]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
6c81df94cd77c51b91557091bbc7ad169665c55b
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 500;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141
142 static bool __read_mostly vector_hashing = true;
143 module_param(vector_hashing, bool, S_IRUGO);
144
145 #define KVM_NR_SHARED_MSRS 16
146
147 struct kvm_shared_msrs_global {
148         int nr;
149         u32 msrs[KVM_NR_SHARED_MSRS];
150 };
151
152 struct kvm_shared_msrs {
153         struct user_return_notifier urn;
154         bool registered;
155         struct kvm_shared_msr_values {
156                 u64 host;
157                 u64 curr;
158         } values[KVM_NR_SHARED_MSRS];
159 };
160
161 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
162 static struct kvm_shared_msrs __percpu *shared_msrs;
163
164 struct kvm_stats_debugfs_item debugfs_entries[] = {
165         { "pf_fixed", VCPU_STAT(pf_fixed) },
166         { "pf_guest", VCPU_STAT(pf_guest) },
167         { "tlb_flush", VCPU_STAT(tlb_flush) },
168         { "invlpg", VCPU_STAT(invlpg) },
169         { "exits", VCPU_STAT(exits) },
170         { "io_exits", VCPU_STAT(io_exits) },
171         { "mmio_exits", VCPU_STAT(mmio_exits) },
172         { "signal_exits", VCPU_STAT(signal_exits) },
173         { "irq_window", VCPU_STAT(irq_window_exits) },
174         { "nmi_window", VCPU_STAT(nmi_window_exits) },
175         { "halt_exits", VCPU_STAT(halt_exits) },
176         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
177         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
178         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
179         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
180         { "hypercalls", VCPU_STAT(hypercalls) },
181         { "request_irq", VCPU_STAT(request_irq_exits) },
182         { "irq_exits", VCPU_STAT(irq_exits) },
183         { "host_state_reload", VCPU_STAT(host_state_reload) },
184         { "fpu_reload", VCPU_STAT(fpu_reload) },
185         { "insn_emulation", VCPU_STAT(insn_emulation) },
186         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
187         { "irq_injections", VCPU_STAT(irq_injections) },
188         { "nmi_injections", VCPU_STAT(nmi_injections) },
189         { "req_event", VCPU_STAT(req_event) },
190         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
191         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
192         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
193         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
194         { "mmu_flooded", VM_STAT(mmu_flooded) },
195         { "mmu_recycled", VM_STAT(mmu_recycled) },
196         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
197         { "mmu_unsync", VM_STAT(mmu_unsync) },
198         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
199         { "largepages", VM_STAT(lpages) },
200         { "max_mmu_page_hash_collisions",
201                 VM_STAT(max_mmu_page_hash_collisions) },
202         { NULL }
203 };
204
205 u64 __read_mostly host_xcr0;
206
207 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
208
209 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
210 {
211         int i;
212         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
213                 vcpu->arch.apf.gfns[i] = ~0;
214 }
215
216 static void kvm_on_user_return(struct user_return_notifier *urn)
217 {
218         unsigned slot;
219         struct kvm_shared_msrs *locals
220                 = container_of(urn, struct kvm_shared_msrs, urn);
221         struct kvm_shared_msr_values *values;
222         unsigned long flags;
223
224         /*
225          * Disabling irqs at this point since the following code could be
226          * interrupted and executed through kvm_arch_hardware_disable()
227          */
228         local_irq_save(flags);
229         if (locals->registered) {
230                 locals->registered = false;
231                 user_return_notifier_unregister(urn);
232         }
233         local_irq_restore(flags);
234         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
235                 values = &locals->values[slot];
236                 if (values->host != values->curr) {
237                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
238                         values->curr = values->host;
239                 }
240         }
241 }
242
243 static void shared_msr_update(unsigned slot, u32 msr)
244 {
245         u64 value;
246         unsigned int cpu = smp_processor_id();
247         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
248
249         /* only read, and nobody should modify it at this time,
250          * so don't need lock */
251         if (slot >= shared_msrs_global.nr) {
252                 printk(KERN_ERR "kvm: invalid MSR slot!");
253                 return;
254         }
255         rdmsrl_safe(msr, &value);
256         smsr->values[slot].host = value;
257         smsr->values[slot].curr = value;
258 }
259
260 void kvm_define_shared_msr(unsigned slot, u32 msr)
261 {
262         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
263         shared_msrs_global.msrs[slot] = msr;
264         if (slot >= shared_msrs_global.nr)
265                 shared_msrs_global.nr = slot + 1;
266 }
267 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
268
269 static void kvm_shared_msr_cpu_online(void)
270 {
271         unsigned i;
272
273         for (i = 0; i < shared_msrs_global.nr; ++i)
274                 shared_msr_update(i, shared_msrs_global.msrs[i]);
275 }
276
277 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
278 {
279         unsigned int cpu = smp_processor_id();
280         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
281         int err;
282
283         if (((value ^ smsr->values[slot].curr) & mask) == 0)
284                 return 0;
285         smsr->values[slot].curr = value;
286         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
287         if (err)
288                 return 1;
289
290         if (!smsr->registered) {
291                 smsr->urn.on_user_return = kvm_on_user_return;
292                 user_return_notifier_register(&smsr->urn);
293                 smsr->registered = true;
294         }
295         return 0;
296 }
297 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
298
299 static void drop_user_return_notifiers(void)
300 {
301         unsigned int cpu = smp_processor_id();
302         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
303
304         if (smsr->registered)
305                 kvm_on_user_return(&smsr->urn);
306 }
307
308 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
309 {
310         return vcpu->arch.apic_base;
311 }
312 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
313
314 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
315 {
316         u64 old_state = vcpu->arch.apic_base &
317                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318         u64 new_state = msr_info->data &
319                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
320         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
321                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
322
323         if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
324                 return 1;
325         if (!msr_info->host_initiated &&
326             ((new_state == MSR_IA32_APICBASE_ENABLE &&
327               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
328              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
329               old_state == 0)))
330                 return 1;
331
332         kvm_lapic_set_base(vcpu, msr_info->data);
333         return 0;
334 }
335 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
336
337 asmlinkage __visible void kvm_spurious_fault(void)
338 {
339         /* Fault while not rebooting.  We want the trace. */
340         BUG();
341 }
342 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
343
344 #define EXCPT_BENIGN            0
345 #define EXCPT_CONTRIBUTORY      1
346 #define EXCPT_PF                2
347
348 static int exception_class(int vector)
349 {
350         switch (vector) {
351         case PF_VECTOR:
352                 return EXCPT_PF;
353         case DE_VECTOR:
354         case TS_VECTOR:
355         case NP_VECTOR:
356         case SS_VECTOR:
357         case GP_VECTOR:
358                 return EXCPT_CONTRIBUTORY;
359         default:
360                 break;
361         }
362         return EXCPT_BENIGN;
363 }
364
365 #define EXCPT_FAULT             0
366 #define EXCPT_TRAP              1
367 #define EXCPT_ABORT             2
368 #define EXCPT_INTERRUPT         3
369
370 static int exception_type(int vector)
371 {
372         unsigned int mask;
373
374         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
375                 return EXCPT_INTERRUPT;
376
377         mask = 1 << vector;
378
379         /* #DB is trap, as instruction watchpoints are handled elsewhere */
380         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
381                 return EXCPT_TRAP;
382
383         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
384                 return EXCPT_ABORT;
385
386         /* Reserved exceptions will result in fault */
387         return EXCPT_FAULT;
388 }
389
390 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
391                 unsigned nr, bool has_error, u32 error_code,
392                 bool reinject)
393 {
394         u32 prev_nr;
395         int class1, class2;
396
397         kvm_make_request(KVM_REQ_EVENT, vcpu);
398
399         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
400         queue:
401                 if (has_error && !is_protmode(vcpu))
402                         has_error = false;
403                 if (reinject) {
404                         /*
405                          * On vmentry, vcpu->arch.exception.pending is only
406                          * true if an event injection was blocked by
407                          * nested_run_pending.  In that case, however,
408                          * vcpu_enter_guest requests an immediate exit,
409                          * and the guest shouldn't proceed far enough to
410                          * need reinjection.
411                          */
412                         WARN_ON_ONCE(vcpu->arch.exception.pending);
413                         vcpu->arch.exception.injected = true;
414                 } else {
415                         vcpu->arch.exception.pending = true;
416                         vcpu->arch.exception.injected = false;
417                 }
418                 vcpu->arch.exception.has_error_code = has_error;
419                 vcpu->arch.exception.nr = nr;
420                 vcpu->arch.exception.error_code = error_code;
421                 return;
422         }
423
424         /* to check exception */
425         prev_nr = vcpu->arch.exception.nr;
426         if (prev_nr == DF_VECTOR) {
427                 /* triple fault -> shutdown */
428                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
429                 return;
430         }
431         class1 = exception_class(prev_nr);
432         class2 = exception_class(nr);
433         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
434                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
435                 /*
436                  * Generate double fault per SDM Table 5-5.  Set
437                  * exception.pending = true so that the double fault
438                  * can trigger a nested vmexit.
439                  */
440                 vcpu->arch.exception.pending = true;
441                 vcpu->arch.exception.injected = false;
442                 vcpu->arch.exception.has_error_code = true;
443                 vcpu->arch.exception.nr = DF_VECTOR;
444                 vcpu->arch.exception.error_code = 0;
445         } else
446                 /* replace previous exception with a new one in a hope
447                    that instruction re-execution will regenerate lost
448                    exception */
449                 goto queue;
450 }
451
452 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
453 {
454         kvm_multiple_exception(vcpu, nr, false, 0, false);
455 }
456 EXPORT_SYMBOL_GPL(kvm_queue_exception);
457
458 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
459 {
460         kvm_multiple_exception(vcpu, nr, false, 0, true);
461 }
462 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
463
464 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
465 {
466         if (err)
467                 kvm_inject_gp(vcpu, 0);
468         else
469                 return kvm_skip_emulated_instruction(vcpu);
470
471         return 1;
472 }
473 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
474
475 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
476 {
477         ++vcpu->stat.pf_guest;
478         vcpu->arch.exception.nested_apf =
479                 is_guest_mode(vcpu) && fault->async_page_fault;
480         if (vcpu->arch.exception.nested_apf)
481                 vcpu->arch.apf.nested_apf_token = fault->address;
482         else
483                 vcpu->arch.cr2 = fault->address;
484         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
485 }
486 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
487
488 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
489 {
490         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
491                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
492         else
493                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
494
495         return fault->nested_page_fault;
496 }
497
498 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
499 {
500         atomic_inc(&vcpu->arch.nmi_queued);
501         kvm_make_request(KVM_REQ_NMI, vcpu);
502 }
503 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
504
505 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
506 {
507         kvm_multiple_exception(vcpu, nr, true, error_code, false);
508 }
509 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
510
511 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
512 {
513         kvm_multiple_exception(vcpu, nr, true, error_code, true);
514 }
515 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
516
517 /*
518  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
519  * a #GP and return false.
520  */
521 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
522 {
523         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
524                 return true;
525         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
526         return false;
527 }
528 EXPORT_SYMBOL_GPL(kvm_require_cpl);
529
530 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
531 {
532         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
533                 return true;
534
535         kvm_queue_exception(vcpu, UD_VECTOR);
536         return false;
537 }
538 EXPORT_SYMBOL_GPL(kvm_require_dr);
539
540 /*
541  * This function will be used to read from the physical memory of the currently
542  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
543  * can read from guest physical or from the guest's guest physical memory.
544  */
545 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
546                             gfn_t ngfn, void *data, int offset, int len,
547                             u32 access)
548 {
549         struct x86_exception exception;
550         gfn_t real_gfn;
551         gpa_t ngpa;
552
553         ngpa     = gfn_to_gpa(ngfn);
554         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
555         if (real_gfn == UNMAPPED_GVA)
556                 return -EFAULT;
557
558         real_gfn = gpa_to_gfn(real_gfn);
559
560         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
561 }
562 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
563
564 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
565                                void *data, int offset, int len, u32 access)
566 {
567         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
568                                        data, offset, len, access);
569 }
570
571 /*
572  * Load the pae pdptrs.  Return true is they are all valid.
573  */
574 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
575 {
576         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
577         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
578         int i;
579         int ret;
580         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
581
582         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
583                                       offset * sizeof(u64), sizeof(pdpte),
584                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
585         if (ret < 0) {
586                 ret = 0;
587                 goto out;
588         }
589         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
590                 if ((pdpte[i] & PT_PRESENT_MASK) &&
591                     (pdpte[i] &
592                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
593                         ret = 0;
594                         goto out;
595                 }
596         }
597         ret = 1;
598
599         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
600         __set_bit(VCPU_EXREG_PDPTR,
601                   (unsigned long *)&vcpu->arch.regs_avail);
602         __set_bit(VCPU_EXREG_PDPTR,
603                   (unsigned long *)&vcpu->arch.regs_dirty);
604 out:
605
606         return ret;
607 }
608 EXPORT_SYMBOL_GPL(load_pdptrs);
609
610 bool pdptrs_changed(struct kvm_vcpu *vcpu)
611 {
612         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
613         bool changed = true;
614         int offset;
615         gfn_t gfn;
616         int r;
617
618         if (is_long_mode(vcpu) || !is_pae(vcpu))
619                 return false;
620
621         if (!test_bit(VCPU_EXREG_PDPTR,
622                       (unsigned long *)&vcpu->arch.regs_avail))
623                 return true;
624
625         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
626         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
627         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
628                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
629         if (r < 0)
630                 goto out;
631         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
632 out:
633
634         return changed;
635 }
636 EXPORT_SYMBOL_GPL(pdptrs_changed);
637
638 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
639 {
640         unsigned long old_cr0 = kvm_read_cr0(vcpu);
641         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
642
643         cr0 |= X86_CR0_ET;
644
645 #ifdef CONFIG_X86_64
646         if (cr0 & 0xffffffff00000000UL)
647                 return 1;
648 #endif
649
650         cr0 &= ~CR0_RESERVED_BITS;
651
652         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
653                 return 1;
654
655         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
656                 return 1;
657
658         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
659 #ifdef CONFIG_X86_64
660                 if ((vcpu->arch.efer & EFER_LME)) {
661                         int cs_db, cs_l;
662
663                         if (!is_pae(vcpu))
664                                 return 1;
665                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
666                         if (cs_l)
667                                 return 1;
668                 } else
669 #endif
670                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
671                                                  kvm_read_cr3(vcpu)))
672                         return 1;
673         }
674
675         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
676                 return 1;
677
678         kvm_x86_ops->set_cr0(vcpu, cr0);
679
680         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
681                 kvm_clear_async_pf_completion_queue(vcpu);
682                 kvm_async_pf_hash_reset(vcpu);
683         }
684
685         if ((cr0 ^ old_cr0) & update_bits)
686                 kvm_mmu_reset_context(vcpu);
687
688         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
689             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
690             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
691                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
692
693         return 0;
694 }
695 EXPORT_SYMBOL_GPL(kvm_set_cr0);
696
697 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
698 {
699         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
700 }
701 EXPORT_SYMBOL_GPL(kvm_lmsw);
702
703 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
704 {
705         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
706                         !vcpu->guest_xcr0_loaded) {
707                 /* kvm_set_xcr() also depends on this */
708                 if (vcpu->arch.xcr0 != host_xcr0)
709                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
710                 vcpu->guest_xcr0_loaded = 1;
711         }
712 }
713
714 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
715 {
716         if (vcpu->guest_xcr0_loaded) {
717                 if (vcpu->arch.xcr0 != host_xcr0)
718                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
719                 vcpu->guest_xcr0_loaded = 0;
720         }
721 }
722
723 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
724 {
725         u64 xcr0 = xcr;
726         u64 old_xcr0 = vcpu->arch.xcr0;
727         u64 valid_bits;
728
729         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
730         if (index != XCR_XFEATURE_ENABLED_MASK)
731                 return 1;
732         if (!(xcr0 & XFEATURE_MASK_FP))
733                 return 1;
734         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
735                 return 1;
736
737         /*
738          * Do not allow the guest to set bits that we do not support
739          * saving.  However, xcr0 bit 0 is always set, even if the
740          * emulated CPU does not support XSAVE (see fx_init).
741          */
742         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
743         if (xcr0 & ~valid_bits)
744                 return 1;
745
746         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
747             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
748                 return 1;
749
750         if (xcr0 & XFEATURE_MASK_AVX512) {
751                 if (!(xcr0 & XFEATURE_MASK_YMM))
752                         return 1;
753                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
754                         return 1;
755         }
756         vcpu->arch.xcr0 = xcr0;
757
758         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
759                 kvm_update_cpuid(vcpu);
760         return 0;
761 }
762
763 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
764 {
765         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
766             __kvm_set_xcr(vcpu, index, xcr)) {
767                 kvm_inject_gp(vcpu, 0);
768                 return 1;
769         }
770         return 0;
771 }
772 EXPORT_SYMBOL_GPL(kvm_set_xcr);
773
774 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
775 {
776         unsigned long old_cr4 = kvm_read_cr4(vcpu);
777         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
778                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
779
780         if (cr4 & CR4_RESERVED_BITS)
781                 return 1;
782
783         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
784                 return 1;
785
786         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
787                 return 1;
788
789         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
790                 return 1;
791
792         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
793                 return 1;
794
795         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
796                 return 1;
797
798         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
799                 return 1;
800
801         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
802                 return 1;
803
804         if (is_long_mode(vcpu)) {
805                 if (!(cr4 & X86_CR4_PAE))
806                         return 1;
807         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
808                    && ((cr4 ^ old_cr4) & pdptr_bits)
809                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
810                                    kvm_read_cr3(vcpu)))
811                 return 1;
812
813         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
814                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
815                         return 1;
816
817                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
818                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
819                         return 1;
820         }
821
822         if (kvm_x86_ops->set_cr4(vcpu, cr4))
823                 return 1;
824
825         if (((cr4 ^ old_cr4) & pdptr_bits) ||
826             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
827                 kvm_mmu_reset_context(vcpu);
828
829         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
830                 kvm_update_cpuid(vcpu);
831
832         return 0;
833 }
834 EXPORT_SYMBOL_GPL(kvm_set_cr4);
835
836 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
837 {
838 #ifdef CONFIG_X86_64
839         cr3 &= ~CR3_PCID_INVD;
840 #endif
841
842         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
843                 kvm_mmu_sync_roots(vcpu);
844                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
845                 return 0;
846         }
847
848         if (is_long_mode(vcpu) &&
849             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
850                 return 1;
851         else if (is_pae(vcpu) && is_paging(vcpu) &&
852                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
853                 return 1;
854
855         vcpu->arch.cr3 = cr3;
856         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
857         kvm_mmu_new_cr3(vcpu);
858         return 0;
859 }
860 EXPORT_SYMBOL_GPL(kvm_set_cr3);
861
862 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
863 {
864         if (cr8 & CR8_RESERVED_BITS)
865                 return 1;
866         if (lapic_in_kernel(vcpu))
867                 kvm_lapic_set_tpr(vcpu, cr8);
868         else
869                 vcpu->arch.cr8 = cr8;
870         return 0;
871 }
872 EXPORT_SYMBOL_GPL(kvm_set_cr8);
873
874 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
875 {
876         if (lapic_in_kernel(vcpu))
877                 return kvm_lapic_get_cr8(vcpu);
878         else
879                 return vcpu->arch.cr8;
880 }
881 EXPORT_SYMBOL_GPL(kvm_get_cr8);
882
883 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
884 {
885         int i;
886
887         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
888                 for (i = 0; i < KVM_NR_DB_REGS; i++)
889                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
890                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
891         }
892 }
893
894 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
895 {
896         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
897                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
898 }
899
900 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
901 {
902         unsigned long dr7;
903
904         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
905                 dr7 = vcpu->arch.guest_debug_dr7;
906         else
907                 dr7 = vcpu->arch.dr7;
908         kvm_x86_ops->set_dr7(vcpu, dr7);
909         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
910         if (dr7 & DR7_BP_EN_MASK)
911                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
912 }
913
914 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
915 {
916         u64 fixed = DR6_FIXED_1;
917
918         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
919                 fixed |= DR6_RTM;
920         return fixed;
921 }
922
923 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
924 {
925         switch (dr) {
926         case 0 ... 3:
927                 vcpu->arch.db[dr] = val;
928                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
929                         vcpu->arch.eff_db[dr] = val;
930                 break;
931         case 4:
932                 /* fall through */
933         case 6:
934                 if (val & 0xffffffff00000000ULL)
935                         return -1; /* #GP */
936                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
937                 kvm_update_dr6(vcpu);
938                 break;
939         case 5:
940                 /* fall through */
941         default: /* 7 */
942                 if (val & 0xffffffff00000000ULL)
943                         return -1; /* #GP */
944                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
945                 kvm_update_dr7(vcpu);
946                 break;
947         }
948
949         return 0;
950 }
951
952 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
953 {
954         if (__kvm_set_dr(vcpu, dr, val)) {
955                 kvm_inject_gp(vcpu, 0);
956                 return 1;
957         }
958         return 0;
959 }
960 EXPORT_SYMBOL_GPL(kvm_set_dr);
961
962 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
963 {
964         switch (dr) {
965         case 0 ... 3:
966                 *val = vcpu->arch.db[dr];
967                 break;
968         case 4:
969                 /* fall through */
970         case 6:
971                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
972                         *val = vcpu->arch.dr6;
973                 else
974                         *val = kvm_x86_ops->get_dr6(vcpu);
975                 break;
976         case 5:
977                 /* fall through */
978         default: /* 7 */
979                 *val = vcpu->arch.dr7;
980                 break;
981         }
982         return 0;
983 }
984 EXPORT_SYMBOL_GPL(kvm_get_dr);
985
986 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
987 {
988         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
989         u64 data;
990         int err;
991
992         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
993         if (err)
994                 return err;
995         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
996         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
997         return err;
998 }
999 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1000
1001 /*
1002  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1003  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1004  *
1005  * This list is modified at module load time to reflect the
1006  * capabilities of the host cpu. This capabilities test skips MSRs that are
1007  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1008  * may depend on host virtualization features rather than host cpu features.
1009  */
1010
1011 static u32 msrs_to_save[] = {
1012         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1013         MSR_STAR,
1014 #ifdef CONFIG_X86_64
1015         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1016 #endif
1017         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1018         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1019         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1020 };
1021
1022 static unsigned num_msrs_to_save;
1023
1024 static u32 emulated_msrs[] = {
1025         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1026         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1027         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1028         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1029         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1030         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1031         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1032         HV_X64_MSR_RESET,
1033         HV_X64_MSR_VP_INDEX,
1034         HV_X64_MSR_VP_RUNTIME,
1035         HV_X64_MSR_SCONTROL,
1036         HV_X64_MSR_STIMER0_CONFIG,
1037         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1038         MSR_KVM_PV_EOI_EN,
1039
1040         MSR_IA32_TSC_ADJUST,
1041         MSR_IA32_TSCDEADLINE,
1042         MSR_IA32_MISC_ENABLE,
1043         MSR_IA32_MCG_STATUS,
1044         MSR_IA32_MCG_CTL,
1045         MSR_IA32_MCG_EXT_CTL,
1046         MSR_IA32_SMBASE,
1047         MSR_SMI_COUNT,
1048         MSR_PLATFORM_INFO,
1049         MSR_MISC_FEATURES_ENABLES,
1050 };
1051
1052 static unsigned num_emulated_msrs;
1053
1054 /*
1055  * List of msr numbers which are used to expose MSR-based features that
1056  * can be used by a hypervisor to validate requested CPU features.
1057  */
1058 static u32 msr_based_features[] = {
1059         MSR_IA32_VMX_BASIC,
1060         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1061         MSR_IA32_VMX_PINBASED_CTLS,
1062         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1063         MSR_IA32_VMX_PROCBASED_CTLS,
1064         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1065         MSR_IA32_VMX_EXIT_CTLS,
1066         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1067         MSR_IA32_VMX_ENTRY_CTLS,
1068         MSR_IA32_VMX_MISC,
1069         MSR_IA32_VMX_CR0_FIXED0,
1070         MSR_IA32_VMX_CR0_FIXED1,
1071         MSR_IA32_VMX_CR4_FIXED0,
1072         MSR_IA32_VMX_CR4_FIXED1,
1073         MSR_IA32_VMX_VMCS_ENUM,
1074         MSR_IA32_VMX_PROCBASED_CTLS2,
1075         MSR_IA32_VMX_EPT_VPID_CAP,
1076         MSR_IA32_VMX_VMFUNC,
1077
1078         MSR_F10H_DECFG,
1079         MSR_IA32_UCODE_REV,
1080 };
1081
1082 static unsigned int num_msr_based_features;
1083
1084 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1085 {
1086         switch (msr->index) {
1087         case MSR_IA32_UCODE_REV:
1088                 rdmsrl(msr->index, msr->data);
1089                 break;
1090         default:
1091                 if (kvm_x86_ops->get_msr_feature(msr))
1092                         return 1;
1093         }
1094         return 0;
1095 }
1096
1097 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1098 {
1099         struct kvm_msr_entry msr;
1100         int r;
1101
1102         msr.index = index;
1103         r = kvm_get_msr_feature(&msr);
1104         if (r)
1105                 return r;
1106
1107         *data = msr.data;
1108
1109         return 0;
1110 }
1111
1112 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1113 {
1114         if (efer & efer_reserved_bits)
1115                 return false;
1116
1117         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1118                         return false;
1119
1120         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1121                         return false;
1122
1123         return true;
1124 }
1125 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1126
1127 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1128 {
1129         u64 old_efer = vcpu->arch.efer;
1130
1131         if (!kvm_valid_efer(vcpu, efer))
1132                 return 1;
1133
1134         if (is_paging(vcpu)
1135             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1136                 return 1;
1137
1138         efer &= ~EFER_LMA;
1139         efer |= vcpu->arch.efer & EFER_LMA;
1140
1141         kvm_x86_ops->set_efer(vcpu, efer);
1142
1143         /* Update reserved bits */
1144         if ((efer ^ old_efer) & EFER_NX)
1145                 kvm_mmu_reset_context(vcpu);
1146
1147         return 0;
1148 }
1149
1150 void kvm_enable_efer_bits(u64 mask)
1151 {
1152        efer_reserved_bits &= ~mask;
1153 }
1154 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1155
1156 /*
1157  * Writes msr value into into the appropriate "register".
1158  * Returns 0 on success, non-0 otherwise.
1159  * Assumes vcpu_load() was already called.
1160  */
1161 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1162 {
1163         switch (msr->index) {
1164         case MSR_FS_BASE:
1165         case MSR_GS_BASE:
1166         case MSR_KERNEL_GS_BASE:
1167         case MSR_CSTAR:
1168         case MSR_LSTAR:
1169                 if (is_noncanonical_address(msr->data, vcpu))
1170                         return 1;
1171                 break;
1172         case MSR_IA32_SYSENTER_EIP:
1173         case MSR_IA32_SYSENTER_ESP:
1174                 /*
1175                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1176                  * non-canonical address is written on Intel but not on
1177                  * AMD (which ignores the top 32-bits, because it does
1178                  * not implement 64-bit SYSENTER).
1179                  *
1180                  * 64-bit code should hence be able to write a non-canonical
1181                  * value on AMD.  Making the address canonical ensures that
1182                  * vmentry does not fail on Intel after writing a non-canonical
1183                  * value, and that something deterministic happens if the guest
1184                  * invokes 64-bit SYSENTER.
1185                  */
1186                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1187         }
1188         return kvm_x86_ops->set_msr(vcpu, msr);
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_set_msr);
1191
1192 /*
1193  * Adapt set_msr() to msr_io()'s calling convention
1194  */
1195 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1196 {
1197         struct msr_data msr;
1198         int r;
1199
1200         msr.index = index;
1201         msr.host_initiated = true;
1202         r = kvm_get_msr(vcpu, &msr);
1203         if (r)
1204                 return r;
1205
1206         *data = msr.data;
1207         return 0;
1208 }
1209
1210 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1211 {
1212         struct msr_data msr;
1213
1214         msr.data = *data;
1215         msr.index = index;
1216         msr.host_initiated = true;
1217         return kvm_set_msr(vcpu, &msr);
1218 }
1219
1220 #ifdef CONFIG_X86_64
1221 struct pvclock_gtod_data {
1222         seqcount_t      seq;
1223
1224         struct { /* extract of a clocksource struct */
1225                 int vclock_mode;
1226                 u64     cycle_last;
1227                 u64     mask;
1228                 u32     mult;
1229                 u32     shift;
1230         } clock;
1231
1232         u64             boot_ns;
1233         u64             nsec_base;
1234         u64             wall_time_sec;
1235 };
1236
1237 static struct pvclock_gtod_data pvclock_gtod_data;
1238
1239 static void update_pvclock_gtod(struct timekeeper *tk)
1240 {
1241         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1242         u64 boot_ns;
1243
1244         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1245
1246         write_seqcount_begin(&vdata->seq);
1247
1248         /* copy pvclock gtod data */
1249         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1250         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1251         vdata->clock.mask               = tk->tkr_mono.mask;
1252         vdata->clock.mult               = tk->tkr_mono.mult;
1253         vdata->clock.shift              = tk->tkr_mono.shift;
1254
1255         vdata->boot_ns                  = boot_ns;
1256         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1257
1258         vdata->wall_time_sec            = tk->xtime_sec;
1259
1260         write_seqcount_end(&vdata->seq);
1261 }
1262 #endif
1263
1264 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1265 {
1266         /*
1267          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1268          * vcpu_enter_guest.  This function is only called from
1269          * the physical CPU that is running vcpu.
1270          */
1271         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1272 }
1273
1274 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1275 {
1276         int version;
1277         int r;
1278         struct pvclock_wall_clock wc;
1279         struct timespec64 boot;
1280
1281         if (!wall_clock)
1282                 return;
1283
1284         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1285         if (r)
1286                 return;
1287
1288         if (version & 1)
1289                 ++version;  /* first time write, random junk */
1290
1291         ++version;
1292
1293         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1294                 return;
1295
1296         /*
1297          * The guest calculates current wall clock time by adding
1298          * system time (updated by kvm_guest_time_update below) to the
1299          * wall clock specified here.  guest system time equals host
1300          * system time for us, thus we must fill in host boot time here.
1301          */
1302         getboottime64(&boot);
1303
1304         if (kvm->arch.kvmclock_offset) {
1305                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1306                 boot = timespec64_sub(boot, ts);
1307         }
1308         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1309         wc.nsec = boot.tv_nsec;
1310         wc.version = version;
1311
1312         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1313
1314         version++;
1315         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1316 }
1317
1318 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1319 {
1320         do_shl32_div32(dividend, divisor);
1321         return dividend;
1322 }
1323
1324 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1325                                s8 *pshift, u32 *pmultiplier)
1326 {
1327         uint64_t scaled64;
1328         int32_t  shift = 0;
1329         uint64_t tps64;
1330         uint32_t tps32;
1331
1332         tps64 = base_hz;
1333         scaled64 = scaled_hz;
1334         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1335                 tps64 >>= 1;
1336                 shift--;
1337         }
1338
1339         tps32 = (uint32_t)tps64;
1340         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1341                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1342                         scaled64 >>= 1;
1343                 else
1344                         tps32 <<= 1;
1345                 shift++;
1346         }
1347
1348         *pshift = shift;
1349         *pmultiplier = div_frac(scaled64, tps32);
1350
1351         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1352                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1353 }
1354
1355 #ifdef CONFIG_X86_64
1356 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1357 #endif
1358
1359 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1360 static unsigned long max_tsc_khz;
1361
1362 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1363 {
1364         u64 v = (u64)khz * (1000000 + ppm);
1365         do_div(v, 1000000);
1366         return v;
1367 }
1368
1369 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1370 {
1371         u64 ratio;
1372
1373         /* Guest TSC same frequency as host TSC? */
1374         if (!scale) {
1375                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1376                 return 0;
1377         }
1378
1379         /* TSC scaling supported? */
1380         if (!kvm_has_tsc_control) {
1381                 if (user_tsc_khz > tsc_khz) {
1382                         vcpu->arch.tsc_catchup = 1;
1383                         vcpu->arch.tsc_always_catchup = 1;
1384                         return 0;
1385                 } else {
1386                         WARN(1, "user requested TSC rate below hardware speed\n");
1387                         return -1;
1388                 }
1389         }
1390
1391         /* TSC scaling required  - calculate ratio */
1392         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1393                                 user_tsc_khz, tsc_khz);
1394
1395         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1396                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1397                           user_tsc_khz);
1398                 return -1;
1399         }
1400
1401         vcpu->arch.tsc_scaling_ratio = ratio;
1402         return 0;
1403 }
1404
1405 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1406 {
1407         u32 thresh_lo, thresh_hi;
1408         int use_scaling = 0;
1409
1410         /* tsc_khz can be zero if TSC calibration fails */
1411         if (user_tsc_khz == 0) {
1412                 /* set tsc_scaling_ratio to a safe value */
1413                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1414                 return -1;
1415         }
1416
1417         /* Compute a scale to convert nanoseconds in TSC cycles */
1418         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1419                            &vcpu->arch.virtual_tsc_shift,
1420                            &vcpu->arch.virtual_tsc_mult);
1421         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1422
1423         /*
1424          * Compute the variation in TSC rate which is acceptable
1425          * within the range of tolerance and decide if the
1426          * rate being applied is within that bounds of the hardware
1427          * rate.  If so, no scaling or compensation need be done.
1428          */
1429         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1430         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1431         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1432                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1433                 use_scaling = 1;
1434         }
1435         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1436 }
1437
1438 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1439 {
1440         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1441                                       vcpu->arch.virtual_tsc_mult,
1442                                       vcpu->arch.virtual_tsc_shift);
1443         tsc += vcpu->arch.this_tsc_write;
1444         return tsc;
1445 }
1446
1447 static inline int gtod_is_based_on_tsc(int mode)
1448 {
1449         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1450 }
1451
1452 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1453 {
1454 #ifdef CONFIG_X86_64
1455         bool vcpus_matched;
1456         struct kvm_arch *ka = &vcpu->kvm->arch;
1457         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1458
1459         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1460                          atomic_read(&vcpu->kvm->online_vcpus));
1461
1462         /*
1463          * Once the masterclock is enabled, always perform request in
1464          * order to update it.
1465          *
1466          * In order to enable masterclock, the host clocksource must be TSC
1467          * and the vcpus need to have matched TSCs.  When that happens,
1468          * perform request to enable masterclock.
1469          */
1470         if (ka->use_master_clock ||
1471             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1472                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1473
1474         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1475                             atomic_read(&vcpu->kvm->online_vcpus),
1476                             ka->use_master_clock, gtod->clock.vclock_mode);
1477 #endif
1478 }
1479
1480 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1481 {
1482         u64 curr_offset = vcpu->arch.tsc_offset;
1483         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1484 }
1485
1486 /*
1487  * Multiply tsc by a fixed point number represented by ratio.
1488  *
1489  * The most significant 64-N bits (mult) of ratio represent the
1490  * integral part of the fixed point number; the remaining N bits
1491  * (frac) represent the fractional part, ie. ratio represents a fixed
1492  * point number (mult + frac * 2^(-N)).
1493  *
1494  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1495  */
1496 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1497 {
1498         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1499 }
1500
1501 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1502 {
1503         u64 _tsc = tsc;
1504         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1505
1506         if (ratio != kvm_default_tsc_scaling_ratio)
1507                 _tsc = __scale_tsc(ratio, tsc);
1508
1509         return _tsc;
1510 }
1511 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1512
1513 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1514 {
1515         u64 tsc;
1516
1517         tsc = kvm_scale_tsc(vcpu, rdtsc());
1518
1519         return target_tsc - tsc;
1520 }
1521
1522 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1523 {
1524         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1525 }
1526 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1527
1528 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1529 {
1530         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1531         vcpu->arch.tsc_offset = offset;
1532 }
1533
1534 static inline bool kvm_check_tsc_unstable(void)
1535 {
1536 #ifdef CONFIG_X86_64
1537         /*
1538          * TSC is marked unstable when we're running on Hyper-V,
1539          * 'TSC page' clocksource is good.
1540          */
1541         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1542                 return false;
1543 #endif
1544         return check_tsc_unstable();
1545 }
1546
1547 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1548 {
1549         struct kvm *kvm = vcpu->kvm;
1550         u64 offset, ns, elapsed;
1551         unsigned long flags;
1552         bool matched;
1553         bool already_matched;
1554         u64 data = msr->data;
1555         bool synchronizing = false;
1556
1557         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1558         offset = kvm_compute_tsc_offset(vcpu, data);
1559         ns = ktime_get_boot_ns();
1560         elapsed = ns - kvm->arch.last_tsc_nsec;
1561
1562         if (vcpu->arch.virtual_tsc_khz) {
1563                 if (data == 0 && msr->host_initiated) {
1564                         /*
1565                          * detection of vcpu initialization -- need to sync
1566                          * with other vCPUs. This particularly helps to keep
1567                          * kvm_clock stable after CPU hotplug
1568                          */
1569                         synchronizing = true;
1570                 } else {
1571                         u64 tsc_exp = kvm->arch.last_tsc_write +
1572                                                 nsec_to_cycles(vcpu, elapsed);
1573                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1574                         /*
1575                          * Special case: TSC write with a small delta (1 second)
1576                          * of virtual cycle time against real time is
1577                          * interpreted as an attempt to synchronize the CPU.
1578                          */
1579                         synchronizing = data < tsc_exp + tsc_hz &&
1580                                         data + tsc_hz > tsc_exp;
1581                 }
1582         }
1583
1584         /*
1585          * For a reliable TSC, we can match TSC offsets, and for an unstable
1586          * TSC, we add elapsed time in this computation.  We could let the
1587          * compensation code attempt to catch up if we fall behind, but
1588          * it's better to try to match offsets from the beginning.
1589          */
1590         if (synchronizing &&
1591             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1592                 if (!kvm_check_tsc_unstable()) {
1593                         offset = kvm->arch.cur_tsc_offset;
1594                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1595                 } else {
1596                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1597                         data += delta;
1598                         offset = kvm_compute_tsc_offset(vcpu, data);
1599                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1600                 }
1601                 matched = true;
1602                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1603         } else {
1604                 /*
1605                  * We split periods of matched TSC writes into generations.
1606                  * For each generation, we track the original measured
1607                  * nanosecond time, offset, and write, so if TSCs are in
1608                  * sync, we can match exact offset, and if not, we can match
1609                  * exact software computation in compute_guest_tsc()
1610                  *
1611                  * These values are tracked in kvm->arch.cur_xxx variables.
1612                  */
1613                 kvm->arch.cur_tsc_generation++;
1614                 kvm->arch.cur_tsc_nsec = ns;
1615                 kvm->arch.cur_tsc_write = data;
1616                 kvm->arch.cur_tsc_offset = offset;
1617                 matched = false;
1618                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1619                          kvm->arch.cur_tsc_generation, data);
1620         }
1621
1622         /*
1623          * We also track th most recent recorded KHZ, write and time to
1624          * allow the matching interval to be extended at each write.
1625          */
1626         kvm->arch.last_tsc_nsec = ns;
1627         kvm->arch.last_tsc_write = data;
1628         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1629
1630         vcpu->arch.last_guest_tsc = data;
1631
1632         /* Keep track of which generation this VCPU has synchronized to */
1633         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1634         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1635         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1636
1637         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1638                 update_ia32_tsc_adjust_msr(vcpu, offset);
1639
1640         kvm_vcpu_write_tsc_offset(vcpu, offset);
1641         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1642
1643         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1644         if (!matched) {
1645                 kvm->arch.nr_vcpus_matched_tsc = 0;
1646         } else if (!already_matched) {
1647                 kvm->arch.nr_vcpus_matched_tsc++;
1648         }
1649
1650         kvm_track_tsc_matching(vcpu);
1651         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1652 }
1653
1654 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1655
1656 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1657                                            s64 adjustment)
1658 {
1659         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1660 }
1661
1662 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1663 {
1664         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1665                 WARN_ON(adjustment < 0);
1666         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1667         adjust_tsc_offset_guest(vcpu, adjustment);
1668 }
1669
1670 #ifdef CONFIG_X86_64
1671
1672 static u64 read_tsc(void)
1673 {
1674         u64 ret = (u64)rdtsc_ordered();
1675         u64 last = pvclock_gtod_data.clock.cycle_last;
1676
1677         if (likely(ret >= last))
1678                 return ret;
1679
1680         /*
1681          * GCC likes to generate cmov here, but this branch is extremely
1682          * predictable (it's just a function of time and the likely is
1683          * very likely) and there's a data dependence, so force GCC
1684          * to generate a branch instead.  I don't barrier() because
1685          * we don't actually need a barrier, and if this function
1686          * ever gets inlined it will generate worse code.
1687          */
1688         asm volatile ("");
1689         return last;
1690 }
1691
1692 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1693 {
1694         long v;
1695         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1696         u64 tsc_pg_val;
1697
1698         switch (gtod->clock.vclock_mode) {
1699         case VCLOCK_HVCLOCK:
1700                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1701                                                   tsc_timestamp);
1702                 if (tsc_pg_val != U64_MAX) {
1703                         /* TSC page valid */
1704                         *mode = VCLOCK_HVCLOCK;
1705                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1706                                 gtod->clock.mask;
1707                 } else {
1708                         /* TSC page invalid */
1709                         *mode = VCLOCK_NONE;
1710                 }
1711                 break;
1712         case VCLOCK_TSC:
1713                 *mode = VCLOCK_TSC;
1714                 *tsc_timestamp = read_tsc();
1715                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1716                         gtod->clock.mask;
1717                 break;
1718         default:
1719                 *mode = VCLOCK_NONE;
1720         }
1721
1722         if (*mode == VCLOCK_NONE)
1723                 *tsc_timestamp = v = 0;
1724
1725         return v * gtod->clock.mult;
1726 }
1727
1728 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1729 {
1730         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1731         unsigned long seq;
1732         int mode;
1733         u64 ns;
1734
1735         do {
1736                 seq = read_seqcount_begin(&gtod->seq);
1737                 ns = gtod->nsec_base;
1738                 ns += vgettsc(tsc_timestamp, &mode);
1739                 ns >>= gtod->clock.shift;
1740                 ns += gtod->boot_ns;
1741         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1742         *t = ns;
1743
1744         return mode;
1745 }
1746
1747 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1748 {
1749         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1750         unsigned long seq;
1751         int mode;
1752         u64 ns;
1753
1754         do {
1755                 seq = read_seqcount_begin(&gtod->seq);
1756                 ts->tv_sec = gtod->wall_time_sec;
1757                 ns = gtod->nsec_base;
1758                 ns += vgettsc(tsc_timestamp, &mode);
1759                 ns >>= gtod->clock.shift;
1760         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1761
1762         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1763         ts->tv_nsec = ns;
1764
1765         return mode;
1766 }
1767
1768 /* returns true if host is using TSC based clocksource */
1769 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1770 {
1771         /* checked again under seqlock below */
1772         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1773                 return false;
1774
1775         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1776                                                       tsc_timestamp));
1777 }
1778
1779 /* returns true if host is using TSC based clocksource */
1780 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1781                                            u64 *tsc_timestamp)
1782 {
1783         /* checked again under seqlock below */
1784         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1785                 return false;
1786
1787         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1788 }
1789 #endif
1790
1791 /*
1792  *
1793  * Assuming a stable TSC across physical CPUS, and a stable TSC
1794  * across virtual CPUs, the following condition is possible.
1795  * Each numbered line represents an event visible to both
1796  * CPUs at the next numbered event.
1797  *
1798  * "timespecX" represents host monotonic time. "tscX" represents
1799  * RDTSC value.
1800  *
1801  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1802  *
1803  * 1.  read timespec0,tsc0
1804  * 2.                                   | timespec1 = timespec0 + N
1805  *                                      | tsc1 = tsc0 + M
1806  * 3. transition to guest               | transition to guest
1807  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1808  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1809  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1810  *
1811  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1812  *
1813  *      - ret0 < ret1
1814  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1815  *              ...
1816  *      - 0 < N - M => M < N
1817  *
1818  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1819  * always the case (the difference between two distinct xtime instances
1820  * might be smaller then the difference between corresponding TSC reads,
1821  * when updating guest vcpus pvclock areas).
1822  *
1823  * To avoid that problem, do not allow visibility of distinct
1824  * system_timestamp/tsc_timestamp values simultaneously: use a master
1825  * copy of host monotonic time values. Update that master copy
1826  * in lockstep.
1827  *
1828  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1829  *
1830  */
1831
1832 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1833 {
1834 #ifdef CONFIG_X86_64
1835         struct kvm_arch *ka = &kvm->arch;
1836         int vclock_mode;
1837         bool host_tsc_clocksource, vcpus_matched;
1838
1839         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1840                         atomic_read(&kvm->online_vcpus));
1841
1842         /*
1843          * If the host uses TSC clock, then passthrough TSC as stable
1844          * to the guest.
1845          */
1846         host_tsc_clocksource = kvm_get_time_and_clockread(
1847                                         &ka->master_kernel_ns,
1848                                         &ka->master_cycle_now);
1849
1850         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1851                                 && !ka->backwards_tsc_observed
1852                                 && !ka->boot_vcpu_runs_old_kvmclock;
1853
1854         if (ka->use_master_clock)
1855                 atomic_set(&kvm_guest_has_master_clock, 1);
1856
1857         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1858         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1859                                         vcpus_matched);
1860 #endif
1861 }
1862
1863 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1864 {
1865         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1866 }
1867
1868 static void kvm_gen_update_masterclock(struct kvm *kvm)
1869 {
1870 #ifdef CONFIG_X86_64
1871         int i;
1872         struct kvm_vcpu *vcpu;
1873         struct kvm_arch *ka = &kvm->arch;
1874
1875         spin_lock(&ka->pvclock_gtod_sync_lock);
1876         kvm_make_mclock_inprogress_request(kvm);
1877         /* no guest entries from this point */
1878         pvclock_update_vm_gtod_copy(kvm);
1879
1880         kvm_for_each_vcpu(i, vcpu, kvm)
1881                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1882
1883         /* guest entries allowed */
1884         kvm_for_each_vcpu(i, vcpu, kvm)
1885                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1886
1887         spin_unlock(&ka->pvclock_gtod_sync_lock);
1888 #endif
1889 }
1890
1891 u64 get_kvmclock_ns(struct kvm *kvm)
1892 {
1893         struct kvm_arch *ka = &kvm->arch;
1894         struct pvclock_vcpu_time_info hv_clock;
1895         u64 ret;
1896
1897         spin_lock(&ka->pvclock_gtod_sync_lock);
1898         if (!ka->use_master_clock) {
1899                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1900                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1901         }
1902
1903         hv_clock.tsc_timestamp = ka->master_cycle_now;
1904         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1905         spin_unlock(&ka->pvclock_gtod_sync_lock);
1906
1907         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1908         get_cpu();
1909
1910         if (__this_cpu_read(cpu_tsc_khz)) {
1911                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1912                                    &hv_clock.tsc_shift,
1913                                    &hv_clock.tsc_to_system_mul);
1914                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1915         } else
1916                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1917
1918         put_cpu();
1919
1920         return ret;
1921 }
1922
1923 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1924 {
1925         struct kvm_vcpu_arch *vcpu = &v->arch;
1926         struct pvclock_vcpu_time_info guest_hv_clock;
1927
1928         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1929                 &guest_hv_clock, sizeof(guest_hv_clock))))
1930                 return;
1931
1932         /* This VCPU is paused, but it's legal for a guest to read another
1933          * VCPU's kvmclock, so we really have to follow the specification where
1934          * it says that version is odd if data is being modified, and even after
1935          * it is consistent.
1936          *
1937          * Version field updates must be kept separate.  This is because
1938          * kvm_write_guest_cached might use a "rep movs" instruction, and
1939          * writes within a string instruction are weakly ordered.  So there
1940          * are three writes overall.
1941          *
1942          * As a small optimization, only write the version field in the first
1943          * and third write.  The vcpu->pv_time cache is still valid, because the
1944          * version field is the first in the struct.
1945          */
1946         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1947
1948         if (guest_hv_clock.version & 1)
1949                 ++guest_hv_clock.version;  /* first time write, random junk */
1950
1951         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1952         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1953                                 &vcpu->hv_clock,
1954                                 sizeof(vcpu->hv_clock.version));
1955
1956         smp_wmb();
1957
1958         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1959         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1960
1961         if (vcpu->pvclock_set_guest_stopped_request) {
1962                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1963                 vcpu->pvclock_set_guest_stopped_request = false;
1964         }
1965
1966         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1967
1968         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1969                                 &vcpu->hv_clock,
1970                                 sizeof(vcpu->hv_clock));
1971
1972         smp_wmb();
1973
1974         vcpu->hv_clock.version++;
1975         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1976                                 &vcpu->hv_clock,
1977                                 sizeof(vcpu->hv_clock.version));
1978 }
1979
1980 static int kvm_guest_time_update(struct kvm_vcpu *v)
1981 {
1982         unsigned long flags, tgt_tsc_khz;
1983         struct kvm_vcpu_arch *vcpu = &v->arch;
1984         struct kvm_arch *ka = &v->kvm->arch;
1985         s64 kernel_ns;
1986         u64 tsc_timestamp, host_tsc;
1987         u8 pvclock_flags;
1988         bool use_master_clock;
1989
1990         kernel_ns = 0;
1991         host_tsc = 0;
1992
1993         /*
1994          * If the host uses TSC clock, then passthrough TSC as stable
1995          * to the guest.
1996          */
1997         spin_lock(&ka->pvclock_gtod_sync_lock);
1998         use_master_clock = ka->use_master_clock;
1999         if (use_master_clock) {
2000                 host_tsc = ka->master_cycle_now;
2001                 kernel_ns = ka->master_kernel_ns;
2002         }
2003         spin_unlock(&ka->pvclock_gtod_sync_lock);
2004
2005         /* Keep irq disabled to prevent changes to the clock */
2006         local_irq_save(flags);
2007         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2008         if (unlikely(tgt_tsc_khz == 0)) {
2009                 local_irq_restore(flags);
2010                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2011                 return 1;
2012         }
2013         if (!use_master_clock) {
2014                 host_tsc = rdtsc();
2015                 kernel_ns = ktime_get_boot_ns();
2016         }
2017
2018         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2019
2020         /*
2021          * We may have to catch up the TSC to match elapsed wall clock
2022          * time for two reasons, even if kvmclock is used.
2023          *   1) CPU could have been running below the maximum TSC rate
2024          *   2) Broken TSC compensation resets the base at each VCPU
2025          *      entry to avoid unknown leaps of TSC even when running
2026          *      again on the same CPU.  This may cause apparent elapsed
2027          *      time to disappear, and the guest to stand still or run
2028          *      very slowly.
2029          */
2030         if (vcpu->tsc_catchup) {
2031                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2032                 if (tsc > tsc_timestamp) {
2033                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2034                         tsc_timestamp = tsc;
2035                 }
2036         }
2037
2038         local_irq_restore(flags);
2039
2040         /* With all the info we got, fill in the values */
2041
2042         if (kvm_has_tsc_control)
2043                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2044
2045         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2046                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2047                                    &vcpu->hv_clock.tsc_shift,
2048                                    &vcpu->hv_clock.tsc_to_system_mul);
2049                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2050         }
2051
2052         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2053         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2054         vcpu->last_guest_tsc = tsc_timestamp;
2055
2056         /* If the host uses TSC clocksource, then it is stable */
2057         pvclock_flags = 0;
2058         if (use_master_clock)
2059                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2060
2061         vcpu->hv_clock.flags = pvclock_flags;
2062
2063         if (vcpu->pv_time_enabled)
2064                 kvm_setup_pvclock_page(v);
2065         if (v == kvm_get_vcpu(v->kvm, 0))
2066                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2067         return 0;
2068 }
2069
2070 /*
2071  * kvmclock updates which are isolated to a given vcpu, such as
2072  * vcpu->cpu migration, should not allow system_timestamp from
2073  * the rest of the vcpus to remain static. Otherwise ntp frequency
2074  * correction applies to one vcpu's system_timestamp but not
2075  * the others.
2076  *
2077  * So in those cases, request a kvmclock update for all vcpus.
2078  * We need to rate-limit these requests though, as they can
2079  * considerably slow guests that have a large number of vcpus.
2080  * The time for a remote vcpu to update its kvmclock is bound
2081  * by the delay we use to rate-limit the updates.
2082  */
2083
2084 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2085
2086 static void kvmclock_update_fn(struct work_struct *work)
2087 {
2088         int i;
2089         struct delayed_work *dwork = to_delayed_work(work);
2090         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2091                                            kvmclock_update_work);
2092         struct kvm *kvm = container_of(ka, struct kvm, arch);
2093         struct kvm_vcpu *vcpu;
2094
2095         kvm_for_each_vcpu(i, vcpu, kvm) {
2096                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2097                 kvm_vcpu_kick(vcpu);
2098         }
2099 }
2100
2101 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2102 {
2103         struct kvm *kvm = v->kvm;
2104
2105         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2106         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2107                                         KVMCLOCK_UPDATE_DELAY);
2108 }
2109
2110 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2111
2112 static void kvmclock_sync_fn(struct work_struct *work)
2113 {
2114         struct delayed_work *dwork = to_delayed_work(work);
2115         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2116                                            kvmclock_sync_work);
2117         struct kvm *kvm = container_of(ka, struct kvm, arch);
2118
2119         if (!kvmclock_periodic_sync)
2120                 return;
2121
2122         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2123         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2124                                         KVMCLOCK_SYNC_PERIOD);
2125 }
2126
2127 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2128 {
2129         u64 mcg_cap = vcpu->arch.mcg_cap;
2130         unsigned bank_num = mcg_cap & 0xff;
2131         u32 msr = msr_info->index;
2132         u64 data = msr_info->data;
2133
2134         switch (msr) {
2135         case MSR_IA32_MCG_STATUS:
2136                 vcpu->arch.mcg_status = data;
2137                 break;
2138         case MSR_IA32_MCG_CTL:
2139                 if (!(mcg_cap & MCG_CTL_P))
2140                         return 1;
2141                 if (data != 0 && data != ~(u64)0)
2142                         return -1;
2143                 vcpu->arch.mcg_ctl = data;
2144                 break;
2145         default:
2146                 if (msr >= MSR_IA32_MC0_CTL &&
2147                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2148                         u32 offset = msr - MSR_IA32_MC0_CTL;
2149                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2150                          * some Linux kernels though clear bit 10 in bank 4 to
2151                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2152                          * this to avoid an uncatched #GP in the guest
2153                          */
2154                         if ((offset & 0x3) == 0 &&
2155                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2156                                 return -1;
2157                         if (!msr_info->host_initiated &&
2158                                 (offset & 0x3) == 1 && data != 0)
2159                                 return -1;
2160                         vcpu->arch.mce_banks[offset] = data;
2161                         break;
2162                 }
2163                 return 1;
2164         }
2165         return 0;
2166 }
2167
2168 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2169 {
2170         struct kvm *kvm = vcpu->kvm;
2171         int lm = is_long_mode(vcpu);
2172         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2173                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2174         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2175                 : kvm->arch.xen_hvm_config.blob_size_32;
2176         u32 page_num = data & ~PAGE_MASK;
2177         u64 page_addr = data & PAGE_MASK;
2178         u8 *page;
2179         int r;
2180
2181         r = -E2BIG;
2182         if (page_num >= blob_size)
2183                 goto out;
2184         r = -ENOMEM;
2185         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2186         if (IS_ERR(page)) {
2187                 r = PTR_ERR(page);
2188                 goto out;
2189         }
2190         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2191                 goto out_free;
2192         r = 0;
2193 out_free:
2194         kfree(page);
2195 out:
2196         return r;
2197 }
2198
2199 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2200 {
2201         gpa_t gpa = data & ~0x3f;
2202
2203         /* Bits 3:5 are reserved, Should be zero */
2204         if (data & 0x38)
2205                 return 1;
2206
2207         vcpu->arch.apf.msr_val = data;
2208
2209         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2210                 kvm_clear_async_pf_completion_queue(vcpu);
2211                 kvm_async_pf_hash_reset(vcpu);
2212                 return 0;
2213         }
2214
2215         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2216                                         sizeof(u32)))
2217                 return 1;
2218
2219         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2220         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2221         kvm_async_pf_wakeup_all(vcpu);
2222         return 0;
2223 }
2224
2225 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2226 {
2227         vcpu->arch.pv_time_enabled = false;
2228 }
2229
2230 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2231 {
2232         ++vcpu->stat.tlb_flush;
2233         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2234 }
2235
2236 static void record_steal_time(struct kvm_vcpu *vcpu)
2237 {
2238         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2239                 return;
2240
2241         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2242                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2243                 return;
2244
2245         /*
2246          * Doing a TLB flush here, on the guest's behalf, can avoid
2247          * expensive IPIs.
2248          */
2249         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2250                 kvm_vcpu_flush_tlb(vcpu, false);
2251
2252         if (vcpu->arch.st.steal.version & 1)
2253                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2254
2255         vcpu->arch.st.steal.version += 1;
2256
2257         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2258                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2259
2260         smp_wmb();
2261
2262         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2263                 vcpu->arch.st.last_steal;
2264         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2265
2266         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2267                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2268
2269         smp_wmb();
2270
2271         vcpu->arch.st.steal.version += 1;
2272
2273         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2274                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2275 }
2276
2277 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2278 {
2279         bool pr = false;
2280         u32 msr = msr_info->index;
2281         u64 data = msr_info->data;
2282
2283         switch (msr) {
2284         case MSR_AMD64_NB_CFG:
2285         case MSR_IA32_UCODE_WRITE:
2286         case MSR_VM_HSAVE_PA:
2287         case MSR_AMD64_PATCH_LOADER:
2288         case MSR_AMD64_BU_CFG2:
2289         case MSR_AMD64_DC_CFG:
2290                 break;
2291
2292         case MSR_IA32_UCODE_REV:
2293                 if (msr_info->host_initiated)
2294                         vcpu->arch.microcode_version = data;
2295                 break;
2296         case MSR_EFER:
2297                 return set_efer(vcpu, data);
2298         case MSR_K7_HWCR:
2299                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2300                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2301                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2302                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2303                 if (data != 0) {
2304                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2305                                     data);
2306                         return 1;
2307                 }
2308                 break;
2309         case MSR_FAM10H_MMIO_CONF_BASE:
2310                 if (data != 0) {
2311                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2312                                     "0x%llx\n", data);
2313                         return 1;
2314                 }
2315                 break;
2316         case MSR_IA32_DEBUGCTLMSR:
2317                 if (!data) {
2318                         /* We support the non-activated case already */
2319                         break;
2320                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2321                         /* Values other than LBR and BTF are vendor-specific,
2322                            thus reserved and should throw a #GP */
2323                         return 1;
2324                 }
2325                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2326                             __func__, data);
2327                 break;
2328         case 0x200 ... 0x2ff:
2329                 return kvm_mtrr_set_msr(vcpu, msr, data);
2330         case MSR_IA32_APICBASE:
2331                 return kvm_set_apic_base(vcpu, msr_info);
2332         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2333                 return kvm_x2apic_msr_write(vcpu, msr, data);
2334         case MSR_IA32_TSCDEADLINE:
2335                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2336                 break;
2337         case MSR_IA32_TSC_ADJUST:
2338                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2339                         if (!msr_info->host_initiated) {
2340                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2341                                 adjust_tsc_offset_guest(vcpu, adj);
2342                         }
2343                         vcpu->arch.ia32_tsc_adjust_msr = data;
2344                 }
2345                 break;
2346         case MSR_IA32_MISC_ENABLE:
2347                 vcpu->arch.ia32_misc_enable_msr = data;
2348                 break;
2349         case MSR_IA32_SMBASE:
2350                 if (!msr_info->host_initiated)
2351                         return 1;
2352                 vcpu->arch.smbase = data;
2353                 break;
2354         case MSR_SMI_COUNT:
2355                 if (!msr_info->host_initiated)
2356                         return 1;
2357                 vcpu->arch.smi_count = data;
2358                 break;
2359         case MSR_KVM_WALL_CLOCK_NEW:
2360         case MSR_KVM_WALL_CLOCK:
2361                 vcpu->kvm->arch.wall_clock = data;
2362                 kvm_write_wall_clock(vcpu->kvm, data);
2363                 break;
2364         case MSR_KVM_SYSTEM_TIME_NEW:
2365         case MSR_KVM_SYSTEM_TIME: {
2366                 struct kvm_arch *ka = &vcpu->kvm->arch;
2367
2368                 kvmclock_reset(vcpu);
2369
2370                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2371                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2372
2373                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2374                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2375
2376                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2377                 }
2378
2379                 vcpu->arch.time = data;
2380                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2381
2382                 /* we verify if the enable bit is set... */
2383                 if (!(data & 1))
2384                         break;
2385
2386                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2387                      &vcpu->arch.pv_time, data & ~1ULL,
2388                      sizeof(struct pvclock_vcpu_time_info)))
2389                         vcpu->arch.pv_time_enabled = false;
2390                 else
2391                         vcpu->arch.pv_time_enabled = true;
2392
2393                 break;
2394         }
2395         case MSR_KVM_ASYNC_PF_EN:
2396                 if (kvm_pv_enable_async_pf(vcpu, data))
2397                         return 1;
2398                 break;
2399         case MSR_KVM_STEAL_TIME:
2400
2401                 if (unlikely(!sched_info_on()))
2402                         return 1;
2403
2404                 if (data & KVM_STEAL_RESERVED_MASK)
2405                         return 1;
2406
2407                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2408                                                 data & KVM_STEAL_VALID_BITS,
2409                                                 sizeof(struct kvm_steal_time)))
2410                         return 1;
2411
2412                 vcpu->arch.st.msr_val = data;
2413
2414                 if (!(data & KVM_MSR_ENABLED))
2415                         break;
2416
2417                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2418
2419                 break;
2420         case MSR_KVM_PV_EOI_EN:
2421                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2422                         return 1;
2423                 break;
2424
2425         case MSR_IA32_MCG_CTL:
2426         case MSR_IA32_MCG_STATUS:
2427         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2428                 return set_msr_mce(vcpu, msr_info);
2429
2430         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2431         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2432                 pr = true; /* fall through */
2433         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2434         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2435                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2436                         return kvm_pmu_set_msr(vcpu, msr_info);
2437
2438                 if (pr || data != 0)
2439                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2440                                     "0x%x data 0x%llx\n", msr, data);
2441                 break;
2442         case MSR_K7_CLK_CTL:
2443                 /*
2444                  * Ignore all writes to this no longer documented MSR.
2445                  * Writes are only relevant for old K7 processors,
2446                  * all pre-dating SVM, but a recommended workaround from
2447                  * AMD for these chips. It is possible to specify the
2448                  * affected processor models on the command line, hence
2449                  * the need to ignore the workaround.
2450                  */
2451                 break;
2452         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2453         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2454         case HV_X64_MSR_CRASH_CTL:
2455         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2456                 return kvm_hv_set_msr_common(vcpu, msr, data,
2457                                              msr_info->host_initiated);
2458         case MSR_IA32_BBL_CR_CTL3:
2459                 /* Drop writes to this legacy MSR -- see rdmsr
2460                  * counterpart for further detail.
2461                  */
2462                 if (report_ignored_msrs)
2463                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2464                                 msr, data);
2465                 break;
2466         case MSR_AMD64_OSVW_ID_LENGTH:
2467                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2468                         return 1;
2469                 vcpu->arch.osvw.length = data;
2470                 break;
2471         case MSR_AMD64_OSVW_STATUS:
2472                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2473                         return 1;
2474                 vcpu->arch.osvw.status = data;
2475                 break;
2476         case MSR_PLATFORM_INFO:
2477                 if (!msr_info->host_initiated ||
2478                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2479                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2480                      cpuid_fault_enabled(vcpu)))
2481                         return 1;
2482                 vcpu->arch.msr_platform_info = data;
2483                 break;
2484         case MSR_MISC_FEATURES_ENABLES:
2485                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2486                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2487                      !supports_cpuid_fault(vcpu)))
2488                         return 1;
2489                 vcpu->arch.msr_misc_features_enables = data;
2490                 break;
2491         default:
2492                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2493                         return xen_hvm_config(vcpu, data);
2494                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2495                         return kvm_pmu_set_msr(vcpu, msr_info);
2496                 if (!ignore_msrs) {
2497                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2498                                     msr, data);
2499                         return 1;
2500                 } else {
2501                         if (report_ignored_msrs)
2502                                 vcpu_unimpl(vcpu,
2503                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2504                                         msr, data);
2505                         break;
2506                 }
2507         }
2508         return 0;
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2511
2512
2513 /*
2514  * Reads an msr value (of 'msr_index') into 'pdata'.
2515  * Returns 0 on success, non-0 otherwise.
2516  * Assumes vcpu_load() was already called.
2517  */
2518 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2519 {
2520         return kvm_x86_ops->get_msr(vcpu, msr);
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_get_msr);
2523
2524 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2525 {
2526         u64 data;
2527         u64 mcg_cap = vcpu->arch.mcg_cap;
2528         unsigned bank_num = mcg_cap & 0xff;
2529
2530         switch (msr) {
2531         case MSR_IA32_P5_MC_ADDR:
2532         case MSR_IA32_P5_MC_TYPE:
2533                 data = 0;
2534                 break;
2535         case MSR_IA32_MCG_CAP:
2536                 data = vcpu->arch.mcg_cap;
2537                 break;
2538         case MSR_IA32_MCG_CTL:
2539                 if (!(mcg_cap & MCG_CTL_P))
2540                         return 1;
2541                 data = vcpu->arch.mcg_ctl;
2542                 break;
2543         case MSR_IA32_MCG_STATUS:
2544                 data = vcpu->arch.mcg_status;
2545                 break;
2546         default:
2547                 if (msr >= MSR_IA32_MC0_CTL &&
2548                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2549                         u32 offset = msr - MSR_IA32_MC0_CTL;
2550                         data = vcpu->arch.mce_banks[offset];
2551                         break;
2552                 }
2553                 return 1;
2554         }
2555         *pdata = data;
2556         return 0;
2557 }
2558
2559 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2560 {
2561         switch (msr_info->index) {
2562         case MSR_IA32_PLATFORM_ID:
2563         case MSR_IA32_EBL_CR_POWERON:
2564         case MSR_IA32_DEBUGCTLMSR:
2565         case MSR_IA32_LASTBRANCHFROMIP:
2566         case MSR_IA32_LASTBRANCHTOIP:
2567         case MSR_IA32_LASTINTFROMIP:
2568         case MSR_IA32_LASTINTTOIP:
2569         case MSR_K8_SYSCFG:
2570         case MSR_K8_TSEG_ADDR:
2571         case MSR_K8_TSEG_MASK:
2572         case MSR_K7_HWCR:
2573         case MSR_VM_HSAVE_PA:
2574         case MSR_K8_INT_PENDING_MSG:
2575         case MSR_AMD64_NB_CFG:
2576         case MSR_FAM10H_MMIO_CONF_BASE:
2577         case MSR_AMD64_BU_CFG2:
2578         case MSR_IA32_PERF_CTL:
2579         case MSR_AMD64_DC_CFG:
2580                 msr_info->data = 0;
2581                 break;
2582         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2583         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2584         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2585         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2586         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2587                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2588                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2589                 msr_info->data = 0;
2590                 break;
2591         case MSR_IA32_UCODE_REV:
2592                 msr_info->data = vcpu->arch.microcode_version;
2593                 break;
2594         case MSR_MTRRcap:
2595         case 0x200 ... 0x2ff:
2596                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2597         case 0xcd: /* fsb frequency */
2598                 msr_info->data = 3;
2599                 break;
2600                 /*
2601                  * MSR_EBC_FREQUENCY_ID
2602                  * Conservative value valid for even the basic CPU models.
2603                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2604                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2605                  * and 266MHz for model 3, or 4. Set Core Clock
2606                  * Frequency to System Bus Frequency Ratio to 1 (bits
2607                  * 31:24) even though these are only valid for CPU
2608                  * models > 2, however guests may end up dividing or
2609                  * multiplying by zero otherwise.
2610                  */
2611         case MSR_EBC_FREQUENCY_ID:
2612                 msr_info->data = 1 << 24;
2613                 break;
2614         case MSR_IA32_APICBASE:
2615                 msr_info->data = kvm_get_apic_base(vcpu);
2616                 break;
2617         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2618                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2619                 break;
2620         case MSR_IA32_TSCDEADLINE:
2621                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2622                 break;
2623         case MSR_IA32_TSC_ADJUST:
2624                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2625                 break;
2626         case MSR_IA32_MISC_ENABLE:
2627                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2628                 break;
2629         case MSR_IA32_SMBASE:
2630                 if (!msr_info->host_initiated)
2631                         return 1;
2632                 msr_info->data = vcpu->arch.smbase;
2633                 break;
2634         case MSR_SMI_COUNT:
2635                 msr_info->data = vcpu->arch.smi_count;
2636                 break;
2637         case MSR_IA32_PERF_STATUS:
2638                 /* TSC increment by tick */
2639                 msr_info->data = 1000ULL;
2640                 /* CPU multiplier */
2641                 msr_info->data |= (((uint64_t)4ULL) << 40);
2642                 break;
2643         case MSR_EFER:
2644                 msr_info->data = vcpu->arch.efer;
2645                 break;
2646         case MSR_KVM_WALL_CLOCK:
2647         case MSR_KVM_WALL_CLOCK_NEW:
2648                 msr_info->data = vcpu->kvm->arch.wall_clock;
2649                 break;
2650         case MSR_KVM_SYSTEM_TIME:
2651         case MSR_KVM_SYSTEM_TIME_NEW:
2652                 msr_info->data = vcpu->arch.time;
2653                 break;
2654         case MSR_KVM_ASYNC_PF_EN:
2655                 msr_info->data = vcpu->arch.apf.msr_val;
2656                 break;
2657         case MSR_KVM_STEAL_TIME:
2658                 msr_info->data = vcpu->arch.st.msr_val;
2659                 break;
2660         case MSR_KVM_PV_EOI_EN:
2661                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2662                 break;
2663         case MSR_IA32_P5_MC_ADDR:
2664         case MSR_IA32_P5_MC_TYPE:
2665         case MSR_IA32_MCG_CAP:
2666         case MSR_IA32_MCG_CTL:
2667         case MSR_IA32_MCG_STATUS:
2668         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2669                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2670         case MSR_K7_CLK_CTL:
2671                 /*
2672                  * Provide expected ramp-up count for K7. All other
2673                  * are set to zero, indicating minimum divisors for
2674                  * every field.
2675                  *
2676                  * This prevents guest kernels on AMD host with CPU
2677                  * type 6, model 8 and higher from exploding due to
2678                  * the rdmsr failing.
2679                  */
2680                 msr_info->data = 0x20000000;
2681                 break;
2682         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2683         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2684         case HV_X64_MSR_CRASH_CTL:
2685         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2686                 return kvm_hv_get_msr_common(vcpu,
2687                                              msr_info->index, &msr_info->data);
2688                 break;
2689         case MSR_IA32_BBL_CR_CTL3:
2690                 /* This legacy MSR exists but isn't fully documented in current
2691                  * silicon.  It is however accessed by winxp in very narrow
2692                  * scenarios where it sets bit #19, itself documented as
2693                  * a "reserved" bit.  Best effort attempt to source coherent
2694                  * read data here should the balance of the register be
2695                  * interpreted by the guest:
2696                  *
2697                  * L2 cache control register 3: 64GB range, 256KB size,
2698                  * enabled, latency 0x1, configured
2699                  */
2700                 msr_info->data = 0xbe702111;
2701                 break;
2702         case MSR_AMD64_OSVW_ID_LENGTH:
2703                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2704                         return 1;
2705                 msr_info->data = vcpu->arch.osvw.length;
2706                 break;
2707         case MSR_AMD64_OSVW_STATUS:
2708                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2709                         return 1;
2710                 msr_info->data = vcpu->arch.osvw.status;
2711                 break;
2712         case MSR_PLATFORM_INFO:
2713                 msr_info->data = vcpu->arch.msr_platform_info;
2714                 break;
2715         case MSR_MISC_FEATURES_ENABLES:
2716                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2717                 break;
2718         default:
2719                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2720                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2721                 if (!ignore_msrs) {
2722                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2723                                                msr_info->index);
2724                         return 1;
2725                 } else {
2726                         if (report_ignored_msrs)
2727                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2728                                         msr_info->index);
2729                         msr_info->data = 0;
2730                 }
2731                 break;
2732         }
2733         return 0;
2734 }
2735 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2736
2737 /*
2738  * Read or write a bunch of msrs. All parameters are kernel addresses.
2739  *
2740  * @return number of msrs set successfully.
2741  */
2742 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2743                     struct kvm_msr_entry *entries,
2744                     int (*do_msr)(struct kvm_vcpu *vcpu,
2745                                   unsigned index, u64 *data))
2746 {
2747         int i;
2748
2749         for (i = 0; i < msrs->nmsrs; ++i)
2750                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2751                         break;
2752
2753         return i;
2754 }
2755
2756 /*
2757  * Read or write a bunch of msrs. Parameters are user addresses.
2758  *
2759  * @return number of msrs set successfully.
2760  */
2761 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2762                   int (*do_msr)(struct kvm_vcpu *vcpu,
2763                                 unsigned index, u64 *data),
2764                   int writeback)
2765 {
2766         struct kvm_msrs msrs;
2767         struct kvm_msr_entry *entries;
2768         int r, n;
2769         unsigned size;
2770
2771         r = -EFAULT;
2772         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2773                 goto out;
2774
2775         r = -E2BIG;
2776         if (msrs.nmsrs >= MAX_IO_MSRS)
2777                 goto out;
2778
2779         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2780         entries = memdup_user(user_msrs->entries, size);
2781         if (IS_ERR(entries)) {
2782                 r = PTR_ERR(entries);
2783                 goto out;
2784         }
2785
2786         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2787         if (r < 0)
2788                 goto out_free;
2789
2790         r = -EFAULT;
2791         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2792                 goto out_free;
2793
2794         r = n;
2795
2796 out_free:
2797         kfree(entries);
2798 out:
2799         return r;
2800 }
2801
2802 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2803 {
2804         int r;
2805
2806         switch (ext) {
2807         case KVM_CAP_IRQCHIP:
2808         case KVM_CAP_HLT:
2809         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2810         case KVM_CAP_SET_TSS_ADDR:
2811         case KVM_CAP_EXT_CPUID:
2812         case KVM_CAP_EXT_EMUL_CPUID:
2813         case KVM_CAP_CLOCKSOURCE:
2814         case KVM_CAP_PIT:
2815         case KVM_CAP_NOP_IO_DELAY:
2816         case KVM_CAP_MP_STATE:
2817         case KVM_CAP_SYNC_MMU:
2818         case KVM_CAP_USER_NMI:
2819         case KVM_CAP_REINJECT_CONTROL:
2820         case KVM_CAP_IRQ_INJECT_STATUS:
2821         case KVM_CAP_IOEVENTFD:
2822         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2823         case KVM_CAP_PIT2:
2824         case KVM_CAP_PIT_STATE2:
2825         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2826         case KVM_CAP_XEN_HVM:
2827         case KVM_CAP_VCPU_EVENTS:
2828         case KVM_CAP_HYPERV:
2829         case KVM_CAP_HYPERV_VAPIC:
2830         case KVM_CAP_HYPERV_SPIN:
2831         case KVM_CAP_HYPERV_SYNIC:
2832         case KVM_CAP_HYPERV_SYNIC2:
2833         case KVM_CAP_HYPERV_VP_INDEX:
2834         case KVM_CAP_HYPERV_EVENTFD:
2835         case KVM_CAP_PCI_SEGMENT:
2836         case KVM_CAP_DEBUGREGS:
2837         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2838         case KVM_CAP_XSAVE:
2839         case KVM_CAP_ASYNC_PF:
2840         case KVM_CAP_GET_TSC_KHZ:
2841         case KVM_CAP_KVMCLOCK_CTRL:
2842         case KVM_CAP_READONLY_MEM:
2843         case KVM_CAP_HYPERV_TIME:
2844         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2845         case KVM_CAP_TSC_DEADLINE_TIMER:
2846         case KVM_CAP_ENABLE_CAP_VM:
2847         case KVM_CAP_DISABLE_QUIRKS:
2848         case KVM_CAP_SET_BOOT_CPU_ID:
2849         case KVM_CAP_SPLIT_IRQCHIP:
2850         case KVM_CAP_IMMEDIATE_EXIT:
2851         case KVM_CAP_GET_MSR_FEATURES:
2852                 r = 1;
2853                 break;
2854         case KVM_CAP_SYNC_REGS:
2855                 r = KVM_SYNC_X86_VALID_FIELDS;
2856                 break;
2857         case KVM_CAP_ADJUST_CLOCK:
2858                 r = KVM_CLOCK_TSC_STABLE;
2859                 break;
2860         case KVM_CAP_X86_GUEST_MWAIT:
2861                 r = kvm_mwait_in_guest();
2862                 break;
2863         case KVM_CAP_X86_SMM:
2864                 /* SMBASE is usually relocated above 1M on modern chipsets,
2865                  * and SMM handlers might indeed rely on 4G segment limits,
2866                  * so do not report SMM to be available if real mode is
2867                  * emulated via vm86 mode.  Still, do not go to great lengths
2868                  * to avoid userspace's usage of the feature, because it is a
2869                  * fringe case that is not enabled except via specific settings
2870                  * of the module parameters.
2871                  */
2872                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2873                 break;
2874         case KVM_CAP_VAPIC:
2875                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2876                 break;
2877         case KVM_CAP_NR_VCPUS:
2878                 r = KVM_SOFT_MAX_VCPUS;
2879                 break;
2880         case KVM_CAP_MAX_VCPUS:
2881                 r = KVM_MAX_VCPUS;
2882                 break;
2883         case KVM_CAP_NR_MEMSLOTS:
2884                 r = KVM_USER_MEM_SLOTS;
2885                 break;
2886         case KVM_CAP_PV_MMU:    /* obsolete */
2887                 r = 0;
2888                 break;
2889         case KVM_CAP_MCE:
2890                 r = KVM_MAX_MCE_BANKS;
2891                 break;
2892         case KVM_CAP_XCRS:
2893                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2894                 break;
2895         case KVM_CAP_TSC_CONTROL:
2896                 r = kvm_has_tsc_control;
2897                 break;
2898         case KVM_CAP_X2APIC_API:
2899                 r = KVM_X2APIC_API_VALID_FLAGS;
2900                 break;
2901         default:
2902                 r = 0;
2903                 break;
2904         }
2905         return r;
2906
2907 }
2908
2909 long kvm_arch_dev_ioctl(struct file *filp,
2910                         unsigned int ioctl, unsigned long arg)
2911 {
2912         void __user *argp = (void __user *)arg;
2913         long r;
2914
2915         switch (ioctl) {
2916         case KVM_GET_MSR_INDEX_LIST: {
2917                 struct kvm_msr_list __user *user_msr_list = argp;
2918                 struct kvm_msr_list msr_list;
2919                 unsigned n;
2920
2921                 r = -EFAULT;
2922                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2923                         goto out;
2924                 n = msr_list.nmsrs;
2925                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2926                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2927                         goto out;
2928                 r = -E2BIG;
2929                 if (n < msr_list.nmsrs)
2930                         goto out;
2931                 r = -EFAULT;
2932                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2933                                  num_msrs_to_save * sizeof(u32)))
2934                         goto out;
2935                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2936                                  &emulated_msrs,
2937                                  num_emulated_msrs * sizeof(u32)))
2938                         goto out;
2939                 r = 0;
2940                 break;
2941         }
2942         case KVM_GET_SUPPORTED_CPUID:
2943         case KVM_GET_EMULATED_CPUID: {
2944                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2945                 struct kvm_cpuid2 cpuid;
2946
2947                 r = -EFAULT;
2948                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2949                         goto out;
2950
2951                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2952                                             ioctl);
2953                 if (r)
2954                         goto out;
2955
2956                 r = -EFAULT;
2957                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2958                         goto out;
2959                 r = 0;
2960                 break;
2961         }
2962         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2963                 r = -EFAULT;
2964                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2965                                  sizeof(kvm_mce_cap_supported)))
2966                         goto out;
2967                 r = 0;
2968                 break;
2969         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
2970                 struct kvm_msr_list __user *user_msr_list = argp;
2971                 struct kvm_msr_list msr_list;
2972                 unsigned int n;
2973
2974                 r = -EFAULT;
2975                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
2976                         goto out;
2977                 n = msr_list.nmsrs;
2978                 msr_list.nmsrs = num_msr_based_features;
2979                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
2980                         goto out;
2981                 r = -E2BIG;
2982                 if (n < msr_list.nmsrs)
2983                         goto out;
2984                 r = -EFAULT;
2985                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
2986                                  num_msr_based_features * sizeof(u32)))
2987                         goto out;
2988                 r = 0;
2989                 break;
2990         }
2991         case KVM_GET_MSRS:
2992                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
2993                 break;
2994         }
2995         default:
2996                 r = -EINVAL;
2997         }
2998 out:
2999         return r;
3000 }
3001
3002 static void wbinvd_ipi(void *garbage)
3003 {
3004         wbinvd();
3005 }
3006
3007 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3008 {
3009         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3010 }
3011
3012 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3013 {
3014         /* Address WBINVD may be executed by guest */
3015         if (need_emulate_wbinvd(vcpu)) {
3016                 if (kvm_x86_ops->has_wbinvd_exit())
3017                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3018                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3019                         smp_call_function_single(vcpu->cpu,
3020                                         wbinvd_ipi, NULL, 1);
3021         }
3022
3023         kvm_x86_ops->vcpu_load(vcpu, cpu);
3024
3025         /* Apply any externally detected TSC adjustments (due to suspend) */
3026         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3027                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3028                 vcpu->arch.tsc_offset_adjustment = 0;
3029                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3030         }
3031
3032         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3033                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3034                                 rdtsc() - vcpu->arch.last_host_tsc;
3035                 if (tsc_delta < 0)
3036                         mark_tsc_unstable("KVM discovered backwards TSC");
3037
3038                 if (kvm_check_tsc_unstable()) {
3039                         u64 offset = kvm_compute_tsc_offset(vcpu,
3040                                                 vcpu->arch.last_guest_tsc);
3041                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3042                         vcpu->arch.tsc_catchup = 1;
3043                 }
3044
3045                 if (kvm_lapic_hv_timer_in_use(vcpu))
3046                         kvm_lapic_restart_hv_timer(vcpu);
3047
3048                 /*
3049                  * On a host with synchronized TSC, there is no need to update
3050                  * kvmclock on vcpu->cpu migration
3051                  */
3052                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3053                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3054                 if (vcpu->cpu != cpu)
3055                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3056                 vcpu->cpu = cpu;
3057         }
3058
3059         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3060 }
3061
3062 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3063 {
3064         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3065                 return;
3066
3067         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3068
3069         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3070                         &vcpu->arch.st.steal.preempted,
3071                         offsetof(struct kvm_steal_time, preempted),
3072                         sizeof(vcpu->arch.st.steal.preempted));
3073 }
3074
3075 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3076 {
3077         int idx;
3078
3079         if (vcpu->preempted)
3080                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3081
3082         /*
3083          * Disable page faults because we're in atomic context here.
3084          * kvm_write_guest_offset_cached() would call might_fault()
3085          * that relies on pagefault_disable() to tell if there's a
3086          * bug. NOTE: the write to guest memory may not go through if
3087          * during postcopy live migration or if there's heavy guest
3088          * paging.
3089          */
3090         pagefault_disable();
3091         /*
3092          * kvm_memslots() will be called by
3093          * kvm_write_guest_offset_cached() so take the srcu lock.
3094          */
3095         idx = srcu_read_lock(&vcpu->kvm->srcu);
3096         kvm_steal_time_set_preempted(vcpu);
3097         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3098         pagefault_enable();
3099         kvm_x86_ops->vcpu_put(vcpu);
3100         vcpu->arch.last_host_tsc = rdtsc();
3101         /*
3102          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3103          * on every vmexit, but if not, we might have a stale dr6 from the
3104          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3105          */
3106         set_debugreg(0, 6);
3107 }
3108
3109 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3110                                     struct kvm_lapic_state *s)
3111 {
3112         if (vcpu->arch.apicv_active)
3113                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3114
3115         return kvm_apic_get_state(vcpu, s);
3116 }
3117
3118 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3119                                     struct kvm_lapic_state *s)
3120 {
3121         int r;
3122
3123         r = kvm_apic_set_state(vcpu, s);
3124         if (r)
3125                 return r;
3126         update_cr8_intercept(vcpu);
3127
3128         return 0;
3129 }
3130
3131 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3132 {
3133         return (!lapic_in_kernel(vcpu) ||
3134                 kvm_apic_accept_pic_intr(vcpu));
3135 }
3136
3137 /*
3138  * if userspace requested an interrupt window, check that the
3139  * interrupt window is open.
3140  *
3141  * No need to exit to userspace if we already have an interrupt queued.
3142  */
3143 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3144 {
3145         return kvm_arch_interrupt_allowed(vcpu) &&
3146                 !kvm_cpu_has_interrupt(vcpu) &&
3147                 !kvm_event_needs_reinjection(vcpu) &&
3148                 kvm_cpu_accept_dm_intr(vcpu);
3149 }
3150
3151 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3152                                     struct kvm_interrupt *irq)
3153 {
3154         if (irq->irq >= KVM_NR_INTERRUPTS)
3155                 return -EINVAL;
3156
3157         if (!irqchip_in_kernel(vcpu->kvm)) {
3158                 kvm_queue_interrupt(vcpu, irq->irq, false);
3159                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3160                 return 0;
3161         }
3162
3163         /*
3164          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3165          * fail for in-kernel 8259.
3166          */
3167         if (pic_in_kernel(vcpu->kvm))
3168                 return -ENXIO;
3169
3170         if (vcpu->arch.pending_external_vector != -1)
3171                 return -EEXIST;
3172
3173         vcpu->arch.pending_external_vector = irq->irq;
3174         kvm_make_request(KVM_REQ_EVENT, vcpu);
3175         return 0;
3176 }
3177
3178 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3179 {
3180         kvm_inject_nmi(vcpu);
3181
3182         return 0;
3183 }
3184
3185 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3186 {
3187         kvm_make_request(KVM_REQ_SMI, vcpu);
3188
3189         return 0;
3190 }
3191
3192 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3193                                            struct kvm_tpr_access_ctl *tac)
3194 {
3195         if (tac->flags)
3196                 return -EINVAL;
3197         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3198         return 0;
3199 }
3200
3201 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3202                                         u64 mcg_cap)
3203 {
3204         int r;
3205         unsigned bank_num = mcg_cap & 0xff, bank;
3206
3207         r = -EINVAL;
3208         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3209                 goto out;
3210         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3211                 goto out;
3212         r = 0;
3213         vcpu->arch.mcg_cap = mcg_cap;
3214         /* Init IA32_MCG_CTL to all 1s */
3215         if (mcg_cap & MCG_CTL_P)
3216                 vcpu->arch.mcg_ctl = ~(u64)0;
3217         /* Init IA32_MCi_CTL to all 1s */
3218         for (bank = 0; bank < bank_num; bank++)
3219                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3220
3221         if (kvm_x86_ops->setup_mce)
3222                 kvm_x86_ops->setup_mce(vcpu);
3223 out:
3224         return r;
3225 }
3226
3227 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3228                                       struct kvm_x86_mce *mce)
3229 {
3230         u64 mcg_cap = vcpu->arch.mcg_cap;
3231         unsigned bank_num = mcg_cap & 0xff;
3232         u64 *banks = vcpu->arch.mce_banks;
3233
3234         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3235                 return -EINVAL;
3236         /*
3237          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3238          * reporting is disabled
3239          */
3240         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3241             vcpu->arch.mcg_ctl != ~(u64)0)
3242                 return 0;
3243         banks += 4 * mce->bank;
3244         /*
3245          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3246          * reporting is disabled for the bank
3247          */
3248         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3249                 return 0;
3250         if (mce->status & MCI_STATUS_UC) {
3251                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3252                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3253                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3254                         return 0;
3255                 }
3256                 if (banks[1] & MCI_STATUS_VAL)
3257                         mce->status |= MCI_STATUS_OVER;
3258                 banks[2] = mce->addr;
3259                 banks[3] = mce->misc;
3260                 vcpu->arch.mcg_status = mce->mcg_status;
3261                 banks[1] = mce->status;
3262                 kvm_queue_exception(vcpu, MC_VECTOR);
3263         } else if (!(banks[1] & MCI_STATUS_VAL)
3264                    || !(banks[1] & MCI_STATUS_UC)) {
3265                 if (banks[1] & MCI_STATUS_VAL)
3266                         mce->status |= MCI_STATUS_OVER;
3267                 banks[2] = mce->addr;
3268                 banks[3] = mce->misc;
3269                 banks[1] = mce->status;
3270         } else
3271                 banks[1] |= MCI_STATUS_OVER;
3272         return 0;
3273 }
3274
3275 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3276                                                struct kvm_vcpu_events *events)
3277 {
3278         process_nmi(vcpu);
3279         /*
3280          * FIXME: pass injected and pending separately.  This is only
3281          * needed for nested virtualization, whose state cannot be
3282          * migrated yet.  For now we can combine them.
3283          */
3284         events->exception.injected =
3285                 (vcpu->arch.exception.pending ||
3286                  vcpu->arch.exception.injected) &&
3287                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3288         events->exception.nr = vcpu->arch.exception.nr;
3289         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3290         events->exception.pad = 0;
3291         events->exception.error_code = vcpu->arch.exception.error_code;
3292
3293         events->interrupt.injected =
3294                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3295         events->interrupt.nr = vcpu->arch.interrupt.nr;
3296         events->interrupt.soft = 0;
3297         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3298
3299         events->nmi.injected = vcpu->arch.nmi_injected;
3300         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3301         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3302         events->nmi.pad = 0;
3303
3304         events->sipi_vector = 0; /* never valid when reporting to user space */
3305
3306         events->smi.smm = is_smm(vcpu);
3307         events->smi.pending = vcpu->arch.smi_pending;
3308         events->smi.smm_inside_nmi =
3309                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3310         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3311
3312         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3313                          | KVM_VCPUEVENT_VALID_SHADOW
3314                          | KVM_VCPUEVENT_VALID_SMM);
3315         memset(&events->reserved, 0, sizeof(events->reserved));
3316 }
3317
3318 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3319
3320 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3321                                               struct kvm_vcpu_events *events)
3322 {
3323         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3324                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3325                               | KVM_VCPUEVENT_VALID_SHADOW
3326                               | KVM_VCPUEVENT_VALID_SMM))
3327                 return -EINVAL;
3328
3329         if (events->exception.injected &&
3330             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3331              is_guest_mode(vcpu)))
3332                 return -EINVAL;
3333
3334         /* INITs are latched while in SMM */
3335         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3336             (events->smi.smm || events->smi.pending) &&
3337             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3338                 return -EINVAL;
3339
3340         process_nmi(vcpu);
3341         vcpu->arch.exception.injected = false;
3342         vcpu->arch.exception.pending = events->exception.injected;
3343         vcpu->arch.exception.nr = events->exception.nr;
3344         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3345         vcpu->arch.exception.error_code = events->exception.error_code;
3346
3347         vcpu->arch.interrupt.pending = events->interrupt.injected;
3348         vcpu->arch.interrupt.nr = events->interrupt.nr;
3349         vcpu->arch.interrupt.soft = events->interrupt.soft;
3350         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3351                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3352                                                   events->interrupt.shadow);
3353
3354         vcpu->arch.nmi_injected = events->nmi.injected;
3355         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3356                 vcpu->arch.nmi_pending = events->nmi.pending;
3357         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3358
3359         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3360             lapic_in_kernel(vcpu))
3361                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3362
3363         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3364                 u32 hflags = vcpu->arch.hflags;
3365                 if (events->smi.smm)
3366                         hflags |= HF_SMM_MASK;
3367                 else
3368                         hflags &= ~HF_SMM_MASK;
3369                 kvm_set_hflags(vcpu, hflags);
3370
3371                 vcpu->arch.smi_pending = events->smi.pending;
3372
3373                 if (events->smi.smm) {
3374                         if (events->smi.smm_inside_nmi)
3375                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3376                         else
3377                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3378                         if (lapic_in_kernel(vcpu)) {
3379                                 if (events->smi.latched_init)
3380                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3381                                 else
3382                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3383                         }
3384                 }
3385         }
3386
3387         kvm_make_request(KVM_REQ_EVENT, vcpu);
3388
3389         return 0;
3390 }
3391
3392 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3393                                              struct kvm_debugregs *dbgregs)
3394 {
3395         unsigned long val;
3396
3397         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3398         kvm_get_dr(vcpu, 6, &val);
3399         dbgregs->dr6 = val;
3400         dbgregs->dr7 = vcpu->arch.dr7;
3401         dbgregs->flags = 0;
3402         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3403 }
3404
3405 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3406                                             struct kvm_debugregs *dbgregs)
3407 {
3408         if (dbgregs->flags)
3409                 return -EINVAL;
3410
3411         if (dbgregs->dr6 & ~0xffffffffull)
3412                 return -EINVAL;
3413         if (dbgregs->dr7 & ~0xffffffffull)
3414                 return -EINVAL;
3415
3416         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3417         kvm_update_dr0123(vcpu);
3418         vcpu->arch.dr6 = dbgregs->dr6;
3419         kvm_update_dr6(vcpu);
3420         vcpu->arch.dr7 = dbgregs->dr7;
3421         kvm_update_dr7(vcpu);
3422
3423         return 0;
3424 }
3425
3426 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3427
3428 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3429 {
3430         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3431         u64 xstate_bv = xsave->header.xfeatures;
3432         u64 valid;
3433
3434         /*
3435          * Copy legacy XSAVE area, to avoid complications with CPUID
3436          * leaves 0 and 1 in the loop below.
3437          */
3438         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3439
3440         /* Set XSTATE_BV */
3441         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3442         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3443
3444         /*
3445          * Copy each region from the possibly compacted offset to the
3446          * non-compacted offset.
3447          */
3448         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3449         while (valid) {
3450                 u64 feature = valid & -valid;
3451                 int index = fls64(feature) - 1;
3452                 void *src = get_xsave_addr(xsave, feature);
3453
3454                 if (src) {
3455                         u32 size, offset, ecx, edx;
3456                         cpuid_count(XSTATE_CPUID, index,
3457                                     &size, &offset, &ecx, &edx);
3458                         if (feature == XFEATURE_MASK_PKRU)
3459                                 memcpy(dest + offset, &vcpu->arch.pkru,
3460                                        sizeof(vcpu->arch.pkru));
3461                         else
3462                                 memcpy(dest + offset, src, size);
3463
3464                 }
3465
3466                 valid -= feature;
3467         }
3468 }
3469
3470 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3471 {
3472         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3473         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3474         u64 valid;
3475
3476         /*
3477          * Copy legacy XSAVE area, to avoid complications with CPUID
3478          * leaves 0 and 1 in the loop below.
3479          */
3480         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3481
3482         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3483         xsave->header.xfeatures = xstate_bv;
3484         if (boot_cpu_has(X86_FEATURE_XSAVES))
3485                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3486
3487         /*
3488          * Copy each region from the non-compacted offset to the
3489          * possibly compacted offset.
3490          */
3491         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3492         while (valid) {
3493                 u64 feature = valid & -valid;
3494                 int index = fls64(feature) - 1;
3495                 void *dest = get_xsave_addr(xsave, feature);
3496
3497                 if (dest) {
3498                         u32 size, offset, ecx, edx;
3499                         cpuid_count(XSTATE_CPUID, index,
3500                                     &size, &offset, &ecx, &edx);
3501                         if (feature == XFEATURE_MASK_PKRU)
3502                                 memcpy(&vcpu->arch.pkru, src + offset,
3503                                        sizeof(vcpu->arch.pkru));
3504                         else
3505                                 memcpy(dest, src + offset, size);
3506                 }
3507
3508                 valid -= feature;
3509         }
3510 }
3511
3512 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3513                                          struct kvm_xsave *guest_xsave)
3514 {
3515         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3516                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3517                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3518         } else {
3519                 memcpy(guest_xsave->region,
3520                         &vcpu->arch.guest_fpu.state.fxsave,
3521                         sizeof(struct fxregs_state));
3522                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3523                         XFEATURE_MASK_FPSSE;
3524         }
3525 }
3526
3527 #define XSAVE_MXCSR_OFFSET 24
3528
3529 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3530                                         struct kvm_xsave *guest_xsave)
3531 {
3532         u64 xstate_bv =
3533                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3534         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3535
3536         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3537                 /*
3538                  * Here we allow setting states that are not present in
3539                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3540                  * with old userspace.
3541                  */
3542                 if (xstate_bv & ~kvm_supported_xcr0() ||
3543                         mxcsr & ~mxcsr_feature_mask)
3544                         return -EINVAL;
3545                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3546         } else {
3547                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3548                         mxcsr & ~mxcsr_feature_mask)
3549                         return -EINVAL;
3550                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3551                         guest_xsave->region, sizeof(struct fxregs_state));
3552         }
3553         return 0;
3554 }
3555
3556 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3557                                         struct kvm_xcrs *guest_xcrs)
3558 {
3559         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3560                 guest_xcrs->nr_xcrs = 0;
3561                 return;
3562         }
3563
3564         guest_xcrs->nr_xcrs = 1;
3565         guest_xcrs->flags = 0;
3566         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3567         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3568 }
3569
3570 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3571                                        struct kvm_xcrs *guest_xcrs)
3572 {
3573         int i, r = 0;
3574
3575         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3576                 return -EINVAL;
3577
3578         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3579                 return -EINVAL;
3580
3581         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3582                 /* Only support XCR0 currently */
3583                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3584                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3585                                 guest_xcrs->xcrs[i].value);
3586                         break;
3587                 }
3588         if (r)
3589                 r = -EINVAL;
3590         return r;
3591 }
3592
3593 /*
3594  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3595  * stopped by the hypervisor.  This function will be called from the host only.
3596  * EINVAL is returned when the host attempts to set the flag for a guest that
3597  * does not support pv clocks.
3598  */
3599 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3600 {
3601         if (!vcpu->arch.pv_time_enabled)
3602                 return -EINVAL;
3603         vcpu->arch.pvclock_set_guest_stopped_request = true;
3604         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3605         return 0;
3606 }
3607
3608 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3609                                      struct kvm_enable_cap *cap)
3610 {
3611         if (cap->flags)
3612                 return -EINVAL;
3613
3614         switch (cap->cap) {
3615         case KVM_CAP_HYPERV_SYNIC2:
3616                 if (cap->args[0])
3617                         return -EINVAL;
3618         case KVM_CAP_HYPERV_SYNIC:
3619                 if (!irqchip_in_kernel(vcpu->kvm))
3620                         return -EINVAL;
3621                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3622                                              KVM_CAP_HYPERV_SYNIC2);
3623         default:
3624                 return -EINVAL;
3625         }
3626 }
3627
3628 long kvm_arch_vcpu_ioctl(struct file *filp,
3629                          unsigned int ioctl, unsigned long arg)
3630 {
3631         struct kvm_vcpu *vcpu = filp->private_data;
3632         void __user *argp = (void __user *)arg;
3633         int r;
3634         union {
3635                 struct kvm_lapic_state *lapic;
3636                 struct kvm_xsave *xsave;
3637                 struct kvm_xcrs *xcrs;
3638                 void *buffer;
3639         } u;
3640
3641         vcpu_load(vcpu);
3642
3643         u.buffer = NULL;
3644         switch (ioctl) {
3645         case KVM_GET_LAPIC: {
3646                 r = -EINVAL;
3647                 if (!lapic_in_kernel(vcpu))
3648                         goto out;
3649                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3650
3651                 r = -ENOMEM;
3652                 if (!u.lapic)
3653                         goto out;
3654                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3655                 if (r)
3656                         goto out;
3657                 r = -EFAULT;
3658                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3659                         goto out;
3660                 r = 0;
3661                 break;
3662         }
3663         case KVM_SET_LAPIC: {
3664                 r = -EINVAL;
3665                 if (!lapic_in_kernel(vcpu))
3666                         goto out;
3667                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3668                 if (IS_ERR(u.lapic)) {
3669                         r = PTR_ERR(u.lapic);
3670                         goto out_nofree;
3671                 }
3672
3673                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3674                 break;
3675         }
3676         case KVM_INTERRUPT: {
3677                 struct kvm_interrupt irq;
3678
3679                 r = -EFAULT;
3680                 if (copy_from_user(&irq, argp, sizeof irq))
3681                         goto out;
3682                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3683                 break;
3684         }
3685         case KVM_NMI: {
3686                 r = kvm_vcpu_ioctl_nmi(vcpu);
3687                 break;
3688         }
3689         case KVM_SMI: {
3690                 r = kvm_vcpu_ioctl_smi(vcpu);
3691                 break;
3692         }
3693         case KVM_SET_CPUID: {
3694                 struct kvm_cpuid __user *cpuid_arg = argp;
3695                 struct kvm_cpuid cpuid;
3696
3697                 r = -EFAULT;
3698                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3699                         goto out;
3700                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3701                 break;
3702         }
3703         case KVM_SET_CPUID2: {
3704                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3705                 struct kvm_cpuid2 cpuid;
3706
3707                 r = -EFAULT;
3708                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3709                         goto out;
3710                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3711                                               cpuid_arg->entries);
3712                 break;
3713         }
3714         case KVM_GET_CPUID2: {
3715                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3716                 struct kvm_cpuid2 cpuid;
3717
3718                 r = -EFAULT;
3719                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3720                         goto out;
3721                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3722                                               cpuid_arg->entries);
3723                 if (r)
3724                         goto out;
3725                 r = -EFAULT;
3726                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3727                         goto out;
3728                 r = 0;
3729                 break;
3730         }
3731         case KVM_GET_MSRS: {
3732                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3733                 r = msr_io(vcpu, argp, do_get_msr, 1);
3734                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3735                 break;
3736         }
3737         case KVM_SET_MSRS: {
3738                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3739                 r = msr_io(vcpu, argp, do_set_msr, 0);
3740                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3741                 break;
3742         }
3743         case KVM_TPR_ACCESS_REPORTING: {
3744                 struct kvm_tpr_access_ctl tac;
3745
3746                 r = -EFAULT;
3747                 if (copy_from_user(&tac, argp, sizeof tac))
3748                         goto out;
3749                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3750                 if (r)
3751                         goto out;
3752                 r = -EFAULT;
3753                 if (copy_to_user(argp, &tac, sizeof tac))
3754                         goto out;
3755                 r = 0;
3756                 break;
3757         };
3758         case KVM_SET_VAPIC_ADDR: {
3759                 struct kvm_vapic_addr va;
3760                 int idx;
3761
3762                 r = -EINVAL;
3763                 if (!lapic_in_kernel(vcpu))
3764                         goto out;
3765                 r = -EFAULT;
3766                 if (copy_from_user(&va, argp, sizeof va))
3767                         goto out;
3768                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3769                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3770                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3771                 break;
3772         }
3773         case KVM_X86_SETUP_MCE: {
3774                 u64 mcg_cap;
3775
3776                 r = -EFAULT;
3777                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3778                         goto out;
3779                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3780                 break;
3781         }
3782         case KVM_X86_SET_MCE: {
3783                 struct kvm_x86_mce mce;
3784
3785                 r = -EFAULT;
3786                 if (copy_from_user(&mce, argp, sizeof mce))
3787                         goto out;
3788                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3789                 break;
3790         }
3791         case KVM_GET_VCPU_EVENTS: {
3792                 struct kvm_vcpu_events events;
3793
3794                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3795
3796                 r = -EFAULT;
3797                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3798                         break;
3799                 r = 0;
3800                 break;
3801         }
3802         case KVM_SET_VCPU_EVENTS: {
3803                 struct kvm_vcpu_events events;
3804
3805                 r = -EFAULT;
3806                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3807                         break;
3808
3809                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3810                 break;
3811         }
3812         case KVM_GET_DEBUGREGS: {
3813                 struct kvm_debugregs dbgregs;
3814
3815                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3816
3817                 r = -EFAULT;
3818                 if (copy_to_user(argp, &dbgregs,
3819                                  sizeof(struct kvm_debugregs)))
3820                         break;
3821                 r = 0;
3822                 break;
3823         }
3824         case KVM_SET_DEBUGREGS: {
3825                 struct kvm_debugregs dbgregs;
3826
3827                 r = -EFAULT;
3828                 if (copy_from_user(&dbgregs, argp,
3829                                    sizeof(struct kvm_debugregs)))
3830                         break;
3831
3832                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3833                 break;
3834         }
3835         case KVM_GET_XSAVE: {
3836                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3837                 r = -ENOMEM;
3838                 if (!u.xsave)
3839                         break;
3840
3841                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3842
3843                 r = -EFAULT;
3844                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3845                         break;
3846                 r = 0;
3847                 break;
3848         }
3849         case KVM_SET_XSAVE: {
3850                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3851                 if (IS_ERR(u.xsave)) {
3852                         r = PTR_ERR(u.xsave);
3853                         goto out_nofree;
3854                 }
3855
3856                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3857                 break;
3858         }
3859         case KVM_GET_XCRS: {
3860                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3861                 r = -ENOMEM;
3862                 if (!u.xcrs)
3863                         break;
3864
3865                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3866
3867                 r = -EFAULT;
3868                 if (copy_to_user(argp, u.xcrs,
3869                                  sizeof(struct kvm_xcrs)))
3870                         break;
3871                 r = 0;
3872                 break;
3873         }
3874         case KVM_SET_XCRS: {
3875                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3876                 if (IS_ERR(u.xcrs)) {
3877                         r = PTR_ERR(u.xcrs);
3878                         goto out_nofree;
3879                 }
3880
3881                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3882                 break;
3883         }
3884         case KVM_SET_TSC_KHZ: {
3885                 u32 user_tsc_khz;
3886
3887                 r = -EINVAL;
3888                 user_tsc_khz = (u32)arg;
3889
3890                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3891                         goto out;
3892
3893                 if (user_tsc_khz == 0)
3894                         user_tsc_khz = tsc_khz;
3895
3896                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3897                         r = 0;
3898
3899                 goto out;
3900         }
3901         case KVM_GET_TSC_KHZ: {
3902                 r = vcpu->arch.virtual_tsc_khz;
3903                 goto out;
3904         }
3905         case KVM_KVMCLOCK_CTRL: {
3906                 r = kvm_set_guest_paused(vcpu);
3907                 goto out;
3908         }
3909         case KVM_ENABLE_CAP: {
3910                 struct kvm_enable_cap cap;
3911
3912                 r = -EFAULT;
3913                 if (copy_from_user(&cap, argp, sizeof(cap)))
3914                         goto out;
3915                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3916                 break;
3917         }
3918         default:
3919                 r = -EINVAL;
3920         }
3921 out:
3922         kfree(u.buffer);
3923 out_nofree:
3924         vcpu_put(vcpu);
3925         return r;
3926 }
3927
3928 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3929 {
3930         return VM_FAULT_SIGBUS;
3931 }
3932
3933 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3934 {
3935         int ret;
3936
3937         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3938                 return -EINVAL;
3939         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3940         return ret;
3941 }
3942
3943 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3944                                               u64 ident_addr)
3945 {
3946         kvm->arch.ept_identity_map_addr = ident_addr;
3947         return 0;
3948 }
3949
3950 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3951                                           u32 kvm_nr_mmu_pages)
3952 {
3953         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3954                 return -EINVAL;
3955
3956         mutex_lock(&kvm->slots_lock);
3957
3958         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3959         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3960
3961         mutex_unlock(&kvm->slots_lock);
3962         return 0;
3963 }
3964
3965 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3966 {
3967         return kvm->arch.n_max_mmu_pages;
3968 }
3969
3970 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3971 {
3972         struct kvm_pic *pic = kvm->arch.vpic;
3973         int r;
3974
3975         r = 0;
3976         switch (chip->chip_id) {
3977         case KVM_IRQCHIP_PIC_MASTER:
3978                 memcpy(&chip->chip.pic, &pic->pics[0],
3979                         sizeof(struct kvm_pic_state));
3980                 break;
3981         case KVM_IRQCHIP_PIC_SLAVE:
3982                 memcpy(&chip->chip.pic, &pic->pics[1],
3983                         sizeof(struct kvm_pic_state));
3984                 break;
3985         case KVM_IRQCHIP_IOAPIC:
3986                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3987                 break;
3988         default:
3989                 r = -EINVAL;
3990                 break;
3991         }
3992         return r;
3993 }
3994
3995 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3996 {
3997         struct kvm_pic *pic = kvm->arch.vpic;
3998         int r;
3999
4000         r = 0;
4001         switch (chip->chip_id) {
4002         case KVM_IRQCHIP_PIC_MASTER:
4003                 spin_lock(&pic->lock);
4004                 memcpy(&pic->pics[0], &chip->chip.pic,
4005                         sizeof(struct kvm_pic_state));
4006                 spin_unlock(&pic->lock);
4007                 break;
4008         case KVM_IRQCHIP_PIC_SLAVE:
4009                 spin_lock(&pic->lock);
4010                 memcpy(&pic->pics[1], &chip->chip.pic,
4011                         sizeof(struct kvm_pic_state));
4012                 spin_unlock(&pic->lock);
4013                 break;
4014         case KVM_IRQCHIP_IOAPIC:
4015                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4016                 break;
4017         default:
4018                 r = -EINVAL;
4019                 break;
4020         }
4021         kvm_pic_update_irq(pic);
4022         return r;
4023 }
4024
4025 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4026 {
4027         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4028
4029         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4030
4031         mutex_lock(&kps->lock);
4032         memcpy(ps, &kps->channels, sizeof(*ps));
4033         mutex_unlock(&kps->lock);
4034         return 0;
4035 }
4036
4037 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4038 {
4039         int i;
4040         struct kvm_pit *pit = kvm->arch.vpit;
4041
4042         mutex_lock(&pit->pit_state.lock);
4043         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4044         for (i = 0; i < 3; i++)
4045                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4046         mutex_unlock(&pit->pit_state.lock);
4047         return 0;
4048 }
4049
4050 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4051 {
4052         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4053         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4054                 sizeof(ps->channels));
4055         ps->flags = kvm->arch.vpit->pit_state.flags;
4056         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4057         memset(&ps->reserved, 0, sizeof(ps->reserved));
4058         return 0;
4059 }
4060
4061 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4062 {
4063         int start = 0;
4064         int i;
4065         u32 prev_legacy, cur_legacy;
4066         struct kvm_pit *pit = kvm->arch.vpit;
4067
4068         mutex_lock(&pit->pit_state.lock);
4069         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4070         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4071         if (!prev_legacy && cur_legacy)
4072                 start = 1;
4073         memcpy(&pit->pit_state.channels, &ps->channels,
4074                sizeof(pit->pit_state.channels));
4075         pit->pit_state.flags = ps->flags;
4076         for (i = 0; i < 3; i++)
4077                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4078                                    start && i == 0);
4079         mutex_unlock(&pit->pit_state.lock);
4080         return 0;
4081 }
4082
4083 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4084                                  struct kvm_reinject_control *control)
4085 {
4086         struct kvm_pit *pit = kvm->arch.vpit;
4087
4088         if (!pit)
4089                 return -ENXIO;
4090
4091         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4092          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4093          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4094          */
4095         mutex_lock(&pit->pit_state.lock);
4096         kvm_pit_set_reinject(pit, control->pit_reinject);
4097         mutex_unlock(&pit->pit_state.lock);
4098
4099         return 0;
4100 }
4101
4102 /**
4103  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4104  * @kvm: kvm instance
4105  * @log: slot id and address to which we copy the log
4106  *
4107  * Steps 1-4 below provide general overview of dirty page logging. See
4108  * kvm_get_dirty_log_protect() function description for additional details.
4109  *
4110  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4111  * always flush the TLB (step 4) even if previous step failed  and the dirty
4112  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4113  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4114  * writes will be marked dirty for next log read.
4115  *
4116  *   1. Take a snapshot of the bit and clear it if needed.
4117  *   2. Write protect the corresponding page.
4118  *   3. Copy the snapshot to the userspace.
4119  *   4. Flush TLB's if needed.
4120  */
4121 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4122 {
4123         bool is_dirty = false;
4124         int r;
4125
4126         mutex_lock(&kvm->slots_lock);
4127
4128         /*
4129          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4130          */
4131         if (kvm_x86_ops->flush_log_dirty)
4132                 kvm_x86_ops->flush_log_dirty(kvm);
4133
4134         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4135
4136         /*
4137          * All the TLBs can be flushed out of mmu lock, see the comments in
4138          * kvm_mmu_slot_remove_write_access().
4139          */
4140         lockdep_assert_held(&kvm->slots_lock);
4141         if (is_dirty)
4142                 kvm_flush_remote_tlbs(kvm);
4143
4144         mutex_unlock(&kvm->slots_lock);
4145         return r;
4146 }
4147
4148 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4149                         bool line_status)
4150 {
4151         if (!irqchip_in_kernel(kvm))
4152                 return -ENXIO;
4153
4154         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4155                                         irq_event->irq, irq_event->level,
4156                                         line_status);
4157         return 0;
4158 }
4159
4160 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4161                                    struct kvm_enable_cap *cap)
4162 {
4163         int r;
4164
4165         if (cap->flags)
4166                 return -EINVAL;
4167
4168         switch (cap->cap) {
4169         case KVM_CAP_DISABLE_QUIRKS:
4170                 kvm->arch.disabled_quirks = cap->args[0];
4171                 r = 0;
4172                 break;
4173         case KVM_CAP_SPLIT_IRQCHIP: {
4174                 mutex_lock(&kvm->lock);
4175                 r = -EINVAL;
4176                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4177                         goto split_irqchip_unlock;
4178                 r = -EEXIST;
4179                 if (irqchip_in_kernel(kvm))
4180                         goto split_irqchip_unlock;
4181                 if (kvm->created_vcpus)
4182                         goto split_irqchip_unlock;
4183                 r = kvm_setup_empty_irq_routing(kvm);
4184                 if (r)
4185                         goto split_irqchip_unlock;
4186                 /* Pairs with irqchip_in_kernel. */
4187                 smp_wmb();
4188                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4189                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4190                 r = 0;
4191 split_irqchip_unlock:
4192                 mutex_unlock(&kvm->lock);
4193                 break;
4194         }
4195         case KVM_CAP_X2APIC_API:
4196                 r = -EINVAL;
4197                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4198                         break;
4199
4200                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4201                         kvm->arch.x2apic_format = true;
4202                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4203                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4204
4205                 r = 0;
4206                 break;
4207         default:
4208                 r = -EINVAL;
4209                 break;
4210         }
4211         return r;
4212 }
4213
4214 long kvm_arch_vm_ioctl(struct file *filp,
4215                        unsigned int ioctl, unsigned long arg)
4216 {
4217         struct kvm *kvm = filp->private_data;
4218         void __user *argp = (void __user *)arg;
4219         int r = -ENOTTY;
4220         /*
4221          * This union makes it completely explicit to gcc-3.x
4222          * that these two variables' stack usage should be
4223          * combined, not added together.
4224          */
4225         union {
4226                 struct kvm_pit_state ps;
4227                 struct kvm_pit_state2 ps2;
4228                 struct kvm_pit_config pit_config;
4229         } u;
4230
4231         switch (ioctl) {
4232         case KVM_SET_TSS_ADDR:
4233                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4234                 break;
4235         case KVM_SET_IDENTITY_MAP_ADDR: {
4236                 u64 ident_addr;
4237
4238                 mutex_lock(&kvm->lock);
4239                 r = -EINVAL;
4240                 if (kvm->created_vcpus)
4241                         goto set_identity_unlock;
4242                 r = -EFAULT;
4243                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4244                         goto set_identity_unlock;
4245                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4246 set_identity_unlock:
4247                 mutex_unlock(&kvm->lock);
4248                 break;
4249         }
4250         case KVM_SET_NR_MMU_PAGES:
4251                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4252                 break;
4253         case KVM_GET_NR_MMU_PAGES:
4254                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4255                 break;
4256         case KVM_CREATE_IRQCHIP: {
4257                 mutex_lock(&kvm->lock);
4258
4259                 r = -EEXIST;
4260                 if (irqchip_in_kernel(kvm))
4261                         goto create_irqchip_unlock;
4262
4263                 r = -EINVAL;
4264                 if (kvm->created_vcpus)
4265                         goto create_irqchip_unlock;
4266
4267                 r = kvm_pic_init(kvm);
4268                 if (r)
4269                         goto create_irqchip_unlock;
4270
4271                 r = kvm_ioapic_init(kvm);
4272                 if (r) {
4273                         kvm_pic_destroy(kvm);
4274                         goto create_irqchip_unlock;
4275                 }
4276
4277                 r = kvm_setup_default_irq_routing(kvm);
4278                 if (r) {
4279                         kvm_ioapic_destroy(kvm);
4280                         kvm_pic_destroy(kvm);
4281                         goto create_irqchip_unlock;
4282                 }
4283                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4284                 smp_wmb();
4285                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4286         create_irqchip_unlock:
4287                 mutex_unlock(&kvm->lock);
4288                 break;
4289         }
4290         case KVM_CREATE_PIT:
4291                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4292                 goto create_pit;
4293         case KVM_CREATE_PIT2:
4294                 r = -EFAULT;
4295                 if (copy_from_user(&u.pit_config, argp,
4296                                    sizeof(struct kvm_pit_config)))
4297                         goto out;
4298         create_pit:
4299                 mutex_lock(&kvm->lock);
4300                 r = -EEXIST;
4301                 if (kvm->arch.vpit)
4302                         goto create_pit_unlock;
4303                 r = -ENOMEM;
4304                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4305                 if (kvm->arch.vpit)
4306                         r = 0;
4307         create_pit_unlock:
4308                 mutex_unlock(&kvm->lock);
4309                 break;
4310         case KVM_GET_IRQCHIP: {
4311                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4312                 struct kvm_irqchip *chip;
4313
4314                 chip = memdup_user(argp, sizeof(*chip));
4315                 if (IS_ERR(chip)) {
4316                         r = PTR_ERR(chip);
4317                         goto out;
4318                 }
4319
4320                 r = -ENXIO;
4321                 if (!irqchip_kernel(kvm))
4322                         goto get_irqchip_out;
4323                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4324                 if (r)
4325                         goto get_irqchip_out;
4326                 r = -EFAULT;
4327                 if (copy_to_user(argp, chip, sizeof *chip))
4328                         goto get_irqchip_out;
4329                 r = 0;
4330         get_irqchip_out:
4331                 kfree(chip);
4332                 break;
4333         }
4334         case KVM_SET_IRQCHIP: {
4335                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4336                 struct kvm_irqchip *chip;
4337
4338                 chip = memdup_user(argp, sizeof(*chip));
4339                 if (IS_ERR(chip)) {
4340                         r = PTR_ERR(chip);
4341                         goto out;
4342                 }
4343
4344                 r = -ENXIO;
4345                 if (!irqchip_kernel(kvm))
4346                         goto set_irqchip_out;
4347                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4348                 if (r)
4349                         goto set_irqchip_out;
4350                 r = 0;
4351         set_irqchip_out:
4352                 kfree(chip);
4353                 break;
4354         }
4355         case KVM_GET_PIT: {
4356                 r = -EFAULT;
4357                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4358                         goto out;
4359                 r = -ENXIO;
4360                 if (!kvm->arch.vpit)
4361                         goto out;
4362                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4363                 if (r)
4364                         goto out;
4365                 r = -EFAULT;
4366                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4367                         goto out;
4368                 r = 0;
4369                 break;
4370         }
4371         case KVM_SET_PIT: {
4372                 r = -EFAULT;
4373                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4374                         goto out;
4375                 r = -ENXIO;
4376                 if (!kvm->arch.vpit)
4377                         goto out;
4378                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4379                 break;
4380         }
4381         case KVM_GET_PIT2: {
4382                 r = -ENXIO;
4383                 if (!kvm->arch.vpit)
4384                         goto out;
4385                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4386                 if (r)
4387                         goto out;
4388                 r = -EFAULT;
4389                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4390                         goto out;
4391                 r = 0;
4392                 break;
4393         }
4394         case KVM_SET_PIT2: {
4395                 r = -EFAULT;
4396                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4397                         goto out;
4398                 r = -ENXIO;
4399                 if (!kvm->arch.vpit)
4400                         goto out;
4401                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4402                 break;
4403         }
4404         case KVM_REINJECT_CONTROL: {
4405                 struct kvm_reinject_control control;
4406                 r =  -EFAULT;
4407                 if (copy_from_user(&control, argp, sizeof(control)))
4408                         goto out;
4409                 r = kvm_vm_ioctl_reinject(kvm, &control);
4410                 break;
4411         }
4412         case KVM_SET_BOOT_CPU_ID:
4413                 r = 0;
4414                 mutex_lock(&kvm->lock);
4415                 if (kvm->created_vcpus)
4416                         r = -EBUSY;
4417                 else
4418                         kvm->arch.bsp_vcpu_id = arg;
4419                 mutex_unlock(&kvm->lock);
4420                 break;
4421         case KVM_XEN_HVM_CONFIG: {
4422                 struct kvm_xen_hvm_config xhc;
4423                 r = -EFAULT;
4424                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4425                         goto out;
4426                 r = -EINVAL;
4427                 if (xhc.flags)
4428                         goto out;
4429                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4430                 r = 0;
4431                 break;
4432         }
4433         case KVM_SET_CLOCK: {
4434                 struct kvm_clock_data user_ns;
4435                 u64 now_ns;
4436
4437                 r = -EFAULT;
4438                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4439                         goto out;
4440
4441                 r = -EINVAL;
4442                 if (user_ns.flags)
4443                         goto out;
4444
4445                 r = 0;
4446                 /*
4447                  * TODO: userspace has to take care of races with VCPU_RUN, so
4448                  * kvm_gen_update_masterclock() can be cut down to locked
4449                  * pvclock_update_vm_gtod_copy().
4450                  */
4451                 kvm_gen_update_masterclock(kvm);
4452                 now_ns = get_kvmclock_ns(kvm);
4453                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4454                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4455                 break;
4456         }
4457         case KVM_GET_CLOCK: {
4458                 struct kvm_clock_data user_ns;
4459                 u64 now_ns;
4460
4461                 now_ns = get_kvmclock_ns(kvm);
4462                 user_ns.clock = now_ns;
4463                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4464                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4465
4466                 r = -EFAULT;
4467                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4468                         goto out;
4469                 r = 0;
4470                 break;
4471         }
4472         case KVM_ENABLE_CAP: {
4473                 struct kvm_enable_cap cap;
4474
4475                 r = -EFAULT;
4476                 if (copy_from_user(&cap, argp, sizeof(cap)))
4477                         goto out;
4478                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4479                 break;
4480         }
4481         case KVM_MEMORY_ENCRYPT_OP: {
4482                 r = -ENOTTY;
4483                 if (kvm_x86_ops->mem_enc_op)
4484                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4485                 break;
4486         }
4487         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4488                 struct kvm_enc_region region;
4489
4490                 r = -EFAULT;
4491                 if (copy_from_user(&region, argp, sizeof(region)))
4492                         goto out;
4493
4494                 r = -ENOTTY;
4495                 if (kvm_x86_ops->mem_enc_reg_region)
4496                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4497                 break;
4498         }
4499         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4500                 struct kvm_enc_region region;
4501
4502                 r = -EFAULT;
4503                 if (copy_from_user(&region, argp, sizeof(region)))
4504                         goto out;
4505
4506                 r = -ENOTTY;
4507                 if (kvm_x86_ops->mem_enc_unreg_region)
4508                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4509                 break;
4510         }
4511         case KVM_HYPERV_EVENTFD: {
4512                 struct kvm_hyperv_eventfd hvevfd;
4513
4514                 r = -EFAULT;
4515                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4516                         goto out;
4517                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4518                 break;
4519         }
4520         default:
4521                 r = -ENOTTY;
4522         }
4523 out:
4524         return r;
4525 }
4526
4527 static void kvm_init_msr_list(void)
4528 {
4529         u32 dummy[2];
4530         unsigned i, j;
4531
4532         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4533                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4534                         continue;
4535
4536                 /*
4537                  * Even MSRs that are valid in the host may not be exposed
4538                  * to the guests in some cases.
4539                  */
4540                 switch (msrs_to_save[i]) {
4541                 case MSR_IA32_BNDCFGS:
4542                         if (!kvm_x86_ops->mpx_supported())
4543                                 continue;
4544                         break;
4545                 case MSR_TSC_AUX:
4546                         if (!kvm_x86_ops->rdtscp_supported())
4547                                 continue;
4548                         break;
4549                 default:
4550                         break;
4551                 }
4552
4553                 if (j < i)
4554                         msrs_to_save[j] = msrs_to_save[i];
4555                 j++;
4556         }
4557         num_msrs_to_save = j;
4558
4559         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4560                 switch (emulated_msrs[i]) {
4561                 case MSR_IA32_SMBASE:
4562                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4563                                 continue;
4564                         break;
4565                 default:
4566                         break;
4567                 }
4568
4569                 if (j < i)
4570                         emulated_msrs[j] = emulated_msrs[i];
4571                 j++;
4572         }
4573         num_emulated_msrs = j;
4574
4575         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4576                 struct kvm_msr_entry msr;
4577
4578                 msr.index = msr_based_features[i];
4579                 if (kvm_get_msr_feature(&msr))
4580                         continue;
4581
4582                 if (j < i)
4583                         msr_based_features[j] = msr_based_features[i];
4584                 j++;
4585         }
4586         num_msr_based_features = j;
4587 }
4588
4589 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4590                            const void *v)
4591 {
4592         int handled = 0;
4593         int n;
4594
4595         do {
4596                 n = min(len, 8);
4597                 if (!(lapic_in_kernel(vcpu) &&
4598                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4599                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4600                         break;
4601                 handled += n;
4602                 addr += n;
4603                 len -= n;
4604                 v += n;
4605         } while (len);
4606
4607         return handled;
4608 }
4609
4610 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4611 {
4612         int handled = 0;
4613         int n;
4614
4615         do {
4616                 n = min(len, 8);
4617                 if (!(lapic_in_kernel(vcpu) &&
4618                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4619                                          addr, n, v))
4620                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4621                         break;
4622                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4623                 handled += n;
4624                 addr += n;
4625                 len -= n;
4626                 v += n;
4627         } while (len);
4628
4629         return handled;
4630 }
4631
4632 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4633                         struct kvm_segment *var, int seg)
4634 {
4635         kvm_x86_ops->set_segment(vcpu, var, seg);
4636 }
4637
4638 void kvm_get_segment(struct kvm_vcpu *vcpu,
4639                      struct kvm_segment *var, int seg)
4640 {
4641         kvm_x86_ops->get_segment(vcpu, var, seg);
4642 }
4643
4644 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4645                            struct x86_exception *exception)
4646 {
4647         gpa_t t_gpa;
4648
4649         BUG_ON(!mmu_is_nested(vcpu));
4650
4651         /* NPT walks are always user-walks */
4652         access |= PFERR_USER_MASK;
4653         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4654
4655         return t_gpa;
4656 }
4657
4658 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4659                               struct x86_exception *exception)
4660 {
4661         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4662         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4663 }
4664
4665  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4666                                 struct x86_exception *exception)
4667 {
4668         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4669         access |= PFERR_FETCH_MASK;
4670         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4671 }
4672
4673 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4674                                struct x86_exception *exception)
4675 {
4676         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4677         access |= PFERR_WRITE_MASK;
4678         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4679 }
4680
4681 /* uses this to access any guest's mapped memory without checking CPL */
4682 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4683                                 struct x86_exception *exception)
4684 {
4685         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4686 }
4687
4688 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4689                                       struct kvm_vcpu *vcpu, u32 access,
4690                                       struct x86_exception *exception)
4691 {
4692         void *data = val;
4693         int r = X86EMUL_CONTINUE;
4694
4695         while (bytes) {
4696                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4697                                                             exception);
4698                 unsigned offset = addr & (PAGE_SIZE-1);
4699                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4700                 int ret;
4701
4702                 if (gpa == UNMAPPED_GVA)
4703                         return X86EMUL_PROPAGATE_FAULT;
4704                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4705                                                offset, toread);
4706                 if (ret < 0) {
4707                         r = X86EMUL_IO_NEEDED;
4708                         goto out;
4709                 }
4710
4711                 bytes -= toread;
4712                 data += toread;
4713                 addr += toread;
4714         }
4715 out:
4716         return r;
4717 }
4718
4719 /* used for instruction fetching */
4720 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4721                                 gva_t addr, void *val, unsigned int bytes,
4722                                 struct x86_exception *exception)
4723 {
4724         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4725         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4726         unsigned offset;
4727         int ret;
4728
4729         /* Inline kvm_read_guest_virt_helper for speed.  */
4730         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4731                                                     exception);
4732         if (unlikely(gpa == UNMAPPED_GVA))
4733                 return X86EMUL_PROPAGATE_FAULT;
4734
4735         offset = addr & (PAGE_SIZE-1);
4736         if (WARN_ON(offset + bytes > PAGE_SIZE))
4737                 bytes = (unsigned)PAGE_SIZE - offset;
4738         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4739                                        offset, bytes);
4740         if (unlikely(ret < 0))
4741                 return X86EMUL_IO_NEEDED;
4742
4743         return X86EMUL_CONTINUE;
4744 }
4745
4746 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4747                                gva_t addr, void *val, unsigned int bytes,
4748                                struct x86_exception *exception)
4749 {
4750         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4751         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4752
4753         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4754                                           exception);
4755 }
4756 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4757
4758 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4759                                       gva_t addr, void *val, unsigned int bytes,
4760                                       struct x86_exception *exception)
4761 {
4762         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4763         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4764 }
4765
4766 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4767                 unsigned long addr, void *val, unsigned int bytes)
4768 {
4769         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4770         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4771
4772         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4773 }
4774
4775 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4776                                        gva_t addr, void *val,
4777                                        unsigned int bytes,
4778                                        struct x86_exception *exception)
4779 {
4780         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4781         void *data = val;
4782         int r = X86EMUL_CONTINUE;
4783
4784         while (bytes) {
4785                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4786                                                              PFERR_WRITE_MASK,
4787                                                              exception);
4788                 unsigned offset = addr & (PAGE_SIZE-1);
4789                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4790                 int ret;
4791
4792                 if (gpa == UNMAPPED_GVA)
4793                         return X86EMUL_PROPAGATE_FAULT;
4794                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4795                 if (ret < 0) {
4796                         r = X86EMUL_IO_NEEDED;
4797                         goto out;
4798                 }
4799
4800                 bytes -= towrite;
4801                 data += towrite;
4802                 addr += towrite;
4803         }
4804 out:
4805         return r;
4806 }
4807 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4808
4809 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4810                             gpa_t gpa, bool write)
4811 {
4812         /* For APIC access vmexit */
4813         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4814                 return 1;
4815
4816         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4817                 trace_vcpu_match_mmio(gva, gpa, write, true);
4818                 return 1;
4819         }
4820
4821         return 0;
4822 }
4823
4824 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4825                                 gpa_t *gpa, struct x86_exception *exception,
4826                                 bool write)
4827 {
4828         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4829                 | (write ? PFERR_WRITE_MASK : 0);
4830
4831         /*
4832          * currently PKRU is only applied to ept enabled guest so
4833          * there is no pkey in EPT page table for L1 guest or EPT
4834          * shadow page table for L2 guest.
4835          */
4836         if (vcpu_match_mmio_gva(vcpu, gva)
4837             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4838                                  vcpu->arch.access, 0, access)) {
4839                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4840                                         (gva & (PAGE_SIZE - 1));
4841                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4842                 return 1;
4843         }
4844
4845         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4846
4847         if (*gpa == UNMAPPED_GVA)
4848                 return -1;
4849
4850         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4851 }
4852
4853 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4854                         const void *val, int bytes)
4855 {
4856         int ret;
4857
4858         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4859         if (ret < 0)
4860                 return 0;
4861         kvm_page_track_write(vcpu, gpa, val, bytes);
4862         return 1;
4863 }
4864
4865 struct read_write_emulator_ops {
4866         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4867                                   int bytes);
4868         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4869                                   void *val, int bytes);
4870         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4871                                int bytes, void *val);
4872         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4873                                     void *val, int bytes);
4874         bool write;
4875 };
4876
4877 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4878 {
4879         if (vcpu->mmio_read_completed) {
4880                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4881                                vcpu->mmio_fragments[0].gpa, val);
4882                 vcpu->mmio_read_completed = 0;
4883                 return 1;
4884         }
4885
4886         return 0;
4887 }
4888
4889 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4890                         void *val, int bytes)
4891 {
4892         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4893 }
4894
4895 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4896                          void *val, int bytes)
4897 {
4898         return emulator_write_phys(vcpu, gpa, val, bytes);
4899 }
4900
4901 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4902 {
4903         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4904         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4905 }
4906
4907 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4908                           void *val, int bytes)
4909 {
4910         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4911         return X86EMUL_IO_NEEDED;
4912 }
4913
4914 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4915                            void *val, int bytes)
4916 {
4917         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4918
4919         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4920         return X86EMUL_CONTINUE;
4921 }
4922
4923 static const struct read_write_emulator_ops read_emultor = {
4924         .read_write_prepare = read_prepare,
4925         .read_write_emulate = read_emulate,
4926         .read_write_mmio = vcpu_mmio_read,
4927         .read_write_exit_mmio = read_exit_mmio,
4928 };
4929
4930 static const struct read_write_emulator_ops write_emultor = {
4931         .read_write_emulate = write_emulate,
4932         .read_write_mmio = write_mmio,
4933         .read_write_exit_mmio = write_exit_mmio,
4934         .write = true,
4935 };
4936
4937 static int emulator_read_write_onepage(unsigned long addr, void *val,
4938                                        unsigned int bytes,
4939                                        struct x86_exception *exception,
4940                                        struct kvm_vcpu *vcpu,
4941                                        const struct read_write_emulator_ops *ops)
4942 {
4943         gpa_t gpa;
4944         int handled, ret;
4945         bool write = ops->write;
4946         struct kvm_mmio_fragment *frag;
4947         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4948
4949         /*
4950          * If the exit was due to a NPF we may already have a GPA.
4951          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4952          * Note, this cannot be used on string operations since string
4953          * operation using rep will only have the initial GPA from the NPF
4954          * occurred.
4955          */
4956         if (vcpu->arch.gpa_available &&
4957             emulator_can_use_gpa(ctxt) &&
4958             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4959                 gpa = vcpu->arch.gpa_val;
4960                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4961         } else {
4962                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4963                 if (ret < 0)
4964                         return X86EMUL_PROPAGATE_FAULT;
4965         }
4966
4967         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4968                 return X86EMUL_CONTINUE;
4969
4970         /*
4971          * Is this MMIO handled locally?
4972          */
4973         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4974         if (handled == bytes)
4975                 return X86EMUL_CONTINUE;
4976
4977         gpa += handled;
4978         bytes -= handled;
4979         val += handled;
4980
4981         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4982         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4983         frag->gpa = gpa;
4984         frag->data = val;
4985         frag->len = bytes;
4986         return X86EMUL_CONTINUE;
4987 }
4988
4989 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4990                         unsigned long addr,
4991                         void *val, unsigned int bytes,
4992                         struct x86_exception *exception,
4993                         const struct read_write_emulator_ops *ops)
4994 {
4995         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4996         gpa_t gpa;
4997         int rc;
4998
4999         if (ops->read_write_prepare &&
5000                   ops->read_write_prepare(vcpu, val, bytes))
5001                 return X86EMUL_CONTINUE;
5002
5003         vcpu->mmio_nr_fragments = 0;
5004
5005         /* Crossing a page boundary? */
5006         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5007                 int now;
5008
5009                 now = -addr & ~PAGE_MASK;
5010                 rc = emulator_read_write_onepage(addr, val, now, exception,
5011                                                  vcpu, ops);
5012
5013                 if (rc != X86EMUL_CONTINUE)
5014                         return rc;
5015                 addr += now;
5016                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5017                         addr = (u32)addr;
5018                 val += now;
5019                 bytes -= now;
5020         }
5021
5022         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5023                                          vcpu, ops);
5024         if (rc != X86EMUL_CONTINUE)
5025                 return rc;
5026
5027         if (!vcpu->mmio_nr_fragments)
5028                 return rc;
5029
5030         gpa = vcpu->mmio_fragments[0].gpa;
5031
5032         vcpu->mmio_needed = 1;
5033         vcpu->mmio_cur_fragment = 0;
5034
5035         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5036         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5037         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5038         vcpu->run->mmio.phys_addr = gpa;
5039
5040         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5041 }
5042
5043 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5044                                   unsigned long addr,
5045                                   void *val,
5046                                   unsigned int bytes,
5047                                   struct x86_exception *exception)
5048 {
5049         return emulator_read_write(ctxt, addr, val, bytes,
5050                                    exception, &read_emultor);
5051 }
5052
5053 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5054                             unsigned long addr,
5055                             const void *val,
5056                             unsigned int bytes,
5057                             struct x86_exception *exception)
5058 {
5059         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5060                                    exception, &write_emultor);
5061 }
5062
5063 #define CMPXCHG_TYPE(t, ptr, old, new) \
5064         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5065
5066 #ifdef CONFIG_X86_64
5067 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5068 #else
5069 #  define CMPXCHG64(ptr, old, new) \
5070         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5071 #endif
5072
5073 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5074                                      unsigned long addr,
5075                                      const void *old,
5076                                      const void *new,
5077                                      unsigned int bytes,
5078                                      struct x86_exception *exception)
5079 {
5080         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5081         gpa_t gpa;
5082         struct page *page;
5083         char *kaddr;
5084         bool exchanged;
5085
5086         /* guests cmpxchg8b have to be emulated atomically */
5087         if (bytes > 8 || (bytes & (bytes - 1)))
5088                 goto emul_write;
5089
5090         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5091
5092         if (gpa == UNMAPPED_GVA ||
5093             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5094                 goto emul_write;
5095
5096         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5097                 goto emul_write;
5098
5099         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5100         if (is_error_page(page))
5101                 goto emul_write;
5102
5103         kaddr = kmap_atomic(page);
5104         kaddr += offset_in_page(gpa);
5105         switch (bytes) {
5106         case 1:
5107                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5108                 break;
5109         case 2:
5110                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5111                 break;
5112         case 4:
5113                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5114                 break;
5115         case 8:
5116                 exchanged = CMPXCHG64(kaddr, old, new);
5117                 break;
5118         default:
5119                 BUG();
5120         }
5121         kunmap_atomic(kaddr);
5122         kvm_release_page_dirty(page);
5123
5124         if (!exchanged)
5125                 return X86EMUL_CMPXCHG_FAILED;
5126
5127         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5128         kvm_page_track_write(vcpu, gpa, new, bytes);
5129
5130         return X86EMUL_CONTINUE;
5131
5132 emul_write:
5133         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5134
5135         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5136 }
5137
5138 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5139 {
5140         int r = 0, i;
5141
5142         for (i = 0; i < vcpu->arch.pio.count; i++) {
5143                 if (vcpu->arch.pio.in)
5144                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5145                                             vcpu->arch.pio.size, pd);
5146                 else
5147                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5148                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5149                                              pd);
5150                 if (r)
5151                         break;
5152                 pd += vcpu->arch.pio.size;
5153         }
5154         return r;
5155 }
5156
5157 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5158                                unsigned short port, void *val,
5159                                unsigned int count, bool in)
5160 {
5161         vcpu->arch.pio.port = port;
5162         vcpu->arch.pio.in = in;
5163         vcpu->arch.pio.count  = count;
5164         vcpu->arch.pio.size = size;
5165
5166         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5167                 vcpu->arch.pio.count = 0;
5168                 return 1;
5169         }
5170
5171         vcpu->run->exit_reason = KVM_EXIT_IO;
5172         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5173         vcpu->run->io.size = size;
5174         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5175         vcpu->run->io.count = count;
5176         vcpu->run->io.port = port;
5177
5178         return 0;
5179 }
5180
5181 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5182                                     int size, unsigned short port, void *val,
5183                                     unsigned int count)
5184 {
5185         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5186         int ret;
5187
5188         if (vcpu->arch.pio.count)
5189                 goto data_avail;
5190
5191         memset(vcpu->arch.pio_data, 0, size * count);
5192
5193         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5194         if (ret) {
5195 data_avail:
5196                 memcpy(val, vcpu->arch.pio_data, size * count);
5197                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5198                 vcpu->arch.pio.count = 0;
5199                 return 1;
5200         }
5201
5202         return 0;
5203 }
5204
5205 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5206                                      int size, unsigned short port,
5207                                      const void *val, unsigned int count)
5208 {
5209         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5210
5211         memcpy(vcpu->arch.pio_data, val, size * count);
5212         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5213         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5214 }
5215
5216 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5217 {
5218         return kvm_x86_ops->get_segment_base(vcpu, seg);
5219 }
5220
5221 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5222 {
5223         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5224 }
5225
5226 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5227 {
5228         if (!need_emulate_wbinvd(vcpu))
5229                 return X86EMUL_CONTINUE;
5230
5231         if (kvm_x86_ops->has_wbinvd_exit()) {
5232                 int cpu = get_cpu();
5233
5234                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5235                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5236                                 wbinvd_ipi, NULL, 1);
5237                 put_cpu();
5238                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5239         } else
5240                 wbinvd();
5241         return X86EMUL_CONTINUE;
5242 }
5243
5244 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5245 {
5246         kvm_emulate_wbinvd_noskip(vcpu);
5247         return kvm_skip_emulated_instruction(vcpu);
5248 }
5249 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5250
5251
5252
5253 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5254 {
5255         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5256 }
5257
5258 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5259                            unsigned long *dest)
5260 {
5261         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5262 }
5263
5264 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5265                            unsigned long value)
5266 {
5267
5268         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5269 }
5270
5271 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5272 {
5273         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5274 }
5275
5276 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5277 {
5278         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5279         unsigned long value;
5280
5281         switch (cr) {
5282         case 0:
5283                 value = kvm_read_cr0(vcpu);
5284                 break;
5285         case 2:
5286                 value = vcpu->arch.cr2;
5287                 break;
5288         case 3:
5289                 value = kvm_read_cr3(vcpu);
5290                 break;
5291         case 4:
5292                 value = kvm_read_cr4(vcpu);
5293                 break;
5294         case 8:
5295                 value = kvm_get_cr8(vcpu);
5296                 break;
5297         default:
5298                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5299                 return 0;
5300         }
5301
5302         return value;
5303 }
5304
5305 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5306 {
5307         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5308         int res = 0;
5309
5310         switch (cr) {
5311         case 0:
5312                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5313                 break;
5314         case 2:
5315                 vcpu->arch.cr2 = val;
5316                 break;
5317         case 3:
5318                 res = kvm_set_cr3(vcpu, val);
5319                 break;
5320         case 4:
5321                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5322                 break;
5323         case 8:
5324                 res = kvm_set_cr8(vcpu, val);
5325                 break;
5326         default:
5327                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5328                 res = -1;
5329         }
5330
5331         return res;
5332 }
5333
5334 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5335 {
5336         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5337 }
5338
5339 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5340 {
5341         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5342 }
5343
5344 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5345 {
5346         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5347 }
5348
5349 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5350 {
5351         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5352 }
5353
5354 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5355 {
5356         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5357 }
5358
5359 static unsigned long emulator_get_cached_segment_base(
5360         struct x86_emulate_ctxt *ctxt, int seg)
5361 {
5362         return get_segment_base(emul_to_vcpu(ctxt), seg);
5363 }
5364
5365 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5366                                  struct desc_struct *desc, u32 *base3,
5367                                  int seg)
5368 {
5369         struct kvm_segment var;
5370
5371         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5372         *selector = var.selector;
5373
5374         if (var.unusable) {
5375                 memset(desc, 0, sizeof(*desc));
5376                 if (base3)
5377                         *base3 = 0;
5378                 return false;
5379         }
5380
5381         if (var.g)
5382                 var.limit >>= 12;
5383         set_desc_limit(desc, var.limit);
5384         set_desc_base(desc, (unsigned long)var.base);
5385 #ifdef CONFIG_X86_64
5386         if (base3)
5387                 *base3 = var.base >> 32;
5388 #endif
5389         desc->type = var.type;
5390         desc->s = var.s;
5391         desc->dpl = var.dpl;
5392         desc->p = var.present;
5393         desc->avl = var.avl;
5394         desc->l = var.l;
5395         desc->d = var.db;
5396         desc->g = var.g;
5397
5398         return true;
5399 }
5400
5401 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5402                                  struct desc_struct *desc, u32 base3,
5403                                  int seg)
5404 {
5405         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5406         struct kvm_segment var;
5407
5408         var.selector = selector;
5409         var.base = get_desc_base(desc);
5410 #ifdef CONFIG_X86_64
5411         var.base |= ((u64)base3) << 32;
5412 #endif
5413         var.limit = get_desc_limit(desc);
5414         if (desc->g)
5415                 var.limit = (var.limit << 12) | 0xfff;
5416         var.type = desc->type;
5417         var.dpl = desc->dpl;
5418         var.db = desc->d;
5419         var.s = desc->s;
5420         var.l = desc->l;
5421         var.g = desc->g;
5422         var.avl = desc->avl;
5423         var.present = desc->p;
5424         var.unusable = !var.present;
5425         var.padding = 0;
5426
5427         kvm_set_segment(vcpu, &var, seg);
5428         return;
5429 }
5430
5431 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5432                             u32 msr_index, u64 *pdata)
5433 {
5434         struct msr_data msr;
5435         int r;
5436
5437         msr.index = msr_index;
5438         msr.host_initiated = false;
5439         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5440         if (r)
5441                 return r;
5442
5443         *pdata = msr.data;
5444         return 0;
5445 }
5446
5447 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5448                             u32 msr_index, u64 data)
5449 {
5450         struct msr_data msr;
5451
5452         msr.data = data;
5453         msr.index = msr_index;
5454         msr.host_initiated = false;
5455         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5456 }
5457
5458 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5459 {
5460         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5461
5462         return vcpu->arch.smbase;
5463 }
5464
5465 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5466 {
5467         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5468
5469         vcpu->arch.smbase = smbase;
5470 }
5471
5472 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5473                               u32 pmc)
5474 {
5475         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5476 }
5477
5478 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5479                              u32 pmc, u64 *pdata)
5480 {
5481         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5482 }
5483
5484 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5485 {
5486         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5487 }
5488
5489 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5490                               struct x86_instruction_info *info,
5491                               enum x86_intercept_stage stage)
5492 {
5493         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5494 }
5495
5496 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5497                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5498 {
5499         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5500 }
5501
5502 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5503 {
5504         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5505 }
5506
5507 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5508 {
5509         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5510 }
5511
5512 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5513 {
5514         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5515 }
5516
5517 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5518 {
5519         return emul_to_vcpu(ctxt)->arch.hflags;
5520 }
5521
5522 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5523 {
5524         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5525 }
5526
5527 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5528 {
5529         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5530 }
5531
5532 static const struct x86_emulate_ops emulate_ops = {
5533         .read_gpr            = emulator_read_gpr,
5534         .write_gpr           = emulator_write_gpr,
5535         .read_std            = kvm_read_guest_virt_system,
5536         .write_std           = kvm_write_guest_virt_system,
5537         .read_phys           = kvm_read_guest_phys_system,
5538         .fetch               = kvm_fetch_guest_virt,
5539         .read_emulated       = emulator_read_emulated,
5540         .write_emulated      = emulator_write_emulated,
5541         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5542         .invlpg              = emulator_invlpg,
5543         .pio_in_emulated     = emulator_pio_in_emulated,
5544         .pio_out_emulated    = emulator_pio_out_emulated,
5545         .get_segment         = emulator_get_segment,
5546         .set_segment         = emulator_set_segment,
5547         .get_cached_segment_base = emulator_get_cached_segment_base,
5548         .get_gdt             = emulator_get_gdt,
5549         .get_idt             = emulator_get_idt,
5550         .set_gdt             = emulator_set_gdt,
5551         .set_idt             = emulator_set_idt,
5552         .get_cr              = emulator_get_cr,
5553         .set_cr              = emulator_set_cr,
5554         .cpl                 = emulator_get_cpl,
5555         .get_dr              = emulator_get_dr,
5556         .set_dr              = emulator_set_dr,
5557         .get_smbase          = emulator_get_smbase,
5558         .set_smbase          = emulator_set_smbase,
5559         .set_msr             = emulator_set_msr,
5560         .get_msr             = emulator_get_msr,
5561         .check_pmc           = emulator_check_pmc,
5562         .read_pmc            = emulator_read_pmc,
5563         .halt                = emulator_halt,
5564         .wbinvd              = emulator_wbinvd,
5565         .fix_hypercall       = emulator_fix_hypercall,
5566         .intercept           = emulator_intercept,
5567         .get_cpuid           = emulator_get_cpuid,
5568         .set_nmi_mask        = emulator_set_nmi_mask,
5569         .get_hflags          = emulator_get_hflags,
5570         .set_hflags          = emulator_set_hflags,
5571         .pre_leave_smm       = emulator_pre_leave_smm,
5572 };
5573
5574 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5575 {
5576         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5577         /*
5578          * an sti; sti; sequence only disable interrupts for the first
5579          * instruction. So, if the last instruction, be it emulated or
5580          * not, left the system with the INT_STI flag enabled, it
5581          * means that the last instruction is an sti. We should not
5582          * leave the flag on in this case. The same goes for mov ss
5583          */
5584         if (int_shadow & mask)
5585                 mask = 0;
5586         if (unlikely(int_shadow || mask)) {
5587                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5588                 if (!mask)
5589                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5590         }
5591 }
5592
5593 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5594 {
5595         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5596         if (ctxt->exception.vector == PF_VECTOR)
5597                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5598
5599         if (ctxt->exception.error_code_valid)
5600                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5601                                       ctxt->exception.error_code);
5602         else
5603                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5604         return false;
5605 }
5606
5607 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5608 {
5609         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5610         int cs_db, cs_l;
5611
5612         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5613
5614         ctxt->eflags = kvm_get_rflags(vcpu);
5615         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5616
5617         ctxt->eip = kvm_rip_read(vcpu);
5618         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5619                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5620                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5621                      cs_db                              ? X86EMUL_MODE_PROT32 :
5622                                                           X86EMUL_MODE_PROT16;
5623         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5624         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5625         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5626
5627         init_decode_cache(ctxt);
5628         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5629 }
5630
5631 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5632 {
5633         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5634         int ret;
5635
5636         init_emulate_ctxt(vcpu);
5637
5638         ctxt->op_bytes = 2;
5639         ctxt->ad_bytes = 2;
5640         ctxt->_eip = ctxt->eip + inc_eip;
5641         ret = emulate_int_real(ctxt, irq);
5642
5643         if (ret != X86EMUL_CONTINUE)
5644                 return EMULATE_FAIL;
5645
5646         ctxt->eip = ctxt->_eip;
5647         kvm_rip_write(vcpu, ctxt->eip);
5648         kvm_set_rflags(vcpu, ctxt->eflags);
5649
5650         if (irq == NMI_VECTOR)
5651                 vcpu->arch.nmi_pending = 0;
5652         else
5653                 vcpu->arch.interrupt.pending = false;
5654
5655         return EMULATE_DONE;
5656 }
5657 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5658
5659 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5660 {
5661         int r = EMULATE_DONE;
5662
5663         ++vcpu->stat.insn_emulation_fail;
5664         trace_kvm_emulate_insn_failed(vcpu);
5665         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5666                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5667                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5668                 vcpu->run->internal.ndata = 0;
5669                 r = EMULATE_USER_EXIT;
5670         }
5671         kvm_queue_exception(vcpu, UD_VECTOR);
5672
5673         return r;
5674 }
5675
5676 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5677                                   bool write_fault_to_shadow_pgtable,
5678                                   int emulation_type)
5679 {
5680         gpa_t gpa = cr2;
5681         kvm_pfn_t pfn;
5682
5683         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5684                 return false;
5685
5686         if (!vcpu->arch.mmu.direct_map) {
5687                 /*
5688                  * Write permission should be allowed since only
5689                  * write access need to be emulated.
5690                  */
5691                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5692
5693                 /*
5694                  * If the mapping is invalid in guest, let cpu retry
5695                  * it to generate fault.
5696                  */
5697                 if (gpa == UNMAPPED_GVA)
5698                         return true;
5699         }
5700
5701         /*
5702          * Do not retry the unhandleable instruction if it faults on the
5703          * readonly host memory, otherwise it will goto a infinite loop:
5704          * retry instruction -> write #PF -> emulation fail -> retry
5705          * instruction -> ...
5706          */
5707         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5708
5709         /*
5710          * If the instruction failed on the error pfn, it can not be fixed,
5711          * report the error to userspace.
5712          */
5713         if (is_error_noslot_pfn(pfn))
5714                 return false;
5715
5716         kvm_release_pfn_clean(pfn);
5717
5718         /* The instructions are well-emulated on direct mmu. */
5719         if (vcpu->arch.mmu.direct_map) {
5720                 unsigned int indirect_shadow_pages;
5721
5722                 spin_lock(&vcpu->kvm->mmu_lock);
5723                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5724                 spin_unlock(&vcpu->kvm->mmu_lock);
5725
5726                 if (indirect_shadow_pages)
5727                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5728
5729                 return true;
5730         }
5731
5732         /*
5733          * if emulation was due to access to shadowed page table
5734          * and it failed try to unshadow page and re-enter the
5735          * guest to let CPU execute the instruction.
5736          */
5737         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5738
5739         /*
5740          * If the access faults on its page table, it can not
5741          * be fixed by unprotecting shadow page and it should
5742          * be reported to userspace.
5743          */
5744         return !write_fault_to_shadow_pgtable;
5745 }
5746
5747 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5748                               unsigned long cr2,  int emulation_type)
5749 {
5750         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5751         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5752
5753         last_retry_eip = vcpu->arch.last_retry_eip;
5754         last_retry_addr = vcpu->arch.last_retry_addr;
5755
5756         /*
5757          * If the emulation is caused by #PF and it is non-page_table
5758          * writing instruction, it means the VM-EXIT is caused by shadow
5759          * page protected, we can zap the shadow page and retry this
5760          * instruction directly.
5761          *
5762          * Note: if the guest uses a non-page-table modifying instruction
5763          * on the PDE that points to the instruction, then we will unmap
5764          * the instruction and go to an infinite loop. So, we cache the
5765          * last retried eip and the last fault address, if we meet the eip
5766          * and the address again, we can break out of the potential infinite
5767          * loop.
5768          */
5769         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5770
5771         if (!(emulation_type & EMULTYPE_RETRY))
5772                 return false;
5773
5774         if (x86_page_table_writing_insn(ctxt))
5775                 return false;
5776
5777         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5778                 return false;
5779
5780         vcpu->arch.last_retry_eip = ctxt->eip;
5781         vcpu->arch.last_retry_addr = cr2;
5782
5783         if (!vcpu->arch.mmu.direct_map)
5784                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5785
5786         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5787
5788         return true;
5789 }
5790
5791 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5792 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5793
5794 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5795 {
5796         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5797                 /* This is a good place to trace that we are exiting SMM.  */
5798                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5799
5800                 /* Process a latched INIT or SMI, if any.  */
5801                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5802         }
5803
5804         kvm_mmu_reset_context(vcpu);
5805 }
5806
5807 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5808 {
5809         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5810
5811         vcpu->arch.hflags = emul_flags;
5812
5813         if (changed & HF_SMM_MASK)
5814                 kvm_smm_changed(vcpu);
5815 }
5816
5817 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5818                                 unsigned long *db)
5819 {
5820         u32 dr6 = 0;
5821         int i;
5822         u32 enable, rwlen;
5823
5824         enable = dr7;
5825         rwlen = dr7 >> 16;
5826         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5827                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5828                         dr6 |= (1 << i);
5829         return dr6;
5830 }
5831
5832 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5833 {
5834         struct kvm_run *kvm_run = vcpu->run;
5835
5836         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5837                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5838                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5839                 kvm_run->debug.arch.exception = DB_VECTOR;
5840                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5841                 *r = EMULATE_USER_EXIT;
5842         } else {
5843                 /*
5844                  * "Certain debug exceptions may clear bit 0-3.  The
5845                  * remaining contents of the DR6 register are never
5846                  * cleared by the processor".
5847                  */
5848                 vcpu->arch.dr6 &= ~15;
5849                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5850                 kvm_queue_exception(vcpu, DB_VECTOR);
5851         }
5852 }
5853
5854 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5855 {
5856         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5857         int r = EMULATE_DONE;
5858
5859         kvm_x86_ops->skip_emulated_instruction(vcpu);
5860
5861         /*
5862          * rflags is the old, "raw" value of the flags.  The new value has
5863          * not been saved yet.
5864          *
5865          * This is correct even for TF set by the guest, because "the
5866          * processor will not generate this exception after the instruction
5867          * that sets the TF flag".
5868          */
5869         if (unlikely(rflags & X86_EFLAGS_TF))
5870                 kvm_vcpu_do_singlestep(vcpu, &r);
5871         return r == EMULATE_DONE;
5872 }
5873 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5874
5875 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5876 {
5877         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5878             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5879                 struct kvm_run *kvm_run = vcpu->run;
5880                 unsigned long eip = kvm_get_linear_rip(vcpu);
5881                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5882                                            vcpu->arch.guest_debug_dr7,
5883                                            vcpu->arch.eff_db);
5884
5885                 if (dr6 != 0) {
5886                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5887                         kvm_run->debug.arch.pc = eip;
5888                         kvm_run->debug.arch.exception = DB_VECTOR;
5889                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5890                         *r = EMULATE_USER_EXIT;
5891                         return true;
5892                 }
5893         }
5894
5895         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5896             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5897                 unsigned long eip = kvm_get_linear_rip(vcpu);
5898                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5899                                            vcpu->arch.dr7,
5900                                            vcpu->arch.db);
5901
5902                 if (dr6 != 0) {
5903                         vcpu->arch.dr6 &= ~15;
5904                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5905                         kvm_queue_exception(vcpu, DB_VECTOR);
5906                         *r = EMULATE_DONE;
5907                         return true;
5908                 }
5909         }
5910
5911         return false;
5912 }
5913
5914 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5915                             unsigned long cr2,
5916                             int emulation_type,
5917                             void *insn,
5918                             int insn_len)
5919 {
5920         int r;
5921         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5922         bool writeback = true;
5923         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5924
5925         /*
5926          * Clear write_fault_to_shadow_pgtable here to ensure it is
5927          * never reused.
5928          */
5929         vcpu->arch.write_fault_to_shadow_pgtable = false;
5930         kvm_clear_exception_queue(vcpu);
5931
5932         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5933                 init_emulate_ctxt(vcpu);
5934
5935                 /*
5936                  * We will reenter on the same instruction since
5937                  * we do not set complete_userspace_io.  This does not
5938                  * handle watchpoints yet, those would be handled in
5939                  * the emulate_ops.
5940                  */
5941                 if (!(emulation_type & EMULTYPE_SKIP) &&
5942                     kvm_vcpu_check_breakpoint(vcpu, &r))
5943                         return r;
5944
5945                 ctxt->interruptibility = 0;
5946                 ctxt->have_exception = false;
5947                 ctxt->exception.vector = -1;
5948                 ctxt->perm_ok = false;
5949
5950                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5951
5952                 r = x86_decode_insn(ctxt, insn, insn_len);
5953
5954                 trace_kvm_emulate_insn_start(vcpu);
5955                 ++vcpu->stat.insn_emulation;
5956                 if (r != EMULATION_OK)  {
5957                         if (emulation_type & EMULTYPE_TRAP_UD)
5958                                 return EMULATE_FAIL;
5959                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5960                                                 emulation_type))
5961                                 return EMULATE_DONE;
5962                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
5963                                 return EMULATE_DONE;
5964                         if (emulation_type & EMULTYPE_SKIP)
5965                                 return EMULATE_FAIL;
5966                         return handle_emulation_failure(vcpu);
5967                 }
5968         }
5969
5970         if (emulation_type & EMULTYPE_SKIP) {
5971                 kvm_rip_write(vcpu, ctxt->_eip);
5972                 if (ctxt->eflags & X86_EFLAGS_RF)
5973                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5974                 return EMULATE_DONE;
5975         }
5976
5977         if (retry_instruction(ctxt, cr2, emulation_type))
5978                 return EMULATE_DONE;
5979
5980         /* this is needed for vmware backdoor interface to work since it
5981            changes registers values  during IO operation */
5982         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5983                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5984                 emulator_invalidate_register_cache(ctxt);
5985         }
5986
5987 restart:
5988         /* Save the faulting GPA (cr2) in the address field */
5989         ctxt->exception.address = cr2;
5990
5991         r = x86_emulate_insn(ctxt);
5992
5993         if (r == EMULATION_INTERCEPTED)
5994                 return EMULATE_DONE;
5995
5996         if (r == EMULATION_FAILED) {
5997                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5998                                         emulation_type))
5999                         return EMULATE_DONE;
6000
6001                 return handle_emulation_failure(vcpu);
6002         }
6003
6004         if (ctxt->have_exception) {
6005                 r = EMULATE_DONE;
6006                 if (inject_emulated_exception(vcpu))
6007                         return r;
6008         } else if (vcpu->arch.pio.count) {
6009                 if (!vcpu->arch.pio.in) {
6010                         /* FIXME: return into emulator if single-stepping.  */
6011                         vcpu->arch.pio.count = 0;
6012                 } else {
6013                         writeback = false;
6014                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6015                 }
6016                 r = EMULATE_USER_EXIT;
6017         } else if (vcpu->mmio_needed) {
6018                 if (!vcpu->mmio_is_write)
6019                         writeback = false;
6020                 r = EMULATE_USER_EXIT;
6021                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6022         } else if (r == EMULATION_RESTART)
6023                 goto restart;
6024         else
6025                 r = EMULATE_DONE;
6026
6027         if (writeback) {
6028                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6029                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6030                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6031                 kvm_rip_write(vcpu, ctxt->eip);
6032                 if (r == EMULATE_DONE &&
6033                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6034                         kvm_vcpu_do_singlestep(vcpu, &r);
6035                 if (!ctxt->have_exception ||
6036                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6037                         __kvm_set_rflags(vcpu, ctxt->eflags);
6038
6039                 /*
6040                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6041                  * do nothing, and it will be requested again as soon as
6042                  * the shadow expires.  But we still need to check here,
6043                  * because POPF has no interrupt shadow.
6044                  */
6045                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6046                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6047         } else
6048                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6049
6050         return r;
6051 }
6052 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6053
6054 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
6055 {
6056         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6057         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6058                                             size, port, &val, 1);
6059         /* do not return to emulator after return from userspace */
6060         vcpu->arch.pio.count = 0;
6061         return ret;
6062 }
6063 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
6064
6065 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6066 {
6067         unsigned long val;
6068
6069         /* We should only ever be called with arch.pio.count equal to 1 */
6070         BUG_ON(vcpu->arch.pio.count != 1);
6071
6072         /* For size less than 4 we merge, else we zero extend */
6073         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6074                                         : 0;
6075
6076         /*
6077          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6078          * the copy and tracing
6079          */
6080         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6081                                  vcpu->arch.pio.port, &val, 1);
6082         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6083
6084         return 1;
6085 }
6086
6087 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
6088 {
6089         unsigned long val;
6090         int ret;
6091
6092         /* For size less than 4 we merge, else we zero extend */
6093         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6094
6095         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6096                                        &val, 1);
6097         if (ret) {
6098                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6099                 return ret;
6100         }
6101
6102         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6103
6104         return 0;
6105 }
6106 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
6107
6108 static int kvmclock_cpu_down_prep(unsigned int cpu)
6109 {
6110         __this_cpu_write(cpu_tsc_khz, 0);
6111         return 0;
6112 }
6113
6114 static void tsc_khz_changed(void *data)
6115 {
6116         struct cpufreq_freqs *freq = data;
6117         unsigned long khz = 0;
6118
6119         if (data)
6120                 khz = freq->new;
6121         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6122                 khz = cpufreq_quick_get(raw_smp_processor_id());
6123         if (!khz)
6124                 khz = tsc_khz;
6125         __this_cpu_write(cpu_tsc_khz, khz);
6126 }
6127
6128 #ifdef CONFIG_X86_64
6129 static void kvm_hyperv_tsc_notifier(void)
6130 {
6131         struct kvm *kvm;
6132         struct kvm_vcpu *vcpu;
6133         int cpu;
6134
6135         spin_lock(&kvm_lock);
6136         list_for_each_entry(kvm, &vm_list, vm_list)
6137                 kvm_make_mclock_inprogress_request(kvm);
6138
6139         hyperv_stop_tsc_emulation();
6140
6141         /* TSC frequency always matches when on Hyper-V */
6142         for_each_present_cpu(cpu)
6143                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6144         kvm_max_guest_tsc_khz = tsc_khz;
6145
6146         list_for_each_entry(kvm, &vm_list, vm_list) {
6147                 struct kvm_arch *ka = &kvm->arch;
6148
6149                 spin_lock(&ka->pvclock_gtod_sync_lock);
6150
6151                 pvclock_update_vm_gtod_copy(kvm);
6152
6153                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6154                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6155
6156                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6157                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6158
6159                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6160         }
6161         spin_unlock(&kvm_lock);
6162 }
6163 #endif
6164
6165 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6166                                      void *data)
6167 {
6168         struct cpufreq_freqs *freq = data;
6169         struct kvm *kvm;
6170         struct kvm_vcpu *vcpu;
6171         int i, send_ipi = 0;
6172
6173         /*
6174          * We allow guests to temporarily run on slowing clocks,
6175          * provided we notify them after, or to run on accelerating
6176          * clocks, provided we notify them before.  Thus time never
6177          * goes backwards.
6178          *
6179          * However, we have a problem.  We can't atomically update
6180          * the frequency of a given CPU from this function; it is
6181          * merely a notifier, which can be called from any CPU.
6182          * Changing the TSC frequency at arbitrary points in time
6183          * requires a recomputation of local variables related to
6184          * the TSC for each VCPU.  We must flag these local variables
6185          * to be updated and be sure the update takes place with the
6186          * new frequency before any guests proceed.
6187          *
6188          * Unfortunately, the combination of hotplug CPU and frequency
6189          * change creates an intractable locking scenario; the order
6190          * of when these callouts happen is undefined with respect to
6191          * CPU hotplug, and they can race with each other.  As such,
6192          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6193          * undefined; you can actually have a CPU frequency change take
6194          * place in between the computation of X and the setting of the
6195          * variable.  To protect against this problem, all updates of
6196          * the per_cpu tsc_khz variable are done in an interrupt
6197          * protected IPI, and all callers wishing to update the value
6198          * must wait for a synchronous IPI to complete (which is trivial
6199          * if the caller is on the CPU already).  This establishes the
6200          * necessary total order on variable updates.
6201          *
6202          * Note that because a guest time update may take place
6203          * anytime after the setting of the VCPU's request bit, the
6204          * correct TSC value must be set before the request.  However,
6205          * to ensure the update actually makes it to any guest which
6206          * starts running in hardware virtualization between the set
6207          * and the acquisition of the spinlock, we must also ping the
6208          * CPU after setting the request bit.
6209          *
6210          */
6211
6212         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6213                 return 0;
6214         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6215                 return 0;
6216
6217         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6218
6219         spin_lock(&kvm_lock);
6220         list_for_each_entry(kvm, &vm_list, vm_list) {
6221                 kvm_for_each_vcpu(i, vcpu, kvm) {
6222                         if (vcpu->cpu != freq->cpu)
6223                                 continue;
6224                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6225                         if (vcpu->cpu != smp_processor_id())
6226                                 send_ipi = 1;
6227                 }
6228         }
6229         spin_unlock(&kvm_lock);
6230
6231         if (freq->old < freq->new && send_ipi) {
6232                 /*
6233                  * We upscale the frequency.  Must make the guest
6234                  * doesn't see old kvmclock values while running with
6235                  * the new frequency, otherwise we risk the guest sees
6236                  * time go backwards.
6237                  *
6238                  * In case we update the frequency for another cpu
6239                  * (which might be in guest context) send an interrupt
6240                  * to kick the cpu out of guest context.  Next time
6241                  * guest context is entered kvmclock will be updated,
6242                  * so the guest will not see stale values.
6243                  */
6244                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6245         }
6246         return 0;
6247 }
6248
6249 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6250         .notifier_call  = kvmclock_cpufreq_notifier
6251 };
6252
6253 static int kvmclock_cpu_online(unsigned int cpu)
6254 {
6255         tsc_khz_changed(NULL);
6256         return 0;
6257 }
6258
6259 static void kvm_timer_init(void)
6260 {
6261         max_tsc_khz = tsc_khz;
6262
6263         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6264 #ifdef CONFIG_CPU_FREQ
6265                 struct cpufreq_policy policy;
6266                 int cpu;
6267
6268                 memset(&policy, 0, sizeof(policy));
6269                 cpu = get_cpu();
6270                 cpufreq_get_policy(&policy, cpu);
6271                 if (policy.cpuinfo.max_freq)
6272                         max_tsc_khz = policy.cpuinfo.max_freq;
6273                 put_cpu();
6274 #endif
6275                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6276                                           CPUFREQ_TRANSITION_NOTIFIER);
6277         }
6278         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6279
6280         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6281                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6282 }
6283
6284 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6285
6286 int kvm_is_in_guest(void)
6287 {
6288         return __this_cpu_read(current_vcpu) != NULL;
6289 }
6290
6291 static int kvm_is_user_mode(void)
6292 {
6293         int user_mode = 3;
6294
6295         if (__this_cpu_read(current_vcpu))
6296                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6297
6298         return user_mode != 0;
6299 }
6300
6301 static unsigned long kvm_get_guest_ip(void)
6302 {
6303         unsigned long ip = 0;
6304
6305         if (__this_cpu_read(current_vcpu))
6306                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6307
6308         return ip;
6309 }
6310
6311 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6312         .is_in_guest            = kvm_is_in_guest,
6313         .is_user_mode           = kvm_is_user_mode,
6314         .get_guest_ip           = kvm_get_guest_ip,
6315 };
6316
6317 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6318 {
6319         __this_cpu_write(current_vcpu, vcpu);
6320 }
6321 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6322
6323 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6324 {
6325         __this_cpu_write(current_vcpu, NULL);
6326 }
6327 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6328
6329 static void kvm_set_mmio_spte_mask(void)
6330 {
6331         u64 mask;
6332         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6333
6334         /*
6335          * Set the reserved bits and the present bit of an paging-structure
6336          * entry to generate page fault with PFER.RSV = 1.
6337          */
6338          /* Mask the reserved physical address bits. */
6339         mask = rsvd_bits(maxphyaddr, 51);
6340
6341         /* Set the present bit. */
6342         mask |= 1ull;
6343
6344 #ifdef CONFIG_X86_64
6345         /*
6346          * If reserved bit is not supported, clear the present bit to disable
6347          * mmio page fault.
6348          */
6349         if (maxphyaddr == 52)
6350                 mask &= ~1ull;
6351 #endif
6352
6353         kvm_mmu_set_mmio_spte_mask(mask, mask);
6354 }
6355
6356 #ifdef CONFIG_X86_64
6357 static void pvclock_gtod_update_fn(struct work_struct *work)
6358 {
6359         struct kvm *kvm;
6360
6361         struct kvm_vcpu *vcpu;
6362         int i;
6363
6364         spin_lock(&kvm_lock);
6365         list_for_each_entry(kvm, &vm_list, vm_list)
6366                 kvm_for_each_vcpu(i, vcpu, kvm)
6367                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6368         atomic_set(&kvm_guest_has_master_clock, 0);
6369         spin_unlock(&kvm_lock);
6370 }
6371
6372 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6373
6374 /*
6375  * Notification about pvclock gtod data update.
6376  */
6377 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6378                                void *priv)
6379 {
6380         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6381         struct timekeeper *tk = priv;
6382
6383         update_pvclock_gtod(tk);
6384
6385         /* disable master clock if host does not trust, or does not
6386          * use, TSC based clocksource.
6387          */
6388         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6389             atomic_read(&kvm_guest_has_master_clock) != 0)
6390                 queue_work(system_long_wq, &pvclock_gtod_work);
6391
6392         return 0;
6393 }
6394
6395 static struct notifier_block pvclock_gtod_notifier = {
6396         .notifier_call = pvclock_gtod_notify,
6397 };
6398 #endif
6399
6400 int kvm_arch_init(void *opaque)
6401 {
6402         int r;
6403         struct kvm_x86_ops *ops = opaque;
6404
6405         if (kvm_x86_ops) {
6406                 printk(KERN_ERR "kvm: already loaded the other module\n");
6407                 r = -EEXIST;
6408                 goto out;
6409         }
6410
6411         if (!ops->cpu_has_kvm_support()) {
6412                 printk(KERN_ERR "kvm: no hardware support\n");
6413                 r = -EOPNOTSUPP;
6414                 goto out;
6415         }
6416         if (ops->disabled_by_bios()) {
6417                 printk(KERN_ERR "kvm: disabled by bios\n");
6418                 r = -EOPNOTSUPP;
6419                 goto out;
6420         }
6421
6422         r = -ENOMEM;
6423         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6424         if (!shared_msrs) {
6425                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6426                 goto out;
6427         }
6428
6429         r = kvm_mmu_module_init();
6430         if (r)
6431                 goto out_free_percpu;
6432
6433         kvm_set_mmio_spte_mask();
6434
6435         kvm_x86_ops = ops;
6436
6437         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6438                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6439                         PT_PRESENT_MASK, 0, sme_me_mask);
6440         kvm_timer_init();
6441
6442         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6443
6444         if (boot_cpu_has(X86_FEATURE_XSAVE))
6445                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6446
6447         kvm_lapic_init();
6448 #ifdef CONFIG_X86_64
6449         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6450
6451         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6452                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6453 #endif
6454
6455         return 0;
6456
6457 out_free_percpu:
6458         free_percpu(shared_msrs);
6459 out:
6460         return r;
6461 }
6462
6463 void kvm_arch_exit(void)
6464 {
6465 #ifdef CONFIG_X86_64
6466         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6467                 clear_hv_tscchange_cb();
6468 #endif
6469         kvm_lapic_exit();
6470         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6471
6472         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6473                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6474                                             CPUFREQ_TRANSITION_NOTIFIER);
6475         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6476 #ifdef CONFIG_X86_64
6477         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6478 #endif
6479         kvm_x86_ops = NULL;
6480         kvm_mmu_module_exit();
6481         free_percpu(shared_msrs);
6482 }
6483
6484 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6485 {
6486         ++vcpu->stat.halt_exits;
6487         if (lapic_in_kernel(vcpu)) {
6488                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6489                 return 1;
6490         } else {
6491                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6492                 return 0;
6493         }
6494 }
6495 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6496
6497 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6498 {
6499         int ret = kvm_skip_emulated_instruction(vcpu);
6500         /*
6501          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6502          * KVM_EXIT_DEBUG here.
6503          */
6504         return kvm_vcpu_halt(vcpu) && ret;
6505 }
6506 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6507
6508 #ifdef CONFIG_X86_64
6509 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6510                                 unsigned long clock_type)
6511 {
6512         struct kvm_clock_pairing clock_pairing;
6513         struct timespec ts;
6514         u64 cycle;
6515         int ret;
6516
6517         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6518                 return -KVM_EOPNOTSUPP;
6519
6520         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6521                 return -KVM_EOPNOTSUPP;
6522
6523         clock_pairing.sec = ts.tv_sec;
6524         clock_pairing.nsec = ts.tv_nsec;
6525         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6526         clock_pairing.flags = 0;
6527
6528         ret = 0;
6529         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6530                             sizeof(struct kvm_clock_pairing)))
6531                 ret = -KVM_EFAULT;
6532
6533         return ret;
6534 }
6535 #endif
6536
6537 /*
6538  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6539  *
6540  * @apicid - apicid of vcpu to be kicked.
6541  */
6542 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6543 {
6544         struct kvm_lapic_irq lapic_irq;
6545
6546         lapic_irq.shorthand = 0;
6547         lapic_irq.dest_mode = 0;
6548         lapic_irq.level = 0;
6549         lapic_irq.dest_id = apicid;
6550         lapic_irq.msi_redir_hint = false;
6551
6552         lapic_irq.delivery_mode = APIC_DM_REMRD;
6553         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6554 }
6555
6556 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6557 {
6558         vcpu->arch.apicv_active = false;
6559         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6560 }
6561
6562 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6563 {
6564         unsigned long nr, a0, a1, a2, a3, ret;
6565         int op_64_bit, r;
6566
6567         r = kvm_skip_emulated_instruction(vcpu);
6568
6569         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6570                 return kvm_hv_hypercall(vcpu);
6571
6572         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6573         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6574         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6575         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6576         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6577
6578         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6579
6580         op_64_bit = is_64_bit_mode(vcpu);
6581         if (!op_64_bit) {
6582                 nr &= 0xFFFFFFFF;
6583                 a0 &= 0xFFFFFFFF;
6584                 a1 &= 0xFFFFFFFF;
6585                 a2 &= 0xFFFFFFFF;
6586                 a3 &= 0xFFFFFFFF;
6587         }
6588
6589         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6590                 ret = -KVM_EPERM;
6591                 goto out;
6592         }
6593
6594         switch (nr) {
6595         case KVM_HC_VAPIC_POLL_IRQ:
6596                 ret = 0;
6597                 break;
6598         case KVM_HC_KICK_CPU:
6599                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6600                 ret = 0;
6601                 break;
6602 #ifdef CONFIG_X86_64
6603         case KVM_HC_CLOCK_PAIRING:
6604                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6605                 break;
6606 #endif
6607         default:
6608                 ret = -KVM_ENOSYS;
6609                 break;
6610         }
6611 out:
6612         if (!op_64_bit)
6613                 ret = (u32)ret;
6614         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6615         ++vcpu->stat.hypercalls;
6616         return r;
6617 }
6618 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6619
6620 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6621 {
6622         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6623         char instruction[3];
6624         unsigned long rip = kvm_rip_read(vcpu);
6625
6626         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6627
6628         return emulator_write_emulated(ctxt, rip, instruction, 3,
6629                 &ctxt->exception);
6630 }
6631
6632 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6633 {
6634         return vcpu->run->request_interrupt_window &&
6635                 likely(!pic_in_kernel(vcpu->kvm));
6636 }
6637
6638 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6639 {
6640         struct kvm_run *kvm_run = vcpu->run;
6641
6642         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6643         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6644         kvm_run->cr8 = kvm_get_cr8(vcpu);
6645         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6646         kvm_run->ready_for_interrupt_injection =
6647                 pic_in_kernel(vcpu->kvm) ||
6648                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6649 }
6650
6651 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6652 {
6653         int max_irr, tpr;
6654
6655         if (!kvm_x86_ops->update_cr8_intercept)
6656                 return;
6657
6658         if (!lapic_in_kernel(vcpu))
6659                 return;
6660
6661         if (vcpu->arch.apicv_active)
6662                 return;
6663
6664         if (!vcpu->arch.apic->vapic_addr)
6665                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6666         else
6667                 max_irr = -1;
6668
6669         if (max_irr != -1)
6670                 max_irr >>= 4;
6671
6672         tpr = kvm_lapic_get_cr8(vcpu);
6673
6674         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6675 }
6676
6677 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6678 {
6679         int r;
6680
6681         /* try to reinject previous events if any */
6682         if (vcpu->arch.exception.injected) {
6683                 kvm_x86_ops->queue_exception(vcpu);
6684                 return 0;
6685         }
6686
6687         /*
6688          * Exceptions must be injected immediately, or the exception
6689          * frame will have the address of the NMI or interrupt handler.
6690          */
6691         if (!vcpu->arch.exception.pending) {
6692                 if (vcpu->arch.nmi_injected) {
6693                         kvm_x86_ops->set_nmi(vcpu);
6694                         return 0;
6695                 }
6696
6697                 if (vcpu->arch.interrupt.pending) {
6698                         kvm_x86_ops->set_irq(vcpu);
6699                         return 0;
6700                 }
6701         }
6702
6703         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6704                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6705                 if (r != 0)
6706                         return r;
6707         }
6708
6709         /* try to inject new event if pending */
6710         if (vcpu->arch.exception.pending) {
6711                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6712                                         vcpu->arch.exception.has_error_code,
6713                                         vcpu->arch.exception.error_code);
6714
6715                 vcpu->arch.exception.pending = false;
6716                 vcpu->arch.exception.injected = true;
6717
6718                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6719                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6720                                              X86_EFLAGS_RF);
6721
6722                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6723                     (vcpu->arch.dr7 & DR7_GD)) {
6724                         vcpu->arch.dr7 &= ~DR7_GD;
6725                         kvm_update_dr7(vcpu);
6726                 }
6727
6728                 kvm_x86_ops->queue_exception(vcpu);
6729         } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6730                 vcpu->arch.smi_pending = false;
6731                 ++vcpu->arch.smi_count;
6732                 enter_smm(vcpu);
6733         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6734                 --vcpu->arch.nmi_pending;
6735                 vcpu->arch.nmi_injected = true;
6736                 kvm_x86_ops->set_nmi(vcpu);
6737         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6738                 /*
6739                  * Because interrupts can be injected asynchronously, we are
6740                  * calling check_nested_events again here to avoid a race condition.
6741                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6742                  * proposal and current concerns.  Perhaps we should be setting
6743                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6744                  */
6745                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6746                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6747                         if (r != 0)
6748                                 return r;
6749                 }
6750                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6751                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6752                                             false);
6753                         kvm_x86_ops->set_irq(vcpu);
6754                 }
6755         }
6756
6757         return 0;
6758 }
6759
6760 static void process_nmi(struct kvm_vcpu *vcpu)
6761 {
6762         unsigned limit = 2;
6763
6764         /*
6765          * x86 is limited to one NMI running, and one NMI pending after it.
6766          * If an NMI is already in progress, limit further NMIs to just one.
6767          * Otherwise, allow two (and we'll inject the first one immediately).
6768          */
6769         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6770                 limit = 1;
6771
6772         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6773         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6774         kvm_make_request(KVM_REQ_EVENT, vcpu);
6775 }
6776
6777 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6778 {
6779         u32 flags = 0;
6780         flags |= seg->g       << 23;
6781         flags |= seg->db      << 22;
6782         flags |= seg->l       << 21;
6783         flags |= seg->avl     << 20;
6784         flags |= seg->present << 15;
6785         flags |= seg->dpl     << 13;
6786         flags |= seg->s       << 12;
6787         flags |= seg->type    << 8;
6788         return flags;
6789 }
6790
6791 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6792 {
6793         struct kvm_segment seg;
6794         int offset;
6795
6796         kvm_get_segment(vcpu, &seg, n);
6797         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6798
6799         if (n < 3)
6800                 offset = 0x7f84 + n * 12;
6801         else
6802                 offset = 0x7f2c + (n - 3) * 12;
6803
6804         put_smstate(u32, buf, offset + 8, seg.base);
6805         put_smstate(u32, buf, offset + 4, seg.limit);
6806         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6807 }
6808
6809 #ifdef CONFIG_X86_64
6810 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6811 {
6812         struct kvm_segment seg;
6813         int offset;
6814         u16 flags;
6815
6816         kvm_get_segment(vcpu, &seg, n);
6817         offset = 0x7e00 + n * 16;
6818
6819         flags = enter_smm_get_segment_flags(&seg) >> 8;
6820         put_smstate(u16, buf, offset, seg.selector);
6821         put_smstate(u16, buf, offset + 2, flags);
6822         put_smstate(u32, buf, offset + 4, seg.limit);
6823         put_smstate(u64, buf, offset + 8, seg.base);
6824 }
6825 #endif
6826
6827 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6828 {
6829         struct desc_ptr dt;
6830         struct kvm_segment seg;
6831         unsigned long val;
6832         int i;
6833
6834         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6835         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6836         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6837         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6838
6839         for (i = 0; i < 8; i++)
6840                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6841
6842         kvm_get_dr(vcpu, 6, &val);
6843         put_smstate(u32, buf, 0x7fcc, (u32)val);
6844         kvm_get_dr(vcpu, 7, &val);
6845         put_smstate(u32, buf, 0x7fc8, (u32)val);
6846
6847         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6848         put_smstate(u32, buf, 0x7fc4, seg.selector);
6849         put_smstate(u32, buf, 0x7f64, seg.base);
6850         put_smstate(u32, buf, 0x7f60, seg.limit);
6851         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6852
6853         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6854         put_smstate(u32, buf, 0x7fc0, seg.selector);
6855         put_smstate(u32, buf, 0x7f80, seg.base);
6856         put_smstate(u32, buf, 0x7f7c, seg.limit);
6857         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6858
6859         kvm_x86_ops->get_gdt(vcpu, &dt);
6860         put_smstate(u32, buf, 0x7f74, dt.address);
6861         put_smstate(u32, buf, 0x7f70, dt.size);
6862
6863         kvm_x86_ops->get_idt(vcpu, &dt);
6864         put_smstate(u32, buf, 0x7f58, dt.address);
6865         put_smstate(u32, buf, 0x7f54, dt.size);
6866
6867         for (i = 0; i < 6; i++)
6868                 enter_smm_save_seg_32(vcpu, buf, i);
6869
6870         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6871
6872         /* revision id */
6873         put_smstate(u32, buf, 0x7efc, 0x00020000);
6874         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6875 }
6876
6877 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6878 {
6879 #ifdef CONFIG_X86_64
6880         struct desc_ptr dt;
6881         struct kvm_segment seg;
6882         unsigned long val;
6883         int i;
6884
6885         for (i = 0; i < 16; i++)
6886                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6887
6888         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6889         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6890
6891         kvm_get_dr(vcpu, 6, &val);
6892         put_smstate(u64, buf, 0x7f68, val);
6893         kvm_get_dr(vcpu, 7, &val);
6894         put_smstate(u64, buf, 0x7f60, val);
6895
6896         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6897         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6898         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6899
6900         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6901
6902         /* revision id */
6903         put_smstate(u32, buf, 0x7efc, 0x00020064);
6904
6905         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6906
6907         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6908         put_smstate(u16, buf, 0x7e90, seg.selector);
6909         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6910         put_smstate(u32, buf, 0x7e94, seg.limit);
6911         put_smstate(u64, buf, 0x7e98, seg.base);
6912
6913         kvm_x86_ops->get_idt(vcpu, &dt);
6914         put_smstate(u32, buf, 0x7e84, dt.size);
6915         put_smstate(u64, buf, 0x7e88, dt.address);
6916
6917         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6918         put_smstate(u16, buf, 0x7e70, seg.selector);
6919         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6920         put_smstate(u32, buf, 0x7e74, seg.limit);
6921         put_smstate(u64, buf, 0x7e78, seg.base);
6922
6923         kvm_x86_ops->get_gdt(vcpu, &dt);
6924         put_smstate(u32, buf, 0x7e64, dt.size);
6925         put_smstate(u64, buf, 0x7e68, dt.address);
6926
6927         for (i = 0; i < 6; i++)
6928                 enter_smm_save_seg_64(vcpu, buf, i);
6929 #else
6930         WARN_ON_ONCE(1);
6931 #endif
6932 }
6933
6934 static void enter_smm(struct kvm_vcpu *vcpu)
6935 {
6936         struct kvm_segment cs, ds;
6937         struct desc_ptr dt;
6938         char buf[512];
6939         u32 cr0;
6940
6941         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6942         memset(buf, 0, 512);
6943         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6944                 enter_smm_save_state_64(vcpu, buf);
6945         else
6946                 enter_smm_save_state_32(vcpu, buf);
6947
6948         /*
6949          * Give pre_enter_smm() a chance to make ISA-specific changes to the
6950          * vCPU state (e.g. leave guest mode) after we've saved the state into
6951          * the SMM state-save area.
6952          */
6953         kvm_x86_ops->pre_enter_smm(vcpu, buf);
6954
6955         vcpu->arch.hflags |= HF_SMM_MASK;
6956         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6957
6958         if (kvm_x86_ops->get_nmi_mask(vcpu))
6959                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6960         else
6961                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6962
6963         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6964         kvm_rip_write(vcpu, 0x8000);
6965
6966         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6967         kvm_x86_ops->set_cr0(vcpu, cr0);
6968         vcpu->arch.cr0 = cr0;
6969
6970         kvm_x86_ops->set_cr4(vcpu, 0);
6971
6972         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6973         dt.address = dt.size = 0;
6974         kvm_x86_ops->set_idt(vcpu, &dt);
6975
6976         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6977
6978         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6979         cs.base = vcpu->arch.smbase;
6980
6981         ds.selector = 0;
6982         ds.base = 0;
6983
6984         cs.limit    = ds.limit = 0xffffffff;
6985         cs.type     = ds.type = 0x3;
6986         cs.dpl      = ds.dpl = 0;
6987         cs.db       = ds.db = 0;
6988         cs.s        = ds.s = 1;
6989         cs.l        = ds.l = 0;
6990         cs.g        = ds.g = 1;
6991         cs.avl      = ds.avl = 0;
6992         cs.present  = ds.present = 1;
6993         cs.unusable = ds.unusable = 0;
6994         cs.padding  = ds.padding = 0;
6995
6996         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6997         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6998         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6999         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7000         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7001         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7002
7003         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7004                 kvm_x86_ops->set_efer(vcpu, 0);
7005
7006         kvm_update_cpuid(vcpu);
7007         kvm_mmu_reset_context(vcpu);
7008 }
7009
7010 static void process_smi(struct kvm_vcpu *vcpu)
7011 {
7012         vcpu->arch.smi_pending = true;
7013         kvm_make_request(KVM_REQ_EVENT, vcpu);
7014 }
7015
7016 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7017 {
7018         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7019 }
7020
7021 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7022 {
7023         u64 eoi_exit_bitmap[4];
7024
7025         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7026                 return;
7027
7028         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7029
7030         if (irqchip_split(vcpu->kvm))
7031                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7032         else {
7033                 if (vcpu->arch.apicv_active)
7034                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7035                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7036         }
7037         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7038                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7039         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7040 }
7041
7042 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7043                 unsigned long start, unsigned long end)
7044 {
7045         unsigned long apic_address;
7046
7047         /*
7048          * The physical address of apic access page is stored in the VMCS.
7049          * Update it when it becomes invalid.
7050          */
7051         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7052         if (start <= apic_address && apic_address < end)
7053                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7054 }
7055
7056 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7057 {
7058         struct page *page = NULL;
7059
7060         if (!lapic_in_kernel(vcpu))
7061                 return;
7062
7063         if (!kvm_x86_ops->set_apic_access_page_addr)
7064                 return;
7065
7066         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7067         if (is_error_page(page))
7068                 return;
7069         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7070
7071         /*
7072          * Do not pin apic access page in memory, the MMU notifier
7073          * will call us again if it is migrated or swapped out.
7074          */
7075         put_page(page);
7076 }
7077 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7078
7079 /*
7080  * Returns 1 to let vcpu_run() continue the guest execution loop without
7081  * exiting to the userspace.  Otherwise, the value will be returned to the
7082  * userspace.
7083  */
7084 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7085 {
7086         int r;
7087         bool req_int_win =
7088                 dm_request_for_irq_injection(vcpu) &&
7089                 kvm_cpu_accept_dm_intr(vcpu);
7090
7091         bool req_immediate_exit = false;
7092
7093         if (kvm_request_pending(vcpu)) {
7094                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7095                         kvm_mmu_unload(vcpu);
7096                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7097                         __kvm_migrate_timers(vcpu);
7098                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7099                         kvm_gen_update_masterclock(vcpu->kvm);
7100                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7101                         kvm_gen_kvmclock_update(vcpu);
7102                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7103                         r = kvm_guest_time_update(vcpu);
7104                         if (unlikely(r))
7105                                 goto out;
7106                 }
7107                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7108                         kvm_mmu_sync_roots(vcpu);
7109                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7110                         kvm_vcpu_flush_tlb(vcpu, true);
7111                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7112                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7113                         r = 0;
7114                         goto out;
7115                 }
7116                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7117                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7118                         vcpu->mmio_needed = 0;
7119                         r = 0;
7120                         goto out;
7121                 }
7122                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7123                         /* Page is swapped out. Do synthetic halt */
7124                         vcpu->arch.apf.halted = true;
7125                         r = 1;
7126                         goto out;
7127                 }
7128                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7129                         record_steal_time(vcpu);
7130                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7131                         process_smi(vcpu);
7132                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7133                         process_nmi(vcpu);
7134                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7135                         kvm_pmu_handle_event(vcpu);
7136                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7137                         kvm_pmu_deliver_pmi(vcpu);
7138                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7139                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7140                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7141                                      vcpu->arch.ioapic_handled_vectors)) {
7142                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7143                                 vcpu->run->eoi.vector =
7144                                                 vcpu->arch.pending_ioapic_eoi;
7145                                 r = 0;
7146                                 goto out;
7147                         }
7148                 }
7149                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7150                         vcpu_scan_ioapic(vcpu);
7151                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7152                         kvm_vcpu_reload_apic_access_page(vcpu);
7153                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7154                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7155                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7156                         r = 0;
7157                         goto out;
7158                 }
7159                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7160                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7161                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7162                         r = 0;
7163                         goto out;
7164                 }
7165                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7166                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7167                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7168                         r = 0;
7169                         goto out;
7170                 }
7171
7172                 /*
7173                  * KVM_REQ_HV_STIMER has to be processed after
7174                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7175                  * depend on the guest clock being up-to-date
7176                  */
7177                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7178                         kvm_hv_process_stimers(vcpu);
7179         }
7180
7181         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7182                 ++vcpu->stat.req_event;
7183                 kvm_apic_accept_events(vcpu);
7184                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7185                         r = 1;
7186                         goto out;
7187                 }
7188
7189                 if (inject_pending_event(vcpu, req_int_win) != 0)
7190                         req_immediate_exit = true;
7191                 else {
7192                         /* Enable SMI/NMI/IRQ window open exits if needed.
7193                          *
7194                          * SMIs have three cases:
7195                          * 1) They can be nested, and then there is nothing to
7196                          *    do here because RSM will cause a vmexit anyway.
7197                          * 2) There is an ISA-specific reason why SMI cannot be
7198                          *    injected, and the moment when this changes can be
7199                          *    intercepted.
7200                          * 3) Or the SMI can be pending because
7201                          *    inject_pending_event has completed the injection
7202                          *    of an IRQ or NMI from the previous vmexit, and
7203                          *    then we request an immediate exit to inject the
7204                          *    SMI.
7205                          */
7206                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7207                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7208                                         req_immediate_exit = true;
7209                         if (vcpu->arch.nmi_pending)
7210                                 kvm_x86_ops->enable_nmi_window(vcpu);
7211                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7212                                 kvm_x86_ops->enable_irq_window(vcpu);
7213                         WARN_ON(vcpu->arch.exception.pending);
7214                 }
7215
7216                 if (kvm_lapic_enabled(vcpu)) {
7217                         update_cr8_intercept(vcpu);
7218                         kvm_lapic_sync_to_vapic(vcpu);
7219                 }
7220         }
7221
7222         r = kvm_mmu_reload(vcpu);
7223         if (unlikely(r)) {
7224                 goto cancel_injection;
7225         }
7226
7227         preempt_disable();
7228
7229         kvm_x86_ops->prepare_guest_switch(vcpu);
7230
7231         /*
7232          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7233          * IPI are then delayed after guest entry, which ensures that they
7234          * result in virtual interrupt delivery.
7235          */
7236         local_irq_disable();
7237         vcpu->mode = IN_GUEST_MODE;
7238
7239         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7240
7241         /*
7242          * 1) We should set ->mode before checking ->requests.  Please see
7243          * the comment in kvm_vcpu_exiting_guest_mode().
7244          *
7245          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7246          * pairs with the memory barrier implicit in pi_test_and_set_on
7247          * (see vmx_deliver_posted_interrupt).
7248          *
7249          * 3) This also orders the write to mode from any reads to the page
7250          * tables done while the VCPU is running.  Please see the comment
7251          * in kvm_flush_remote_tlbs.
7252          */
7253         smp_mb__after_srcu_read_unlock();
7254
7255         /*
7256          * This handles the case where a posted interrupt was
7257          * notified with kvm_vcpu_kick.
7258          */
7259         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7260                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7261
7262         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7263             || need_resched() || signal_pending(current)) {
7264                 vcpu->mode = OUTSIDE_GUEST_MODE;
7265                 smp_wmb();
7266                 local_irq_enable();
7267                 preempt_enable();
7268                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7269                 r = 1;
7270                 goto cancel_injection;
7271         }
7272
7273         kvm_load_guest_xcr0(vcpu);
7274
7275         if (req_immediate_exit) {
7276                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7277                 smp_send_reschedule(vcpu->cpu);
7278         }
7279
7280         trace_kvm_entry(vcpu->vcpu_id);
7281         if (lapic_timer_advance_ns)
7282                 wait_lapic_expire(vcpu);
7283         guest_enter_irqoff();
7284
7285         if (unlikely(vcpu->arch.switch_db_regs)) {
7286                 set_debugreg(0, 7);
7287                 set_debugreg(vcpu->arch.eff_db[0], 0);
7288                 set_debugreg(vcpu->arch.eff_db[1], 1);
7289                 set_debugreg(vcpu->arch.eff_db[2], 2);
7290                 set_debugreg(vcpu->arch.eff_db[3], 3);
7291                 set_debugreg(vcpu->arch.dr6, 6);
7292                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7293         }
7294
7295         kvm_x86_ops->run(vcpu);
7296
7297         /*
7298          * Do this here before restoring debug registers on the host.  And
7299          * since we do this before handling the vmexit, a DR access vmexit
7300          * can (a) read the correct value of the debug registers, (b) set
7301          * KVM_DEBUGREG_WONT_EXIT again.
7302          */
7303         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7304                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7305                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7306                 kvm_update_dr0123(vcpu);
7307                 kvm_update_dr6(vcpu);
7308                 kvm_update_dr7(vcpu);
7309                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7310         }
7311
7312         /*
7313          * If the guest has used debug registers, at least dr7
7314          * will be disabled while returning to the host.
7315          * If we don't have active breakpoints in the host, we don't
7316          * care about the messed up debug address registers. But if
7317          * we have some of them active, restore the old state.
7318          */
7319         if (hw_breakpoint_active())
7320                 hw_breakpoint_restore();
7321
7322         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7323
7324         vcpu->mode = OUTSIDE_GUEST_MODE;
7325         smp_wmb();
7326
7327         kvm_put_guest_xcr0(vcpu);
7328
7329         kvm_x86_ops->handle_external_intr(vcpu);
7330
7331         ++vcpu->stat.exits;
7332
7333         guest_exit_irqoff();
7334
7335         local_irq_enable();
7336         preempt_enable();
7337
7338         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7339
7340         /*
7341          * Profile KVM exit RIPs:
7342          */
7343         if (unlikely(prof_on == KVM_PROFILING)) {
7344                 unsigned long rip = kvm_rip_read(vcpu);
7345                 profile_hit(KVM_PROFILING, (void *)rip);
7346         }
7347
7348         if (unlikely(vcpu->arch.tsc_always_catchup))
7349                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7350
7351         if (vcpu->arch.apic_attention)
7352                 kvm_lapic_sync_from_vapic(vcpu);
7353
7354         vcpu->arch.gpa_available = false;
7355         r = kvm_x86_ops->handle_exit(vcpu);
7356         return r;
7357
7358 cancel_injection:
7359         kvm_x86_ops->cancel_injection(vcpu);
7360         if (unlikely(vcpu->arch.apic_attention))
7361                 kvm_lapic_sync_from_vapic(vcpu);
7362 out:
7363         return r;
7364 }
7365
7366 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7367 {
7368         if (!kvm_arch_vcpu_runnable(vcpu) &&
7369             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7370                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7371                 kvm_vcpu_block(vcpu);
7372                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7373
7374                 if (kvm_x86_ops->post_block)
7375                         kvm_x86_ops->post_block(vcpu);
7376
7377                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7378                         return 1;
7379         }
7380
7381         kvm_apic_accept_events(vcpu);
7382         switch(vcpu->arch.mp_state) {
7383         case KVM_MP_STATE_HALTED:
7384                 vcpu->arch.pv.pv_unhalted = false;
7385                 vcpu->arch.mp_state =
7386                         KVM_MP_STATE_RUNNABLE;
7387         case KVM_MP_STATE_RUNNABLE:
7388                 vcpu->arch.apf.halted = false;
7389                 break;
7390         case KVM_MP_STATE_INIT_RECEIVED:
7391                 break;
7392         default:
7393                 return -EINTR;
7394                 break;
7395         }
7396         return 1;
7397 }
7398
7399 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7400 {
7401         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7402                 kvm_x86_ops->check_nested_events(vcpu, false);
7403
7404         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7405                 !vcpu->arch.apf.halted);
7406 }
7407
7408 static int vcpu_run(struct kvm_vcpu *vcpu)
7409 {
7410         int r;
7411         struct kvm *kvm = vcpu->kvm;
7412
7413         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7414
7415         for (;;) {
7416                 if (kvm_vcpu_running(vcpu)) {
7417                         r = vcpu_enter_guest(vcpu);
7418                 } else {
7419                         r = vcpu_block(kvm, vcpu);
7420                 }
7421
7422                 if (r <= 0)
7423                         break;
7424
7425                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7426                 if (kvm_cpu_has_pending_timer(vcpu))
7427                         kvm_inject_pending_timer_irqs(vcpu);
7428
7429                 if (dm_request_for_irq_injection(vcpu) &&
7430                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7431                         r = 0;
7432                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7433                         ++vcpu->stat.request_irq_exits;
7434                         break;
7435                 }
7436
7437                 kvm_check_async_pf_completion(vcpu);
7438
7439                 if (signal_pending(current)) {
7440                         r = -EINTR;
7441                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7442                         ++vcpu->stat.signal_exits;
7443                         break;
7444                 }
7445                 if (need_resched()) {
7446                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7447                         cond_resched();
7448                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7449                 }
7450         }
7451
7452         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7453
7454         return r;
7455 }
7456
7457 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7458 {
7459         int r;
7460         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7461         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7462         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7463         if (r != EMULATE_DONE)
7464                 return 0;
7465         return 1;
7466 }
7467
7468 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7469 {
7470         BUG_ON(!vcpu->arch.pio.count);
7471
7472         return complete_emulated_io(vcpu);
7473 }
7474
7475 /*
7476  * Implements the following, as a state machine:
7477  *
7478  * read:
7479  *   for each fragment
7480  *     for each mmio piece in the fragment
7481  *       write gpa, len
7482  *       exit
7483  *       copy data
7484  *   execute insn
7485  *
7486  * write:
7487  *   for each fragment
7488  *     for each mmio piece in the fragment
7489  *       write gpa, len
7490  *       copy data
7491  *       exit
7492  */
7493 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7494 {
7495         struct kvm_run *run = vcpu->run;
7496         struct kvm_mmio_fragment *frag;
7497         unsigned len;
7498
7499         BUG_ON(!vcpu->mmio_needed);
7500
7501         /* Complete previous fragment */
7502         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7503         len = min(8u, frag->len);
7504         if (!vcpu->mmio_is_write)
7505                 memcpy(frag->data, run->mmio.data, len);
7506
7507         if (frag->len <= 8) {
7508                 /* Switch to the next fragment. */
7509                 frag++;
7510                 vcpu->mmio_cur_fragment++;
7511         } else {
7512                 /* Go forward to the next mmio piece. */
7513                 frag->data += len;
7514                 frag->gpa += len;
7515                 frag->len -= len;
7516         }
7517
7518         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7519                 vcpu->mmio_needed = 0;
7520
7521                 /* FIXME: return into emulator if single-stepping.  */
7522                 if (vcpu->mmio_is_write)
7523                         return 1;
7524                 vcpu->mmio_read_completed = 1;
7525                 return complete_emulated_io(vcpu);
7526         }
7527
7528         run->exit_reason = KVM_EXIT_MMIO;
7529         run->mmio.phys_addr = frag->gpa;
7530         if (vcpu->mmio_is_write)
7531                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7532         run->mmio.len = min(8u, frag->len);
7533         run->mmio.is_write = vcpu->mmio_is_write;
7534         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7535         return 0;
7536 }
7537
7538 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7539 {
7540         int r;
7541
7542         vcpu_load(vcpu);
7543         kvm_sigset_activate(vcpu);
7544         kvm_load_guest_fpu(vcpu);
7545
7546         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7547                 if (kvm_run->immediate_exit) {
7548                         r = -EINTR;
7549                         goto out;
7550                 }
7551                 kvm_vcpu_block(vcpu);
7552                 kvm_apic_accept_events(vcpu);
7553                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7554                 r = -EAGAIN;
7555                 if (signal_pending(current)) {
7556                         r = -EINTR;
7557                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7558                         ++vcpu->stat.signal_exits;
7559                 }
7560                 goto out;
7561         }
7562
7563         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7564                 r = -EINVAL;
7565                 goto out;
7566         }
7567
7568         if (vcpu->run->kvm_dirty_regs) {
7569                 r = sync_regs(vcpu);
7570                 if (r != 0)
7571                         goto out;
7572         }
7573
7574         /* re-sync apic's tpr */
7575         if (!lapic_in_kernel(vcpu)) {
7576                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7577                         r = -EINVAL;
7578                         goto out;
7579                 }
7580         }
7581
7582         if (unlikely(vcpu->arch.complete_userspace_io)) {
7583                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7584                 vcpu->arch.complete_userspace_io = NULL;
7585                 r = cui(vcpu);
7586                 if (r <= 0)
7587                         goto out;
7588         } else
7589                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7590
7591         if (kvm_run->immediate_exit)
7592                 r = -EINTR;
7593         else
7594                 r = vcpu_run(vcpu);
7595
7596 out:
7597         kvm_put_guest_fpu(vcpu);
7598         if (vcpu->run->kvm_valid_regs)
7599                 store_regs(vcpu);
7600         post_kvm_run_save(vcpu);
7601         kvm_sigset_deactivate(vcpu);
7602
7603         vcpu_put(vcpu);
7604         return r;
7605 }
7606
7607 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7608 {
7609         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7610                 /*
7611                  * We are here if userspace calls get_regs() in the middle of
7612                  * instruction emulation. Registers state needs to be copied
7613                  * back from emulation context to vcpu. Userspace shouldn't do
7614                  * that usually, but some bad designed PV devices (vmware
7615                  * backdoor interface) need this to work
7616                  */
7617                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7618                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7619         }
7620         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7621         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7622         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7623         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7624         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7625         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7626         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7627         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7628 #ifdef CONFIG_X86_64
7629         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7630         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7631         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7632         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7633         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7634         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7635         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7636         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7637 #endif
7638
7639         regs->rip = kvm_rip_read(vcpu);
7640         regs->rflags = kvm_get_rflags(vcpu);
7641 }
7642
7643 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7644 {
7645         vcpu_load(vcpu);
7646         __get_regs(vcpu, regs);
7647         vcpu_put(vcpu);
7648         return 0;
7649 }
7650
7651 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7652 {
7653         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7654         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7655
7656         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7657         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7658         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7659         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7660         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7661         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7662         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7663         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7664 #ifdef CONFIG_X86_64
7665         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7666         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7667         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7668         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7669         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7670         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7671         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7672         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7673 #endif
7674
7675         kvm_rip_write(vcpu, regs->rip);
7676         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7677
7678         vcpu->arch.exception.pending = false;
7679
7680         kvm_make_request(KVM_REQ_EVENT, vcpu);
7681 }
7682
7683 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7684 {
7685         vcpu_load(vcpu);
7686         __set_regs(vcpu, regs);
7687         vcpu_put(vcpu);
7688         return 0;
7689 }
7690
7691 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7692 {
7693         struct kvm_segment cs;
7694
7695         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7696         *db = cs.db;
7697         *l = cs.l;
7698 }
7699 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7700
7701 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7702 {
7703         struct desc_ptr dt;
7704
7705         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7706         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7707         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7708         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7709         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7710         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7711
7712         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7713         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7714
7715         kvm_x86_ops->get_idt(vcpu, &dt);
7716         sregs->idt.limit = dt.size;
7717         sregs->idt.base = dt.address;
7718         kvm_x86_ops->get_gdt(vcpu, &dt);
7719         sregs->gdt.limit = dt.size;
7720         sregs->gdt.base = dt.address;
7721
7722         sregs->cr0 = kvm_read_cr0(vcpu);
7723         sregs->cr2 = vcpu->arch.cr2;
7724         sregs->cr3 = kvm_read_cr3(vcpu);
7725         sregs->cr4 = kvm_read_cr4(vcpu);
7726         sregs->cr8 = kvm_get_cr8(vcpu);
7727         sregs->efer = vcpu->arch.efer;
7728         sregs->apic_base = kvm_get_apic_base(vcpu);
7729
7730         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7731
7732         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7733                 set_bit(vcpu->arch.interrupt.nr,
7734                         (unsigned long *)sregs->interrupt_bitmap);
7735 }
7736
7737 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7738                                   struct kvm_sregs *sregs)
7739 {
7740         vcpu_load(vcpu);
7741         __get_sregs(vcpu, sregs);
7742         vcpu_put(vcpu);
7743         return 0;
7744 }
7745
7746 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7747                                     struct kvm_mp_state *mp_state)
7748 {
7749         vcpu_load(vcpu);
7750
7751         kvm_apic_accept_events(vcpu);
7752         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7753                                         vcpu->arch.pv.pv_unhalted)
7754                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7755         else
7756                 mp_state->mp_state = vcpu->arch.mp_state;
7757
7758         vcpu_put(vcpu);
7759         return 0;
7760 }
7761
7762 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7763                                     struct kvm_mp_state *mp_state)
7764 {
7765         int ret = -EINVAL;
7766
7767         vcpu_load(vcpu);
7768
7769         if (!lapic_in_kernel(vcpu) &&
7770             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7771                 goto out;
7772
7773         /* INITs are latched while in SMM */
7774         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7775             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7776              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7777                 goto out;
7778
7779         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7780                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7781                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7782         } else
7783                 vcpu->arch.mp_state = mp_state->mp_state;
7784         kvm_make_request(KVM_REQ_EVENT, vcpu);
7785
7786         ret = 0;
7787 out:
7788         vcpu_put(vcpu);
7789         return ret;
7790 }
7791
7792 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7793                     int reason, bool has_error_code, u32 error_code)
7794 {
7795         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7796         int ret;
7797
7798         init_emulate_ctxt(vcpu);
7799
7800         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7801                                    has_error_code, error_code);
7802
7803         if (ret)
7804                 return EMULATE_FAIL;
7805
7806         kvm_rip_write(vcpu, ctxt->eip);
7807         kvm_set_rflags(vcpu, ctxt->eflags);
7808         kvm_make_request(KVM_REQ_EVENT, vcpu);
7809         return EMULATE_DONE;
7810 }
7811 EXPORT_SYMBOL_GPL(kvm_task_switch);
7812
7813 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7814 {
7815         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7816                 /*
7817                  * When EFER.LME and CR0.PG are set, the processor is in
7818                  * 64-bit mode (though maybe in a 32-bit code segment).
7819                  * CR4.PAE and EFER.LMA must be set.
7820                  */
7821                 if (!(sregs->cr4 & X86_CR4_PAE)
7822                     || !(sregs->efer & EFER_LMA))
7823                         return -EINVAL;
7824         } else {
7825                 /*
7826                  * Not in 64-bit mode: EFER.LMA is clear and the code
7827                  * segment cannot be 64-bit.
7828                  */
7829                 if (sregs->efer & EFER_LMA || sregs->cs.l)
7830                         return -EINVAL;
7831         }
7832
7833         return 0;
7834 }
7835
7836 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7837 {
7838         struct msr_data apic_base_msr;
7839         int mmu_reset_needed = 0;
7840         int pending_vec, max_bits, idx;
7841         struct desc_ptr dt;
7842         int ret = -EINVAL;
7843
7844         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7845                         (sregs->cr4 & X86_CR4_OSXSAVE))
7846                 goto out;
7847
7848         if (kvm_valid_sregs(vcpu, sregs))
7849                 goto out;
7850
7851         apic_base_msr.data = sregs->apic_base;
7852         apic_base_msr.host_initiated = true;
7853         if (kvm_set_apic_base(vcpu, &apic_base_msr))
7854                 goto out;
7855
7856         dt.size = sregs->idt.limit;
7857         dt.address = sregs->idt.base;
7858         kvm_x86_ops->set_idt(vcpu, &dt);
7859         dt.size = sregs->gdt.limit;
7860         dt.address = sregs->gdt.base;
7861         kvm_x86_ops->set_gdt(vcpu, &dt);
7862
7863         vcpu->arch.cr2 = sregs->cr2;
7864         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7865         vcpu->arch.cr3 = sregs->cr3;
7866         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7867
7868         kvm_set_cr8(vcpu, sregs->cr8);
7869
7870         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7871         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7872
7873         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7874         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7875         vcpu->arch.cr0 = sregs->cr0;
7876
7877         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7878         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7879         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7880                 kvm_update_cpuid(vcpu);
7881
7882         idx = srcu_read_lock(&vcpu->kvm->srcu);
7883         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7884                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7885                 mmu_reset_needed = 1;
7886         }
7887         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7888
7889         if (mmu_reset_needed)
7890                 kvm_mmu_reset_context(vcpu);
7891
7892         max_bits = KVM_NR_INTERRUPTS;
7893         pending_vec = find_first_bit(
7894                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7895         if (pending_vec < max_bits) {
7896                 kvm_queue_interrupt(vcpu, pending_vec, false);
7897                 pr_debug("Set back pending irq %d\n", pending_vec);
7898         }
7899
7900         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7901         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7902         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7903         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7904         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7905         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7906
7907         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7908         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7909
7910         update_cr8_intercept(vcpu);
7911
7912         /* Older userspace won't unhalt the vcpu on reset. */
7913         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7914             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7915             !is_protmode(vcpu))
7916                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7917
7918         kvm_make_request(KVM_REQ_EVENT, vcpu);
7919
7920         ret = 0;
7921 out:
7922         return ret;
7923 }
7924
7925 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7926                                   struct kvm_sregs *sregs)
7927 {
7928         int ret;
7929
7930         vcpu_load(vcpu);
7931         ret = __set_sregs(vcpu, sregs);
7932         vcpu_put(vcpu);
7933         return ret;
7934 }
7935
7936 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7937                                         struct kvm_guest_debug *dbg)
7938 {
7939         unsigned long rflags;
7940         int i, r;
7941
7942         vcpu_load(vcpu);
7943
7944         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7945                 r = -EBUSY;
7946                 if (vcpu->arch.exception.pending)
7947                         goto out;
7948                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7949                         kvm_queue_exception(vcpu, DB_VECTOR);
7950                 else
7951                         kvm_queue_exception(vcpu, BP_VECTOR);
7952         }
7953
7954         /*
7955          * Read rflags as long as potentially injected trace flags are still
7956          * filtered out.
7957          */
7958         rflags = kvm_get_rflags(vcpu);
7959
7960         vcpu->guest_debug = dbg->control;
7961         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7962                 vcpu->guest_debug = 0;
7963
7964         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7965                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7966                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7967                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7968         } else {
7969                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7970                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7971         }
7972         kvm_update_dr7(vcpu);
7973
7974         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7975                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7976                         get_segment_base(vcpu, VCPU_SREG_CS);
7977
7978         /*
7979          * Trigger an rflags update that will inject or remove the trace
7980          * flags.
7981          */
7982         kvm_set_rflags(vcpu, rflags);
7983
7984         kvm_x86_ops->update_bp_intercept(vcpu);
7985
7986         r = 0;
7987
7988 out:
7989         vcpu_put(vcpu);
7990         return r;
7991 }
7992
7993 /*
7994  * Translate a guest virtual address to a guest physical address.
7995  */
7996 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7997                                     struct kvm_translation *tr)
7998 {
7999         unsigned long vaddr = tr->linear_address;
8000         gpa_t gpa;
8001         int idx;
8002
8003         vcpu_load(vcpu);
8004
8005         idx = srcu_read_lock(&vcpu->kvm->srcu);
8006         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8007         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8008         tr->physical_address = gpa;
8009         tr->valid = gpa != UNMAPPED_GVA;
8010         tr->writeable = 1;
8011         tr->usermode = 0;
8012
8013         vcpu_put(vcpu);
8014         return 0;
8015 }
8016
8017 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8018 {
8019         struct fxregs_state *fxsave;
8020
8021         vcpu_load(vcpu);
8022
8023         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8024         memcpy(fpu->fpr, fxsave->st_space, 128);
8025         fpu->fcw = fxsave->cwd;
8026         fpu->fsw = fxsave->swd;
8027         fpu->ftwx = fxsave->twd;
8028         fpu->last_opcode = fxsave->fop;
8029         fpu->last_ip = fxsave->rip;
8030         fpu->last_dp = fxsave->rdp;
8031         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8032
8033         vcpu_put(vcpu);
8034         return 0;
8035 }
8036
8037 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8038 {
8039         struct fxregs_state *fxsave;
8040
8041         vcpu_load(vcpu);
8042
8043         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8044
8045         memcpy(fxsave->st_space, fpu->fpr, 128);
8046         fxsave->cwd = fpu->fcw;
8047         fxsave->swd = fpu->fsw;
8048         fxsave->twd = fpu->ftwx;
8049         fxsave->fop = fpu->last_opcode;
8050         fxsave->rip = fpu->last_ip;
8051         fxsave->rdp = fpu->last_dp;
8052         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8053
8054         vcpu_put(vcpu);
8055         return 0;
8056 }
8057
8058 static void store_regs(struct kvm_vcpu *vcpu)
8059 {
8060         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8061
8062         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8063                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8064
8065         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8066                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8067
8068         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8069                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8070                                 vcpu, &vcpu->run->s.regs.events);
8071 }
8072
8073 static int sync_regs(struct kvm_vcpu *vcpu)
8074 {
8075         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8076                 return -EINVAL;
8077
8078         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8079                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8080                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8081         }
8082         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8083                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8084                         return -EINVAL;
8085                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8086         }
8087         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8088                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8089                                 vcpu, &vcpu->run->s.regs.events))
8090                         return -EINVAL;
8091                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8092         }
8093
8094         return 0;
8095 }
8096
8097 static void fx_init(struct kvm_vcpu *vcpu)
8098 {
8099         fpstate_init(&vcpu->arch.guest_fpu.state);
8100         if (boot_cpu_has(X86_FEATURE_XSAVES))
8101                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8102                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8103
8104         /*
8105          * Ensure guest xcr0 is valid for loading
8106          */
8107         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8108
8109         vcpu->arch.cr0 |= X86_CR0_ET;
8110 }
8111
8112 /* Swap (qemu) user FPU context for the guest FPU context. */
8113 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8114 {
8115         preempt_disable();
8116         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8117         /* PKRU is separately restored in kvm_x86_ops->run.  */
8118         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8119                                 ~XFEATURE_MASK_PKRU);
8120         preempt_enable();
8121         trace_kvm_fpu(1);
8122 }
8123
8124 /* When vcpu_run ends, restore user space FPU context. */
8125 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8126 {
8127         preempt_disable();
8128         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8129         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8130         preempt_enable();
8131         ++vcpu->stat.fpu_reload;
8132         trace_kvm_fpu(0);
8133 }
8134
8135 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8136 {
8137         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8138
8139         kvmclock_reset(vcpu);
8140
8141         kvm_x86_ops->vcpu_free(vcpu);
8142         free_cpumask_var(wbinvd_dirty_mask);
8143 }
8144
8145 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8146                                                 unsigned int id)
8147 {
8148         struct kvm_vcpu *vcpu;
8149
8150         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8151                 printk_once(KERN_WARNING
8152                 "kvm: SMP vm created on host with unstable TSC; "
8153                 "guest TSC will not be reliable\n");
8154
8155         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8156
8157         return vcpu;
8158 }
8159
8160 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8161 {
8162         kvm_vcpu_mtrr_init(vcpu);
8163         vcpu_load(vcpu);
8164         kvm_vcpu_reset(vcpu, false);
8165         kvm_mmu_setup(vcpu);
8166         vcpu_put(vcpu);
8167         return 0;
8168 }
8169
8170 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8171 {
8172         struct msr_data msr;
8173         struct kvm *kvm = vcpu->kvm;
8174
8175         kvm_hv_vcpu_postcreate(vcpu);
8176
8177         if (mutex_lock_killable(&vcpu->mutex))
8178                 return;
8179         vcpu_load(vcpu);
8180         msr.data = 0x0;
8181         msr.index = MSR_IA32_TSC;
8182         msr.host_initiated = true;
8183         kvm_write_tsc(vcpu, &msr);
8184         vcpu_put(vcpu);
8185         mutex_unlock(&vcpu->mutex);
8186
8187         if (!kvmclock_periodic_sync)
8188                 return;
8189
8190         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8191                                         KVMCLOCK_SYNC_PERIOD);
8192 }
8193
8194 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8195 {
8196         vcpu->arch.apf.msr_val = 0;
8197
8198         vcpu_load(vcpu);
8199         kvm_mmu_unload(vcpu);
8200         vcpu_put(vcpu);
8201
8202         kvm_x86_ops->vcpu_free(vcpu);
8203 }
8204
8205 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8206 {
8207         kvm_lapic_reset(vcpu, init_event);
8208
8209         vcpu->arch.hflags = 0;
8210
8211         vcpu->arch.smi_pending = 0;
8212         vcpu->arch.smi_count = 0;
8213         atomic_set(&vcpu->arch.nmi_queued, 0);
8214         vcpu->arch.nmi_pending = 0;
8215         vcpu->arch.nmi_injected = false;
8216         kvm_clear_interrupt_queue(vcpu);
8217         kvm_clear_exception_queue(vcpu);
8218         vcpu->arch.exception.pending = false;
8219
8220         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8221         kvm_update_dr0123(vcpu);
8222         vcpu->arch.dr6 = DR6_INIT;
8223         kvm_update_dr6(vcpu);
8224         vcpu->arch.dr7 = DR7_FIXED_1;
8225         kvm_update_dr7(vcpu);
8226
8227         vcpu->arch.cr2 = 0;
8228
8229         kvm_make_request(KVM_REQ_EVENT, vcpu);
8230         vcpu->arch.apf.msr_val = 0;
8231         vcpu->arch.st.msr_val = 0;
8232
8233         kvmclock_reset(vcpu);
8234
8235         kvm_clear_async_pf_completion_queue(vcpu);
8236         kvm_async_pf_hash_reset(vcpu);
8237         vcpu->arch.apf.halted = false;
8238
8239         if (kvm_mpx_supported()) {
8240                 void *mpx_state_buffer;
8241
8242                 /*
8243                  * To avoid have the INIT path from kvm_apic_has_events() that be
8244                  * called with loaded FPU and does not let userspace fix the state.
8245                  */
8246                 if (init_event)
8247                         kvm_put_guest_fpu(vcpu);
8248                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8249                                         XFEATURE_MASK_BNDREGS);
8250                 if (mpx_state_buffer)
8251                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8252                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8253                                         XFEATURE_MASK_BNDCSR);
8254                 if (mpx_state_buffer)
8255                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8256                 if (init_event)
8257                         kvm_load_guest_fpu(vcpu);
8258         }
8259
8260         if (!init_event) {
8261                 kvm_pmu_reset(vcpu);
8262                 vcpu->arch.smbase = 0x30000;
8263
8264                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8265                 vcpu->arch.msr_misc_features_enables = 0;
8266
8267                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8268         }
8269
8270         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8271         vcpu->arch.regs_avail = ~0;
8272         vcpu->arch.regs_dirty = ~0;
8273
8274         vcpu->arch.ia32_xss = 0;
8275
8276         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8277 }
8278
8279 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8280 {
8281         struct kvm_segment cs;
8282
8283         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8284         cs.selector = vector << 8;
8285         cs.base = vector << 12;
8286         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8287         kvm_rip_write(vcpu, 0);
8288 }
8289
8290 int kvm_arch_hardware_enable(void)
8291 {
8292         struct kvm *kvm;
8293         struct kvm_vcpu *vcpu;
8294         int i;
8295         int ret;
8296         u64 local_tsc;
8297         u64 max_tsc = 0;
8298         bool stable, backwards_tsc = false;
8299
8300         kvm_shared_msr_cpu_online();
8301         ret = kvm_x86_ops->hardware_enable();
8302         if (ret != 0)
8303                 return ret;
8304
8305         local_tsc = rdtsc();
8306         stable = !kvm_check_tsc_unstable();
8307         list_for_each_entry(kvm, &vm_list, vm_list) {
8308                 kvm_for_each_vcpu(i, vcpu, kvm) {
8309                         if (!stable && vcpu->cpu == smp_processor_id())
8310                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8311                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8312                                 backwards_tsc = true;
8313                                 if (vcpu->arch.last_host_tsc > max_tsc)
8314                                         max_tsc = vcpu->arch.last_host_tsc;
8315                         }
8316                 }
8317         }
8318
8319         /*
8320          * Sometimes, even reliable TSCs go backwards.  This happens on
8321          * platforms that reset TSC during suspend or hibernate actions, but
8322          * maintain synchronization.  We must compensate.  Fortunately, we can
8323          * detect that condition here, which happens early in CPU bringup,
8324          * before any KVM threads can be running.  Unfortunately, we can't
8325          * bring the TSCs fully up to date with real time, as we aren't yet far
8326          * enough into CPU bringup that we know how much real time has actually
8327          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8328          * variables that haven't been updated yet.
8329          *
8330          * So we simply find the maximum observed TSC above, then record the
8331          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8332          * the adjustment will be applied.  Note that we accumulate
8333          * adjustments, in case multiple suspend cycles happen before some VCPU
8334          * gets a chance to run again.  In the event that no KVM threads get a
8335          * chance to run, we will miss the entire elapsed period, as we'll have
8336          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8337          * loose cycle time.  This isn't too big a deal, since the loss will be
8338          * uniform across all VCPUs (not to mention the scenario is extremely
8339          * unlikely). It is possible that a second hibernate recovery happens
8340          * much faster than a first, causing the observed TSC here to be
8341          * smaller; this would require additional padding adjustment, which is
8342          * why we set last_host_tsc to the local tsc observed here.
8343          *
8344          * N.B. - this code below runs only on platforms with reliable TSC,
8345          * as that is the only way backwards_tsc is set above.  Also note
8346          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8347          * have the same delta_cyc adjustment applied if backwards_tsc
8348          * is detected.  Note further, this adjustment is only done once,
8349          * as we reset last_host_tsc on all VCPUs to stop this from being
8350          * called multiple times (one for each physical CPU bringup).
8351          *
8352          * Platforms with unreliable TSCs don't have to deal with this, they
8353          * will be compensated by the logic in vcpu_load, which sets the TSC to
8354          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8355          * guarantee that they stay in perfect synchronization.
8356          */
8357         if (backwards_tsc) {
8358                 u64 delta_cyc = max_tsc - local_tsc;
8359                 list_for_each_entry(kvm, &vm_list, vm_list) {
8360                         kvm->arch.backwards_tsc_observed = true;
8361                         kvm_for_each_vcpu(i, vcpu, kvm) {
8362                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8363                                 vcpu->arch.last_host_tsc = local_tsc;
8364                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8365                         }
8366
8367                         /*
8368                          * We have to disable TSC offset matching.. if you were
8369                          * booting a VM while issuing an S4 host suspend....
8370                          * you may have some problem.  Solving this issue is
8371                          * left as an exercise to the reader.
8372                          */
8373                         kvm->arch.last_tsc_nsec = 0;
8374                         kvm->arch.last_tsc_write = 0;
8375                 }
8376
8377         }
8378         return 0;
8379 }
8380
8381 void kvm_arch_hardware_disable(void)
8382 {
8383         kvm_x86_ops->hardware_disable();
8384         drop_user_return_notifiers();
8385 }
8386
8387 int kvm_arch_hardware_setup(void)
8388 {
8389         int r;
8390
8391         r = kvm_x86_ops->hardware_setup();
8392         if (r != 0)
8393                 return r;
8394
8395         if (kvm_has_tsc_control) {
8396                 /*
8397                  * Make sure the user can only configure tsc_khz values that
8398                  * fit into a signed integer.
8399                  * A min value is not calculated needed because it will always
8400                  * be 1 on all machines.
8401                  */
8402                 u64 max = min(0x7fffffffULL,
8403                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8404                 kvm_max_guest_tsc_khz = max;
8405
8406                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8407         }
8408
8409         kvm_init_msr_list();
8410         return 0;
8411 }
8412
8413 void kvm_arch_hardware_unsetup(void)
8414 {
8415         kvm_x86_ops->hardware_unsetup();
8416 }
8417
8418 void kvm_arch_check_processor_compat(void *rtn)
8419 {
8420         kvm_x86_ops->check_processor_compatibility(rtn);
8421 }
8422
8423 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8424 {
8425         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8426 }
8427 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8428
8429 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8430 {
8431         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8432 }
8433
8434 struct static_key kvm_no_apic_vcpu __read_mostly;
8435 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8436
8437 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8438 {
8439         struct page *page;
8440         int r;
8441
8442         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8443         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8444         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8445                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8446         else
8447                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8448
8449         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8450         if (!page) {
8451                 r = -ENOMEM;
8452                 goto fail;
8453         }
8454         vcpu->arch.pio_data = page_address(page);
8455
8456         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8457
8458         r = kvm_mmu_create(vcpu);
8459         if (r < 0)
8460                 goto fail_free_pio_data;
8461
8462         if (irqchip_in_kernel(vcpu->kvm)) {
8463                 r = kvm_create_lapic(vcpu);
8464                 if (r < 0)
8465                         goto fail_mmu_destroy;
8466         } else
8467                 static_key_slow_inc(&kvm_no_apic_vcpu);
8468
8469         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8470                                        GFP_KERNEL);
8471         if (!vcpu->arch.mce_banks) {
8472                 r = -ENOMEM;
8473                 goto fail_free_lapic;
8474         }
8475         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8476
8477         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8478                 r = -ENOMEM;
8479                 goto fail_free_mce_banks;
8480         }
8481
8482         fx_init(vcpu);
8483
8484         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8485
8486         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8487
8488         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8489
8490         kvm_async_pf_hash_reset(vcpu);
8491         kvm_pmu_init(vcpu);
8492
8493         vcpu->arch.pending_external_vector = -1;
8494         vcpu->arch.preempted_in_kernel = false;
8495
8496         kvm_hv_vcpu_init(vcpu);
8497
8498         return 0;
8499
8500 fail_free_mce_banks:
8501         kfree(vcpu->arch.mce_banks);
8502 fail_free_lapic:
8503         kvm_free_lapic(vcpu);
8504 fail_mmu_destroy:
8505         kvm_mmu_destroy(vcpu);
8506 fail_free_pio_data:
8507         free_page((unsigned long)vcpu->arch.pio_data);
8508 fail:
8509         return r;
8510 }
8511
8512 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8513 {
8514         int idx;
8515
8516         kvm_hv_vcpu_uninit(vcpu);
8517         kvm_pmu_destroy(vcpu);
8518         kfree(vcpu->arch.mce_banks);
8519         kvm_free_lapic(vcpu);
8520         idx = srcu_read_lock(&vcpu->kvm->srcu);
8521         kvm_mmu_destroy(vcpu);
8522         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8523         free_page((unsigned long)vcpu->arch.pio_data);
8524         if (!lapic_in_kernel(vcpu))
8525                 static_key_slow_dec(&kvm_no_apic_vcpu);
8526 }
8527
8528 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8529 {
8530         kvm_x86_ops->sched_in(vcpu, cpu);
8531 }
8532
8533 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8534 {
8535         if (type)
8536                 return -EINVAL;
8537
8538         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8539         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8540         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8541         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8542         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8543
8544         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8545         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8546         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8547         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8548                 &kvm->arch.irq_sources_bitmap);
8549
8550         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8551         mutex_init(&kvm->arch.apic_map_lock);
8552         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8553
8554         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8555         pvclock_update_vm_gtod_copy(kvm);
8556
8557         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8558         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8559
8560         kvm_hv_init_vm(kvm);
8561         kvm_page_track_init(kvm);
8562         kvm_mmu_init_vm(kvm);
8563
8564         if (kvm_x86_ops->vm_init)
8565                 return kvm_x86_ops->vm_init(kvm);
8566
8567         return 0;
8568 }
8569
8570 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8571 {
8572         vcpu_load(vcpu);
8573         kvm_mmu_unload(vcpu);
8574         vcpu_put(vcpu);
8575 }
8576
8577 static void kvm_free_vcpus(struct kvm *kvm)
8578 {
8579         unsigned int i;
8580         struct kvm_vcpu *vcpu;
8581
8582         /*
8583          * Unpin any mmu pages first.
8584          */
8585         kvm_for_each_vcpu(i, vcpu, kvm) {
8586                 kvm_clear_async_pf_completion_queue(vcpu);
8587                 kvm_unload_vcpu_mmu(vcpu);
8588         }
8589         kvm_for_each_vcpu(i, vcpu, kvm)
8590                 kvm_arch_vcpu_free(vcpu);
8591
8592         mutex_lock(&kvm->lock);
8593         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8594                 kvm->vcpus[i] = NULL;
8595
8596         atomic_set(&kvm->online_vcpus, 0);
8597         mutex_unlock(&kvm->lock);
8598 }
8599
8600 void kvm_arch_sync_events(struct kvm *kvm)
8601 {
8602         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8603         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8604         kvm_free_pit(kvm);
8605 }
8606
8607 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8608 {
8609         int i, r;
8610         unsigned long hva;
8611         struct kvm_memslots *slots = kvm_memslots(kvm);
8612         struct kvm_memory_slot *slot, old;
8613
8614         /* Called with kvm->slots_lock held.  */
8615         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8616                 return -EINVAL;
8617
8618         slot = id_to_memslot(slots, id);
8619         if (size) {
8620                 if (slot->npages)
8621                         return -EEXIST;
8622
8623                 /*
8624                  * MAP_SHARED to prevent internal slot pages from being moved
8625                  * by fork()/COW.
8626                  */
8627                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8628                               MAP_SHARED | MAP_ANONYMOUS, 0);
8629                 if (IS_ERR((void *)hva))
8630                         return PTR_ERR((void *)hva);
8631         } else {
8632                 if (!slot->npages)
8633                         return 0;
8634
8635                 hva = 0;
8636         }
8637
8638         old = *slot;
8639         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8640                 struct kvm_userspace_memory_region m;
8641
8642                 m.slot = id | (i << 16);
8643                 m.flags = 0;
8644                 m.guest_phys_addr = gpa;
8645                 m.userspace_addr = hva;
8646                 m.memory_size = size;
8647                 r = __kvm_set_memory_region(kvm, &m);
8648                 if (r < 0)
8649                         return r;
8650         }
8651
8652         if (!size)
8653                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8654
8655         return 0;
8656 }
8657 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8658
8659 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8660 {
8661         int r;
8662
8663         mutex_lock(&kvm->slots_lock);
8664         r = __x86_set_memory_region(kvm, id, gpa, size);
8665         mutex_unlock(&kvm->slots_lock);
8666
8667         return r;
8668 }
8669 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8670
8671 void kvm_arch_destroy_vm(struct kvm *kvm)
8672 {
8673         if (current->mm == kvm->mm) {
8674                 /*
8675                  * Free memory regions allocated on behalf of userspace,
8676                  * unless the the memory map has changed due to process exit
8677                  * or fd copying.
8678                  */
8679                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8680                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8681                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8682         }
8683         if (kvm_x86_ops->vm_destroy)
8684                 kvm_x86_ops->vm_destroy(kvm);
8685         kvm_pic_destroy(kvm);
8686         kvm_ioapic_destroy(kvm);
8687         kvm_free_vcpus(kvm);
8688         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8689         kvm_mmu_uninit_vm(kvm);
8690         kvm_page_track_cleanup(kvm);
8691         kvm_hv_destroy_vm(kvm);
8692 }
8693
8694 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8695                            struct kvm_memory_slot *dont)
8696 {
8697         int i;
8698
8699         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8700                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8701                         kvfree(free->arch.rmap[i]);
8702                         free->arch.rmap[i] = NULL;
8703                 }
8704                 if (i == 0)
8705                         continue;
8706
8707                 if (!dont || free->arch.lpage_info[i - 1] !=
8708                              dont->arch.lpage_info[i - 1]) {
8709                         kvfree(free->arch.lpage_info[i - 1]);
8710                         free->arch.lpage_info[i - 1] = NULL;
8711                 }
8712         }
8713
8714         kvm_page_track_free_memslot(free, dont);
8715 }
8716
8717 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8718                             unsigned long npages)
8719 {
8720         int i;
8721
8722         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8723                 struct kvm_lpage_info *linfo;
8724                 unsigned long ugfn;
8725                 int lpages;
8726                 int level = i + 1;
8727
8728                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8729                                       slot->base_gfn, level) + 1;
8730
8731                 slot->arch.rmap[i] =
8732                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8733                 if (!slot->arch.rmap[i])
8734                         goto out_free;
8735                 if (i == 0)
8736                         continue;
8737
8738                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8739                 if (!linfo)
8740                         goto out_free;
8741
8742                 slot->arch.lpage_info[i - 1] = linfo;
8743
8744                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8745                         linfo[0].disallow_lpage = 1;
8746                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8747                         linfo[lpages - 1].disallow_lpage = 1;
8748                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8749                 /*
8750                  * If the gfn and userspace address are not aligned wrt each
8751                  * other, or if explicitly asked to, disable large page
8752                  * support for this slot
8753                  */
8754                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8755                     !kvm_largepages_enabled()) {
8756                         unsigned long j;
8757
8758                         for (j = 0; j < lpages; ++j)
8759                                 linfo[j].disallow_lpage = 1;
8760                 }
8761         }
8762
8763         if (kvm_page_track_create_memslot(slot, npages))
8764                 goto out_free;
8765
8766         return 0;
8767
8768 out_free:
8769         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8770                 kvfree(slot->arch.rmap[i]);
8771                 slot->arch.rmap[i] = NULL;
8772                 if (i == 0)
8773                         continue;
8774
8775                 kvfree(slot->arch.lpage_info[i - 1]);
8776                 slot->arch.lpage_info[i - 1] = NULL;
8777         }
8778         return -ENOMEM;
8779 }
8780
8781 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8782 {
8783         /*
8784          * memslots->generation has been incremented.
8785          * mmio generation may have reached its maximum value.
8786          */
8787         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8788 }
8789
8790 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8791                                 struct kvm_memory_slot *memslot,
8792                                 const struct kvm_userspace_memory_region *mem,
8793                                 enum kvm_mr_change change)
8794 {
8795         return 0;
8796 }
8797
8798 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8799                                      struct kvm_memory_slot *new)
8800 {
8801         /* Still write protect RO slot */
8802         if (new->flags & KVM_MEM_READONLY) {
8803                 kvm_mmu_slot_remove_write_access(kvm, new);
8804                 return;
8805         }
8806
8807         /*
8808          * Call kvm_x86_ops dirty logging hooks when they are valid.
8809          *
8810          * kvm_x86_ops->slot_disable_log_dirty is called when:
8811          *
8812          *  - KVM_MR_CREATE with dirty logging is disabled
8813          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8814          *
8815          * The reason is, in case of PML, we need to set D-bit for any slots
8816          * with dirty logging disabled in order to eliminate unnecessary GPA
8817          * logging in PML buffer (and potential PML buffer full VMEXT). This
8818          * guarantees leaving PML enabled during guest's lifetime won't have
8819          * any additonal overhead from PML when guest is running with dirty
8820          * logging disabled for memory slots.
8821          *
8822          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8823          * to dirty logging mode.
8824          *
8825          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8826          *
8827          * In case of write protect:
8828          *
8829          * Write protect all pages for dirty logging.
8830          *
8831          * All the sptes including the large sptes which point to this
8832          * slot are set to readonly. We can not create any new large
8833          * spte on this slot until the end of the logging.
8834          *
8835          * See the comments in fast_page_fault().
8836          */
8837         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8838                 if (kvm_x86_ops->slot_enable_log_dirty)
8839                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8840                 else
8841                         kvm_mmu_slot_remove_write_access(kvm, new);
8842         } else {
8843                 if (kvm_x86_ops->slot_disable_log_dirty)
8844                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8845         }
8846 }
8847
8848 void kvm_arch_commit_memory_region(struct kvm *kvm,
8849                                 const struct kvm_userspace_memory_region *mem,
8850                                 const struct kvm_memory_slot *old,
8851                                 const struct kvm_memory_slot *new,
8852                                 enum kvm_mr_change change)
8853 {
8854         int nr_mmu_pages = 0;
8855
8856         if (!kvm->arch.n_requested_mmu_pages)
8857                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8858
8859         if (nr_mmu_pages)
8860                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8861
8862         /*
8863          * Dirty logging tracks sptes in 4k granularity, meaning that large
8864          * sptes have to be split.  If live migration is successful, the guest
8865          * in the source machine will be destroyed and large sptes will be
8866          * created in the destination. However, if the guest continues to run
8867          * in the source machine (for example if live migration fails), small
8868          * sptes will remain around and cause bad performance.
8869          *
8870          * Scan sptes if dirty logging has been stopped, dropping those
8871          * which can be collapsed into a single large-page spte.  Later
8872          * page faults will create the large-page sptes.
8873          */
8874         if ((change != KVM_MR_DELETE) &&
8875                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8876                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8877                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8878
8879         /*
8880          * Set up write protection and/or dirty logging for the new slot.
8881          *
8882          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8883          * been zapped so no dirty logging staff is needed for old slot. For
8884          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8885          * new and it's also covered when dealing with the new slot.
8886          *
8887          * FIXME: const-ify all uses of struct kvm_memory_slot.
8888          */
8889         if (change != KVM_MR_DELETE)
8890                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8891 }
8892
8893 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8894 {
8895         kvm_mmu_invalidate_zap_all_pages(kvm);
8896 }
8897
8898 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8899                                    struct kvm_memory_slot *slot)
8900 {
8901         kvm_page_track_flush_slot(kvm, slot);
8902 }
8903
8904 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8905 {
8906         if (!list_empty_careful(&vcpu->async_pf.done))
8907                 return true;
8908
8909         if (kvm_apic_has_events(vcpu))
8910                 return true;
8911
8912         if (vcpu->arch.pv.pv_unhalted)
8913                 return true;
8914
8915         if (vcpu->arch.exception.pending)
8916                 return true;
8917
8918         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8919             (vcpu->arch.nmi_pending &&
8920              kvm_x86_ops->nmi_allowed(vcpu)))
8921                 return true;
8922
8923         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8924             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8925                 return true;
8926
8927         if (kvm_arch_interrupt_allowed(vcpu) &&
8928             kvm_cpu_has_interrupt(vcpu))
8929                 return true;
8930
8931         if (kvm_hv_has_stimer_pending(vcpu))
8932                 return true;
8933
8934         return false;
8935 }
8936
8937 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8938 {
8939         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8940 }
8941
8942 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8943 {
8944         return vcpu->arch.preempted_in_kernel;
8945 }
8946
8947 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8948 {
8949         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8950 }
8951
8952 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8953 {
8954         return kvm_x86_ops->interrupt_allowed(vcpu);
8955 }
8956
8957 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8958 {
8959         if (is_64_bit_mode(vcpu))
8960                 return kvm_rip_read(vcpu);
8961         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8962                      kvm_rip_read(vcpu));
8963 }
8964 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8965
8966 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8967 {
8968         return kvm_get_linear_rip(vcpu) == linear_rip;
8969 }
8970 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8971
8972 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8973 {
8974         unsigned long rflags;
8975
8976         rflags = kvm_x86_ops->get_rflags(vcpu);
8977         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8978                 rflags &= ~X86_EFLAGS_TF;
8979         return rflags;
8980 }
8981 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8982
8983 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8984 {
8985         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8986             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8987                 rflags |= X86_EFLAGS_TF;
8988         kvm_x86_ops->set_rflags(vcpu, rflags);
8989 }
8990
8991 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8992 {
8993         __kvm_set_rflags(vcpu, rflags);
8994         kvm_make_request(KVM_REQ_EVENT, vcpu);
8995 }
8996 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8997
8998 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8999 {
9000         int r;
9001
9002         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9003               work->wakeup_all)
9004                 return;
9005
9006         r = kvm_mmu_reload(vcpu);
9007         if (unlikely(r))
9008                 return;
9009
9010         if (!vcpu->arch.mmu.direct_map &&
9011               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9012                 return;
9013
9014         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9015 }
9016
9017 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9018 {
9019         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9020 }
9021
9022 static inline u32 kvm_async_pf_next_probe(u32 key)
9023 {
9024         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9025 }
9026
9027 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9028 {
9029         u32 key = kvm_async_pf_hash_fn(gfn);
9030
9031         while (vcpu->arch.apf.gfns[key] != ~0)
9032                 key = kvm_async_pf_next_probe(key);
9033
9034         vcpu->arch.apf.gfns[key] = gfn;
9035 }
9036
9037 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9038 {
9039         int i;
9040         u32 key = kvm_async_pf_hash_fn(gfn);
9041
9042         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9043                      (vcpu->arch.apf.gfns[key] != gfn &&
9044                       vcpu->arch.apf.gfns[key] != ~0); i++)
9045                 key = kvm_async_pf_next_probe(key);
9046
9047         return key;
9048 }
9049
9050 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9051 {
9052         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9053 }
9054
9055 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9056 {
9057         u32 i, j, k;
9058
9059         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9060         while (true) {
9061                 vcpu->arch.apf.gfns[i] = ~0;
9062                 do {
9063                         j = kvm_async_pf_next_probe(j);
9064                         if (vcpu->arch.apf.gfns[j] == ~0)
9065                                 return;
9066                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9067                         /*
9068                          * k lies cyclically in ]i,j]
9069                          * |    i.k.j |
9070                          * |....j i.k.| or  |.k..j i...|
9071                          */
9072                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9073                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9074                 i = j;
9075         }
9076 }
9077
9078 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9079 {
9080
9081         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9082                                       sizeof(val));
9083 }
9084
9085 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9086 {
9087
9088         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9089                                       sizeof(u32));
9090 }
9091
9092 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9093                                      struct kvm_async_pf *work)
9094 {
9095         struct x86_exception fault;
9096
9097         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9098         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9099
9100         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9101             (vcpu->arch.apf.send_user_only &&
9102              kvm_x86_ops->get_cpl(vcpu) == 0))
9103                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9104         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9105                 fault.vector = PF_VECTOR;
9106                 fault.error_code_valid = true;
9107                 fault.error_code = 0;
9108                 fault.nested_page_fault = false;
9109                 fault.address = work->arch.token;
9110                 fault.async_page_fault = true;
9111                 kvm_inject_page_fault(vcpu, &fault);
9112         }
9113 }
9114
9115 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9116                                  struct kvm_async_pf *work)
9117 {
9118         struct x86_exception fault;
9119         u32 val;
9120
9121         if (work->wakeup_all)
9122                 work->arch.token = ~0; /* broadcast wakeup */
9123         else
9124                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9125         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9126
9127         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9128             !apf_get_user(vcpu, &val)) {
9129                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9130                     vcpu->arch.exception.pending &&
9131                     vcpu->arch.exception.nr == PF_VECTOR &&
9132                     !apf_put_user(vcpu, 0)) {
9133                         vcpu->arch.exception.injected = false;
9134                         vcpu->arch.exception.pending = false;
9135                         vcpu->arch.exception.nr = 0;
9136                         vcpu->arch.exception.has_error_code = false;
9137                         vcpu->arch.exception.error_code = 0;
9138                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9139                         fault.vector = PF_VECTOR;
9140                         fault.error_code_valid = true;
9141                         fault.error_code = 0;
9142                         fault.nested_page_fault = false;
9143                         fault.address = work->arch.token;
9144                         fault.async_page_fault = true;
9145                         kvm_inject_page_fault(vcpu, &fault);
9146                 }
9147         }
9148         vcpu->arch.apf.halted = false;
9149         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9150 }
9151
9152 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9153 {
9154         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9155                 return true;
9156         else
9157                 return kvm_can_do_async_pf(vcpu);
9158 }
9159
9160 void kvm_arch_start_assignment(struct kvm *kvm)
9161 {
9162         atomic_inc(&kvm->arch.assigned_device_count);
9163 }
9164 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9165
9166 void kvm_arch_end_assignment(struct kvm *kvm)
9167 {
9168         atomic_dec(&kvm->arch.assigned_device_count);
9169 }
9170 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9171
9172 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9173 {
9174         return atomic_read(&kvm->arch.assigned_device_count);
9175 }
9176 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9177
9178 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9179 {
9180         atomic_inc(&kvm->arch.noncoherent_dma_count);
9181 }
9182 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9183
9184 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9185 {
9186         atomic_dec(&kvm->arch.noncoherent_dma_count);
9187 }
9188 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9189
9190 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9191 {
9192         return atomic_read(&kvm->arch.noncoherent_dma_count);
9193 }
9194 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9195
9196 bool kvm_arch_has_irq_bypass(void)
9197 {
9198         return kvm_x86_ops->update_pi_irte != NULL;
9199 }
9200
9201 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9202                                       struct irq_bypass_producer *prod)
9203 {
9204         struct kvm_kernel_irqfd *irqfd =
9205                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9206
9207         irqfd->producer = prod;
9208
9209         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9210                                            prod->irq, irqfd->gsi, 1);
9211 }
9212
9213 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9214                                       struct irq_bypass_producer *prod)
9215 {
9216         int ret;
9217         struct kvm_kernel_irqfd *irqfd =
9218                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9219
9220         WARN_ON(irqfd->producer != prod);
9221         irqfd->producer = NULL;
9222
9223         /*
9224          * When producer of consumer is unregistered, we change back to
9225          * remapped mode, so we can re-use the current implementation
9226          * when the irq is masked/disabled or the consumer side (KVM
9227          * int this case doesn't want to receive the interrupts.
9228         */
9229         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9230         if (ret)
9231                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9232                        " fails: %d\n", irqfd->consumer.token, ret);
9233 }
9234
9235 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9236                                    uint32_t guest_irq, bool set)
9237 {
9238         if (!kvm_x86_ops->update_pi_irte)
9239                 return -EINVAL;
9240
9241         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9242 }
9243
9244 bool kvm_vector_hashing_enabled(void)
9245 {
9246         return vector_hashing;
9247 }
9248 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9249
9250 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9251 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9252 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9253 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9254 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9255 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9256 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9257 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9258 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9268 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);