]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
KVM: vmx: Emulate MSR IA32_UMWAIT_CONTROL
[linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159
160 #define KVM_NR_SHARED_MSRS 16
161
162 struct kvm_shared_msrs_global {
163         int nr;
164         u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166
167 struct kvm_shared_msrs {
168         struct user_return_notifier urn;
169         bool registered;
170         struct kvm_shared_msr_values {
171                 u64 host;
172                 u64 curr;
173         } values[KVM_NR_SHARED_MSRS];
174 };
175
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180         { "pf_fixed", VCPU_STAT(pf_fixed) },
181         { "pf_guest", VCPU_STAT(pf_guest) },
182         { "tlb_flush", VCPU_STAT(tlb_flush) },
183         { "invlpg", VCPU_STAT(invlpg) },
184         { "exits", VCPU_STAT(exits) },
185         { "io_exits", VCPU_STAT(io_exits) },
186         { "mmio_exits", VCPU_STAT(mmio_exits) },
187         { "signal_exits", VCPU_STAT(signal_exits) },
188         { "irq_window", VCPU_STAT(irq_window_exits) },
189         { "nmi_window", VCPU_STAT(nmi_window_exits) },
190         { "halt_exits", VCPU_STAT(halt_exits) },
191         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
195         { "hypercalls", VCPU_STAT(hypercalls) },
196         { "request_irq", VCPU_STAT(request_irq_exits) },
197         { "irq_exits", VCPU_STAT(irq_exits) },
198         { "host_state_reload", VCPU_STAT(host_state_reload) },
199         { "fpu_reload", VCPU_STAT(fpu_reload) },
200         { "insn_emulation", VCPU_STAT(insn_emulation) },
201         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202         { "irq_injections", VCPU_STAT(irq_injections) },
203         { "nmi_injections", VCPU_STAT(nmi_injections) },
204         { "req_event", VCPU_STAT(req_event) },
205         { "l1d_flush", VCPU_STAT(l1d_flush) },
206         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
208         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210         { "mmu_flooded", VM_STAT(mmu_flooded) },
211         { "mmu_recycled", VM_STAT(mmu_recycled) },
212         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213         { "mmu_unsync", VM_STAT(mmu_unsync) },
214         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215         { "largepages", VM_STAT(lpages) },
216         { "max_mmu_page_hash_collisions",
217                 VM_STAT(max_mmu_page_hash_collisions) },
218         { NULL }
219 };
220
221 u64 __read_mostly host_xcr0;
222
223 struct kmem_cache *x86_fpu_cache;
224 EXPORT_SYMBOL_GPL(x86_fpu_cache);
225
226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
227
228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
229 {
230         int i;
231         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
232                 vcpu->arch.apf.gfns[i] = ~0;
233 }
234
235 static void kvm_on_user_return(struct user_return_notifier *urn)
236 {
237         unsigned slot;
238         struct kvm_shared_msrs *locals
239                 = container_of(urn, struct kvm_shared_msrs, urn);
240         struct kvm_shared_msr_values *values;
241         unsigned long flags;
242
243         /*
244          * Disabling irqs at this point since the following code could be
245          * interrupted and executed through kvm_arch_hardware_disable()
246          */
247         local_irq_save(flags);
248         if (locals->registered) {
249                 locals->registered = false;
250                 user_return_notifier_unregister(urn);
251         }
252         local_irq_restore(flags);
253         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
254                 values = &locals->values[slot];
255                 if (values->host != values->curr) {
256                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
257                         values->curr = values->host;
258                 }
259         }
260 }
261
262 static void shared_msr_update(unsigned slot, u32 msr)
263 {
264         u64 value;
265         unsigned int cpu = smp_processor_id();
266         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267
268         /* only read, and nobody should modify it at this time,
269          * so don't need lock */
270         if (slot >= shared_msrs_global.nr) {
271                 printk(KERN_ERR "kvm: invalid MSR slot!");
272                 return;
273         }
274         rdmsrl_safe(msr, &value);
275         smsr->values[slot].host = value;
276         smsr->values[slot].curr = value;
277 }
278
279 void kvm_define_shared_msr(unsigned slot, u32 msr)
280 {
281         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
282         shared_msrs_global.msrs[slot] = msr;
283         if (slot >= shared_msrs_global.nr)
284                 shared_msrs_global.nr = slot + 1;
285 }
286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
287
288 static void kvm_shared_msr_cpu_online(void)
289 {
290         unsigned i;
291
292         for (i = 0; i < shared_msrs_global.nr; ++i)
293                 shared_msr_update(i, shared_msrs_global.msrs[i]);
294 }
295
296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
297 {
298         unsigned int cpu = smp_processor_id();
299         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300         int err;
301
302         if (((value ^ smsr->values[slot].curr) & mask) == 0)
303                 return 0;
304         smsr->values[slot].curr = value;
305         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
306         if (err)
307                 return 1;
308
309         if (!smsr->registered) {
310                 smsr->urn.on_user_return = kvm_on_user_return;
311                 user_return_notifier_register(&smsr->urn);
312                 smsr->registered = true;
313         }
314         return 0;
315 }
316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
317
318 static void drop_user_return_notifiers(void)
319 {
320         unsigned int cpu = smp_processor_id();
321         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322
323         if (smsr->registered)
324                 kvm_on_user_return(&smsr->urn);
325 }
326
327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
328 {
329         return vcpu->arch.apic_base;
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
332
333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
334 {
335         return kvm_apic_mode(kvm_get_apic_base(vcpu));
336 }
337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
338
339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
340 {
341         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
342         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
343         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
344                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
345
346         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
347                 return 1;
348         if (!msr_info->host_initiated) {
349                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
350                         return 1;
351                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
352                         return 1;
353         }
354
355         kvm_lapic_set_base(vcpu, msr_info->data);
356         return 0;
357 }
358 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
359
360 asmlinkage __visible void kvm_spurious_fault(void)
361 {
362         /* Fault while not rebooting.  We want the trace. */
363         BUG();
364 }
365 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
366
367 #define EXCPT_BENIGN            0
368 #define EXCPT_CONTRIBUTORY      1
369 #define EXCPT_PF                2
370
371 static int exception_class(int vector)
372 {
373         switch (vector) {
374         case PF_VECTOR:
375                 return EXCPT_PF;
376         case DE_VECTOR:
377         case TS_VECTOR:
378         case NP_VECTOR:
379         case SS_VECTOR:
380         case GP_VECTOR:
381                 return EXCPT_CONTRIBUTORY;
382         default:
383                 break;
384         }
385         return EXCPT_BENIGN;
386 }
387
388 #define EXCPT_FAULT             0
389 #define EXCPT_TRAP              1
390 #define EXCPT_ABORT             2
391 #define EXCPT_INTERRUPT         3
392
393 static int exception_type(int vector)
394 {
395         unsigned int mask;
396
397         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
398                 return EXCPT_INTERRUPT;
399
400         mask = 1 << vector;
401
402         /* #DB is trap, as instruction watchpoints are handled elsewhere */
403         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
404                 return EXCPT_TRAP;
405
406         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
407                 return EXCPT_ABORT;
408
409         /* Reserved exceptions will result in fault */
410         return EXCPT_FAULT;
411 }
412
413 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
414 {
415         unsigned nr = vcpu->arch.exception.nr;
416         bool has_payload = vcpu->arch.exception.has_payload;
417         unsigned long payload = vcpu->arch.exception.payload;
418
419         if (!has_payload)
420                 return;
421
422         switch (nr) {
423         case DB_VECTOR:
424                 /*
425                  * "Certain debug exceptions may clear bit 0-3.  The
426                  * remaining contents of the DR6 register are never
427                  * cleared by the processor".
428                  */
429                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
430                 /*
431                  * DR6.RTM is set by all #DB exceptions that don't clear it.
432                  */
433                 vcpu->arch.dr6 |= DR6_RTM;
434                 vcpu->arch.dr6 |= payload;
435                 /*
436                  * Bit 16 should be set in the payload whenever the #DB
437                  * exception should clear DR6.RTM. This makes the payload
438                  * compatible with the pending debug exceptions under VMX.
439                  * Though not currently documented in the SDM, this also
440                  * makes the payload compatible with the exit qualification
441                  * for #DB exceptions under VMX.
442                  */
443                 vcpu->arch.dr6 ^= payload & DR6_RTM;
444                 break;
445         case PF_VECTOR:
446                 vcpu->arch.cr2 = payload;
447                 break;
448         }
449
450         vcpu->arch.exception.has_payload = false;
451         vcpu->arch.exception.payload = 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
454
455 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
456                 unsigned nr, bool has_error, u32 error_code,
457                 bool has_payload, unsigned long payload, bool reinject)
458 {
459         u32 prev_nr;
460         int class1, class2;
461
462         kvm_make_request(KVM_REQ_EVENT, vcpu);
463
464         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
465         queue:
466                 if (has_error && !is_protmode(vcpu))
467                         has_error = false;
468                 if (reinject) {
469                         /*
470                          * On vmentry, vcpu->arch.exception.pending is only
471                          * true if an event injection was blocked by
472                          * nested_run_pending.  In that case, however,
473                          * vcpu_enter_guest requests an immediate exit,
474                          * and the guest shouldn't proceed far enough to
475                          * need reinjection.
476                          */
477                         WARN_ON_ONCE(vcpu->arch.exception.pending);
478                         vcpu->arch.exception.injected = true;
479                         if (WARN_ON_ONCE(has_payload)) {
480                                 /*
481                                  * A reinjected event has already
482                                  * delivered its payload.
483                                  */
484                                 has_payload = false;
485                                 payload = 0;
486                         }
487                 } else {
488                         vcpu->arch.exception.pending = true;
489                         vcpu->arch.exception.injected = false;
490                 }
491                 vcpu->arch.exception.has_error_code = has_error;
492                 vcpu->arch.exception.nr = nr;
493                 vcpu->arch.exception.error_code = error_code;
494                 vcpu->arch.exception.has_payload = has_payload;
495                 vcpu->arch.exception.payload = payload;
496                 /*
497                  * In guest mode, payload delivery should be deferred,
498                  * so that the L1 hypervisor can intercept #PF before
499                  * CR2 is modified (or intercept #DB before DR6 is
500                  * modified under nVMX).  However, for ABI
501                  * compatibility with KVM_GET_VCPU_EVENTS and
502                  * KVM_SET_VCPU_EVENTS, we can't delay payload
503                  * delivery unless userspace has enabled this
504                  * functionality via the per-VM capability,
505                  * KVM_CAP_EXCEPTION_PAYLOAD.
506                  */
507                 if (!vcpu->kvm->arch.exception_payload_enabled ||
508                     !is_guest_mode(vcpu))
509                         kvm_deliver_exception_payload(vcpu);
510                 return;
511         }
512
513         /* to check exception */
514         prev_nr = vcpu->arch.exception.nr;
515         if (prev_nr == DF_VECTOR) {
516                 /* triple fault -> shutdown */
517                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
518                 return;
519         }
520         class1 = exception_class(prev_nr);
521         class2 = exception_class(nr);
522         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
523                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
524                 /*
525                  * Generate double fault per SDM Table 5-5.  Set
526                  * exception.pending = true so that the double fault
527                  * can trigger a nested vmexit.
528                  */
529                 vcpu->arch.exception.pending = true;
530                 vcpu->arch.exception.injected = false;
531                 vcpu->arch.exception.has_error_code = true;
532                 vcpu->arch.exception.nr = DF_VECTOR;
533                 vcpu->arch.exception.error_code = 0;
534                 vcpu->arch.exception.has_payload = false;
535                 vcpu->arch.exception.payload = 0;
536         } else
537                 /* replace previous exception with a new one in a hope
538                    that instruction re-execution will regenerate lost
539                    exception */
540                 goto queue;
541 }
542
543 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
546 }
547 EXPORT_SYMBOL_GPL(kvm_queue_exception);
548
549 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
550 {
551         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
552 }
553 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
554
555 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
556                                   unsigned long payload)
557 {
558         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
559 }
560
561 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
562                                     u32 error_code, unsigned long payload)
563 {
564         kvm_multiple_exception(vcpu, nr, true, error_code,
565                                true, payload, false);
566 }
567
568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
569 {
570         if (err)
571                 kvm_inject_gp(vcpu, 0);
572         else
573                 return kvm_skip_emulated_instruction(vcpu);
574
575         return 1;
576 }
577 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
578
579 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
580 {
581         ++vcpu->stat.pf_guest;
582         vcpu->arch.exception.nested_apf =
583                 is_guest_mode(vcpu) && fault->async_page_fault;
584         if (vcpu->arch.exception.nested_apf) {
585                 vcpu->arch.apf.nested_apf_token = fault->address;
586                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
587         } else {
588                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
589                                         fault->address);
590         }
591 }
592 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
593
594 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
595 {
596         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
597                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
598         else
599                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
600
601         return fault->nested_page_fault;
602 }
603
604 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
605 {
606         atomic_inc(&vcpu->arch.nmi_queued);
607         kvm_make_request(KVM_REQ_NMI, vcpu);
608 }
609 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
610
611 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
614 }
615 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
616
617 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
618 {
619         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
620 }
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
622
623 /*
624  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
625  * a #GP and return false.
626  */
627 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
628 {
629         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
630                 return true;
631         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
632         return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_cpl);
635
636 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
637 {
638         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
639                 return true;
640
641         kvm_queue_exception(vcpu, UD_VECTOR);
642         return false;
643 }
644 EXPORT_SYMBOL_GPL(kvm_require_dr);
645
646 /*
647  * This function will be used to read from the physical memory of the currently
648  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
649  * can read from guest physical or from the guest's guest physical memory.
650  */
651 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
652                             gfn_t ngfn, void *data, int offset, int len,
653                             u32 access)
654 {
655         struct x86_exception exception;
656         gfn_t real_gfn;
657         gpa_t ngpa;
658
659         ngpa     = gfn_to_gpa(ngfn);
660         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
661         if (real_gfn == UNMAPPED_GVA)
662                 return -EFAULT;
663
664         real_gfn = gpa_to_gfn(real_gfn);
665
666         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
667 }
668 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
669
670 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
671                                void *data, int offset, int len, u32 access)
672 {
673         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
674                                        data, offset, len, access);
675 }
676
677 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
678 {
679         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
680                rsvd_bits(1, 2);
681 }
682
683 /*
684  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
685  */
686 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
687 {
688         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
689         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
690         int i;
691         int ret;
692         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
693
694         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
695                                       offset * sizeof(u64), sizeof(pdpte),
696                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
697         if (ret < 0) {
698                 ret = 0;
699                 goto out;
700         }
701         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
702                 if ((pdpte[i] & PT_PRESENT_MASK) &&
703                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
704                         ret = 0;
705                         goto out;
706                 }
707         }
708         ret = 1;
709
710         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
711         __set_bit(VCPU_EXREG_PDPTR,
712                   (unsigned long *)&vcpu->arch.regs_avail);
713         __set_bit(VCPU_EXREG_PDPTR,
714                   (unsigned long *)&vcpu->arch.regs_dirty);
715 out:
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(load_pdptrs);
720
721 bool pdptrs_changed(struct kvm_vcpu *vcpu)
722 {
723         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
724         bool changed = true;
725         int offset;
726         gfn_t gfn;
727         int r;
728
729         if (!is_pae_paging(vcpu))
730                 return false;
731
732         if (!test_bit(VCPU_EXREG_PDPTR,
733                       (unsigned long *)&vcpu->arch.regs_avail))
734                 return true;
735
736         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
737         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
738         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
739                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
740         if (r < 0)
741                 goto out;
742         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
743 out:
744
745         return changed;
746 }
747 EXPORT_SYMBOL_GPL(pdptrs_changed);
748
749 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
750 {
751         unsigned long old_cr0 = kvm_read_cr0(vcpu);
752         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
753
754         cr0 |= X86_CR0_ET;
755
756 #ifdef CONFIG_X86_64
757         if (cr0 & 0xffffffff00000000UL)
758                 return 1;
759 #endif
760
761         cr0 &= ~CR0_RESERVED_BITS;
762
763         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
764                 return 1;
765
766         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
767                 return 1;
768
769         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
770 #ifdef CONFIG_X86_64
771                 if ((vcpu->arch.efer & EFER_LME)) {
772                         int cs_db, cs_l;
773
774                         if (!is_pae(vcpu))
775                                 return 1;
776                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
777                         if (cs_l)
778                                 return 1;
779                 } else
780 #endif
781                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
782                                                  kvm_read_cr3(vcpu)))
783                         return 1;
784         }
785
786         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
787                 return 1;
788
789         kvm_x86_ops->set_cr0(vcpu, cr0);
790
791         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
792                 kvm_clear_async_pf_completion_queue(vcpu);
793                 kvm_async_pf_hash_reset(vcpu);
794         }
795
796         if ((cr0 ^ old_cr0) & update_bits)
797                 kvm_mmu_reset_context(vcpu);
798
799         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
800             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
801             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
802                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
803
804         return 0;
805 }
806 EXPORT_SYMBOL_GPL(kvm_set_cr0);
807
808 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
809 {
810         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
811 }
812 EXPORT_SYMBOL_GPL(kvm_lmsw);
813
814 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
815 {
816         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
817                         !vcpu->guest_xcr0_loaded) {
818                 /* kvm_set_xcr() also depends on this */
819                 if (vcpu->arch.xcr0 != host_xcr0)
820                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
821                 vcpu->guest_xcr0_loaded = 1;
822         }
823 }
824 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
825
826 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
827 {
828         if (vcpu->guest_xcr0_loaded) {
829                 if (vcpu->arch.xcr0 != host_xcr0)
830                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
831                 vcpu->guest_xcr0_loaded = 0;
832         }
833 }
834 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
835
836 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
837 {
838         u64 xcr0 = xcr;
839         u64 old_xcr0 = vcpu->arch.xcr0;
840         u64 valid_bits;
841
842         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
843         if (index != XCR_XFEATURE_ENABLED_MASK)
844                 return 1;
845         if (!(xcr0 & XFEATURE_MASK_FP))
846                 return 1;
847         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
848                 return 1;
849
850         /*
851          * Do not allow the guest to set bits that we do not support
852          * saving.  However, xcr0 bit 0 is always set, even if the
853          * emulated CPU does not support XSAVE (see fx_init).
854          */
855         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
856         if (xcr0 & ~valid_bits)
857                 return 1;
858
859         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
860             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
861                 return 1;
862
863         if (xcr0 & XFEATURE_MASK_AVX512) {
864                 if (!(xcr0 & XFEATURE_MASK_YMM))
865                         return 1;
866                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
867                         return 1;
868         }
869         vcpu->arch.xcr0 = xcr0;
870
871         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
872                 kvm_update_cpuid(vcpu);
873         return 0;
874 }
875
876 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
877 {
878         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
879             __kvm_set_xcr(vcpu, index, xcr)) {
880                 kvm_inject_gp(vcpu, 0);
881                 return 1;
882         }
883         return 0;
884 }
885 EXPORT_SYMBOL_GPL(kvm_set_xcr);
886
887 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
888 {
889         unsigned long old_cr4 = kvm_read_cr4(vcpu);
890         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
891                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
892
893         if (cr4 & CR4_RESERVED_BITS)
894                 return 1;
895
896         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
897                 return 1;
898
899         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
900                 return 1;
901
902         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
903                 return 1;
904
905         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
906                 return 1;
907
908         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
909                 return 1;
910
911         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
912                 return 1;
913
914         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
915                 return 1;
916
917         if (is_long_mode(vcpu)) {
918                 if (!(cr4 & X86_CR4_PAE))
919                         return 1;
920         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
921                    && ((cr4 ^ old_cr4) & pdptr_bits)
922                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
923                                    kvm_read_cr3(vcpu)))
924                 return 1;
925
926         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
927                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
928                         return 1;
929
930                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
931                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
932                         return 1;
933         }
934
935         if (kvm_x86_ops->set_cr4(vcpu, cr4))
936                 return 1;
937
938         if (((cr4 ^ old_cr4) & pdptr_bits) ||
939             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
940                 kvm_mmu_reset_context(vcpu);
941
942         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
943                 kvm_update_cpuid(vcpu);
944
945         return 0;
946 }
947 EXPORT_SYMBOL_GPL(kvm_set_cr4);
948
949 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
950 {
951         bool skip_tlb_flush = false;
952 #ifdef CONFIG_X86_64
953         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
954
955         if (pcid_enabled) {
956                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
957                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
958         }
959 #endif
960
961         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
962                 if (!skip_tlb_flush) {
963                         kvm_mmu_sync_roots(vcpu);
964                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
965                 }
966                 return 0;
967         }
968
969         if (is_long_mode(vcpu) &&
970             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
971                 return 1;
972         else if (is_pae_paging(vcpu) &&
973                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
974                 return 1;
975
976         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
977         vcpu->arch.cr3 = cr3;
978         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
979
980         return 0;
981 }
982 EXPORT_SYMBOL_GPL(kvm_set_cr3);
983
984 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
985 {
986         if (cr8 & CR8_RESERVED_BITS)
987                 return 1;
988         if (lapic_in_kernel(vcpu))
989                 kvm_lapic_set_tpr(vcpu, cr8);
990         else
991                 vcpu->arch.cr8 = cr8;
992         return 0;
993 }
994 EXPORT_SYMBOL_GPL(kvm_set_cr8);
995
996 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
997 {
998         if (lapic_in_kernel(vcpu))
999                 return kvm_lapic_get_cr8(vcpu);
1000         else
1001                 return vcpu->arch.cr8;
1002 }
1003 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1004
1005 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1006 {
1007         int i;
1008
1009         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1010                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1011                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1012                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1013         }
1014 }
1015
1016 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1017 {
1018         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1019                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1020 }
1021
1022 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1023 {
1024         unsigned long dr7;
1025
1026         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1027                 dr7 = vcpu->arch.guest_debug_dr7;
1028         else
1029                 dr7 = vcpu->arch.dr7;
1030         kvm_x86_ops->set_dr7(vcpu, dr7);
1031         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1032         if (dr7 & DR7_BP_EN_MASK)
1033                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1034 }
1035
1036 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1037 {
1038         u64 fixed = DR6_FIXED_1;
1039
1040         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1041                 fixed |= DR6_RTM;
1042         return fixed;
1043 }
1044
1045 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1046 {
1047         switch (dr) {
1048         case 0 ... 3:
1049                 vcpu->arch.db[dr] = val;
1050                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1051                         vcpu->arch.eff_db[dr] = val;
1052                 break;
1053         case 4:
1054                 /* fall through */
1055         case 6:
1056                 if (val & 0xffffffff00000000ULL)
1057                         return -1; /* #GP */
1058                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1059                 kvm_update_dr6(vcpu);
1060                 break;
1061         case 5:
1062                 /* fall through */
1063         default: /* 7 */
1064                 if (val & 0xffffffff00000000ULL)
1065                         return -1; /* #GP */
1066                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1067                 kvm_update_dr7(vcpu);
1068                 break;
1069         }
1070
1071         return 0;
1072 }
1073
1074 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1075 {
1076         if (__kvm_set_dr(vcpu, dr, val)) {
1077                 kvm_inject_gp(vcpu, 0);
1078                 return 1;
1079         }
1080         return 0;
1081 }
1082 EXPORT_SYMBOL_GPL(kvm_set_dr);
1083
1084 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1085 {
1086         switch (dr) {
1087         case 0 ... 3:
1088                 *val = vcpu->arch.db[dr];
1089                 break;
1090         case 4:
1091                 /* fall through */
1092         case 6:
1093                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1094                         *val = vcpu->arch.dr6;
1095                 else
1096                         *val = kvm_x86_ops->get_dr6(vcpu);
1097                 break;
1098         case 5:
1099                 /* fall through */
1100         default: /* 7 */
1101                 *val = vcpu->arch.dr7;
1102                 break;
1103         }
1104         return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(kvm_get_dr);
1107
1108 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1109 {
1110         u32 ecx = kvm_rcx_read(vcpu);
1111         u64 data;
1112         int err;
1113
1114         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1115         if (err)
1116                 return err;
1117         kvm_rax_write(vcpu, (u32)data);
1118         kvm_rdx_write(vcpu, data >> 32);
1119         return err;
1120 }
1121 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1122
1123 /*
1124  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1125  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1126  *
1127  * This list is modified at module load time to reflect the
1128  * capabilities of the host cpu. This capabilities test skips MSRs that are
1129  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1130  * may depend on host virtualization features rather than host cpu features.
1131  */
1132
1133 static u32 msrs_to_save[] = {
1134         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1135         MSR_STAR,
1136 #ifdef CONFIG_X86_64
1137         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1138 #endif
1139         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1140         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1141         MSR_IA32_SPEC_CTRL,
1142         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1143         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1144         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1145         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1146         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1147         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1148         MSR_IA32_UMWAIT_CONTROL,
1149
1150         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1151         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1152         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1153         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1154         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1155         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1156         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1157         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1158         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1159         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1160         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1161         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1162         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1163         MSR_ARCH_PERFMON_PERFCTR0 + 18, MSR_ARCH_PERFMON_PERFCTR0 + 19,
1164         MSR_ARCH_PERFMON_PERFCTR0 + 20, MSR_ARCH_PERFMON_PERFCTR0 + 21,
1165         MSR_ARCH_PERFMON_PERFCTR0 + 22, MSR_ARCH_PERFMON_PERFCTR0 + 23,
1166         MSR_ARCH_PERFMON_PERFCTR0 + 24, MSR_ARCH_PERFMON_PERFCTR0 + 25,
1167         MSR_ARCH_PERFMON_PERFCTR0 + 26, MSR_ARCH_PERFMON_PERFCTR0 + 27,
1168         MSR_ARCH_PERFMON_PERFCTR0 + 28, MSR_ARCH_PERFMON_PERFCTR0 + 29,
1169         MSR_ARCH_PERFMON_PERFCTR0 + 30, MSR_ARCH_PERFMON_PERFCTR0 + 31,
1170         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1171         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1172         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1173         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1174         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1175         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1176         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1177         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1178         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1179         MSR_ARCH_PERFMON_EVENTSEL0 + 18, MSR_ARCH_PERFMON_EVENTSEL0 + 19,
1180         MSR_ARCH_PERFMON_EVENTSEL0 + 20, MSR_ARCH_PERFMON_EVENTSEL0 + 21,
1181         MSR_ARCH_PERFMON_EVENTSEL0 + 22, MSR_ARCH_PERFMON_EVENTSEL0 + 23,
1182         MSR_ARCH_PERFMON_EVENTSEL0 + 24, MSR_ARCH_PERFMON_EVENTSEL0 + 25,
1183         MSR_ARCH_PERFMON_EVENTSEL0 + 26, MSR_ARCH_PERFMON_EVENTSEL0 + 27,
1184         MSR_ARCH_PERFMON_EVENTSEL0 + 28, MSR_ARCH_PERFMON_EVENTSEL0 + 29,
1185         MSR_ARCH_PERFMON_EVENTSEL0 + 30, MSR_ARCH_PERFMON_EVENTSEL0 + 31,
1186 };
1187
1188 static unsigned num_msrs_to_save;
1189
1190 static u32 emulated_msrs[] = {
1191         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1192         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1193         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1194         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1195         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1196         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1197         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1198         HV_X64_MSR_RESET,
1199         HV_X64_MSR_VP_INDEX,
1200         HV_X64_MSR_VP_RUNTIME,
1201         HV_X64_MSR_SCONTROL,
1202         HV_X64_MSR_STIMER0_CONFIG,
1203         HV_X64_MSR_VP_ASSIST_PAGE,
1204         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1205         HV_X64_MSR_TSC_EMULATION_STATUS,
1206
1207         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1208         MSR_KVM_PV_EOI_EN,
1209
1210         MSR_IA32_TSC_ADJUST,
1211         MSR_IA32_TSCDEADLINE,
1212         MSR_IA32_ARCH_CAPABILITIES,
1213         MSR_IA32_MISC_ENABLE,
1214         MSR_IA32_MCG_STATUS,
1215         MSR_IA32_MCG_CTL,
1216         MSR_IA32_MCG_EXT_CTL,
1217         MSR_IA32_SMBASE,
1218         MSR_SMI_COUNT,
1219         MSR_PLATFORM_INFO,
1220         MSR_MISC_FEATURES_ENABLES,
1221         MSR_AMD64_VIRT_SPEC_CTRL,
1222         MSR_IA32_POWER_CTL,
1223
1224         /*
1225          * The following list leaves out MSRs whose values are determined
1226          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1227          * We always support the "true" VMX control MSRs, even if the host
1228          * processor does not, so I am putting these registers here rather
1229          * than in msrs_to_save.
1230          */
1231         MSR_IA32_VMX_BASIC,
1232         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1233         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1234         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1235         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1236         MSR_IA32_VMX_MISC,
1237         MSR_IA32_VMX_CR0_FIXED0,
1238         MSR_IA32_VMX_CR4_FIXED0,
1239         MSR_IA32_VMX_VMCS_ENUM,
1240         MSR_IA32_VMX_PROCBASED_CTLS2,
1241         MSR_IA32_VMX_EPT_VPID_CAP,
1242         MSR_IA32_VMX_VMFUNC,
1243
1244         MSR_K7_HWCR,
1245         MSR_KVM_POLL_CONTROL,
1246 };
1247
1248 static unsigned num_emulated_msrs;
1249
1250 /*
1251  * List of msr numbers which are used to expose MSR-based features that
1252  * can be used by a hypervisor to validate requested CPU features.
1253  */
1254 static u32 msr_based_features[] = {
1255         MSR_IA32_VMX_BASIC,
1256         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1257         MSR_IA32_VMX_PINBASED_CTLS,
1258         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1259         MSR_IA32_VMX_PROCBASED_CTLS,
1260         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1261         MSR_IA32_VMX_EXIT_CTLS,
1262         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1263         MSR_IA32_VMX_ENTRY_CTLS,
1264         MSR_IA32_VMX_MISC,
1265         MSR_IA32_VMX_CR0_FIXED0,
1266         MSR_IA32_VMX_CR0_FIXED1,
1267         MSR_IA32_VMX_CR4_FIXED0,
1268         MSR_IA32_VMX_CR4_FIXED1,
1269         MSR_IA32_VMX_VMCS_ENUM,
1270         MSR_IA32_VMX_PROCBASED_CTLS2,
1271         MSR_IA32_VMX_EPT_VPID_CAP,
1272         MSR_IA32_VMX_VMFUNC,
1273
1274         MSR_F10H_DECFG,
1275         MSR_IA32_UCODE_REV,
1276         MSR_IA32_ARCH_CAPABILITIES,
1277 };
1278
1279 static unsigned int num_msr_based_features;
1280
1281 static u64 kvm_get_arch_capabilities(void)
1282 {
1283         u64 data = 0;
1284
1285         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1286                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1287
1288         /*
1289          * If we're doing cache flushes (either "always" or "cond")
1290          * we will do one whenever the guest does a vmlaunch/vmresume.
1291          * If an outer hypervisor is doing the cache flush for us
1292          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1293          * capability to the guest too, and if EPT is disabled we're not
1294          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1295          * require a nested hypervisor to do a flush of its own.
1296          */
1297         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1298                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1299
1300         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1301                 data |= ARCH_CAP_RDCL_NO;
1302         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1303                 data |= ARCH_CAP_SSB_NO;
1304         if (!boot_cpu_has_bug(X86_BUG_MDS))
1305                 data |= ARCH_CAP_MDS_NO;
1306
1307         return data;
1308 }
1309
1310 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1311 {
1312         switch (msr->index) {
1313         case MSR_IA32_ARCH_CAPABILITIES:
1314                 msr->data = kvm_get_arch_capabilities();
1315                 break;
1316         case MSR_IA32_UCODE_REV:
1317                 rdmsrl_safe(msr->index, &msr->data);
1318                 break;
1319         default:
1320                 if (kvm_x86_ops->get_msr_feature(msr))
1321                         return 1;
1322         }
1323         return 0;
1324 }
1325
1326 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1327 {
1328         struct kvm_msr_entry msr;
1329         int r;
1330
1331         msr.index = index;
1332         r = kvm_get_msr_feature(&msr);
1333         if (r)
1334                 return r;
1335
1336         *data = msr.data;
1337
1338         return 0;
1339 }
1340
1341 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1342 {
1343         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1344                 return false;
1345
1346         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1347                 return false;
1348
1349         if (efer & (EFER_LME | EFER_LMA) &&
1350             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1351                 return false;
1352
1353         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1354                 return false;
1355
1356         return true;
1357
1358 }
1359 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1360 {
1361         if (efer & efer_reserved_bits)
1362                 return false;
1363
1364         return __kvm_valid_efer(vcpu, efer);
1365 }
1366 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1367
1368 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1369 {
1370         u64 old_efer = vcpu->arch.efer;
1371         u64 efer = msr_info->data;
1372
1373         if (efer & efer_reserved_bits)
1374                 return 1;
1375
1376         if (!msr_info->host_initiated) {
1377                 if (!__kvm_valid_efer(vcpu, efer))
1378                         return 1;
1379
1380                 if (is_paging(vcpu) &&
1381                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1382                         return 1;
1383         }
1384
1385         efer &= ~EFER_LMA;
1386         efer |= vcpu->arch.efer & EFER_LMA;
1387
1388         kvm_x86_ops->set_efer(vcpu, efer);
1389
1390         /* Update reserved bits */
1391         if ((efer ^ old_efer) & EFER_NX)
1392                 kvm_mmu_reset_context(vcpu);
1393
1394         return 0;
1395 }
1396
1397 void kvm_enable_efer_bits(u64 mask)
1398 {
1399        efer_reserved_bits &= ~mask;
1400 }
1401 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1402
1403 /*
1404  * Write @data into the MSR specified by @index.  Select MSR specific fault
1405  * checks are bypassed if @host_initiated is %true.
1406  * Returns 0 on success, non-0 otherwise.
1407  * Assumes vcpu_load() was already called.
1408  */
1409 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1410                          bool host_initiated)
1411 {
1412         struct msr_data msr;
1413
1414         switch (index) {
1415         case MSR_FS_BASE:
1416         case MSR_GS_BASE:
1417         case MSR_KERNEL_GS_BASE:
1418         case MSR_CSTAR:
1419         case MSR_LSTAR:
1420                 if (is_noncanonical_address(data, vcpu))
1421                         return 1;
1422                 break;
1423         case MSR_IA32_SYSENTER_EIP:
1424         case MSR_IA32_SYSENTER_ESP:
1425                 /*
1426                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1427                  * non-canonical address is written on Intel but not on
1428                  * AMD (which ignores the top 32-bits, because it does
1429                  * not implement 64-bit SYSENTER).
1430                  *
1431                  * 64-bit code should hence be able to write a non-canonical
1432                  * value on AMD.  Making the address canonical ensures that
1433                  * vmentry does not fail on Intel after writing a non-canonical
1434                  * value, and that something deterministic happens if the guest
1435                  * invokes 64-bit SYSENTER.
1436                  */
1437                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1438         }
1439
1440         msr.data = data;
1441         msr.index = index;
1442         msr.host_initiated = host_initiated;
1443
1444         return kvm_x86_ops->set_msr(vcpu, &msr);
1445 }
1446
1447 /*
1448  * Read the MSR specified by @index into @data.  Select MSR specific fault
1449  * checks are bypassed if @host_initiated is %true.
1450  * Returns 0 on success, non-0 otherwise.
1451  * Assumes vcpu_load() was already called.
1452  */
1453 static int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1454                          bool host_initiated)
1455 {
1456         struct msr_data msr;
1457         int ret;
1458
1459         msr.index = index;
1460         msr.host_initiated = host_initiated;
1461
1462         ret = kvm_x86_ops->get_msr(vcpu, &msr);
1463         if (!ret)
1464                 *data = msr.data;
1465         return ret;
1466 }
1467
1468 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1469 {
1470         return __kvm_get_msr(vcpu, index, data, false);
1471 }
1472 EXPORT_SYMBOL_GPL(kvm_get_msr);
1473
1474 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1475 {
1476         return __kvm_set_msr(vcpu, index, data, false);
1477 }
1478 EXPORT_SYMBOL_GPL(kvm_set_msr);
1479
1480 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1481 {
1482         u32 ecx = kvm_rcx_read(vcpu);
1483         u64 data;
1484
1485         if (kvm_get_msr(vcpu, ecx, &data)) {
1486                 trace_kvm_msr_read_ex(ecx);
1487                 kvm_inject_gp(vcpu, 0);
1488                 return 1;
1489         }
1490
1491         trace_kvm_msr_read(ecx, data);
1492
1493         kvm_rax_write(vcpu, data & -1u);
1494         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1495         return kvm_skip_emulated_instruction(vcpu);
1496 }
1497 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1498
1499 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1500 {
1501         u32 ecx = kvm_rcx_read(vcpu);
1502         u64 data = kvm_read_edx_eax(vcpu);
1503
1504         if (kvm_set_msr(vcpu, ecx, data)) {
1505                 trace_kvm_msr_write_ex(ecx, data);
1506                 kvm_inject_gp(vcpu, 0);
1507                 return 1;
1508         }
1509
1510         trace_kvm_msr_write(ecx, data);
1511         return kvm_skip_emulated_instruction(vcpu);
1512 }
1513 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1514
1515 /*
1516  * Adapt set_msr() to msr_io()'s calling convention
1517  */
1518 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1519 {
1520         return __kvm_get_msr(vcpu, index, data, true);
1521 }
1522
1523 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1524 {
1525         return __kvm_set_msr(vcpu, index, *data, true);
1526 }
1527
1528 #ifdef CONFIG_X86_64
1529 struct pvclock_gtod_data {
1530         seqcount_t      seq;
1531
1532         struct { /* extract of a clocksource struct */
1533                 int vclock_mode;
1534                 u64     cycle_last;
1535                 u64     mask;
1536                 u32     mult;
1537                 u32     shift;
1538         } clock;
1539
1540         u64             boot_ns;
1541         u64             nsec_base;
1542         u64             wall_time_sec;
1543 };
1544
1545 static struct pvclock_gtod_data pvclock_gtod_data;
1546
1547 static void update_pvclock_gtod(struct timekeeper *tk)
1548 {
1549         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1550         u64 boot_ns;
1551
1552         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1553
1554         write_seqcount_begin(&vdata->seq);
1555
1556         /* copy pvclock gtod data */
1557         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1558         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1559         vdata->clock.mask               = tk->tkr_mono.mask;
1560         vdata->clock.mult               = tk->tkr_mono.mult;
1561         vdata->clock.shift              = tk->tkr_mono.shift;
1562
1563         vdata->boot_ns                  = boot_ns;
1564         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1565
1566         vdata->wall_time_sec            = tk->xtime_sec;
1567
1568         write_seqcount_end(&vdata->seq);
1569 }
1570 #endif
1571
1572 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1573 {
1574         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1575         kvm_vcpu_kick(vcpu);
1576 }
1577
1578 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1579 {
1580         int version;
1581         int r;
1582         struct pvclock_wall_clock wc;
1583         struct timespec64 boot;
1584
1585         if (!wall_clock)
1586                 return;
1587
1588         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1589         if (r)
1590                 return;
1591
1592         if (version & 1)
1593                 ++version;  /* first time write, random junk */
1594
1595         ++version;
1596
1597         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1598                 return;
1599
1600         /*
1601          * The guest calculates current wall clock time by adding
1602          * system time (updated by kvm_guest_time_update below) to the
1603          * wall clock specified here.  guest system time equals host
1604          * system time for us, thus we must fill in host boot time here.
1605          */
1606         getboottime64(&boot);
1607
1608         if (kvm->arch.kvmclock_offset) {
1609                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1610                 boot = timespec64_sub(boot, ts);
1611         }
1612         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1613         wc.nsec = boot.tv_nsec;
1614         wc.version = version;
1615
1616         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1617
1618         version++;
1619         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1620 }
1621
1622 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1623 {
1624         do_shl32_div32(dividend, divisor);
1625         return dividend;
1626 }
1627
1628 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1629                                s8 *pshift, u32 *pmultiplier)
1630 {
1631         uint64_t scaled64;
1632         int32_t  shift = 0;
1633         uint64_t tps64;
1634         uint32_t tps32;
1635
1636         tps64 = base_hz;
1637         scaled64 = scaled_hz;
1638         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1639                 tps64 >>= 1;
1640                 shift--;
1641         }
1642
1643         tps32 = (uint32_t)tps64;
1644         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1645                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1646                         scaled64 >>= 1;
1647                 else
1648                         tps32 <<= 1;
1649                 shift++;
1650         }
1651
1652         *pshift = shift;
1653         *pmultiplier = div_frac(scaled64, tps32);
1654 }
1655
1656 #ifdef CONFIG_X86_64
1657 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1658 #endif
1659
1660 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1661 static unsigned long max_tsc_khz;
1662
1663 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1664 {
1665         u64 v = (u64)khz * (1000000 + ppm);
1666         do_div(v, 1000000);
1667         return v;
1668 }
1669
1670 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1671 {
1672         u64 ratio;
1673
1674         /* Guest TSC same frequency as host TSC? */
1675         if (!scale) {
1676                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1677                 return 0;
1678         }
1679
1680         /* TSC scaling supported? */
1681         if (!kvm_has_tsc_control) {
1682                 if (user_tsc_khz > tsc_khz) {
1683                         vcpu->arch.tsc_catchup = 1;
1684                         vcpu->arch.tsc_always_catchup = 1;
1685                         return 0;
1686                 } else {
1687                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1688                         return -1;
1689                 }
1690         }
1691
1692         /* TSC scaling required  - calculate ratio */
1693         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1694                                 user_tsc_khz, tsc_khz);
1695
1696         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1697                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1698                                     user_tsc_khz);
1699                 return -1;
1700         }
1701
1702         vcpu->arch.tsc_scaling_ratio = ratio;
1703         return 0;
1704 }
1705
1706 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1707 {
1708         u32 thresh_lo, thresh_hi;
1709         int use_scaling = 0;
1710
1711         /* tsc_khz can be zero if TSC calibration fails */
1712         if (user_tsc_khz == 0) {
1713                 /* set tsc_scaling_ratio to a safe value */
1714                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1715                 return -1;
1716         }
1717
1718         /* Compute a scale to convert nanoseconds in TSC cycles */
1719         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1720                            &vcpu->arch.virtual_tsc_shift,
1721                            &vcpu->arch.virtual_tsc_mult);
1722         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1723
1724         /*
1725          * Compute the variation in TSC rate which is acceptable
1726          * within the range of tolerance and decide if the
1727          * rate being applied is within that bounds of the hardware
1728          * rate.  If so, no scaling or compensation need be done.
1729          */
1730         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1731         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1732         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1733                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1734                 use_scaling = 1;
1735         }
1736         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1737 }
1738
1739 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1740 {
1741         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1742                                       vcpu->arch.virtual_tsc_mult,
1743                                       vcpu->arch.virtual_tsc_shift);
1744         tsc += vcpu->arch.this_tsc_write;
1745         return tsc;
1746 }
1747
1748 static inline int gtod_is_based_on_tsc(int mode)
1749 {
1750         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1751 }
1752
1753 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1754 {
1755 #ifdef CONFIG_X86_64
1756         bool vcpus_matched;
1757         struct kvm_arch *ka = &vcpu->kvm->arch;
1758         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1759
1760         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1761                          atomic_read(&vcpu->kvm->online_vcpus));
1762
1763         /*
1764          * Once the masterclock is enabled, always perform request in
1765          * order to update it.
1766          *
1767          * In order to enable masterclock, the host clocksource must be TSC
1768          * and the vcpus need to have matched TSCs.  When that happens,
1769          * perform request to enable masterclock.
1770          */
1771         if (ka->use_master_clock ||
1772             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1773                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1774
1775         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1776                             atomic_read(&vcpu->kvm->online_vcpus),
1777                             ka->use_master_clock, gtod->clock.vclock_mode);
1778 #endif
1779 }
1780
1781 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1782 {
1783         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1784         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1785 }
1786
1787 /*
1788  * Multiply tsc by a fixed point number represented by ratio.
1789  *
1790  * The most significant 64-N bits (mult) of ratio represent the
1791  * integral part of the fixed point number; the remaining N bits
1792  * (frac) represent the fractional part, ie. ratio represents a fixed
1793  * point number (mult + frac * 2^(-N)).
1794  *
1795  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1796  */
1797 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1798 {
1799         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1800 }
1801
1802 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1803 {
1804         u64 _tsc = tsc;
1805         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1806
1807         if (ratio != kvm_default_tsc_scaling_ratio)
1808                 _tsc = __scale_tsc(ratio, tsc);
1809
1810         return _tsc;
1811 }
1812 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1813
1814 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1815 {
1816         u64 tsc;
1817
1818         tsc = kvm_scale_tsc(vcpu, rdtsc());
1819
1820         return target_tsc - tsc;
1821 }
1822
1823 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1824 {
1825         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1826
1827         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1828 }
1829 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1830
1831 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1832 {
1833         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1834 }
1835
1836 static inline bool kvm_check_tsc_unstable(void)
1837 {
1838 #ifdef CONFIG_X86_64
1839         /*
1840          * TSC is marked unstable when we're running on Hyper-V,
1841          * 'TSC page' clocksource is good.
1842          */
1843         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1844                 return false;
1845 #endif
1846         return check_tsc_unstable();
1847 }
1848
1849 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1850 {
1851         struct kvm *kvm = vcpu->kvm;
1852         u64 offset, ns, elapsed;
1853         unsigned long flags;
1854         bool matched;
1855         bool already_matched;
1856         u64 data = msr->data;
1857         bool synchronizing = false;
1858
1859         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1860         offset = kvm_compute_tsc_offset(vcpu, data);
1861         ns = ktime_get_boottime_ns();
1862         elapsed = ns - kvm->arch.last_tsc_nsec;
1863
1864         if (vcpu->arch.virtual_tsc_khz) {
1865                 if (data == 0 && msr->host_initiated) {
1866                         /*
1867                          * detection of vcpu initialization -- need to sync
1868                          * with other vCPUs. This particularly helps to keep
1869                          * kvm_clock stable after CPU hotplug
1870                          */
1871                         synchronizing = true;
1872                 } else {
1873                         u64 tsc_exp = kvm->arch.last_tsc_write +
1874                                                 nsec_to_cycles(vcpu, elapsed);
1875                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1876                         /*
1877                          * Special case: TSC write with a small delta (1 second)
1878                          * of virtual cycle time against real time is
1879                          * interpreted as an attempt to synchronize the CPU.
1880                          */
1881                         synchronizing = data < tsc_exp + tsc_hz &&
1882                                         data + tsc_hz > tsc_exp;
1883                 }
1884         }
1885
1886         /*
1887          * For a reliable TSC, we can match TSC offsets, and for an unstable
1888          * TSC, we add elapsed time in this computation.  We could let the
1889          * compensation code attempt to catch up if we fall behind, but
1890          * it's better to try to match offsets from the beginning.
1891          */
1892         if (synchronizing &&
1893             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1894                 if (!kvm_check_tsc_unstable()) {
1895                         offset = kvm->arch.cur_tsc_offset;
1896                 } else {
1897                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1898                         data += delta;
1899                         offset = kvm_compute_tsc_offset(vcpu, data);
1900                 }
1901                 matched = true;
1902                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1903         } else {
1904                 /*
1905                  * We split periods of matched TSC writes into generations.
1906                  * For each generation, we track the original measured
1907                  * nanosecond time, offset, and write, so if TSCs are in
1908                  * sync, we can match exact offset, and if not, we can match
1909                  * exact software computation in compute_guest_tsc()
1910                  *
1911                  * These values are tracked in kvm->arch.cur_xxx variables.
1912                  */
1913                 kvm->arch.cur_tsc_generation++;
1914                 kvm->arch.cur_tsc_nsec = ns;
1915                 kvm->arch.cur_tsc_write = data;
1916                 kvm->arch.cur_tsc_offset = offset;
1917                 matched = false;
1918         }
1919
1920         /*
1921          * We also track th most recent recorded KHZ, write and time to
1922          * allow the matching interval to be extended at each write.
1923          */
1924         kvm->arch.last_tsc_nsec = ns;
1925         kvm->arch.last_tsc_write = data;
1926         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1927
1928         vcpu->arch.last_guest_tsc = data;
1929
1930         /* Keep track of which generation this VCPU has synchronized to */
1931         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1932         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1933         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1934
1935         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1936                 update_ia32_tsc_adjust_msr(vcpu, offset);
1937
1938         kvm_vcpu_write_tsc_offset(vcpu, offset);
1939         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1940
1941         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1942         if (!matched) {
1943                 kvm->arch.nr_vcpus_matched_tsc = 0;
1944         } else if (!already_matched) {
1945                 kvm->arch.nr_vcpus_matched_tsc++;
1946         }
1947
1948         kvm_track_tsc_matching(vcpu);
1949         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1950 }
1951
1952 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1953
1954 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1955                                            s64 adjustment)
1956 {
1957         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1958         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1959 }
1960
1961 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1962 {
1963         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1964                 WARN_ON(adjustment < 0);
1965         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1966         adjust_tsc_offset_guest(vcpu, adjustment);
1967 }
1968
1969 #ifdef CONFIG_X86_64
1970
1971 static u64 read_tsc(void)
1972 {
1973         u64 ret = (u64)rdtsc_ordered();
1974         u64 last = pvclock_gtod_data.clock.cycle_last;
1975
1976         if (likely(ret >= last))
1977                 return ret;
1978
1979         /*
1980          * GCC likes to generate cmov here, but this branch is extremely
1981          * predictable (it's just a function of time and the likely is
1982          * very likely) and there's a data dependence, so force GCC
1983          * to generate a branch instead.  I don't barrier() because
1984          * we don't actually need a barrier, and if this function
1985          * ever gets inlined it will generate worse code.
1986          */
1987         asm volatile ("");
1988         return last;
1989 }
1990
1991 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1992 {
1993         long v;
1994         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1995         u64 tsc_pg_val;
1996
1997         switch (gtod->clock.vclock_mode) {
1998         case VCLOCK_HVCLOCK:
1999                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2000                                                   tsc_timestamp);
2001                 if (tsc_pg_val != U64_MAX) {
2002                         /* TSC page valid */
2003                         *mode = VCLOCK_HVCLOCK;
2004                         v = (tsc_pg_val - gtod->clock.cycle_last) &
2005                                 gtod->clock.mask;
2006                 } else {
2007                         /* TSC page invalid */
2008                         *mode = VCLOCK_NONE;
2009                 }
2010                 break;
2011         case VCLOCK_TSC:
2012                 *mode = VCLOCK_TSC;
2013                 *tsc_timestamp = read_tsc();
2014                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
2015                         gtod->clock.mask;
2016                 break;
2017         default:
2018                 *mode = VCLOCK_NONE;
2019         }
2020
2021         if (*mode == VCLOCK_NONE)
2022                 *tsc_timestamp = v = 0;
2023
2024         return v * gtod->clock.mult;
2025 }
2026
2027 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
2028 {
2029         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2030         unsigned long seq;
2031         int mode;
2032         u64 ns;
2033
2034         do {
2035                 seq = read_seqcount_begin(&gtod->seq);
2036                 ns = gtod->nsec_base;
2037                 ns += vgettsc(tsc_timestamp, &mode);
2038                 ns >>= gtod->clock.shift;
2039                 ns += gtod->boot_ns;
2040         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2041         *t = ns;
2042
2043         return mode;
2044 }
2045
2046 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2047 {
2048         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2049         unsigned long seq;
2050         int mode;
2051         u64 ns;
2052
2053         do {
2054                 seq = read_seqcount_begin(&gtod->seq);
2055                 ts->tv_sec = gtod->wall_time_sec;
2056                 ns = gtod->nsec_base;
2057                 ns += vgettsc(tsc_timestamp, &mode);
2058                 ns >>= gtod->clock.shift;
2059         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2060
2061         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2062         ts->tv_nsec = ns;
2063
2064         return mode;
2065 }
2066
2067 /* returns true if host is using TSC based clocksource */
2068 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2069 {
2070         /* checked again under seqlock below */
2071         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2072                 return false;
2073
2074         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
2075                                                       tsc_timestamp));
2076 }
2077
2078 /* returns true if host is using TSC based clocksource */
2079 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2080                                            u64 *tsc_timestamp)
2081 {
2082         /* checked again under seqlock below */
2083         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2084                 return false;
2085
2086         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2087 }
2088 #endif
2089
2090 /*
2091  *
2092  * Assuming a stable TSC across physical CPUS, and a stable TSC
2093  * across virtual CPUs, the following condition is possible.
2094  * Each numbered line represents an event visible to both
2095  * CPUs at the next numbered event.
2096  *
2097  * "timespecX" represents host monotonic time. "tscX" represents
2098  * RDTSC value.
2099  *
2100  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2101  *
2102  * 1.  read timespec0,tsc0
2103  * 2.                                   | timespec1 = timespec0 + N
2104  *                                      | tsc1 = tsc0 + M
2105  * 3. transition to guest               | transition to guest
2106  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2107  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2108  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2109  *
2110  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2111  *
2112  *      - ret0 < ret1
2113  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2114  *              ...
2115  *      - 0 < N - M => M < N
2116  *
2117  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2118  * always the case (the difference between two distinct xtime instances
2119  * might be smaller then the difference between corresponding TSC reads,
2120  * when updating guest vcpus pvclock areas).
2121  *
2122  * To avoid that problem, do not allow visibility of distinct
2123  * system_timestamp/tsc_timestamp values simultaneously: use a master
2124  * copy of host monotonic time values. Update that master copy
2125  * in lockstep.
2126  *
2127  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2128  *
2129  */
2130
2131 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2132 {
2133 #ifdef CONFIG_X86_64
2134         struct kvm_arch *ka = &kvm->arch;
2135         int vclock_mode;
2136         bool host_tsc_clocksource, vcpus_matched;
2137
2138         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2139                         atomic_read(&kvm->online_vcpus));
2140
2141         /*
2142          * If the host uses TSC clock, then passthrough TSC as stable
2143          * to the guest.
2144          */
2145         host_tsc_clocksource = kvm_get_time_and_clockread(
2146                                         &ka->master_kernel_ns,
2147                                         &ka->master_cycle_now);
2148
2149         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2150                                 && !ka->backwards_tsc_observed
2151                                 && !ka->boot_vcpu_runs_old_kvmclock;
2152
2153         if (ka->use_master_clock)
2154                 atomic_set(&kvm_guest_has_master_clock, 1);
2155
2156         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2157         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2158                                         vcpus_matched);
2159 #endif
2160 }
2161
2162 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2163 {
2164         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2165 }
2166
2167 static void kvm_gen_update_masterclock(struct kvm *kvm)
2168 {
2169 #ifdef CONFIG_X86_64
2170         int i;
2171         struct kvm_vcpu *vcpu;
2172         struct kvm_arch *ka = &kvm->arch;
2173
2174         spin_lock(&ka->pvclock_gtod_sync_lock);
2175         kvm_make_mclock_inprogress_request(kvm);
2176         /* no guest entries from this point */
2177         pvclock_update_vm_gtod_copy(kvm);
2178
2179         kvm_for_each_vcpu(i, vcpu, kvm)
2180                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2181
2182         /* guest entries allowed */
2183         kvm_for_each_vcpu(i, vcpu, kvm)
2184                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2185
2186         spin_unlock(&ka->pvclock_gtod_sync_lock);
2187 #endif
2188 }
2189
2190 u64 get_kvmclock_ns(struct kvm *kvm)
2191 {
2192         struct kvm_arch *ka = &kvm->arch;
2193         struct pvclock_vcpu_time_info hv_clock;
2194         u64 ret;
2195
2196         spin_lock(&ka->pvclock_gtod_sync_lock);
2197         if (!ka->use_master_clock) {
2198                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2199                 return ktime_get_boottime_ns() + ka->kvmclock_offset;
2200         }
2201
2202         hv_clock.tsc_timestamp = ka->master_cycle_now;
2203         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2204         spin_unlock(&ka->pvclock_gtod_sync_lock);
2205
2206         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2207         get_cpu();
2208
2209         if (__this_cpu_read(cpu_tsc_khz)) {
2210                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2211                                    &hv_clock.tsc_shift,
2212                                    &hv_clock.tsc_to_system_mul);
2213                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2214         } else
2215                 ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2216
2217         put_cpu();
2218
2219         return ret;
2220 }
2221
2222 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2223 {
2224         struct kvm_vcpu_arch *vcpu = &v->arch;
2225         struct pvclock_vcpu_time_info guest_hv_clock;
2226
2227         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2228                 &guest_hv_clock, sizeof(guest_hv_clock))))
2229                 return;
2230
2231         /* This VCPU is paused, but it's legal for a guest to read another
2232          * VCPU's kvmclock, so we really have to follow the specification where
2233          * it says that version is odd if data is being modified, and even after
2234          * it is consistent.
2235          *
2236          * Version field updates must be kept separate.  This is because
2237          * kvm_write_guest_cached might use a "rep movs" instruction, and
2238          * writes within a string instruction are weakly ordered.  So there
2239          * are three writes overall.
2240          *
2241          * As a small optimization, only write the version field in the first
2242          * and third write.  The vcpu->pv_time cache is still valid, because the
2243          * version field is the first in the struct.
2244          */
2245         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2246
2247         if (guest_hv_clock.version & 1)
2248                 ++guest_hv_clock.version;  /* first time write, random junk */
2249
2250         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2251         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2252                                 &vcpu->hv_clock,
2253                                 sizeof(vcpu->hv_clock.version));
2254
2255         smp_wmb();
2256
2257         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2258         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2259
2260         if (vcpu->pvclock_set_guest_stopped_request) {
2261                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2262                 vcpu->pvclock_set_guest_stopped_request = false;
2263         }
2264
2265         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2266
2267         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2268                                 &vcpu->hv_clock,
2269                                 sizeof(vcpu->hv_clock));
2270
2271         smp_wmb();
2272
2273         vcpu->hv_clock.version++;
2274         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2275                                 &vcpu->hv_clock,
2276                                 sizeof(vcpu->hv_clock.version));
2277 }
2278
2279 static int kvm_guest_time_update(struct kvm_vcpu *v)
2280 {
2281         unsigned long flags, tgt_tsc_khz;
2282         struct kvm_vcpu_arch *vcpu = &v->arch;
2283         struct kvm_arch *ka = &v->kvm->arch;
2284         s64 kernel_ns;
2285         u64 tsc_timestamp, host_tsc;
2286         u8 pvclock_flags;
2287         bool use_master_clock;
2288
2289         kernel_ns = 0;
2290         host_tsc = 0;
2291
2292         /*
2293          * If the host uses TSC clock, then passthrough TSC as stable
2294          * to the guest.
2295          */
2296         spin_lock(&ka->pvclock_gtod_sync_lock);
2297         use_master_clock = ka->use_master_clock;
2298         if (use_master_clock) {
2299                 host_tsc = ka->master_cycle_now;
2300                 kernel_ns = ka->master_kernel_ns;
2301         }
2302         spin_unlock(&ka->pvclock_gtod_sync_lock);
2303
2304         /* Keep irq disabled to prevent changes to the clock */
2305         local_irq_save(flags);
2306         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2307         if (unlikely(tgt_tsc_khz == 0)) {
2308                 local_irq_restore(flags);
2309                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2310                 return 1;
2311         }
2312         if (!use_master_clock) {
2313                 host_tsc = rdtsc();
2314                 kernel_ns = ktime_get_boottime_ns();
2315         }
2316
2317         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2318
2319         /*
2320          * We may have to catch up the TSC to match elapsed wall clock
2321          * time for two reasons, even if kvmclock is used.
2322          *   1) CPU could have been running below the maximum TSC rate
2323          *   2) Broken TSC compensation resets the base at each VCPU
2324          *      entry to avoid unknown leaps of TSC even when running
2325          *      again on the same CPU.  This may cause apparent elapsed
2326          *      time to disappear, and the guest to stand still or run
2327          *      very slowly.
2328          */
2329         if (vcpu->tsc_catchup) {
2330                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2331                 if (tsc > tsc_timestamp) {
2332                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2333                         tsc_timestamp = tsc;
2334                 }
2335         }
2336
2337         local_irq_restore(flags);
2338
2339         /* With all the info we got, fill in the values */
2340
2341         if (kvm_has_tsc_control)
2342                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2343
2344         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2345                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2346                                    &vcpu->hv_clock.tsc_shift,
2347                                    &vcpu->hv_clock.tsc_to_system_mul);
2348                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2349         }
2350
2351         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2352         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2353         vcpu->last_guest_tsc = tsc_timestamp;
2354
2355         /* If the host uses TSC clocksource, then it is stable */
2356         pvclock_flags = 0;
2357         if (use_master_clock)
2358                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2359
2360         vcpu->hv_clock.flags = pvclock_flags;
2361
2362         if (vcpu->pv_time_enabled)
2363                 kvm_setup_pvclock_page(v);
2364         if (v == kvm_get_vcpu(v->kvm, 0))
2365                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2366         return 0;
2367 }
2368
2369 /*
2370  * kvmclock updates which are isolated to a given vcpu, such as
2371  * vcpu->cpu migration, should not allow system_timestamp from
2372  * the rest of the vcpus to remain static. Otherwise ntp frequency
2373  * correction applies to one vcpu's system_timestamp but not
2374  * the others.
2375  *
2376  * So in those cases, request a kvmclock update for all vcpus.
2377  * We need to rate-limit these requests though, as they can
2378  * considerably slow guests that have a large number of vcpus.
2379  * The time for a remote vcpu to update its kvmclock is bound
2380  * by the delay we use to rate-limit the updates.
2381  */
2382
2383 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2384
2385 static void kvmclock_update_fn(struct work_struct *work)
2386 {
2387         int i;
2388         struct delayed_work *dwork = to_delayed_work(work);
2389         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2390                                            kvmclock_update_work);
2391         struct kvm *kvm = container_of(ka, struct kvm, arch);
2392         struct kvm_vcpu *vcpu;
2393
2394         kvm_for_each_vcpu(i, vcpu, kvm) {
2395                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2396                 kvm_vcpu_kick(vcpu);
2397         }
2398 }
2399
2400 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2401 {
2402         struct kvm *kvm = v->kvm;
2403
2404         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2405         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2406                                         KVMCLOCK_UPDATE_DELAY);
2407 }
2408
2409 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2410
2411 static void kvmclock_sync_fn(struct work_struct *work)
2412 {
2413         struct delayed_work *dwork = to_delayed_work(work);
2414         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2415                                            kvmclock_sync_work);
2416         struct kvm *kvm = container_of(ka, struct kvm, arch);
2417
2418         if (!kvmclock_periodic_sync)
2419                 return;
2420
2421         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2422         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2423                                         KVMCLOCK_SYNC_PERIOD);
2424 }
2425
2426 /*
2427  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2428  */
2429 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2430 {
2431         /* McStatusWrEn enabled? */
2432         if (guest_cpuid_is_amd(vcpu))
2433                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2434
2435         return false;
2436 }
2437
2438 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2439 {
2440         u64 mcg_cap = vcpu->arch.mcg_cap;
2441         unsigned bank_num = mcg_cap & 0xff;
2442         u32 msr = msr_info->index;
2443         u64 data = msr_info->data;
2444
2445         switch (msr) {
2446         case MSR_IA32_MCG_STATUS:
2447                 vcpu->arch.mcg_status = data;
2448                 break;
2449         case MSR_IA32_MCG_CTL:
2450                 if (!(mcg_cap & MCG_CTL_P) &&
2451                     (data || !msr_info->host_initiated))
2452                         return 1;
2453                 if (data != 0 && data != ~(u64)0)
2454                         return 1;
2455                 vcpu->arch.mcg_ctl = data;
2456                 break;
2457         default:
2458                 if (msr >= MSR_IA32_MC0_CTL &&
2459                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2460                         u32 offset = msr - MSR_IA32_MC0_CTL;
2461                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2462                          * some Linux kernels though clear bit 10 in bank 4 to
2463                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2464                          * this to avoid an uncatched #GP in the guest
2465                          */
2466                         if ((offset & 0x3) == 0 &&
2467                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2468                                 return -1;
2469
2470                         /* MCi_STATUS */
2471                         if (!msr_info->host_initiated &&
2472                             (offset & 0x3) == 1 && data != 0) {
2473                                 if (!can_set_mci_status(vcpu))
2474                                         return -1;
2475                         }
2476
2477                         vcpu->arch.mce_banks[offset] = data;
2478                         break;
2479                 }
2480                 return 1;
2481         }
2482         return 0;
2483 }
2484
2485 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2486 {
2487         struct kvm *kvm = vcpu->kvm;
2488         int lm = is_long_mode(vcpu);
2489         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2490                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2491         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2492                 : kvm->arch.xen_hvm_config.blob_size_32;
2493         u32 page_num = data & ~PAGE_MASK;
2494         u64 page_addr = data & PAGE_MASK;
2495         u8 *page;
2496         int r;
2497
2498         r = -E2BIG;
2499         if (page_num >= blob_size)
2500                 goto out;
2501         r = -ENOMEM;
2502         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2503         if (IS_ERR(page)) {
2504                 r = PTR_ERR(page);
2505                 goto out;
2506         }
2507         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2508                 goto out_free;
2509         r = 0;
2510 out_free:
2511         kfree(page);
2512 out:
2513         return r;
2514 }
2515
2516 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2517 {
2518         gpa_t gpa = data & ~0x3f;
2519
2520         /* Bits 3:5 are reserved, Should be zero */
2521         if (data & 0x38)
2522                 return 1;
2523
2524         vcpu->arch.apf.msr_val = data;
2525
2526         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2527                 kvm_clear_async_pf_completion_queue(vcpu);
2528                 kvm_async_pf_hash_reset(vcpu);
2529                 return 0;
2530         }
2531
2532         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2533                                         sizeof(u32)))
2534                 return 1;
2535
2536         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2537         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2538         kvm_async_pf_wakeup_all(vcpu);
2539         return 0;
2540 }
2541
2542 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2543 {
2544         vcpu->arch.pv_time_enabled = false;
2545 }
2546
2547 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2548 {
2549         ++vcpu->stat.tlb_flush;
2550         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2551 }
2552
2553 static void record_steal_time(struct kvm_vcpu *vcpu)
2554 {
2555         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2556                 return;
2557
2558         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2559                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2560                 return;
2561
2562         /*
2563          * Doing a TLB flush here, on the guest's behalf, can avoid
2564          * expensive IPIs.
2565          */
2566         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2567                 vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2568         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2569                 kvm_vcpu_flush_tlb(vcpu, false);
2570
2571         if (vcpu->arch.st.steal.version & 1)
2572                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2573
2574         vcpu->arch.st.steal.version += 1;
2575
2576         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2577                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2578
2579         smp_wmb();
2580
2581         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2582                 vcpu->arch.st.last_steal;
2583         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2584
2585         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2586                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2587
2588         smp_wmb();
2589
2590         vcpu->arch.st.steal.version += 1;
2591
2592         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2593                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2594 }
2595
2596 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2597 {
2598         bool pr = false;
2599         u32 msr = msr_info->index;
2600         u64 data = msr_info->data;
2601
2602         switch (msr) {
2603         case MSR_AMD64_NB_CFG:
2604         case MSR_IA32_UCODE_WRITE:
2605         case MSR_VM_HSAVE_PA:
2606         case MSR_AMD64_PATCH_LOADER:
2607         case MSR_AMD64_BU_CFG2:
2608         case MSR_AMD64_DC_CFG:
2609         case MSR_F15H_EX_CFG:
2610                 break;
2611
2612         case MSR_IA32_UCODE_REV:
2613                 if (msr_info->host_initiated)
2614                         vcpu->arch.microcode_version = data;
2615                 break;
2616         case MSR_IA32_ARCH_CAPABILITIES:
2617                 if (!msr_info->host_initiated)
2618                         return 1;
2619                 vcpu->arch.arch_capabilities = data;
2620                 break;
2621         case MSR_EFER:
2622                 return set_efer(vcpu, msr_info);
2623         case MSR_K7_HWCR:
2624                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2625                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2626                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2627
2628                 /* Handle McStatusWrEn */
2629                 if (data == BIT_ULL(18)) {
2630                         vcpu->arch.msr_hwcr = data;
2631                 } else if (data != 0) {
2632                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2633                                     data);
2634                         return 1;
2635                 }
2636                 break;
2637         case MSR_FAM10H_MMIO_CONF_BASE:
2638                 if (data != 0) {
2639                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2640                                     "0x%llx\n", data);
2641                         return 1;
2642                 }
2643                 break;
2644         case MSR_IA32_DEBUGCTLMSR:
2645                 if (!data) {
2646                         /* We support the non-activated case already */
2647                         break;
2648                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2649                         /* Values other than LBR and BTF are vendor-specific,
2650                            thus reserved and should throw a #GP */
2651                         return 1;
2652                 }
2653                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2654                             __func__, data);
2655                 break;
2656         case 0x200 ... 0x2ff:
2657                 return kvm_mtrr_set_msr(vcpu, msr, data);
2658         case MSR_IA32_APICBASE:
2659                 return kvm_set_apic_base(vcpu, msr_info);
2660         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2661                 return kvm_x2apic_msr_write(vcpu, msr, data);
2662         case MSR_IA32_TSCDEADLINE:
2663                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2664                 break;
2665         case MSR_IA32_TSC_ADJUST:
2666                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2667                         if (!msr_info->host_initiated) {
2668                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2669                                 adjust_tsc_offset_guest(vcpu, adj);
2670                         }
2671                         vcpu->arch.ia32_tsc_adjust_msr = data;
2672                 }
2673                 break;
2674         case MSR_IA32_MISC_ENABLE:
2675                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2676                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2677                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2678                                 return 1;
2679                         vcpu->arch.ia32_misc_enable_msr = data;
2680                         kvm_update_cpuid(vcpu);
2681                 } else {
2682                         vcpu->arch.ia32_misc_enable_msr = data;
2683                 }
2684                 break;
2685         case MSR_IA32_SMBASE:
2686                 if (!msr_info->host_initiated)
2687                         return 1;
2688                 vcpu->arch.smbase = data;
2689                 break;
2690         case MSR_IA32_POWER_CTL:
2691                 vcpu->arch.msr_ia32_power_ctl = data;
2692                 break;
2693         case MSR_IA32_TSC:
2694                 kvm_write_tsc(vcpu, msr_info);
2695                 break;
2696         case MSR_SMI_COUNT:
2697                 if (!msr_info->host_initiated)
2698                         return 1;
2699                 vcpu->arch.smi_count = data;
2700                 break;
2701         case MSR_KVM_WALL_CLOCK_NEW:
2702         case MSR_KVM_WALL_CLOCK:
2703                 vcpu->kvm->arch.wall_clock = data;
2704                 kvm_write_wall_clock(vcpu->kvm, data);
2705                 break;
2706         case MSR_KVM_SYSTEM_TIME_NEW:
2707         case MSR_KVM_SYSTEM_TIME: {
2708                 struct kvm_arch *ka = &vcpu->kvm->arch;
2709
2710                 kvmclock_reset(vcpu);
2711
2712                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2713                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2714
2715                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2716                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2717
2718                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2719                 }
2720
2721                 vcpu->arch.time = data;
2722                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2723
2724                 /* we verify if the enable bit is set... */
2725                 if (!(data & 1))
2726                         break;
2727
2728                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2729                      &vcpu->arch.pv_time, data & ~1ULL,
2730                      sizeof(struct pvclock_vcpu_time_info)))
2731                         vcpu->arch.pv_time_enabled = false;
2732                 else
2733                         vcpu->arch.pv_time_enabled = true;
2734
2735                 break;
2736         }
2737         case MSR_KVM_ASYNC_PF_EN:
2738                 if (kvm_pv_enable_async_pf(vcpu, data))
2739                         return 1;
2740                 break;
2741         case MSR_KVM_STEAL_TIME:
2742
2743                 if (unlikely(!sched_info_on()))
2744                         return 1;
2745
2746                 if (data & KVM_STEAL_RESERVED_MASK)
2747                         return 1;
2748
2749                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2750                                                 data & KVM_STEAL_VALID_BITS,
2751                                                 sizeof(struct kvm_steal_time)))
2752                         return 1;
2753
2754                 vcpu->arch.st.msr_val = data;
2755
2756                 if (!(data & KVM_MSR_ENABLED))
2757                         break;
2758
2759                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2760
2761                 break;
2762         case MSR_KVM_PV_EOI_EN:
2763                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2764                         return 1;
2765                 break;
2766
2767         case MSR_KVM_POLL_CONTROL:
2768                 /* only enable bit supported */
2769                 if (data & (-1ULL << 1))
2770                         return 1;
2771
2772                 vcpu->arch.msr_kvm_poll_control = data;
2773                 break;
2774
2775         case MSR_IA32_MCG_CTL:
2776         case MSR_IA32_MCG_STATUS:
2777         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2778                 return set_msr_mce(vcpu, msr_info);
2779
2780         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2781         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2782                 pr = true; /* fall through */
2783         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2784         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2785                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2786                         return kvm_pmu_set_msr(vcpu, msr_info);
2787
2788                 if (pr || data != 0)
2789                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2790                                     "0x%x data 0x%llx\n", msr, data);
2791                 break;
2792         case MSR_K7_CLK_CTL:
2793                 /*
2794                  * Ignore all writes to this no longer documented MSR.
2795                  * Writes are only relevant for old K7 processors,
2796                  * all pre-dating SVM, but a recommended workaround from
2797                  * AMD for these chips. It is possible to specify the
2798                  * affected processor models on the command line, hence
2799                  * the need to ignore the workaround.
2800                  */
2801                 break;
2802         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2803         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2804         case HV_X64_MSR_CRASH_CTL:
2805         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2806         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2807         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2808         case HV_X64_MSR_TSC_EMULATION_STATUS:
2809                 return kvm_hv_set_msr_common(vcpu, msr, data,
2810                                              msr_info->host_initiated);
2811         case MSR_IA32_BBL_CR_CTL3:
2812                 /* Drop writes to this legacy MSR -- see rdmsr
2813                  * counterpart for further detail.
2814                  */
2815                 if (report_ignored_msrs)
2816                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2817                                 msr, data);
2818                 break;
2819         case MSR_AMD64_OSVW_ID_LENGTH:
2820                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2821                         return 1;
2822                 vcpu->arch.osvw.length = data;
2823                 break;
2824         case MSR_AMD64_OSVW_STATUS:
2825                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2826                         return 1;
2827                 vcpu->arch.osvw.status = data;
2828                 break;
2829         case MSR_PLATFORM_INFO:
2830                 if (!msr_info->host_initiated ||
2831                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2832                      cpuid_fault_enabled(vcpu)))
2833                         return 1;
2834                 vcpu->arch.msr_platform_info = data;
2835                 break;
2836         case MSR_MISC_FEATURES_ENABLES:
2837                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2838                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2839                      !supports_cpuid_fault(vcpu)))
2840                         return 1;
2841                 vcpu->arch.msr_misc_features_enables = data;
2842                 break;
2843         default:
2844                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2845                         return xen_hvm_config(vcpu, data);
2846                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2847                         return kvm_pmu_set_msr(vcpu, msr_info);
2848                 if (!ignore_msrs) {
2849                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2850                                     msr, data);
2851                         return 1;
2852                 } else {
2853                         if (report_ignored_msrs)
2854                                 vcpu_unimpl(vcpu,
2855                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2856                                         msr, data);
2857                         break;
2858                 }
2859         }
2860         return 0;
2861 }
2862 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2863
2864 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2865 {
2866         u64 data;
2867         u64 mcg_cap = vcpu->arch.mcg_cap;
2868         unsigned bank_num = mcg_cap & 0xff;
2869
2870         switch (msr) {
2871         case MSR_IA32_P5_MC_ADDR:
2872         case MSR_IA32_P5_MC_TYPE:
2873                 data = 0;
2874                 break;
2875         case MSR_IA32_MCG_CAP:
2876                 data = vcpu->arch.mcg_cap;
2877                 break;
2878         case MSR_IA32_MCG_CTL:
2879                 if (!(mcg_cap & MCG_CTL_P) && !host)
2880                         return 1;
2881                 data = vcpu->arch.mcg_ctl;
2882                 break;
2883         case MSR_IA32_MCG_STATUS:
2884                 data = vcpu->arch.mcg_status;
2885                 break;
2886         default:
2887                 if (msr >= MSR_IA32_MC0_CTL &&
2888                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2889                         u32 offset = msr - MSR_IA32_MC0_CTL;
2890                         data = vcpu->arch.mce_banks[offset];
2891                         break;
2892                 }
2893                 return 1;
2894         }
2895         *pdata = data;
2896         return 0;
2897 }
2898
2899 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2900 {
2901         switch (msr_info->index) {
2902         case MSR_IA32_PLATFORM_ID:
2903         case MSR_IA32_EBL_CR_POWERON:
2904         case MSR_IA32_DEBUGCTLMSR:
2905         case MSR_IA32_LASTBRANCHFROMIP:
2906         case MSR_IA32_LASTBRANCHTOIP:
2907         case MSR_IA32_LASTINTFROMIP:
2908         case MSR_IA32_LASTINTTOIP:
2909         case MSR_K8_SYSCFG:
2910         case MSR_K8_TSEG_ADDR:
2911         case MSR_K8_TSEG_MASK:
2912         case MSR_VM_HSAVE_PA:
2913         case MSR_K8_INT_PENDING_MSG:
2914         case MSR_AMD64_NB_CFG:
2915         case MSR_FAM10H_MMIO_CONF_BASE:
2916         case MSR_AMD64_BU_CFG2:
2917         case MSR_IA32_PERF_CTL:
2918         case MSR_AMD64_DC_CFG:
2919         case MSR_F15H_EX_CFG:
2920                 msr_info->data = 0;
2921                 break;
2922         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2923         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2924         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2925         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2926         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2927                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2928                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2929                 msr_info->data = 0;
2930                 break;
2931         case MSR_IA32_UCODE_REV:
2932                 msr_info->data = vcpu->arch.microcode_version;
2933                 break;
2934         case MSR_IA32_ARCH_CAPABILITIES:
2935                 if (!msr_info->host_initiated &&
2936                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2937                         return 1;
2938                 msr_info->data = vcpu->arch.arch_capabilities;
2939                 break;
2940         case MSR_IA32_POWER_CTL:
2941                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2942                 break;
2943         case MSR_IA32_TSC:
2944                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2945                 break;
2946         case MSR_MTRRcap:
2947         case 0x200 ... 0x2ff:
2948                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2949         case 0xcd: /* fsb frequency */
2950                 msr_info->data = 3;
2951                 break;
2952                 /*
2953                  * MSR_EBC_FREQUENCY_ID
2954                  * Conservative value valid for even the basic CPU models.
2955                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2956                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2957                  * and 266MHz for model 3, or 4. Set Core Clock
2958                  * Frequency to System Bus Frequency Ratio to 1 (bits
2959                  * 31:24) even though these are only valid for CPU
2960                  * models > 2, however guests may end up dividing or
2961                  * multiplying by zero otherwise.
2962                  */
2963         case MSR_EBC_FREQUENCY_ID:
2964                 msr_info->data = 1 << 24;
2965                 break;
2966         case MSR_IA32_APICBASE:
2967                 msr_info->data = kvm_get_apic_base(vcpu);
2968                 break;
2969         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2970                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2971                 break;
2972         case MSR_IA32_TSCDEADLINE:
2973                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2974                 break;
2975         case MSR_IA32_TSC_ADJUST:
2976                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2977                 break;
2978         case MSR_IA32_MISC_ENABLE:
2979                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2980                 break;
2981         case MSR_IA32_SMBASE:
2982                 if (!msr_info->host_initiated)
2983                         return 1;
2984                 msr_info->data = vcpu->arch.smbase;
2985                 break;
2986         case MSR_SMI_COUNT:
2987                 msr_info->data = vcpu->arch.smi_count;
2988                 break;
2989         case MSR_IA32_PERF_STATUS:
2990                 /* TSC increment by tick */
2991                 msr_info->data = 1000ULL;
2992                 /* CPU multiplier */
2993                 msr_info->data |= (((uint64_t)4ULL) << 40);
2994                 break;
2995         case MSR_EFER:
2996                 msr_info->data = vcpu->arch.efer;
2997                 break;
2998         case MSR_KVM_WALL_CLOCK:
2999         case MSR_KVM_WALL_CLOCK_NEW:
3000                 msr_info->data = vcpu->kvm->arch.wall_clock;
3001                 break;
3002         case MSR_KVM_SYSTEM_TIME:
3003         case MSR_KVM_SYSTEM_TIME_NEW:
3004                 msr_info->data = vcpu->arch.time;
3005                 break;
3006         case MSR_KVM_ASYNC_PF_EN:
3007                 msr_info->data = vcpu->arch.apf.msr_val;
3008                 break;
3009         case MSR_KVM_STEAL_TIME:
3010                 msr_info->data = vcpu->arch.st.msr_val;
3011                 break;
3012         case MSR_KVM_PV_EOI_EN:
3013                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3014                 break;
3015         case MSR_KVM_POLL_CONTROL:
3016                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3017                 break;
3018         case MSR_IA32_P5_MC_ADDR:
3019         case MSR_IA32_P5_MC_TYPE:
3020         case MSR_IA32_MCG_CAP:
3021         case MSR_IA32_MCG_CTL:
3022         case MSR_IA32_MCG_STATUS:
3023         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3024                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3025                                    msr_info->host_initiated);
3026         case MSR_K7_CLK_CTL:
3027                 /*
3028                  * Provide expected ramp-up count for K7. All other
3029                  * are set to zero, indicating minimum divisors for
3030                  * every field.
3031                  *
3032                  * This prevents guest kernels on AMD host with CPU
3033                  * type 6, model 8 and higher from exploding due to
3034                  * the rdmsr failing.
3035                  */
3036                 msr_info->data = 0x20000000;
3037                 break;
3038         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3039         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3040         case HV_X64_MSR_CRASH_CTL:
3041         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3042         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3043         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3044         case HV_X64_MSR_TSC_EMULATION_STATUS:
3045                 return kvm_hv_get_msr_common(vcpu,
3046                                              msr_info->index, &msr_info->data,
3047                                              msr_info->host_initiated);
3048                 break;
3049         case MSR_IA32_BBL_CR_CTL3:
3050                 /* This legacy MSR exists but isn't fully documented in current
3051                  * silicon.  It is however accessed by winxp in very narrow
3052                  * scenarios where it sets bit #19, itself documented as
3053                  * a "reserved" bit.  Best effort attempt to source coherent
3054                  * read data here should the balance of the register be
3055                  * interpreted by the guest:
3056                  *
3057                  * L2 cache control register 3: 64GB range, 256KB size,
3058                  * enabled, latency 0x1, configured
3059                  */
3060                 msr_info->data = 0xbe702111;
3061                 break;
3062         case MSR_AMD64_OSVW_ID_LENGTH:
3063                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3064                         return 1;
3065                 msr_info->data = vcpu->arch.osvw.length;
3066                 break;
3067         case MSR_AMD64_OSVW_STATUS:
3068                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3069                         return 1;
3070                 msr_info->data = vcpu->arch.osvw.status;
3071                 break;
3072         case MSR_PLATFORM_INFO:
3073                 if (!msr_info->host_initiated &&
3074                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3075                         return 1;
3076                 msr_info->data = vcpu->arch.msr_platform_info;
3077                 break;
3078         case MSR_MISC_FEATURES_ENABLES:
3079                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3080                 break;
3081         case MSR_K7_HWCR:
3082                 msr_info->data = vcpu->arch.msr_hwcr;
3083                 break;
3084         default:
3085                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3086                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3087                 if (!ignore_msrs) {
3088                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3089                                                msr_info->index);
3090                         return 1;
3091                 } else {
3092                         if (report_ignored_msrs)
3093                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3094                                         msr_info->index);
3095                         msr_info->data = 0;
3096                 }
3097                 break;
3098         }
3099         return 0;
3100 }
3101 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3102
3103 /*
3104  * Read or write a bunch of msrs. All parameters are kernel addresses.
3105  *
3106  * @return number of msrs set successfully.
3107  */
3108 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3109                     struct kvm_msr_entry *entries,
3110                     int (*do_msr)(struct kvm_vcpu *vcpu,
3111                                   unsigned index, u64 *data))
3112 {
3113         int i;
3114
3115         for (i = 0; i < msrs->nmsrs; ++i)
3116                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3117                         break;
3118
3119         return i;
3120 }
3121
3122 /*
3123  * Read or write a bunch of msrs. Parameters are user addresses.
3124  *
3125  * @return number of msrs set successfully.
3126  */
3127 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3128                   int (*do_msr)(struct kvm_vcpu *vcpu,
3129                                 unsigned index, u64 *data),
3130                   int writeback)
3131 {
3132         struct kvm_msrs msrs;
3133         struct kvm_msr_entry *entries;
3134         int r, n;
3135         unsigned size;
3136
3137         r = -EFAULT;
3138         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3139                 goto out;
3140
3141         r = -E2BIG;
3142         if (msrs.nmsrs >= MAX_IO_MSRS)
3143                 goto out;
3144
3145         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3146         entries = memdup_user(user_msrs->entries, size);
3147         if (IS_ERR(entries)) {
3148                 r = PTR_ERR(entries);
3149                 goto out;
3150         }
3151
3152         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3153         if (r < 0)
3154                 goto out_free;
3155
3156         r = -EFAULT;
3157         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3158                 goto out_free;
3159
3160         r = n;
3161
3162 out_free:
3163         kfree(entries);
3164 out:
3165         return r;
3166 }
3167
3168 static inline bool kvm_can_mwait_in_guest(void)
3169 {
3170         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3171                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3172                 boot_cpu_has(X86_FEATURE_ARAT);
3173 }
3174
3175 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3176 {
3177         int r = 0;
3178
3179         switch (ext) {
3180         case KVM_CAP_IRQCHIP:
3181         case KVM_CAP_HLT:
3182         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3183         case KVM_CAP_SET_TSS_ADDR:
3184         case KVM_CAP_EXT_CPUID:
3185         case KVM_CAP_EXT_EMUL_CPUID:
3186         case KVM_CAP_CLOCKSOURCE:
3187         case KVM_CAP_PIT:
3188         case KVM_CAP_NOP_IO_DELAY:
3189         case KVM_CAP_MP_STATE:
3190         case KVM_CAP_SYNC_MMU:
3191         case KVM_CAP_USER_NMI:
3192         case KVM_CAP_REINJECT_CONTROL:
3193         case KVM_CAP_IRQ_INJECT_STATUS:
3194         case KVM_CAP_IOEVENTFD:
3195         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3196         case KVM_CAP_PIT2:
3197         case KVM_CAP_PIT_STATE2:
3198         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3199         case KVM_CAP_XEN_HVM:
3200         case KVM_CAP_VCPU_EVENTS:
3201         case KVM_CAP_HYPERV:
3202         case KVM_CAP_HYPERV_VAPIC:
3203         case KVM_CAP_HYPERV_SPIN:
3204         case KVM_CAP_HYPERV_SYNIC:
3205         case KVM_CAP_HYPERV_SYNIC2:
3206         case KVM_CAP_HYPERV_VP_INDEX:
3207         case KVM_CAP_HYPERV_EVENTFD:
3208         case KVM_CAP_HYPERV_TLBFLUSH:
3209         case KVM_CAP_HYPERV_SEND_IPI:
3210         case KVM_CAP_HYPERV_CPUID:
3211         case KVM_CAP_PCI_SEGMENT:
3212         case KVM_CAP_DEBUGREGS:
3213         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3214         case KVM_CAP_XSAVE:
3215         case KVM_CAP_ASYNC_PF:
3216         case KVM_CAP_GET_TSC_KHZ:
3217         case KVM_CAP_KVMCLOCK_CTRL:
3218         case KVM_CAP_READONLY_MEM:
3219         case KVM_CAP_HYPERV_TIME:
3220         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3221         case KVM_CAP_TSC_DEADLINE_TIMER:
3222         case KVM_CAP_DISABLE_QUIRKS:
3223         case KVM_CAP_SET_BOOT_CPU_ID:
3224         case KVM_CAP_SPLIT_IRQCHIP:
3225         case KVM_CAP_IMMEDIATE_EXIT:
3226         case KVM_CAP_PMU_EVENT_FILTER:
3227         case KVM_CAP_GET_MSR_FEATURES:
3228         case KVM_CAP_MSR_PLATFORM_INFO:
3229         case KVM_CAP_EXCEPTION_PAYLOAD:
3230                 r = 1;
3231                 break;
3232         case KVM_CAP_SYNC_REGS:
3233                 r = KVM_SYNC_X86_VALID_FIELDS;
3234                 break;
3235         case KVM_CAP_ADJUST_CLOCK:
3236                 r = KVM_CLOCK_TSC_STABLE;
3237                 break;
3238         case KVM_CAP_X86_DISABLE_EXITS:
3239                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3240                       KVM_X86_DISABLE_EXITS_CSTATE;
3241                 if(kvm_can_mwait_in_guest())
3242                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3243                 break;
3244         case KVM_CAP_X86_SMM:
3245                 /* SMBASE is usually relocated above 1M on modern chipsets,
3246                  * and SMM handlers might indeed rely on 4G segment limits,
3247                  * so do not report SMM to be available if real mode is
3248                  * emulated via vm86 mode.  Still, do not go to great lengths
3249                  * to avoid userspace's usage of the feature, because it is a
3250                  * fringe case that is not enabled except via specific settings
3251                  * of the module parameters.
3252                  */
3253                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3254                 break;
3255         case KVM_CAP_VAPIC:
3256                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3257                 break;
3258         case KVM_CAP_NR_VCPUS:
3259                 r = KVM_SOFT_MAX_VCPUS;
3260                 break;
3261         case KVM_CAP_MAX_VCPUS:
3262                 r = KVM_MAX_VCPUS;
3263                 break;
3264         case KVM_CAP_MAX_VCPU_ID:
3265                 r = KVM_MAX_VCPU_ID;
3266                 break;
3267         case KVM_CAP_PV_MMU:    /* obsolete */
3268                 r = 0;
3269                 break;
3270         case KVM_CAP_MCE:
3271                 r = KVM_MAX_MCE_BANKS;
3272                 break;
3273         case KVM_CAP_XCRS:
3274                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3275                 break;
3276         case KVM_CAP_TSC_CONTROL:
3277                 r = kvm_has_tsc_control;
3278                 break;
3279         case KVM_CAP_X2APIC_API:
3280                 r = KVM_X2APIC_API_VALID_FLAGS;
3281                 break;
3282         case KVM_CAP_NESTED_STATE:
3283                 r = kvm_x86_ops->get_nested_state ?
3284                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3285                 break;
3286         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3287                 r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3288                 break;
3289         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3290                 r = kvm_x86_ops->nested_enable_evmcs != NULL;
3291                 break;
3292         default:
3293                 break;
3294         }
3295         return r;
3296
3297 }
3298
3299 long kvm_arch_dev_ioctl(struct file *filp,
3300                         unsigned int ioctl, unsigned long arg)
3301 {
3302         void __user *argp = (void __user *)arg;
3303         long r;
3304
3305         switch (ioctl) {
3306         case KVM_GET_MSR_INDEX_LIST: {
3307                 struct kvm_msr_list __user *user_msr_list = argp;
3308                 struct kvm_msr_list msr_list;
3309                 unsigned n;
3310
3311                 r = -EFAULT;
3312                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3313                         goto out;
3314                 n = msr_list.nmsrs;
3315                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3316                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3317                         goto out;
3318                 r = -E2BIG;
3319                 if (n < msr_list.nmsrs)
3320                         goto out;
3321                 r = -EFAULT;
3322                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3323                                  num_msrs_to_save * sizeof(u32)))
3324                         goto out;
3325                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3326                                  &emulated_msrs,
3327                                  num_emulated_msrs * sizeof(u32)))
3328                         goto out;
3329                 r = 0;
3330                 break;
3331         }
3332         case KVM_GET_SUPPORTED_CPUID:
3333         case KVM_GET_EMULATED_CPUID: {
3334                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3335                 struct kvm_cpuid2 cpuid;
3336
3337                 r = -EFAULT;
3338                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3339                         goto out;
3340
3341                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3342                                             ioctl);
3343                 if (r)
3344                         goto out;
3345
3346                 r = -EFAULT;
3347                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3348                         goto out;
3349                 r = 0;
3350                 break;
3351         }
3352         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3353                 r = -EFAULT;
3354                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3355                                  sizeof(kvm_mce_cap_supported)))
3356                         goto out;
3357                 r = 0;
3358                 break;
3359         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3360                 struct kvm_msr_list __user *user_msr_list = argp;
3361                 struct kvm_msr_list msr_list;
3362                 unsigned int n;
3363
3364                 r = -EFAULT;
3365                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3366                         goto out;
3367                 n = msr_list.nmsrs;
3368                 msr_list.nmsrs = num_msr_based_features;
3369                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3370                         goto out;
3371                 r = -E2BIG;
3372                 if (n < msr_list.nmsrs)
3373                         goto out;
3374                 r = -EFAULT;
3375                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3376                                  num_msr_based_features * sizeof(u32)))
3377                         goto out;
3378                 r = 0;
3379                 break;
3380         }
3381         case KVM_GET_MSRS:
3382                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3383                 break;
3384         }
3385         default:
3386                 r = -EINVAL;
3387         }
3388 out:
3389         return r;
3390 }
3391
3392 static void wbinvd_ipi(void *garbage)
3393 {
3394         wbinvd();
3395 }
3396
3397 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3398 {
3399         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3400 }
3401
3402 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3403 {
3404         /* Address WBINVD may be executed by guest */
3405         if (need_emulate_wbinvd(vcpu)) {
3406                 if (kvm_x86_ops->has_wbinvd_exit())
3407                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3408                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3409                         smp_call_function_single(vcpu->cpu,
3410                                         wbinvd_ipi, NULL, 1);
3411         }
3412
3413         kvm_x86_ops->vcpu_load(vcpu, cpu);
3414
3415         fpregs_assert_state_consistent();
3416         if (test_thread_flag(TIF_NEED_FPU_LOAD))
3417                 switch_fpu_return();
3418
3419         /* Apply any externally detected TSC adjustments (due to suspend) */
3420         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3421                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3422                 vcpu->arch.tsc_offset_adjustment = 0;
3423                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3424         }
3425
3426         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3427                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3428                                 rdtsc() - vcpu->arch.last_host_tsc;
3429                 if (tsc_delta < 0)
3430                         mark_tsc_unstable("KVM discovered backwards TSC");
3431
3432                 if (kvm_check_tsc_unstable()) {
3433                         u64 offset = kvm_compute_tsc_offset(vcpu,
3434                                                 vcpu->arch.last_guest_tsc);
3435                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3436                         vcpu->arch.tsc_catchup = 1;
3437                 }
3438
3439                 if (kvm_lapic_hv_timer_in_use(vcpu))
3440                         kvm_lapic_restart_hv_timer(vcpu);
3441
3442                 /*
3443                  * On a host with synchronized TSC, there is no need to update
3444                  * kvmclock on vcpu->cpu migration
3445                  */
3446                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3447                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3448                 if (vcpu->cpu != cpu)
3449                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3450                 vcpu->cpu = cpu;
3451         }
3452
3453         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3454 }
3455
3456 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3457 {
3458         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3459                 return;
3460
3461         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3462
3463         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3464                         &vcpu->arch.st.steal.preempted,
3465                         offsetof(struct kvm_steal_time, preempted),
3466                         sizeof(vcpu->arch.st.steal.preempted));
3467 }
3468
3469 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3470 {
3471         int idx;
3472
3473         if (vcpu->preempted)
3474                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3475
3476         /*
3477          * Disable page faults because we're in atomic context here.
3478          * kvm_write_guest_offset_cached() would call might_fault()
3479          * that relies on pagefault_disable() to tell if there's a
3480          * bug. NOTE: the write to guest memory may not go through if
3481          * during postcopy live migration or if there's heavy guest
3482          * paging.
3483          */
3484         pagefault_disable();
3485         /*
3486          * kvm_memslots() will be called by
3487          * kvm_write_guest_offset_cached() so take the srcu lock.
3488          */
3489         idx = srcu_read_lock(&vcpu->kvm->srcu);
3490         kvm_steal_time_set_preempted(vcpu);
3491         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3492         pagefault_enable();
3493         kvm_x86_ops->vcpu_put(vcpu);
3494         vcpu->arch.last_host_tsc = rdtsc();
3495         /*
3496          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3497          * on every vmexit, but if not, we might have a stale dr6 from the
3498          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3499          */
3500         set_debugreg(0, 6);
3501 }
3502
3503 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3504                                     struct kvm_lapic_state *s)
3505 {
3506         if (vcpu->arch.apicv_active)
3507                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3508
3509         return kvm_apic_get_state(vcpu, s);
3510 }
3511
3512 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3513                                     struct kvm_lapic_state *s)
3514 {
3515         int r;
3516
3517         r = kvm_apic_set_state(vcpu, s);
3518         if (r)
3519                 return r;
3520         update_cr8_intercept(vcpu);
3521
3522         return 0;
3523 }
3524
3525 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3526 {
3527         return (!lapic_in_kernel(vcpu) ||
3528                 kvm_apic_accept_pic_intr(vcpu));
3529 }
3530
3531 /*
3532  * if userspace requested an interrupt window, check that the
3533  * interrupt window is open.
3534  *
3535  * No need to exit to userspace if we already have an interrupt queued.
3536  */
3537 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3538 {
3539         return kvm_arch_interrupt_allowed(vcpu) &&
3540                 !kvm_cpu_has_interrupt(vcpu) &&
3541                 !kvm_event_needs_reinjection(vcpu) &&
3542                 kvm_cpu_accept_dm_intr(vcpu);
3543 }
3544
3545 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3546                                     struct kvm_interrupt *irq)
3547 {
3548         if (irq->irq >= KVM_NR_INTERRUPTS)
3549                 return -EINVAL;
3550
3551         if (!irqchip_in_kernel(vcpu->kvm)) {
3552                 kvm_queue_interrupt(vcpu, irq->irq, false);
3553                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3554                 return 0;
3555         }
3556
3557         /*
3558          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3559          * fail for in-kernel 8259.
3560          */
3561         if (pic_in_kernel(vcpu->kvm))
3562                 return -ENXIO;
3563
3564         if (vcpu->arch.pending_external_vector != -1)
3565                 return -EEXIST;
3566
3567         vcpu->arch.pending_external_vector = irq->irq;
3568         kvm_make_request(KVM_REQ_EVENT, vcpu);
3569         return 0;
3570 }
3571
3572 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3573 {
3574         kvm_inject_nmi(vcpu);
3575
3576         return 0;
3577 }
3578
3579 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3580 {
3581         kvm_make_request(KVM_REQ_SMI, vcpu);
3582
3583         return 0;
3584 }
3585
3586 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3587                                            struct kvm_tpr_access_ctl *tac)
3588 {
3589         if (tac->flags)
3590                 return -EINVAL;
3591         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3592         return 0;
3593 }
3594
3595 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3596                                         u64 mcg_cap)
3597 {
3598         int r;
3599         unsigned bank_num = mcg_cap & 0xff, bank;
3600
3601         r = -EINVAL;
3602         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3603                 goto out;
3604         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3605                 goto out;
3606         r = 0;
3607         vcpu->arch.mcg_cap = mcg_cap;
3608         /* Init IA32_MCG_CTL to all 1s */
3609         if (mcg_cap & MCG_CTL_P)
3610                 vcpu->arch.mcg_ctl = ~(u64)0;
3611         /* Init IA32_MCi_CTL to all 1s */
3612         for (bank = 0; bank < bank_num; bank++)
3613                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3614
3615         kvm_x86_ops->setup_mce(vcpu);
3616 out:
3617         return r;
3618 }
3619
3620 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3621                                       struct kvm_x86_mce *mce)
3622 {
3623         u64 mcg_cap = vcpu->arch.mcg_cap;
3624         unsigned bank_num = mcg_cap & 0xff;
3625         u64 *banks = vcpu->arch.mce_banks;
3626
3627         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3628                 return -EINVAL;
3629         /*
3630          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3631          * reporting is disabled
3632          */
3633         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3634             vcpu->arch.mcg_ctl != ~(u64)0)
3635                 return 0;
3636         banks += 4 * mce->bank;
3637         /*
3638          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3639          * reporting is disabled for the bank
3640          */
3641         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3642                 return 0;
3643         if (mce->status & MCI_STATUS_UC) {
3644                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3645                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3646                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3647                         return 0;
3648                 }
3649                 if (banks[1] & MCI_STATUS_VAL)
3650                         mce->status |= MCI_STATUS_OVER;
3651                 banks[2] = mce->addr;
3652                 banks[3] = mce->misc;
3653                 vcpu->arch.mcg_status = mce->mcg_status;
3654                 banks[1] = mce->status;
3655                 kvm_queue_exception(vcpu, MC_VECTOR);
3656         } else if (!(banks[1] & MCI_STATUS_VAL)
3657                    || !(banks[1] & MCI_STATUS_UC)) {
3658                 if (banks[1] & MCI_STATUS_VAL)
3659                         mce->status |= MCI_STATUS_OVER;
3660                 banks[2] = mce->addr;
3661                 banks[3] = mce->misc;
3662                 banks[1] = mce->status;
3663         } else
3664                 banks[1] |= MCI_STATUS_OVER;
3665         return 0;
3666 }
3667
3668 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3669                                                struct kvm_vcpu_events *events)
3670 {
3671         process_nmi(vcpu);
3672
3673         /*
3674          * The API doesn't provide the instruction length for software
3675          * exceptions, so don't report them. As long as the guest RIP
3676          * isn't advanced, we should expect to encounter the exception
3677          * again.
3678          */
3679         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3680                 events->exception.injected = 0;
3681                 events->exception.pending = 0;
3682         } else {
3683                 events->exception.injected = vcpu->arch.exception.injected;
3684                 events->exception.pending = vcpu->arch.exception.pending;
3685                 /*
3686                  * For ABI compatibility, deliberately conflate
3687                  * pending and injected exceptions when
3688                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3689                  */
3690                 if (!vcpu->kvm->arch.exception_payload_enabled)
3691                         events->exception.injected |=
3692                                 vcpu->arch.exception.pending;
3693         }
3694         events->exception.nr = vcpu->arch.exception.nr;
3695         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3696         events->exception.error_code = vcpu->arch.exception.error_code;
3697         events->exception_has_payload = vcpu->arch.exception.has_payload;
3698         events->exception_payload = vcpu->arch.exception.payload;
3699
3700         events->interrupt.injected =
3701                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3702         events->interrupt.nr = vcpu->arch.interrupt.nr;
3703         events->interrupt.soft = 0;
3704         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3705
3706         events->nmi.injected = vcpu->arch.nmi_injected;
3707         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3708         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3709         events->nmi.pad = 0;
3710
3711         events->sipi_vector = 0; /* never valid when reporting to user space */
3712
3713         events->smi.smm = is_smm(vcpu);
3714         events->smi.pending = vcpu->arch.smi_pending;
3715         events->smi.smm_inside_nmi =
3716                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3717         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3718
3719         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3720                          | KVM_VCPUEVENT_VALID_SHADOW
3721                          | KVM_VCPUEVENT_VALID_SMM);
3722         if (vcpu->kvm->arch.exception_payload_enabled)
3723                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3724
3725         memset(&events->reserved, 0, sizeof(events->reserved));
3726 }
3727
3728 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3729
3730 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3731                                               struct kvm_vcpu_events *events)
3732 {
3733         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3734                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3735                               | KVM_VCPUEVENT_VALID_SHADOW
3736                               | KVM_VCPUEVENT_VALID_SMM
3737                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3738                 return -EINVAL;
3739
3740         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3741                 if (!vcpu->kvm->arch.exception_payload_enabled)
3742                         return -EINVAL;
3743                 if (events->exception.pending)
3744                         events->exception.injected = 0;
3745                 else
3746                         events->exception_has_payload = 0;
3747         } else {
3748                 events->exception.pending = 0;
3749                 events->exception_has_payload = 0;
3750         }
3751
3752         if ((events->exception.injected || events->exception.pending) &&
3753             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3754                 return -EINVAL;
3755
3756         /* INITs are latched while in SMM */
3757         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3758             (events->smi.smm || events->smi.pending) &&
3759             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3760                 return -EINVAL;
3761
3762         process_nmi(vcpu);
3763         vcpu->arch.exception.injected = events->exception.injected;
3764         vcpu->arch.exception.pending = events->exception.pending;
3765         vcpu->arch.exception.nr = events->exception.nr;
3766         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3767         vcpu->arch.exception.error_code = events->exception.error_code;
3768         vcpu->arch.exception.has_payload = events->exception_has_payload;
3769         vcpu->arch.exception.payload = events->exception_payload;
3770
3771         vcpu->arch.interrupt.injected = events->interrupt.injected;
3772         vcpu->arch.interrupt.nr = events->interrupt.nr;
3773         vcpu->arch.interrupt.soft = events->interrupt.soft;
3774         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3775                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3776                                                   events->interrupt.shadow);
3777
3778         vcpu->arch.nmi_injected = events->nmi.injected;
3779         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3780                 vcpu->arch.nmi_pending = events->nmi.pending;
3781         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3782
3783         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3784             lapic_in_kernel(vcpu))
3785                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3786
3787         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3788                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3789                         if (events->smi.smm)
3790                                 vcpu->arch.hflags |= HF_SMM_MASK;
3791                         else
3792                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3793                         kvm_smm_changed(vcpu);
3794                 }
3795
3796                 vcpu->arch.smi_pending = events->smi.pending;
3797
3798                 if (events->smi.smm) {
3799                         if (events->smi.smm_inside_nmi)
3800                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3801                         else
3802                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3803                         if (lapic_in_kernel(vcpu)) {
3804                                 if (events->smi.latched_init)
3805                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3806                                 else
3807                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3808                         }
3809                 }
3810         }
3811
3812         kvm_make_request(KVM_REQ_EVENT, vcpu);
3813
3814         return 0;
3815 }
3816
3817 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3818                                              struct kvm_debugregs *dbgregs)
3819 {
3820         unsigned long val;
3821
3822         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3823         kvm_get_dr(vcpu, 6, &val);
3824         dbgregs->dr6 = val;
3825         dbgregs->dr7 = vcpu->arch.dr7;
3826         dbgregs->flags = 0;
3827         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3828 }
3829
3830 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3831                                             struct kvm_debugregs *dbgregs)
3832 {
3833         if (dbgregs->flags)
3834                 return -EINVAL;
3835
3836         if (dbgregs->dr6 & ~0xffffffffull)
3837                 return -EINVAL;
3838         if (dbgregs->dr7 & ~0xffffffffull)
3839                 return -EINVAL;
3840
3841         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3842         kvm_update_dr0123(vcpu);
3843         vcpu->arch.dr6 = dbgregs->dr6;
3844         kvm_update_dr6(vcpu);
3845         vcpu->arch.dr7 = dbgregs->dr7;
3846         kvm_update_dr7(vcpu);
3847
3848         return 0;
3849 }
3850
3851 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3852
3853 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3854 {
3855         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3856         u64 xstate_bv = xsave->header.xfeatures;
3857         u64 valid;
3858
3859         /*
3860          * Copy legacy XSAVE area, to avoid complications with CPUID
3861          * leaves 0 and 1 in the loop below.
3862          */
3863         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3864
3865         /* Set XSTATE_BV */
3866         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3867         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3868
3869         /*
3870          * Copy each region from the possibly compacted offset to the
3871          * non-compacted offset.
3872          */
3873         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3874         while (valid) {
3875                 u64 xfeature_mask = valid & -valid;
3876                 int xfeature_nr = fls64(xfeature_mask) - 1;
3877                 void *src = get_xsave_addr(xsave, xfeature_nr);
3878
3879                 if (src) {
3880                         u32 size, offset, ecx, edx;
3881                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3882                                     &size, &offset, &ecx, &edx);
3883                         if (xfeature_nr == XFEATURE_PKRU)
3884                                 memcpy(dest + offset, &vcpu->arch.pkru,
3885                                        sizeof(vcpu->arch.pkru));
3886                         else
3887                                 memcpy(dest + offset, src, size);
3888
3889                 }
3890
3891                 valid -= xfeature_mask;
3892         }
3893 }
3894
3895 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3896 {
3897         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3898         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3899         u64 valid;
3900
3901         /*
3902          * Copy legacy XSAVE area, to avoid complications with CPUID
3903          * leaves 0 and 1 in the loop below.
3904          */
3905         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3906
3907         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3908         xsave->header.xfeatures = xstate_bv;
3909         if (boot_cpu_has(X86_FEATURE_XSAVES))
3910                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3911
3912         /*
3913          * Copy each region from the non-compacted offset to the
3914          * possibly compacted offset.
3915          */
3916         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3917         while (valid) {
3918                 u64 xfeature_mask = valid & -valid;
3919                 int xfeature_nr = fls64(xfeature_mask) - 1;
3920                 void *dest = get_xsave_addr(xsave, xfeature_nr);
3921
3922                 if (dest) {
3923                         u32 size, offset, ecx, edx;
3924                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3925                                     &size, &offset, &ecx, &edx);
3926                         if (xfeature_nr == XFEATURE_PKRU)
3927                                 memcpy(&vcpu->arch.pkru, src + offset,
3928                                        sizeof(vcpu->arch.pkru));
3929                         else
3930                                 memcpy(dest, src + offset, size);
3931                 }
3932
3933                 valid -= xfeature_mask;
3934         }
3935 }
3936
3937 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3938                                          struct kvm_xsave *guest_xsave)
3939 {
3940         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3941                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3942                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3943         } else {
3944                 memcpy(guest_xsave->region,
3945                         &vcpu->arch.guest_fpu->state.fxsave,
3946                         sizeof(struct fxregs_state));
3947                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3948                         XFEATURE_MASK_FPSSE;
3949         }
3950 }
3951
3952 #define XSAVE_MXCSR_OFFSET 24
3953
3954 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3955                                         struct kvm_xsave *guest_xsave)
3956 {
3957         u64 xstate_bv =
3958                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3959         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3960
3961         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3962                 /*
3963                  * Here we allow setting states that are not present in
3964                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3965                  * with old userspace.
3966                  */
3967                 if (xstate_bv & ~kvm_supported_xcr0() ||
3968                         mxcsr & ~mxcsr_feature_mask)
3969                         return -EINVAL;
3970                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3971         } else {
3972                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3973                         mxcsr & ~mxcsr_feature_mask)
3974                         return -EINVAL;
3975                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3976                         guest_xsave->region, sizeof(struct fxregs_state));
3977         }
3978         return 0;
3979 }
3980
3981 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3982                                         struct kvm_xcrs *guest_xcrs)
3983 {
3984         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3985                 guest_xcrs->nr_xcrs = 0;
3986                 return;
3987         }
3988
3989         guest_xcrs->nr_xcrs = 1;
3990         guest_xcrs->flags = 0;
3991         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3992         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3993 }
3994
3995 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3996                                        struct kvm_xcrs *guest_xcrs)
3997 {
3998         int i, r = 0;
3999
4000         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4001                 return -EINVAL;
4002
4003         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4004                 return -EINVAL;
4005
4006         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4007                 /* Only support XCR0 currently */
4008                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4009                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4010                                 guest_xcrs->xcrs[i].value);
4011                         break;
4012                 }
4013         if (r)
4014                 r = -EINVAL;
4015         return r;
4016 }
4017
4018 /*
4019  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4020  * stopped by the hypervisor.  This function will be called from the host only.
4021  * EINVAL is returned when the host attempts to set the flag for a guest that
4022  * does not support pv clocks.
4023  */
4024 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4025 {
4026         if (!vcpu->arch.pv_time_enabled)
4027                 return -EINVAL;
4028         vcpu->arch.pvclock_set_guest_stopped_request = true;
4029         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4030         return 0;
4031 }
4032
4033 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4034                                      struct kvm_enable_cap *cap)
4035 {
4036         int r;
4037         uint16_t vmcs_version;
4038         void __user *user_ptr;
4039
4040         if (cap->flags)
4041                 return -EINVAL;
4042
4043         switch (cap->cap) {
4044         case KVM_CAP_HYPERV_SYNIC2:
4045                 if (cap->args[0])
4046                         return -EINVAL;
4047                 /* fall through */
4048
4049         case KVM_CAP_HYPERV_SYNIC:
4050                 if (!irqchip_in_kernel(vcpu->kvm))
4051                         return -EINVAL;
4052                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4053                                              KVM_CAP_HYPERV_SYNIC2);
4054         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4055                 if (!kvm_x86_ops->nested_enable_evmcs)
4056                         return -ENOTTY;
4057                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4058                 if (!r) {
4059                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4060                         if (copy_to_user(user_ptr, &vmcs_version,
4061                                          sizeof(vmcs_version)))
4062                                 r = -EFAULT;
4063                 }
4064                 return r;
4065         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4066                 if (!kvm_x86_ops->enable_direct_tlbflush)
4067                         return -ENOTTY;
4068
4069                 return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4070
4071         default:
4072                 return -EINVAL;
4073         }
4074 }
4075
4076 long kvm_arch_vcpu_ioctl(struct file *filp,
4077                          unsigned int ioctl, unsigned long arg)
4078 {
4079         struct kvm_vcpu *vcpu = filp->private_data;
4080         void __user *argp = (void __user *)arg;
4081         int r;
4082         union {
4083                 struct kvm_lapic_state *lapic;
4084                 struct kvm_xsave *xsave;
4085                 struct kvm_xcrs *xcrs;
4086                 void *buffer;
4087         } u;
4088
4089         vcpu_load(vcpu);
4090
4091         u.buffer = NULL;
4092         switch (ioctl) {
4093         case KVM_GET_LAPIC: {
4094                 r = -EINVAL;
4095                 if (!lapic_in_kernel(vcpu))
4096                         goto out;
4097                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4098                                 GFP_KERNEL_ACCOUNT);
4099
4100                 r = -ENOMEM;
4101                 if (!u.lapic)
4102                         goto out;
4103                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4104                 if (r)
4105                         goto out;
4106                 r = -EFAULT;
4107                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4108                         goto out;
4109                 r = 0;
4110                 break;
4111         }
4112         case KVM_SET_LAPIC: {
4113                 r = -EINVAL;
4114                 if (!lapic_in_kernel(vcpu))
4115                         goto out;
4116                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4117                 if (IS_ERR(u.lapic)) {
4118                         r = PTR_ERR(u.lapic);
4119                         goto out_nofree;
4120                 }
4121
4122                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4123                 break;
4124         }
4125         case KVM_INTERRUPT: {
4126                 struct kvm_interrupt irq;
4127
4128                 r = -EFAULT;
4129                 if (copy_from_user(&irq, argp, sizeof(irq)))
4130                         goto out;
4131                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4132                 break;
4133         }
4134         case KVM_NMI: {
4135                 r = kvm_vcpu_ioctl_nmi(vcpu);
4136                 break;
4137         }
4138         case KVM_SMI: {
4139                 r = kvm_vcpu_ioctl_smi(vcpu);
4140                 break;
4141         }
4142         case KVM_SET_CPUID: {
4143                 struct kvm_cpuid __user *cpuid_arg = argp;
4144                 struct kvm_cpuid cpuid;
4145
4146                 r = -EFAULT;
4147                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4148                         goto out;
4149                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4150                 break;
4151         }
4152         case KVM_SET_CPUID2: {
4153                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4154                 struct kvm_cpuid2 cpuid;
4155
4156                 r = -EFAULT;
4157                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4158                         goto out;
4159                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4160                                               cpuid_arg->entries);
4161                 break;
4162         }
4163         case KVM_GET_CPUID2: {
4164                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4165                 struct kvm_cpuid2 cpuid;
4166
4167                 r = -EFAULT;
4168                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4169                         goto out;
4170                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4171                                               cpuid_arg->entries);
4172                 if (r)
4173                         goto out;
4174                 r = -EFAULT;
4175                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4176                         goto out;
4177                 r = 0;
4178                 break;
4179         }
4180         case KVM_GET_MSRS: {
4181                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4182                 r = msr_io(vcpu, argp, do_get_msr, 1);
4183                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4184                 break;
4185         }
4186         case KVM_SET_MSRS: {
4187                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4188                 r = msr_io(vcpu, argp, do_set_msr, 0);
4189                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4190                 break;
4191         }
4192         case KVM_TPR_ACCESS_REPORTING: {
4193                 struct kvm_tpr_access_ctl tac;
4194
4195                 r = -EFAULT;
4196                 if (copy_from_user(&tac, argp, sizeof(tac)))
4197                         goto out;
4198                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4199                 if (r)
4200                         goto out;
4201                 r = -EFAULT;
4202                 if (copy_to_user(argp, &tac, sizeof(tac)))
4203                         goto out;
4204                 r = 0;
4205                 break;
4206         };
4207         case KVM_SET_VAPIC_ADDR: {
4208                 struct kvm_vapic_addr va;
4209                 int idx;
4210
4211                 r = -EINVAL;
4212                 if (!lapic_in_kernel(vcpu))
4213                         goto out;
4214                 r = -EFAULT;
4215                 if (copy_from_user(&va, argp, sizeof(va)))
4216                         goto out;
4217                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4218                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4219                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4220                 break;
4221         }
4222         case KVM_X86_SETUP_MCE: {
4223                 u64 mcg_cap;
4224
4225                 r = -EFAULT;
4226                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4227                         goto out;
4228                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4229                 break;
4230         }
4231         case KVM_X86_SET_MCE: {
4232                 struct kvm_x86_mce mce;
4233
4234                 r = -EFAULT;
4235                 if (copy_from_user(&mce, argp, sizeof(mce)))
4236                         goto out;
4237                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4238                 break;
4239         }
4240         case KVM_GET_VCPU_EVENTS: {
4241                 struct kvm_vcpu_events events;
4242
4243                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4244
4245                 r = -EFAULT;
4246                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4247                         break;
4248                 r = 0;
4249                 break;
4250         }
4251         case KVM_SET_VCPU_EVENTS: {
4252                 struct kvm_vcpu_events events;
4253
4254                 r = -EFAULT;
4255                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4256                         break;
4257
4258                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4259                 break;
4260         }
4261         case KVM_GET_DEBUGREGS: {
4262                 struct kvm_debugregs dbgregs;
4263
4264                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4265
4266                 r = -EFAULT;
4267                 if (copy_to_user(argp, &dbgregs,
4268                                  sizeof(struct kvm_debugregs)))
4269                         break;
4270                 r = 0;
4271                 break;
4272         }
4273         case KVM_SET_DEBUGREGS: {
4274                 struct kvm_debugregs dbgregs;
4275
4276                 r = -EFAULT;
4277                 if (copy_from_user(&dbgregs, argp,
4278                                    sizeof(struct kvm_debugregs)))
4279                         break;
4280
4281                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4282                 break;
4283         }
4284         case KVM_GET_XSAVE: {
4285                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4286                 r = -ENOMEM;
4287                 if (!u.xsave)
4288                         break;
4289
4290                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4291
4292                 r = -EFAULT;
4293                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4294                         break;
4295                 r = 0;
4296                 break;
4297         }
4298         case KVM_SET_XSAVE: {
4299                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4300                 if (IS_ERR(u.xsave)) {
4301                         r = PTR_ERR(u.xsave);
4302                         goto out_nofree;
4303                 }
4304
4305                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4306                 break;
4307         }
4308         case KVM_GET_XCRS: {
4309                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4310                 r = -ENOMEM;
4311                 if (!u.xcrs)
4312                         break;
4313
4314                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4315
4316                 r = -EFAULT;
4317                 if (copy_to_user(argp, u.xcrs,
4318                                  sizeof(struct kvm_xcrs)))
4319                         break;
4320                 r = 0;
4321                 break;
4322         }
4323         case KVM_SET_XCRS: {
4324                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4325                 if (IS_ERR(u.xcrs)) {
4326                         r = PTR_ERR(u.xcrs);
4327                         goto out_nofree;
4328                 }
4329
4330                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4331                 break;
4332         }
4333         case KVM_SET_TSC_KHZ: {
4334                 u32 user_tsc_khz;
4335
4336                 r = -EINVAL;
4337                 user_tsc_khz = (u32)arg;
4338
4339                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4340                         goto out;
4341
4342                 if (user_tsc_khz == 0)
4343                         user_tsc_khz = tsc_khz;
4344
4345                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4346                         r = 0;
4347
4348                 goto out;
4349         }
4350         case KVM_GET_TSC_KHZ: {
4351                 r = vcpu->arch.virtual_tsc_khz;
4352                 goto out;
4353         }
4354         case KVM_KVMCLOCK_CTRL: {
4355                 r = kvm_set_guest_paused(vcpu);
4356                 goto out;
4357         }
4358         case KVM_ENABLE_CAP: {
4359                 struct kvm_enable_cap cap;
4360
4361                 r = -EFAULT;
4362                 if (copy_from_user(&cap, argp, sizeof(cap)))
4363                         goto out;
4364                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4365                 break;
4366         }
4367         case KVM_GET_NESTED_STATE: {
4368                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4369                 u32 user_data_size;
4370
4371                 r = -EINVAL;
4372                 if (!kvm_x86_ops->get_nested_state)
4373                         break;
4374
4375                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4376                 r = -EFAULT;
4377                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4378                         break;
4379
4380                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4381                                                   user_data_size);
4382                 if (r < 0)
4383                         break;
4384
4385                 if (r > user_data_size) {
4386                         if (put_user(r, &user_kvm_nested_state->size))
4387                                 r = -EFAULT;
4388                         else
4389                                 r = -E2BIG;
4390                         break;
4391                 }
4392
4393                 r = 0;
4394                 break;
4395         }
4396         case KVM_SET_NESTED_STATE: {
4397                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4398                 struct kvm_nested_state kvm_state;
4399
4400                 r = -EINVAL;
4401                 if (!kvm_x86_ops->set_nested_state)
4402                         break;
4403
4404                 r = -EFAULT;
4405                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4406                         break;
4407
4408                 r = -EINVAL;
4409                 if (kvm_state.size < sizeof(kvm_state))
4410                         break;
4411
4412                 if (kvm_state.flags &
4413                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4414                       | KVM_STATE_NESTED_EVMCS))
4415                         break;
4416
4417                 /* nested_run_pending implies guest_mode.  */
4418                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4419                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4420                         break;
4421
4422                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4423                 break;
4424         }
4425         case KVM_GET_SUPPORTED_HV_CPUID: {
4426                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4427                 struct kvm_cpuid2 cpuid;
4428
4429                 r = -EFAULT;
4430                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4431                         goto out;
4432
4433                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4434                                                 cpuid_arg->entries);
4435                 if (r)
4436                         goto out;
4437
4438                 r = -EFAULT;
4439                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4440                         goto out;
4441                 r = 0;
4442                 break;
4443         }
4444         default:
4445                 r = -EINVAL;
4446         }
4447 out:
4448         kfree(u.buffer);
4449 out_nofree:
4450         vcpu_put(vcpu);
4451         return r;
4452 }
4453
4454 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4455 {
4456         return VM_FAULT_SIGBUS;
4457 }
4458
4459 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4460 {
4461         int ret;
4462
4463         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4464                 return -EINVAL;
4465         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4466         return ret;
4467 }
4468
4469 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4470                                               u64 ident_addr)
4471 {
4472         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4473 }
4474
4475 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4476                                          unsigned long kvm_nr_mmu_pages)
4477 {
4478         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4479                 return -EINVAL;
4480
4481         mutex_lock(&kvm->slots_lock);
4482
4483         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4484         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4485
4486         mutex_unlock(&kvm->slots_lock);
4487         return 0;
4488 }
4489
4490 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4491 {
4492         return kvm->arch.n_max_mmu_pages;
4493 }
4494
4495 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4496 {
4497         struct kvm_pic *pic = kvm->arch.vpic;
4498         int r;
4499
4500         r = 0;
4501         switch (chip->chip_id) {
4502         case KVM_IRQCHIP_PIC_MASTER:
4503                 memcpy(&chip->chip.pic, &pic->pics[0],
4504                         sizeof(struct kvm_pic_state));
4505                 break;
4506         case KVM_IRQCHIP_PIC_SLAVE:
4507                 memcpy(&chip->chip.pic, &pic->pics[1],
4508                         sizeof(struct kvm_pic_state));
4509                 break;
4510         case KVM_IRQCHIP_IOAPIC:
4511                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4512                 break;
4513         default:
4514                 r = -EINVAL;
4515                 break;
4516         }
4517         return r;
4518 }
4519
4520 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4521 {
4522         struct kvm_pic *pic = kvm->arch.vpic;
4523         int r;
4524
4525         r = 0;
4526         switch (chip->chip_id) {
4527         case KVM_IRQCHIP_PIC_MASTER:
4528                 spin_lock(&pic->lock);
4529                 memcpy(&pic->pics[0], &chip->chip.pic,
4530                         sizeof(struct kvm_pic_state));
4531                 spin_unlock(&pic->lock);
4532                 break;
4533         case KVM_IRQCHIP_PIC_SLAVE:
4534                 spin_lock(&pic->lock);
4535                 memcpy(&pic->pics[1], &chip->chip.pic,
4536                         sizeof(struct kvm_pic_state));
4537                 spin_unlock(&pic->lock);
4538                 break;
4539         case KVM_IRQCHIP_IOAPIC:
4540                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4541                 break;
4542         default:
4543                 r = -EINVAL;
4544                 break;
4545         }
4546         kvm_pic_update_irq(pic);
4547         return r;
4548 }
4549
4550 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4551 {
4552         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4553
4554         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4555
4556         mutex_lock(&kps->lock);
4557         memcpy(ps, &kps->channels, sizeof(*ps));
4558         mutex_unlock(&kps->lock);
4559         return 0;
4560 }
4561
4562 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4563 {
4564         int i;
4565         struct kvm_pit *pit = kvm->arch.vpit;
4566
4567         mutex_lock(&pit->pit_state.lock);
4568         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4569         for (i = 0; i < 3; i++)
4570                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4571         mutex_unlock(&pit->pit_state.lock);
4572         return 0;
4573 }
4574
4575 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4576 {
4577         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4578         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4579                 sizeof(ps->channels));
4580         ps->flags = kvm->arch.vpit->pit_state.flags;
4581         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4582         memset(&ps->reserved, 0, sizeof(ps->reserved));
4583         return 0;
4584 }
4585
4586 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4587 {
4588         int start = 0;
4589         int i;
4590         u32 prev_legacy, cur_legacy;
4591         struct kvm_pit *pit = kvm->arch.vpit;
4592
4593         mutex_lock(&pit->pit_state.lock);
4594         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4595         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4596         if (!prev_legacy && cur_legacy)
4597                 start = 1;
4598         memcpy(&pit->pit_state.channels, &ps->channels,
4599                sizeof(pit->pit_state.channels));
4600         pit->pit_state.flags = ps->flags;
4601         for (i = 0; i < 3; i++)
4602                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4603                                    start && i == 0);
4604         mutex_unlock(&pit->pit_state.lock);
4605         return 0;
4606 }
4607
4608 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4609                                  struct kvm_reinject_control *control)
4610 {
4611         struct kvm_pit *pit = kvm->arch.vpit;
4612
4613         if (!pit)
4614                 return -ENXIO;
4615
4616         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4617          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4618          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4619          */
4620         mutex_lock(&pit->pit_state.lock);
4621         kvm_pit_set_reinject(pit, control->pit_reinject);
4622         mutex_unlock(&pit->pit_state.lock);
4623
4624         return 0;
4625 }
4626
4627 /**
4628  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4629  * @kvm: kvm instance
4630  * @log: slot id and address to which we copy the log
4631  *
4632  * Steps 1-4 below provide general overview of dirty page logging. See
4633  * kvm_get_dirty_log_protect() function description for additional details.
4634  *
4635  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4636  * always flush the TLB (step 4) even if previous step failed  and the dirty
4637  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4638  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4639  * writes will be marked dirty for next log read.
4640  *
4641  *   1. Take a snapshot of the bit and clear it if needed.
4642  *   2. Write protect the corresponding page.
4643  *   3. Copy the snapshot to the userspace.
4644  *   4. Flush TLB's if needed.
4645  */
4646 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4647 {
4648         bool flush = false;
4649         int r;
4650
4651         mutex_lock(&kvm->slots_lock);
4652
4653         /*
4654          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4655          */
4656         if (kvm_x86_ops->flush_log_dirty)
4657                 kvm_x86_ops->flush_log_dirty(kvm);
4658
4659         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4660
4661         /*
4662          * All the TLBs can be flushed out of mmu lock, see the comments in
4663          * kvm_mmu_slot_remove_write_access().
4664          */
4665         lockdep_assert_held(&kvm->slots_lock);
4666         if (flush)
4667                 kvm_flush_remote_tlbs(kvm);
4668
4669         mutex_unlock(&kvm->slots_lock);
4670         return r;
4671 }
4672
4673 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4674 {
4675         bool flush = false;
4676         int r;
4677
4678         mutex_lock(&kvm->slots_lock);
4679
4680         /*
4681          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4682          */
4683         if (kvm_x86_ops->flush_log_dirty)
4684                 kvm_x86_ops->flush_log_dirty(kvm);
4685
4686         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4687
4688         /*
4689          * All the TLBs can be flushed out of mmu lock, see the comments in
4690          * kvm_mmu_slot_remove_write_access().
4691          */
4692         lockdep_assert_held(&kvm->slots_lock);
4693         if (flush)
4694                 kvm_flush_remote_tlbs(kvm);
4695
4696         mutex_unlock(&kvm->slots_lock);
4697         return r;
4698 }
4699
4700 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4701                         bool line_status)
4702 {
4703         if (!irqchip_in_kernel(kvm))
4704                 return -ENXIO;
4705
4706         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4707                                         irq_event->irq, irq_event->level,
4708                                         line_status);
4709         return 0;
4710 }
4711
4712 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4713                             struct kvm_enable_cap *cap)
4714 {
4715         int r;
4716
4717         if (cap->flags)
4718                 return -EINVAL;
4719
4720         switch (cap->cap) {
4721         case KVM_CAP_DISABLE_QUIRKS:
4722                 kvm->arch.disabled_quirks = cap->args[0];
4723                 r = 0;
4724                 break;
4725         case KVM_CAP_SPLIT_IRQCHIP: {
4726                 mutex_lock(&kvm->lock);
4727                 r = -EINVAL;
4728                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4729                         goto split_irqchip_unlock;
4730                 r = -EEXIST;
4731                 if (irqchip_in_kernel(kvm))
4732                         goto split_irqchip_unlock;
4733                 if (kvm->created_vcpus)
4734                         goto split_irqchip_unlock;
4735                 r = kvm_setup_empty_irq_routing(kvm);
4736                 if (r)
4737                         goto split_irqchip_unlock;
4738                 /* Pairs with irqchip_in_kernel. */
4739                 smp_wmb();
4740                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4741                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4742                 r = 0;
4743 split_irqchip_unlock:
4744                 mutex_unlock(&kvm->lock);
4745                 break;
4746         }
4747         case KVM_CAP_X2APIC_API:
4748                 r = -EINVAL;
4749                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4750                         break;
4751
4752                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4753                         kvm->arch.x2apic_format = true;
4754                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4755                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4756
4757                 r = 0;
4758                 break;
4759         case KVM_CAP_X86_DISABLE_EXITS:
4760                 r = -EINVAL;
4761                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4762                         break;
4763
4764                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4765                         kvm_can_mwait_in_guest())
4766                         kvm->arch.mwait_in_guest = true;
4767                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4768                         kvm->arch.hlt_in_guest = true;
4769                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4770                         kvm->arch.pause_in_guest = true;
4771                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4772                         kvm->arch.cstate_in_guest = true;
4773                 r = 0;
4774                 break;
4775         case KVM_CAP_MSR_PLATFORM_INFO:
4776                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4777                 r = 0;
4778                 break;
4779         case KVM_CAP_EXCEPTION_PAYLOAD:
4780                 kvm->arch.exception_payload_enabled = cap->args[0];
4781                 r = 0;
4782                 break;
4783         default:
4784                 r = -EINVAL;
4785                 break;
4786         }
4787         return r;
4788 }
4789
4790 long kvm_arch_vm_ioctl(struct file *filp,
4791                        unsigned int ioctl, unsigned long arg)
4792 {
4793         struct kvm *kvm = filp->private_data;
4794         void __user *argp = (void __user *)arg;
4795         int r = -ENOTTY;
4796         /*
4797          * This union makes it completely explicit to gcc-3.x
4798          * that these two variables' stack usage should be
4799          * combined, not added together.
4800          */
4801         union {
4802                 struct kvm_pit_state ps;
4803                 struct kvm_pit_state2 ps2;
4804                 struct kvm_pit_config pit_config;
4805         } u;
4806
4807         switch (ioctl) {
4808         case KVM_SET_TSS_ADDR:
4809                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4810                 break;
4811         case KVM_SET_IDENTITY_MAP_ADDR: {
4812                 u64 ident_addr;
4813
4814                 mutex_lock(&kvm->lock);
4815                 r = -EINVAL;
4816                 if (kvm->created_vcpus)
4817                         goto set_identity_unlock;
4818                 r = -EFAULT;
4819                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4820                         goto set_identity_unlock;
4821                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4822 set_identity_unlock:
4823                 mutex_unlock(&kvm->lock);
4824                 break;
4825         }
4826         case KVM_SET_NR_MMU_PAGES:
4827                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4828                 break;
4829         case KVM_GET_NR_MMU_PAGES:
4830                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4831                 break;
4832         case KVM_CREATE_IRQCHIP: {
4833                 mutex_lock(&kvm->lock);
4834
4835                 r = -EEXIST;
4836                 if (irqchip_in_kernel(kvm))
4837                         goto create_irqchip_unlock;
4838
4839                 r = -EINVAL;
4840                 if (kvm->created_vcpus)
4841                         goto create_irqchip_unlock;
4842
4843                 r = kvm_pic_init(kvm);
4844                 if (r)
4845                         goto create_irqchip_unlock;
4846
4847                 r = kvm_ioapic_init(kvm);
4848                 if (r) {
4849                         kvm_pic_destroy(kvm);
4850                         goto create_irqchip_unlock;
4851                 }
4852
4853                 r = kvm_setup_default_irq_routing(kvm);
4854                 if (r) {
4855                         kvm_ioapic_destroy(kvm);
4856                         kvm_pic_destroy(kvm);
4857                         goto create_irqchip_unlock;
4858                 }
4859                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4860                 smp_wmb();
4861                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4862         create_irqchip_unlock:
4863                 mutex_unlock(&kvm->lock);
4864                 break;
4865         }
4866         case KVM_CREATE_PIT:
4867                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4868                 goto create_pit;
4869         case KVM_CREATE_PIT2:
4870                 r = -EFAULT;
4871                 if (copy_from_user(&u.pit_config, argp,
4872                                    sizeof(struct kvm_pit_config)))
4873                         goto out;
4874         create_pit:
4875                 mutex_lock(&kvm->lock);
4876                 r = -EEXIST;
4877                 if (kvm->arch.vpit)
4878                         goto create_pit_unlock;
4879                 r = -ENOMEM;
4880                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4881                 if (kvm->arch.vpit)
4882                         r = 0;
4883         create_pit_unlock:
4884                 mutex_unlock(&kvm->lock);
4885                 break;
4886         case KVM_GET_IRQCHIP: {
4887                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4888                 struct kvm_irqchip *chip;
4889
4890                 chip = memdup_user(argp, sizeof(*chip));
4891                 if (IS_ERR(chip)) {
4892                         r = PTR_ERR(chip);
4893                         goto out;
4894                 }
4895
4896                 r = -ENXIO;
4897                 if (!irqchip_kernel(kvm))
4898                         goto get_irqchip_out;
4899                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4900                 if (r)
4901                         goto get_irqchip_out;
4902                 r = -EFAULT;
4903                 if (copy_to_user(argp, chip, sizeof(*chip)))
4904                         goto get_irqchip_out;
4905                 r = 0;
4906         get_irqchip_out:
4907                 kfree(chip);
4908                 break;
4909         }
4910         case KVM_SET_IRQCHIP: {
4911                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4912                 struct kvm_irqchip *chip;
4913
4914                 chip = memdup_user(argp, sizeof(*chip));
4915                 if (IS_ERR(chip)) {
4916                         r = PTR_ERR(chip);
4917                         goto out;
4918                 }
4919
4920                 r = -ENXIO;
4921                 if (!irqchip_kernel(kvm))
4922                         goto set_irqchip_out;
4923                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4924                 if (r)
4925                         goto set_irqchip_out;
4926                 r = 0;
4927         set_irqchip_out:
4928                 kfree(chip);
4929                 break;
4930         }
4931         case KVM_GET_PIT: {
4932                 r = -EFAULT;
4933                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4934                         goto out;
4935                 r = -ENXIO;
4936                 if (!kvm->arch.vpit)
4937                         goto out;
4938                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4939                 if (r)
4940                         goto out;
4941                 r = -EFAULT;
4942                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4943                         goto out;
4944                 r = 0;
4945                 break;
4946         }
4947         case KVM_SET_PIT: {
4948                 r = -EFAULT;
4949                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4950                         goto out;
4951                 r = -ENXIO;
4952                 if (!kvm->arch.vpit)
4953                         goto out;
4954                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4955                 break;
4956         }
4957         case KVM_GET_PIT2: {
4958                 r = -ENXIO;
4959                 if (!kvm->arch.vpit)
4960                         goto out;
4961                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4962                 if (r)
4963                         goto out;
4964                 r = -EFAULT;
4965                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4966                         goto out;
4967                 r = 0;
4968                 break;
4969         }
4970         case KVM_SET_PIT2: {
4971                 r = -EFAULT;
4972                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4973                         goto out;
4974                 r = -ENXIO;
4975                 if (!kvm->arch.vpit)
4976                         goto out;
4977                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4978                 break;
4979         }
4980         case KVM_REINJECT_CONTROL: {
4981                 struct kvm_reinject_control control;
4982                 r =  -EFAULT;
4983                 if (copy_from_user(&control, argp, sizeof(control)))
4984                         goto out;
4985                 r = kvm_vm_ioctl_reinject(kvm, &control);
4986                 break;
4987         }
4988         case KVM_SET_BOOT_CPU_ID:
4989                 r = 0;
4990                 mutex_lock(&kvm->lock);
4991                 if (kvm->created_vcpus)
4992                         r = -EBUSY;
4993                 else
4994                         kvm->arch.bsp_vcpu_id = arg;
4995                 mutex_unlock(&kvm->lock);
4996                 break;
4997         case KVM_XEN_HVM_CONFIG: {
4998                 struct kvm_xen_hvm_config xhc;
4999                 r = -EFAULT;
5000                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5001                         goto out;
5002                 r = -EINVAL;
5003                 if (xhc.flags)
5004                         goto out;
5005                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5006                 r = 0;
5007                 break;
5008         }
5009         case KVM_SET_CLOCK: {
5010                 struct kvm_clock_data user_ns;
5011                 u64 now_ns;
5012
5013                 r = -EFAULT;
5014                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5015                         goto out;
5016
5017                 r = -EINVAL;
5018                 if (user_ns.flags)
5019                         goto out;
5020
5021                 r = 0;
5022                 /*
5023                  * TODO: userspace has to take care of races with VCPU_RUN, so
5024                  * kvm_gen_update_masterclock() can be cut down to locked
5025                  * pvclock_update_vm_gtod_copy().
5026                  */
5027                 kvm_gen_update_masterclock(kvm);
5028                 now_ns = get_kvmclock_ns(kvm);
5029                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5030                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5031                 break;
5032         }
5033         case KVM_GET_CLOCK: {
5034                 struct kvm_clock_data user_ns;
5035                 u64 now_ns;
5036
5037                 now_ns = get_kvmclock_ns(kvm);
5038                 user_ns.clock = now_ns;
5039                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5040                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5041
5042                 r = -EFAULT;
5043                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5044                         goto out;
5045                 r = 0;
5046                 break;
5047         }
5048         case KVM_MEMORY_ENCRYPT_OP: {
5049                 r = -ENOTTY;
5050                 if (kvm_x86_ops->mem_enc_op)
5051                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
5052                 break;
5053         }
5054         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5055                 struct kvm_enc_region region;
5056
5057                 r = -EFAULT;
5058                 if (copy_from_user(&region, argp, sizeof(region)))
5059                         goto out;
5060
5061                 r = -ENOTTY;
5062                 if (kvm_x86_ops->mem_enc_reg_region)
5063                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5064                 break;
5065         }
5066         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5067                 struct kvm_enc_region region;
5068
5069                 r = -EFAULT;
5070                 if (copy_from_user(&region, argp, sizeof(region)))
5071                         goto out;
5072
5073                 r = -ENOTTY;
5074                 if (kvm_x86_ops->mem_enc_unreg_region)
5075                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5076                 break;
5077         }
5078         case KVM_HYPERV_EVENTFD: {
5079                 struct kvm_hyperv_eventfd hvevfd;
5080
5081                 r = -EFAULT;
5082                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5083                         goto out;
5084                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5085                 break;
5086         }
5087         case KVM_SET_PMU_EVENT_FILTER:
5088                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5089                 break;
5090         default:
5091                 r = -ENOTTY;
5092         }
5093 out:
5094         return r;
5095 }
5096
5097 static void kvm_init_msr_list(void)
5098 {
5099         u32 dummy[2];
5100         unsigned i, j;
5101
5102         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5103                          "Please update the fixed PMCs in msrs_to_save[]");
5104         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_GENERIC != 32,
5105                          "Please update the generic perfctr/eventsel MSRs in msrs_to_save[]");
5106
5107         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
5108                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
5109                         continue;
5110
5111                 /*
5112                  * Even MSRs that are valid in the host may not be exposed
5113                  * to the guests in some cases.
5114                  */
5115                 switch (msrs_to_save[i]) {
5116                 case MSR_IA32_BNDCFGS:
5117                         if (!kvm_mpx_supported())
5118                                 continue;
5119                         break;
5120                 case MSR_TSC_AUX:
5121                         if (!kvm_x86_ops->rdtscp_supported())
5122                                 continue;
5123                         break;
5124                 case MSR_IA32_RTIT_CTL:
5125                 case MSR_IA32_RTIT_STATUS:
5126                         if (!kvm_x86_ops->pt_supported())
5127                                 continue;
5128                         break;
5129                 case MSR_IA32_RTIT_CR3_MATCH:
5130                         if (!kvm_x86_ops->pt_supported() ||
5131                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5132                                 continue;
5133                         break;
5134                 case MSR_IA32_RTIT_OUTPUT_BASE:
5135                 case MSR_IA32_RTIT_OUTPUT_MASK:
5136                         if (!kvm_x86_ops->pt_supported() ||
5137                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5138                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5139                                 continue;
5140                         break;
5141                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5142                         if (!kvm_x86_ops->pt_supported() ||
5143                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
5144                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5145                                 continue;
5146                         break;
5147                 }
5148                 default:
5149                         break;
5150                 }
5151
5152                 if (j < i)
5153                         msrs_to_save[j] = msrs_to_save[i];
5154                 j++;
5155         }
5156         num_msrs_to_save = j;
5157
5158         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5159                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5160                         continue;
5161
5162                 if (j < i)
5163                         emulated_msrs[j] = emulated_msrs[i];
5164                 j++;
5165         }
5166         num_emulated_msrs = j;
5167
5168         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5169                 struct kvm_msr_entry msr;
5170
5171                 msr.index = msr_based_features[i];
5172                 if (kvm_get_msr_feature(&msr))
5173                         continue;
5174
5175                 if (j < i)
5176                         msr_based_features[j] = msr_based_features[i];
5177                 j++;
5178         }
5179         num_msr_based_features = j;
5180 }
5181
5182 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5183                            const void *v)
5184 {
5185         int handled = 0;
5186         int n;
5187
5188         do {
5189                 n = min(len, 8);
5190                 if (!(lapic_in_kernel(vcpu) &&
5191                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5192                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5193                         break;
5194                 handled += n;
5195                 addr += n;
5196                 len -= n;
5197                 v += n;
5198         } while (len);
5199
5200         return handled;
5201 }
5202
5203 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5204 {
5205         int handled = 0;
5206         int n;
5207
5208         do {
5209                 n = min(len, 8);
5210                 if (!(lapic_in_kernel(vcpu) &&
5211                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5212                                          addr, n, v))
5213                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5214                         break;
5215                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5216                 handled += n;
5217                 addr += n;
5218                 len -= n;
5219                 v += n;
5220         } while (len);
5221
5222         return handled;
5223 }
5224
5225 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5226                         struct kvm_segment *var, int seg)
5227 {
5228         kvm_x86_ops->set_segment(vcpu, var, seg);
5229 }
5230
5231 void kvm_get_segment(struct kvm_vcpu *vcpu,
5232                      struct kvm_segment *var, int seg)
5233 {
5234         kvm_x86_ops->get_segment(vcpu, var, seg);
5235 }
5236
5237 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5238                            struct x86_exception *exception)
5239 {
5240         gpa_t t_gpa;
5241
5242         BUG_ON(!mmu_is_nested(vcpu));
5243
5244         /* NPT walks are always user-walks */
5245         access |= PFERR_USER_MASK;
5246         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5247
5248         return t_gpa;
5249 }
5250
5251 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5252                               struct x86_exception *exception)
5253 {
5254         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5255         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5256 }
5257
5258  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5259                                 struct x86_exception *exception)
5260 {
5261         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5262         access |= PFERR_FETCH_MASK;
5263         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5264 }
5265
5266 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5267                                struct x86_exception *exception)
5268 {
5269         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5270         access |= PFERR_WRITE_MASK;
5271         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5272 }
5273
5274 /* uses this to access any guest's mapped memory without checking CPL */
5275 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5276                                 struct x86_exception *exception)
5277 {
5278         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5279 }
5280
5281 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5282                                       struct kvm_vcpu *vcpu, u32 access,
5283                                       struct x86_exception *exception)
5284 {
5285         void *data = val;
5286         int r = X86EMUL_CONTINUE;
5287
5288         while (bytes) {
5289                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5290                                                             exception);
5291                 unsigned offset = addr & (PAGE_SIZE-1);
5292                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5293                 int ret;
5294
5295                 if (gpa == UNMAPPED_GVA)
5296                         return X86EMUL_PROPAGATE_FAULT;
5297                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5298                                                offset, toread);
5299                 if (ret < 0) {
5300                         r = X86EMUL_IO_NEEDED;
5301                         goto out;
5302                 }
5303
5304                 bytes -= toread;
5305                 data += toread;
5306                 addr += toread;
5307         }
5308 out:
5309         return r;
5310 }
5311
5312 /* used for instruction fetching */
5313 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5314                                 gva_t addr, void *val, unsigned int bytes,
5315                                 struct x86_exception *exception)
5316 {
5317         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5318         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5319         unsigned offset;
5320         int ret;
5321
5322         /* Inline kvm_read_guest_virt_helper for speed.  */
5323         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5324                                                     exception);
5325         if (unlikely(gpa == UNMAPPED_GVA))
5326                 return X86EMUL_PROPAGATE_FAULT;
5327
5328         offset = addr & (PAGE_SIZE-1);
5329         if (WARN_ON(offset + bytes > PAGE_SIZE))
5330                 bytes = (unsigned)PAGE_SIZE - offset;
5331         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5332                                        offset, bytes);
5333         if (unlikely(ret < 0))
5334                 return X86EMUL_IO_NEEDED;
5335
5336         return X86EMUL_CONTINUE;
5337 }
5338
5339 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5340                                gva_t addr, void *val, unsigned int bytes,
5341                                struct x86_exception *exception)
5342 {
5343         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5344
5345         /*
5346          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5347          * is returned, but our callers are not ready for that and they blindly
5348          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5349          * uninitialized kernel stack memory into cr2 and error code.
5350          */
5351         memset(exception, 0, sizeof(*exception));
5352         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5353                                           exception);
5354 }
5355 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5356
5357 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5358                              gva_t addr, void *val, unsigned int bytes,
5359                              struct x86_exception *exception, bool system)
5360 {
5361         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5362         u32 access = 0;
5363
5364         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5365                 access |= PFERR_USER_MASK;
5366
5367         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5368 }
5369
5370 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5371                 unsigned long addr, void *val, unsigned int bytes)
5372 {
5373         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5374         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5375
5376         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5377 }
5378
5379 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5380                                       struct kvm_vcpu *vcpu, u32 access,
5381                                       struct x86_exception *exception)
5382 {
5383         void *data = val;
5384         int r = X86EMUL_CONTINUE;
5385
5386         while (bytes) {
5387                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5388                                                              access,
5389                                                              exception);
5390                 unsigned offset = addr & (PAGE_SIZE-1);
5391                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5392                 int ret;
5393
5394                 if (gpa == UNMAPPED_GVA)
5395                         return X86EMUL_PROPAGATE_FAULT;
5396                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5397                 if (ret < 0) {
5398                         r = X86EMUL_IO_NEEDED;
5399                         goto out;
5400                 }
5401
5402                 bytes -= towrite;
5403                 data += towrite;
5404                 addr += towrite;
5405         }
5406 out:
5407         return r;
5408 }
5409
5410 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5411                               unsigned int bytes, struct x86_exception *exception,
5412                               bool system)
5413 {
5414         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5415         u32 access = PFERR_WRITE_MASK;
5416
5417         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5418                 access |= PFERR_USER_MASK;
5419
5420         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5421                                            access, exception);
5422 }
5423
5424 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5425                                 unsigned int bytes, struct x86_exception *exception)
5426 {
5427         /* kvm_write_guest_virt_system can pull in tons of pages. */
5428         vcpu->arch.l1tf_flush_l1d = true;
5429
5430         /*
5431          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5432          * is returned, but our callers are not ready for that and they blindly
5433          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5434          * uninitialized kernel stack memory into cr2 and error code.
5435          */
5436         memset(exception, 0, sizeof(*exception));
5437         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5438                                            PFERR_WRITE_MASK, exception);
5439 }
5440 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5441
5442 int handle_ud(struct kvm_vcpu *vcpu)
5443 {
5444         int emul_type = EMULTYPE_TRAP_UD;
5445         char sig[5]; /* ud2; .ascii "kvm" */
5446         struct x86_exception e;
5447
5448         if (force_emulation_prefix &&
5449             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5450                                 sig, sizeof(sig), &e) == 0 &&
5451             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5452                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5453                 emul_type = EMULTYPE_TRAP_UD_FORCED;
5454         }
5455
5456         return kvm_emulate_instruction(vcpu, emul_type);
5457 }
5458 EXPORT_SYMBOL_GPL(handle_ud);
5459
5460 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5461                             gpa_t gpa, bool write)
5462 {
5463         /* For APIC access vmexit */
5464         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5465                 return 1;
5466
5467         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5468                 trace_vcpu_match_mmio(gva, gpa, write, true);
5469                 return 1;
5470         }
5471
5472         return 0;
5473 }
5474
5475 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5476                                 gpa_t *gpa, struct x86_exception *exception,
5477                                 bool write)
5478 {
5479         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5480                 | (write ? PFERR_WRITE_MASK : 0);
5481
5482         /*
5483          * currently PKRU is only applied to ept enabled guest so
5484          * there is no pkey in EPT page table for L1 guest or EPT
5485          * shadow page table for L2 guest.
5486          */
5487         if (vcpu_match_mmio_gva(vcpu, gva)
5488             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5489                                  vcpu->arch.mmio_access, 0, access)) {
5490                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5491                                         (gva & (PAGE_SIZE - 1));
5492                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5493                 return 1;
5494         }
5495
5496         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5497
5498         if (*gpa == UNMAPPED_GVA)
5499                 return -1;
5500
5501         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5502 }
5503
5504 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5505                         const void *val, int bytes)
5506 {
5507         int ret;
5508
5509         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5510         if (ret < 0)
5511                 return 0;
5512         kvm_page_track_write(vcpu, gpa, val, bytes);
5513         return 1;
5514 }
5515
5516 struct read_write_emulator_ops {
5517         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5518                                   int bytes);
5519         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5520                                   void *val, int bytes);
5521         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5522                                int bytes, void *val);
5523         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5524                                     void *val, int bytes);
5525         bool write;
5526 };
5527
5528 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5529 {
5530         if (vcpu->mmio_read_completed) {
5531                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5532                                vcpu->mmio_fragments[0].gpa, val);
5533                 vcpu->mmio_read_completed = 0;
5534                 return 1;
5535         }
5536
5537         return 0;
5538 }
5539
5540 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5541                         void *val, int bytes)
5542 {
5543         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5544 }
5545
5546 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5547                          void *val, int bytes)
5548 {
5549         return emulator_write_phys(vcpu, gpa, val, bytes);
5550 }
5551
5552 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5553 {
5554         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5555         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5556 }
5557
5558 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5559                           void *val, int bytes)
5560 {
5561         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5562         return X86EMUL_IO_NEEDED;
5563 }
5564
5565 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5566                            void *val, int bytes)
5567 {
5568         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5569
5570         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5571         return X86EMUL_CONTINUE;
5572 }
5573
5574 static const struct read_write_emulator_ops read_emultor = {
5575         .read_write_prepare = read_prepare,
5576         .read_write_emulate = read_emulate,
5577         .read_write_mmio = vcpu_mmio_read,
5578         .read_write_exit_mmio = read_exit_mmio,
5579 };
5580
5581 static const struct read_write_emulator_ops write_emultor = {
5582         .read_write_emulate = write_emulate,
5583         .read_write_mmio = write_mmio,
5584         .read_write_exit_mmio = write_exit_mmio,
5585         .write = true,
5586 };
5587
5588 static int emulator_read_write_onepage(unsigned long addr, void *val,
5589                                        unsigned int bytes,
5590                                        struct x86_exception *exception,
5591                                        struct kvm_vcpu *vcpu,
5592                                        const struct read_write_emulator_ops *ops)
5593 {
5594         gpa_t gpa;
5595         int handled, ret;
5596         bool write = ops->write;
5597         struct kvm_mmio_fragment *frag;
5598         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5599
5600         /*
5601          * If the exit was due to a NPF we may already have a GPA.
5602          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5603          * Note, this cannot be used on string operations since string
5604          * operation using rep will only have the initial GPA from the NPF
5605          * occurred.
5606          */
5607         if (vcpu->arch.gpa_available &&
5608             emulator_can_use_gpa(ctxt) &&
5609             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5610                 gpa = vcpu->arch.gpa_val;
5611                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5612         } else {
5613                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5614                 if (ret < 0)
5615                         return X86EMUL_PROPAGATE_FAULT;
5616         }
5617
5618         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5619                 return X86EMUL_CONTINUE;
5620
5621         /*
5622          * Is this MMIO handled locally?
5623          */
5624         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5625         if (handled == bytes)
5626                 return X86EMUL_CONTINUE;
5627
5628         gpa += handled;
5629         bytes -= handled;
5630         val += handled;
5631
5632         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5633         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5634         frag->gpa = gpa;
5635         frag->data = val;
5636         frag->len = bytes;
5637         return X86EMUL_CONTINUE;
5638 }
5639
5640 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5641                         unsigned long addr,
5642                         void *val, unsigned int bytes,
5643                         struct x86_exception *exception,
5644                         const struct read_write_emulator_ops *ops)
5645 {
5646         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5647         gpa_t gpa;
5648         int rc;
5649
5650         if (ops->read_write_prepare &&
5651                   ops->read_write_prepare(vcpu, val, bytes))
5652                 return X86EMUL_CONTINUE;
5653
5654         vcpu->mmio_nr_fragments = 0;
5655
5656         /* Crossing a page boundary? */
5657         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5658                 int now;
5659
5660                 now = -addr & ~PAGE_MASK;
5661                 rc = emulator_read_write_onepage(addr, val, now, exception,
5662                                                  vcpu, ops);
5663
5664                 if (rc != X86EMUL_CONTINUE)
5665                         return rc;
5666                 addr += now;
5667                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5668                         addr = (u32)addr;
5669                 val += now;
5670                 bytes -= now;
5671         }
5672
5673         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5674                                          vcpu, ops);
5675         if (rc != X86EMUL_CONTINUE)
5676                 return rc;
5677
5678         if (!vcpu->mmio_nr_fragments)
5679                 return rc;
5680
5681         gpa = vcpu->mmio_fragments[0].gpa;
5682
5683         vcpu->mmio_needed = 1;
5684         vcpu->mmio_cur_fragment = 0;
5685
5686         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5687         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5688         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5689         vcpu->run->mmio.phys_addr = gpa;
5690
5691         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5692 }
5693
5694 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5695                                   unsigned long addr,
5696                                   void *val,
5697                                   unsigned int bytes,
5698                                   struct x86_exception *exception)
5699 {
5700         return emulator_read_write(ctxt, addr, val, bytes,
5701                                    exception, &read_emultor);
5702 }
5703
5704 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5705                             unsigned long addr,
5706                             const void *val,
5707                             unsigned int bytes,
5708                             struct x86_exception *exception)
5709 {
5710         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5711                                    exception, &write_emultor);
5712 }
5713
5714 #define CMPXCHG_TYPE(t, ptr, old, new) \
5715         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5716
5717 #ifdef CONFIG_X86_64
5718 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5719 #else
5720 #  define CMPXCHG64(ptr, old, new) \
5721         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5722 #endif
5723
5724 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5725                                      unsigned long addr,
5726                                      const void *old,
5727                                      const void *new,
5728                                      unsigned int bytes,
5729                                      struct x86_exception *exception)
5730 {
5731         struct kvm_host_map map;
5732         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5733         gpa_t gpa;
5734         char *kaddr;
5735         bool exchanged;
5736
5737         /* guests cmpxchg8b have to be emulated atomically */
5738         if (bytes > 8 || (bytes & (bytes - 1)))
5739                 goto emul_write;
5740
5741         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5742
5743         if (gpa == UNMAPPED_GVA ||
5744             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5745                 goto emul_write;
5746
5747         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5748                 goto emul_write;
5749
5750         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5751                 goto emul_write;
5752
5753         kaddr = map.hva + offset_in_page(gpa);
5754
5755         switch (bytes) {
5756         case 1:
5757                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5758                 break;
5759         case 2:
5760                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5761                 break;
5762         case 4:
5763                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5764                 break;
5765         case 8:
5766                 exchanged = CMPXCHG64(kaddr, old, new);
5767                 break;
5768         default:
5769                 BUG();
5770         }
5771
5772         kvm_vcpu_unmap(vcpu, &map, true);
5773
5774         if (!exchanged)
5775                 return X86EMUL_CMPXCHG_FAILED;
5776
5777         kvm_page_track_write(vcpu, gpa, new, bytes);
5778
5779         return X86EMUL_CONTINUE;
5780
5781 emul_write:
5782         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5783
5784         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5785 }
5786
5787 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5788 {
5789         int r = 0, i;
5790
5791         for (i = 0; i < vcpu->arch.pio.count; i++) {
5792                 if (vcpu->arch.pio.in)
5793                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5794                                             vcpu->arch.pio.size, pd);
5795                 else
5796                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5797                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5798                                              pd);
5799                 if (r)
5800                         break;
5801                 pd += vcpu->arch.pio.size;
5802         }
5803         return r;
5804 }
5805
5806 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5807                                unsigned short port, void *val,
5808                                unsigned int count, bool in)
5809 {
5810         vcpu->arch.pio.port = port;
5811         vcpu->arch.pio.in = in;
5812         vcpu->arch.pio.count  = count;
5813         vcpu->arch.pio.size = size;
5814
5815         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5816                 vcpu->arch.pio.count = 0;
5817                 return 1;
5818         }
5819
5820         vcpu->run->exit_reason = KVM_EXIT_IO;
5821         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5822         vcpu->run->io.size = size;
5823         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5824         vcpu->run->io.count = count;
5825         vcpu->run->io.port = port;
5826
5827         return 0;
5828 }
5829
5830 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5831                                     int size, unsigned short port, void *val,
5832                                     unsigned int count)
5833 {
5834         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5835         int ret;
5836
5837         if (vcpu->arch.pio.count)
5838                 goto data_avail;
5839
5840         memset(vcpu->arch.pio_data, 0, size * count);
5841
5842         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5843         if (ret) {
5844 data_avail:
5845                 memcpy(val, vcpu->arch.pio_data, size * count);
5846                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5847                 vcpu->arch.pio.count = 0;
5848                 return 1;
5849         }
5850
5851         return 0;
5852 }
5853
5854 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5855                                      int size, unsigned short port,
5856                                      const void *val, unsigned int count)
5857 {
5858         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5859
5860         memcpy(vcpu->arch.pio_data, val, size * count);
5861         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5862         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5863 }
5864
5865 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5866 {
5867         return kvm_x86_ops->get_segment_base(vcpu, seg);
5868 }
5869
5870 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5871 {
5872         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5873 }
5874
5875 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5876 {
5877         if (!need_emulate_wbinvd(vcpu))
5878                 return X86EMUL_CONTINUE;
5879
5880         if (kvm_x86_ops->has_wbinvd_exit()) {
5881                 int cpu = get_cpu();
5882
5883                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5884                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5885                                 wbinvd_ipi, NULL, 1);
5886                 put_cpu();
5887                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5888         } else
5889                 wbinvd();
5890         return X86EMUL_CONTINUE;
5891 }
5892
5893 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5894 {
5895         kvm_emulate_wbinvd_noskip(vcpu);
5896         return kvm_skip_emulated_instruction(vcpu);
5897 }
5898 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5899
5900
5901
5902 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5903 {
5904         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5905 }
5906
5907 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5908                            unsigned long *dest)
5909 {
5910         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5911 }
5912
5913 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5914                            unsigned long value)
5915 {
5916
5917         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5918 }
5919
5920 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5921 {
5922         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5923 }
5924
5925 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5926 {
5927         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5928         unsigned long value;
5929
5930         switch (cr) {
5931         case 0:
5932                 value = kvm_read_cr0(vcpu);
5933                 break;
5934         case 2:
5935                 value = vcpu->arch.cr2;
5936                 break;
5937         case 3:
5938                 value = kvm_read_cr3(vcpu);
5939                 break;
5940         case 4:
5941                 value = kvm_read_cr4(vcpu);
5942                 break;
5943         case 8:
5944                 value = kvm_get_cr8(vcpu);
5945                 break;
5946         default:
5947                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5948                 return 0;
5949         }
5950
5951         return value;
5952 }
5953
5954 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5955 {
5956         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5957         int res = 0;
5958
5959         switch (cr) {
5960         case 0:
5961                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5962                 break;
5963         case 2:
5964                 vcpu->arch.cr2 = val;
5965                 break;
5966         case 3:
5967                 res = kvm_set_cr3(vcpu, val);
5968                 break;
5969         case 4:
5970                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5971                 break;
5972         case 8:
5973                 res = kvm_set_cr8(vcpu, val);
5974                 break;
5975         default:
5976                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5977                 res = -1;
5978         }
5979
5980         return res;
5981 }
5982
5983 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5984 {
5985         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5986 }
5987
5988 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5989 {
5990         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5991 }
5992
5993 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5994 {
5995         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5996 }
5997
5998 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5999 {
6000         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6001 }
6002
6003 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6004 {
6005         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6006 }
6007
6008 static unsigned long emulator_get_cached_segment_base(
6009         struct x86_emulate_ctxt *ctxt, int seg)
6010 {
6011         return get_segment_base(emul_to_vcpu(ctxt), seg);
6012 }
6013
6014 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6015                                  struct desc_struct *desc, u32 *base3,
6016                                  int seg)
6017 {
6018         struct kvm_segment var;
6019
6020         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6021         *selector = var.selector;
6022
6023         if (var.unusable) {
6024                 memset(desc, 0, sizeof(*desc));
6025                 if (base3)
6026                         *base3 = 0;
6027                 return false;
6028         }
6029
6030         if (var.g)
6031                 var.limit >>= 12;
6032         set_desc_limit(desc, var.limit);
6033         set_desc_base(desc, (unsigned long)var.base);
6034 #ifdef CONFIG_X86_64
6035         if (base3)
6036                 *base3 = var.base >> 32;
6037 #endif
6038         desc->type = var.type;
6039         desc->s = var.s;
6040         desc->dpl = var.dpl;
6041         desc->p = var.present;
6042         desc->avl = var.avl;
6043         desc->l = var.l;
6044         desc->d = var.db;
6045         desc->g = var.g;
6046
6047         return true;
6048 }
6049
6050 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6051                                  struct desc_struct *desc, u32 base3,
6052                                  int seg)
6053 {
6054         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6055         struct kvm_segment var;
6056
6057         var.selector = selector;
6058         var.base = get_desc_base(desc);
6059 #ifdef CONFIG_X86_64
6060         var.base |= ((u64)base3) << 32;
6061 #endif
6062         var.limit = get_desc_limit(desc);
6063         if (desc->g)
6064                 var.limit = (var.limit << 12) | 0xfff;
6065         var.type = desc->type;
6066         var.dpl = desc->dpl;
6067         var.db = desc->d;
6068         var.s = desc->s;
6069         var.l = desc->l;
6070         var.g = desc->g;
6071         var.avl = desc->avl;
6072         var.present = desc->p;
6073         var.unusable = !var.present;
6074         var.padding = 0;
6075
6076         kvm_set_segment(vcpu, &var, seg);
6077         return;
6078 }
6079
6080 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6081                             u32 msr_index, u64 *pdata)
6082 {
6083         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6084 }
6085
6086 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6087                             u32 msr_index, u64 data)
6088 {
6089         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6090 }
6091
6092 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6093 {
6094         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6095
6096         return vcpu->arch.smbase;
6097 }
6098
6099 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6100 {
6101         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6102
6103         vcpu->arch.smbase = smbase;
6104 }
6105
6106 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6107                               u32 pmc)
6108 {
6109         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6110 }
6111
6112 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6113                              u32 pmc, u64 *pdata)
6114 {
6115         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6116 }
6117
6118 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6119 {
6120         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6121 }
6122
6123 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6124                               struct x86_instruction_info *info,
6125                               enum x86_intercept_stage stage)
6126 {
6127         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6128 }
6129
6130 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6131                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6132 {
6133         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6134 }
6135
6136 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6137 {
6138         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6139 }
6140
6141 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6142 {
6143         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6144 }
6145
6146 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6147 {
6148         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6149 }
6150
6151 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6152 {
6153         return emul_to_vcpu(ctxt)->arch.hflags;
6154 }
6155
6156 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6157 {
6158         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6159 }
6160
6161 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6162                                   const char *smstate)
6163 {
6164         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6165 }
6166
6167 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6168 {
6169         kvm_smm_changed(emul_to_vcpu(ctxt));
6170 }
6171
6172 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6173 {
6174         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6175 }
6176
6177 static const struct x86_emulate_ops emulate_ops = {
6178         .read_gpr            = emulator_read_gpr,
6179         .write_gpr           = emulator_write_gpr,
6180         .read_std            = emulator_read_std,
6181         .write_std           = emulator_write_std,
6182         .read_phys           = kvm_read_guest_phys_system,
6183         .fetch               = kvm_fetch_guest_virt,
6184         .read_emulated       = emulator_read_emulated,
6185         .write_emulated      = emulator_write_emulated,
6186         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6187         .invlpg              = emulator_invlpg,
6188         .pio_in_emulated     = emulator_pio_in_emulated,
6189         .pio_out_emulated    = emulator_pio_out_emulated,
6190         .get_segment         = emulator_get_segment,
6191         .set_segment         = emulator_set_segment,
6192         .get_cached_segment_base = emulator_get_cached_segment_base,
6193         .get_gdt             = emulator_get_gdt,
6194         .get_idt             = emulator_get_idt,
6195         .set_gdt             = emulator_set_gdt,
6196         .set_idt             = emulator_set_idt,
6197         .get_cr              = emulator_get_cr,
6198         .set_cr              = emulator_set_cr,
6199         .cpl                 = emulator_get_cpl,
6200         .get_dr              = emulator_get_dr,
6201         .set_dr              = emulator_set_dr,
6202         .get_smbase          = emulator_get_smbase,
6203         .set_smbase          = emulator_set_smbase,
6204         .set_msr             = emulator_set_msr,
6205         .get_msr             = emulator_get_msr,
6206         .check_pmc           = emulator_check_pmc,
6207         .read_pmc            = emulator_read_pmc,
6208         .halt                = emulator_halt,
6209         .wbinvd              = emulator_wbinvd,
6210         .fix_hypercall       = emulator_fix_hypercall,
6211         .intercept           = emulator_intercept,
6212         .get_cpuid           = emulator_get_cpuid,
6213         .set_nmi_mask        = emulator_set_nmi_mask,
6214         .get_hflags          = emulator_get_hflags,
6215         .set_hflags          = emulator_set_hflags,
6216         .pre_leave_smm       = emulator_pre_leave_smm,
6217         .post_leave_smm      = emulator_post_leave_smm,
6218         .set_xcr             = emulator_set_xcr,
6219 };
6220
6221 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6222 {
6223         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6224         /*
6225          * an sti; sti; sequence only disable interrupts for the first
6226          * instruction. So, if the last instruction, be it emulated or
6227          * not, left the system with the INT_STI flag enabled, it
6228          * means that the last instruction is an sti. We should not
6229          * leave the flag on in this case. The same goes for mov ss
6230          */
6231         if (int_shadow & mask)
6232                 mask = 0;
6233         if (unlikely(int_shadow || mask)) {
6234                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6235                 if (!mask)
6236                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6237         }
6238 }
6239
6240 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6241 {
6242         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6243         if (ctxt->exception.vector == PF_VECTOR)
6244                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6245
6246         if (ctxt->exception.error_code_valid)
6247                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6248                                       ctxt->exception.error_code);
6249         else
6250                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6251         return false;
6252 }
6253
6254 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6255 {
6256         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6257         int cs_db, cs_l;
6258
6259         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6260
6261         ctxt->eflags = kvm_get_rflags(vcpu);
6262         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6263
6264         ctxt->eip = kvm_rip_read(vcpu);
6265         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6266                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6267                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6268                      cs_db                              ? X86EMUL_MODE_PROT32 :
6269                                                           X86EMUL_MODE_PROT16;
6270         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6271         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6272         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6273
6274         init_decode_cache(ctxt);
6275         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6276 }
6277
6278 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6279 {
6280         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6281         int ret;
6282
6283         init_emulate_ctxt(vcpu);
6284
6285         ctxt->op_bytes = 2;
6286         ctxt->ad_bytes = 2;
6287         ctxt->_eip = ctxt->eip + inc_eip;
6288         ret = emulate_int_real(ctxt, irq);
6289
6290         if (ret != X86EMUL_CONTINUE) {
6291                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6292         } else {
6293                 ctxt->eip = ctxt->_eip;
6294                 kvm_rip_write(vcpu, ctxt->eip);
6295                 kvm_set_rflags(vcpu, ctxt->eflags);
6296         }
6297 }
6298 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6299
6300 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6301 {
6302         ++vcpu->stat.insn_emulation_fail;
6303         trace_kvm_emulate_insn_failed(vcpu);
6304
6305         if (emulation_type & EMULTYPE_VMWARE_GP) {
6306                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6307                 return 1;
6308         }
6309
6310         if (emulation_type & EMULTYPE_SKIP) {
6311                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6312                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6313                 vcpu->run->internal.ndata = 0;
6314                 return 0;
6315         }
6316
6317         kvm_queue_exception(vcpu, UD_VECTOR);
6318
6319         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6320                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6321                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6322                 vcpu->run->internal.ndata = 0;
6323                 return 0;
6324         }
6325
6326         return 1;
6327 }
6328
6329 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6330                                   bool write_fault_to_shadow_pgtable,
6331                                   int emulation_type)
6332 {
6333         gpa_t gpa = cr2;
6334         kvm_pfn_t pfn;
6335
6336         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6337                 return false;
6338
6339         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6340                 return false;
6341
6342         if (!vcpu->arch.mmu->direct_map) {
6343                 /*
6344                  * Write permission should be allowed since only
6345                  * write access need to be emulated.
6346                  */
6347                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6348
6349                 /*
6350                  * If the mapping is invalid in guest, let cpu retry
6351                  * it to generate fault.
6352                  */
6353                 if (gpa == UNMAPPED_GVA)
6354                         return true;
6355         }
6356
6357         /*
6358          * Do not retry the unhandleable instruction if it faults on the
6359          * readonly host memory, otherwise it will goto a infinite loop:
6360          * retry instruction -> write #PF -> emulation fail -> retry
6361          * instruction -> ...
6362          */
6363         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6364
6365         /*
6366          * If the instruction failed on the error pfn, it can not be fixed,
6367          * report the error to userspace.
6368          */
6369         if (is_error_noslot_pfn(pfn))
6370                 return false;
6371
6372         kvm_release_pfn_clean(pfn);
6373
6374         /* The instructions are well-emulated on direct mmu. */
6375         if (vcpu->arch.mmu->direct_map) {
6376                 unsigned int indirect_shadow_pages;
6377
6378                 spin_lock(&vcpu->kvm->mmu_lock);
6379                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6380                 spin_unlock(&vcpu->kvm->mmu_lock);
6381
6382                 if (indirect_shadow_pages)
6383                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6384
6385                 return true;
6386         }
6387
6388         /*
6389          * if emulation was due to access to shadowed page table
6390          * and it failed try to unshadow page and re-enter the
6391          * guest to let CPU execute the instruction.
6392          */
6393         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6394
6395         /*
6396          * If the access faults on its page table, it can not
6397          * be fixed by unprotecting shadow page and it should
6398          * be reported to userspace.
6399          */
6400         return !write_fault_to_shadow_pgtable;
6401 }
6402
6403 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6404                               unsigned long cr2,  int emulation_type)
6405 {
6406         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6407         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6408
6409         last_retry_eip = vcpu->arch.last_retry_eip;
6410         last_retry_addr = vcpu->arch.last_retry_addr;
6411
6412         /*
6413          * If the emulation is caused by #PF and it is non-page_table
6414          * writing instruction, it means the VM-EXIT is caused by shadow
6415          * page protected, we can zap the shadow page and retry this
6416          * instruction directly.
6417          *
6418          * Note: if the guest uses a non-page-table modifying instruction
6419          * on the PDE that points to the instruction, then we will unmap
6420          * the instruction and go to an infinite loop. So, we cache the
6421          * last retried eip and the last fault address, if we meet the eip
6422          * and the address again, we can break out of the potential infinite
6423          * loop.
6424          */
6425         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6426
6427         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6428                 return false;
6429
6430         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6431                 return false;
6432
6433         if (x86_page_table_writing_insn(ctxt))
6434                 return false;
6435
6436         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6437                 return false;
6438
6439         vcpu->arch.last_retry_eip = ctxt->eip;
6440         vcpu->arch.last_retry_addr = cr2;
6441
6442         if (!vcpu->arch.mmu->direct_map)
6443                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6444
6445         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6446
6447         return true;
6448 }
6449
6450 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6451 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6452
6453 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6454 {
6455         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6456                 /* This is a good place to trace that we are exiting SMM.  */
6457                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6458
6459                 /* Process a latched INIT or SMI, if any.  */
6460                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6461         }
6462
6463         kvm_mmu_reset_context(vcpu);
6464 }
6465
6466 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6467                                 unsigned long *db)
6468 {
6469         u32 dr6 = 0;
6470         int i;
6471         u32 enable, rwlen;
6472
6473         enable = dr7;
6474         rwlen = dr7 >> 16;
6475         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6476                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6477                         dr6 |= (1 << i);
6478         return dr6;
6479 }
6480
6481 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6482 {
6483         struct kvm_run *kvm_run = vcpu->run;
6484
6485         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6486                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6487                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6488                 kvm_run->debug.arch.exception = DB_VECTOR;
6489                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6490                 return 0;
6491         }
6492         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6493         return 1;
6494 }
6495
6496 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6497 {
6498         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6499         int r;
6500
6501         r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6502         if (unlikely(!r))
6503                 return 0;
6504
6505         /*
6506          * rflags is the old, "raw" value of the flags.  The new value has
6507          * not been saved yet.
6508          *
6509          * This is correct even for TF set by the guest, because "the
6510          * processor will not generate this exception after the instruction
6511          * that sets the TF flag".
6512          */
6513         if (unlikely(rflags & X86_EFLAGS_TF))
6514                 r = kvm_vcpu_do_singlestep(vcpu);
6515         return r;
6516 }
6517 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6518
6519 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6520 {
6521         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6522             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6523                 struct kvm_run *kvm_run = vcpu->run;
6524                 unsigned long eip = kvm_get_linear_rip(vcpu);
6525                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6526                                            vcpu->arch.guest_debug_dr7,
6527                                            vcpu->arch.eff_db);
6528
6529                 if (dr6 != 0) {
6530                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6531                         kvm_run->debug.arch.pc = eip;
6532                         kvm_run->debug.arch.exception = DB_VECTOR;
6533                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6534                         *r = 0;
6535                         return true;
6536                 }
6537         }
6538
6539         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6540             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6541                 unsigned long eip = kvm_get_linear_rip(vcpu);
6542                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6543                                            vcpu->arch.dr7,
6544                                            vcpu->arch.db);
6545
6546                 if (dr6 != 0) {
6547                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6548                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6549                         kvm_queue_exception(vcpu, DB_VECTOR);
6550                         *r = 1;
6551                         return true;
6552                 }
6553         }
6554
6555         return false;
6556 }
6557
6558 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6559 {
6560         switch (ctxt->opcode_len) {
6561         case 1:
6562                 switch (ctxt->b) {
6563                 case 0xe4:      /* IN */
6564                 case 0xe5:
6565                 case 0xec:
6566                 case 0xed:
6567                 case 0xe6:      /* OUT */
6568                 case 0xe7:
6569                 case 0xee:
6570                 case 0xef:
6571                 case 0x6c:      /* INS */
6572                 case 0x6d:
6573                 case 0x6e:      /* OUTS */
6574                 case 0x6f:
6575                         return true;
6576                 }
6577                 break;
6578         case 2:
6579                 switch (ctxt->b) {
6580                 case 0x33:      /* RDPMC */
6581                         return true;
6582                 }
6583                 break;
6584         }
6585
6586         return false;
6587 }
6588
6589 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6590                             unsigned long cr2,
6591                             int emulation_type,
6592                             void *insn,
6593                             int insn_len)
6594 {
6595         int r;
6596         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6597         bool writeback = true;
6598         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6599
6600         vcpu->arch.l1tf_flush_l1d = true;
6601
6602         /*
6603          * Clear write_fault_to_shadow_pgtable here to ensure it is
6604          * never reused.
6605          */
6606         vcpu->arch.write_fault_to_shadow_pgtable = false;
6607         kvm_clear_exception_queue(vcpu);
6608
6609         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6610                 init_emulate_ctxt(vcpu);
6611
6612                 /*
6613                  * We will reenter on the same instruction since
6614                  * we do not set complete_userspace_io.  This does not
6615                  * handle watchpoints yet, those would be handled in
6616                  * the emulate_ops.
6617                  */
6618                 if (!(emulation_type & EMULTYPE_SKIP) &&
6619                     kvm_vcpu_check_breakpoint(vcpu, &r))
6620                         return r;
6621
6622                 ctxt->interruptibility = 0;
6623                 ctxt->have_exception = false;
6624                 ctxt->exception.vector = -1;
6625                 ctxt->perm_ok = false;
6626
6627                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6628
6629                 r = x86_decode_insn(ctxt, insn, insn_len);
6630
6631                 trace_kvm_emulate_insn_start(vcpu);
6632                 ++vcpu->stat.insn_emulation;
6633                 if (r != EMULATION_OK)  {
6634                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
6635                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6636                                 kvm_queue_exception(vcpu, UD_VECTOR);
6637                                 return 1;
6638                         }
6639                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6640                                                 emulation_type))
6641                                 return 1;
6642                         if (ctxt->have_exception) {
6643                                 /*
6644                                  * #UD should result in just EMULATION_FAILED, and trap-like
6645                                  * exception should not be encountered during decode.
6646                                  */
6647                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6648                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6649                                 inject_emulated_exception(vcpu);
6650                                 return 1;
6651                         }
6652                         return handle_emulation_failure(vcpu, emulation_type);
6653                 }
6654         }
6655
6656         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6657             !is_vmware_backdoor_opcode(ctxt)) {
6658                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6659                 return 1;
6660         }
6661
6662         /*
6663          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6664          * for kvm_skip_emulated_instruction().  The caller is responsible for
6665          * updating interruptibility state and injecting single-step #DBs.
6666          */
6667         if (emulation_type & EMULTYPE_SKIP) {
6668                 kvm_rip_write(vcpu, ctxt->_eip);
6669                 if (ctxt->eflags & X86_EFLAGS_RF)
6670                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6671                 return 1;
6672         }
6673
6674         if (retry_instruction(ctxt, cr2, emulation_type))
6675                 return 1;
6676
6677         /* this is needed for vmware backdoor interface to work since it
6678            changes registers values  during IO operation */
6679         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6680                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6681                 emulator_invalidate_register_cache(ctxt);
6682         }
6683
6684 restart:
6685         /* Save the faulting GPA (cr2) in the address field */
6686         ctxt->exception.address = cr2;
6687
6688         r = x86_emulate_insn(ctxt);
6689
6690         if (r == EMULATION_INTERCEPTED)
6691                 return 1;
6692
6693         if (r == EMULATION_FAILED) {
6694                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6695                                         emulation_type))
6696                         return 1;
6697
6698                 return handle_emulation_failure(vcpu, emulation_type);
6699         }
6700
6701         if (ctxt->have_exception) {
6702                 r = 1;
6703                 if (inject_emulated_exception(vcpu))
6704                         return r;
6705         } else if (vcpu->arch.pio.count) {
6706                 if (!vcpu->arch.pio.in) {
6707                         /* FIXME: return into emulator if single-stepping.  */
6708                         vcpu->arch.pio.count = 0;
6709                 } else {
6710                         writeback = false;
6711                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6712                 }
6713                 r = 0;
6714         } else if (vcpu->mmio_needed) {
6715                 ++vcpu->stat.mmio_exits;
6716
6717                 if (!vcpu->mmio_is_write)
6718                         writeback = false;
6719                 r = 0;
6720                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6721         } else if (r == EMULATION_RESTART)
6722                 goto restart;
6723         else
6724                 r = 1;
6725
6726         if (writeback) {
6727                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6728                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6729                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6730                 if (!ctxt->have_exception ||
6731                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6732                         kvm_rip_write(vcpu, ctxt->eip);
6733                         if (r && ctxt->tf)
6734                                 r = kvm_vcpu_do_singlestep(vcpu);
6735                         __kvm_set_rflags(vcpu, ctxt->eflags);
6736                 }
6737
6738                 /*
6739                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6740                  * do nothing, and it will be requested again as soon as
6741                  * the shadow expires.  But we still need to check here,
6742                  * because POPF has no interrupt shadow.
6743                  */
6744                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6745                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6746         } else
6747                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6748
6749         return r;
6750 }
6751
6752 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6753 {
6754         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6755 }
6756 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6757
6758 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6759                                         void *insn, int insn_len)
6760 {
6761         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6762 }
6763 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6764
6765 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6766 {
6767         vcpu->arch.pio.count = 0;
6768         return 1;
6769 }
6770
6771 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6772 {
6773         vcpu->arch.pio.count = 0;
6774
6775         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6776                 return 1;
6777
6778         return kvm_skip_emulated_instruction(vcpu);
6779 }
6780
6781 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6782                             unsigned short port)
6783 {
6784         unsigned long val = kvm_rax_read(vcpu);
6785         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6786                                             size, port, &val, 1);
6787         if (ret)
6788                 return ret;
6789
6790         /*
6791          * Workaround userspace that relies on old KVM behavior of %rip being
6792          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6793          */
6794         if (port == 0x7e &&
6795             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6796                 vcpu->arch.complete_userspace_io =
6797                         complete_fast_pio_out_port_0x7e;
6798                 kvm_skip_emulated_instruction(vcpu);
6799         } else {
6800                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6801                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6802         }
6803         return 0;
6804 }
6805
6806 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6807 {
6808         unsigned long val;
6809
6810         /* We should only ever be called with arch.pio.count equal to 1 */
6811         BUG_ON(vcpu->arch.pio.count != 1);
6812
6813         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6814                 vcpu->arch.pio.count = 0;
6815                 return 1;
6816         }
6817
6818         /* For size less than 4 we merge, else we zero extend */
6819         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6820
6821         /*
6822          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6823          * the copy and tracing
6824          */
6825         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6826                                  vcpu->arch.pio.port, &val, 1);
6827         kvm_rax_write(vcpu, val);
6828
6829         return kvm_skip_emulated_instruction(vcpu);
6830 }
6831
6832 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6833                            unsigned short port)
6834 {
6835         unsigned long val;
6836         int ret;
6837
6838         /* For size less than 4 we merge, else we zero extend */
6839         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6840
6841         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6842                                        &val, 1);
6843         if (ret) {
6844                 kvm_rax_write(vcpu, val);
6845                 return ret;
6846         }
6847
6848         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6849         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6850
6851         return 0;
6852 }
6853
6854 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6855 {
6856         int ret;
6857
6858         if (in)
6859                 ret = kvm_fast_pio_in(vcpu, size, port);
6860         else
6861                 ret = kvm_fast_pio_out(vcpu, size, port);
6862         return ret && kvm_skip_emulated_instruction(vcpu);
6863 }
6864 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6865
6866 static int kvmclock_cpu_down_prep(unsigned int cpu)
6867 {
6868         __this_cpu_write(cpu_tsc_khz, 0);
6869         return 0;
6870 }
6871
6872 static void tsc_khz_changed(void *data)
6873 {
6874         struct cpufreq_freqs *freq = data;
6875         unsigned long khz = 0;
6876
6877         if (data)
6878                 khz = freq->new;
6879         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6880                 khz = cpufreq_quick_get(raw_smp_processor_id());
6881         if (!khz)
6882                 khz = tsc_khz;
6883         __this_cpu_write(cpu_tsc_khz, khz);
6884 }
6885
6886 #ifdef CONFIG_X86_64
6887 static void kvm_hyperv_tsc_notifier(void)
6888 {
6889         struct kvm *kvm;
6890         struct kvm_vcpu *vcpu;
6891         int cpu;
6892
6893         mutex_lock(&kvm_lock);
6894         list_for_each_entry(kvm, &vm_list, vm_list)
6895                 kvm_make_mclock_inprogress_request(kvm);
6896
6897         hyperv_stop_tsc_emulation();
6898
6899         /* TSC frequency always matches when on Hyper-V */
6900         for_each_present_cpu(cpu)
6901                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6902         kvm_max_guest_tsc_khz = tsc_khz;
6903
6904         list_for_each_entry(kvm, &vm_list, vm_list) {
6905                 struct kvm_arch *ka = &kvm->arch;
6906
6907                 spin_lock(&ka->pvclock_gtod_sync_lock);
6908
6909                 pvclock_update_vm_gtod_copy(kvm);
6910
6911                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6912                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6913
6914                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6915                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6916
6917                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6918         }
6919         mutex_unlock(&kvm_lock);
6920 }
6921 #endif
6922
6923 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6924 {
6925         struct kvm *kvm;
6926         struct kvm_vcpu *vcpu;
6927         int i, send_ipi = 0;
6928
6929         /*
6930          * We allow guests to temporarily run on slowing clocks,
6931          * provided we notify them after, or to run on accelerating
6932          * clocks, provided we notify them before.  Thus time never
6933          * goes backwards.
6934          *
6935          * However, we have a problem.  We can't atomically update
6936          * the frequency of a given CPU from this function; it is
6937          * merely a notifier, which can be called from any CPU.
6938          * Changing the TSC frequency at arbitrary points in time
6939          * requires a recomputation of local variables related to
6940          * the TSC for each VCPU.  We must flag these local variables
6941          * to be updated and be sure the update takes place with the
6942          * new frequency before any guests proceed.
6943          *
6944          * Unfortunately, the combination of hotplug CPU and frequency
6945          * change creates an intractable locking scenario; the order
6946          * of when these callouts happen is undefined with respect to
6947          * CPU hotplug, and they can race with each other.  As such,
6948          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6949          * undefined; you can actually have a CPU frequency change take
6950          * place in between the computation of X and the setting of the
6951          * variable.  To protect against this problem, all updates of
6952          * the per_cpu tsc_khz variable are done in an interrupt
6953          * protected IPI, and all callers wishing to update the value
6954          * must wait for a synchronous IPI to complete (which is trivial
6955          * if the caller is on the CPU already).  This establishes the
6956          * necessary total order on variable updates.
6957          *
6958          * Note that because a guest time update may take place
6959          * anytime after the setting of the VCPU's request bit, the
6960          * correct TSC value must be set before the request.  However,
6961          * to ensure the update actually makes it to any guest which
6962          * starts running in hardware virtualization between the set
6963          * and the acquisition of the spinlock, we must also ping the
6964          * CPU after setting the request bit.
6965          *
6966          */
6967
6968         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6969
6970         mutex_lock(&kvm_lock);
6971         list_for_each_entry(kvm, &vm_list, vm_list) {
6972                 kvm_for_each_vcpu(i, vcpu, kvm) {
6973                         if (vcpu->cpu != cpu)
6974                                 continue;
6975                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6976                         if (vcpu->cpu != raw_smp_processor_id())
6977                                 send_ipi = 1;
6978                 }
6979         }
6980         mutex_unlock(&kvm_lock);
6981
6982         if (freq->old < freq->new && send_ipi) {
6983                 /*
6984                  * We upscale the frequency.  Must make the guest
6985                  * doesn't see old kvmclock values while running with
6986                  * the new frequency, otherwise we risk the guest sees
6987                  * time go backwards.
6988                  *
6989                  * In case we update the frequency for another cpu
6990                  * (which might be in guest context) send an interrupt
6991                  * to kick the cpu out of guest context.  Next time
6992                  * guest context is entered kvmclock will be updated,
6993                  * so the guest will not see stale values.
6994                  */
6995                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6996         }
6997 }
6998
6999 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7000                                      void *data)
7001 {
7002         struct cpufreq_freqs *freq = data;
7003         int cpu;
7004
7005         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7006                 return 0;
7007         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7008                 return 0;
7009
7010         for_each_cpu(cpu, freq->policy->cpus)
7011                 __kvmclock_cpufreq_notifier(freq, cpu);
7012
7013         return 0;
7014 }
7015
7016 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7017         .notifier_call  = kvmclock_cpufreq_notifier
7018 };
7019
7020 static int kvmclock_cpu_online(unsigned int cpu)
7021 {
7022         tsc_khz_changed(NULL);
7023         return 0;
7024 }
7025
7026 static void kvm_timer_init(void)
7027 {
7028         max_tsc_khz = tsc_khz;
7029
7030         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7031 #ifdef CONFIG_CPU_FREQ
7032                 struct cpufreq_policy policy;
7033                 int cpu;
7034
7035                 memset(&policy, 0, sizeof(policy));
7036                 cpu = get_cpu();
7037                 cpufreq_get_policy(&policy, cpu);
7038                 if (policy.cpuinfo.max_freq)
7039                         max_tsc_khz = policy.cpuinfo.max_freq;
7040                 put_cpu();
7041 #endif
7042                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7043                                           CPUFREQ_TRANSITION_NOTIFIER);
7044         }
7045
7046         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7047                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7048 }
7049
7050 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7051 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7052
7053 int kvm_is_in_guest(void)
7054 {
7055         return __this_cpu_read(current_vcpu) != NULL;
7056 }
7057
7058 static int kvm_is_user_mode(void)
7059 {
7060         int user_mode = 3;
7061
7062         if (__this_cpu_read(current_vcpu))
7063                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7064
7065         return user_mode != 0;
7066 }
7067
7068 static unsigned long kvm_get_guest_ip(void)
7069 {
7070         unsigned long ip = 0;
7071
7072         if (__this_cpu_read(current_vcpu))
7073                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7074
7075         return ip;
7076 }
7077
7078 static void kvm_handle_intel_pt_intr(void)
7079 {
7080         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7081
7082         kvm_make_request(KVM_REQ_PMI, vcpu);
7083         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7084                         (unsigned long *)&vcpu->arch.pmu.global_status);
7085 }
7086
7087 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7088         .is_in_guest            = kvm_is_in_guest,
7089         .is_user_mode           = kvm_is_user_mode,
7090         .get_guest_ip           = kvm_get_guest_ip,
7091         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7092 };
7093
7094 #ifdef CONFIG_X86_64
7095 static void pvclock_gtod_update_fn(struct work_struct *work)
7096 {
7097         struct kvm *kvm;
7098
7099         struct kvm_vcpu *vcpu;
7100         int i;
7101
7102         mutex_lock(&kvm_lock);
7103         list_for_each_entry(kvm, &vm_list, vm_list)
7104                 kvm_for_each_vcpu(i, vcpu, kvm)
7105                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7106         atomic_set(&kvm_guest_has_master_clock, 0);
7107         mutex_unlock(&kvm_lock);
7108 }
7109
7110 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7111
7112 /*
7113  * Notification about pvclock gtod data update.
7114  */
7115 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7116                                void *priv)
7117 {
7118         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7119         struct timekeeper *tk = priv;
7120
7121         update_pvclock_gtod(tk);
7122
7123         /* disable master clock if host does not trust, or does not
7124          * use, TSC based clocksource.
7125          */
7126         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7127             atomic_read(&kvm_guest_has_master_clock) != 0)
7128                 queue_work(system_long_wq, &pvclock_gtod_work);
7129
7130         return 0;
7131 }
7132
7133 static struct notifier_block pvclock_gtod_notifier = {
7134         .notifier_call = pvclock_gtod_notify,
7135 };
7136 #endif
7137
7138 int kvm_arch_init(void *opaque)
7139 {
7140         int r;
7141         struct kvm_x86_ops *ops = opaque;
7142
7143         if (kvm_x86_ops) {
7144                 printk(KERN_ERR "kvm: already loaded the other module\n");
7145                 r = -EEXIST;
7146                 goto out;
7147         }
7148
7149         if (!ops->cpu_has_kvm_support()) {
7150                 printk(KERN_ERR "kvm: no hardware support\n");
7151                 r = -EOPNOTSUPP;
7152                 goto out;
7153         }
7154         if (ops->disabled_by_bios()) {
7155                 printk(KERN_ERR "kvm: disabled by bios\n");
7156                 r = -EOPNOTSUPP;
7157                 goto out;
7158         }
7159
7160         /*
7161          * KVM explicitly assumes that the guest has an FPU and
7162          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7163          * vCPU's FPU state as a fxregs_state struct.
7164          */
7165         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7166                 printk(KERN_ERR "kvm: inadequate fpu\n");
7167                 r = -EOPNOTSUPP;
7168                 goto out;
7169         }
7170
7171         r = -ENOMEM;
7172         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7173                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7174                                           NULL);
7175         if (!x86_fpu_cache) {
7176                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7177                 goto out;
7178         }
7179
7180         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7181         if (!shared_msrs) {
7182                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7183                 goto out_free_x86_fpu_cache;
7184         }
7185
7186         r = kvm_mmu_module_init();
7187         if (r)
7188                 goto out_free_percpu;
7189
7190         kvm_x86_ops = ops;
7191
7192         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7193                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7194                         PT_PRESENT_MASK, 0, sme_me_mask);
7195         kvm_timer_init();
7196
7197         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7198
7199         if (boot_cpu_has(X86_FEATURE_XSAVE))
7200                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7201
7202         kvm_lapic_init();
7203         if (pi_inject_timer == -1)
7204                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7205 #ifdef CONFIG_X86_64
7206         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7207
7208         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7209                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7210 #endif
7211
7212         return 0;
7213
7214 out_free_percpu:
7215         free_percpu(shared_msrs);
7216 out_free_x86_fpu_cache:
7217         kmem_cache_destroy(x86_fpu_cache);
7218 out:
7219         return r;
7220 }
7221
7222 void kvm_arch_exit(void)
7223 {
7224 #ifdef CONFIG_X86_64
7225         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7226                 clear_hv_tscchange_cb();
7227 #endif
7228         kvm_lapic_exit();
7229         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7230
7231         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7232                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7233                                             CPUFREQ_TRANSITION_NOTIFIER);
7234         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7235 #ifdef CONFIG_X86_64
7236         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7237 #endif
7238         kvm_x86_ops = NULL;
7239         kvm_mmu_module_exit();
7240         free_percpu(shared_msrs);
7241         kmem_cache_destroy(x86_fpu_cache);
7242 }
7243
7244 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7245 {
7246         ++vcpu->stat.halt_exits;
7247         if (lapic_in_kernel(vcpu)) {
7248                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7249                 return 1;
7250         } else {
7251                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7252                 return 0;
7253         }
7254 }
7255 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7256
7257 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7258 {
7259         int ret = kvm_skip_emulated_instruction(vcpu);
7260         /*
7261          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7262          * KVM_EXIT_DEBUG here.
7263          */
7264         return kvm_vcpu_halt(vcpu) && ret;
7265 }
7266 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7267
7268 #ifdef CONFIG_X86_64
7269 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7270                                 unsigned long clock_type)
7271 {
7272         struct kvm_clock_pairing clock_pairing;
7273         struct timespec64 ts;
7274         u64 cycle;
7275         int ret;
7276
7277         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7278                 return -KVM_EOPNOTSUPP;
7279
7280         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7281                 return -KVM_EOPNOTSUPP;
7282
7283         clock_pairing.sec = ts.tv_sec;
7284         clock_pairing.nsec = ts.tv_nsec;
7285         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7286         clock_pairing.flags = 0;
7287         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7288
7289         ret = 0;
7290         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7291                             sizeof(struct kvm_clock_pairing)))
7292                 ret = -KVM_EFAULT;
7293
7294         return ret;
7295 }
7296 #endif
7297
7298 /*
7299  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7300  *
7301  * @apicid - apicid of vcpu to be kicked.
7302  */
7303 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7304 {
7305         struct kvm_lapic_irq lapic_irq;
7306
7307         lapic_irq.shorthand = 0;
7308         lapic_irq.dest_mode = 0;
7309         lapic_irq.level = 0;
7310         lapic_irq.dest_id = apicid;
7311         lapic_irq.msi_redir_hint = false;
7312
7313         lapic_irq.delivery_mode = APIC_DM_REMRD;
7314         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7315 }
7316
7317 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7318 {
7319         if (!lapic_in_kernel(vcpu)) {
7320                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7321                 return;
7322         }
7323         if (!vcpu->arch.apicv_active)
7324                 return;
7325
7326         vcpu->arch.apicv_active = false;
7327         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7328 }
7329
7330 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7331 {
7332         struct kvm_vcpu *target = NULL;
7333         struct kvm_apic_map *map;
7334
7335         rcu_read_lock();
7336         map = rcu_dereference(kvm->arch.apic_map);
7337
7338         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7339                 target = map->phys_map[dest_id]->vcpu;
7340
7341         rcu_read_unlock();
7342
7343         if (target && READ_ONCE(target->ready))
7344                 kvm_vcpu_yield_to(target);
7345 }
7346
7347 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7348 {
7349         unsigned long nr, a0, a1, a2, a3, ret;
7350         int op_64_bit;
7351
7352         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7353                 return kvm_hv_hypercall(vcpu);
7354
7355         nr = kvm_rax_read(vcpu);
7356         a0 = kvm_rbx_read(vcpu);
7357         a1 = kvm_rcx_read(vcpu);
7358         a2 = kvm_rdx_read(vcpu);
7359         a3 = kvm_rsi_read(vcpu);
7360
7361         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7362
7363         op_64_bit = is_64_bit_mode(vcpu);
7364         if (!op_64_bit) {
7365                 nr &= 0xFFFFFFFF;
7366                 a0 &= 0xFFFFFFFF;
7367                 a1 &= 0xFFFFFFFF;
7368                 a2 &= 0xFFFFFFFF;
7369                 a3 &= 0xFFFFFFFF;
7370         }
7371
7372         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7373                 ret = -KVM_EPERM;
7374                 goto out;
7375         }
7376
7377         switch (nr) {
7378         case KVM_HC_VAPIC_POLL_IRQ:
7379                 ret = 0;
7380                 break;
7381         case KVM_HC_KICK_CPU:
7382                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7383                 kvm_sched_yield(vcpu->kvm, a1);
7384                 ret = 0;
7385                 break;
7386 #ifdef CONFIG_X86_64
7387         case KVM_HC_CLOCK_PAIRING:
7388                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7389                 break;
7390 #endif
7391         case KVM_HC_SEND_IPI:
7392                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7393                 break;
7394         case KVM_HC_SCHED_YIELD:
7395                 kvm_sched_yield(vcpu->kvm, a0);
7396                 ret = 0;
7397                 break;
7398         default:
7399                 ret = -KVM_ENOSYS;
7400                 break;
7401         }
7402 out:
7403         if (!op_64_bit)
7404                 ret = (u32)ret;
7405         kvm_rax_write(vcpu, ret);
7406
7407         ++vcpu->stat.hypercalls;
7408         return kvm_skip_emulated_instruction(vcpu);
7409 }
7410 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7411
7412 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7413 {
7414         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7415         char instruction[3];
7416         unsigned long rip = kvm_rip_read(vcpu);
7417
7418         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7419
7420         return emulator_write_emulated(ctxt, rip, instruction, 3,
7421                 &ctxt->exception);
7422 }
7423
7424 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7425 {
7426         return vcpu->run->request_interrupt_window &&
7427                 likely(!pic_in_kernel(vcpu->kvm));
7428 }
7429
7430 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7431 {
7432         struct kvm_run *kvm_run = vcpu->run;
7433
7434         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7435         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7436         kvm_run->cr8 = kvm_get_cr8(vcpu);
7437         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7438         kvm_run->ready_for_interrupt_injection =
7439                 pic_in_kernel(vcpu->kvm) ||
7440                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7441 }
7442
7443 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7444 {
7445         int max_irr, tpr;
7446
7447         if (!kvm_x86_ops->update_cr8_intercept)
7448                 return;
7449
7450         if (!lapic_in_kernel(vcpu))
7451                 return;
7452
7453         if (vcpu->arch.apicv_active)
7454                 return;
7455
7456         if (!vcpu->arch.apic->vapic_addr)
7457                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7458         else
7459                 max_irr = -1;
7460
7461         if (max_irr != -1)
7462                 max_irr >>= 4;
7463
7464         tpr = kvm_lapic_get_cr8(vcpu);
7465
7466         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7467 }
7468
7469 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7470 {
7471         int r;
7472
7473         /* try to reinject previous events if any */
7474
7475         if (vcpu->arch.exception.injected)
7476                 kvm_x86_ops->queue_exception(vcpu);
7477         /*
7478          * Do not inject an NMI or interrupt if there is a pending
7479          * exception.  Exceptions and interrupts are recognized at
7480          * instruction boundaries, i.e. the start of an instruction.
7481          * Trap-like exceptions, e.g. #DB, have higher priority than
7482          * NMIs and interrupts, i.e. traps are recognized before an
7483          * NMI/interrupt that's pending on the same instruction.
7484          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7485          * priority, but are only generated (pended) during instruction
7486          * execution, i.e. a pending fault-like exception means the
7487          * fault occurred on the *previous* instruction and must be
7488          * serviced prior to recognizing any new events in order to
7489          * fully complete the previous instruction.
7490          */
7491         else if (!vcpu->arch.exception.pending) {
7492                 if (vcpu->arch.nmi_injected)
7493                         kvm_x86_ops->set_nmi(vcpu);
7494                 else if (vcpu->arch.interrupt.injected)
7495                         kvm_x86_ops->set_irq(vcpu);
7496         }
7497
7498         /*
7499          * Call check_nested_events() even if we reinjected a previous event
7500          * in order for caller to determine if it should require immediate-exit
7501          * from L2 to L1 due to pending L1 events which require exit
7502          * from L2 to L1.
7503          */
7504         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7505                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7506                 if (r != 0)
7507                         return r;
7508         }
7509
7510         /* try to inject new event if pending */
7511         if (vcpu->arch.exception.pending) {
7512                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7513                                         vcpu->arch.exception.has_error_code,
7514                                         vcpu->arch.exception.error_code);
7515
7516                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7517                 vcpu->arch.exception.pending = false;
7518                 vcpu->arch.exception.injected = true;
7519
7520                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7521                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7522                                              X86_EFLAGS_RF);
7523
7524                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7525                         /*
7526                          * This code assumes that nSVM doesn't use
7527                          * check_nested_events(). If it does, the
7528                          * DR6/DR7 changes should happen before L1
7529                          * gets a #VMEXIT for an intercepted #DB in
7530                          * L2.  (Under VMX, on the other hand, the
7531                          * DR6/DR7 changes should not happen in the
7532                          * event of a VM-exit to L1 for an intercepted
7533                          * #DB in L2.)
7534                          */
7535                         kvm_deliver_exception_payload(vcpu);
7536                         if (vcpu->arch.dr7 & DR7_GD) {
7537                                 vcpu->arch.dr7 &= ~DR7_GD;
7538                                 kvm_update_dr7(vcpu);
7539                         }
7540                 }
7541
7542                 kvm_x86_ops->queue_exception(vcpu);
7543         }
7544
7545         /* Don't consider new event if we re-injected an event */
7546         if (kvm_event_needs_reinjection(vcpu))
7547                 return 0;
7548
7549         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7550             kvm_x86_ops->smi_allowed(vcpu)) {
7551                 vcpu->arch.smi_pending = false;
7552                 ++vcpu->arch.smi_count;
7553                 enter_smm(vcpu);
7554         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7555                 --vcpu->arch.nmi_pending;
7556                 vcpu->arch.nmi_injected = true;
7557                 kvm_x86_ops->set_nmi(vcpu);
7558         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7559                 /*
7560                  * Because interrupts can be injected asynchronously, we are
7561                  * calling check_nested_events again here to avoid a race condition.
7562                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7563                  * proposal and current concerns.  Perhaps we should be setting
7564                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7565                  */
7566                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7567                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7568                         if (r != 0)
7569                                 return r;
7570                 }
7571                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7572                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7573                                             false);
7574                         kvm_x86_ops->set_irq(vcpu);
7575                 }
7576         }
7577
7578         return 0;
7579 }
7580
7581 static void process_nmi(struct kvm_vcpu *vcpu)
7582 {
7583         unsigned limit = 2;
7584
7585         /*
7586          * x86 is limited to one NMI running, and one NMI pending after it.
7587          * If an NMI is already in progress, limit further NMIs to just one.
7588          * Otherwise, allow two (and we'll inject the first one immediately).
7589          */
7590         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7591                 limit = 1;
7592
7593         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7594         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7595         kvm_make_request(KVM_REQ_EVENT, vcpu);
7596 }
7597
7598 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7599 {
7600         u32 flags = 0;
7601         flags |= seg->g       << 23;
7602         flags |= seg->db      << 22;
7603         flags |= seg->l       << 21;
7604         flags |= seg->avl     << 20;
7605         flags |= seg->present << 15;
7606         flags |= seg->dpl     << 13;
7607         flags |= seg->s       << 12;
7608         flags |= seg->type    << 8;
7609         return flags;
7610 }
7611
7612 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7613 {
7614         struct kvm_segment seg;
7615         int offset;
7616
7617         kvm_get_segment(vcpu, &seg, n);
7618         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7619
7620         if (n < 3)
7621                 offset = 0x7f84 + n * 12;
7622         else
7623                 offset = 0x7f2c + (n - 3) * 12;
7624
7625         put_smstate(u32, buf, offset + 8, seg.base);
7626         put_smstate(u32, buf, offset + 4, seg.limit);
7627         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7628 }
7629
7630 #ifdef CONFIG_X86_64
7631 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7632 {
7633         struct kvm_segment seg;
7634         int offset;
7635         u16 flags;
7636
7637         kvm_get_segment(vcpu, &seg, n);
7638         offset = 0x7e00 + n * 16;
7639
7640         flags = enter_smm_get_segment_flags(&seg) >> 8;
7641         put_smstate(u16, buf, offset, seg.selector);
7642         put_smstate(u16, buf, offset + 2, flags);
7643         put_smstate(u32, buf, offset + 4, seg.limit);
7644         put_smstate(u64, buf, offset + 8, seg.base);
7645 }
7646 #endif
7647
7648 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7649 {
7650         struct desc_ptr dt;
7651         struct kvm_segment seg;
7652         unsigned long val;
7653         int i;
7654
7655         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7656         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7657         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7658         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7659
7660         for (i = 0; i < 8; i++)
7661                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7662
7663         kvm_get_dr(vcpu, 6, &val);
7664         put_smstate(u32, buf, 0x7fcc, (u32)val);
7665         kvm_get_dr(vcpu, 7, &val);
7666         put_smstate(u32, buf, 0x7fc8, (u32)val);
7667
7668         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7669         put_smstate(u32, buf, 0x7fc4, seg.selector);
7670         put_smstate(u32, buf, 0x7f64, seg.base);
7671         put_smstate(u32, buf, 0x7f60, seg.limit);
7672         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7673
7674         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7675         put_smstate(u32, buf, 0x7fc0, seg.selector);
7676         put_smstate(u32, buf, 0x7f80, seg.base);
7677         put_smstate(u32, buf, 0x7f7c, seg.limit);
7678         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7679
7680         kvm_x86_ops->get_gdt(vcpu, &dt);
7681         put_smstate(u32, buf, 0x7f74, dt.address);
7682         put_smstate(u32, buf, 0x7f70, dt.size);
7683
7684         kvm_x86_ops->get_idt(vcpu, &dt);
7685         put_smstate(u32, buf, 0x7f58, dt.address);
7686         put_smstate(u32, buf, 0x7f54, dt.size);
7687
7688         for (i = 0; i < 6; i++)
7689                 enter_smm_save_seg_32(vcpu, buf, i);
7690
7691         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7692
7693         /* revision id */
7694         put_smstate(u32, buf, 0x7efc, 0x00020000);
7695         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7696 }
7697
7698 #ifdef CONFIG_X86_64
7699 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7700 {
7701         struct desc_ptr dt;
7702         struct kvm_segment seg;
7703         unsigned long val;
7704         int i;
7705
7706         for (i = 0; i < 16; i++)
7707                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7708
7709         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7710         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7711
7712         kvm_get_dr(vcpu, 6, &val);
7713         put_smstate(u64, buf, 0x7f68, val);
7714         kvm_get_dr(vcpu, 7, &val);
7715         put_smstate(u64, buf, 0x7f60, val);
7716
7717         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7718         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7719         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7720
7721         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7722
7723         /* revision id */
7724         put_smstate(u32, buf, 0x7efc, 0x00020064);
7725
7726         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7727
7728         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7729         put_smstate(u16, buf, 0x7e90, seg.selector);
7730         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7731         put_smstate(u32, buf, 0x7e94, seg.limit);
7732         put_smstate(u64, buf, 0x7e98, seg.base);
7733
7734         kvm_x86_ops->get_idt(vcpu, &dt);
7735         put_smstate(u32, buf, 0x7e84, dt.size);
7736         put_smstate(u64, buf, 0x7e88, dt.address);
7737
7738         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7739         put_smstate(u16, buf, 0x7e70, seg.selector);
7740         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7741         put_smstate(u32, buf, 0x7e74, seg.limit);
7742         put_smstate(u64, buf, 0x7e78, seg.base);
7743
7744         kvm_x86_ops->get_gdt(vcpu, &dt);
7745         put_smstate(u32, buf, 0x7e64, dt.size);
7746         put_smstate(u64, buf, 0x7e68, dt.address);
7747
7748         for (i = 0; i < 6; i++)
7749                 enter_smm_save_seg_64(vcpu, buf, i);
7750 }
7751 #endif
7752
7753 static void enter_smm(struct kvm_vcpu *vcpu)
7754 {
7755         struct kvm_segment cs, ds;
7756         struct desc_ptr dt;
7757         char buf[512];
7758         u32 cr0;
7759
7760         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7761         memset(buf, 0, 512);
7762 #ifdef CONFIG_X86_64
7763         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7764                 enter_smm_save_state_64(vcpu, buf);
7765         else
7766 #endif
7767                 enter_smm_save_state_32(vcpu, buf);
7768
7769         /*
7770          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7771          * vCPU state (e.g. leave guest mode) after we've saved the state into
7772          * the SMM state-save area.
7773          */
7774         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7775
7776         vcpu->arch.hflags |= HF_SMM_MASK;
7777         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7778
7779         if (kvm_x86_ops->get_nmi_mask(vcpu))
7780                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7781         else
7782                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7783
7784         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7785         kvm_rip_write(vcpu, 0x8000);
7786
7787         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7788         kvm_x86_ops->set_cr0(vcpu, cr0);
7789         vcpu->arch.cr0 = cr0;
7790
7791         kvm_x86_ops->set_cr4(vcpu, 0);
7792
7793         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7794         dt.address = dt.size = 0;
7795         kvm_x86_ops->set_idt(vcpu, &dt);
7796
7797         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7798
7799         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7800         cs.base = vcpu->arch.smbase;
7801
7802         ds.selector = 0;
7803         ds.base = 0;
7804
7805         cs.limit    = ds.limit = 0xffffffff;
7806         cs.type     = ds.type = 0x3;
7807         cs.dpl      = ds.dpl = 0;
7808         cs.db       = ds.db = 0;
7809         cs.s        = ds.s = 1;
7810         cs.l        = ds.l = 0;
7811         cs.g        = ds.g = 1;
7812         cs.avl      = ds.avl = 0;
7813         cs.present  = ds.present = 1;
7814         cs.unusable = ds.unusable = 0;
7815         cs.padding  = ds.padding = 0;
7816
7817         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7818         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7819         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7820         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7821         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7822         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7823
7824 #ifdef CONFIG_X86_64
7825         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7826                 kvm_x86_ops->set_efer(vcpu, 0);
7827 #endif
7828
7829         kvm_update_cpuid(vcpu);
7830         kvm_mmu_reset_context(vcpu);
7831 }
7832
7833 static void process_smi(struct kvm_vcpu *vcpu)
7834 {
7835         vcpu->arch.smi_pending = true;
7836         kvm_make_request(KVM_REQ_EVENT, vcpu);
7837 }
7838
7839 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7840 {
7841         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7842 }
7843
7844 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7845 {
7846         if (!kvm_apic_present(vcpu))
7847                 return;
7848
7849         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7850
7851         if (irqchip_split(vcpu->kvm))
7852                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7853         else {
7854                 if (vcpu->arch.apicv_active)
7855                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7856                 if (ioapic_in_kernel(vcpu->kvm))
7857                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7858         }
7859
7860         if (is_guest_mode(vcpu))
7861                 vcpu->arch.load_eoi_exitmap_pending = true;
7862         else
7863                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7864 }
7865
7866 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7867 {
7868         u64 eoi_exit_bitmap[4];
7869
7870         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7871                 return;
7872
7873         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7874                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7875         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7876 }
7877
7878 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7879                 unsigned long start, unsigned long end,
7880                 bool blockable)
7881 {
7882         unsigned long apic_address;
7883
7884         /*
7885          * The physical address of apic access page is stored in the VMCS.
7886          * Update it when it becomes invalid.
7887          */
7888         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7889         if (start <= apic_address && apic_address < end)
7890                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7891
7892         return 0;
7893 }
7894
7895 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7896 {
7897         struct page *page = NULL;
7898
7899         if (!lapic_in_kernel(vcpu))
7900                 return;
7901
7902         if (!kvm_x86_ops->set_apic_access_page_addr)
7903                 return;
7904
7905         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7906         if (is_error_page(page))
7907                 return;
7908         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7909
7910         /*
7911          * Do not pin apic access page in memory, the MMU notifier
7912          * will call us again if it is migrated or swapped out.
7913          */
7914         put_page(page);
7915 }
7916 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7917
7918 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7919 {
7920         smp_send_reschedule(vcpu->cpu);
7921 }
7922 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7923
7924 /*
7925  * Returns 1 to let vcpu_run() continue the guest execution loop without
7926  * exiting to the userspace.  Otherwise, the value will be returned to the
7927  * userspace.
7928  */
7929 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7930 {
7931         int r;
7932         bool req_int_win =
7933                 dm_request_for_irq_injection(vcpu) &&
7934                 kvm_cpu_accept_dm_intr(vcpu);
7935
7936         bool req_immediate_exit = false;
7937
7938         if (kvm_request_pending(vcpu)) {
7939                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7940                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7941                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7942                         kvm_mmu_unload(vcpu);
7943                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7944                         __kvm_migrate_timers(vcpu);
7945                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7946                         kvm_gen_update_masterclock(vcpu->kvm);
7947                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7948                         kvm_gen_kvmclock_update(vcpu);
7949                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7950                         r = kvm_guest_time_update(vcpu);
7951                         if (unlikely(r))
7952                                 goto out;
7953                 }
7954                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7955                         kvm_mmu_sync_roots(vcpu);
7956                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7957                         kvm_mmu_load_cr3(vcpu);
7958                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7959                         kvm_vcpu_flush_tlb(vcpu, true);
7960                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7961                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7962                         r = 0;
7963                         goto out;
7964                 }
7965                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7966                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7967                         vcpu->mmio_needed = 0;
7968                         r = 0;
7969                         goto out;
7970                 }
7971                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7972                         /* Page is swapped out. Do synthetic halt */
7973                         vcpu->arch.apf.halted = true;
7974                         r = 1;
7975                         goto out;
7976                 }
7977                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7978                         record_steal_time(vcpu);
7979                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7980                         process_smi(vcpu);
7981                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7982                         process_nmi(vcpu);
7983                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7984                         kvm_pmu_handle_event(vcpu);
7985                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7986                         kvm_pmu_deliver_pmi(vcpu);
7987                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7988                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7989                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7990                                      vcpu->arch.ioapic_handled_vectors)) {
7991                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7992                                 vcpu->run->eoi.vector =
7993                                                 vcpu->arch.pending_ioapic_eoi;
7994                                 r = 0;
7995                                 goto out;
7996                         }
7997                 }
7998                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7999                         vcpu_scan_ioapic(vcpu);
8000                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8001                         vcpu_load_eoi_exitmap(vcpu);
8002                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8003                         kvm_vcpu_reload_apic_access_page(vcpu);
8004                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8005                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8006                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8007                         r = 0;
8008                         goto out;
8009                 }
8010                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8011                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8012                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8013                         r = 0;
8014                         goto out;
8015                 }
8016                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8017                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8018                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8019                         r = 0;
8020                         goto out;
8021                 }
8022
8023                 /*
8024                  * KVM_REQ_HV_STIMER has to be processed after
8025                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8026                  * depend on the guest clock being up-to-date
8027                  */
8028                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8029                         kvm_hv_process_stimers(vcpu);
8030         }
8031
8032         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8033                 ++vcpu->stat.req_event;
8034                 kvm_apic_accept_events(vcpu);
8035                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8036                         r = 1;
8037                         goto out;
8038                 }
8039
8040                 if (inject_pending_event(vcpu, req_int_win) != 0)
8041                         req_immediate_exit = true;
8042                 else {
8043                         /* Enable SMI/NMI/IRQ window open exits if needed.
8044                          *
8045                          * SMIs have three cases:
8046                          * 1) They can be nested, and then there is nothing to
8047                          *    do here because RSM will cause a vmexit anyway.
8048                          * 2) There is an ISA-specific reason why SMI cannot be
8049                          *    injected, and the moment when this changes can be
8050                          *    intercepted.
8051                          * 3) Or the SMI can be pending because
8052                          *    inject_pending_event has completed the injection
8053                          *    of an IRQ or NMI from the previous vmexit, and
8054                          *    then we request an immediate exit to inject the
8055                          *    SMI.
8056                          */
8057                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
8058                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
8059                                         req_immediate_exit = true;
8060                         if (vcpu->arch.nmi_pending)
8061                                 kvm_x86_ops->enable_nmi_window(vcpu);
8062                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8063                                 kvm_x86_ops->enable_irq_window(vcpu);
8064                         WARN_ON(vcpu->arch.exception.pending);
8065                 }
8066
8067                 if (kvm_lapic_enabled(vcpu)) {
8068                         update_cr8_intercept(vcpu);
8069                         kvm_lapic_sync_to_vapic(vcpu);
8070                 }
8071         }
8072
8073         r = kvm_mmu_reload(vcpu);
8074         if (unlikely(r)) {
8075                 goto cancel_injection;
8076         }
8077
8078         preempt_disable();
8079
8080         kvm_x86_ops->prepare_guest_switch(vcpu);
8081
8082         /*
8083          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8084          * IPI are then delayed after guest entry, which ensures that they
8085          * result in virtual interrupt delivery.
8086          */
8087         local_irq_disable();
8088         vcpu->mode = IN_GUEST_MODE;
8089
8090         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8091
8092         /*
8093          * 1) We should set ->mode before checking ->requests.  Please see
8094          * the comment in kvm_vcpu_exiting_guest_mode().
8095          *
8096          * 2) For APICv, we should set ->mode before checking PID.ON. This
8097          * pairs with the memory barrier implicit in pi_test_and_set_on
8098          * (see vmx_deliver_posted_interrupt).
8099          *
8100          * 3) This also orders the write to mode from any reads to the page
8101          * tables done while the VCPU is running.  Please see the comment
8102          * in kvm_flush_remote_tlbs.
8103          */
8104         smp_mb__after_srcu_read_unlock();
8105
8106         /*
8107          * This handles the case where a posted interrupt was
8108          * notified with kvm_vcpu_kick.
8109          */
8110         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8111                 kvm_x86_ops->sync_pir_to_irr(vcpu);
8112
8113         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8114             || need_resched() || signal_pending(current)) {
8115                 vcpu->mode = OUTSIDE_GUEST_MODE;
8116                 smp_wmb();
8117                 local_irq_enable();
8118                 preempt_enable();
8119                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8120                 r = 1;
8121                 goto cancel_injection;
8122         }
8123
8124         if (req_immediate_exit) {
8125                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8126                 kvm_x86_ops->request_immediate_exit(vcpu);
8127         }
8128
8129         trace_kvm_entry(vcpu->vcpu_id);
8130         guest_enter_irqoff();
8131
8132         /* The preempt notifier should have taken care of the FPU already.  */
8133         WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8134
8135         if (unlikely(vcpu->arch.switch_db_regs)) {
8136                 set_debugreg(0, 7);
8137                 set_debugreg(vcpu->arch.eff_db[0], 0);
8138                 set_debugreg(vcpu->arch.eff_db[1], 1);
8139                 set_debugreg(vcpu->arch.eff_db[2], 2);
8140                 set_debugreg(vcpu->arch.eff_db[3], 3);
8141                 set_debugreg(vcpu->arch.dr6, 6);
8142                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8143         }
8144
8145         kvm_x86_ops->run(vcpu);
8146
8147         /*
8148          * Do this here before restoring debug registers on the host.  And
8149          * since we do this before handling the vmexit, a DR access vmexit
8150          * can (a) read the correct value of the debug registers, (b) set
8151          * KVM_DEBUGREG_WONT_EXIT again.
8152          */
8153         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8154                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8155                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8156                 kvm_update_dr0123(vcpu);
8157                 kvm_update_dr6(vcpu);
8158                 kvm_update_dr7(vcpu);
8159                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8160         }
8161
8162         /*
8163          * If the guest has used debug registers, at least dr7
8164          * will be disabled while returning to the host.
8165          * If we don't have active breakpoints in the host, we don't
8166          * care about the messed up debug address registers. But if
8167          * we have some of them active, restore the old state.
8168          */
8169         if (hw_breakpoint_active())
8170                 hw_breakpoint_restore();
8171
8172         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8173
8174         vcpu->mode = OUTSIDE_GUEST_MODE;
8175         smp_wmb();
8176
8177         kvm_x86_ops->handle_exit_irqoff(vcpu);
8178
8179         /*
8180          * Consume any pending interrupts, including the possible source of
8181          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8182          * An instruction is required after local_irq_enable() to fully unblock
8183          * interrupts on processors that implement an interrupt shadow, the
8184          * stat.exits increment will do nicely.
8185          */
8186         kvm_before_interrupt(vcpu);
8187         local_irq_enable();
8188         ++vcpu->stat.exits;
8189         local_irq_disable();
8190         kvm_after_interrupt(vcpu);
8191
8192         guest_exit_irqoff();
8193         if (lapic_in_kernel(vcpu)) {
8194                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8195                 if (delta != S64_MIN) {
8196                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8197                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8198                 }
8199         }
8200
8201         local_irq_enable();
8202         preempt_enable();
8203
8204         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8205
8206         /*
8207          * Profile KVM exit RIPs:
8208          */
8209         if (unlikely(prof_on == KVM_PROFILING)) {
8210                 unsigned long rip = kvm_rip_read(vcpu);
8211                 profile_hit(KVM_PROFILING, (void *)rip);
8212         }
8213
8214         if (unlikely(vcpu->arch.tsc_always_catchup))
8215                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8216
8217         if (vcpu->arch.apic_attention)
8218                 kvm_lapic_sync_from_vapic(vcpu);
8219
8220         vcpu->arch.gpa_available = false;
8221         r = kvm_x86_ops->handle_exit(vcpu);
8222         return r;
8223
8224 cancel_injection:
8225         kvm_x86_ops->cancel_injection(vcpu);
8226         if (unlikely(vcpu->arch.apic_attention))
8227                 kvm_lapic_sync_from_vapic(vcpu);
8228 out:
8229         return r;
8230 }
8231
8232 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8233 {
8234         if (!kvm_arch_vcpu_runnable(vcpu) &&
8235             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8236                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8237                 kvm_vcpu_block(vcpu);
8238                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8239
8240                 if (kvm_x86_ops->post_block)
8241                         kvm_x86_ops->post_block(vcpu);
8242
8243                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8244                         return 1;
8245         }
8246
8247         kvm_apic_accept_events(vcpu);
8248         switch(vcpu->arch.mp_state) {
8249         case KVM_MP_STATE_HALTED:
8250                 vcpu->arch.pv.pv_unhalted = false;
8251                 vcpu->arch.mp_state =
8252                         KVM_MP_STATE_RUNNABLE;
8253                 /* fall through */
8254         case KVM_MP_STATE_RUNNABLE:
8255                 vcpu->arch.apf.halted = false;
8256                 break;
8257         case KVM_MP_STATE_INIT_RECEIVED:
8258                 break;
8259         default:
8260                 return -EINTR;
8261                 break;
8262         }
8263         return 1;
8264 }
8265
8266 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8267 {
8268         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8269                 kvm_x86_ops->check_nested_events(vcpu, false);
8270
8271         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8272                 !vcpu->arch.apf.halted);
8273 }
8274
8275 static int vcpu_run(struct kvm_vcpu *vcpu)
8276 {
8277         int r;
8278         struct kvm *kvm = vcpu->kvm;
8279
8280         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8281         vcpu->arch.l1tf_flush_l1d = true;
8282
8283         for (;;) {
8284                 if (kvm_vcpu_running(vcpu)) {
8285                         r = vcpu_enter_guest(vcpu);
8286                 } else {
8287                         r = vcpu_block(kvm, vcpu);
8288                 }
8289
8290                 if (r <= 0)
8291                         break;
8292
8293                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8294                 if (kvm_cpu_has_pending_timer(vcpu))
8295                         kvm_inject_pending_timer_irqs(vcpu);
8296
8297                 if (dm_request_for_irq_injection(vcpu) &&
8298                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8299                         r = 0;
8300                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8301                         ++vcpu->stat.request_irq_exits;
8302                         break;
8303                 }
8304
8305                 kvm_check_async_pf_completion(vcpu);
8306
8307                 if (signal_pending(current)) {
8308                         r = -EINTR;
8309                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8310                         ++vcpu->stat.signal_exits;
8311                         break;
8312                 }
8313                 if (need_resched()) {
8314                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8315                         cond_resched();
8316                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8317                 }
8318         }
8319
8320         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8321
8322         return r;
8323 }
8324
8325 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8326 {
8327         int r;
8328
8329         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8330         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8331         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8332         return r;
8333 }
8334
8335 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8336 {
8337         BUG_ON(!vcpu->arch.pio.count);
8338
8339         return complete_emulated_io(vcpu);
8340 }
8341
8342 /*
8343  * Implements the following, as a state machine:
8344  *
8345  * read:
8346  *   for each fragment
8347  *     for each mmio piece in the fragment
8348  *       write gpa, len
8349  *       exit
8350  *       copy data
8351  *   execute insn
8352  *
8353  * write:
8354  *   for each fragment
8355  *     for each mmio piece in the fragment
8356  *       write gpa, len
8357  *       copy data
8358  *       exit
8359  */
8360 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8361 {
8362         struct kvm_run *run = vcpu->run;
8363         struct kvm_mmio_fragment *frag;
8364         unsigned len;
8365
8366         BUG_ON(!vcpu->mmio_needed);
8367
8368         /* Complete previous fragment */
8369         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8370         len = min(8u, frag->len);
8371         if (!vcpu->mmio_is_write)
8372                 memcpy(frag->data, run->mmio.data, len);
8373
8374         if (frag->len <= 8) {
8375                 /* Switch to the next fragment. */
8376                 frag++;
8377                 vcpu->mmio_cur_fragment++;
8378         } else {
8379                 /* Go forward to the next mmio piece. */
8380                 frag->data += len;
8381                 frag->gpa += len;
8382                 frag->len -= len;
8383         }
8384
8385         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8386                 vcpu->mmio_needed = 0;
8387
8388                 /* FIXME: return into emulator if single-stepping.  */
8389                 if (vcpu->mmio_is_write)
8390                         return 1;
8391                 vcpu->mmio_read_completed = 1;
8392                 return complete_emulated_io(vcpu);
8393         }
8394
8395         run->exit_reason = KVM_EXIT_MMIO;
8396         run->mmio.phys_addr = frag->gpa;
8397         if (vcpu->mmio_is_write)
8398                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8399         run->mmio.len = min(8u, frag->len);
8400         run->mmio.is_write = vcpu->mmio_is_write;
8401         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8402         return 0;
8403 }
8404
8405 /* Swap (qemu) user FPU context for the guest FPU context. */
8406 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8407 {
8408         fpregs_lock();
8409
8410         copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8411         /* PKRU is separately restored in kvm_x86_ops->run.  */
8412         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8413                                 ~XFEATURE_MASK_PKRU);
8414
8415         fpregs_mark_activate();
8416         fpregs_unlock();
8417
8418         trace_kvm_fpu(1);
8419 }
8420
8421 /* When vcpu_run ends, restore user space FPU context. */
8422 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8423 {
8424         fpregs_lock();
8425
8426         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8427         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8428
8429         fpregs_mark_activate();
8430         fpregs_unlock();
8431
8432         ++vcpu->stat.fpu_reload;
8433         trace_kvm_fpu(0);
8434 }
8435
8436 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8437 {
8438         int r;
8439
8440         vcpu_load(vcpu);
8441         kvm_sigset_activate(vcpu);
8442         kvm_load_guest_fpu(vcpu);
8443
8444         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8445                 if (kvm_run->immediate_exit) {
8446                         r = -EINTR;
8447                         goto out;
8448                 }
8449                 kvm_vcpu_block(vcpu);
8450                 kvm_apic_accept_events(vcpu);
8451                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8452                 r = -EAGAIN;
8453                 if (signal_pending(current)) {
8454                         r = -EINTR;
8455                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8456                         ++vcpu->stat.signal_exits;
8457                 }
8458                 goto out;
8459         }
8460
8461         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8462                 r = -EINVAL;
8463                 goto out;
8464         }
8465
8466         if (vcpu->run->kvm_dirty_regs) {
8467                 r = sync_regs(vcpu);
8468                 if (r != 0)
8469                         goto out;
8470         }
8471
8472         /* re-sync apic's tpr */
8473         if (!lapic_in_kernel(vcpu)) {
8474                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8475                         r = -EINVAL;
8476                         goto out;
8477                 }
8478         }
8479
8480         if (unlikely(vcpu->arch.complete_userspace_io)) {
8481                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8482                 vcpu->arch.complete_userspace_io = NULL;
8483                 r = cui(vcpu);
8484                 if (r <= 0)
8485                         goto out;
8486         } else
8487                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8488
8489         if (kvm_run->immediate_exit)
8490                 r = -EINTR;
8491         else
8492                 r = vcpu_run(vcpu);
8493
8494 out:
8495         kvm_put_guest_fpu(vcpu);
8496         if (vcpu->run->kvm_valid_regs)
8497                 store_regs(vcpu);
8498         post_kvm_run_save(vcpu);
8499         kvm_sigset_deactivate(vcpu);
8500
8501         vcpu_put(vcpu);
8502         return r;
8503 }
8504
8505 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8506 {
8507         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8508                 /*
8509                  * We are here if userspace calls get_regs() in the middle of
8510                  * instruction emulation. Registers state needs to be copied
8511                  * back from emulation context to vcpu. Userspace shouldn't do
8512                  * that usually, but some bad designed PV devices (vmware
8513                  * backdoor interface) need this to work
8514                  */
8515                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8516                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8517         }
8518         regs->rax = kvm_rax_read(vcpu);
8519         regs->rbx = kvm_rbx_read(vcpu);
8520         regs->rcx = kvm_rcx_read(vcpu);
8521         regs->rdx = kvm_rdx_read(vcpu);
8522         regs->rsi = kvm_rsi_read(vcpu);
8523         regs->rdi = kvm_rdi_read(vcpu);
8524         regs->rsp = kvm_rsp_read(vcpu);
8525         regs->rbp = kvm_rbp_read(vcpu);
8526 #ifdef CONFIG_X86_64
8527         regs->r8 = kvm_r8_read(vcpu);
8528         regs->r9 = kvm_r9_read(vcpu);
8529         regs->r10 = kvm_r10_read(vcpu);
8530         regs->r11 = kvm_r11_read(vcpu);
8531         regs->r12 = kvm_r12_read(vcpu);
8532         regs->r13 = kvm_r13_read(vcpu);
8533         regs->r14 = kvm_r14_read(vcpu);
8534         regs->r15 = kvm_r15_read(vcpu);
8535 #endif
8536
8537         regs->rip = kvm_rip_read(vcpu);
8538         regs->rflags = kvm_get_rflags(vcpu);
8539 }
8540
8541 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8542 {
8543         vcpu_load(vcpu);
8544         __get_regs(vcpu, regs);
8545         vcpu_put(vcpu);
8546         return 0;
8547 }
8548
8549 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8550 {
8551         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8552         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8553
8554         kvm_rax_write(vcpu, regs->rax);
8555         kvm_rbx_write(vcpu, regs->rbx);
8556         kvm_rcx_write(vcpu, regs->rcx);
8557         kvm_rdx_write(vcpu, regs->rdx);
8558         kvm_rsi_write(vcpu, regs->rsi);
8559         kvm_rdi_write(vcpu, regs->rdi);
8560         kvm_rsp_write(vcpu, regs->rsp);
8561         kvm_rbp_write(vcpu, regs->rbp);
8562 #ifdef CONFIG_X86_64
8563         kvm_r8_write(vcpu, regs->r8);
8564         kvm_r9_write(vcpu, regs->r9);
8565         kvm_r10_write(vcpu, regs->r10);
8566         kvm_r11_write(vcpu, regs->r11);
8567         kvm_r12_write(vcpu, regs->r12);
8568         kvm_r13_write(vcpu, regs->r13);
8569         kvm_r14_write(vcpu, regs->r14);
8570         kvm_r15_write(vcpu, regs->r15);
8571 #endif
8572
8573         kvm_rip_write(vcpu, regs->rip);
8574         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8575
8576         vcpu->arch.exception.pending = false;
8577
8578         kvm_make_request(KVM_REQ_EVENT, vcpu);
8579 }
8580
8581 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8582 {
8583         vcpu_load(vcpu);
8584         __set_regs(vcpu, regs);
8585         vcpu_put(vcpu);
8586         return 0;
8587 }
8588
8589 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8590 {
8591         struct kvm_segment cs;
8592
8593         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8594         *db = cs.db;
8595         *l = cs.l;
8596 }
8597 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8598
8599 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8600 {
8601         struct desc_ptr dt;
8602
8603         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8604         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8605         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8606         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8607         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8608         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8609
8610         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8611         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8612
8613         kvm_x86_ops->get_idt(vcpu, &dt);
8614         sregs->idt.limit = dt.size;
8615         sregs->idt.base = dt.address;
8616         kvm_x86_ops->get_gdt(vcpu, &dt);
8617         sregs->gdt.limit = dt.size;
8618         sregs->gdt.base = dt.address;
8619
8620         sregs->cr0 = kvm_read_cr0(vcpu);
8621         sregs->cr2 = vcpu->arch.cr2;
8622         sregs->cr3 = kvm_read_cr3(vcpu);
8623         sregs->cr4 = kvm_read_cr4(vcpu);
8624         sregs->cr8 = kvm_get_cr8(vcpu);
8625         sregs->efer = vcpu->arch.efer;
8626         sregs->apic_base = kvm_get_apic_base(vcpu);
8627
8628         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8629
8630         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8631                 set_bit(vcpu->arch.interrupt.nr,
8632                         (unsigned long *)sregs->interrupt_bitmap);
8633 }
8634
8635 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8636                                   struct kvm_sregs *sregs)
8637 {
8638         vcpu_load(vcpu);
8639         __get_sregs(vcpu, sregs);
8640         vcpu_put(vcpu);
8641         return 0;
8642 }
8643
8644 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8645                                     struct kvm_mp_state *mp_state)
8646 {
8647         vcpu_load(vcpu);
8648
8649         kvm_apic_accept_events(vcpu);
8650         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8651                                         vcpu->arch.pv.pv_unhalted)
8652                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8653         else
8654                 mp_state->mp_state = vcpu->arch.mp_state;
8655
8656         vcpu_put(vcpu);
8657         return 0;
8658 }
8659
8660 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8661                                     struct kvm_mp_state *mp_state)
8662 {
8663         int ret = -EINVAL;
8664
8665         vcpu_load(vcpu);
8666
8667         if (!lapic_in_kernel(vcpu) &&
8668             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8669                 goto out;
8670
8671         /* INITs are latched while in SMM */
8672         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8673             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8674              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8675                 goto out;
8676
8677         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8678                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8679                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8680         } else
8681                 vcpu->arch.mp_state = mp_state->mp_state;
8682         kvm_make_request(KVM_REQ_EVENT, vcpu);
8683
8684         ret = 0;
8685 out:
8686         vcpu_put(vcpu);
8687         return ret;
8688 }
8689
8690 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8691                     int reason, bool has_error_code, u32 error_code)
8692 {
8693         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8694         int ret;
8695
8696         init_emulate_ctxt(vcpu);
8697
8698         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8699                                    has_error_code, error_code);
8700         if (ret) {
8701                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8702                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8703                 vcpu->run->internal.ndata = 0;
8704                 return 0;
8705         }
8706
8707         kvm_rip_write(vcpu, ctxt->eip);
8708         kvm_set_rflags(vcpu, ctxt->eflags);
8709         kvm_make_request(KVM_REQ_EVENT, vcpu);
8710         return 1;
8711 }
8712 EXPORT_SYMBOL_GPL(kvm_task_switch);
8713
8714 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8715 {
8716         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8717                         (sregs->cr4 & X86_CR4_OSXSAVE))
8718                 return  -EINVAL;
8719
8720         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8721                 /*
8722                  * When EFER.LME and CR0.PG are set, the processor is in
8723                  * 64-bit mode (though maybe in a 32-bit code segment).
8724                  * CR4.PAE and EFER.LMA must be set.
8725                  */
8726                 if (!(sregs->cr4 & X86_CR4_PAE)
8727                     || !(sregs->efer & EFER_LMA))
8728                         return -EINVAL;
8729         } else {
8730                 /*
8731                  * Not in 64-bit mode: EFER.LMA is clear and the code
8732                  * segment cannot be 64-bit.
8733                  */
8734                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8735                         return -EINVAL;
8736         }
8737
8738         return 0;
8739 }
8740
8741 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8742 {
8743         struct msr_data apic_base_msr;
8744         int mmu_reset_needed = 0;
8745         int cpuid_update_needed = 0;
8746         int pending_vec, max_bits, idx;
8747         struct desc_ptr dt;
8748         int ret = -EINVAL;
8749
8750         if (kvm_valid_sregs(vcpu, sregs))
8751                 goto out;
8752
8753         apic_base_msr.data = sregs->apic_base;
8754         apic_base_msr.host_initiated = true;
8755         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8756                 goto out;
8757
8758         dt.size = sregs->idt.limit;
8759         dt.address = sregs->idt.base;
8760         kvm_x86_ops->set_idt(vcpu, &dt);
8761         dt.size = sregs->gdt.limit;
8762         dt.address = sregs->gdt.base;
8763         kvm_x86_ops->set_gdt(vcpu, &dt);
8764
8765         vcpu->arch.cr2 = sregs->cr2;
8766         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8767         vcpu->arch.cr3 = sregs->cr3;
8768         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8769
8770         kvm_set_cr8(vcpu, sregs->cr8);
8771
8772         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8773         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8774
8775         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8776         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8777         vcpu->arch.cr0 = sregs->cr0;
8778
8779         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8780         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8781                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8782         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8783         if (cpuid_update_needed)
8784                 kvm_update_cpuid(vcpu);
8785
8786         idx = srcu_read_lock(&vcpu->kvm->srcu);
8787         if (is_pae_paging(vcpu)) {
8788                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8789                 mmu_reset_needed = 1;
8790         }
8791         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8792
8793         if (mmu_reset_needed)
8794                 kvm_mmu_reset_context(vcpu);
8795
8796         max_bits = KVM_NR_INTERRUPTS;
8797         pending_vec = find_first_bit(
8798                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8799         if (pending_vec < max_bits) {
8800                 kvm_queue_interrupt(vcpu, pending_vec, false);
8801                 pr_debug("Set back pending irq %d\n", pending_vec);
8802         }
8803
8804         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8805         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8806         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8807         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8808         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8809         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8810
8811         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8812         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8813
8814         update_cr8_intercept(vcpu);
8815
8816         /* Older userspace won't unhalt the vcpu on reset. */
8817         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8818             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8819             !is_protmode(vcpu))
8820                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8821
8822         kvm_make_request(KVM_REQ_EVENT, vcpu);
8823
8824         ret = 0;
8825 out:
8826         return ret;
8827 }
8828
8829 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8830                                   struct kvm_sregs *sregs)
8831 {
8832         int ret;
8833
8834         vcpu_load(vcpu);
8835         ret = __set_sregs(vcpu, sregs);
8836         vcpu_put(vcpu);
8837         return ret;
8838 }
8839
8840 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8841                                         struct kvm_guest_debug *dbg)
8842 {
8843         unsigned long rflags;
8844         int i, r;
8845
8846         vcpu_load(vcpu);
8847
8848         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8849                 r = -EBUSY;
8850                 if (vcpu->arch.exception.pending)
8851                         goto out;
8852                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8853                         kvm_queue_exception(vcpu, DB_VECTOR);
8854                 else
8855                         kvm_queue_exception(vcpu, BP_VECTOR);
8856         }
8857
8858         /*
8859          * Read rflags as long as potentially injected trace flags are still
8860          * filtered out.
8861          */
8862         rflags = kvm_get_rflags(vcpu);
8863
8864         vcpu->guest_debug = dbg->control;
8865         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8866                 vcpu->guest_debug = 0;
8867
8868         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8869                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8870                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8871                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8872         } else {
8873                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8874                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8875         }
8876         kvm_update_dr7(vcpu);
8877
8878         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8879                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8880                         get_segment_base(vcpu, VCPU_SREG_CS);
8881
8882         /*
8883          * Trigger an rflags update that will inject or remove the trace
8884          * flags.
8885          */
8886         kvm_set_rflags(vcpu, rflags);
8887
8888         kvm_x86_ops->update_bp_intercept(vcpu);
8889
8890         r = 0;
8891
8892 out:
8893         vcpu_put(vcpu);
8894         return r;
8895 }
8896
8897 /*
8898  * Translate a guest virtual address to a guest physical address.
8899  */
8900 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8901                                     struct kvm_translation *tr)
8902 {
8903         unsigned long vaddr = tr->linear_address;
8904         gpa_t gpa;
8905         int idx;
8906
8907         vcpu_load(vcpu);
8908
8909         idx = srcu_read_lock(&vcpu->kvm->srcu);
8910         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8911         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8912         tr->physical_address = gpa;
8913         tr->valid = gpa != UNMAPPED_GVA;
8914         tr->writeable = 1;
8915         tr->usermode = 0;
8916
8917         vcpu_put(vcpu);
8918         return 0;
8919 }
8920
8921 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8922 {
8923         struct fxregs_state *fxsave;
8924
8925         vcpu_load(vcpu);
8926
8927         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8928         memcpy(fpu->fpr, fxsave->st_space, 128);
8929         fpu->fcw = fxsave->cwd;
8930         fpu->fsw = fxsave->swd;
8931         fpu->ftwx = fxsave->twd;
8932         fpu->last_opcode = fxsave->fop;
8933         fpu->last_ip = fxsave->rip;
8934         fpu->last_dp = fxsave->rdp;
8935         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8936
8937         vcpu_put(vcpu);
8938         return 0;
8939 }
8940
8941 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8942 {
8943         struct fxregs_state *fxsave;
8944
8945         vcpu_load(vcpu);
8946
8947         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8948
8949         memcpy(fxsave->st_space, fpu->fpr, 128);
8950         fxsave->cwd = fpu->fcw;
8951         fxsave->swd = fpu->fsw;
8952         fxsave->twd = fpu->ftwx;
8953         fxsave->fop = fpu->last_opcode;
8954         fxsave->rip = fpu->last_ip;
8955         fxsave->rdp = fpu->last_dp;
8956         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8957
8958         vcpu_put(vcpu);
8959         return 0;
8960 }
8961
8962 static void store_regs(struct kvm_vcpu *vcpu)
8963 {
8964         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8965
8966         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8967                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8968
8969         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8970                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8971
8972         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8973                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8974                                 vcpu, &vcpu->run->s.regs.events);
8975 }
8976
8977 static int sync_regs(struct kvm_vcpu *vcpu)
8978 {
8979         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8980                 return -EINVAL;
8981
8982         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8983                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8984                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8985         }
8986         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8987                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8988                         return -EINVAL;
8989                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8990         }
8991         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8992                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8993                                 vcpu, &vcpu->run->s.regs.events))
8994                         return -EINVAL;
8995                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8996         }
8997
8998         return 0;
8999 }
9000
9001 static void fx_init(struct kvm_vcpu *vcpu)
9002 {
9003         fpstate_init(&vcpu->arch.guest_fpu->state);
9004         if (boot_cpu_has(X86_FEATURE_XSAVES))
9005                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9006                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9007
9008         /*
9009          * Ensure guest xcr0 is valid for loading
9010          */
9011         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9012
9013         vcpu->arch.cr0 |= X86_CR0_ET;
9014 }
9015
9016 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
9017 {
9018         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
9019
9020         kvmclock_reset(vcpu);
9021
9022         kvm_x86_ops->vcpu_free(vcpu);
9023         free_cpumask_var(wbinvd_dirty_mask);
9024 }
9025
9026 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
9027                                                 unsigned int id)
9028 {
9029         struct kvm_vcpu *vcpu;
9030
9031         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9032                 printk_once(KERN_WARNING
9033                 "kvm: SMP vm created on host with unstable TSC; "
9034                 "guest TSC will not be reliable\n");
9035
9036         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
9037
9038         return vcpu;
9039 }
9040
9041 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
9042 {
9043         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9044         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9045         kvm_vcpu_mtrr_init(vcpu);
9046         vcpu_load(vcpu);
9047         kvm_vcpu_reset(vcpu, false);
9048         kvm_init_mmu(vcpu, false);
9049         vcpu_put(vcpu);
9050         return 0;
9051 }
9052
9053 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9054 {
9055         struct msr_data msr;
9056         struct kvm *kvm = vcpu->kvm;
9057
9058         kvm_hv_vcpu_postcreate(vcpu);
9059
9060         if (mutex_lock_killable(&vcpu->mutex))
9061                 return;
9062         vcpu_load(vcpu);
9063         msr.data = 0x0;
9064         msr.index = MSR_IA32_TSC;
9065         msr.host_initiated = true;
9066         kvm_write_tsc(vcpu, &msr);
9067         vcpu_put(vcpu);
9068
9069         /* poll control enabled by default */
9070         vcpu->arch.msr_kvm_poll_control = 1;
9071
9072         mutex_unlock(&vcpu->mutex);
9073
9074         if (!kvmclock_periodic_sync)
9075                 return;
9076
9077         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9078                                         KVMCLOCK_SYNC_PERIOD);
9079 }
9080
9081 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9082 {
9083         vcpu->arch.apf.msr_val = 0;
9084
9085         vcpu_load(vcpu);
9086         kvm_mmu_unload(vcpu);
9087         vcpu_put(vcpu);
9088
9089         kvm_x86_ops->vcpu_free(vcpu);
9090 }
9091
9092 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9093 {
9094         kvm_lapic_reset(vcpu, init_event);
9095
9096         vcpu->arch.hflags = 0;
9097
9098         vcpu->arch.smi_pending = 0;
9099         vcpu->arch.smi_count = 0;
9100         atomic_set(&vcpu->arch.nmi_queued, 0);
9101         vcpu->arch.nmi_pending = 0;
9102         vcpu->arch.nmi_injected = false;
9103         kvm_clear_interrupt_queue(vcpu);
9104         kvm_clear_exception_queue(vcpu);
9105         vcpu->arch.exception.pending = false;
9106
9107         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9108         kvm_update_dr0123(vcpu);
9109         vcpu->arch.dr6 = DR6_INIT;
9110         kvm_update_dr6(vcpu);
9111         vcpu->arch.dr7 = DR7_FIXED_1;
9112         kvm_update_dr7(vcpu);
9113
9114         vcpu->arch.cr2 = 0;
9115
9116         kvm_make_request(KVM_REQ_EVENT, vcpu);
9117         vcpu->arch.apf.msr_val = 0;
9118         vcpu->arch.st.msr_val = 0;
9119
9120         kvmclock_reset(vcpu);
9121
9122         kvm_clear_async_pf_completion_queue(vcpu);
9123         kvm_async_pf_hash_reset(vcpu);
9124         vcpu->arch.apf.halted = false;
9125
9126         if (kvm_mpx_supported()) {
9127                 void *mpx_state_buffer;
9128
9129                 /*
9130                  * To avoid have the INIT path from kvm_apic_has_events() that be
9131                  * called with loaded FPU and does not let userspace fix the state.
9132                  */
9133                 if (init_event)
9134                         kvm_put_guest_fpu(vcpu);
9135                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9136                                         XFEATURE_BNDREGS);
9137                 if (mpx_state_buffer)
9138                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9139                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9140                                         XFEATURE_BNDCSR);
9141                 if (mpx_state_buffer)
9142                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9143                 if (init_event)
9144                         kvm_load_guest_fpu(vcpu);
9145         }
9146
9147         if (!init_event) {
9148                 kvm_pmu_reset(vcpu);
9149                 vcpu->arch.smbase = 0x30000;
9150
9151                 vcpu->arch.msr_misc_features_enables = 0;
9152
9153                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9154         }
9155
9156         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9157         vcpu->arch.regs_avail = ~0;
9158         vcpu->arch.regs_dirty = ~0;
9159
9160         vcpu->arch.ia32_xss = 0;
9161
9162         kvm_x86_ops->vcpu_reset(vcpu, init_event);
9163 }
9164
9165 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9166 {
9167         struct kvm_segment cs;
9168
9169         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9170         cs.selector = vector << 8;
9171         cs.base = vector << 12;
9172         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9173         kvm_rip_write(vcpu, 0);
9174 }
9175
9176 int kvm_arch_hardware_enable(void)
9177 {
9178         struct kvm *kvm;
9179         struct kvm_vcpu *vcpu;
9180         int i;
9181         int ret;
9182         u64 local_tsc;
9183         u64 max_tsc = 0;
9184         bool stable, backwards_tsc = false;
9185
9186         kvm_shared_msr_cpu_online();
9187         ret = kvm_x86_ops->hardware_enable();
9188         if (ret != 0)
9189                 return ret;
9190
9191         local_tsc = rdtsc();
9192         stable = !kvm_check_tsc_unstable();
9193         list_for_each_entry(kvm, &vm_list, vm_list) {
9194                 kvm_for_each_vcpu(i, vcpu, kvm) {
9195                         if (!stable && vcpu->cpu == smp_processor_id())
9196                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9197                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9198                                 backwards_tsc = true;
9199                                 if (vcpu->arch.last_host_tsc > max_tsc)
9200                                         max_tsc = vcpu->arch.last_host_tsc;
9201                         }
9202                 }
9203         }
9204
9205         /*
9206          * Sometimes, even reliable TSCs go backwards.  This happens on
9207          * platforms that reset TSC during suspend or hibernate actions, but
9208          * maintain synchronization.  We must compensate.  Fortunately, we can
9209          * detect that condition here, which happens early in CPU bringup,
9210          * before any KVM threads can be running.  Unfortunately, we can't
9211          * bring the TSCs fully up to date with real time, as we aren't yet far
9212          * enough into CPU bringup that we know how much real time has actually
9213          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9214          * variables that haven't been updated yet.
9215          *
9216          * So we simply find the maximum observed TSC above, then record the
9217          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9218          * the adjustment will be applied.  Note that we accumulate
9219          * adjustments, in case multiple suspend cycles happen before some VCPU
9220          * gets a chance to run again.  In the event that no KVM threads get a
9221          * chance to run, we will miss the entire elapsed period, as we'll have
9222          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9223          * loose cycle time.  This isn't too big a deal, since the loss will be
9224          * uniform across all VCPUs (not to mention the scenario is extremely
9225          * unlikely). It is possible that a second hibernate recovery happens
9226          * much faster than a first, causing the observed TSC here to be
9227          * smaller; this would require additional padding adjustment, which is
9228          * why we set last_host_tsc to the local tsc observed here.
9229          *
9230          * N.B. - this code below runs only on platforms with reliable TSC,
9231          * as that is the only way backwards_tsc is set above.  Also note
9232          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9233          * have the same delta_cyc adjustment applied if backwards_tsc
9234          * is detected.  Note further, this adjustment is only done once,
9235          * as we reset last_host_tsc on all VCPUs to stop this from being
9236          * called multiple times (one for each physical CPU bringup).
9237          *
9238          * Platforms with unreliable TSCs don't have to deal with this, they
9239          * will be compensated by the logic in vcpu_load, which sets the TSC to
9240          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9241          * guarantee that they stay in perfect synchronization.
9242          */
9243         if (backwards_tsc) {
9244                 u64 delta_cyc = max_tsc - local_tsc;
9245                 list_for_each_entry(kvm, &vm_list, vm_list) {
9246                         kvm->arch.backwards_tsc_observed = true;
9247                         kvm_for_each_vcpu(i, vcpu, kvm) {
9248                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9249                                 vcpu->arch.last_host_tsc = local_tsc;
9250                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9251                         }
9252
9253                         /*
9254                          * We have to disable TSC offset matching.. if you were
9255                          * booting a VM while issuing an S4 host suspend....
9256                          * you may have some problem.  Solving this issue is
9257                          * left as an exercise to the reader.
9258                          */
9259                         kvm->arch.last_tsc_nsec = 0;
9260                         kvm->arch.last_tsc_write = 0;
9261                 }
9262
9263         }
9264         return 0;
9265 }
9266
9267 void kvm_arch_hardware_disable(void)
9268 {
9269         kvm_x86_ops->hardware_disable();
9270         drop_user_return_notifiers();
9271 }
9272
9273 int kvm_arch_hardware_setup(void)
9274 {
9275         int r;
9276
9277         r = kvm_x86_ops->hardware_setup();
9278         if (r != 0)
9279                 return r;
9280
9281         if (kvm_has_tsc_control) {
9282                 /*
9283                  * Make sure the user can only configure tsc_khz values that
9284                  * fit into a signed integer.
9285                  * A min value is not calculated because it will always
9286                  * be 1 on all machines.
9287                  */
9288                 u64 max = min(0x7fffffffULL,
9289                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9290                 kvm_max_guest_tsc_khz = max;
9291
9292                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9293         }
9294
9295         kvm_init_msr_list();
9296         return 0;
9297 }
9298
9299 void kvm_arch_hardware_unsetup(void)
9300 {
9301         kvm_x86_ops->hardware_unsetup();
9302 }
9303
9304 int kvm_arch_check_processor_compat(void)
9305 {
9306         return kvm_x86_ops->check_processor_compatibility();
9307 }
9308
9309 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9310 {
9311         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9312 }
9313 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9314
9315 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9316 {
9317         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9318 }
9319
9320 struct static_key kvm_no_apic_vcpu __read_mostly;
9321 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9322
9323 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9324 {
9325         struct page *page;
9326         int r;
9327
9328         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9329         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9330                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9331         else
9332                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9333
9334         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9335         if (!page) {
9336                 r = -ENOMEM;
9337                 goto fail;
9338         }
9339         vcpu->arch.pio_data = page_address(page);
9340
9341         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9342
9343         r = kvm_mmu_create(vcpu);
9344         if (r < 0)
9345                 goto fail_free_pio_data;
9346
9347         if (irqchip_in_kernel(vcpu->kvm)) {
9348                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9349                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9350                 if (r < 0)
9351                         goto fail_mmu_destroy;
9352         } else
9353                 static_key_slow_inc(&kvm_no_apic_vcpu);
9354
9355         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9356                                        GFP_KERNEL_ACCOUNT);
9357         if (!vcpu->arch.mce_banks) {
9358                 r = -ENOMEM;
9359                 goto fail_free_lapic;
9360         }
9361         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9362
9363         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9364                                 GFP_KERNEL_ACCOUNT)) {
9365                 r = -ENOMEM;
9366                 goto fail_free_mce_banks;
9367         }
9368
9369         fx_init(vcpu);
9370
9371         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9372
9373         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9374
9375         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9376
9377         kvm_async_pf_hash_reset(vcpu);
9378         kvm_pmu_init(vcpu);
9379
9380         vcpu->arch.pending_external_vector = -1;
9381         vcpu->arch.preempted_in_kernel = false;
9382
9383         kvm_hv_vcpu_init(vcpu);
9384
9385         return 0;
9386
9387 fail_free_mce_banks:
9388         kfree(vcpu->arch.mce_banks);
9389 fail_free_lapic:
9390         kvm_free_lapic(vcpu);
9391 fail_mmu_destroy:
9392         kvm_mmu_destroy(vcpu);
9393 fail_free_pio_data:
9394         free_page((unsigned long)vcpu->arch.pio_data);
9395 fail:
9396         return r;
9397 }
9398
9399 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9400 {
9401         int idx;
9402
9403         kvm_hv_vcpu_uninit(vcpu);
9404         kvm_pmu_destroy(vcpu);
9405         kfree(vcpu->arch.mce_banks);
9406         kvm_free_lapic(vcpu);
9407         idx = srcu_read_lock(&vcpu->kvm->srcu);
9408         kvm_mmu_destroy(vcpu);
9409         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9410         free_page((unsigned long)vcpu->arch.pio_data);
9411         if (!lapic_in_kernel(vcpu))
9412                 static_key_slow_dec(&kvm_no_apic_vcpu);
9413 }
9414
9415 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9416 {
9417         vcpu->arch.l1tf_flush_l1d = true;
9418         kvm_x86_ops->sched_in(vcpu, cpu);
9419 }
9420
9421 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9422 {
9423         if (type)
9424                 return -EINVAL;
9425
9426         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9427         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9428         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9429         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9430
9431         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9432         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9433         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9434         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9435                 &kvm->arch.irq_sources_bitmap);
9436
9437         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9438         mutex_init(&kvm->arch.apic_map_lock);
9439         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9440
9441         kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9442         pvclock_update_vm_gtod_copy(kvm);
9443
9444         kvm->arch.guest_can_read_msr_platform_info = true;
9445
9446         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9447         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9448
9449         kvm_hv_init_vm(kvm);
9450         kvm_page_track_init(kvm);
9451         kvm_mmu_init_vm(kvm);
9452
9453         return kvm_x86_ops->vm_init(kvm);
9454 }
9455
9456 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9457 {
9458         vcpu_load(vcpu);
9459         kvm_mmu_unload(vcpu);
9460         vcpu_put(vcpu);
9461 }
9462
9463 static void kvm_free_vcpus(struct kvm *kvm)
9464 {
9465         unsigned int i;
9466         struct kvm_vcpu *vcpu;
9467
9468         /*
9469          * Unpin any mmu pages first.
9470          */
9471         kvm_for_each_vcpu(i, vcpu, kvm) {
9472                 kvm_clear_async_pf_completion_queue(vcpu);
9473                 kvm_unload_vcpu_mmu(vcpu);
9474         }
9475         kvm_for_each_vcpu(i, vcpu, kvm)
9476                 kvm_arch_vcpu_free(vcpu);
9477
9478         mutex_lock(&kvm->lock);
9479         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9480                 kvm->vcpus[i] = NULL;
9481
9482         atomic_set(&kvm->online_vcpus, 0);
9483         mutex_unlock(&kvm->lock);
9484 }
9485
9486 void kvm_arch_sync_events(struct kvm *kvm)
9487 {
9488         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9489         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9490         kvm_free_pit(kvm);
9491 }
9492
9493 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9494 {
9495         int i, r;
9496         unsigned long hva;
9497         struct kvm_memslots *slots = kvm_memslots(kvm);
9498         struct kvm_memory_slot *slot, old;
9499
9500         /* Called with kvm->slots_lock held.  */
9501         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9502                 return -EINVAL;
9503
9504         slot = id_to_memslot(slots, id);
9505         if (size) {
9506                 if (slot->npages)
9507                         return -EEXIST;
9508
9509                 /*
9510                  * MAP_SHARED to prevent internal slot pages from being moved
9511                  * by fork()/COW.
9512                  */
9513                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9514                               MAP_SHARED | MAP_ANONYMOUS, 0);
9515                 if (IS_ERR((void *)hva))
9516                         return PTR_ERR((void *)hva);
9517         } else {
9518                 if (!slot->npages)
9519                         return 0;
9520
9521                 hva = 0;
9522         }
9523
9524         old = *slot;
9525         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9526                 struct kvm_userspace_memory_region m;
9527
9528                 m.slot = id | (i << 16);
9529                 m.flags = 0;
9530                 m.guest_phys_addr = gpa;
9531                 m.userspace_addr = hva;
9532                 m.memory_size = size;
9533                 r = __kvm_set_memory_region(kvm, &m);
9534                 if (r < 0)
9535                         return r;
9536         }
9537
9538         if (!size)
9539                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9540
9541         return 0;
9542 }
9543 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9544
9545 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9546 {
9547         int r;
9548
9549         mutex_lock(&kvm->slots_lock);
9550         r = __x86_set_memory_region(kvm, id, gpa, size);
9551         mutex_unlock(&kvm->slots_lock);
9552
9553         return r;
9554 }
9555 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9556
9557 void kvm_arch_destroy_vm(struct kvm *kvm)
9558 {
9559         if (current->mm == kvm->mm) {
9560                 /*
9561                  * Free memory regions allocated on behalf of userspace,
9562                  * unless the the memory map has changed due to process exit
9563                  * or fd copying.
9564                  */
9565                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9566                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9567                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9568         }
9569         if (kvm_x86_ops->vm_destroy)
9570                 kvm_x86_ops->vm_destroy(kvm);
9571         kvm_pic_destroy(kvm);
9572         kvm_ioapic_destroy(kvm);
9573         kvm_free_vcpus(kvm);
9574         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9575         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9576         kvm_mmu_uninit_vm(kvm);
9577         kvm_page_track_cleanup(kvm);
9578         kvm_hv_destroy_vm(kvm);
9579 }
9580
9581 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9582                            struct kvm_memory_slot *dont)
9583 {
9584         int i;
9585
9586         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9587                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9588                         kvfree(free->arch.rmap[i]);
9589                         free->arch.rmap[i] = NULL;
9590                 }
9591                 if (i == 0)
9592                         continue;
9593
9594                 if (!dont || free->arch.lpage_info[i - 1] !=
9595                              dont->arch.lpage_info[i - 1]) {
9596                         kvfree(free->arch.lpage_info[i - 1]);
9597                         free->arch.lpage_info[i - 1] = NULL;
9598                 }
9599         }
9600
9601         kvm_page_track_free_memslot(free, dont);
9602 }
9603
9604 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9605                             unsigned long npages)
9606 {
9607         int i;
9608
9609         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9610                 struct kvm_lpage_info *linfo;
9611                 unsigned long ugfn;
9612                 int lpages;
9613                 int level = i + 1;
9614
9615                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9616                                       slot->base_gfn, level) + 1;
9617
9618                 slot->arch.rmap[i] =
9619                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9620                                  GFP_KERNEL_ACCOUNT);
9621                 if (!slot->arch.rmap[i])
9622                         goto out_free;
9623                 if (i == 0)
9624                         continue;
9625
9626                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9627                 if (!linfo)
9628                         goto out_free;
9629
9630                 slot->arch.lpage_info[i - 1] = linfo;
9631
9632                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9633                         linfo[0].disallow_lpage = 1;
9634                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9635                         linfo[lpages - 1].disallow_lpage = 1;
9636                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9637                 /*
9638                  * If the gfn and userspace address are not aligned wrt each
9639                  * other, or if explicitly asked to, disable large page
9640                  * support for this slot
9641                  */
9642                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9643                     !kvm_largepages_enabled()) {
9644                         unsigned long j;
9645
9646                         for (j = 0; j < lpages; ++j)
9647                                 linfo[j].disallow_lpage = 1;
9648                 }
9649         }
9650
9651         if (kvm_page_track_create_memslot(slot, npages))
9652                 goto out_free;
9653
9654         return 0;
9655
9656 out_free:
9657         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9658                 kvfree(slot->arch.rmap[i]);
9659                 slot->arch.rmap[i] = NULL;
9660                 if (i == 0)
9661                         continue;
9662
9663                 kvfree(slot->arch.lpage_info[i - 1]);
9664                 slot->arch.lpage_info[i - 1] = NULL;
9665         }
9666         return -ENOMEM;
9667 }
9668
9669 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9670 {
9671         /*
9672          * memslots->generation has been incremented.
9673          * mmio generation may have reached its maximum value.
9674          */
9675         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9676 }
9677
9678 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9679                                 struct kvm_memory_slot *memslot,
9680                                 const struct kvm_userspace_memory_region *mem,
9681                                 enum kvm_mr_change change)
9682 {
9683         return 0;
9684 }
9685
9686 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9687                                      struct kvm_memory_slot *new)
9688 {
9689         /* Still write protect RO slot */
9690         if (new->flags & KVM_MEM_READONLY) {
9691                 kvm_mmu_slot_remove_write_access(kvm, new);
9692                 return;
9693         }
9694
9695         /*
9696          * Call kvm_x86_ops dirty logging hooks when they are valid.
9697          *
9698          * kvm_x86_ops->slot_disable_log_dirty is called when:
9699          *
9700          *  - KVM_MR_CREATE with dirty logging is disabled
9701          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9702          *
9703          * The reason is, in case of PML, we need to set D-bit for any slots
9704          * with dirty logging disabled in order to eliminate unnecessary GPA
9705          * logging in PML buffer (and potential PML buffer full VMEXT). This
9706          * guarantees leaving PML enabled during guest's lifetime won't have
9707          * any additional overhead from PML when guest is running with dirty
9708          * logging disabled for memory slots.
9709          *
9710          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9711          * to dirty logging mode.
9712          *
9713          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9714          *
9715          * In case of write protect:
9716          *
9717          * Write protect all pages for dirty logging.
9718          *
9719          * All the sptes including the large sptes which point to this
9720          * slot are set to readonly. We can not create any new large
9721          * spte on this slot until the end of the logging.
9722          *
9723          * See the comments in fast_page_fault().
9724          */
9725         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9726                 if (kvm_x86_ops->slot_enable_log_dirty)
9727                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9728                 else
9729                         kvm_mmu_slot_remove_write_access(kvm, new);
9730         } else {
9731                 if (kvm_x86_ops->slot_disable_log_dirty)
9732                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9733         }
9734 }
9735
9736 void kvm_arch_commit_memory_region(struct kvm *kvm,
9737                                 const struct kvm_userspace_memory_region *mem,
9738                                 const struct kvm_memory_slot *old,
9739                                 const struct kvm_memory_slot *new,
9740                                 enum kvm_mr_change change)
9741 {
9742         if (!kvm->arch.n_requested_mmu_pages)
9743                 kvm_mmu_change_mmu_pages(kvm,
9744                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9745
9746         /*
9747          * Dirty logging tracks sptes in 4k granularity, meaning that large
9748          * sptes have to be split.  If live migration is successful, the guest
9749          * in the source machine will be destroyed and large sptes will be
9750          * created in the destination. However, if the guest continues to run
9751          * in the source machine (for example if live migration fails), small
9752          * sptes will remain around and cause bad performance.
9753          *
9754          * Scan sptes if dirty logging has been stopped, dropping those
9755          * which can be collapsed into a single large-page spte.  Later
9756          * page faults will create the large-page sptes.
9757          *
9758          * There is no need to do this in any of the following cases:
9759          * CREATE:      No dirty mappings will already exist.
9760          * MOVE/DELETE: The old mappings will already have been cleaned up by
9761          *              kvm_arch_flush_shadow_memslot()
9762          */
9763         if (change == KVM_MR_FLAGS_ONLY &&
9764                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9765                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9766                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9767
9768         /*
9769          * Set up write protection and/or dirty logging for the new slot.
9770          *
9771          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9772          * been zapped so no dirty logging staff is needed for old slot. For
9773          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9774          * new and it's also covered when dealing with the new slot.
9775          *
9776          * FIXME: const-ify all uses of struct kvm_memory_slot.
9777          */
9778         if (change != KVM_MR_DELETE)
9779                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9780 }
9781
9782 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9783 {
9784         kvm_mmu_zap_all(kvm);
9785 }
9786
9787 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9788                                    struct kvm_memory_slot *slot)
9789 {
9790         kvm_page_track_flush_slot(kvm, slot);
9791 }
9792
9793 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9794 {
9795         return (is_guest_mode(vcpu) &&
9796                         kvm_x86_ops->guest_apic_has_interrupt &&
9797                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9798 }
9799
9800 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9801 {
9802         if (!list_empty_careful(&vcpu->async_pf.done))
9803                 return true;
9804
9805         if (kvm_apic_has_events(vcpu))
9806                 return true;
9807
9808         if (vcpu->arch.pv.pv_unhalted)
9809                 return true;
9810
9811         if (vcpu->arch.exception.pending)
9812                 return true;
9813
9814         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9815             (vcpu->arch.nmi_pending &&
9816              kvm_x86_ops->nmi_allowed(vcpu)))
9817                 return true;
9818
9819         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9820             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9821                 return true;
9822
9823         if (kvm_arch_interrupt_allowed(vcpu) &&
9824             (kvm_cpu_has_interrupt(vcpu) ||
9825             kvm_guest_apic_has_interrupt(vcpu)))
9826                 return true;
9827
9828         if (kvm_hv_has_stimer_pending(vcpu))
9829                 return true;
9830
9831         return false;
9832 }
9833
9834 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9835 {
9836         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9837 }
9838
9839 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9840 {
9841         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9842                 return true;
9843
9844         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9845                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
9846                  kvm_test_request(KVM_REQ_EVENT, vcpu))
9847                 return true;
9848
9849         if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9850                 return true;
9851
9852         return false;
9853 }
9854
9855 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9856 {
9857         return vcpu->arch.preempted_in_kernel;
9858 }
9859
9860 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9861 {
9862         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9863 }
9864
9865 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9866 {
9867         return kvm_x86_ops->interrupt_allowed(vcpu);
9868 }
9869
9870 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9871 {
9872         if (is_64_bit_mode(vcpu))
9873                 return kvm_rip_read(vcpu);
9874         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9875                      kvm_rip_read(vcpu));
9876 }
9877 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9878
9879 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9880 {
9881         return kvm_get_linear_rip(vcpu) == linear_rip;
9882 }
9883 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9884
9885 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9886 {
9887         unsigned long rflags;
9888
9889         rflags = kvm_x86_ops->get_rflags(vcpu);
9890         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9891                 rflags &= ~X86_EFLAGS_TF;
9892         return rflags;
9893 }
9894 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9895
9896 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9897 {
9898         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9899             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9900                 rflags |= X86_EFLAGS_TF;
9901         kvm_x86_ops->set_rflags(vcpu, rflags);
9902 }
9903
9904 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9905 {
9906         __kvm_set_rflags(vcpu, rflags);
9907         kvm_make_request(KVM_REQ_EVENT, vcpu);
9908 }
9909 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9910
9911 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9912 {
9913         int r;
9914
9915         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9916               work->wakeup_all)
9917                 return;
9918
9919         r = kvm_mmu_reload(vcpu);
9920         if (unlikely(r))
9921                 return;
9922
9923         if (!vcpu->arch.mmu->direct_map &&
9924               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9925                 return;
9926
9927         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9928 }
9929
9930 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9931 {
9932         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9933 }
9934
9935 static inline u32 kvm_async_pf_next_probe(u32 key)
9936 {
9937         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9938 }
9939
9940 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9941 {
9942         u32 key = kvm_async_pf_hash_fn(gfn);
9943
9944         while (vcpu->arch.apf.gfns[key] != ~0)
9945                 key = kvm_async_pf_next_probe(key);
9946
9947         vcpu->arch.apf.gfns[key] = gfn;
9948 }
9949
9950 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9951 {
9952         int i;
9953         u32 key = kvm_async_pf_hash_fn(gfn);
9954
9955         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9956                      (vcpu->arch.apf.gfns[key] != gfn &&
9957                       vcpu->arch.apf.gfns[key] != ~0); i++)
9958                 key = kvm_async_pf_next_probe(key);
9959
9960         return key;
9961 }
9962
9963 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9964 {
9965         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9966 }
9967
9968 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9969 {
9970         u32 i, j, k;
9971
9972         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9973         while (true) {
9974                 vcpu->arch.apf.gfns[i] = ~0;
9975                 do {
9976                         j = kvm_async_pf_next_probe(j);
9977                         if (vcpu->arch.apf.gfns[j] == ~0)
9978                                 return;
9979                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9980                         /*
9981                          * k lies cyclically in ]i,j]
9982                          * |    i.k.j |
9983                          * |....j i.k.| or  |.k..j i...|
9984                          */
9985                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9986                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9987                 i = j;
9988         }
9989 }
9990
9991 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9992 {
9993
9994         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9995                                       sizeof(val));
9996 }
9997
9998 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9999 {
10000
10001         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10002                                       sizeof(u32));
10003 }
10004
10005 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10006 {
10007         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10008                 return false;
10009
10010         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10011             (vcpu->arch.apf.send_user_only &&
10012              kvm_x86_ops->get_cpl(vcpu) == 0))
10013                 return false;
10014
10015         return true;
10016 }
10017
10018 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10019 {
10020         if (unlikely(!lapic_in_kernel(vcpu) ||
10021                      kvm_event_needs_reinjection(vcpu) ||
10022                      vcpu->arch.exception.pending))
10023                 return false;
10024
10025         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10026                 return false;
10027
10028         /*
10029          * If interrupts are off we cannot even use an artificial
10030          * halt state.
10031          */
10032         return kvm_x86_ops->interrupt_allowed(vcpu);
10033 }
10034
10035 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10036                                      struct kvm_async_pf *work)
10037 {
10038         struct x86_exception fault;
10039
10040         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
10041         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10042
10043         if (kvm_can_deliver_async_pf(vcpu) &&
10044             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10045                 fault.vector = PF_VECTOR;
10046                 fault.error_code_valid = true;
10047                 fault.error_code = 0;
10048                 fault.nested_page_fault = false;
10049                 fault.address = work->arch.token;
10050                 fault.async_page_fault = true;
10051                 kvm_inject_page_fault(vcpu, &fault);
10052         } else {
10053                 /*
10054                  * It is not possible to deliver a paravirtualized asynchronous
10055                  * page fault, but putting the guest in an artificial halt state
10056                  * can be beneficial nevertheless: if an interrupt arrives, we
10057                  * can deliver it timely and perhaps the guest will schedule
10058                  * another process.  When the instruction that triggered a page
10059                  * fault is retried, hopefully the page will be ready in the host.
10060                  */
10061                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10062         }
10063 }
10064
10065 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10066                                  struct kvm_async_pf *work)
10067 {
10068         struct x86_exception fault;
10069         u32 val;
10070
10071         if (work->wakeup_all)
10072                 work->arch.token = ~0; /* broadcast wakeup */
10073         else
10074                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10075         trace_kvm_async_pf_ready(work->arch.token, work->gva);
10076
10077         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10078             !apf_get_user(vcpu, &val)) {
10079                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10080                     vcpu->arch.exception.pending &&
10081                     vcpu->arch.exception.nr == PF_VECTOR &&
10082                     !apf_put_user(vcpu, 0)) {
10083                         vcpu->arch.exception.injected = false;
10084                         vcpu->arch.exception.pending = false;
10085                         vcpu->arch.exception.nr = 0;
10086                         vcpu->arch.exception.has_error_code = false;
10087                         vcpu->arch.exception.error_code = 0;
10088                         vcpu->arch.exception.has_payload = false;
10089                         vcpu->arch.exception.payload = 0;
10090                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10091                         fault.vector = PF_VECTOR;
10092                         fault.error_code_valid = true;
10093                         fault.error_code = 0;
10094                         fault.nested_page_fault = false;
10095                         fault.address = work->arch.token;
10096                         fault.async_page_fault = true;
10097                         kvm_inject_page_fault(vcpu, &fault);
10098                 }
10099         }
10100         vcpu->arch.apf.halted = false;
10101         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10102 }
10103
10104 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10105 {
10106         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10107                 return true;
10108         else
10109                 return kvm_can_do_async_pf(vcpu);
10110 }
10111
10112 void kvm_arch_start_assignment(struct kvm *kvm)
10113 {
10114         atomic_inc(&kvm->arch.assigned_device_count);
10115 }
10116 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10117
10118 void kvm_arch_end_assignment(struct kvm *kvm)
10119 {
10120         atomic_dec(&kvm->arch.assigned_device_count);
10121 }
10122 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10123
10124 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10125 {
10126         return atomic_read(&kvm->arch.assigned_device_count);
10127 }
10128 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10129
10130 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10131 {
10132         atomic_inc(&kvm->arch.noncoherent_dma_count);
10133 }
10134 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10135
10136 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10137 {
10138         atomic_dec(&kvm->arch.noncoherent_dma_count);
10139 }
10140 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10141
10142 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10143 {
10144         return atomic_read(&kvm->arch.noncoherent_dma_count);
10145 }
10146 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10147
10148 bool kvm_arch_has_irq_bypass(void)
10149 {
10150         return true;
10151 }
10152
10153 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10154                                       struct irq_bypass_producer *prod)
10155 {
10156         struct kvm_kernel_irqfd *irqfd =
10157                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10158
10159         irqfd->producer = prod;
10160
10161         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10162                                            prod->irq, irqfd->gsi, 1);
10163 }
10164
10165 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10166                                       struct irq_bypass_producer *prod)
10167 {
10168         int ret;
10169         struct kvm_kernel_irqfd *irqfd =
10170                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10171
10172         WARN_ON(irqfd->producer != prod);
10173         irqfd->producer = NULL;
10174
10175         /*
10176          * When producer of consumer is unregistered, we change back to
10177          * remapped mode, so we can re-use the current implementation
10178          * when the irq is masked/disabled or the consumer side (KVM
10179          * int this case doesn't want to receive the interrupts.
10180         */
10181         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10182         if (ret)
10183                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10184                        " fails: %d\n", irqfd->consumer.token, ret);
10185 }
10186
10187 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10188                                    uint32_t guest_irq, bool set)
10189 {
10190         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10191 }
10192
10193 bool kvm_vector_hashing_enabled(void)
10194 {
10195         return vector_hashing;
10196 }
10197 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10198
10199 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10200 {
10201         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10202 }
10203 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10204
10205
10206 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10207 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10208 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10209 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10210 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10211 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10212 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10213 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10214 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10215 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10216 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10217 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10218 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10219 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10220 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10221 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10222 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10223 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10224 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10225 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);