulation. Registers state needs to be copied
7242                  * back from emulation context to vcpu. Userspace shouldn't do
7243                  * that usually, but some bad designed PV devices (vmware
7244                  * backdoor interface) need this to work
7245                  */
7246                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7247                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7248         }
7249         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7250         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7251         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7252         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7253         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7254         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7255         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7256         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7257 #ifdef CONFIG_X86_64
7258         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7259         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7260         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7261         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7262         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7263         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7264         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7265         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7266 #endif
7267
7268         regs->rip = kvm_rip_read(vcpu);
7269         regs->rflags = kvm_get_rflags(vcpu);
7270
7271         return 0;
7272 }
7273
7274 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7275 {
7276         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7277         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7278
7279         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7280         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7281         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7282         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7283         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7284         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7285         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7286         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7287 #ifdef CONFIG_X86_64
7288         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7289         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7290         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7291         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7292         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7293         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7294         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7295         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7296 #endif
7297
7298         kvm_rip_write(vcpu, regs->rip);
7299         kvm_set_rflags(vcpu, regs->rflags);
7300
7301         vcpu->arch.exception.pending = false;
7302
7303         kvm_make_request(KVM_REQ_EVENT, vcpu);
7304
7305         return 0;
7306 }
7307
7308 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7309 {
7310         struct kvm_segment cs;
7311
7312         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7313         *db = cs.db;
7314         *l = cs.l;
7315 }
7316 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7317
7318 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7319                                   struct kvm_sregs *sregs)
7320 {
7321         struct desc_ptr dt;
7322
7323         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7324         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7325         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7326         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7327         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7328         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7329
7330         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7331         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7332
7333         kvm_x86_ops->get_idt(vcpu, &dt);
7334         sregs->idt.limit = dt.size;
7335         sregs->idt.base = dt.address;
7336         kvm_x86_ops->get_gdt(vcpu, &dt);
7337         sregs->gdt.limit = dt.size;
7338         sregs->gdt.base = dt.address;
7339
7340         sregs->cr0 = kvm_read_cr0(vcpu);
7341         sregs->cr2 = vcpu->arch.cr2;
7342         sregs->cr3 = kvm_read_cr3(vcpu);
7343         sregs->cr4 = kvm_read_cr4(vcpu);
7344         sregs->cr8 = kvm_get_cr8(vcpu);
7345         sregs->efer = vcpu->arch.efer;
7346         sregs->apic_base = kvm_get_apic_base(vcpu);
7347
7348         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7349
7350         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7351                 set_bit(vcpu->arch.interrupt.nr,
7352                         (unsigned long *)sregs->interrupt_bitmap);
7353
7354         return 0;
7355 }
7356
7357 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7358                                     struct kvm_mp_state *mp_state)
7359 {
7360         kvm_apic_accept_events(vcpu);
7361         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7362                                         vcpu->arch.pv.pv_unhalted)
7363                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7364         else
7365                 mp_state->mp_state = vcpu->arch.mp_state;
7366
7367         return 0;
7368 }
7369
7370 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7371                                     struct kvm_mp_state *mp_state)
7372 {
7373         if (!lapic_in_kernel(vcpu) &&
7374             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7375                 return -EINVAL;
7376
7377         /* INITs are latched while in SMM */
7378         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7379             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7380              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7381                 return -EINVAL;
7382
7383         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7384                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7385                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7386         } else
7387                 vcpu->arch.mp_state = mp_state->mp_state;
7388         kvm_make_request(KVM_REQ_EVENT, vcpu);
7389         return 0;
7390 }
7391
7392 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7393                     int reason, bool has_error_code, u32 error_code)
7394 {
7395         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7396         int ret;
7397
7398         init_emulate_ctxt(vcpu);
7399
7400         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7401                                    has_error_code, error_code);
7402
7403         if (ret)
7404                 return EMULATE_FAIL;
7405
7406         kvm_rip_write(vcpu, ctxt->eip);
7407         kvm_set_rflags(vcpu, ctxt->eflags);
7408         kvm_make_request(KVM_REQ_EVENT, vcpu);
7409         return EMULATE_DONE;
7410 }
7411 EXPORT_SYMBOL_GPL(kvm_task_switch);
7412
7413 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7414                                   struct kvm_sregs *sregs)
7415 {
7416         struct msr_data apic_base_msr;
7417         int mmu_reset_needed = 0;
7418         int pending_vec, max_bits, idx;
7419         struct desc_ptr dt;
7420
7421         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7422                 return -EINVAL;
7423
7424         dt.size = sregs->idt.limit;
7425         dt.address = sregs->idt.base;
7426         kvm_x86_ops->set_idt(vcpu, &dt);
7427         dt.size = sregs->gdt.limit;
7428         dt.address = sregs->gdt.base;
7429         kvm_x86_ops->set_gdt(vcpu, &dt);
7430
7431         vcpu->arch.cr2 = sregs->cr2;
7432         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7433         vcpu->arch.cr3 = sregs->cr3;
7434         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7435
7436         kvm_set_cr8(vcpu, sregs->cr8);
7437
7438         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7439         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7440         apic_base_msr.data = sregs->apic_base;
7441         apic_base_msr.host_initiated = true;
7442         kvm_set_apic_base(vcpu, &apic_base_msr);
7443
7444         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7445         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7446         vcpu->arch.cr0 = sregs->cr0;
7447
7448         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7449         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7450         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7451                 kvm_update_cpuid(vcpu);
7452
7453         idx = srcu_read_lock(&vcpu->kvm->srcu);
7454         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7455                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7456                 mmu_reset_needed = 1;
7457         }
7458         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7459
7460         if (mmu_reset_needed)
7461                 kvm_mmu_reset_context(vcpu);
7462
7463         max_bits = KVM_NR_INTERRUPTS;
7464         pending_vec = find_first_bit(
7465                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7466         if (pending_vec < max_bits) {
7467                 kvm_queue_interrupt(vcpu, pending_vec, false);
7468                 pr_debug("Set back pending irq %d\n", pending_vec);
7469         }
7470
7471         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7472         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7473         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7474         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7475         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7476         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7477
7478         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7479         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7480
7481         update_cr8_intercept(vcpu);
7482
7483         /* Older userspace won't unhalt the vcpu on reset. */
7484         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7485             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7486             !is_protmode(vcpu))
7487                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7488
7489         kvm_make_request(KVM_REQ_EVENT, vcpu);
7490
7491         return 0;
7492 }
7493
7494 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7495                                         struct kvm_guest_debug *dbg)
7496 {
7497         unsigned long rflags;
7498         int i, r;
7499
7500         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7501                 r = -EBUSY;
7502                 if (vcpu->arch.exception.pending)
7503                         goto out;
7504                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7505                         kvm_queue_exception(vcpu, DB_VECTOR);
7506                 else
7507                         kvm_queue_exception(vcpu, BP_VECTOR);
7508         }
7509
7510         /*
7511          * Read rflags as long as potentially injected trace flags are still
7512          * filtered out.
7513          */
7514         rflags = kvm_get_rflags(vcpu);
7515
7516         vcpu->guest_debug = dbg->control;
7517         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7518                 vcpu->guest_debug = 0;
7519
7520         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7521                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7522                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7523                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7524         } else {
7525                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7526                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7527         }
7528         kvm_update_dr7(vcpu);
7529
7530         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7531                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7532                         get_segment_base(vcpu, VCPU_SREG_CS);
7533
7534         /*
7535          * Trigger an rflags update that will inject or remove the trace
7536          * flags.
7537          */
7538         kvm_set_rflags(vcpu, rflags);
7539
7540         kvm_x86_ops->update_bp_intercept(vcpu);
7541
7542         r = 0;
7543
7544 out:
7545
7546         return r;
7547 }
7548
7549 /*
7550  * Translate a guest virtual address to a guest physical address.
7551  */
7552 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7553                                     struct kvm_translation *tr)
7554 {
7555         unsigned long vaddr = tr->linear_address;
7556         gpa_t gpa;
7557         int idx;
7558
7559         idx = srcu_read_lock(&vcpu->kvm->srcu);
7560         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7561         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7562         tr->physical_address = gpa;
7563         tr->valid = gpa != UNMAPPED_GVA;
7564         tr->writeable = 1;
7565         tr->usermode = 0;
7566
7567         return 0;
7568 }
7569
7570 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7571 {
7572         struct fxregs_state *fxsave =
7573                         &vcpu->arch.guest_fpu.state.fxsave;
7574
7575         memcpy(fpu->fpr, fxsave->st_space, 128);
7576         fpu->fcw = fxsave->cwd;
7577         fpu->fsw = fxsave->swd;
7578         fpu->ftwx = fxsave->twd;
7579         fpu->last_opcode = fxsave->fop;
7580         fpu->last_ip = fxsave->rip;
7581         fpu->last_dp = fxsave->rdp;
7582         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7583
7584         return 0;
7585 }
7586
7587 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7588 {
7589         struct fxregs_state *fxsave =
7590                         &vcpu->arch.guest_fpu.state.fxsave;
7591
7592         memcpy(fxsave->st_space, fpu->fpr, 128);
7593         fxsave->cwd = fpu->fcw;
7594         fxsave->swd = fpu->fsw;
7595         fxsave->twd = fpu->ftwx;
7596         fxsave->fop = fpu->last_opcode;
7597         fxsave->rip = fpu->last_ip;
7598         fxsave->rdp = fpu->last_dp;
7599         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7600
7601         return 0;
7602 }
7603
7604 static void fx_init(struct kvm_vcpu *vcpu)
7605 {
7606         fpstate_init(&vcpu->arch.guest_fpu.state);
7607         if (boot_cpu_has(X86_FEATURE_XSAVES))
7608                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7609                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7610
7611         /*
7612          * Ensure guest xcr0 is valid for loading
7613          */
7614         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7615
7616         vcpu->arch.cr0 |= X86_CR0_ET;
7617 }
7618
7619 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7620 {
7621         if (vcpu->guest_fpu_loaded)
7622                 return;
7623
7624         /*
7625          * Restore all possible states in the guest,
7626          * and assume host would use all available bits.
7627          * Guest xcr0 would be loaded later.
7628          */
7629         vcpu->guest_fpu_loaded = 1;
7630         __kernel_fpu_begin();
7631         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7632         trace_kvm_fpu(1);
7633 }
7634
7635 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7636 {
7637         if (!vcpu->guest_fpu_loaded)
7638                 return;
7639
7640         vcpu->guest_fpu_loaded = 0;
7641         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7642         __kernel_fpu_end();
7643         ++vcpu->stat.fpu_reload;
7644         trace_kvm_fpu(0);
7645 }
7646
7647 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7648 {
7649         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7650
7651         kvmclock_reset(vcpu);
7652
7653         kvm_x86_ops->vcpu_free(vcpu);
7654         free_cpumask_var(wbinvd_dirty_mask);
7655 }
7656
7657 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7658                                                 unsigned int id)
7659 {
7660         struct kvm_vcpu *vcpu;
7661
7662         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7663                 printk_once(KERN_WARNING
7664                 "kvm: SMP vm created on host with unstable TSC; "
7665                 "guest TSC will not be reliable\n");
7666
7667         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7668
7669         return vcpu;
7670 }
7671
7672 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7673 {
7674         int r;
7675
7676         kvm_vcpu_mtrr_init(vcpu);
7677         r = vcpu_load(vcpu);
7678         if (r)
7679                 return r;
7680         kvm_vcpu_reset(vcpu, false);
7681         kvm_mmu_setup(vcpu);
7682         vcpu_put(vcpu);
7683         return r;
7684 }
7685
7686 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7687 {
7688         struct msr_data msr;
7689         struct kvm *kvm = vcpu->kvm;
7690
7691         if (vcpu_load(vcpu))
7692                 return;
7693         msr.data = 0x0;
7694         msr.index = MSR_IA32_TSC;
7695         msr.host_initiated = true;
7696         kvm_write_tsc(vcpu, &msr);
7697         vcpu_put(vcpu);
7698
7699         if (!kvmclock_periodic_sync)
7700                 return;
7701
7702         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7703                                         KVMCLOCK_SYNC_PERIOD);
7704 }
7705
7706 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7707 {
7708         int r;
7709         vcpu->arch.apf.msr_val = 0;
7710
7711         r = vcpu_load(vcpu);
7712         BUG_ON(r);
7713         kvm_mmu_unload(vcpu);
7714         vcpu_put(vcpu);
7715
7716         kvm_x86_ops->vcpu_free(vcpu);
7717 }
7718
7719 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7720 {
7721         vcpu->arch.hflags = 0;
7722
7723         vcpu->arch.smi_pending = 0;
7724         atomic_set(&vcpu->arch.nmi_queued, 0);
7725         vcpu->arch.nmi_pending = 0;
7726         vcpu->arch.nmi_injected = false;
7727         kvm_clear_interrupt_queue(vcpu);
7728         kvm_clear_exception_queue(vcpu);
7729
7730         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7731         kvm_update_dr0123(vcpu);
7732         vcpu->arch.dr6 = DR6_INIT;
7733         kvm_update_dr6(vcpu);
7734         vcpu->arch.dr7 = DR7_FIXED_1;
7735         kvm_update_dr7(vcpu);
7736
7737         vcpu->arch.cr2 = 0;
7738
7739         kvm_make_request(KVM_REQ_EVENT, vcpu);
7740         vcpu->arch.apf.msr_val = 0;
7741         vcpu->arch.st.msr_val = 0;
7742
7743         kvmclock_reset(vcpu);
7744
7745         kvm_clear_async_pf_completion_queue(vcpu);
7746         kvm_async_pf_hash_reset(vcpu);
7747         vcpu->arch.apf.halted = false;
7748
7749         if (!init_event) {
7750                 kvm_pmu_reset(vcpu);
7751                 vcpu->arch.smbase = 0x30000;
7752
7753                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7754                 vcpu->arch.msr_misc_features_enables = 0;
7755         }
7756
7757         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7758         vcpu->arch.regs_avail = ~0;
7759         vcpu->arch.regs_dirty = ~0;
7760
7761         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7762 }
7763
7764 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7765 {
7766         struct kvm_segment cs;
7767
7768         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7769         cs.selector = vector << 8;
7770         cs.base = vector << 12;
7771         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7772         kvm_rip_write(vcpu, 0);
7773 }
7774
7775 int kvm_arch_hardware_enable(void)
7776 {
7777         struct kvm *kvm;
7778         struct kvm_vcpu *vcpu;
7779         int i;
7780         int ret;
7781         u64 local_tsc;
7782         u64 max_tsc = 0;
7783         bool stable, backwards_tsc = false;
7784
7785         kvm_shared_msr_cpu_online();
7786         ret = kvm_x86_ops->hardware_enable();
7787         if (ret != 0)
7788                 return ret;
7789
7790         local_tsc = rdtsc();
7791         stable = !check_tsc_unstable();
7792         list_for_each_entry(kvm, &vm_list, vm_list) {
7793                 kvm_for_each_vcpu(i, vcpu, kvm) {
7794                         if (!stable && vcpu->cpu == smp_processor_id())
7795                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7796                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7797                                 backwards_tsc = true;
7798                                 if (vcpu->arch.last_host_tsc > max_tsc)
7799                                         max_tsc = vcpu->arch.last_host_tsc;
7800                         }
7801                 }
7802         }
7803
7804         /*
7805          * Sometimes, even reliable TSCs go backwards.  This happens on
7806          * platforms that reset TSC during suspend or hibernate actions, but
7807          * maintain synchronization.  We must compensate.  Fortunately, we can
7808          * detect that condition here, which happens early in CPU bringup,
7809          * before any KVM threads can be running.  Unfortunately, we can't
7810          * bring the TSCs fully up to date with real time, as we aren't yet far
7811          * enough into CPU bringup that we know how much real time has actually
7812          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7813          * variables that haven't been updated yet.
7814          *
7815          * So we simply find the maximum observed TSC above, then record the
7816          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7817          * the adjustment will be applied.  Note that we accumulate
7818          * adjustments, in case multiple suspend cycles happen before some VCPU
7819          * gets a chance to run again.  In the event that no KVM threads get a
7820          * chance to run, we will miss the entire elapsed period, as we'll have
7821          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7822          * loose cycle time.  This isn't too big a deal, since the loss will be
7823          * uniform across all VCPUs (not to mention the scenario is extremely
7824          * unlikely). It is possible that a second hibernate recovery happens
7825          * much faster than a first, causing the observed TSC here to be
7826          * smaller; this would require additional padding adjustment, which is
7827          * why we set last_host_tsc to the local tsc observed here.
7828          *
7829          * N.B. - this code below runs only on platforms with reliable TSC,
7830          * as that is the only way backwards_tsc is set above.  Also note
7831          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7832          * have the same delta_cyc adjustment applied if backwards_tsc
7833          * is detected.  Note further, this adjustment is only done once,
7834          * as we reset last_host_tsc on all VCPUs to stop this from being
7835          * called multiple times (one for each physical CPU bringup).
7836          *
7837          * Platforms with unreliable TSCs don't have to deal with this, they
7838          * will be compensated by the logic in vcpu_load, which sets the TSC to
7839          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7840          * guarantee that they stay in perfect synchronization.
7841          */
7842         if (backwards_tsc) {
7843                 u64 delta_cyc = max_tsc - local_tsc;
7844                 list_for_each_entry(kvm, &vm_list, vm_list) {
7845                         kvm->arch.backwards_tsc_observed = true;
7846                         kvm_for_each_vcpu(i, vcpu, kvm) {
7847                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7848                                 vcpu->arch.last_host_tsc = local_tsc;
7849                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7850                         }
7851
7852                         /*
7853                          * We have to disable TSC offset matching.. if you were
7854                          * booting a VM while issuing an S4 host suspend....
7855                          * you may have some problem.  Solving this issue is
7856                          * left as an exercise to the reader.
7857                          */
7858                         kvm->arch.last_tsc_nsec = 0;
7859                         kvm->arch.last_tsc_write = 0;
7860                 }
7861
7862         }
7863         return 0;
7864 }
7865
7866 void kvm_arch_hardware_disable(void)
7867 {
7868         kvm_x86_ops->hardware_disable();
7869         drop_user_return_notifiers();
7870 }
7871
7872 int kvm_arch_hardware_setup(void)
7873 {
7874         int r;
7875
7876         r = kvm_x86_ops->hardware_setup();
7877         if (r != 0)
7878                 return r;
7879
7880         if (kvm_has_tsc_control) {
7881                 /*
7882                  * Make sure the user can only configure tsc_khz values that
7883                  * fit into a signed integer.
7884                  * A min value is not calculated needed because it will always
7885                  * be 1 on all machines.
7886                  */
7887                 u64 max = min(0x7fffffffULL,
7888                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7889                 kvm_max_guest_tsc_khz = max;
7890
7891                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7892         }
7893
7894         kvm_init_msr_list();
7895         return 0;
7896 }
7897
7898 void kvm_arch_hardware_unsetup(void)
7899 {
7900         kvm_x86_ops->hardware_unsetup();
7901 }
7902
7903 void kvm_arch_check_processor_compat(void *rtn)
7904 {
7905         kvm_x86_ops->check_processor_compatibility(rtn);
7906 }
7907
7908 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7909 {
7910         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7911 }
7912 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7913
7914 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7915 {
7916         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7917 }
7918
7919 struct static_key kvm_no_apic_vcpu __read_mostly;
7920 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7921
7922 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7923 {
7924         struct page *page;
7925         struct kvm *kvm;
7926         int r;
7927
7928         BUG_ON(vcpu->kvm == NULL);
7929         kvm = vcpu->kvm;
7930
7931         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7932         vcpu->arch.pv.pv_unhalted = false;
7933         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7934         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7935                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7936         else
7937                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7938
7939         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7940         if (!page) {
7941                 r = -ENOMEM;
7942                 goto fail;
7943         }
7944         vcpu->arch.pio_data = page_address(page);
7945
7946         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7947
7948         r = kvm_mmu_create(vcpu);
7949         if (r < 0)
7950                 goto fail_free_pio_data;
7951
7952         if (irqchip_in_kernel(kvm)) {
7953                 r = kvm_create_lapic(vcpu);
7954                 if (r < 0)
7955                         goto fail_mmu_destroy;
7956         } else
7957                 static_key_slow_inc(&kvm_no_apic_vcpu);
7958
7959         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7960                                        GFP_KERNEL);
7961         if (!vcpu->arch.mce_banks) {
7962                 r = -ENOMEM;
7963                 goto fail_free_lapic;
7964         }
7965         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7966
7967         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7968                 r = -ENOMEM;
7969                 goto fail_free_mce_banks;
7970         }
7971
7972         fx_init(vcpu);
7973
7974         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7975         vcpu->arch.pv_time_enabled = false;
7976
7977         vcpu->arch.guest_supported_xcr0 = 0;
7978         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7979
7980         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7981
7982         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7983
7984         kvm_async_pf_hash_reset(vcpu);
7985         kvm_pmu_init(vcpu);
7986
7987         vcpu->arch.pending_external_vector = -1;
7988
7989         kvm_hv_vcpu_init(vcpu);
7990
7991         return 0;
7992
7993 fail_free_mce_banks:
7994         kfree(vcpu->arch.mce_banks);
7995 fail_free_lapic:
7996         kvm_free_lapic(vcpu);
7997 fail_mmu_destroy:
7998         kvm_mmu_destroy(vcpu);
7999 fail_free_pio_data:
8000         free_page((unsigned long)vcpu->arch.pio_data);
8001 fail:
8002         return r;
8003 }
8004
8005 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8006 {
8007         int idx;
8008
8009         kvm_hv_vcpu_uninit(vcpu);
8010         kvm_pmu_destroy(vcpu);
8011         kfree(vcpu->arch.mce_banks);
8012         kvm_free_lapic(vcpu);
8013         idx = srcu_read_lock(&vcpu->kvm->srcu);
8014         kvm_mmu_destroy(vcpu);
8015         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8016         free_page((unsigned long)vcpu->arch.pio_data);
8017         if (!lapic_in_kernel(vcpu))
8018                 static_key_slow_dec(&kvm_no_apic_vcpu);
8019 }
8020
8021 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8022 {
8023         kvm_x86_ops->sched_in(vcpu, cpu);
8024 }
8025
8026 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8027 {
8028         if (type)
8029                 return -EINVAL;
8030
8031         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8032         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8033         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8034         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8035         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8036
8037         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8038         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8039         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8040         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8041                 &kvm->arch.irq_sources_bitmap);
8042
8043         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8044         mutex_init(&kvm->arch.apic_map_lock);
8045         mutex_init(&kvm->arch.hyperv.hv_lock);
8046         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8047
8048         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8049         pvclock_update_vm_gtod_copy(kvm);
8050
8051         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8052         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8053
8054         kvm_page_track_init(kvm);
8055         kvm_mmu_init_vm(kvm);
8056
8057         if (kvm_x86_ops->vm_init)
8058                 return kvm_x86_ops->vm_init(kvm);
8059
8060         return 0;
8061 }
8062
8063 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8064 {
8065         int r;
8066         r = vcpu_load(vcpu);
8067         BUG_ON(r);
8068         kvm_mmu_unload(vcpu);
8069         vcpu_put(vcpu);
8070 }
8071
8072 static void kvm_free_vcpus(struct kvm *kvm)
8073 {
8074         unsigned int i;
8075         struct kvm_vcpu *vcpu;
8076
8077         /*
8078          * Unpin any mmu pages first.
8079          */
8080         kvm_for_each_vcpu(i, vcpu, kvm) {
8081                 kvm_clear_async_pf_completion_queue(vcpu);
8082                 kvm_unload_vcpu_mmu(vcpu);
8083         }
8084         kvm_for_each_vcpu(i, vcpu, kvm)
8085                 kvm_arch_vcpu_free(vcpu);
8086
8087         mutex_lock(&kvm->lock);
8088         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8089                 kvm->vcpus[i] = NULL;
8090
8091         atomic_set(&kvm->online_vcpus, 0);
8092         mutex_unlock(&kvm->lock);
8093 }
8094
8095 void kvm_arch_sync_events(struct kvm *kvm)
8096 {
8097         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8098         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8099         kvm_free_pit(kvm);
8100 }
8101
8102 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8103 {
8104         int i, r;
8105         unsigned long hva;
8106         struct kvm_memslots *slots = kvm_memslots(kvm);
8107         struct kvm_memory_slot *slot, old;
8108
8109         /* Called with kvm->slots_lock held.  */
8110         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8111                 return -EINVAL;
8112
8113         slot = id_to_memslot(slots, id);
8114         if (size) {
8115                 if (slot->npages)
8116                         return -EEXIST;
8117
8118                 /*
8119                  * MAP_SHARED to prevent internal slot pages from being moved
8120                  * by fork()/COW.
8121                  */
8122                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8123                               MAP_SHARED | MAP_ANONYMOUS, 0);
8124                 if (IS_ERR((void *)hva))
8125                         return PTR_ERR((void *)hva);
8126         } else {
8127                 if (!slot->npages)
8128                         return 0;
8129
8130                 hva = 0;
8131         }
8132
8133         old = *slot;
8134         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8135                 struct kvm_userspace_memory_region m;
8136
8137                 m.slot = id | (i << 16);
8138                 m.flags = 0;
8139                 m.guest_phys_addr = gpa;
8140                 m.userspace_addr = hva;
8141                 m.memory_size = size;
8142                 r = __kvm_set_memory_region(kvm, &m);
8143                 if (r < 0)
8144                         return r;
8145         }
8146
8147         if (!size) {
8148                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8149                 WARN_ON(r < 0);
8150         }
8151
8152         return 0;
8153 }
8154 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8155
8156 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8157 {
8158         int r;
8159
8160         mutex_lock(&kvm->slots_lock);
8161         r = __x86_set_memory_region(kvm, id, gpa, size);
8162         mutex_unlock(&kvm->slots_lock);
8163
8164         return r;
8165 }
8166 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8167
8168 void kvm_arch_destroy_vm(struct kvm *kvm)
8169 {
8170         if (current->mm == kvm->mm) {
8171                 /*
8172                  * Free memory regions allocated on behalf of userspace,
8173                  * unless the the memory map has changed due to process exit
8174                  * or fd copying.
8175                  */
8176                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8177                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8178                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8179         }
8180         if (kvm_x86_ops->vm_destroy)
8181                 kvm_x86_ops->vm_destroy(kvm);
8182         kvm_pic_destroy(kvm);
8183         kvm_ioapic_destroy(kvm);
8184         kvm_free_vcpus(kvm);
8185         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8186         kvm_mmu_uninit_vm(kvm);
8187         kvm_page_track_cleanup(kvm);
8188 }
8189
8190 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8191                            struct kvm_memory_slot *dont)
8192 {
8193         int i;
8194
8195         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8196                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8197                         kvfree(free->arch.rmap[i]);
8198                         free->arch.rmap[i] = NULL;
8199                 }
8200                 if (i == 0)
8201                         continue;
8202
8203                 if (!dont || free->arch.lpage_info[i - 1] !=
8204                              dont->arch.lpage_info[i - 1]) {
8205                         kvfree(free->arch.lpage_info[i - 1]);
8206                         free->arch.lpage_info[i - 1] = NULL;
8207                 }
8208         }
8209
8210         kvm_page_track_free_memslot(free, dont);
8211 }
8212
8213 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8214                             unsigned long npages)
8215 {
8216         int i;
8217
8218         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8219                 struct kvm_lpage_info *linfo;
8220                 unsigned long ugfn;
8221                 int lpages;
8222                 int level = i + 1;
8223
8224                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8225                                       slot->base_gfn, level) + 1;
8226
8227                 slot->arch.rmap[i] =
8228                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8229                 if (!slot->arch.rmap[i])
8230                         goto out_free;
8231                 if (i == 0)
8232                         continue;
8233
8234                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8235                 if (!linfo)
8236                         goto out_free;
8237
8238                 slot->arch.lpage_info[i - 1] = linfo;
8239
8240                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8241                         linfo[0].disallow_lpage = 1;
8242                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8243                         linfo[lpages - 1].disallow_lpage = 1;
8244                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8245                 /*
8246                  * If the gfn and userspace address are not aligned wrt each
8247                  * other, or if explicitly asked to, disable large page
8248                  * support for this slot
8249                  */
8250                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8251                     !kvm_largepages_enabled()) {
8252                         unsigned long j;
8253
8254                         for (j = 0; j < lpages; ++j)
8255                                 linfo[j].disallow_lpage = 1;
8256                 }
8257         }
8258
8259         if (kvm_page_track_create_memslot(slot, npages))
8260                 goto out_free;
8261
8262         return 0;
8263
8264 out_free:
8265         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8266                 kvfree(slot->arch.rmap[i]);
8267                 slot->arch.rmap[i] = NULL;
8268                 if (i == 0)
8269                         continue;
8270
8271                 kvfree(slot->arch.lpage_info[i - 1]);
8272                 slot->arch.lpage_info[i - 1] = NULL;
8273         }
8274         return -ENOMEM;
8275 }
8276
8277 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8278 {
8279         /*
8280          * memslots->generation has been incremented.
8281          * mmio generation may have reached its maximum value.
8282          */
8283         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8284 }
8285
8286 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8287                                 struct kvm_memory_slot *memslot,
8288                                 const struct kvm_userspace_memory_region *mem,
8289                                 enum kvm_mr_change change)
8290 {
8291         return 0;
8292 }
8293
8294 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8295                                      struct kvm_memory_slot *new)
8296 {
8297         /* Still write protect RO slot */
8298         if (new->flags & KVM_MEM_READONLY) {
8299                 kvm_mmu_slot_remove_write_access(kvm, new);
8300                 return;
8301         }
8302
8303         /*
8304          * Call kvm_x86_ops dirty logging hooks when they are valid.
8305          *
8306          * kvm_x86_ops->slot_disable_log_dirty is called when:
8307          *
8308          *  - KVM_MR_CREATE with dirty logging is disabled
8309          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8310          *
8311          * The reason is, in case of PML, we need to set D-bit for any slots
8312          * with dirty logging disabled in order to eliminate unnecessary GPA
8313          * logging in PML buffer (and potential PML buffer full VMEXT). This
8314          * guarantees leaving PML enabled during guest's lifetime won't have
8315          * any additonal overhead from PML when guest is running with dirty
8316          * logging disabled for memory slots.
8317          *
8318          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8319          * to dirty logging mode.
8320          *
8321          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8322          *
8323          * In case of write protect:
8324          *
8325          * Write protect all pages for dirty logging.
8326          *
8327          * All the sptes including the large sptes which point to this
8328          * slot are set to readonly. We can not create any new large
8329          * spte on this slot until the end of the logging.
8330          *
8331          * See the comments in fast_page_fault().
8332          */
8333         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8334                 if (kvm_x86_ops->slot_enable_log_dirty)
8335                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8336                 else
8337                         kvm_mmu_slot_remove_write_access(kvm, new);
8338         } else {
8339                 if (kvm_x86_ops->slot_disable_log_dirty)
8340                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8341         }
8342 }
8343
8344 void kvm_arch_commit_memory_region(struct kvm *kvm,
8345                                 const struct kvm_userspace_memory_region *mem,
8346                                 const struct kvm_memory_slot *old,
8347                                 const struct kvm_memory_slot *new,
8348                                 enum kvm_mr_change change)
8349 {
8350         int nr_mmu_pages = 0;
8351
8352         if (!kvm->arch.n_requested_mmu_pages)
8353                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8354
8355         if (nr_mmu_pages)
8356                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8357
8358         /*
8359          * Dirty logging tracks sptes in 4k granularity, meaning that large
8360          * sptes have to be split.  If live migration is successful, the guest
8361          * in the source machine will be destroyed and large sptes will be
8362          * created in the destination. However, if the guest continues to run
8363          * in the source machine (for example if live migration fails), small
8364          * sptes will remain around and cause bad performance.
8365          *
8366          * Scan sptes if dirty logging has been stopped, dropping those
8367          * which can be collapsed into a single large-page spte.  Later
8368          * page faults will create the large-page sptes.
8369          */
8370         if ((change != KVM_MR_DELETE) &&
8371                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8372                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8373                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8374
8375         /*
8376          * Set up write protection and/or dirty logging for the new slot.
8377          *
8378          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8379          * been zapped so no dirty logging staff is needed for old slot. For
8380          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8381          * new and it's also covered when dealing with the new slot.
8382          *
8383          * FIXME: const-ify all uses of struct kvm_memory_slot.
8384          */
8385         if (change != KVM_MR_DELETE)
8386                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8387 }
8388
8389 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8390 {
8391         kvm_mmu_invalidate_zap_all_pages(kvm);
8392 }
8393
8394 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8395                                    struct kvm_memory_slot *slot)
8396 {
8397         kvm_page_track_flush_slot(kvm, slot);
8398 }
8399
8400 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8401 {
8402         if (!list_empty_careful(&vcpu->async_pf.done))
8403                 return true;
8404
8405         if (kvm_apic_has_events(vcpu))
8406                 return true;
8407
8408         if (vcpu->arch.pv.pv_unhalted)
8409                 return true;
8410
8411         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8412             (vcpu->arch.nmi_pending &&
8413              kvm_x86_ops->nmi_allowed(vcpu)))
8414                 return true;
8415
8416         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8417             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8418                 return true;
8419
8420         if (kvm_arch_interrupt_allowed(vcpu) &&
8421             kvm_cpu_has_interrupt(vcpu))
8422                 return true;
8423
8424         if (kvm_hv_has_stimer_pending(vcpu))
8425                 return true;
8426
8427         return false;
8428 }
8429
8430 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8431 {
8432         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8433 }
8434
8435 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8436 {
8437         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8438 }
8439
8440 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8441 {
8442         return kvm_x86_ops->interrupt_allowed(vcpu);
8443 }
8444
8445 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8446 {
8447         if (is_64_bit_mode(vcpu))
8448                 return kvm_rip_read(vcpu);
8449         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8450                      kvm_rip_read(vcpu));
8451 }
8452 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8453
8454 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8455 {
8456         return kvm_get_linear_rip(vcpu) == linear_rip;
8457 }
8458 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8459
8460 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8461 {
8462         unsigned long rflags;
8463
8464         rflags = kvm_x86_ops->get_rflags(vcpu);
8465         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8466                 rflags &= ~X86_EFLAGS_TF;
8467         return rflags;
8468 }
8469 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8470
8471 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8472 {
8473         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8474             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8475                 rflags |= X86_EFLAGS_TF;
8476         kvm_x86_ops->set_rflags(vcpu, rflags);
8477 }
8478
8479 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8480 {
8481         __kvm_set_rflags(vcpu, rflags);
8482         kvm_make_request(KVM_REQ_EVENT, vcpu);
8483 }
8484 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8485
8486 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8487 {
8488         int r;
8489
8490         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8491               work->wakeup_all)
8492                 return;
8493
8494         r = kvm_mmu_reload(vcpu);
8495         if (unlikely(r))
8496                 return;
8497
8498         if (!vcpu->arch.mmu.direct_map &&
8499               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8500                 return;
8501
8502         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8503 }
8504
8505 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8506 {
8507         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8508 }
8509
8510 static inline u32 kvm_async_pf_next_probe(u32 key)
8511 {
8512         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8513 }
8514
8515 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8516 {
8517         u32 key = kvm_async_pf_hash_fn(gfn);
8518
8519         while (vcpu->arch.apf.gfns[key] != ~0)
8520                 key = kvm_async_pf_next_probe(key);
8521
8522         vcpu->arch.apf.gfns[key] = gfn;
8523 }
8524
8525 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8526 {
8527         int i;
8528         u32 key = kvm_async_pf_hash_fn(gfn);
8529
8530         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8531                      (vcpu->arch.apf.gfns[key] != gfn &&
8532                       vcpu->arch.apf.gfns[key] != ~0); i++)
8533                 key = kvm_async_pf_next_probe(key);
8534
8535         return key;
8536 }
8537
8538 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8539 {
8540         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8541 }
8542
8543 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8544 {
8545         u32 i, j, k;
8546
8547         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8548         while (true) {
8549                 vcpu->arch.apf.gfns[i] = ~0;
8550                 do {
8551                         j = kvm_async_pf_next_probe(j);
8552                         if (vcpu->arch.apf.gfns[j] == ~0)
8553                                 return;
8554                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8555                         /*
8556                          * k lies cyclically in ]i,j]
8557                          * |    i.k.j |
8558                          * |....j i.k.| or  |.k..j i...|
8559                          */
8560                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8561                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8562                 i = j;
8563         }
8564 }
8565
8566 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8567 {
8568
8569         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8570                                       sizeof(val));
8571 }
8572
8573 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8574                                      struct kvm_async_pf *work)
8575 {
8576         struct x86_exception fault;
8577
8578         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8579         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8580
8581         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8582             (vcpu->arch.apf.send_user_only &&
8583              kvm_x86_ops->get_cpl(vcpu) == 0))
8584                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8585         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8586                 fault.vector = PF_VECTOR;
8587                 fault.error_code_valid = true;
8588                 fault.error_code = 0;
8589                 fault.nested_page_fault = false;
8590                 fault.address = work->arch.token;
8591                 fault.async_page_fault = true;
8592                 kvm_inject_page_fault(vcpu, &fault);
8593         }
8594 }
8595
8596 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8597                                  struct kvm_async_pf *work)
8598 {
8599         struct x86_exception fault;
8600
8601         if (work->wakeup_all)
8602                 work->arch.token = ~0; /* broadcast wakeup */
8603         else
8604                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8605         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8606
8607         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8608             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8609                 fault.vector = PF_VECTOR;
8610                 fault.error_code_valid = true;
8611                 fault.error_code = 0;
8612                 fault.nested_page_fault = false;
8613                 fault.address = work->arch.token;
8614                 fault.async_page_fault = true;
8615                 kvm_inject_page_fault(vcpu, &fault);
8616         }
8617         vcpu->arch.apf.halted = false;
8618         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8619 }
8620
8621 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8622 {
8623         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8624                 return true;
8625         else
8626                 return kvm_can_do_async_pf(vcpu);
8627 }
8628
8629 void kvm_arch_start_assignment(struct kvm *kvm)
8630 {
8631         atomic_inc(&kvm->arch.assigned_device_count);
8632 }
8633 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8634
8635 void kvm_arch_end_assignment(struct kvm *kvm)
8636 {
8637         atomic_dec(&kvm->arch.assigned_device_count);
8638 }
8639 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8640
8641 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8642 {
8643         return atomic_read(&kvm->arch.assigned_device_count);
8644 }
8645 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8646
8647 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8648 {
8649         atomic_inc(&kvm->arch.noncoherent_dma_count);
8650 }
8651 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8652
8653 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8654 {
8655         atomic_dec(&kvm->arch.noncoherent_dma_count);
8656 }
8657 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8658
8659 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8660 {
8661         return atomic_read(&kvm->arch.noncoherent_dma_count);
8662 }
8663 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8664
8665 bool kvm_arch_has_irq_bypass(void)
8666 {
8667         return kvm_x86_ops->update_pi_irte != NULL;
8668 }
8669
8670 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8671                                       struct irq_bypass_producer *prod)
8672 {
8673         struct kvm_kernel_irqfd *irqfd =
8674                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8675
8676         irqfd->producer = prod;
8677
8678         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8679                                            prod->irq, irqfd->gsi, 1);
8680 }
8681
8682 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8683                                       struct irq_bypass_producer *prod)
8684 {
8685         int ret;
8686         struct kvm_kernel_irqfd *irqfd =
8687                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8688
8689         WARN_ON(irqfd->producer != prod);
8690         irqfd->producer = NULL;
8691
8692         /*
8693          * When producer of consumer is unregistered, we change back to
8694          * remapped mode, so we can re-use the current implementation
8695          * when the irq is masked/disabled or the consumer side (KVM
8696          * int this case doesn't want to receive the interrupts.
8697         */
8698         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8699         if (ret)
8700                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8701                        " fails: %d\n", irqfd->consumer.token, ret);
8702 }
8703
8704 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8705                                    uint32_t guest_irq, bool set)
8706 {
8707         if (!kvm_x86_ops->update_pi_irte)
8708                 return -EINVAL;
8709
8710         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8711 }
8712
8713 bool kvm_vector_hashing_enabled(void)
8714 {
8715         return vector_hashing;
8716 }
8717 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8718
8719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8737 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);