]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
9b7798c7b210e75499644ed1ca35b643fe743208
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128
129 static bool __read_mostly backwards_tsc_observed = false;
130
131 #define KVM_NR_SHARED_MSRS 16
132
133 struct kvm_shared_msrs_global {
134         int nr;
135         u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137
138 struct kvm_shared_msrs {
139         struct user_return_notifier urn;
140         bool registered;
141         struct kvm_shared_msr_values {
142                 u64 host;
143                 u64 curr;
144         } values[KVM_NR_SHARED_MSRS];
145 };
146
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151         { "pf_fixed", VCPU_STAT(pf_fixed) },
152         { "pf_guest", VCPU_STAT(pf_guest) },
153         { "tlb_flush", VCPU_STAT(tlb_flush) },
154         { "invlpg", VCPU_STAT(invlpg) },
155         { "exits", VCPU_STAT(exits) },
156         { "io_exits", VCPU_STAT(io_exits) },
157         { "mmio_exits", VCPU_STAT(mmio_exits) },
158         { "signal_exits", VCPU_STAT(signal_exits) },
159         { "irq_window", VCPU_STAT(irq_window_exits) },
160         { "nmi_window", VCPU_STAT(nmi_window_exits) },
161         { "halt_exits", VCPU_STAT(halt_exits) },
162         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
165         { "hypercalls", VCPU_STAT(hypercalls) },
166         { "request_irq", VCPU_STAT(request_irq_exits) },
167         { "irq_exits", VCPU_STAT(irq_exits) },
168         { "host_state_reload", VCPU_STAT(host_state_reload) },
169         { "efer_reload", VCPU_STAT(efer_reload) },
170         { "fpu_reload", VCPU_STAT(fpu_reload) },
171         { "insn_emulation", VCPU_STAT(insn_emulation) },
172         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
173         { "irq_injections", VCPU_STAT(irq_injections) },
174         { "nmi_injections", VCPU_STAT(nmi_injections) },
175         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
176         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
177         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
178         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
179         { "mmu_flooded", VM_STAT(mmu_flooded) },
180         { "mmu_recycled", VM_STAT(mmu_recycled) },
181         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
182         { "mmu_unsync", VM_STAT(mmu_unsync) },
183         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
184         { "largepages", VM_STAT(lpages) },
185         { NULL }
186 };
187
188 u64 __read_mostly host_xcr0;
189
190 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
191
192 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
193 {
194         int i;
195         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
196                 vcpu->arch.apf.gfns[i] = ~0;
197 }
198
199 static void kvm_on_user_return(struct user_return_notifier *urn)
200 {
201         unsigned slot;
202         struct kvm_shared_msrs *locals
203                 = container_of(urn, struct kvm_shared_msrs, urn);
204         struct kvm_shared_msr_values *values;
205
206         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
207                 values = &locals->values[slot];
208                 if (values->host != values->curr) {
209                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
210                         values->curr = values->host;
211                 }
212         }
213         locals->registered = false;
214         user_return_notifier_unregister(urn);
215 }
216
217 static void shared_msr_update(unsigned slot, u32 msr)
218 {
219         u64 value;
220         unsigned int cpu = smp_processor_id();
221         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
222
223         /* only read, and nobody should modify it at this time,
224          * so don't need lock */
225         if (slot >= shared_msrs_global.nr) {
226                 printk(KERN_ERR "kvm: invalid MSR slot!");
227                 return;
228         }
229         rdmsrl_safe(msr, &value);
230         smsr->values[slot].host = value;
231         smsr->values[slot].curr = value;
232 }
233
234 void kvm_define_shared_msr(unsigned slot, u32 msr)
235 {
236         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
237         shared_msrs_global.msrs[slot] = msr;
238         if (slot >= shared_msrs_global.nr)
239                 shared_msrs_global.nr = slot + 1;
240 }
241 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
242
243 static void kvm_shared_msr_cpu_online(void)
244 {
245         unsigned i;
246
247         for (i = 0; i < shared_msrs_global.nr; ++i)
248                 shared_msr_update(i, shared_msrs_global.msrs[i]);
249 }
250
251 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
252 {
253         unsigned int cpu = smp_processor_id();
254         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255         int err;
256
257         if (((value ^ smsr->values[slot].curr) & mask) == 0)
258                 return 0;
259         smsr->values[slot].curr = value;
260         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
261         if (err)
262                 return 1;
263
264         if (!smsr->registered) {
265                 smsr->urn.on_user_return = kvm_on_user_return;
266                 user_return_notifier_register(&smsr->urn);
267                 smsr->registered = true;
268         }
269         return 0;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
272
273 static void drop_user_return_notifiers(void)
274 {
275         unsigned int cpu = smp_processor_id();
276         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277
278         if (smsr->registered)
279                 kvm_on_user_return(&smsr->urn);
280 }
281
282 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
283 {
284         return vcpu->arch.apic_base;
285 }
286 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
287
288 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
289 {
290         u64 old_state = vcpu->arch.apic_base &
291                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
292         u64 new_state = msr_info->data &
293                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
295                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
296
297         if (!msr_info->host_initiated &&
298             ((msr_info->data & reserved_bits) != 0 ||
299              new_state == X2APIC_ENABLE ||
300              (new_state == MSR_IA32_APICBASE_ENABLE &&
301               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
302              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
303               old_state == 0)))
304                 return 1;
305
306         kvm_lapic_set_base(vcpu, msr_info->data);
307         return 0;
308 }
309 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
310
311 asmlinkage __visible void kvm_spurious_fault(void)
312 {
313         /* Fault while not rebooting.  We want the trace. */
314         BUG();
315 }
316 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
317
318 #define EXCPT_BENIGN            0
319 #define EXCPT_CONTRIBUTORY      1
320 #define EXCPT_PF                2
321
322 static int exception_class(int vector)
323 {
324         switch (vector) {
325         case PF_VECTOR:
326                 return EXCPT_PF;
327         case DE_VECTOR:
328         case TS_VECTOR:
329         case NP_VECTOR:
330         case SS_VECTOR:
331         case GP_VECTOR:
332                 return EXCPT_CONTRIBUTORY;
333         default:
334                 break;
335         }
336         return EXCPT_BENIGN;
337 }
338
339 #define EXCPT_FAULT             0
340 #define EXCPT_TRAP              1
341 #define EXCPT_ABORT             2
342 #define EXCPT_INTERRUPT         3
343
344 static int exception_type(int vector)
345 {
346         unsigned int mask;
347
348         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
349                 return EXCPT_INTERRUPT;
350
351         mask = 1 << vector;
352
353         /* #DB is trap, as instruction watchpoints are handled elsewhere */
354         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
355                 return EXCPT_TRAP;
356
357         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
358                 return EXCPT_ABORT;
359
360         /* Reserved exceptions will result in fault */
361         return EXCPT_FAULT;
362 }
363
364 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
365                 unsigned nr, bool has_error, u32 error_code,
366                 bool reinject)
367 {
368         u32 prev_nr;
369         int class1, class2;
370
371         kvm_make_request(KVM_REQ_EVENT, vcpu);
372
373         if (!vcpu->arch.exception.pending) {
374         queue:
375                 if (has_error && !is_protmode(vcpu))
376                         has_error = false;
377                 vcpu->arch.exception.pending = true;
378                 vcpu->arch.exception.has_error_code = has_error;
379                 vcpu->arch.exception.nr = nr;
380                 vcpu->arch.exception.error_code = error_code;
381                 vcpu->arch.exception.reinject = reinject;
382                 return;
383         }
384
385         /* to check exception */
386         prev_nr = vcpu->arch.exception.nr;
387         if (prev_nr == DF_VECTOR) {
388                 /* triple fault -> shutdown */
389                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
390                 return;
391         }
392         class1 = exception_class(prev_nr);
393         class2 = exception_class(nr);
394         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
395                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
396                 /* generate double fault per SDM Table 5-5 */
397                 vcpu->arch.exception.pending = true;
398                 vcpu->arch.exception.has_error_code = true;
399                 vcpu->arch.exception.nr = DF_VECTOR;
400                 vcpu->arch.exception.error_code = 0;
401         } else
402                 /* replace previous exception with a new one in a hope
403                    that instruction re-execution will regenerate lost
404                    exception */
405                 goto queue;
406 }
407
408 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
409 {
410         kvm_multiple_exception(vcpu, nr, false, 0, false);
411 }
412 EXPORT_SYMBOL_GPL(kvm_queue_exception);
413
414 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
415 {
416         kvm_multiple_exception(vcpu, nr, false, 0, true);
417 }
418 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
419
420 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
421 {
422         if (err)
423                 kvm_inject_gp(vcpu, 0);
424         else
425                 kvm_x86_ops->skip_emulated_instruction(vcpu);
426 }
427 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
428
429 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
430 {
431         ++vcpu->stat.pf_guest;
432         vcpu->arch.cr2 = fault->address;
433         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
434 }
435 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
436
437 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
440                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
441         else
442                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
443
444         return fault->nested_page_fault;
445 }
446
447 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
448 {
449         atomic_inc(&vcpu->arch.nmi_queued);
450         kvm_make_request(KVM_REQ_NMI, vcpu);
451 }
452 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
453
454 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
455 {
456         kvm_multiple_exception(vcpu, nr, true, error_code, false);
457 }
458 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
459
460 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
461 {
462         kvm_multiple_exception(vcpu, nr, true, error_code, true);
463 }
464 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
465
466 /*
467  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
468  * a #GP and return false.
469  */
470 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
471 {
472         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
473                 return true;
474         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
475         return false;
476 }
477 EXPORT_SYMBOL_GPL(kvm_require_cpl);
478
479 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
480 {
481         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
482                 return true;
483
484         kvm_queue_exception(vcpu, UD_VECTOR);
485         return false;
486 }
487 EXPORT_SYMBOL_GPL(kvm_require_dr);
488
489 /*
490  * This function will be used to read from the physical memory of the currently
491  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
492  * can read from guest physical or from the guest's guest physical memory.
493  */
494 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
495                             gfn_t ngfn, void *data, int offset, int len,
496                             u32 access)
497 {
498         struct x86_exception exception;
499         gfn_t real_gfn;
500         gpa_t ngpa;
501
502         ngpa     = gfn_to_gpa(ngfn);
503         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
504         if (real_gfn == UNMAPPED_GVA)
505                 return -EFAULT;
506
507         real_gfn = gpa_to_gfn(real_gfn);
508
509         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
510 }
511 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
512
513 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
514                                void *data, int offset, int len, u32 access)
515 {
516         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
517                                        data, offset, len, access);
518 }
519
520 /*
521  * Load the pae pdptrs.  Return true is they are all valid.
522  */
523 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
524 {
525         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
526         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
527         int i;
528         int ret;
529         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
530
531         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
532                                       offset * sizeof(u64), sizeof(pdpte),
533                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
534         if (ret < 0) {
535                 ret = 0;
536                 goto out;
537         }
538         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
539                 if (is_present_gpte(pdpte[i]) &&
540                     (pdpte[i] &
541                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
542                         ret = 0;
543                         goto out;
544                 }
545         }
546         ret = 1;
547
548         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
549         __set_bit(VCPU_EXREG_PDPTR,
550                   (unsigned long *)&vcpu->arch.regs_avail);
551         __set_bit(VCPU_EXREG_PDPTR,
552                   (unsigned long *)&vcpu->arch.regs_dirty);
553 out:
554
555         return ret;
556 }
557 EXPORT_SYMBOL_GPL(load_pdptrs);
558
559 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
560 {
561         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
562         bool changed = true;
563         int offset;
564         gfn_t gfn;
565         int r;
566
567         if (is_long_mode(vcpu) || !is_pae(vcpu))
568                 return false;
569
570         if (!test_bit(VCPU_EXREG_PDPTR,
571                       (unsigned long *)&vcpu->arch.regs_avail))
572                 return true;
573
574         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
575         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
576         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
577                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
578         if (r < 0)
579                 goto out;
580         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
581 out:
582
583         return changed;
584 }
585
586 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
587 {
588         unsigned long old_cr0 = kvm_read_cr0(vcpu);
589         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
590
591         cr0 |= X86_CR0_ET;
592
593 #ifdef CONFIG_X86_64
594         if (cr0 & 0xffffffff00000000UL)
595                 return 1;
596 #endif
597
598         cr0 &= ~CR0_RESERVED_BITS;
599
600         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
601                 return 1;
602
603         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
604                 return 1;
605
606         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
607 #ifdef CONFIG_X86_64
608                 if ((vcpu->arch.efer & EFER_LME)) {
609                         int cs_db, cs_l;
610
611                         if (!is_pae(vcpu))
612                                 return 1;
613                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
614                         if (cs_l)
615                                 return 1;
616                 } else
617 #endif
618                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
619                                                  kvm_read_cr3(vcpu)))
620                         return 1;
621         }
622
623         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
624                 return 1;
625
626         kvm_x86_ops->set_cr0(vcpu, cr0);
627
628         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
629                 kvm_clear_async_pf_completion_queue(vcpu);
630                 kvm_async_pf_hash_reset(vcpu);
631         }
632
633         if ((cr0 ^ old_cr0) & update_bits)
634                 kvm_mmu_reset_context(vcpu);
635
636         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
637             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
638             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
639                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
640
641         return 0;
642 }
643 EXPORT_SYMBOL_GPL(kvm_set_cr0);
644
645 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
646 {
647         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
648 }
649 EXPORT_SYMBOL_GPL(kvm_lmsw);
650
651 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
652 {
653         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
654                         !vcpu->guest_xcr0_loaded) {
655                 /* kvm_set_xcr() also depends on this */
656                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
657                 vcpu->guest_xcr0_loaded = 1;
658         }
659 }
660
661 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
662 {
663         if (vcpu->guest_xcr0_loaded) {
664                 if (vcpu->arch.xcr0 != host_xcr0)
665                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
666                 vcpu->guest_xcr0_loaded = 0;
667         }
668 }
669
670 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
671 {
672         u64 xcr0 = xcr;
673         u64 old_xcr0 = vcpu->arch.xcr0;
674         u64 valid_bits;
675
676         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
677         if (index != XCR_XFEATURE_ENABLED_MASK)
678                 return 1;
679         if (!(xcr0 & XFEATURE_MASK_FP))
680                 return 1;
681         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
682                 return 1;
683
684         /*
685          * Do not allow the guest to set bits that we do not support
686          * saving.  However, xcr0 bit 0 is always set, even if the
687          * emulated CPU does not support XSAVE (see fx_init).
688          */
689         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
690         if (xcr0 & ~valid_bits)
691                 return 1;
692
693         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
694             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
695                 return 1;
696
697         if (xcr0 & XFEATURE_MASK_AVX512) {
698                 if (!(xcr0 & XFEATURE_MASK_YMM))
699                         return 1;
700                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
701                         return 1;
702         }
703         vcpu->arch.xcr0 = xcr0;
704
705         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
706                 kvm_update_cpuid(vcpu);
707         return 0;
708 }
709
710 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
711 {
712         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
713             __kvm_set_xcr(vcpu, index, xcr)) {
714                 kvm_inject_gp(vcpu, 0);
715                 return 1;
716         }
717         return 0;
718 }
719 EXPORT_SYMBOL_GPL(kvm_set_xcr);
720
721 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
722 {
723         unsigned long old_cr4 = kvm_read_cr4(vcpu);
724         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
725                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
726
727         if (cr4 & CR4_RESERVED_BITS)
728                 return 1;
729
730         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
731                 return 1;
732
733         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
734                 return 1;
735
736         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
737                 return 1;
738
739         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
740                 return 1;
741
742         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
743                 return 1;
744
745         if (is_long_mode(vcpu)) {
746                 if (!(cr4 & X86_CR4_PAE))
747                         return 1;
748         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
749                    && ((cr4 ^ old_cr4) & pdptr_bits)
750                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
751                                    kvm_read_cr3(vcpu)))
752                 return 1;
753
754         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
755                 if (!guest_cpuid_has_pcid(vcpu))
756                         return 1;
757
758                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
759                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
760                         return 1;
761         }
762
763         if (kvm_x86_ops->set_cr4(vcpu, cr4))
764                 return 1;
765
766         if (((cr4 ^ old_cr4) & pdptr_bits) ||
767             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
768                 kvm_mmu_reset_context(vcpu);
769
770         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
771                 kvm_update_cpuid(vcpu);
772
773         return 0;
774 }
775 EXPORT_SYMBOL_GPL(kvm_set_cr4);
776
777 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
778 {
779 #ifdef CONFIG_X86_64
780         cr3 &= ~CR3_PCID_INVD;
781 #endif
782
783         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
784                 kvm_mmu_sync_roots(vcpu);
785                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
786                 return 0;
787         }
788
789         if (is_long_mode(vcpu)) {
790                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
791                         return 1;
792         } else if (is_pae(vcpu) && is_paging(vcpu) &&
793                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
794                 return 1;
795
796         vcpu->arch.cr3 = cr3;
797         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
798         kvm_mmu_new_cr3(vcpu);
799         return 0;
800 }
801 EXPORT_SYMBOL_GPL(kvm_set_cr3);
802
803 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
804 {
805         if (cr8 & CR8_RESERVED_BITS)
806                 return 1;
807         if (lapic_in_kernel(vcpu))
808                 kvm_lapic_set_tpr(vcpu, cr8);
809         else
810                 vcpu->arch.cr8 = cr8;
811         return 0;
812 }
813 EXPORT_SYMBOL_GPL(kvm_set_cr8);
814
815 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
816 {
817         if (lapic_in_kernel(vcpu))
818                 return kvm_lapic_get_cr8(vcpu);
819         else
820                 return vcpu->arch.cr8;
821 }
822 EXPORT_SYMBOL_GPL(kvm_get_cr8);
823
824 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
825 {
826         int i;
827
828         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
829                 for (i = 0; i < KVM_NR_DB_REGS; i++)
830                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
831                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
832         }
833 }
834
835 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
836 {
837         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
838                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
839 }
840
841 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
842 {
843         unsigned long dr7;
844
845         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
846                 dr7 = vcpu->arch.guest_debug_dr7;
847         else
848                 dr7 = vcpu->arch.dr7;
849         kvm_x86_ops->set_dr7(vcpu, dr7);
850         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
851         if (dr7 & DR7_BP_EN_MASK)
852                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
853 }
854
855 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
856 {
857         u64 fixed = DR6_FIXED_1;
858
859         if (!guest_cpuid_has_rtm(vcpu))
860                 fixed |= DR6_RTM;
861         return fixed;
862 }
863
864 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
865 {
866         switch (dr) {
867         case 0 ... 3:
868                 vcpu->arch.db[dr] = val;
869                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
870                         vcpu->arch.eff_db[dr] = val;
871                 break;
872         case 4:
873                 /* fall through */
874         case 6:
875                 if (val & 0xffffffff00000000ULL)
876                         return -1; /* #GP */
877                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
878                 kvm_update_dr6(vcpu);
879                 break;
880         case 5:
881                 /* fall through */
882         default: /* 7 */
883                 if (val & 0xffffffff00000000ULL)
884                         return -1; /* #GP */
885                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
886                 kvm_update_dr7(vcpu);
887                 break;
888         }
889
890         return 0;
891 }
892
893 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
894 {
895         if (__kvm_set_dr(vcpu, dr, val)) {
896                 kvm_inject_gp(vcpu, 0);
897                 return 1;
898         }
899         return 0;
900 }
901 EXPORT_SYMBOL_GPL(kvm_set_dr);
902
903 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
904 {
905         switch (dr) {
906         case 0 ... 3:
907                 *val = vcpu->arch.db[dr];
908                 break;
909         case 4:
910                 /* fall through */
911         case 6:
912                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
913                         *val = vcpu->arch.dr6;
914                 else
915                         *val = kvm_x86_ops->get_dr6(vcpu);
916                 break;
917         case 5:
918                 /* fall through */
919         default: /* 7 */
920                 *val = vcpu->arch.dr7;
921                 break;
922         }
923         return 0;
924 }
925 EXPORT_SYMBOL_GPL(kvm_get_dr);
926
927 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
928 {
929         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
930         u64 data;
931         int err;
932
933         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
934         if (err)
935                 return err;
936         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
937         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
938         return err;
939 }
940 EXPORT_SYMBOL_GPL(kvm_rdpmc);
941
942 /*
943  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
944  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
945  *
946  * This list is modified at module load time to reflect the
947  * capabilities of the host cpu. This capabilities test skips MSRs that are
948  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
949  * may depend on host virtualization features rather than host cpu features.
950  */
951
952 static u32 msrs_to_save[] = {
953         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
954         MSR_STAR,
955 #ifdef CONFIG_X86_64
956         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
957 #endif
958         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
959         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
960 };
961
962 static unsigned num_msrs_to_save;
963
964 static u32 emulated_msrs[] = {
965         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
966         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
967         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
968         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
969         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
970         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
971         HV_X64_MSR_RESET,
972         HV_X64_MSR_VP_INDEX,
973         HV_X64_MSR_VP_RUNTIME,
974         HV_X64_MSR_SCONTROL,
975         HV_X64_MSR_STIMER0_CONFIG,
976         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
977         MSR_KVM_PV_EOI_EN,
978
979         MSR_IA32_TSC_ADJUST,
980         MSR_IA32_TSCDEADLINE,
981         MSR_IA32_MISC_ENABLE,
982         MSR_IA32_MCG_STATUS,
983         MSR_IA32_MCG_CTL,
984         MSR_IA32_SMBASE,
985 };
986
987 static unsigned num_emulated_msrs;
988
989 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
990 {
991         if (efer & efer_reserved_bits)
992                 return false;
993
994         if (efer & EFER_FFXSR) {
995                 struct kvm_cpuid_entry2 *feat;
996
997                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
998                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
999                         return false;
1000         }
1001
1002         if (efer & EFER_SVME) {
1003                 struct kvm_cpuid_entry2 *feat;
1004
1005                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1006                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1007                         return false;
1008         }
1009
1010         return true;
1011 }
1012 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1013
1014 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1015 {
1016         u64 old_efer = vcpu->arch.efer;
1017
1018         if (!kvm_valid_efer(vcpu, efer))
1019                 return 1;
1020
1021         if (is_paging(vcpu)
1022             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1023                 return 1;
1024
1025         efer &= ~EFER_LMA;
1026         efer |= vcpu->arch.efer & EFER_LMA;
1027
1028         kvm_x86_ops->set_efer(vcpu, efer);
1029
1030         /* Update reserved bits */
1031         if ((efer ^ old_efer) & EFER_NX)
1032                 kvm_mmu_reset_context(vcpu);
1033
1034         return 0;
1035 }
1036
1037 void kvm_enable_efer_bits(u64 mask)
1038 {
1039        efer_reserved_bits &= ~mask;
1040 }
1041 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1042
1043 /*
1044  * Writes msr value into into the appropriate "register".
1045  * Returns 0 on success, non-0 otherwise.
1046  * Assumes vcpu_load() was already called.
1047  */
1048 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1049 {
1050         switch (msr->index) {
1051         case MSR_FS_BASE:
1052         case MSR_GS_BASE:
1053         case MSR_KERNEL_GS_BASE:
1054         case MSR_CSTAR:
1055         case MSR_LSTAR:
1056                 if (is_noncanonical_address(msr->data))
1057                         return 1;
1058                 break;
1059         case MSR_IA32_SYSENTER_EIP:
1060         case MSR_IA32_SYSENTER_ESP:
1061                 /*
1062                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1063                  * non-canonical address is written on Intel but not on
1064                  * AMD (which ignores the top 32-bits, because it does
1065                  * not implement 64-bit SYSENTER).
1066                  *
1067                  * 64-bit code should hence be able to write a non-canonical
1068                  * value on AMD.  Making the address canonical ensures that
1069                  * vmentry does not fail on Intel after writing a non-canonical
1070                  * value, and that something deterministic happens if the guest
1071                  * invokes 64-bit SYSENTER.
1072                  */
1073                 msr->data = get_canonical(msr->data);
1074         }
1075         return kvm_x86_ops->set_msr(vcpu, msr);
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_set_msr);
1078
1079 /*
1080  * Adapt set_msr() to msr_io()'s calling convention
1081  */
1082 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1083 {
1084         struct msr_data msr;
1085         int r;
1086
1087         msr.index = index;
1088         msr.host_initiated = true;
1089         r = kvm_get_msr(vcpu, &msr);
1090         if (r)
1091                 return r;
1092
1093         *data = msr.data;
1094         return 0;
1095 }
1096
1097 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1098 {
1099         struct msr_data msr;
1100
1101         msr.data = *data;
1102         msr.index = index;
1103         msr.host_initiated = true;
1104         return kvm_set_msr(vcpu, &msr);
1105 }
1106
1107 #ifdef CONFIG_X86_64
1108 struct pvclock_gtod_data {
1109         seqcount_t      seq;
1110
1111         struct { /* extract of a clocksource struct */
1112                 int vclock_mode;
1113                 cycle_t cycle_last;
1114                 cycle_t mask;
1115                 u32     mult;
1116                 u32     shift;
1117         } clock;
1118
1119         u64             boot_ns;
1120         u64             nsec_base;
1121 };
1122
1123 static struct pvclock_gtod_data pvclock_gtod_data;
1124
1125 static void update_pvclock_gtod(struct timekeeper *tk)
1126 {
1127         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1128         u64 boot_ns;
1129
1130         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1131
1132         write_seqcount_begin(&vdata->seq);
1133
1134         /* copy pvclock gtod data */
1135         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1136         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1137         vdata->clock.mask               = tk->tkr_mono.mask;
1138         vdata->clock.mult               = tk->tkr_mono.mult;
1139         vdata->clock.shift              = tk->tkr_mono.shift;
1140
1141         vdata->boot_ns                  = boot_ns;
1142         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1143
1144         write_seqcount_end(&vdata->seq);
1145 }
1146 #endif
1147
1148 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1149 {
1150         /*
1151          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1152          * vcpu_enter_guest.  This function is only called from
1153          * the physical CPU that is running vcpu.
1154          */
1155         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1156 }
1157
1158 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1159 {
1160         int version;
1161         int r;
1162         struct pvclock_wall_clock wc;
1163         struct timespec boot;
1164
1165         if (!wall_clock)
1166                 return;
1167
1168         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1169         if (r)
1170                 return;
1171
1172         if (version & 1)
1173                 ++version;  /* first time write, random junk */
1174
1175         ++version;
1176
1177         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1178                 return;
1179
1180         /*
1181          * The guest calculates current wall clock time by adding
1182          * system time (updated by kvm_guest_time_update below) to the
1183          * wall clock specified here.  guest system time equals host
1184          * system time for us, thus we must fill in host boot time here.
1185          */
1186         getboottime(&boot);
1187
1188         if (kvm->arch.kvmclock_offset) {
1189                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1190                 boot = timespec_sub(boot, ts);
1191         }
1192         wc.sec = boot.tv_sec;
1193         wc.nsec = boot.tv_nsec;
1194         wc.version = version;
1195
1196         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1197
1198         version++;
1199         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1200 }
1201
1202 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1203 {
1204         do_shl32_div32(dividend, divisor);
1205         return dividend;
1206 }
1207
1208 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1209                                s8 *pshift, u32 *pmultiplier)
1210 {
1211         uint64_t scaled64;
1212         int32_t  shift = 0;
1213         uint64_t tps64;
1214         uint32_t tps32;
1215
1216         tps64 = base_hz;
1217         scaled64 = scaled_hz;
1218         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1219                 tps64 >>= 1;
1220                 shift--;
1221         }
1222
1223         tps32 = (uint32_t)tps64;
1224         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1225                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1226                         scaled64 >>= 1;
1227                 else
1228                         tps32 <<= 1;
1229                 shift++;
1230         }
1231
1232         *pshift = shift;
1233         *pmultiplier = div_frac(scaled64, tps32);
1234
1235         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1236                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1237 }
1238
1239 #ifdef CONFIG_X86_64
1240 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1241 #endif
1242
1243 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1244 static unsigned long max_tsc_khz;
1245
1246 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1247 {
1248         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1249                                    vcpu->arch.virtual_tsc_shift);
1250 }
1251
1252 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1253 {
1254         u64 v = (u64)khz * (1000000 + ppm);
1255         do_div(v, 1000000);
1256         return v;
1257 }
1258
1259 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1260 {
1261         u64 ratio;
1262
1263         /* Guest TSC same frequency as host TSC? */
1264         if (!scale) {
1265                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1266                 return 0;
1267         }
1268
1269         /* TSC scaling supported? */
1270         if (!kvm_has_tsc_control) {
1271                 if (user_tsc_khz > tsc_khz) {
1272                         vcpu->arch.tsc_catchup = 1;
1273                         vcpu->arch.tsc_always_catchup = 1;
1274                         return 0;
1275                 } else {
1276                         WARN(1, "user requested TSC rate below hardware speed\n");
1277                         return -1;
1278                 }
1279         }
1280
1281         /* TSC scaling required  - calculate ratio */
1282         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1283                                 user_tsc_khz, tsc_khz);
1284
1285         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1286                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1287                           user_tsc_khz);
1288                 return -1;
1289         }
1290
1291         vcpu->arch.tsc_scaling_ratio = ratio;
1292         return 0;
1293 }
1294
1295 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1296 {
1297         u32 thresh_lo, thresh_hi;
1298         int use_scaling = 0;
1299
1300         /* tsc_khz can be zero if TSC calibration fails */
1301         if (user_tsc_khz == 0) {
1302                 /* set tsc_scaling_ratio to a safe value */
1303                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1304                 return -1;
1305         }
1306
1307         /* Compute a scale to convert nanoseconds in TSC cycles */
1308         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1309                            &vcpu->arch.virtual_tsc_shift,
1310                            &vcpu->arch.virtual_tsc_mult);
1311         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1312
1313         /*
1314          * Compute the variation in TSC rate which is acceptable
1315          * within the range of tolerance and decide if the
1316          * rate being applied is within that bounds of the hardware
1317          * rate.  If so, no scaling or compensation need be done.
1318          */
1319         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1320         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1321         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1322                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1323                 use_scaling = 1;
1324         }
1325         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1326 }
1327
1328 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1329 {
1330         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1331                                       vcpu->arch.virtual_tsc_mult,
1332                                       vcpu->arch.virtual_tsc_shift);
1333         tsc += vcpu->arch.this_tsc_write;
1334         return tsc;
1335 }
1336
1337 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1338 {
1339 #ifdef CONFIG_X86_64
1340         bool vcpus_matched;
1341         struct kvm_arch *ka = &vcpu->kvm->arch;
1342         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1343
1344         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1345                          atomic_read(&vcpu->kvm->online_vcpus));
1346
1347         /*
1348          * Once the masterclock is enabled, always perform request in
1349          * order to update it.
1350          *
1351          * In order to enable masterclock, the host clocksource must be TSC
1352          * and the vcpus need to have matched TSCs.  When that happens,
1353          * perform request to enable masterclock.
1354          */
1355         if (ka->use_master_clock ||
1356             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1357                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1358
1359         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1360                             atomic_read(&vcpu->kvm->online_vcpus),
1361                             ka->use_master_clock, gtod->clock.vclock_mode);
1362 #endif
1363 }
1364
1365 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1366 {
1367         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1368         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1369 }
1370
1371 /*
1372  * Multiply tsc by a fixed point number represented by ratio.
1373  *
1374  * The most significant 64-N bits (mult) of ratio represent the
1375  * integral part of the fixed point number; the remaining N bits
1376  * (frac) represent the fractional part, ie. ratio represents a fixed
1377  * point number (mult + frac * 2^(-N)).
1378  *
1379  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1380  */
1381 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1382 {
1383         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1384 }
1385
1386 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1387 {
1388         u64 _tsc = tsc;
1389         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1390
1391         if (ratio != kvm_default_tsc_scaling_ratio)
1392                 _tsc = __scale_tsc(ratio, tsc);
1393
1394         return _tsc;
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1397
1398 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1399 {
1400         u64 tsc;
1401
1402         tsc = kvm_scale_tsc(vcpu, rdtsc());
1403
1404         return target_tsc - tsc;
1405 }
1406
1407 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1408 {
1409         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1412
1413 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1414 {
1415         struct kvm *kvm = vcpu->kvm;
1416         u64 offset, ns, elapsed;
1417         unsigned long flags;
1418         s64 usdiff;
1419         bool matched;
1420         bool already_matched;
1421         u64 data = msr->data;
1422
1423         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1424         offset = kvm_compute_tsc_offset(vcpu, data);
1425         ns = get_kernel_ns();
1426         elapsed = ns - kvm->arch.last_tsc_nsec;
1427
1428         if (vcpu->arch.virtual_tsc_khz) {
1429                 int faulted = 0;
1430
1431                 /* n.b - signed multiplication and division required */
1432                 usdiff = data - kvm->arch.last_tsc_write;
1433 #ifdef CONFIG_X86_64
1434                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1435 #else
1436                 /* do_div() only does unsigned */
1437                 asm("1: idivl %[divisor]\n"
1438                     "2: xor %%edx, %%edx\n"
1439                     "   movl $0, %[faulted]\n"
1440                     "3:\n"
1441                     ".section .fixup,\"ax\"\n"
1442                     "4: movl $1, %[faulted]\n"
1443                     "   jmp  3b\n"
1444                     ".previous\n"
1445
1446                 _ASM_EXTABLE(1b, 4b)
1447
1448                 : "=A"(usdiff), [faulted] "=r" (faulted)
1449                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1450
1451 #endif
1452                 do_div(elapsed, 1000);
1453                 usdiff -= elapsed;
1454                 if (usdiff < 0)
1455                         usdiff = -usdiff;
1456
1457                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1458                 if (faulted)
1459                         usdiff = USEC_PER_SEC;
1460         } else
1461                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1462
1463         /*
1464          * Special case: TSC write with a small delta (1 second) of virtual
1465          * cycle time against real time is interpreted as an attempt to
1466          * synchronize the CPU.
1467          *
1468          * For a reliable TSC, we can match TSC offsets, and for an unstable
1469          * TSC, we add elapsed time in this computation.  We could let the
1470          * compensation code attempt to catch up if we fall behind, but
1471          * it's better to try to match offsets from the beginning.
1472          */
1473         if (usdiff < USEC_PER_SEC &&
1474             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1475                 if (!check_tsc_unstable()) {
1476                         offset = kvm->arch.cur_tsc_offset;
1477                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1478                 } else {
1479                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1480                         data += delta;
1481                         offset = kvm_compute_tsc_offset(vcpu, data);
1482                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1483                 }
1484                 matched = true;
1485                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1486         } else {
1487                 /*
1488                  * We split periods of matched TSC writes into generations.
1489                  * For each generation, we track the original measured
1490                  * nanosecond time, offset, and write, so if TSCs are in
1491                  * sync, we can match exact offset, and if not, we can match
1492                  * exact software computation in compute_guest_tsc()
1493                  *
1494                  * These values are tracked in kvm->arch.cur_xxx variables.
1495                  */
1496                 kvm->arch.cur_tsc_generation++;
1497                 kvm->arch.cur_tsc_nsec = ns;
1498                 kvm->arch.cur_tsc_write = data;
1499                 kvm->arch.cur_tsc_offset = offset;
1500                 matched = false;
1501                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1502                          kvm->arch.cur_tsc_generation, data);
1503         }
1504
1505         /*
1506          * We also track th most recent recorded KHZ, write and time to
1507          * allow the matching interval to be extended at each write.
1508          */
1509         kvm->arch.last_tsc_nsec = ns;
1510         kvm->arch.last_tsc_write = data;
1511         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1512
1513         vcpu->arch.last_guest_tsc = data;
1514
1515         /* Keep track of which generation this VCPU has synchronized to */
1516         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1517         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1518         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1519
1520         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1521                 update_ia32_tsc_adjust_msr(vcpu, offset);
1522         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1523         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1524
1525         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1526         if (!matched) {
1527                 kvm->arch.nr_vcpus_matched_tsc = 0;
1528         } else if (!already_matched) {
1529                 kvm->arch.nr_vcpus_matched_tsc++;
1530         }
1531
1532         kvm_track_tsc_matching(vcpu);
1533         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1534 }
1535
1536 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1537
1538 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1539                                            s64 adjustment)
1540 {
1541         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1542 }
1543
1544 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1545 {
1546         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1547                 WARN_ON(adjustment < 0);
1548         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1549         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1550 }
1551
1552 #ifdef CONFIG_X86_64
1553
1554 static cycle_t read_tsc(void)
1555 {
1556         cycle_t ret = (cycle_t)rdtsc_ordered();
1557         u64 last = pvclock_gtod_data.clock.cycle_last;
1558
1559         if (likely(ret >= last))
1560                 return ret;
1561
1562         /*
1563          * GCC likes to generate cmov here, but this branch is extremely
1564          * predictable (it's just a function of time and the likely is
1565          * very likely) and there's a data dependence, so force GCC
1566          * to generate a branch instead.  I don't barrier() because
1567          * we don't actually need a barrier, and if this function
1568          * ever gets inlined it will generate worse code.
1569          */
1570         asm volatile ("");
1571         return last;
1572 }
1573
1574 static inline u64 vgettsc(cycle_t *cycle_now)
1575 {
1576         long v;
1577         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1578
1579         *cycle_now = read_tsc();
1580
1581         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1582         return v * gtod->clock.mult;
1583 }
1584
1585 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1586 {
1587         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1588         unsigned long seq;
1589         int mode;
1590         u64 ns;
1591
1592         do {
1593                 seq = read_seqcount_begin(&gtod->seq);
1594                 mode = gtod->clock.vclock_mode;
1595                 ns = gtod->nsec_base;
1596                 ns += vgettsc(cycle_now);
1597                 ns >>= gtod->clock.shift;
1598                 ns += gtod->boot_ns;
1599         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1600         *t = ns;
1601
1602         return mode;
1603 }
1604
1605 /* returns true if host is using tsc clocksource */
1606 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1607 {
1608         /* checked again under seqlock below */
1609         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1610                 return false;
1611
1612         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1613 }
1614 #endif
1615
1616 /*
1617  *
1618  * Assuming a stable TSC across physical CPUS, and a stable TSC
1619  * across virtual CPUs, the following condition is possible.
1620  * Each numbered line represents an event visible to both
1621  * CPUs at the next numbered event.
1622  *
1623  * "timespecX" represents host monotonic time. "tscX" represents
1624  * RDTSC value.
1625  *
1626  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1627  *
1628  * 1.  read timespec0,tsc0
1629  * 2.                                   | timespec1 = timespec0 + N
1630  *                                      | tsc1 = tsc0 + M
1631  * 3. transition to guest               | transition to guest
1632  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1633  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1634  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1635  *
1636  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1637  *
1638  *      - ret0 < ret1
1639  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1640  *              ...
1641  *      - 0 < N - M => M < N
1642  *
1643  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1644  * always the case (the difference between two distinct xtime instances
1645  * might be smaller then the difference between corresponding TSC reads,
1646  * when updating guest vcpus pvclock areas).
1647  *
1648  * To avoid that problem, do not allow visibility of distinct
1649  * system_timestamp/tsc_timestamp values simultaneously: use a master
1650  * copy of host monotonic time values. Update that master copy
1651  * in lockstep.
1652  *
1653  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1654  *
1655  */
1656
1657 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1658 {
1659 #ifdef CONFIG_X86_64
1660         struct kvm_arch *ka = &kvm->arch;
1661         int vclock_mode;
1662         bool host_tsc_clocksource, vcpus_matched;
1663
1664         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1665                         atomic_read(&kvm->online_vcpus));
1666
1667         /*
1668          * If the host uses TSC clock, then passthrough TSC as stable
1669          * to the guest.
1670          */
1671         host_tsc_clocksource = kvm_get_time_and_clockread(
1672                                         &ka->master_kernel_ns,
1673                                         &ka->master_cycle_now);
1674
1675         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1676                                 && !backwards_tsc_observed
1677                                 && !ka->boot_vcpu_runs_old_kvmclock;
1678
1679         if (ka->use_master_clock)
1680                 atomic_set(&kvm_guest_has_master_clock, 1);
1681
1682         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1683         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1684                                         vcpus_matched);
1685 #endif
1686 }
1687
1688 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1689 {
1690         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1691 }
1692
1693 static void kvm_gen_update_masterclock(struct kvm *kvm)
1694 {
1695 #ifdef CONFIG_X86_64
1696         int i;
1697         struct kvm_vcpu *vcpu;
1698         struct kvm_arch *ka = &kvm->arch;
1699
1700         spin_lock(&ka->pvclock_gtod_sync_lock);
1701         kvm_make_mclock_inprogress_request(kvm);
1702         /* no guest entries from this point */
1703         pvclock_update_vm_gtod_copy(kvm);
1704
1705         kvm_for_each_vcpu(i, vcpu, kvm)
1706                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1707
1708         /* guest entries allowed */
1709         kvm_for_each_vcpu(i, vcpu, kvm)
1710                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1711
1712         spin_unlock(&ka->pvclock_gtod_sync_lock);
1713 #endif
1714 }
1715
1716 static int kvm_guest_time_update(struct kvm_vcpu *v)
1717 {
1718         unsigned long flags, tgt_tsc_khz;
1719         struct kvm_vcpu_arch *vcpu = &v->arch;
1720         struct kvm_arch *ka = &v->kvm->arch;
1721         s64 kernel_ns;
1722         u64 tsc_timestamp, host_tsc;
1723         struct pvclock_vcpu_time_info guest_hv_clock;
1724         u8 pvclock_flags;
1725         bool use_master_clock;
1726
1727         kernel_ns = 0;
1728         host_tsc = 0;
1729
1730         /*
1731          * If the host uses TSC clock, then passthrough TSC as stable
1732          * to the guest.
1733          */
1734         spin_lock(&ka->pvclock_gtod_sync_lock);
1735         use_master_clock = ka->use_master_clock;
1736         if (use_master_clock) {
1737                 host_tsc = ka->master_cycle_now;
1738                 kernel_ns = ka->master_kernel_ns;
1739         }
1740         spin_unlock(&ka->pvclock_gtod_sync_lock);
1741
1742         /* Keep irq disabled to prevent changes to the clock */
1743         local_irq_save(flags);
1744         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1745         if (unlikely(tgt_tsc_khz == 0)) {
1746                 local_irq_restore(flags);
1747                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1748                 return 1;
1749         }
1750         if (!use_master_clock) {
1751                 host_tsc = rdtsc();
1752                 kernel_ns = get_kernel_ns();
1753         }
1754
1755         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1756
1757         /*
1758          * We may have to catch up the TSC to match elapsed wall clock
1759          * time for two reasons, even if kvmclock is used.
1760          *   1) CPU could have been running below the maximum TSC rate
1761          *   2) Broken TSC compensation resets the base at each VCPU
1762          *      entry to avoid unknown leaps of TSC even when running
1763          *      again on the same CPU.  This may cause apparent elapsed
1764          *      time to disappear, and the guest to stand still or run
1765          *      very slowly.
1766          */
1767         if (vcpu->tsc_catchup) {
1768                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1769                 if (tsc > tsc_timestamp) {
1770                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1771                         tsc_timestamp = tsc;
1772                 }
1773         }
1774
1775         local_irq_restore(flags);
1776
1777         if (!vcpu->pv_time_enabled)
1778                 return 0;
1779
1780         if (kvm_has_tsc_control)
1781                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1782
1783         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1784                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1785                                    &vcpu->hv_clock.tsc_shift,
1786                                    &vcpu->hv_clock.tsc_to_system_mul);
1787                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1788         }
1789
1790         /* With all the info we got, fill in the values */
1791         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1792         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1793         vcpu->last_guest_tsc = tsc_timestamp;
1794
1795         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1796                 &guest_hv_clock, sizeof(guest_hv_clock))))
1797                 return 0;
1798
1799         /* This VCPU is paused, but it's legal for a guest to read another
1800          * VCPU's kvmclock, so we really have to follow the specification where
1801          * it says that version is odd if data is being modified, and even after
1802          * it is consistent.
1803          *
1804          * Version field updates must be kept separate.  This is because
1805          * kvm_write_guest_cached might use a "rep movs" instruction, and
1806          * writes within a string instruction are weakly ordered.  So there
1807          * are three writes overall.
1808          *
1809          * As a small optimization, only write the version field in the first
1810          * and third write.  The vcpu->pv_time cache is still valid, because the
1811          * version field is the first in the struct.
1812          */
1813         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1814
1815         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1816         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1817                                 &vcpu->hv_clock,
1818                                 sizeof(vcpu->hv_clock.version));
1819
1820         smp_wmb();
1821
1822         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1823         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1824
1825         if (vcpu->pvclock_set_guest_stopped_request) {
1826                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1827                 vcpu->pvclock_set_guest_stopped_request = false;
1828         }
1829
1830         /* If the host uses TSC clocksource, then it is stable */
1831         if (use_master_clock)
1832                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1833
1834         vcpu->hv_clock.flags = pvclock_flags;
1835
1836         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1837
1838         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1839                                 &vcpu->hv_clock,
1840                                 sizeof(vcpu->hv_clock));
1841
1842         smp_wmb();
1843
1844         vcpu->hv_clock.version++;
1845         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1846                                 &vcpu->hv_clock,
1847                                 sizeof(vcpu->hv_clock.version));
1848         return 0;
1849 }
1850
1851 /*
1852  * kvmclock updates which are isolated to a given vcpu, such as
1853  * vcpu->cpu migration, should not allow system_timestamp from
1854  * the rest of the vcpus to remain static. Otherwise ntp frequency
1855  * correction applies to one vcpu's system_timestamp but not
1856  * the others.
1857  *
1858  * So in those cases, request a kvmclock update for all vcpus.
1859  * We need to rate-limit these requests though, as they can
1860  * considerably slow guests that have a large number of vcpus.
1861  * The time for a remote vcpu to update its kvmclock is bound
1862  * by the delay we use to rate-limit the updates.
1863  */
1864
1865 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1866
1867 static void kvmclock_update_fn(struct work_struct *work)
1868 {
1869         int i;
1870         struct delayed_work *dwork = to_delayed_work(work);
1871         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1872                                            kvmclock_update_work);
1873         struct kvm *kvm = container_of(ka, struct kvm, arch);
1874         struct kvm_vcpu *vcpu;
1875
1876         kvm_for_each_vcpu(i, vcpu, kvm) {
1877                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1878                 kvm_vcpu_kick(vcpu);
1879         }
1880 }
1881
1882 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1883 {
1884         struct kvm *kvm = v->kvm;
1885
1886         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1887         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1888                                         KVMCLOCK_UPDATE_DELAY);
1889 }
1890
1891 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1892
1893 static void kvmclock_sync_fn(struct work_struct *work)
1894 {
1895         struct delayed_work *dwork = to_delayed_work(work);
1896         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1897                                            kvmclock_sync_work);
1898         struct kvm *kvm = container_of(ka, struct kvm, arch);
1899
1900         if (!kvmclock_periodic_sync)
1901                 return;
1902
1903         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1904         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1905                                         KVMCLOCK_SYNC_PERIOD);
1906 }
1907
1908 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1909 {
1910         u64 mcg_cap = vcpu->arch.mcg_cap;
1911         unsigned bank_num = mcg_cap & 0xff;
1912
1913         switch (msr) {
1914         case MSR_IA32_MCG_STATUS:
1915                 vcpu->arch.mcg_status = data;
1916                 break;
1917         case MSR_IA32_MCG_CTL:
1918                 if (!(mcg_cap & MCG_CTL_P))
1919                         return 1;
1920                 if (data != 0 && data != ~(u64)0)
1921                         return -1;
1922                 vcpu->arch.mcg_ctl = data;
1923                 break;
1924         default:
1925                 if (msr >= MSR_IA32_MC0_CTL &&
1926                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1927                         u32 offset = msr - MSR_IA32_MC0_CTL;
1928                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1929                          * some Linux kernels though clear bit 10 in bank 4 to
1930                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1931                          * this to avoid an uncatched #GP in the guest
1932                          */
1933                         if ((offset & 0x3) == 0 &&
1934                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1935                                 return -1;
1936                         vcpu->arch.mce_banks[offset] = data;
1937                         break;
1938                 }
1939                 return 1;
1940         }
1941         return 0;
1942 }
1943
1944 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1945 {
1946         struct kvm *kvm = vcpu->kvm;
1947         int lm = is_long_mode(vcpu);
1948         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1949                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1950         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1951                 : kvm->arch.xen_hvm_config.blob_size_32;
1952         u32 page_num = data & ~PAGE_MASK;
1953         u64 page_addr = data & PAGE_MASK;
1954         u8 *page;
1955         int r;
1956
1957         r = -E2BIG;
1958         if (page_num >= blob_size)
1959                 goto out;
1960         r = -ENOMEM;
1961         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1962         if (IS_ERR(page)) {
1963                 r = PTR_ERR(page);
1964                 goto out;
1965         }
1966         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1967                 goto out_free;
1968         r = 0;
1969 out_free:
1970         kfree(page);
1971 out:
1972         return r;
1973 }
1974
1975 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1976 {
1977         gpa_t gpa = data & ~0x3f;
1978
1979         /* Bits 2:5 are reserved, Should be zero */
1980         if (data & 0x3c)
1981                 return 1;
1982
1983         vcpu->arch.apf.msr_val = data;
1984
1985         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1986                 kvm_clear_async_pf_completion_queue(vcpu);
1987                 kvm_async_pf_hash_reset(vcpu);
1988                 return 0;
1989         }
1990
1991         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1992                                         sizeof(u32)))
1993                 return 1;
1994
1995         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1996         kvm_async_pf_wakeup_all(vcpu);
1997         return 0;
1998 }
1999
2000 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2001 {
2002         vcpu->arch.pv_time_enabled = false;
2003 }
2004
2005 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2006 {
2007         u64 delta;
2008
2009         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2010                 return;
2011
2012         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2013         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2014         vcpu->arch.st.accum_steal = delta;
2015 }
2016
2017 static void record_steal_time(struct kvm_vcpu *vcpu)
2018 {
2019         accumulate_steal_time(vcpu);
2020
2021         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2022                 return;
2023
2024         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2025                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2026                 return;
2027
2028         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2029         vcpu->arch.st.steal.version += 2;
2030         vcpu->arch.st.accum_steal = 0;
2031
2032         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2033                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2034 }
2035
2036 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2037 {
2038         bool pr = false;
2039         u32 msr = msr_info->index;
2040         u64 data = msr_info->data;
2041
2042         switch (msr) {
2043         case MSR_AMD64_NB_CFG:
2044         case MSR_IA32_UCODE_REV:
2045         case MSR_IA32_UCODE_WRITE:
2046         case MSR_VM_HSAVE_PA:
2047         case MSR_AMD64_PATCH_LOADER:
2048         case MSR_AMD64_BU_CFG2:
2049                 break;
2050
2051         case MSR_EFER:
2052                 return set_efer(vcpu, data);
2053         case MSR_K7_HWCR:
2054                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2055                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2056                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2057                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2058                 if (data != 0) {
2059                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2060                                     data);
2061                         return 1;
2062                 }
2063                 break;
2064         case MSR_FAM10H_MMIO_CONF_BASE:
2065                 if (data != 0) {
2066                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2067                                     "0x%llx\n", data);
2068                         return 1;
2069                 }
2070                 break;
2071         case MSR_IA32_DEBUGCTLMSR:
2072                 if (!data) {
2073                         /* We support the non-activated case already */
2074                         break;
2075                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2076                         /* Values other than LBR and BTF are vendor-specific,
2077                            thus reserved and should throw a #GP */
2078                         return 1;
2079                 }
2080                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2081                             __func__, data);
2082                 break;
2083         case 0x200 ... 0x2ff:
2084                 return kvm_mtrr_set_msr(vcpu, msr, data);
2085         case MSR_IA32_APICBASE:
2086                 return kvm_set_apic_base(vcpu, msr_info);
2087         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2088                 return kvm_x2apic_msr_write(vcpu, msr, data);
2089         case MSR_IA32_TSCDEADLINE:
2090                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2091                 break;
2092         case MSR_IA32_TSC_ADJUST:
2093                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2094                         if (!msr_info->host_initiated) {
2095                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2096                                 adjust_tsc_offset_guest(vcpu, adj);
2097                         }
2098                         vcpu->arch.ia32_tsc_adjust_msr = data;
2099                 }
2100                 break;
2101         case MSR_IA32_MISC_ENABLE:
2102                 vcpu->arch.ia32_misc_enable_msr = data;
2103                 break;
2104         case MSR_IA32_SMBASE:
2105                 if (!msr_info->host_initiated)
2106                         return 1;
2107                 vcpu->arch.smbase = data;
2108                 break;
2109         case MSR_KVM_WALL_CLOCK_NEW:
2110         case MSR_KVM_WALL_CLOCK:
2111                 vcpu->kvm->arch.wall_clock = data;
2112                 kvm_write_wall_clock(vcpu->kvm, data);
2113                 break;
2114         case MSR_KVM_SYSTEM_TIME_NEW:
2115         case MSR_KVM_SYSTEM_TIME: {
2116                 u64 gpa_offset;
2117                 struct kvm_arch *ka = &vcpu->kvm->arch;
2118
2119                 kvmclock_reset(vcpu);
2120
2121                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2122                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2123
2124                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2125                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2126                                         &vcpu->requests);
2127
2128                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2129                 }
2130
2131                 vcpu->arch.time = data;
2132                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2133
2134                 /* we verify if the enable bit is set... */
2135                 if (!(data & 1))
2136                         break;
2137
2138                 gpa_offset = data & ~(PAGE_MASK | 1);
2139
2140                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2141                      &vcpu->arch.pv_time, data & ~1ULL,
2142                      sizeof(struct pvclock_vcpu_time_info)))
2143                         vcpu->arch.pv_time_enabled = false;
2144                 else
2145                         vcpu->arch.pv_time_enabled = true;
2146
2147                 break;
2148         }
2149         case MSR_KVM_ASYNC_PF_EN:
2150                 if (kvm_pv_enable_async_pf(vcpu, data))
2151                         return 1;
2152                 break;
2153         case MSR_KVM_STEAL_TIME:
2154
2155                 if (unlikely(!sched_info_on()))
2156                         return 1;
2157
2158                 if (data & KVM_STEAL_RESERVED_MASK)
2159                         return 1;
2160
2161                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2162                                                 data & KVM_STEAL_VALID_BITS,
2163                                                 sizeof(struct kvm_steal_time)))
2164                         return 1;
2165
2166                 vcpu->arch.st.msr_val = data;
2167
2168                 if (!(data & KVM_MSR_ENABLED))
2169                         break;
2170
2171                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2172
2173                 break;
2174         case MSR_KVM_PV_EOI_EN:
2175                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2176                         return 1;
2177                 break;
2178
2179         case MSR_IA32_MCG_CTL:
2180         case MSR_IA32_MCG_STATUS:
2181         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2182                 return set_msr_mce(vcpu, msr, data);
2183
2184         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2185         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2186                 pr = true; /* fall through */
2187         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2188         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2189                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2190                         return kvm_pmu_set_msr(vcpu, msr_info);
2191
2192                 if (pr || data != 0)
2193                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2194                                     "0x%x data 0x%llx\n", msr, data);
2195                 break;
2196         case MSR_K7_CLK_CTL:
2197                 /*
2198                  * Ignore all writes to this no longer documented MSR.
2199                  * Writes are only relevant for old K7 processors,
2200                  * all pre-dating SVM, but a recommended workaround from
2201                  * AMD for these chips. It is possible to specify the
2202                  * affected processor models on the command line, hence
2203                  * the need to ignore the workaround.
2204                  */
2205                 break;
2206         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2207         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2208         case HV_X64_MSR_CRASH_CTL:
2209         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2210                 return kvm_hv_set_msr_common(vcpu, msr, data,
2211                                              msr_info->host_initiated);
2212         case MSR_IA32_BBL_CR_CTL3:
2213                 /* Drop writes to this legacy MSR -- see rdmsr
2214                  * counterpart for further detail.
2215                  */
2216                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2217                 break;
2218         case MSR_AMD64_OSVW_ID_LENGTH:
2219                 if (!guest_cpuid_has_osvw(vcpu))
2220                         return 1;
2221                 vcpu->arch.osvw.length = data;
2222                 break;
2223         case MSR_AMD64_OSVW_STATUS:
2224                 if (!guest_cpuid_has_osvw(vcpu))
2225                         return 1;
2226                 vcpu->arch.osvw.status = data;
2227                 break;
2228         default:
2229                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2230                         return xen_hvm_config(vcpu, data);
2231                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2232                         return kvm_pmu_set_msr(vcpu, msr_info);
2233                 if (!ignore_msrs) {
2234                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2235                                     msr, data);
2236                         return 1;
2237                 } else {
2238                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2239                                     msr, data);
2240                         break;
2241                 }
2242         }
2243         return 0;
2244 }
2245 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2246
2247
2248 /*
2249  * Reads an msr value (of 'msr_index') into 'pdata'.
2250  * Returns 0 on success, non-0 otherwise.
2251  * Assumes vcpu_load() was already called.
2252  */
2253 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2254 {
2255         return kvm_x86_ops->get_msr(vcpu, msr);
2256 }
2257 EXPORT_SYMBOL_GPL(kvm_get_msr);
2258
2259 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2260 {
2261         u64 data;
2262         u64 mcg_cap = vcpu->arch.mcg_cap;
2263         unsigned bank_num = mcg_cap & 0xff;
2264
2265         switch (msr) {
2266         case MSR_IA32_P5_MC_ADDR:
2267         case MSR_IA32_P5_MC_TYPE:
2268                 data = 0;
2269                 break;
2270         case MSR_IA32_MCG_CAP:
2271                 data = vcpu->arch.mcg_cap;
2272                 break;
2273         case MSR_IA32_MCG_CTL:
2274                 if (!(mcg_cap & MCG_CTL_P))
2275                         return 1;
2276                 data = vcpu->arch.mcg_ctl;
2277                 break;
2278         case MSR_IA32_MCG_STATUS:
2279                 data = vcpu->arch.mcg_status;
2280                 break;
2281         default:
2282                 if (msr >= MSR_IA32_MC0_CTL &&
2283                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2284                         u32 offset = msr - MSR_IA32_MC0_CTL;
2285                         data = vcpu->arch.mce_banks[offset];
2286                         break;
2287                 }
2288                 return 1;
2289         }
2290         *pdata = data;
2291         return 0;
2292 }
2293
2294 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2295 {
2296         switch (msr_info->index) {
2297         case MSR_IA32_PLATFORM_ID:
2298         case MSR_IA32_EBL_CR_POWERON:
2299         case MSR_IA32_DEBUGCTLMSR:
2300         case MSR_IA32_LASTBRANCHFROMIP:
2301         case MSR_IA32_LASTBRANCHTOIP:
2302         case MSR_IA32_LASTINTFROMIP:
2303         case MSR_IA32_LASTINTTOIP:
2304         case MSR_K8_SYSCFG:
2305         case MSR_K8_TSEG_ADDR:
2306         case MSR_K8_TSEG_MASK:
2307         case MSR_K7_HWCR:
2308         case MSR_VM_HSAVE_PA:
2309         case MSR_K8_INT_PENDING_MSG:
2310         case MSR_AMD64_NB_CFG:
2311         case MSR_FAM10H_MMIO_CONF_BASE:
2312         case MSR_AMD64_BU_CFG2:
2313                 msr_info->data = 0;
2314                 break;
2315         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2316         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2317         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2318         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2319                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2320                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2321                 msr_info->data = 0;
2322                 break;
2323         case MSR_IA32_UCODE_REV:
2324                 msr_info->data = 0x100000000ULL;
2325                 break;
2326         case MSR_MTRRcap:
2327         case 0x200 ... 0x2ff:
2328                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2329         case 0xcd: /* fsb frequency */
2330                 msr_info->data = 3;
2331                 break;
2332                 /*
2333                  * MSR_EBC_FREQUENCY_ID
2334                  * Conservative value valid for even the basic CPU models.
2335                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2336                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2337                  * and 266MHz for model 3, or 4. Set Core Clock
2338                  * Frequency to System Bus Frequency Ratio to 1 (bits
2339                  * 31:24) even though these are only valid for CPU
2340                  * models > 2, however guests may end up dividing or
2341                  * multiplying by zero otherwise.
2342                  */
2343         case MSR_EBC_FREQUENCY_ID:
2344                 msr_info->data = 1 << 24;
2345                 break;
2346         case MSR_IA32_APICBASE:
2347                 msr_info->data = kvm_get_apic_base(vcpu);
2348                 break;
2349         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2350                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2351                 break;
2352         case MSR_IA32_TSCDEADLINE:
2353                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2354                 break;
2355         case MSR_IA32_TSC_ADJUST:
2356                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2357                 break;
2358         case MSR_IA32_MISC_ENABLE:
2359                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2360                 break;
2361         case MSR_IA32_SMBASE:
2362                 if (!msr_info->host_initiated)
2363                         return 1;
2364                 msr_info->data = vcpu->arch.smbase;
2365                 break;
2366         case MSR_IA32_PERF_STATUS:
2367                 /* TSC increment by tick */
2368                 msr_info->data = 1000ULL;
2369                 /* CPU multiplier */
2370                 msr_info->data |= (((uint64_t)4ULL) << 40);
2371                 break;
2372         case MSR_EFER:
2373                 msr_info->data = vcpu->arch.efer;
2374                 break;
2375         case MSR_KVM_WALL_CLOCK:
2376         case MSR_KVM_WALL_CLOCK_NEW:
2377                 msr_info->data = vcpu->kvm->arch.wall_clock;
2378                 break;
2379         case MSR_KVM_SYSTEM_TIME:
2380         case MSR_KVM_SYSTEM_TIME_NEW:
2381                 msr_info->data = vcpu->arch.time;
2382                 break;
2383         case MSR_KVM_ASYNC_PF_EN:
2384                 msr_info->data = vcpu->arch.apf.msr_val;
2385                 break;
2386         case MSR_KVM_STEAL_TIME:
2387                 msr_info->data = vcpu->arch.st.msr_val;
2388                 break;
2389         case MSR_KVM_PV_EOI_EN:
2390                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2391                 break;
2392         case MSR_IA32_P5_MC_ADDR:
2393         case MSR_IA32_P5_MC_TYPE:
2394         case MSR_IA32_MCG_CAP:
2395         case MSR_IA32_MCG_CTL:
2396         case MSR_IA32_MCG_STATUS:
2397         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2398                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2399         case MSR_K7_CLK_CTL:
2400                 /*
2401                  * Provide expected ramp-up count for K7. All other
2402                  * are set to zero, indicating minimum divisors for
2403                  * every field.
2404                  *
2405                  * This prevents guest kernels on AMD host with CPU
2406                  * type 6, model 8 and higher from exploding due to
2407                  * the rdmsr failing.
2408                  */
2409                 msr_info->data = 0x20000000;
2410                 break;
2411         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2412         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2413         case HV_X64_MSR_CRASH_CTL:
2414         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2415                 return kvm_hv_get_msr_common(vcpu,
2416                                              msr_info->index, &msr_info->data);
2417                 break;
2418         case MSR_IA32_BBL_CR_CTL3:
2419                 /* This legacy MSR exists but isn't fully documented in current
2420                  * silicon.  It is however accessed by winxp in very narrow
2421                  * scenarios where it sets bit #19, itself documented as
2422                  * a "reserved" bit.  Best effort attempt to source coherent
2423                  * read data here should the balance of the register be
2424                  * interpreted by the guest:
2425                  *
2426                  * L2 cache control register 3: 64GB range, 256KB size,
2427                  * enabled, latency 0x1, configured
2428                  */
2429                 msr_info->data = 0xbe702111;
2430                 break;
2431         case MSR_AMD64_OSVW_ID_LENGTH:
2432                 if (!guest_cpuid_has_osvw(vcpu))
2433                         return 1;
2434                 msr_info->data = vcpu->arch.osvw.length;
2435                 break;
2436         case MSR_AMD64_OSVW_STATUS:
2437                 if (!guest_cpuid_has_osvw(vcpu))
2438                         return 1;
2439                 msr_info->data = vcpu->arch.osvw.status;
2440                 break;
2441         default:
2442                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2443                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2444                 if (!ignore_msrs) {
2445                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2446                         return 1;
2447                 } else {
2448                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2449                         msr_info->data = 0;
2450                 }
2451                 break;
2452         }
2453         return 0;
2454 }
2455 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2456
2457 /*
2458  * Read or write a bunch of msrs. All parameters are kernel addresses.
2459  *
2460  * @return number of msrs set successfully.
2461  */
2462 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2463                     struct kvm_msr_entry *entries,
2464                     int (*do_msr)(struct kvm_vcpu *vcpu,
2465                                   unsigned index, u64 *data))
2466 {
2467         int i, idx;
2468
2469         idx = srcu_read_lock(&vcpu->kvm->srcu);
2470         for (i = 0; i < msrs->nmsrs; ++i)
2471                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2472                         break;
2473         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2474
2475         return i;
2476 }
2477
2478 /*
2479  * Read or write a bunch of msrs. Parameters are user addresses.
2480  *
2481  * @return number of msrs set successfully.
2482  */
2483 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2484                   int (*do_msr)(struct kvm_vcpu *vcpu,
2485                                 unsigned index, u64 *data),
2486                   int writeback)
2487 {
2488         struct kvm_msrs msrs;
2489         struct kvm_msr_entry *entries;
2490         int r, n;
2491         unsigned size;
2492
2493         r = -EFAULT;
2494         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2495                 goto out;
2496
2497         r = -E2BIG;
2498         if (msrs.nmsrs >= MAX_IO_MSRS)
2499                 goto out;
2500
2501         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2502         entries = memdup_user(user_msrs->entries, size);
2503         if (IS_ERR(entries)) {
2504                 r = PTR_ERR(entries);
2505                 goto out;
2506         }
2507
2508         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2509         if (r < 0)
2510                 goto out_free;
2511
2512         r = -EFAULT;
2513         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2514                 goto out_free;
2515
2516         r = n;
2517
2518 out_free:
2519         kfree(entries);
2520 out:
2521         return r;
2522 }
2523
2524 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2525 {
2526         int r;
2527
2528         switch (ext) {
2529         case KVM_CAP_IRQCHIP:
2530         case KVM_CAP_HLT:
2531         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2532         case KVM_CAP_SET_TSS_ADDR:
2533         case KVM_CAP_EXT_CPUID:
2534         case KVM_CAP_EXT_EMUL_CPUID:
2535         case KVM_CAP_CLOCKSOURCE:
2536         case KVM_CAP_PIT:
2537         case KVM_CAP_NOP_IO_DELAY:
2538         case KVM_CAP_MP_STATE:
2539         case KVM_CAP_SYNC_MMU:
2540         case KVM_CAP_USER_NMI:
2541         case KVM_CAP_REINJECT_CONTROL:
2542         case KVM_CAP_IRQ_INJECT_STATUS:
2543         case KVM_CAP_IOEVENTFD:
2544         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2545         case KVM_CAP_PIT2:
2546         case KVM_CAP_PIT_STATE2:
2547         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2548         case KVM_CAP_XEN_HVM:
2549         case KVM_CAP_ADJUST_CLOCK:
2550         case KVM_CAP_VCPU_EVENTS:
2551         case KVM_CAP_HYPERV:
2552         case KVM_CAP_HYPERV_VAPIC:
2553         case KVM_CAP_HYPERV_SPIN:
2554         case KVM_CAP_HYPERV_SYNIC:
2555         case KVM_CAP_PCI_SEGMENT:
2556         case KVM_CAP_DEBUGREGS:
2557         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2558         case KVM_CAP_XSAVE:
2559         case KVM_CAP_ASYNC_PF:
2560         case KVM_CAP_GET_TSC_KHZ:
2561         case KVM_CAP_KVMCLOCK_CTRL:
2562         case KVM_CAP_READONLY_MEM:
2563         case KVM_CAP_HYPERV_TIME:
2564         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2565         case KVM_CAP_TSC_DEADLINE_TIMER:
2566         case KVM_CAP_ENABLE_CAP_VM:
2567         case KVM_CAP_DISABLE_QUIRKS:
2568         case KVM_CAP_SET_BOOT_CPU_ID:
2569         case KVM_CAP_SPLIT_IRQCHIP:
2570 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2571         case KVM_CAP_ASSIGN_DEV_IRQ:
2572         case KVM_CAP_PCI_2_3:
2573 #endif
2574                 r = 1;
2575                 break;
2576         case KVM_CAP_X86_SMM:
2577                 /* SMBASE is usually relocated above 1M on modern chipsets,
2578                  * and SMM handlers might indeed rely on 4G segment limits,
2579                  * so do not report SMM to be available if real mode is
2580                  * emulated via vm86 mode.  Still, do not go to great lengths
2581                  * to avoid userspace's usage of the feature, because it is a
2582                  * fringe case that is not enabled except via specific settings
2583                  * of the module parameters.
2584                  */
2585                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2586                 break;
2587         case KVM_CAP_COALESCED_MMIO:
2588                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2589                 break;
2590         case KVM_CAP_VAPIC:
2591                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2592                 break;
2593         case KVM_CAP_NR_VCPUS:
2594                 r = KVM_SOFT_MAX_VCPUS;
2595                 break;
2596         case KVM_CAP_MAX_VCPUS:
2597                 r = KVM_MAX_VCPUS;
2598                 break;
2599         case KVM_CAP_NR_MEMSLOTS:
2600                 r = KVM_USER_MEM_SLOTS;
2601                 break;
2602         case KVM_CAP_PV_MMU:    /* obsolete */
2603                 r = 0;
2604                 break;
2605 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2606         case KVM_CAP_IOMMU:
2607                 r = iommu_present(&pci_bus_type);
2608                 break;
2609 #endif
2610         case KVM_CAP_MCE:
2611                 r = KVM_MAX_MCE_BANKS;
2612                 break;
2613         case KVM_CAP_XCRS:
2614                 r = cpu_has_xsave;
2615                 break;
2616         case KVM_CAP_TSC_CONTROL:
2617                 r = kvm_has_tsc_control;
2618                 break;
2619         default:
2620                 r = 0;
2621                 break;
2622         }
2623         return r;
2624
2625 }
2626
2627 long kvm_arch_dev_ioctl(struct file *filp,
2628                         unsigned int ioctl, unsigned long arg)
2629 {
2630         void __user *argp = (void __user *)arg;
2631         long r;
2632
2633         switch (ioctl) {
2634         case KVM_GET_MSR_INDEX_LIST: {
2635                 struct kvm_msr_list __user *user_msr_list = argp;
2636                 struct kvm_msr_list msr_list;
2637                 unsigned n;
2638
2639                 r = -EFAULT;
2640                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2641                         goto out;
2642                 n = msr_list.nmsrs;
2643                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2644                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2645                         goto out;
2646                 r = -E2BIG;
2647                 if (n < msr_list.nmsrs)
2648                         goto out;
2649                 r = -EFAULT;
2650                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2651                                  num_msrs_to_save * sizeof(u32)))
2652                         goto out;
2653                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2654                                  &emulated_msrs,
2655                                  num_emulated_msrs * sizeof(u32)))
2656                         goto out;
2657                 r = 0;
2658                 break;
2659         }
2660         case KVM_GET_SUPPORTED_CPUID:
2661         case KVM_GET_EMULATED_CPUID: {
2662                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2663                 struct kvm_cpuid2 cpuid;
2664
2665                 r = -EFAULT;
2666                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2667                         goto out;
2668
2669                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2670                                             ioctl);
2671                 if (r)
2672                         goto out;
2673
2674                 r = -EFAULT;
2675                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2676                         goto out;
2677                 r = 0;
2678                 break;
2679         }
2680         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2681                 u64 mce_cap;
2682
2683                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2684                 r = -EFAULT;
2685                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2686                         goto out;
2687                 r = 0;
2688                 break;
2689         }
2690         default:
2691                 r = -EINVAL;
2692         }
2693 out:
2694         return r;
2695 }
2696
2697 static void wbinvd_ipi(void *garbage)
2698 {
2699         wbinvd();
2700 }
2701
2702 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2703 {
2704         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2705 }
2706
2707 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2708 {
2709         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2710 }
2711
2712 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2713 {
2714         /* Address WBINVD may be executed by guest */
2715         if (need_emulate_wbinvd(vcpu)) {
2716                 if (kvm_x86_ops->has_wbinvd_exit())
2717                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2718                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2719                         smp_call_function_single(vcpu->cpu,
2720                                         wbinvd_ipi, NULL, 1);
2721         }
2722
2723         kvm_x86_ops->vcpu_load(vcpu, cpu);
2724
2725         /* Apply any externally detected TSC adjustments (due to suspend) */
2726         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2727                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2728                 vcpu->arch.tsc_offset_adjustment = 0;
2729                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2730         }
2731
2732         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2733                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2734                                 rdtsc() - vcpu->arch.last_host_tsc;
2735                 if (tsc_delta < 0)
2736                         mark_tsc_unstable("KVM discovered backwards TSC");
2737                 if (check_tsc_unstable()) {
2738                         u64 offset = kvm_compute_tsc_offset(vcpu,
2739                                                 vcpu->arch.last_guest_tsc);
2740                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2741                         vcpu->arch.tsc_catchup = 1;
2742                 }
2743                 /*
2744                  * On a host with synchronized TSC, there is no need to update
2745                  * kvmclock on vcpu->cpu migration
2746                  */
2747                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2748                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2749                 if (vcpu->cpu != cpu)
2750                         kvm_migrate_timers(vcpu);
2751                 vcpu->cpu = cpu;
2752         }
2753
2754         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2755 }
2756
2757 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2758 {
2759         kvm_x86_ops->vcpu_put(vcpu);
2760         kvm_put_guest_fpu(vcpu);
2761         vcpu->arch.last_host_tsc = rdtsc();
2762 }
2763
2764 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2765                                     struct kvm_lapic_state *s)
2766 {
2767         if (vcpu->arch.apicv_active)
2768                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2769
2770         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2771
2772         return 0;
2773 }
2774
2775 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2776                                     struct kvm_lapic_state *s)
2777 {
2778         kvm_apic_post_state_restore(vcpu, s);
2779         update_cr8_intercept(vcpu);
2780
2781         return 0;
2782 }
2783
2784 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2785 {
2786         return (!lapic_in_kernel(vcpu) ||
2787                 kvm_apic_accept_pic_intr(vcpu));
2788 }
2789
2790 /*
2791  * if userspace requested an interrupt window, check that the
2792  * interrupt window is open.
2793  *
2794  * No need to exit to userspace if we already have an interrupt queued.
2795  */
2796 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2797 {
2798         return kvm_arch_interrupt_allowed(vcpu) &&
2799                 !kvm_cpu_has_interrupt(vcpu) &&
2800                 !kvm_event_needs_reinjection(vcpu) &&
2801                 kvm_cpu_accept_dm_intr(vcpu);
2802 }
2803
2804 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2805                                     struct kvm_interrupt *irq)
2806 {
2807         if (irq->irq >= KVM_NR_INTERRUPTS)
2808                 return -EINVAL;
2809
2810         if (!irqchip_in_kernel(vcpu->kvm)) {
2811                 kvm_queue_interrupt(vcpu, irq->irq, false);
2812                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2813                 return 0;
2814         }
2815
2816         /*
2817          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2818          * fail for in-kernel 8259.
2819          */
2820         if (pic_in_kernel(vcpu->kvm))
2821                 return -ENXIO;
2822
2823         if (vcpu->arch.pending_external_vector != -1)
2824                 return -EEXIST;
2825
2826         vcpu->arch.pending_external_vector = irq->irq;
2827         kvm_make_request(KVM_REQ_EVENT, vcpu);
2828         return 0;
2829 }
2830
2831 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2832 {
2833         kvm_inject_nmi(vcpu);
2834
2835         return 0;
2836 }
2837
2838 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2839 {
2840         kvm_make_request(KVM_REQ_SMI, vcpu);
2841
2842         return 0;
2843 }
2844
2845 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2846                                            struct kvm_tpr_access_ctl *tac)
2847 {
2848         if (tac->flags)
2849                 return -EINVAL;
2850         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2851         return 0;
2852 }
2853
2854 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2855                                         u64 mcg_cap)
2856 {
2857         int r;
2858         unsigned bank_num = mcg_cap & 0xff, bank;
2859
2860         r = -EINVAL;
2861         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2862                 goto out;
2863         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2864                 goto out;
2865         r = 0;
2866         vcpu->arch.mcg_cap = mcg_cap;
2867         /* Init IA32_MCG_CTL to all 1s */
2868         if (mcg_cap & MCG_CTL_P)
2869                 vcpu->arch.mcg_ctl = ~(u64)0;
2870         /* Init IA32_MCi_CTL to all 1s */
2871         for (bank = 0; bank < bank_num; bank++)
2872                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2873 out:
2874         return r;
2875 }
2876
2877 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2878                                       struct kvm_x86_mce *mce)
2879 {
2880         u64 mcg_cap = vcpu->arch.mcg_cap;
2881         unsigned bank_num = mcg_cap & 0xff;
2882         u64 *banks = vcpu->arch.mce_banks;
2883
2884         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2885                 return -EINVAL;
2886         /*
2887          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2888          * reporting is disabled
2889          */
2890         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2891             vcpu->arch.mcg_ctl != ~(u64)0)
2892                 return 0;
2893         banks += 4 * mce->bank;
2894         /*
2895          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2896          * reporting is disabled for the bank
2897          */
2898         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2899                 return 0;
2900         if (mce->status & MCI_STATUS_UC) {
2901                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2902                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2903                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2904                         return 0;
2905                 }
2906                 if (banks[1] & MCI_STATUS_VAL)
2907                         mce->status |= MCI_STATUS_OVER;
2908                 banks[2] = mce->addr;
2909                 banks[3] = mce->misc;
2910                 vcpu->arch.mcg_status = mce->mcg_status;
2911                 banks[1] = mce->status;
2912                 kvm_queue_exception(vcpu, MC_VECTOR);
2913         } else if (!(banks[1] & MCI_STATUS_VAL)
2914                    || !(banks[1] & MCI_STATUS_UC)) {
2915                 if (banks[1] & MCI_STATUS_VAL)
2916                         mce->status |= MCI_STATUS_OVER;
2917                 banks[2] = mce->addr;
2918                 banks[3] = mce->misc;
2919                 banks[1] = mce->status;
2920         } else
2921                 banks[1] |= MCI_STATUS_OVER;
2922         return 0;
2923 }
2924
2925 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2926                                                struct kvm_vcpu_events *events)
2927 {
2928         process_nmi(vcpu);
2929         events->exception.injected =
2930                 vcpu->arch.exception.pending &&
2931                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2932         events->exception.nr = vcpu->arch.exception.nr;
2933         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2934         events->exception.pad = 0;
2935         events->exception.error_code = vcpu->arch.exception.error_code;
2936
2937         events->interrupt.injected =
2938                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2939         events->interrupt.nr = vcpu->arch.interrupt.nr;
2940         events->interrupt.soft = 0;
2941         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2942
2943         events->nmi.injected = vcpu->arch.nmi_injected;
2944         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2945         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2946         events->nmi.pad = 0;
2947
2948         events->sipi_vector = 0; /* never valid when reporting to user space */
2949
2950         events->smi.smm = is_smm(vcpu);
2951         events->smi.pending = vcpu->arch.smi_pending;
2952         events->smi.smm_inside_nmi =
2953                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2954         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2955
2956         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2957                          | KVM_VCPUEVENT_VALID_SHADOW
2958                          | KVM_VCPUEVENT_VALID_SMM);
2959         memset(&events->reserved, 0, sizeof(events->reserved));
2960 }
2961
2962 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2963                                               struct kvm_vcpu_events *events)
2964 {
2965         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2966                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2967                               | KVM_VCPUEVENT_VALID_SHADOW
2968                               | KVM_VCPUEVENT_VALID_SMM))
2969                 return -EINVAL;
2970
2971         process_nmi(vcpu);
2972         vcpu->arch.exception.pending = events->exception.injected;
2973         vcpu->arch.exception.nr = events->exception.nr;
2974         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2975         vcpu->arch.exception.error_code = events->exception.error_code;
2976
2977         vcpu->arch.interrupt.pending = events->interrupt.injected;
2978         vcpu->arch.interrupt.nr = events->interrupt.nr;
2979         vcpu->arch.interrupt.soft = events->interrupt.soft;
2980         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2981                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2982                                                   events->interrupt.shadow);
2983
2984         vcpu->arch.nmi_injected = events->nmi.injected;
2985         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2986                 vcpu->arch.nmi_pending = events->nmi.pending;
2987         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2988
2989         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2990             lapic_in_kernel(vcpu))
2991                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2992
2993         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2994                 if (events->smi.smm)
2995                         vcpu->arch.hflags |= HF_SMM_MASK;
2996                 else
2997                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2998                 vcpu->arch.smi_pending = events->smi.pending;
2999                 if (events->smi.smm_inside_nmi)
3000                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3001                 else
3002                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3003                 if (lapic_in_kernel(vcpu)) {
3004                         if (events->smi.latched_init)
3005                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3006                         else
3007                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3008                 }
3009         }
3010
3011         kvm_make_request(KVM_REQ_EVENT, vcpu);
3012
3013         return 0;
3014 }
3015
3016 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3017                                              struct kvm_debugregs *dbgregs)
3018 {
3019         unsigned long val;
3020
3021         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3022         kvm_get_dr(vcpu, 6, &val);
3023         dbgregs->dr6 = val;
3024         dbgregs->dr7 = vcpu->arch.dr7;
3025         dbgregs->flags = 0;
3026         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3027 }
3028
3029 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3030                                             struct kvm_debugregs *dbgregs)
3031 {
3032         if (dbgregs->flags)
3033                 return -EINVAL;
3034
3035         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3036         kvm_update_dr0123(vcpu);
3037         vcpu->arch.dr6 = dbgregs->dr6;
3038         kvm_update_dr6(vcpu);
3039         vcpu->arch.dr7 = dbgregs->dr7;
3040         kvm_update_dr7(vcpu);
3041
3042         return 0;
3043 }
3044
3045 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3046
3047 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3048 {
3049         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3050         u64 xstate_bv = xsave->header.xfeatures;
3051         u64 valid;
3052
3053         /*
3054          * Copy legacy XSAVE area, to avoid complications with CPUID
3055          * leaves 0 and 1 in the loop below.
3056          */
3057         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3058
3059         /* Set XSTATE_BV */
3060         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3061
3062         /*
3063          * Copy each region from the possibly compacted offset to the
3064          * non-compacted offset.
3065          */
3066         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3067         while (valid) {
3068                 u64 feature = valid & -valid;
3069                 int index = fls64(feature) - 1;
3070                 void *src = get_xsave_addr(xsave, feature);
3071
3072                 if (src) {
3073                         u32 size, offset, ecx, edx;
3074                         cpuid_count(XSTATE_CPUID, index,
3075                                     &size, &offset, &ecx, &edx);
3076                         memcpy(dest + offset, src, size);
3077                 }
3078
3079                 valid -= feature;
3080         }
3081 }
3082
3083 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3084 {
3085         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3086         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3087         u64 valid;
3088
3089         /*
3090          * Copy legacy XSAVE area, to avoid complications with CPUID
3091          * leaves 0 and 1 in the loop below.
3092          */
3093         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3094
3095         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3096         xsave->header.xfeatures = xstate_bv;
3097         if (cpu_has_xsaves)
3098                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3099
3100         /*
3101          * Copy each region from the non-compacted offset to the
3102          * possibly compacted offset.
3103          */
3104         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3105         while (valid) {
3106                 u64 feature = valid & -valid;
3107                 int index = fls64(feature) - 1;
3108                 void *dest = get_xsave_addr(xsave, feature);
3109
3110                 if (dest) {
3111                         u32 size, offset, ecx, edx;
3112                         cpuid_count(XSTATE_CPUID, index,
3113                                     &size, &offset, &ecx, &edx);
3114                         memcpy(dest, src + offset, size);
3115                 }
3116
3117                 valid -= feature;
3118         }
3119 }
3120
3121 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3122                                          struct kvm_xsave *guest_xsave)
3123 {
3124         if (cpu_has_xsave) {
3125                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3126                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3127         } else {
3128                 memcpy(guest_xsave->region,
3129                         &vcpu->arch.guest_fpu.state.fxsave,
3130                         sizeof(struct fxregs_state));
3131                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3132                         XFEATURE_MASK_FPSSE;
3133         }
3134 }
3135
3136 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3137                                         struct kvm_xsave *guest_xsave)
3138 {
3139         u64 xstate_bv =
3140                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3141
3142         if (cpu_has_xsave) {
3143                 /*
3144                  * Here we allow setting states that are not present in
3145                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3146                  * with old userspace.
3147                  */
3148                 if (xstate_bv & ~kvm_supported_xcr0())
3149                         return -EINVAL;
3150                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3151         } else {
3152                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3153                         return -EINVAL;
3154                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3155                         guest_xsave->region, sizeof(struct fxregs_state));
3156         }
3157         return 0;
3158 }
3159
3160 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3161                                         struct kvm_xcrs *guest_xcrs)
3162 {
3163         if (!cpu_has_xsave) {
3164                 guest_xcrs->nr_xcrs = 0;
3165                 return;
3166         }
3167
3168         guest_xcrs->nr_xcrs = 1;
3169         guest_xcrs->flags = 0;
3170         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3171         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3172 }
3173
3174 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3175                                        struct kvm_xcrs *guest_xcrs)
3176 {
3177         int i, r = 0;
3178
3179         if (!cpu_has_xsave)
3180                 return -EINVAL;
3181
3182         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3183                 return -EINVAL;
3184
3185         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3186                 /* Only support XCR0 currently */
3187                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3188                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3189                                 guest_xcrs->xcrs[i].value);
3190                         break;
3191                 }
3192         if (r)
3193                 r = -EINVAL;
3194         return r;
3195 }
3196
3197 /*
3198  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3199  * stopped by the hypervisor.  This function will be called from the host only.
3200  * EINVAL is returned when the host attempts to set the flag for a guest that
3201  * does not support pv clocks.
3202  */
3203 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3204 {
3205         if (!vcpu->arch.pv_time_enabled)
3206                 return -EINVAL;
3207         vcpu->arch.pvclock_set_guest_stopped_request = true;
3208         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3209         return 0;
3210 }
3211
3212 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3213                                      struct kvm_enable_cap *cap)
3214 {
3215         if (cap->flags)
3216                 return -EINVAL;
3217
3218         switch (cap->cap) {
3219         case KVM_CAP_HYPERV_SYNIC:
3220                 return kvm_hv_activate_synic(vcpu);
3221         default:
3222                 return -EINVAL;
3223         }
3224 }
3225
3226 long kvm_arch_vcpu_ioctl(struct file *filp,
3227                          unsigned int ioctl, unsigned long arg)
3228 {
3229         struct kvm_vcpu *vcpu = filp->private_data;
3230         void __user *argp = (void __user *)arg;
3231         int r;
3232         union {
3233                 struct kvm_lapic_state *lapic;
3234                 struct kvm_xsave *xsave;
3235                 struct kvm_xcrs *xcrs;
3236                 void *buffer;
3237         } u;
3238
3239         u.buffer = NULL;
3240         switch (ioctl) {
3241         case KVM_GET_LAPIC: {
3242                 r = -EINVAL;
3243                 if (!lapic_in_kernel(vcpu))
3244                         goto out;
3245                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3246
3247                 r = -ENOMEM;
3248                 if (!u.lapic)
3249                         goto out;
3250                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3251                 if (r)
3252                         goto out;
3253                 r = -EFAULT;
3254                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3255                         goto out;
3256                 r = 0;
3257                 break;
3258         }
3259         case KVM_SET_LAPIC: {
3260                 r = -EINVAL;
3261                 if (!lapic_in_kernel(vcpu))
3262                         goto out;
3263                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3264                 if (IS_ERR(u.lapic))
3265                         return PTR_ERR(u.lapic);
3266
3267                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3268                 break;
3269         }
3270         case KVM_INTERRUPT: {
3271                 struct kvm_interrupt irq;
3272
3273                 r = -EFAULT;
3274                 if (copy_from_user(&irq, argp, sizeof irq))
3275                         goto out;
3276                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3277                 break;
3278         }
3279         case KVM_NMI: {
3280                 r = kvm_vcpu_ioctl_nmi(vcpu);
3281                 break;
3282         }
3283         case KVM_SMI: {
3284                 r = kvm_vcpu_ioctl_smi(vcpu);
3285                 break;
3286         }
3287         case KVM_SET_CPUID: {
3288                 struct kvm_cpuid __user *cpuid_arg = argp;
3289                 struct kvm_cpuid cpuid;
3290
3291                 r = -EFAULT;
3292                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3293                         goto out;
3294                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3295                 break;
3296         }
3297         case KVM_SET_CPUID2: {
3298                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3299                 struct kvm_cpuid2 cpuid;
3300
3301                 r = -EFAULT;
3302                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3303                         goto out;
3304                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3305                                               cpuid_arg->entries);
3306                 break;
3307         }
3308         case KVM_GET_CPUID2: {
3309                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3310                 struct kvm_cpuid2 cpuid;
3311
3312                 r = -EFAULT;
3313                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3314                         goto out;
3315                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3316                                               cpuid_arg->entries);
3317                 if (r)
3318                         goto out;
3319                 r = -EFAULT;
3320                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3321                         goto out;
3322                 r = 0;
3323                 break;
3324         }
3325         case KVM_GET_MSRS:
3326                 r = msr_io(vcpu, argp, do_get_msr, 1);
3327                 break;
3328         case KVM_SET_MSRS:
3329                 r = msr_io(vcpu, argp, do_set_msr, 0);
3330                 break;
3331         case KVM_TPR_ACCESS_REPORTING: {
3332                 struct kvm_tpr_access_ctl tac;
3333
3334                 r = -EFAULT;
3335                 if (copy_from_user(&tac, argp, sizeof tac))
3336                         goto out;
3337                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3338                 if (r)
3339                         goto out;
3340                 r = -EFAULT;
3341                 if (copy_to_user(argp, &tac, sizeof tac))
3342                         goto out;
3343                 r = 0;
3344                 break;
3345         };
3346         case KVM_SET_VAPIC_ADDR: {
3347                 struct kvm_vapic_addr va;
3348
3349                 r = -EINVAL;
3350                 if (!lapic_in_kernel(vcpu))
3351                         goto out;
3352                 r = -EFAULT;
3353                 if (copy_from_user(&va, argp, sizeof va))
3354                         goto out;
3355                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3356                 break;
3357         }
3358         case KVM_X86_SETUP_MCE: {
3359                 u64 mcg_cap;
3360
3361                 r = -EFAULT;
3362                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3363                         goto out;
3364                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3365                 break;
3366         }
3367         case KVM_X86_SET_MCE: {
3368                 struct kvm_x86_mce mce;
3369
3370                 r = -EFAULT;
3371                 if (copy_from_user(&mce, argp, sizeof mce))
3372                         goto out;
3373                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3374                 break;
3375         }
3376         case KVM_GET_VCPU_EVENTS: {
3377                 struct kvm_vcpu_events events;
3378
3379                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3380
3381                 r = -EFAULT;
3382                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3383                         break;
3384                 r = 0;
3385                 break;
3386         }
3387         case KVM_SET_VCPU_EVENTS: {
3388                 struct kvm_vcpu_events events;
3389
3390                 r = -EFAULT;
3391                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3392                         break;
3393
3394                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3395                 break;
3396         }
3397         case KVM_GET_DEBUGREGS: {
3398                 struct kvm_debugregs dbgregs;
3399
3400                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3401
3402                 r = -EFAULT;
3403                 if (copy_to_user(argp, &dbgregs,
3404                                  sizeof(struct kvm_debugregs)))
3405                         break;
3406                 r = 0;
3407                 break;
3408         }
3409         case KVM_SET_DEBUGREGS: {
3410                 struct kvm_debugregs dbgregs;
3411
3412                 r = -EFAULT;
3413                 if (copy_from_user(&dbgregs, argp,
3414                                    sizeof(struct kvm_debugregs)))
3415                         break;
3416
3417                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3418                 break;
3419         }
3420         case KVM_GET_XSAVE: {
3421                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3422                 r = -ENOMEM;
3423                 if (!u.xsave)
3424                         break;
3425
3426                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3427
3428                 r = -EFAULT;
3429                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3430                         break;
3431                 r = 0;
3432                 break;
3433         }
3434         case KVM_SET_XSAVE: {
3435                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3436                 if (IS_ERR(u.xsave))
3437                         return PTR_ERR(u.xsave);
3438
3439                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3440                 break;
3441         }
3442         case KVM_GET_XCRS: {
3443                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3444                 r = -ENOMEM;
3445                 if (!u.xcrs)
3446                         break;
3447
3448                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3449
3450                 r = -EFAULT;
3451                 if (copy_to_user(argp, u.xcrs,
3452                                  sizeof(struct kvm_xcrs)))
3453                         break;
3454                 r = 0;
3455                 break;
3456         }
3457         case KVM_SET_XCRS: {
3458                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3459                 if (IS_ERR(u.xcrs))
3460                         return PTR_ERR(u.xcrs);
3461
3462                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3463                 break;
3464         }
3465         case KVM_SET_TSC_KHZ: {
3466                 u32 user_tsc_khz;
3467
3468                 r = -EINVAL;
3469                 user_tsc_khz = (u32)arg;
3470
3471                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3472                         goto out;
3473
3474                 if (user_tsc_khz == 0)
3475                         user_tsc_khz = tsc_khz;
3476
3477                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3478                         r = 0;
3479
3480                 goto out;
3481         }
3482         case KVM_GET_TSC_KHZ: {
3483                 r = vcpu->arch.virtual_tsc_khz;
3484                 goto out;
3485         }
3486         case KVM_KVMCLOCK_CTRL: {
3487                 r = kvm_set_guest_paused(vcpu);
3488                 goto out;
3489         }
3490         case KVM_ENABLE_CAP: {
3491                 struct kvm_enable_cap cap;
3492
3493                 r = -EFAULT;
3494                 if (copy_from_user(&cap, argp, sizeof(cap)))
3495                         goto out;
3496                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3497                 break;
3498         }
3499         default:
3500                 r = -EINVAL;
3501         }
3502 out:
3503         kfree(u.buffer);
3504         return r;
3505 }
3506
3507 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3508 {
3509         return VM_FAULT_SIGBUS;
3510 }
3511
3512 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3513 {
3514         int ret;
3515
3516         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3517                 return -EINVAL;
3518         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3519         return ret;
3520 }
3521
3522 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3523                                               u64 ident_addr)
3524 {
3525         kvm->arch.ept_identity_map_addr = ident_addr;
3526         return 0;
3527 }
3528
3529 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3530                                           u32 kvm_nr_mmu_pages)
3531 {
3532         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3533                 return -EINVAL;
3534
3535         mutex_lock(&kvm->slots_lock);
3536
3537         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3538         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3539
3540         mutex_unlock(&kvm->slots_lock);
3541         return 0;
3542 }
3543
3544 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3545 {
3546         return kvm->arch.n_max_mmu_pages;
3547 }
3548
3549 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3550 {
3551         int r;
3552
3553         r = 0;
3554         switch (chip->chip_id) {
3555         case KVM_IRQCHIP_PIC_MASTER:
3556                 memcpy(&chip->chip.pic,
3557                         &pic_irqchip(kvm)->pics[0],
3558                         sizeof(struct kvm_pic_state));
3559                 break;
3560         case KVM_IRQCHIP_PIC_SLAVE:
3561                 memcpy(&chip->chip.pic,
3562                         &pic_irqchip(kvm)->pics[1],
3563                         sizeof(struct kvm_pic_state));
3564                 break;
3565         case KVM_IRQCHIP_IOAPIC:
3566                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3567                 break;
3568         default:
3569                 r = -EINVAL;
3570                 break;
3571         }
3572         return r;
3573 }
3574
3575 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3576 {
3577         int r;
3578
3579         r = 0;
3580         switch (chip->chip_id) {
3581         case KVM_IRQCHIP_PIC_MASTER:
3582                 spin_lock(&pic_irqchip(kvm)->lock);
3583                 memcpy(&pic_irqchip(kvm)->pics[0],
3584                         &chip->chip.pic,
3585                         sizeof(struct kvm_pic_state));
3586                 spin_unlock(&pic_irqchip(kvm)->lock);
3587                 break;
3588         case KVM_IRQCHIP_PIC_SLAVE:
3589                 spin_lock(&pic_irqchip(kvm)->lock);
3590                 memcpy(&pic_irqchip(kvm)->pics[1],
3591                         &chip->chip.pic,
3592                         sizeof(struct kvm_pic_state));
3593                 spin_unlock(&pic_irqchip(kvm)->lock);
3594                 break;
3595         case KVM_IRQCHIP_IOAPIC:
3596                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3597                 break;
3598         default:
3599                 r = -EINVAL;
3600                 break;
3601         }
3602         kvm_pic_update_irq(pic_irqchip(kvm));
3603         return r;
3604 }
3605
3606 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3607 {
3608         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3609
3610         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3611
3612         mutex_lock(&kps->lock);
3613         memcpy(ps, &kps->channels, sizeof(*ps));
3614         mutex_unlock(&kps->lock);
3615         return 0;
3616 }
3617
3618 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3619 {
3620         int i;
3621         struct kvm_pit *pit = kvm->arch.vpit;
3622
3623         mutex_lock(&pit->pit_state.lock);
3624         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3625         for (i = 0; i < 3; i++)
3626                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3627         mutex_unlock(&pit->pit_state.lock);
3628         return 0;
3629 }
3630
3631 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3632 {
3633         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3634         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3635                 sizeof(ps->channels));
3636         ps->flags = kvm->arch.vpit->pit_state.flags;
3637         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3638         memset(&ps->reserved, 0, sizeof(ps->reserved));
3639         return 0;
3640 }
3641
3642 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3643 {
3644         int start = 0;
3645         int i;
3646         u32 prev_legacy, cur_legacy;
3647         struct kvm_pit *pit = kvm->arch.vpit;
3648
3649         mutex_lock(&pit->pit_state.lock);
3650         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3651         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3652         if (!prev_legacy && cur_legacy)
3653                 start = 1;
3654         memcpy(&pit->pit_state.channels, &ps->channels,
3655                sizeof(pit->pit_state.channels));
3656         pit->pit_state.flags = ps->flags;
3657         for (i = 0; i < 3; i++)
3658                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3659                                    start && i == 0);
3660         mutex_unlock(&pit->pit_state.lock);
3661         return 0;
3662 }
3663
3664 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3665                                  struct kvm_reinject_control *control)
3666 {
3667         struct kvm_pit *pit = kvm->arch.vpit;
3668
3669         if (!pit)
3670                 return -ENXIO;
3671
3672         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3673          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3674          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3675          */
3676         mutex_lock(&pit->pit_state.lock);
3677         kvm_pit_set_reinject(pit, control->pit_reinject);
3678         mutex_unlock(&pit->pit_state.lock);
3679
3680         return 0;
3681 }
3682
3683 /**
3684  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3685  * @kvm: kvm instance
3686  * @log: slot id and address to which we copy the log
3687  *
3688  * Steps 1-4 below provide general overview of dirty page logging. See
3689  * kvm_get_dirty_log_protect() function description for additional details.
3690  *
3691  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3692  * always flush the TLB (step 4) even if previous step failed  and the dirty
3693  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3694  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3695  * writes will be marked dirty for next log read.
3696  *
3697  *   1. Take a snapshot of the bit and clear it if needed.
3698  *   2. Write protect the corresponding page.
3699  *   3. Copy the snapshot to the userspace.
3700  *   4. Flush TLB's if needed.
3701  */
3702 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3703 {
3704         bool is_dirty = false;
3705         int r;
3706
3707         mutex_lock(&kvm->slots_lock);
3708
3709         /*
3710          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3711          */
3712         if (kvm_x86_ops->flush_log_dirty)
3713                 kvm_x86_ops->flush_log_dirty(kvm);
3714
3715         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3716
3717         /*
3718          * All the TLBs can be flushed out of mmu lock, see the comments in
3719          * kvm_mmu_slot_remove_write_access().
3720          */
3721         lockdep_assert_held(&kvm->slots_lock);
3722         if (is_dirty)
3723                 kvm_flush_remote_tlbs(kvm);
3724
3725         mutex_unlock(&kvm->slots_lock);
3726         return r;
3727 }
3728
3729 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3730                         bool line_status)
3731 {
3732         if (!irqchip_in_kernel(kvm))
3733                 return -ENXIO;
3734
3735         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3736                                         irq_event->irq, irq_event->level,
3737                                         line_status);
3738         return 0;
3739 }
3740
3741 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3742                                    struct kvm_enable_cap *cap)
3743 {
3744         int r;
3745
3746         if (cap->flags)
3747                 return -EINVAL;
3748
3749         switch (cap->cap) {
3750         case KVM_CAP_DISABLE_QUIRKS:
3751                 kvm->arch.disabled_quirks = cap->args[0];
3752                 r = 0;
3753                 break;
3754         case KVM_CAP_SPLIT_IRQCHIP: {
3755                 mutex_lock(&kvm->lock);
3756                 r = -EINVAL;
3757                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3758                         goto split_irqchip_unlock;
3759                 r = -EEXIST;
3760                 if (irqchip_in_kernel(kvm))
3761                         goto split_irqchip_unlock;
3762                 if (atomic_read(&kvm->online_vcpus))
3763                         goto split_irqchip_unlock;
3764                 r = kvm_setup_empty_irq_routing(kvm);
3765                 if (r)
3766                         goto split_irqchip_unlock;
3767                 /* Pairs with irqchip_in_kernel. */
3768                 smp_wmb();
3769                 kvm->arch.irqchip_split = true;
3770                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3771                 r = 0;
3772 split_irqchip_unlock:
3773                 mutex_unlock(&kvm->lock);
3774                 break;
3775         }
3776         default:
3777                 r = -EINVAL;
3778                 break;
3779         }
3780         return r;
3781 }
3782
3783 long kvm_arch_vm_ioctl(struct file *filp,
3784                        unsigned int ioctl, unsigned long arg)
3785 {
3786         struct kvm *kvm = filp->private_data;
3787         void __user *argp = (void __user *)arg;
3788         int r = -ENOTTY;
3789         /*
3790          * This union makes it completely explicit to gcc-3.x
3791          * that these two variables' stack usage should be
3792          * combined, not added together.
3793          */
3794         union {
3795                 struct kvm_pit_state ps;
3796                 struct kvm_pit_state2 ps2;
3797                 struct kvm_pit_config pit_config;
3798         } u;
3799
3800         switch (ioctl) {
3801         case KVM_SET_TSS_ADDR:
3802                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3803                 break;
3804         case KVM_SET_IDENTITY_MAP_ADDR: {
3805                 u64 ident_addr;
3806
3807                 r = -EFAULT;
3808                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3809                         goto out;
3810                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3811                 break;
3812         }
3813         case KVM_SET_NR_MMU_PAGES:
3814                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3815                 break;
3816         case KVM_GET_NR_MMU_PAGES:
3817                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3818                 break;
3819         case KVM_CREATE_IRQCHIP: {
3820                 struct kvm_pic *vpic;
3821
3822                 mutex_lock(&kvm->lock);
3823                 r = -EEXIST;
3824                 if (kvm->arch.vpic)
3825                         goto create_irqchip_unlock;
3826                 r = -EINVAL;
3827                 if (atomic_read(&kvm->online_vcpus))
3828                         goto create_irqchip_unlock;
3829                 r = -ENOMEM;
3830                 vpic = kvm_create_pic(kvm);
3831                 if (vpic) {
3832                         r = kvm_ioapic_init(kvm);
3833                         if (r) {
3834                                 mutex_lock(&kvm->slots_lock);
3835                                 kvm_destroy_pic(vpic);
3836                                 mutex_unlock(&kvm->slots_lock);
3837                                 goto create_irqchip_unlock;
3838                         }
3839                 } else
3840                         goto create_irqchip_unlock;
3841                 r = kvm_setup_default_irq_routing(kvm);
3842                 if (r) {
3843                         mutex_lock(&kvm->slots_lock);
3844                         mutex_lock(&kvm->irq_lock);
3845                         kvm_ioapic_destroy(kvm);
3846                         kvm_destroy_pic(vpic);
3847                         mutex_unlock(&kvm->irq_lock);
3848                         mutex_unlock(&kvm->slots_lock);
3849                         goto create_irqchip_unlock;
3850                 }
3851                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3852                 smp_wmb();
3853                 kvm->arch.vpic = vpic;
3854         create_irqchip_unlock:
3855                 mutex_unlock(&kvm->lock);
3856                 break;
3857         }
3858         case KVM_CREATE_PIT:
3859                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3860                 goto create_pit;
3861         case KVM_CREATE_PIT2:
3862                 r = -EFAULT;
3863                 if (copy_from_user(&u.pit_config, argp,
3864                                    sizeof(struct kvm_pit_config)))
3865                         goto out;
3866         create_pit:
3867                 mutex_lock(&kvm->slots_lock);
3868                 r = -EEXIST;
3869                 if (kvm->arch.vpit)
3870                         goto create_pit_unlock;
3871                 r = -ENOMEM;
3872                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3873                 if (kvm->arch.vpit)
3874                         r = 0;
3875         create_pit_unlock:
3876                 mutex_unlock(&kvm->slots_lock);
3877                 break;
3878         case KVM_GET_IRQCHIP: {
3879                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3880                 struct kvm_irqchip *chip;
3881
3882                 chip = memdup_user(argp, sizeof(*chip));
3883                 if (IS_ERR(chip)) {
3884                         r = PTR_ERR(chip);
3885                         goto out;
3886                 }
3887
3888                 r = -ENXIO;
3889                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3890                         goto get_irqchip_out;
3891                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3892                 if (r)
3893                         goto get_irqchip_out;
3894                 r = -EFAULT;
3895                 if (copy_to_user(argp, chip, sizeof *chip))
3896                         goto get_irqchip_out;
3897                 r = 0;
3898         get_irqchip_out:
3899                 kfree(chip);
3900                 break;
3901         }
3902         case KVM_SET_IRQCHIP: {
3903                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3904                 struct kvm_irqchip *chip;
3905
3906                 chip = memdup_user(argp, sizeof(*chip));
3907                 if (IS_ERR(chip)) {
3908                         r = PTR_ERR(chip);
3909                         goto out;
3910                 }
3911
3912                 r = -ENXIO;
3913                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3914                         goto set_irqchip_out;
3915                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3916                 if (r)
3917                         goto set_irqchip_out;
3918                 r = 0;
3919         set_irqchip_out:
3920                 kfree(chip);
3921                 break;
3922         }
3923         case KVM_GET_PIT: {
3924                 r = -EFAULT;
3925                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3926                         goto out;
3927                 r = -ENXIO;
3928                 if (!kvm->arch.vpit)
3929                         goto out;
3930                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3931                 if (r)
3932                         goto out;
3933                 r = -EFAULT;
3934                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3935                         goto out;
3936                 r = 0;
3937                 break;
3938         }
3939         case KVM_SET_PIT: {
3940                 r = -EFAULT;
3941                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3942                         goto out;
3943                 r = -ENXIO;
3944                 if (!kvm->arch.vpit)
3945                         goto out;
3946                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3947                 break;
3948         }
3949         case KVM_GET_PIT2: {
3950                 r = -ENXIO;
3951                 if (!kvm->arch.vpit)
3952                         goto out;
3953                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3954                 if (r)
3955                         goto out;
3956                 r = -EFAULT;
3957                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3958                         goto out;
3959                 r = 0;
3960                 break;
3961         }
3962         case KVM_SET_PIT2: {
3963                 r = -EFAULT;
3964                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3965                         goto out;
3966                 r = -ENXIO;
3967                 if (!kvm->arch.vpit)
3968                         goto out;
3969                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3970                 break;
3971         }
3972         case KVM_REINJECT_CONTROL: {
3973                 struct kvm_reinject_control control;
3974                 r =  -EFAULT;
3975                 if (copy_from_user(&control, argp, sizeof(control)))
3976                         goto out;
3977                 r = kvm_vm_ioctl_reinject(kvm, &control);
3978                 break;
3979         }
3980         case KVM_SET_BOOT_CPU_ID:
3981                 r = 0;
3982                 mutex_lock(&kvm->lock);
3983                 if (atomic_read(&kvm->online_vcpus) != 0)
3984                         r = -EBUSY;
3985                 else
3986                         kvm->arch.bsp_vcpu_id = arg;
3987                 mutex_unlock(&kvm->lock);
3988                 break;
3989         case KVM_XEN_HVM_CONFIG: {
3990                 r = -EFAULT;
3991                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3992                                    sizeof(struct kvm_xen_hvm_config)))
3993                         goto out;
3994                 r = -EINVAL;
3995                 if (kvm->arch.xen_hvm_config.flags)
3996                         goto out;
3997                 r = 0;
3998                 break;
3999         }
4000         case KVM_SET_CLOCK: {
4001                 struct kvm_clock_data user_ns;
4002                 u64 now_ns;
4003                 s64 delta;
4004
4005                 r = -EFAULT;
4006                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4007                         goto out;
4008
4009                 r = -EINVAL;
4010                 if (user_ns.flags)
4011                         goto out;
4012
4013                 r = 0;
4014                 local_irq_disable();
4015                 now_ns = get_kernel_ns();
4016                 delta = user_ns.clock - now_ns;
4017                 local_irq_enable();
4018                 kvm->arch.kvmclock_offset = delta;
4019                 kvm_gen_update_masterclock(kvm);
4020                 break;
4021         }
4022         case KVM_GET_CLOCK: {
4023                 struct kvm_clock_data user_ns;
4024                 u64 now_ns;
4025
4026                 local_irq_disable();
4027                 now_ns = get_kernel_ns();
4028                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4029                 local_irq_enable();
4030                 user_ns.flags = 0;
4031                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4032
4033                 r = -EFAULT;
4034                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4035                         goto out;
4036                 r = 0;
4037                 break;
4038         }
4039         case KVM_ENABLE_CAP: {
4040                 struct kvm_enable_cap cap;
4041
4042                 r = -EFAULT;
4043                 if (copy_from_user(&cap, argp, sizeof(cap)))
4044                         goto out;
4045                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4046                 break;
4047         }
4048         default:
4049                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4050         }
4051 out:
4052         return r;
4053 }
4054
4055 static void kvm_init_msr_list(void)
4056 {
4057         u32 dummy[2];
4058         unsigned i, j;
4059
4060         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4061                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4062                         continue;
4063
4064                 /*
4065                  * Even MSRs that are valid in the host may not be exposed
4066                  * to the guests in some cases.
4067                  */
4068                 switch (msrs_to_save[i]) {
4069                 case MSR_IA32_BNDCFGS:
4070                         if (!kvm_x86_ops->mpx_supported())
4071                                 continue;
4072                         break;
4073                 case MSR_TSC_AUX:
4074                         if (!kvm_x86_ops->rdtscp_supported())
4075                                 continue;
4076                         break;
4077                 default:
4078                         break;
4079                 }
4080
4081                 if (j < i)
4082                         msrs_to_save[j] = msrs_to_save[i];
4083                 j++;
4084         }
4085         num_msrs_to_save = j;
4086
4087         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4088                 switch (emulated_msrs[i]) {
4089                 case MSR_IA32_SMBASE:
4090                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4091                                 continue;
4092                         break;
4093                 default:
4094                         break;
4095                 }
4096
4097                 if (j < i)
4098                         emulated_msrs[j] = emulated_msrs[i];
4099                 j++;
4100         }
4101         num_emulated_msrs = j;
4102 }
4103
4104 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4105                            const void *v)
4106 {
4107         int handled = 0;
4108         int n;
4109
4110         do {
4111                 n = min(len, 8);
4112                 if (!(lapic_in_kernel(vcpu) &&
4113                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4114                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4115                         break;
4116                 handled += n;
4117                 addr += n;
4118                 len -= n;
4119                 v += n;
4120         } while (len);
4121
4122         return handled;
4123 }
4124
4125 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4126 {
4127         int handled = 0;
4128         int n;
4129
4130         do {
4131                 n = min(len, 8);
4132                 if (!(lapic_in_kernel(vcpu) &&
4133                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4134                                          addr, n, v))
4135                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4136                         break;
4137                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4138                 handled += n;
4139                 addr += n;
4140                 len -= n;
4141                 v += n;
4142         } while (len);
4143
4144         return handled;
4145 }
4146
4147 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4148                         struct kvm_segment *var, int seg)
4149 {
4150         kvm_x86_ops->set_segment(vcpu, var, seg);
4151 }
4152
4153 void kvm_get_segment(struct kvm_vcpu *vcpu,
4154                      struct kvm_segment *var, int seg)
4155 {
4156         kvm_x86_ops->get_segment(vcpu, var, seg);
4157 }
4158
4159 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4160                            struct x86_exception *exception)
4161 {
4162         gpa_t t_gpa;
4163
4164         BUG_ON(!mmu_is_nested(vcpu));
4165
4166         /* NPT walks are always user-walks */
4167         access |= PFERR_USER_MASK;
4168         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4169
4170         return t_gpa;
4171 }
4172
4173 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4174                               struct x86_exception *exception)
4175 {
4176         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4177         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4178 }
4179
4180  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4181                                 struct x86_exception *exception)
4182 {
4183         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4184         access |= PFERR_FETCH_MASK;
4185         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4186 }
4187
4188 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4189                                struct x86_exception *exception)
4190 {
4191         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4192         access |= PFERR_WRITE_MASK;
4193         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4194 }
4195
4196 /* uses this to access any guest's mapped memory without checking CPL */
4197 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4198                                 struct x86_exception *exception)
4199 {
4200         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4201 }
4202
4203 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4204                                       struct kvm_vcpu *vcpu, u32 access,
4205                                       struct x86_exception *exception)
4206 {
4207         void *data = val;
4208         int r = X86EMUL_CONTINUE;
4209
4210         while (bytes) {
4211                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4212                                                             exception);
4213                 unsigned offset = addr & (PAGE_SIZE-1);
4214                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4215                 int ret;
4216
4217                 if (gpa == UNMAPPED_GVA)
4218                         return X86EMUL_PROPAGATE_FAULT;
4219                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4220                                                offset, toread);
4221                 if (ret < 0) {
4222                         r = X86EMUL_IO_NEEDED;
4223                         goto out;
4224                 }
4225
4226                 bytes -= toread;
4227                 data += toread;
4228                 addr += toread;
4229         }
4230 out:
4231         return r;
4232 }
4233
4234 /* used for instruction fetching */
4235 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4236                                 gva_t addr, void *val, unsigned int bytes,
4237                                 struct x86_exception *exception)
4238 {
4239         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4240         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4241         unsigned offset;
4242         int ret;
4243
4244         /* Inline kvm_read_guest_virt_helper for speed.  */
4245         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4246                                                     exception);
4247         if (unlikely(gpa == UNMAPPED_GVA))
4248                 return X86EMUL_PROPAGATE_FAULT;
4249
4250         offset = addr & (PAGE_SIZE-1);
4251         if (WARN_ON(offset + bytes > PAGE_SIZE))
4252                 bytes = (unsigned)PAGE_SIZE - offset;
4253         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4254                                        offset, bytes);
4255         if (unlikely(ret < 0))
4256                 return X86EMUL_IO_NEEDED;
4257
4258         return X86EMUL_CONTINUE;
4259 }
4260
4261 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4262                                gva_t addr, void *val, unsigned int bytes,
4263                                struct x86_exception *exception)
4264 {
4265         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4266         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4267
4268         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4269                                           exception);
4270 }
4271 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4272
4273 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4274                                       gva_t addr, void *val, unsigned int bytes,
4275                                       struct x86_exception *exception)
4276 {
4277         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4278         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4279 }
4280
4281 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4282                 unsigned long addr, void *val, unsigned int bytes)
4283 {
4284         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4285         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4286
4287         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4288 }
4289
4290 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4291                                        gva_t addr, void *val,
4292                                        unsigned int bytes,
4293                                        struct x86_exception *exception)
4294 {
4295         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4296         void *data = val;
4297         int r = X86EMUL_CONTINUE;
4298
4299         while (bytes) {
4300                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4301                                                              PFERR_WRITE_MASK,
4302                                                              exception);
4303                 unsigned offset = addr & (PAGE_SIZE-1);
4304                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4305                 int ret;
4306
4307                 if (gpa == UNMAPPED_GVA)
4308                         return X86EMUL_PROPAGATE_FAULT;
4309                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4310                 if (ret < 0) {
4311                         r = X86EMUL_IO_NEEDED;
4312                         goto out;
4313                 }
4314
4315                 bytes -= towrite;
4316                 data += towrite;
4317                 addr += towrite;
4318         }
4319 out:
4320         return r;
4321 }
4322 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4323
4324 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4325                                 gpa_t *gpa, struct x86_exception *exception,
4326                                 bool write)
4327 {
4328         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4329                 | (write ? PFERR_WRITE_MASK : 0);
4330
4331         /*
4332          * currently PKRU is only applied to ept enabled guest so
4333          * there is no pkey in EPT page table for L1 guest or EPT
4334          * shadow page table for L2 guest.
4335          */
4336         if (vcpu_match_mmio_gva(vcpu, gva)
4337             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4338                                  vcpu->arch.access, 0, access)) {
4339                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4340                                         (gva & (PAGE_SIZE - 1));
4341                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4342                 return 1;
4343         }
4344
4345         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4346
4347         if (*gpa == UNMAPPED_GVA)
4348                 return -1;
4349
4350         /* For APIC access vmexit */
4351         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4352                 return 1;
4353
4354         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4355                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4356                 return 1;
4357         }
4358
4359         return 0;
4360 }
4361
4362 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4363                         const void *val, int bytes)
4364 {
4365         int ret;
4366
4367         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4368         if (ret < 0)
4369                 return 0;
4370         kvm_page_track_write(vcpu, gpa, val, bytes);
4371         return 1;
4372 }
4373
4374 struct read_write_emulator_ops {
4375         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4376                                   int bytes);
4377         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4378                                   void *val, int bytes);
4379         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4380                                int bytes, void *val);
4381         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4382                                     void *val, int bytes);
4383         bool write;
4384 };
4385
4386 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4387 {
4388         if (vcpu->mmio_read_completed) {
4389                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4390                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4391                 vcpu->mmio_read_completed = 0;
4392                 return 1;
4393         }
4394
4395         return 0;
4396 }
4397
4398 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4399                         void *val, int bytes)
4400 {
4401         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4402 }
4403
4404 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4405                          void *val, int bytes)
4406 {
4407         return emulator_write_phys(vcpu, gpa, val, bytes);
4408 }
4409
4410 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4411 {
4412         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4413         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4414 }
4415
4416 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4417                           void *val, int bytes)
4418 {
4419         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4420         return X86EMUL_IO_NEEDED;
4421 }
4422
4423 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4424                            void *val, int bytes)
4425 {
4426         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4427
4428         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4429         return X86EMUL_CONTINUE;
4430 }
4431
4432 static const struct read_write_emulator_ops read_emultor = {
4433         .read_write_prepare = read_prepare,
4434         .read_write_emulate = read_emulate,
4435         .read_write_mmio = vcpu_mmio_read,
4436         .read_write_exit_mmio = read_exit_mmio,
4437 };
4438
4439 static const struct read_write_emulator_ops write_emultor = {
4440         .read_write_emulate = write_emulate,
4441         .read_write_mmio = write_mmio,
4442         .read_write_exit_mmio = write_exit_mmio,
4443         .write = true,
4444 };
4445
4446 static int emulator_read_write_onepage(unsigned long addr, void *val,
4447                                        unsigned int bytes,
4448                                        struct x86_exception *exception,
4449                                        struct kvm_vcpu *vcpu,
4450                                        const struct read_write_emulator_ops *ops)
4451 {
4452         gpa_t gpa;
4453         int handled, ret;
4454         bool write = ops->write;
4455         struct kvm_mmio_fragment *frag;
4456
4457         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4458
4459         if (ret < 0)
4460                 return X86EMUL_PROPAGATE_FAULT;
4461
4462         /* For APIC access vmexit */
4463         if (ret)
4464                 goto mmio;
4465
4466         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4467                 return X86EMUL_CONTINUE;
4468
4469 mmio:
4470         /*
4471          * Is this MMIO handled locally?
4472          */
4473         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4474         if (handled == bytes)
4475                 return X86EMUL_CONTINUE;
4476
4477         gpa += handled;
4478         bytes -= handled;
4479         val += handled;
4480
4481         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4482         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4483         frag->gpa = gpa;
4484         frag->data = val;
4485         frag->len = bytes;
4486         return X86EMUL_CONTINUE;
4487 }
4488
4489 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4490                         unsigned long addr,
4491                         void *val, unsigned int bytes,
4492                         struct x86_exception *exception,
4493                         const struct read_write_emulator_ops *ops)
4494 {
4495         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4496         gpa_t gpa;
4497         int rc;
4498
4499         if (ops->read_write_prepare &&
4500                   ops->read_write_prepare(vcpu, val, bytes))
4501                 return X86EMUL_CONTINUE;
4502
4503         vcpu->mmio_nr_fragments = 0;
4504
4505         /* Crossing a page boundary? */
4506         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4507                 int now;
4508
4509                 now = -addr & ~PAGE_MASK;
4510                 rc = emulator_read_write_onepage(addr, val, now, exception,
4511                                                  vcpu, ops);
4512
4513                 if (rc != X86EMUL_CONTINUE)
4514                         return rc;
4515                 addr += now;
4516                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4517                         addr = (u32)addr;
4518                 val += now;
4519                 bytes -= now;
4520         }
4521
4522         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4523                                          vcpu, ops);
4524         if (rc != X86EMUL_CONTINUE)
4525                 return rc;
4526
4527         if (!vcpu->mmio_nr_fragments)
4528                 return rc;
4529
4530         gpa = vcpu->mmio_fragments[0].gpa;
4531
4532         vcpu->mmio_needed = 1;
4533         vcpu->mmio_cur_fragment = 0;
4534
4535         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4536         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4537         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4538         vcpu->run->mmio.phys_addr = gpa;
4539
4540         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4541 }
4542
4543 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4544                                   unsigned long addr,
4545                                   void *val,
4546                                   unsigned int bytes,
4547                                   struct x86_exception *exception)
4548 {
4549         return emulator_read_write(ctxt, addr, val, bytes,
4550                                    exception, &read_emultor);
4551 }
4552
4553 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4554                             unsigned long addr,
4555                             const void *val,
4556                             unsigned int bytes,
4557                             struct x86_exception *exception)
4558 {
4559         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4560                                    exception, &write_emultor);
4561 }
4562
4563 #define CMPXCHG_TYPE(t, ptr, old, new) \
4564         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4565
4566 #ifdef CONFIG_X86_64
4567 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4568 #else
4569 #  define CMPXCHG64(ptr, old, new) \
4570         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4571 #endif
4572
4573 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4574                                      unsigned long addr,
4575                                      const void *old,
4576                                      const void *new,
4577                                      unsigned int bytes,
4578                                      struct x86_exception *exception)
4579 {
4580         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4581         gpa_t gpa;
4582         struct page *page;
4583         char *kaddr;
4584         bool exchanged;
4585
4586         /* guests cmpxchg8b have to be emulated atomically */
4587         if (bytes > 8 || (bytes & (bytes - 1)))
4588                 goto emul_write;
4589
4590         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4591
4592         if (gpa == UNMAPPED_GVA ||
4593             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4594                 goto emul_write;
4595
4596         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4597                 goto emul_write;
4598
4599         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4600         if (is_error_page(page))
4601                 goto emul_write;
4602
4603         kaddr = kmap_atomic(page);
4604         kaddr += offset_in_page(gpa);
4605         switch (bytes) {
4606         case 1:
4607                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4608                 break;
4609         case 2:
4610                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4611                 break;
4612         case 4:
4613                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4614                 break;
4615         case 8:
4616                 exchanged = CMPXCHG64(kaddr, old, new);
4617                 break;
4618         default:
4619                 BUG();
4620         }
4621         kunmap_atomic(kaddr);
4622         kvm_release_page_dirty(page);
4623
4624         if (!exchanged)
4625                 return X86EMUL_CMPXCHG_FAILED;
4626
4627         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4628         kvm_page_track_write(vcpu, gpa, new, bytes);
4629
4630         return X86EMUL_CONTINUE;
4631
4632 emul_write:
4633         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4634
4635         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4636 }
4637
4638 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4639 {
4640         /* TODO: String I/O for in kernel device */
4641         int r;
4642
4643         if (vcpu->arch.pio.in)
4644                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4645                                     vcpu->arch.pio.size, pd);
4646         else
4647                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4648                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4649                                      pd);
4650         return r;
4651 }
4652
4653 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4654                                unsigned short port, void *val,
4655                                unsigned int count, bool in)
4656 {
4657         vcpu->arch.pio.port = port;
4658         vcpu->arch.pio.in = in;
4659         vcpu->arch.pio.count  = count;
4660         vcpu->arch.pio.size = size;
4661
4662         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4663                 vcpu->arch.pio.count = 0;
4664                 return 1;
4665         }
4666
4667         vcpu->run->exit_reason = KVM_EXIT_IO;
4668         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4669         vcpu->run->io.size = size;
4670         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4671         vcpu->run->io.count = count;
4672         vcpu->run->io.port = port;
4673
4674         return 0;
4675 }
4676
4677 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4678                                     int size, unsigned short port, void *val,
4679                                     unsigned int count)
4680 {
4681         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4682         int ret;
4683
4684         if (vcpu->arch.pio.count)
4685                 goto data_avail;
4686
4687         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4688         if (ret) {
4689 data_avail:
4690                 memcpy(val, vcpu->arch.pio_data, size * count);
4691                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4692                 vcpu->arch.pio.count = 0;
4693                 return 1;
4694         }
4695
4696         return 0;
4697 }
4698
4699 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4700                                      int size, unsigned short port,
4701                                      const void *val, unsigned int count)
4702 {
4703         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4704
4705         memcpy(vcpu->arch.pio_data, val, size * count);
4706         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4707         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4708 }
4709
4710 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4711 {
4712         return kvm_x86_ops->get_segment_base(vcpu, seg);
4713 }
4714
4715 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4716 {
4717         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4718 }
4719
4720 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4721 {
4722         if (!need_emulate_wbinvd(vcpu))
4723                 return X86EMUL_CONTINUE;
4724
4725         if (kvm_x86_ops->has_wbinvd_exit()) {
4726                 int cpu = get_cpu();
4727
4728                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4729                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4730                                 wbinvd_ipi, NULL, 1);
4731                 put_cpu();
4732                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4733         } else
4734                 wbinvd();
4735         return X86EMUL_CONTINUE;
4736 }
4737
4738 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4739 {
4740         kvm_x86_ops->skip_emulated_instruction(vcpu);
4741         return kvm_emulate_wbinvd_noskip(vcpu);
4742 }
4743 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4744
4745
4746
4747 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4748 {
4749         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4750 }
4751
4752 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4753                            unsigned long *dest)
4754 {
4755         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4756 }
4757
4758 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4759                            unsigned long value)
4760 {
4761
4762         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4763 }
4764
4765 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4766 {
4767         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4768 }
4769
4770 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4771 {
4772         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4773         unsigned long value;
4774
4775         switch (cr) {
4776         case 0:
4777                 value = kvm_read_cr0(vcpu);
4778                 break;
4779         case 2:
4780                 value = vcpu->arch.cr2;
4781                 break;
4782         case 3:
4783                 value = kvm_read_cr3(vcpu);
4784                 break;
4785         case 4:
4786                 value = kvm_read_cr4(vcpu);
4787                 break;
4788         case 8:
4789                 value = kvm_get_cr8(vcpu);
4790                 break;
4791         default:
4792                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4793                 return 0;
4794         }
4795
4796         return value;
4797 }
4798
4799 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4800 {
4801         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4802         int res = 0;
4803
4804         switch (cr) {
4805         case 0:
4806                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4807                 break;
4808         case 2:
4809                 vcpu->arch.cr2 = val;
4810                 break;
4811         case 3:
4812                 res = kvm_set_cr3(vcpu, val);
4813                 break;
4814         case 4:
4815                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4816                 break;
4817         case 8:
4818                 res = kvm_set_cr8(vcpu, val);
4819                 break;
4820         default:
4821                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4822                 res = -1;
4823         }
4824
4825         return res;
4826 }
4827
4828 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4829 {
4830         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4831 }
4832
4833 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4834 {
4835         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4836 }
4837
4838 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4839 {
4840         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4841 }
4842
4843 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4844 {
4845         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4846 }
4847
4848 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4849 {
4850         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4851 }
4852
4853 static unsigned long emulator_get_cached_segment_base(
4854         struct x86_emulate_ctxt *ctxt, int seg)
4855 {
4856         return get_segment_base(emul_to_vcpu(ctxt), seg);
4857 }
4858
4859 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4860                                  struct desc_struct *desc, u32 *base3,
4861                                  int seg)
4862 {
4863         struct kvm_segment var;
4864
4865         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4866         *selector = var.selector;
4867
4868         if (var.unusable) {
4869                 memset(desc, 0, sizeof(*desc));
4870                 return false;
4871         }
4872
4873         if (var.g)
4874                 var.limit >>= 12;
4875         set_desc_limit(desc, var.limit);
4876         set_desc_base(desc, (unsigned long)var.base);
4877 #ifdef CONFIG_X86_64
4878         if (base3)
4879                 *base3 = var.base >> 32;
4880 #endif
4881         desc->type = var.type;
4882         desc->s = var.s;
4883         desc->dpl = var.dpl;
4884         desc->p = var.present;
4885         desc->avl = var.avl;
4886         desc->l = var.l;
4887         desc->d = var.db;
4888         desc->g = var.g;
4889
4890         return true;
4891 }
4892
4893 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4894                                  struct desc_struct *desc, u32 base3,
4895                                  int seg)
4896 {
4897         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4898         struct kvm_segment var;
4899
4900         var.selector = selector;
4901         var.base = get_desc_base(desc);
4902 #ifdef CONFIG_X86_64
4903         var.base |= ((u64)base3) << 32;
4904 #endif
4905         var.limit = get_desc_limit(desc);
4906         if (desc->g)
4907                 var.limit = (var.limit << 12) | 0xfff;
4908         var.type = desc->type;
4909         var.dpl = desc->dpl;
4910         var.db = desc->d;
4911         var.s = desc->s;
4912         var.l = desc->l;
4913         var.g = desc->g;
4914         var.avl = desc->avl;
4915         var.present = desc->p;
4916         var.unusable = !var.present;
4917         var.padding = 0;
4918
4919         kvm_set_segment(vcpu, &var, seg);
4920         return;
4921 }
4922
4923 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4924                             u32 msr_index, u64 *pdata)
4925 {
4926         struct msr_data msr;
4927         int r;
4928
4929         msr.index = msr_index;
4930         msr.host_initiated = false;
4931         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4932         if (r)
4933                 return r;
4934
4935         *pdata = msr.data;
4936         return 0;
4937 }
4938
4939 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4940                             u32 msr_index, u64 data)
4941 {
4942         struct msr_data msr;
4943
4944         msr.data = data;
4945         msr.index = msr_index;
4946         msr.host_initiated = false;
4947         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4948 }
4949
4950 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4951 {
4952         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4953
4954         return vcpu->arch.smbase;
4955 }
4956
4957 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4958 {
4959         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4960
4961         vcpu->arch.smbase = smbase;
4962 }
4963
4964 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4965                               u32 pmc)
4966 {
4967         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4968 }
4969
4970 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4971                              u32 pmc, u64 *pdata)
4972 {
4973         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4974 }
4975
4976 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4977 {
4978         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4979 }
4980
4981 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4982 {
4983         preempt_disable();
4984         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4985         /*
4986          * CR0.TS may reference the host fpu state, not the guest fpu state,
4987          * so it may be clear at this point.
4988          */
4989         clts();
4990 }
4991
4992 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4993 {
4994         preempt_enable();
4995 }
4996
4997 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4998                               struct x86_instruction_info *info,
4999                               enum x86_intercept_stage stage)
5000 {
5001         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5002 }
5003
5004 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5005                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5006 {
5007         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5008 }
5009
5010 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5011 {
5012         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5013 }
5014
5015 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5016 {
5017         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5018 }
5019
5020 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5021 {
5022         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5023 }
5024
5025 static const struct x86_emulate_ops emulate_ops = {
5026         .read_gpr            = emulator_read_gpr,
5027         .write_gpr           = emulator_write_gpr,
5028         .read_std            = kvm_read_guest_virt_system,
5029         .write_std           = kvm_write_guest_virt_system,
5030         .read_phys           = kvm_read_guest_phys_system,
5031         .fetch               = kvm_fetch_guest_virt,
5032         .read_emulated       = emulator_read_emulated,
5033         .write_emulated      = emulator_write_emulated,
5034         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5035         .invlpg              = emulator_invlpg,
5036         .pio_in_emulated     = emulator_pio_in_emulated,
5037         .pio_out_emulated    = emulator_pio_out_emulated,
5038         .get_segment         = emulator_get_segment,
5039         .set_segment         = emulator_set_segment,
5040         .get_cached_segment_base = emulator_get_cached_segment_base,
5041         .get_gdt             = emulator_get_gdt,
5042         .get_idt             = emulator_get_idt,
5043         .set_gdt             = emulator_set_gdt,
5044         .set_idt             = emulator_set_idt,
5045         .get_cr              = emulator_get_cr,
5046         .set_cr              = emulator_set_cr,
5047         .cpl                 = emulator_get_cpl,
5048         .get_dr              = emulator_get_dr,
5049         .set_dr              = emulator_set_dr,
5050         .get_smbase          = emulator_get_smbase,
5051         .set_smbase          = emulator_set_smbase,
5052         .set_msr             = emulator_set_msr,
5053         .get_msr             = emulator_get_msr,
5054         .check_pmc           = emulator_check_pmc,
5055         .read_pmc            = emulator_read_pmc,
5056         .halt                = emulator_halt,
5057         .wbinvd              = emulator_wbinvd,
5058         .fix_hypercall       = emulator_fix_hypercall,
5059         .get_fpu             = emulator_get_fpu,
5060         .put_fpu             = emulator_put_fpu,
5061         .intercept           = emulator_intercept,
5062         .get_cpuid           = emulator_get_cpuid,
5063         .set_nmi_mask        = emulator_set_nmi_mask,
5064 };
5065
5066 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5067 {
5068         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5069         /*
5070          * an sti; sti; sequence only disable interrupts for the first
5071          * instruction. So, if the last instruction, be it emulated or
5072          * not, left the system with the INT_STI flag enabled, it
5073          * means that the last instruction is an sti. We should not
5074          * leave the flag on in this case. The same goes for mov ss
5075          */
5076         if (int_shadow & mask)
5077                 mask = 0;
5078         if (unlikely(int_shadow || mask)) {
5079                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5080                 if (!mask)
5081                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5082         }
5083 }
5084
5085 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5086 {
5087         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5088         if (ctxt->exception.vector == PF_VECTOR)
5089                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5090
5091         if (ctxt->exception.error_code_valid)
5092                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5093                                       ctxt->exception.error_code);
5094         else
5095                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5096         return false;
5097 }
5098
5099 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5100 {
5101         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5102         int cs_db, cs_l;
5103
5104         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5105
5106         ctxt->eflags = kvm_get_rflags(vcpu);
5107         ctxt->eip = kvm_rip_read(vcpu);
5108         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5109                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5110                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5111                      cs_db                              ? X86EMUL_MODE_PROT32 :
5112                                                           X86EMUL_MODE_PROT16;
5113         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5114         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5115         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5116         ctxt->emul_flags = vcpu->arch.hflags;
5117
5118         init_decode_cache(ctxt);
5119         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5120 }
5121
5122 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5123 {
5124         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5125         int ret;
5126
5127         init_emulate_ctxt(vcpu);
5128
5129         ctxt->op_bytes = 2;
5130         ctxt->ad_bytes = 2;
5131         ctxt->_eip = ctxt->eip + inc_eip;
5132         ret = emulate_int_real(ctxt, irq);
5133
5134         if (ret != X86EMUL_CONTINUE)
5135                 return EMULATE_FAIL;
5136
5137         ctxt->eip = ctxt->_eip;
5138         kvm_rip_write(vcpu, ctxt->eip);
5139         kvm_set_rflags(vcpu, ctxt->eflags);
5140
5141         if (irq == NMI_VECTOR)
5142                 vcpu->arch.nmi_pending = 0;
5143         else
5144                 vcpu->arch.interrupt.pending = false;
5145
5146         return EMULATE_DONE;
5147 }
5148 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5149
5150 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5151 {
5152         int r = EMULATE_DONE;
5153
5154         ++vcpu->stat.insn_emulation_fail;
5155         trace_kvm_emulate_insn_failed(vcpu);
5156         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5157                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5158                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5159                 vcpu->run->internal.ndata = 0;
5160                 r = EMULATE_FAIL;
5161         }
5162         kvm_queue_exception(vcpu, UD_VECTOR);
5163
5164         return r;
5165 }
5166
5167 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5168                                   bool write_fault_to_shadow_pgtable,
5169                                   int emulation_type)
5170 {
5171         gpa_t gpa = cr2;
5172         kvm_pfn_t pfn;
5173
5174         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5175                 return false;
5176
5177         if (!vcpu->arch.mmu.direct_map) {
5178                 /*
5179                  * Write permission should be allowed since only
5180                  * write access need to be emulated.
5181                  */
5182                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5183
5184                 /*
5185                  * If the mapping is invalid in guest, let cpu retry
5186                  * it to generate fault.
5187                  */
5188                 if (gpa == UNMAPPED_GVA)
5189                         return true;
5190         }
5191
5192         /*
5193          * Do not retry the unhandleable instruction if it faults on the
5194          * readonly host memory, otherwise it will goto a infinite loop:
5195          * retry instruction -> write #PF -> emulation fail -> retry
5196          * instruction -> ...
5197          */
5198         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5199
5200         /*
5201          * If the instruction failed on the error pfn, it can not be fixed,
5202          * report the error to userspace.
5203          */
5204         if (is_error_noslot_pfn(pfn))
5205                 return false;
5206
5207         kvm_release_pfn_clean(pfn);
5208
5209         /* The instructions are well-emulated on direct mmu. */
5210         if (vcpu->arch.mmu.direct_map) {
5211                 unsigned int indirect_shadow_pages;
5212
5213                 spin_lock(&vcpu->kvm->mmu_lock);
5214                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5215                 spin_unlock(&vcpu->kvm->mmu_lock);
5216
5217                 if (indirect_shadow_pages)
5218                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5219
5220                 return true;
5221         }
5222
5223         /*
5224          * if emulation was due to access to shadowed page table
5225          * and it failed try to unshadow page and re-enter the
5226          * guest to let CPU execute the instruction.
5227          */
5228         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5229
5230         /*
5231          * If the access faults on its page table, it can not
5232          * be fixed by unprotecting shadow page and it should
5233          * be reported to userspace.
5234          */
5235         return !write_fault_to_shadow_pgtable;
5236 }
5237
5238 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5239                               unsigned long cr2,  int emulation_type)
5240 {
5241         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5242         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5243
5244         last_retry_eip = vcpu->arch.last_retry_eip;
5245         last_retry_addr = vcpu->arch.last_retry_addr;
5246
5247         /*
5248          * If the emulation is caused by #PF and it is non-page_table
5249          * writing instruction, it means the VM-EXIT is caused by shadow
5250          * page protected, we can zap the shadow page and retry this
5251          * instruction directly.
5252          *
5253          * Note: if the guest uses a non-page-table modifying instruction
5254          * on the PDE that points to the instruction, then we will unmap
5255          * the instruction and go to an infinite loop. So, we cache the
5256          * last retried eip and the last fault address, if we meet the eip
5257          * and the address again, we can break out of the potential infinite
5258          * loop.
5259          */
5260         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5261
5262         if (!(emulation_type & EMULTYPE_RETRY))
5263                 return false;
5264
5265         if (x86_page_table_writing_insn(ctxt))
5266                 return false;
5267
5268         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5269                 return false;
5270
5271         vcpu->arch.last_retry_eip = ctxt->eip;
5272         vcpu->arch.last_retry_addr = cr2;
5273
5274         if (!vcpu->arch.mmu.direct_map)
5275                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5276
5277         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5278
5279         return true;
5280 }
5281
5282 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5283 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5284
5285 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5286 {
5287         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5288                 /* This is a good place to trace that we are exiting SMM.  */
5289                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5290
5291                 if (unlikely(vcpu->arch.smi_pending)) {
5292                         kvm_make_request(KVM_REQ_SMI, vcpu);
5293                         vcpu->arch.smi_pending = 0;
5294                 } else {
5295                         /* Process a latched INIT, if any.  */
5296                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5297                 }
5298         }
5299
5300         kvm_mmu_reset_context(vcpu);
5301 }
5302
5303 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5304 {
5305         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5306
5307         vcpu->arch.hflags = emul_flags;
5308
5309         if (changed & HF_SMM_MASK)
5310                 kvm_smm_changed(vcpu);
5311 }
5312
5313 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5314                                 unsigned long *db)
5315 {
5316         u32 dr6 = 0;
5317         int i;
5318         u32 enable, rwlen;
5319
5320         enable = dr7;
5321         rwlen = dr7 >> 16;
5322         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5323                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5324                         dr6 |= (1 << i);
5325         return dr6;
5326 }
5327
5328 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5329 {
5330         struct kvm_run *kvm_run = vcpu->run;
5331
5332         /*
5333          * rflags is the old, "raw" value of the flags.  The new value has
5334          * not been saved yet.
5335          *
5336          * This is correct even for TF set by the guest, because "the
5337          * processor will not generate this exception after the instruction
5338          * that sets the TF flag".
5339          */
5340         if (unlikely(rflags & X86_EFLAGS_TF)) {
5341                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5342                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5343                                                   DR6_RTM;
5344                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5345                         kvm_run->debug.arch.exception = DB_VECTOR;
5346                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5347                         *r = EMULATE_USER_EXIT;
5348                 } else {
5349                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5350                         /*
5351                          * "Certain debug exceptions may clear bit 0-3.  The
5352                          * remaining contents of the DR6 register are never
5353                          * cleared by the processor".
5354                          */
5355                         vcpu->arch.dr6 &= ~15;
5356                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5357                         kvm_queue_exception(vcpu, DB_VECTOR);
5358                 }
5359         }
5360 }
5361
5362 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5363 {
5364         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5365             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5366                 struct kvm_run *kvm_run = vcpu->run;
5367                 unsigned long eip = kvm_get_linear_rip(vcpu);
5368                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5369                                            vcpu->arch.guest_debug_dr7,
5370                                            vcpu->arch.eff_db);
5371
5372                 if (dr6 != 0) {
5373                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5374                         kvm_run->debug.arch.pc = eip;
5375                         kvm_run->debug.arch.exception = DB_VECTOR;
5376                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5377                         *r = EMULATE_USER_EXIT;
5378                         return true;
5379                 }
5380         }
5381
5382         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5383             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5384                 unsigned long eip = kvm_get_linear_rip(vcpu);
5385                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5386                                            vcpu->arch.dr7,
5387                                            vcpu->arch.db);
5388
5389                 if (dr6 != 0) {
5390                         vcpu->arch.dr6 &= ~15;
5391                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5392                         kvm_queue_exception(vcpu, DB_VECTOR);
5393                         *r = EMULATE_DONE;
5394                         return true;
5395                 }
5396         }
5397
5398         return false;
5399 }
5400
5401 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5402                             unsigned long cr2,
5403                             int emulation_type,
5404                             void *insn,
5405                             int insn_len)
5406 {
5407         int r;
5408         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5409         bool writeback = true;
5410         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5411
5412         /*
5413          * Clear write_fault_to_shadow_pgtable here to ensure it is
5414          * never reused.
5415          */
5416         vcpu->arch.write_fault_to_shadow_pgtable = false;
5417         kvm_clear_exception_queue(vcpu);
5418
5419         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5420                 init_emulate_ctxt(vcpu);
5421
5422                 /*
5423                  * We will reenter on the same instruction since
5424                  * we do not set complete_userspace_io.  This does not
5425                  * handle watchpoints yet, those would be handled in
5426                  * the emulate_ops.
5427                  */
5428                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5429                         return r;
5430
5431                 ctxt->interruptibility = 0;
5432                 ctxt->have_exception = false;
5433                 ctxt->exception.vector = -1;
5434                 ctxt->perm_ok = false;
5435
5436                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5437
5438                 r = x86_decode_insn(ctxt, insn, insn_len);
5439
5440                 trace_kvm_emulate_insn_start(vcpu);
5441                 ++vcpu->stat.insn_emulation;
5442                 if (r != EMULATION_OK)  {
5443                         if (emulation_type & EMULTYPE_TRAP_UD)
5444                                 return EMULATE_FAIL;
5445                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5446                                                 emulation_type))
5447                                 return EMULATE_DONE;
5448                         if (emulation_type & EMULTYPE_SKIP)
5449                                 return EMULATE_FAIL;
5450                         return handle_emulation_failure(vcpu);
5451                 }
5452         }
5453
5454         if (emulation_type & EMULTYPE_SKIP) {
5455                 kvm_rip_write(vcpu, ctxt->_eip);
5456                 if (ctxt->eflags & X86_EFLAGS_RF)
5457                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5458                 return EMULATE_DONE;
5459         }
5460
5461         if (retry_instruction(ctxt, cr2, emulation_type))
5462                 return EMULATE_DONE;
5463
5464         /* this is needed for vmware backdoor interface to work since it
5465            changes registers values  during IO operation */
5466         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5467                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5468                 emulator_invalidate_register_cache(ctxt);
5469         }
5470
5471 restart:
5472         r = x86_emulate_insn(ctxt);
5473
5474         if (r == EMULATION_INTERCEPTED)
5475                 return EMULATE_DONE;
5476
5477         if (r == EMULATION_FAILED) {
5478                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5479                                         emulation_type))
5480                         return EMULATE_DONE;
5481
5482                 return handle_emulation_failure(vcpu);
5483         }
5484
5485         if (ctxt->have_exception) {
5486                 r = EMULATE_DONE;
5487                 if (inject_emulated_exception(vcpu))
5488                         return r;
5489         } else if (vcpu->arch.pio.count) {
5490                 if (!vcpu->arch.pio.in) {
5491                         /* FIXME: return into emulator if single-stepping.  */
5492                         vcpu->arch.pio.count = 0;
5493                 } else {
5494                         writeback = false;
5495                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5496                 }
5497                 r = EMULATE_USER_EXIT;
5498         } else if (vcpu->mmio_needed) {
5499                 if (!vcpu->mmio_is_write)
5500                         writeback = false;
5501                 r = EMULATE_USER_EXIT;
5502                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5503         } else if (r == EMULATION_RESTART)
5504                 goto restart;
5505         else
5506                 r = EMULATE_DONE;
5507
5508         if (writeback) {
5509                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5510                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5511                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5512                 if (vcpu->arch.hflags != ctxt->emul_flags)
5513                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5514                 kvm_rip_write(vcpu, ctxt->eip);
5515                 if (r == EMULATE_DONE)
5516                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5517                 if (!ctxt->have_exception ||
5518                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5519                         __kvm_set_rflags(vcpu, ctxt->eflags);
5520
5521                 /*
5522                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5523                  * do nothing, and it will be requested again as soon as
5524                  * the shadow expires.  But we still need to check here,
5525                  * because POPF has no interrupt shadow.
5526                  */
5527                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5528                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5529         } else
5530                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5531
5532         return r;
5533 }
5534 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5535
5536 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5537 {
5538         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5539         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5540                                             size, port, &val, 1);
5541         /* do not return to emulator after return from userspace */
5542         vcpu->arch.pio.count = 0;
5543         return ret;
5544 }
5545 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5546
5547 static void tsc_bad(void *info)
5548 {
5549         __this_cpu_write(cpu_tsc_khz, 0);
5550 }
5551
5552 static void tsc_khz_changed(void *data)
5553 {
5554         struct cpufreq_freqs *freq = data;
5555         unsigned long khz = 0;
5556
5557         if (data)
5558                 khz = freq->new;
5559         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5560                 khz = cpufreq_quick_get(raw_smp_processor_id());
5561         if (!khz)
5562                 khz = tsc_khz;
5563         __this_cpu_write(cpu_tsc_khz, khz);
5564 }
5565
5566 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5567                                      void *data)
5568 {
5569         struct cpufreq_freqs *freq = data;
5570         struct kvm *kvm;
5571         struct kvm_vcpu *vcpu;
5572         int i, send_ipi = 0;
5573
5574         /*
5575          * We allow guests to temporarily run on slowing clocks,
5576          * provided we notify them after, or to run on accelerating
5577          * clocks, provided we notify them before.  Thus time never
5578          * goes backwards.
5579          *
5580          * However, we have a problem.  We can't atomically update
5581          * the frequency of a given CPU from this function; it is
5582          * merely a notifier, which can be called from any CPU.
5583          * Changing the TSC frequency at arbitrary points in time
5584          * requires a recomputation of local variables related to
5585          * the TSC for each VCPU.  We must flag these local variables
5586          * to be updated and be sure the update takes place with the
5587          * new frequency before any guests proceed.
5588          *
5589          * Unfortunately, the combination of hotplug CPU and frequency
5590          * change creates an intractable locking scenario; the order
5591          * of when these callouts happen is undefined with respect to
5592          * CPU hotplug, and they can race with each other.  As such,
5593          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5594          * undefined; you can actually have a CPU frequency change take
5595          * place in between the computation of X and the setting of the
5596          * variable.  To protect against this problem, all updates of
5597          * the per_cpu tsc_khz variable are done in an interrupt
5598          * protected IPI, and all callers wishing to update the value
5599          * must wait for a synchronous IPI to complete (which is trivial
5600          * if the caller is on the CPU already).  This establishes the
5601          * necessary total order on variable updates.
5602          *
5603          * Note that because a guest time update may take place
5604          * anytime after the setting of the VCPU's request bit, the
5605          * correct TSC value must be set before the request.  However,
5606          * to ensure the update actually makes it to any guest which
5607          * starts running in hardware virtualization between the set
5608          * and the acquisition of the spinlock, we must also ping the
5609          * CPU after setting the request bit.
5610          *
5611          */
5612
5613         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5614                 return 0;
5615         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5616                 return 0;
5617
5618         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5619
5620         spin_lock(&kvm_lock);
5621         list_for_each_entry(kvm, &vm_list, vm_list) {
5622                 kvm_for_each_vcpu(i, vcpu, kvm) {
5623                         if (vcpu->cpu != freq->cpu)
5624                                 continue;
5625                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5626                         if (vcpu->cpu != smp_processor_id())
5627                                 send_ipi = 1;
5628                 }
5629         }
5630         spin_unlock(&kvm_lock);
5631
5632         if (freq->old < freq->new && send_ipi) {
5633                 /*
5634                  * We upscale the frequency.  Must make the guest
5635                  * doesn't see old kvmclock values while running with
5636                  * the new frequency, otherwise we risk the guest sees
5637                  * time go backwards.
5638                  *
5639                  * In case we update the frequency for another cpu
5640                  * (which might be in guest context) send an interrupt
5641                  * to kick the cpu out of guest context.  Next time
5642                  * guest context is entered kvmclock will be updated,
5643                  * so the guest will not see stale values.
5644                  */
5645                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5646         }
5647         return 0;
5648 }
5649
5650 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5651         .notifier_call  = kvmclock_cpufreq_notifier
5652 };
5653
5654 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5655                                         unsigned long action, void *hcpu)
5656 {
5657         unsigned int cpu = (unsigned long)hcpu;
5658
5659         switch (action) {
5660                 case CPU_ONLINE:
5661                 case CPU_DOWN_FAILED:
5662                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5663                         break;
5664                 case CPU_DOWN_PREPARE:
5665                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5666                         break;
5667         }
5668         return NOTIFY_OK;
5669 }
5670
5671 static struct notifier_block kvmclock_cpu_notifier_block = {
5672         .notifier_call  = kvmclock_cpu_notifier,
5673         .priority = -INT_MAX
5674 };
5675
5676 static void kvm_timer_init(void)
5677 {
5678         int cpu;
5679
5680         max_tsc_khz = tsc_khz;
5681
5682         cpu_notifier_register_begin();
5683         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5684 #ifdef CONFIG_CPU_FREQ
5685                 struct cpufreq_policy policy;
5686                 memset(&policy, 0, sizeof(policy));
5687                 cpu = get_cpu();
5688                 cpufreq_get_policy(&policy, cpu);
5689                 if (policy.cpuinfo.max_freq)
5690                         max_tsc_khz = policy.cpuinfo.max_freq;
5691                 put_cpu();
5692 #endif
5693                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5694                                           CPUFREQ_TRANSITION_NOTIFIER);
5695         }
5696         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5697         for_each_online_cpu(cpu)
5698                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5699
5700         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5701         cpu_notifier_register_done();
5702
5703 }
5704
5705 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5706
5707 int kvm_is_in_guest(void)
5708 {
5709         return __this_cpu_read(current_vcpu) != NULL;
5710 }
5711
5712 static int kvm_is_user_mode(void)
5713 {
5714         int user_mode = 3;
5715
5716         if (__this_cpu_read(current_vcpu))
5717                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5718
5719         return user_mode != 0;
5720 }
5721
5722 static unsigned long kvm_get_guest_ip(void)
5723 {
5724         unsigned long ip = 0;
5725
5726         if (__this_cpu_read(current_vcpu))
5727                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5728
5729         return ip;
5730 }
5731
5732 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5733         .is_in_guest            = kvm_is_in_guest,
5734         .is_user_mode           = kvm_is_user_mode,
5735         .get_guest_ip           = kvm_get_guest_ip,
5736 };
5737
5738 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5739 {
5740         __this_cpu_write(current_vcpu, vcpu);
5741 }
5742 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5743
5744 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5745 {
5746         __this_cpu_write(current_vcpu, NULL);
5747 }
5748 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5749
5750 static void kvm_set_mmio_spte_mask(void)
5751 {
5752         u64 mask;
5753         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5754
5755         /*
5756          * Set the reserved bits and the present bit of an paging-structure
5757          * entry to generate page fault with PFER.RSV = 1.
5758          */
5759          /* Mask the reserved physical address bits. */
5760         mask = rsvd_bits(maxphyaddr, 51);
5761
5762         /* Bit 62 is always reserved for 32bit host. */
5763         mask |= 0x3ull << 62;
5764
5765         /* Set the present bit. */
5766         mask |= 1ull;
5767
5768 #ifdef CONFIG_X86_64
5769         /*
5770          * If reserved bit is not supported, clear the present bit to disable
5771          * mmio page fault.
5772          */
5773         if (maxphyaddr == 52)
5774                 mask &= ~1ull;
5775 #endif
5776
5777         kvm_mmu_set_mmio_spte_mask(mask);
5778 }
5779
5780 #ifdef CONFIG_X86_64
5781 static void pvclock_gtod_update_fn(struct work_struct *work)
5782 {
5783         struct kvm *kvm;
5784
5785         struct kvm_vcpu *vcpu;
5786         int i;
5787
5788         spin_lock(&kvm_lock);
5789         list_for_each_entry(kvm, &vm_list, vm_list)
5790                 kvm_for_each_vcpu(i, vcpu, kvm)
5791                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5792         atomic_set(&kvm_guest_has_master_clock, 0);
5793         spin_unlock(&kvm_lock);
5794 }
5795
5796 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5797
5798 /*
5799  * Notification about pvclock gtod data update.
5800  */
5801 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5802                                void *priv)
5803 {
5804         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5805         struct timekeeper *tk = priv;
5806
5807         update_pvclock_gtod(tk);
5808
5809         /* disable master clock if host does not trust, or does not
5810          * use, TSC clocksource
5811          */
5812         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5813             atomic_read(&kvm_guest_has_master_clock) != 0)
5814                 queue_work(system_long_wq, &pvclock_gtod_work);
5815
5816         return 0;
5817 }
5818
5819 static struct notifier_block pvclock_gtod_notifier = {
5820         .notifier_call = pvclock_gtod_notify,
5821 };
5822 #endif
5823
5824 int kvm_arch_init(void *opaque)
5825 {
5826         int r;
5827         struct kvm_x86_ops *ops = opaque;
5828
5829         if (kvm_x86_ops) {
5830                 printk(KERN_ERR "kvm: already loaded the other module\n");
5831                 r = -EEXIST;
5832                 goto out;
5833         }
5834
5835         if (!ops->cpu_has_kvm_support()) {
5836                 printk(KERN_ERR "kvm: no hardware support\n");
5837                 r = -EOPNOTSUPP;
5838                 goto out;
5839         }
5840         if (ops->disabled_by_bios()) {
5841                 printk(KERN_ERR "kvm: disabled by bios\n");
5842                 r = -EOPNOTSUPP;
5843                 goto out;
5844         }
5845
5846         r = -ENOMEM;
5847         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5848         if (!shared_msrs) {
5849                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5850                 goto out;
5851         }
5852
5853         r = kvm_mmu_module_init();
5854         if (r)
5855                 goto out_free_percpu;
5856
5857         kvm_set_mmio_spte_mask();
5858
5859         kvm_x86_ops = ops;
5860
5861         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5862                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5863
5864         kvm_timer_init();
5865
5866         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5867
5868         if (cpu_has_xsave)
5869                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5870
5871         kvm_lapic_init();
5872 #ifdef CONFIG_X86_64
5873         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5874 #endif
5875
5876         return 0;
5877
5878 out_free_percpu:
5879         free_percpu(shared_msrs);
5880 out:
5881         return r;
5882 }
5883
5884 void kvm_arch_exit(void)
5885 {
5886         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5887
5888         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5889                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5890                                             CPUFREQ_TRANSITION_NOTIFIER);
5891         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5892 #ifdef CONFIG_X86_64
5893         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5894 #endif
5895         kvm_x86_ops = NULL;
5896         kvm_mmu_module_exit();
5897         free_percpu(shared_msrs);
5898 }
5899
5900 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5901 {
5902         ++vcpu->stat.halt_exits;
5903         if (lapic_in_kernel(vcpu)) {
5904                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5905                 return 1;
5906         } else {
5907                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5908                 return 0;
5909         }
5910 }
5911 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5912
5913 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5914 {
5915         kvm_x86_ops->skip_emulated_instruction(vcpu);
5916         return kvm_vcpu_halt(vcpu);
5917 }
5918 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5919
5920 /*
5921  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5922  *
5923  * @apicid - apicid of vcpu to be kicked.
5924  */
5925 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5926 {
5927         struct kvm_lapic_irq lapic_irq;
5928
5929         lapic_irq.shorthand = 0;
5930         lapic_irq.dest_mode = 0;
5931         lapic_irq.dest_id = apicid;
5932         lapic_irq.msi_redir_hint = false;
5933
5934         lapic_irq.delivery_mode = APIC_DM_REMRD;
5935         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5936 }
5937
5938 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5939 {
5940         vcpu->arch.apicv_active = false;
5941         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5942 }
5943
5944 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5945 {
5946         unsigned long nr, a0, a1, a2, a3, ret;
5947         int op_64_bit, r = 1;
5948
5949         kvm_x86_ops->skip_emulated_instruction(vcpu);
5950
5951         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5952                 return kvm_hv_hypercall(vcpu);
5953
5954         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5955         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5956         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5957         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5958         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5959
5960         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5961
5962         op_64_bit = is_64_bit_mode(vcpu);
5963         if (!op_64_bit) {
5964                 nr &= 0xFFFFFFFF;
5965                 a0 &= 0xFFFFFFFF;
5966                 a1 &= 0xFFFFFFFF;
5967                 a2 &= 0xFFFFFFFF;
5968                 a3 &= 0xFFFFFFFF;
5969         }
5970
5971         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5972                 ret = -KVM_EPERM;
5973                 goto out;
5974         }
5975
5976         switch (nr) {
5977         case KVM_HC_VAPIC_POLL_IRQ:
5978                 ret = 0;
5979                 break;
5980         case KVM_HC_KICK_CPU:
5981                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5982                 ret = 0;
5983                 break;
5984         default:
5985                 ret = -KVM_ENOSYS;
5986                 break;
5987         }
5988 out:
5989         if (!op_64_bit)
5990                 ret = (u32)ret;
5991         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5992         ++vcpu->stat.hypercalls;
5993         return r;
5994 }
5995 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5996
5997 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5998 {
5999         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6000         char instruction[3];
6001         unsigned long rip = kvm_rip_read(vcpu);
6002
6003         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6004
6005         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6006 }
6007
6008 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6009 {
6010         return vcpu->run->request_interrupt_window &&
6011                 likely(!pic_in_kernel(vcpu->kvm));
6012 }
6013
6014 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6015 {
6016         struct kvm_run *kvm_run = vcpu->run;
6017
6018         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6019         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6020         kvm_run->cr8 = kvm_get_cr8(vcpu);
6021         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6022         kvm_run->ready_for_interrupt_injection =
6023                 pic_in_kernel(vcpu->kvm) ||
6024                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6025 }
6026
6027 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6028 {
6029         int max_irr, tpr;
6030
6031         if (!kvm_x86_ops->update_cr8_intercept)
6032                 return;
6033
6034         if (!lapic_in_kernel(vcpu))
6035                 return;
6036
6037         if (vcpu->arch.apicv_active)
6038                 return;
6039
6040         if (!vcpu->arch.apic->vapic_addr)
6041                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6042         else
6043                 max_irr = -1;
6044
6045         if (max_irr != -1)
6046                 max_irr >>= 4;
6047
6048         tpr = kvm_lapic_get_cr8(vcpu);
6049
6050         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6051 }
6052
6053 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6054 {
6055         int r;
6056
6057         /* try to reinject previous events if any */
6058         if (vcpu->arch.exception.pending) {
6059                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6060                                         vcpu->arch.exception.has_error_code,
6061                                         vcpu->arch.exception.error_code);
6062
6063                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6064                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6065                                              X86_EFLAGS_RF);
6066
6067                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6068                     (vcpu->arch.dr7 & DR7_GD)) {
6069                         vcpu->arch.dr7 &= ~DR7_GD;
6070                         kvm_update_dr7(vcpu);
6071                 }
6072
6073                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6074                                           vcpu->arch.exception.has_error_code,
6075                                           vcpu->arch.exception.error_code,
6076                                           vcpu->arch.exception.reinject);
6077                 return 0;
6078         }
6079
6080         if (vcpu->arch.nmi_injected) {
6081                 kvm_x86_ops->set_nmi(vcpu);
6082                 return 0;
6083         }
6084
6085         if (vcpu->arch.interrupt.pending) {
6086                 kvm_x86_ops->set_irq(vcpu);
6087                 return 0;
6088         }
6089
6090         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6091                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6092                 if (r != 0)
6093                         return r;
6094         }
6095
6096         /* try to inject new event if pending */
6097         if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6098                 --vcpu->arch.nmi_pending;
6099                 vcpu->arch.nmi_injected = true;
6100                 kvm_x86_ops->set_nmi(vcpu);
6101         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6102                 /*
6103                  * Because interrupts can be injected asynchronously, we are
6104                  * calling check_nested_events again here to avoid a race condition.
6105                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6106                  * proposal and current concerns.  Perhaps we should be setting
6107                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6108                  */
6109                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6110                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6111                         if (r != 0)
6112                                 return r;
6113                 }
6114                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6115                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6116                                             false);
6117                         kvm_x86_ops->set_irq(vcpu);
6118                 }
6119         }
6120         return 0;
6121 }
6122
6123 static void process_nmi(struct kvm_vcpu *vcpu)
6124 {
6125         unsigned limit = 2;
6126
6127         /*
6128          * x86 is limited to one NMI running, and one NMI pending after it.
6129          * If an NMI is already in progress, limit further NMIs to just one.
6130          * Otherwise, allow two (and we'll inject the first one immediately).
6131          */
6132         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6133                 limit = 1;
6134
6135         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6136         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6137         kvm_make_request(KVM_REQ_EVENT, vcpu);
6138 }
6139
6140 #define put_smstate(type, buf, offset, val)                       \
6141         *(type *)((buf) + (offset) - 0x7e00) = val
6142
6143 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6144 {
6145         u32 flags = 0;
6146         flags |= seg->g       << 23;
6147         flags |= seg->db      << 22;
6148         flags |= seg->l       << 21;
6149         flags |= seg->avl     << 20;
6150         flags |= seg->present << 15;
6151         flags |= seg->dpl     << 13;
6152         flags |= seg->s       << 12;
6153         flags |= seg->type    << 8;
6154         return flags;
6155 }
6156
6157 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6158 {
6159         struct kvm_segment seg;
6160         int offset;
6161
6162         kvm_get_segment(vcpu, &seg, n);
6163         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6164
6165         if (n < 3)
6166                 offset = 0x7f84 + n * 12;
6167         else
6168                 offset = 0x7f2c + (n - 3) * 12;
6169
6170         put_smstate(u32, buf, offset + 8, seg.base);
6171         put_smstate(u32, buf, offset + 4, seg.limit);
6172         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6173 }
6174
6175 #ifdef CONFIG_X86_64
6176 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6177 {
6178         struct kvm_segment seg;
6179         int offset;
6180         u16 flags;
6181
6182         kvm_get_segment(vcpu, &seg, n);
6183         offset = 0x7e00 + n * 16;
6184
6185         flags = process_smi_get_segment_flags(&seg) >> 8;
6186         put_smstate(u16, buf, offset, seg.selector);
6187         put_smstate(u16, buf, offset + 2, flags);
6188         put_smstate(u32, buf, offset + 4, seg.limit);
6189         put_smstate(u64, buf, offset + 8, seg.base);
6190 }
6191 #endif
6192
6193 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6194 {
6195         struct desc_ptr dt;
6196         struct kvm_segment seg;
6197         unsigned long val;
6198         int i;
6199
6200         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6201         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6202         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6203         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6204
6205         for (i = 0; i < 8; i++)
6206                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6207
6208         kvm_get_dr(vcpu, 6, &val);
6209         put_smstate(u32, buf, 0x7fcc, (u32)val);
6210         kvm_get_dr(vcpu, 7, &val);
6211         put_smstate(u32, buf, 0x7fc8, (u32)val);
6212
6213         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6214         put_smstate(u32, buf, 0x7fc4, seg.selector);
6215         put_smstate(u32, buf, 0x7f64, seg.base);
6216         put_smstate(u32, buf, 0x7f60, seg.limit);
6217         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6218
6219         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6220         put_smstate(u32, buf, 0x7fc0, seg.selector);
6221         put_smstate(u32, buf, 0x7f80, seg.base);
6222         put_smstate(u32, buf, 0x7f7c, seg.limit);
6223         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6224
6225         kvm_x86_ops->get_gdt(vcpu, &dt);
6226         put_smstate(u32, buf, 0x7f74, dt.address);
6227         put_smstate(u32, buf, 0x7f70, dt.size);
6228
6229         kvm_x86_ops->get_idt(vcpu, &dt);
6230         put_smstate(u32, buf, 0x7f58, dt.address);
6231         put_smstate(u32, buf, 0x7f54, dt.size);
6232
6233         for (i = 0; i < 6; i++)
6234                 process_smi_save_seg_32(vcpu, buf, i);
6235
6236         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6237
6238         /* revision id */
6239         put_smstate(u32, buf, 0x7efc, 0x00020000);
6240         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6241 }
6242
6243 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6244 {
6245 #ifdef CONFIG_X86_64
6246         struct desc_ptr dt;
6247         struct kvm_segment seg;
6248         unsigned long val;
6249         int i;
6250
6251         for (i = 0; i < 16; i++)
6252                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6253
6254         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6255         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6256
6257         kvm_get_dr(vcpu, 6, &val);
6258         put_smstate(u64, buf, 0x7f68, val);
6259         kvm_get_dr(vcpu, 7, &val);
6260         put_smstate(u64, buf, 0x7f60, val);
6261
6262         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6263         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6264         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6265
6266         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6267
6268         /* revision id */
6269         put_smstate(u32, buf, 0x7efc, 0x00020064);
6270
6271         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6272
6273         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6274         put_smstate(u16, buf, 0x7e90, seg.selector);
6275         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6276         put_smstate(u32, buf, 0x7e94, seg.limit);
6277         put_smstate(u64, buf, 0x7e98, seg.base);
6278
6279         kvm_x86_ops->get_idt(vcpu, &dt);
6280         put_smstate(u32, buf, 0x7e84, dt.size);
6281         put_smstate(u64, buf, 0x7e88, dt.address);
6282
6283         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6284         put_smstate(u16, buf, 0x7e70, seg.selector);
6285         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6286         put_smstate(u32, buf, 0x7e74, seg.limit);
6287         put_smstate(u64, buf, 0x7e78, seg.base);
6288
6289         kvm_x86_ops->get_gdt(vcpu, &dt);
6290         put_smstate(u32, buf, 0x7e64, dt.size);
6291         put_smstate(u64, buf, 0x7e68, dt.address);
6292
6293         for (i = 0; i < 6; i++)
6294                 process_smi_save_seg_64(vcpu, buf, i);
6295 #else
6296         WARN_ON_ONCE(1);
6297 #endif
6298 }
6299
6300 static void process_smi(struct kvm_vcpu *vcpu)
6301 {
6302         struct kvm_segment cs, ds;
6303         struct desc_ptr dt;
6304         char buf[512];
6305         u32 cr0;
6306
6307         if (is_smm(vcpu)) {
6308                 vcpu->arch.smi_pending = true;
6309                 return;
6310         }
6311
6312         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6313         vcpu->arch.hflags |= HF_SMM_MASK;
6314         memset(buf, 0, 512);
6315         if (guest_cpuid_has_longmode(vcpu))
6316                 process_smi_save_state_64(vcpu, buf);
6317         else
6318                 process_smi_save_state_32(vcpu, buf);
6319
6320         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6321
6322         if (kvm_x86_ops->get_nmi_mask(vcpu))
6323                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6324         else
6325                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6326
6327         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6328         kvm_rip_write(vcpu, 0x8000);
6329
6330         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6331         kvm_x86_ops->set_cr0(vcpu, cr0);
6332         vcpu->arch.cr0 = cr0;
6333
6334         kvm_x86_ops->set_cr4(vcpu, 0);
6335
6336         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6337         dt.address = dt.size = 0;
6338         kvm_x86_ops->set_idt(vcpu, &dt);
6339
6340         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6341
6342         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6343         cs.base = vcpu->arch.smbase;
6344
6345         ds.selector = 0;
6346         ds.base = 0;
6347
6348         cs.limit    = ds.limit = 0xffffffff;
6349         cs.type     = ds.type = 0x3;
6350         cs.dpl      = ds.dpl = 0;
6351         cs.db       = ds.db = 0;
6352         cs.s        = ds.s = 1;
6353         cs.l        = ds.l = 0;
6354         cs.g        = ds.g = 1;
6355         cs.avl      = ds.avl = 0;
6356         cs.present  = ds.present = 1;
6357         cs.unusable = ds.unusable = 0;
6358         cs.padding  = ds.padding = 0;
6359
6360         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6361         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6362         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6363         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6364         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6365         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6366
6367         if (guest_cpuid_has_longmode(vcpu))
6368                 kvm_x86_ops->set_efer(vcpu, 0);
6369
6370         kvm_update_cpuid(vcpu);
6371         kvm_mmu_reset_context(vcpu);
6372 }
6373
6374 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6375 {
6376         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6377 }
6378
6379 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6380 {
6381         u64 eoi_exit_bitmap[4];
6382
6383         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6384                 return;
6385
6386         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6387
6388         if (irqchip_split(vcpu->kvm))
6389                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6390         else {
6391                 if (vcpu->arch.apicv_active)
6392                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6393                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6394         }
6395         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6396                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6397         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6398 }
6399
6400 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6401 {
6402         ++vcpu->stat.tlb_flush;
6403         kvm_x86_ops->tlb_flush(vcpu);
6404 }
6405
6406 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6407 {
6408         struct page *page = NULL;
6409
6410         if (!lapic_in_kernel(vcpu))
6411                 return;
6412
6413         if (!kvm_x86_ops->set_apic_access_page_addr)
6414                 return;
6415
6416         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6417         if (is_error_page(page))
6418                 return;
6419         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6420
6421         /*
6422          * Do not pin apic access page in memory, the MMU notifier
6423          * will call us again if it is migrated or swapped out.
6424          */
6425         put_page(page);
6426 }
6427 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6428
6429 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6430                                            unsigned long address)
6431 {
6432         /*
6433          * The physical address of apic access page is stored in the VMCS.
6434          * Update it when it becomes invalid.
6435          */
6436         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6437                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6438 }
6439
6440 /*
6441  * Returns 1 to let vcpu_run() continue the guest execution loop without
6442  * exiting to the userspace.  Otherwise, the value will be returned to the
6443  * userspace.
6444  */
6445 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6446 {
6447         int r;
6448         bool req_int_win =
6449                 dm_request_for_irq_injection(vcpu) &&
6450                 kvm_cpu_accept_dm_intr(vcpu);
6451
6452         bool req_immediate_exit = false;
6453
6454         if (vcpu->requests) {
6455                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6456                         kvm_mmu_unload(vcpu);
6457                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6458                         __kvm_migrate_timers(vcpu);
6459                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6460                         kvm_gen_update_masterclock(vcpu->kvm);
6461                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6462                         kvm_gen_kvmclock_update(vcpu);
6463                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6464                         r = kvm_guest_time_update(vcpu);
6465                         if (unlikely(r))
6466                                 goto out;
6467                 }
6468                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6469                         kvm_mmu_sync_roots(vcpu);
6470                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6471                         kvm_vcpu_flush_tlb(vcpu);
6472                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6473                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6474                         r = 0;
6475                         goto out;
6476                 }
6477                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6478                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6479                         r = 0;
6480                         goto out;
6481                 }
6482                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6483                         vcpu->fpu_active = 0;
6484                         kvm_x86_ops->fpu_deactivate(vcpu);
6485                 }
6486                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6487                         /* Page is swapped out. Do synthetic halt */
6488                         vcpu->arch.apf.halted = true;
6489                         r = 1;
6490                         goto out;
6491                 }
6492                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6493                         record_steal_time(vcpu);
6494                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6495                         process_smi(vcpu);
6496                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6497                         process_nmi(vcpu);
6498                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6499                         kvm_pmu_handle_event(vcpu);
6500                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6501                         kvm_pmu_deliver_pmi(vcpu);
6502                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6503                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6504                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6505                                      vcpu->arch.ioapic_handled_vectors)) {
6506                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6507                                 vcpu->run->eoi.vector =
6508                                                 vcpu->arch.pending_ioapic_eoi;
6509                                 r = 0;
6510                                 goto out;
6511                         }
6512                 }
6513                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6514                         vcpu_scan_ioapic(vcpu);
6515                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6516                         kvm_vcpu_reload_apic_access_page(vcpu);
6517                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6518                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6519                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6520                         r = 0;
6521                         goto out;
6522                 }
6523                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6524                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6525                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6526                         r = 0;
6527                         goto out;
6528                 }
6529                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6530                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6531                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6532                         r = 0;
6533                         goto out;
6534                 }
6535
6536                 /*
6537                  * KVM_REQ_HV_STIMER has to be processed after
6538                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6539                  * depend on the guest clock being up-to-date
6540                  */
6541                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6542                         kvm_hv_process_stimers(vcpu);
6543         }
6544
6545         /*
6546          * KVM_REQ_EVENT is not set when posted interrupts are set by
6547          * VT-d hardware, so we have to update RVI unconditionally.
6548          */
6549         if (kvm_lapic_enabled(vcpu)) {
6550                 /*
6551                  * Update architecture specific hints for APIC
6552                  * virtual interrupt delivery.
6553                  */
6554                 if (vcpu->arch.apicv_active)
6555                         kvm_x86_ops->hwapic_irr_update(vcpu,
6556                                 kvm_lapic_find_highest_irr(vcpu));
6557         }
6558
6559         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6560                 kvm_apic_accept_events(vcpu);
6561                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6562                         r = 1;
6563                         goto out;
6564                 }
6565
6566                 if (inject_pending_event(vcpu, req_int_win) != 0)
6567                         req_immediate_exit = true;
6568                 /* enable NMI/IRQ window open exits if needed */
6569                 else {
6570                         if (vcpu->arch.nmi_pending)
6571                                 kvm_x86_ops->enable_nmi_window(vcpu);
6572                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6573                                 kvm_x86_ops->enable_irq_window(vcpu);
6574                 }
6575
6576                 if (kvm_lapic_enabled(vcpu)) {
6577                         update_cr8_intercept(vcpu);
6578                         kvm_lapic_sync_to_vapic(vcpu);
6579                 }
6580         }
6581
6582         r = kvm_mmu_reload(vcpu);
6583         if (unlikely(r)) {
6584                 goto cancel_injection;
6585         }
6586
6587         preempt_disable();
6588
6589         kvm_x86_ops->prepare_guest_switch(vcpu);
6590         if (vcpu->fpu_active)
6591                 kvm_load_guest_fpu(vcpu);
6592         vcpu->mode = IN_GUEST_MODE;
6593
6594         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6595
6596         /*
6597          * We should set ->mode before check ->requests,
6598          * Please see the comment in kvm_make_all_cpus_request.
6599          * This also orders the write to mode from any reads
6600          * to the page tables done while the VCPU is running.
6601          * Please see the comment in kvm_flush_remote_tlbs.
6602          */
6603         smp_mb__after_srcu_read_unlock();
6604
6605         local_irq_disable();
6606
6607         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6608             || need_resched() || signal_pending(current)) {
6609                 vcpu->mode = OUTSIDE_GUEST_MODE;
6610                 smp_wmb();
6611                 local_irq_enable();
6612                 preempt_enable();
6613                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6614                 r = 1;
6615                 goto cancel_injection;
6616         }
6617
6618         kvm_load_guest_xcr0(vcpu);
6619
6620         if (req_immediate_exit)
6621                 smp_send_reschedule(vcpu->cpu);
6622
6623         trace_kvm_entry(vcpu->vcpu_id);
6624         wait_lapic_expire(vcpu);
6625         __kvm_guest_enter();
6626
6627         if (unlikely(vcpu->arch.switch_db_regs)) {
6628                 set_debugreg(0, 7);
6629                 set_debugreg(vcpu->arch.eff_db[0], 0);
6630                 set_debugreg(vcpu->arch.eff_db[1], 1);
6631                 set_debugreg(vcpu->arch.eff_db[2], 2);
6632                 set_debugreg(vcpu->arch.eff_db[3], 3);
6633                 set_debugreg(vcpu->arch.dr6, 6);
6634                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6635         }
6636
6637         kvm_x86_ops->run(vcpu);
6638
6639         /*
6640          * Do this here before restoring debug registers on the host.  And
6641          * since we do this before handling the vmexit, a DR access vmexit
6642          * can (a) read the correct value of the debug registers, (b) set
6643          * KVM_DEBUGREG_WONT_EXIT again.
6644          */
6645         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6646                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6647                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6648                 kvm_update_dr0123(vcpu);
6649                 kvm_update_dr6(vcpu);
6650                 kvm_update_dr7(vcpu);
6651                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6652         }
6653
6654         /*
6655          * If the guest has used debug registers, at least dr7
6656          * will be disabled while returning to the host.
6657          * If we don't have active breakpoints in the host, we don't
6658          * care about the messed up debug address registers. But if
6659          * we have some of them active, restore the old state.
6660          */
6661         if (hw_breakpoint_active())
6662                 hw_breakpoint_restore();
6663
6664         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6665
6666         vcpu->mode = OUTSIDE_GUEST_MODE;
6667         smp_wmb();
6668
6669         kvm_put_guest_xcr0(vcpu);
6670
6671         /* Interrupt is enabled by handle_external_intr() */
6672         kvm_x86_ops->handle_external_intr(vcpu);
6673
6674         ++vcpu->stat.exits;
6675
6676         /*
6677          * We must have an instruction between local_irq_enable() and
6678          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6679          * the interrupt shadow.  The stat.exits increment will do nicely.
6680          * But we need to prevent reordering, hence this barrier():
6681          */
6682         barrier();
6683
6684         kvm_guest_exit();
6685
6686         preempt_enable();
6687
6688         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6689
6690         /*
6691          * Profile KVM exit RIPs:
6692          */
6693         if (unlikely(prof_on == KVM_PROFILING)) {
6694                 unsigned long rip = kvm_rip_read(vcpu);
6695                 profile_hit(KVM_PROFILING, (void *)rip);
6696         }
6697
6698         if (unlikely(vcpu->arch.tsc_always_catchup))
6699                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6700
6701         if (vcpu->arch.apic_attention)
6702                 kvm_lapic_sync_from_vapic(vcpu);
6703
6704         r = kvm_x86_ops->handle_exit(vcpu);
6705         return r;
6706
6707 cancel_injection:
6708         kvm_x86_ops->cancel_injection(vcpu);
6709         if (unlikely(vcpu->arch.apic_attention))
6710                 kvm_lapic_sync_from_vapic(vcpu);
6711 out:
6712         return r;
6713 }
6714
6715 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6716 {
6717         if (!kvm_arch_vcpu_runnable(vcpu) &&
6718             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6719                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6720                 kvm_vcpu_block(vcpu);
6721                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6722
6723                 if (kvm_x86_ops->post_block)
6724                         kvm_x86_ops->post_block(vcpu);
6725
6726                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6727                         return 1;
6728         }
6729
6730         kvm_apic_accept_events(vcpu);
6731         switch(vcpu->arch.mp_state) {
6732         case KVM_MP_STATE_HALTED:
6733                 vcpu->arch.pv.pv_unhalted = false;
6734                 vcpu->arch.mp_state =
6735                         KVM_MP_STATE_RUNNABLE;
6736         case KVM_MP_STATE_RUNNABLE:
6737                 vcpu->arch.apf.halted = false;
6738                 break;
6739         case KVM_MP_STATE_INIT_RECEIVED:
6740                 break;
6741         default:
6742                 return -EINTR;
6743                 break;
6744         }
6745         return 1;
6746 }
6747
6748 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6749 {
6750         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6751                 !vcpu->arch.apf.halted);
6752 }
6753
6754 static int vcpu_run(struct kvm_vcpu *vcpu)
6755 {
6756         int r;
6757         struct kvm *kvm = vcpu->kvm;
6758
6759         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6760
6761         for (;;) {
6762                 if (kvm_vcpu_running(vcpu)) {
6763                         r = vcpu_enter_guest(vcpu);
6764                 } else {
6765                         r = vcpu_block(kvm, vcpu);
6766                 }
6767
6768                 if (r <= 0)
6769                         break;
6770
6771                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6772                 if (kvm_cpu_has_pending_timer(vcpu))
6773                         kvm_inject_pending_timer_irqs(vcpu);
6774
6775                 if (dm_request_for_irq_injection(vcpu) &&
6776                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6777                         r = 0;
6778                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6779                         ++vcpu->stat.request_irq_exits;
6780                         break;
6781                 }
6782
6783                 kvm_check_async_pf_completion(vcpu);
6784
6785                 if (signal_pending(current)) {
6786                         r = -EINTR;
6787                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6788                         ++vcpu->stat.signal_exits;
6789                         break;
6790                 }
6791                 if (need_resched()) {
6792                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6793                         cond_resched();
6794                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6795                 }
6796         }
6797
6798         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6799
6800         return r;
6801 }
6802
6803 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6804 {
6805         int r;
6806         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6807         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6808         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6809         if (r != EMULATE_DONE)
6810                 return 0;
6811         return 1;
6812 }
6813
6814 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6815 {
6816         BUG_ON(!vcpu->arch.pio.count);
6817
6818         return complete_emulated_io(vcpu);
6819 }
6820
6821 /*
6822  * Implements the following, as a state machine:
6823  *
6824  * read:
6825  *   for each fragment
6826  *     for each mmio piece in the fragment
6827  *       write gpa, len
6828  *       exit
6829  *       copy data
6830  *   execute insn
6831  *
6832  * write:
6833  *   for each fragment
6834  *     for each mmio piece in the fragment
6835  *       write gpa, len
6836  *       copy data
6837  *       exit
6838  */
6839 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6840 {
6841         struct kvm_run *run = vcpu->run;
6842         struct kvm_mmio_fragment *frag;
6843         unsigned len;
6844
6845         BUG_ON(!vcpu->mmio_needed);
6846
6847         /* Complete previous fragment */
6848         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6849         len = min(8u, frag->len);
6850         if (!vcpu->mmio_is_write)
6851                 memcpy(frag->data, run->mmio.data, len);
6852
6853         if (frag->len <= 8) {
6854                 /* Switch to the next fragment. */
6855                 frag++;
6856                 vcpu->mmio_cur_fragment++;
6857         } else {
6858                 /* Go forward to the next mmio piece. */
6859                 frag->data += len;
6860                 frag->gpa += len;
6861                 frag->len -= len;
6862         }
6863
6864         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6865                 vcpu->mmio_needed = 0;
6866
6867                 /* FIXME: return into emulator if single-stepping.  */
6868                 if (vcpu->mmio_is_write)
6869                         return 1;
6870                 vcpu->mmio_read_completed = 1;
6871                 return complete_emulated_io(vcpu);
6872         }
6873
6874         run->exit_reason = KVM_EXIT_MMIO;
6875         run->mmio.phys_addr = frag->gpa;
6876         if (vcpu->mmio_is_write)
6877                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6878         run->mmio.len = min(8u, frag->len);
6879         run->mmio.is_write = vcpu->mmio_is_write;
6880         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6881         return 0;
6882 }
6883
6884
6885 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6886 {
6887         struct fpu *fpu = &current->thread.fpu;
6888         int r;
6889         sigset_t sigsaved;
6890
6891         fpu__activate_curr(fpu);
6892
6893         if (vcpu->sigset_active)
6894                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6895
6896         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6897                 kvm_vcpu_block(vcpu);
6898                 kvm_apic_accept_events(vcpu);
6899                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6900                 r = -EAGAIN;
6901                 goto out;
6902         }
6903
6904         /* re-sync apic's tpr */
6905         if (!lapic_in_kernel(vcpu)) {
6906                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6907                         r = -EINVAL;
6908                         goto out;
6909                 }
6910         }
6911
6912         if (unlikely(vcpu->arch.complete_userspace_io)) {
6913                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6914                 vcpu->arch.complete_userspace_io = NULL;
6915                 r = cui(vcpu);
6916                 if (r <= 0)
6917                         goto out;
6918         } else
6919                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6920
6921         r = vcpu_run(vcpu);
6922
6923 out:
6924         post_kvm_run_save(vcpu);
6925         if (vcpu->sigset_active)
6926                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6927
6928         return r;
6929 }
6930
6931 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6932 {
6933         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6934                 /*
6935                  * We are here if userspace calls get_regs() in the middle of
6936                  * instruction emulation. Registers state needs to be copied
6937                  * back from emulation context to vcpu. Userspace shouldn't do
6938                  * that usually, but some bad designed PV devices (vmware
6939                  * backdoor interface) need this to work
6940                  */
6941                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6942                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6943         }
6944         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6945         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6946         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6947         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6948         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6949         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6950         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6951         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6952 #ifdef CONFIG_X86_64
6953         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6954         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6955         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6956         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6957         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6958         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6959         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6960         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6961 #endif
6962
6963         regs->rip = kvm_rip_read(vcpu);
6964         regs->rflags = kvm_get_rflags(vcpu);
6965
6966         return 0;
6967 }
6968
6969 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6970 {
6971         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6972         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6973
6974         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6975         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6976         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6977         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6978         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6979         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6980         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6981         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6982 #ifdef CONFIG_X86_64
6983         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6984         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6985         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6986         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6987         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6988         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6989         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6990         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6991 #endif
6992
6993         kvm_rip_write(vcpu, regs->rip);
6994         kvm_set_rflags(vcpu, regs->rflags);
6995
6996         vcpu->arch.exception.pending = false;
6997
6998         kvm_make_request(KVM_REQ_EVENT, vcpu);
6999
7000         return 0;
7001 }
7002
7003 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7004 {
7005         struct kvm_segment cs;
7006
7007         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7008         *db = cs.db;
7009         *l = cs.l;
7010 }
7011 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7012
7013 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7014                                   struct kvm_sregs *sregs)
7015 {
7016         struct desc_ptr dt;
7017
7018         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7019         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7020         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7021         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7022         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7023         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7024
7025         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7026         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7027
7028         kvm_x86_ops->get_idt(vcpu, &dt);
7029         sregs->idt.limit = dt.size;
7030         sregs->idt.base = dt.address;
7031         kvm_x86_ops->get_gdt(vcpu, &dt);
7032         sregs->gdt.limit = dt.size;
7033         sregs->gdt.base = dt.address;
7034
7035         sregs->cr0 = kvm_read_cr0(vcpu);
7036         sregs->cr2 = vcpu->arch.cr2;
7037         sregs->cr3 = kvm_read_cr3(vcpu);
7038         sregs->cr4 = kvm_read_cr4(vcpu);
7039         sregs->cr8 = kvm_get_cr8(vcpu);
7040         sregs->efer = vcpu->arch.efer;
7041         sregs->apic_base = kvm_get_apic_base(vcpu);
7042
7043         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7044
7045         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7046                 set_bit(vcpu->arch.interrupt.nr,
7047                         (unsigned long *)sregs->interrupt_bitmap);
7048
7049         return 0;
7050 }
7051
7052 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7053                                     struct kvm_mp_state *mp_state)
7054 {
7055         kvm_apic_accept_events(vcpu);
7056         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7057                                         vcpu->arch.pv.pv_unhalted)
7058                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7059         else
7060                 mp_state->mp_state = vcpu->arch.mp_state;
7061
7062         return 0;
7063 }
7064
7065 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7066                                     struct kvm_mp_state *mp_state)
7067 {
7068         if (!lapic_in_kernel(vcpu) &&
7069             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7070                 return -EINVAL;
7071
7072         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7073                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7074                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7075         } else
7076                 vcpu->arch.mp_state = mp_state->mp_state;
7077         kvm_make_request(KVM_REQ_EVENT, vcpu);
7078         return 0;
7079 }
7080
7081 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7082                     int reason, bool has_error_code, u32 error_code)
7083 {
7084         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7085         int ret;
7086
7087         init_emulate_ctxt(vcpu);
7088
7089         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7090                                    has_error_code, error_code);
7091
7092         if (ret)
7093                 return EMULATE_FAIL;
7094
7095         kvm_rip_write(vcpu, ctxt->eip);
7096         kvm_set_rflags(vcpu, ctxt->eflags);
7097         kvm_make_request(KVM_REQ_EVENT, vcpu);
7098         return EMULATE_DONE;
7099 }
7100 EXPORT_SYMBOL_GPL(kvm_task_switch);
7101
7102 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7103                                   struct kvm_sregs *sregs)
7104 {
7105         struct msr_data apic_base_msr;
7106         int mmu_reset_needed = 0;
7107         int pending_vec, max_bits, idx;
7108         struct desc_ptr dt;
7109
7110         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7111                 return -EINVAL;
7112
7113         dt.size = sregs->idt.limit;
7114         dt.address = sregs->idt.base;
7115         kvm_x86_ops->set_idt(vcpu, &dt);
7116         dt.size = sregs->gdt.limit;
7117         dt.address = sregs->gdt.base;
7118         kvm_x86_ops->set_gdt(vcpu, &dt);
7119
7120         vcpu->arch.cr2 = sregs->cr2;
7121         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7122         vcpu->arch.cr3 = sregs->cr3;
7123         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7124
7125         kvm_set_cr8(vcpu, sregs->cr8);
7126
7127         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7128         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7129         apic_base_msr.data = sregs->apic_base;
7130         apic_base_msr.host_initiated = true;
7131         kvm_set_apic_base(vcpu, &apic_base_msr);
7132
7133         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7134         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7135         vcpu->arch.cr0 = sregs->cr0;
7136
7137         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7138         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7139         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7140                 kvm_update_cpuid(vcpu);
7141
7142         idx = srcu_read_lock(&vcpu->kvm->srcu);
7143         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7144                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7145                 mmu_reset_needed = 1;
7146         }
7147         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7148
7149         if (mmu_reset_needed)
7150                 kvm_mmu_reset_context(vcpu);
7151
7152         max_bits = KVM_NR_INTERRUPTS;
7153         pending_vec = find_first_bit(
7154                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7155         if (pending_vec < max_bits) {
7156                 kvm_queue_interrupt(vcpu, pending_vec, false);
7157                 pr_debug("Set back pending irq %d\n", pending_vec);
7158         }
7159
7160         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7161         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7162         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7163         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7164         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7165         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7166
7167         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7168         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7169
7170         update_cr8_intercept(vcpu);
7171
7172         /* Older userspace won't unhalt the vcpu on reset. */
7173         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7174             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7175             !is_protmode(vcpu))
7176                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7177
7178         kvm_make_request(KVM_REQ_EVENT, vcpu);
7179
7180         return 0;
7181 }
7182
7183 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7184                                         struct kvm_guest_debug *dbg)
7185 {
7186         unsigned long rflags;
7187         int i, r;
7188
7189         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7190                 r = -EBUSY;
7191                 if (vcpu->arch.exception.pending)
7192                         goto out;
7193                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7194                         kvm_queue_exception(vcpu, DB_VECTOR);
7195                 else
7196                         kvm_queue_exception(vcpu, BP_VECTOR);
7197         }
7198
7199         /*
7200          * Read rflags as long as potentially injected trace flags are still
7201          * filtered out.
7202          */
7203         rflags = kvm_get_rflags(vcpu);
7204
7205         vcpu->guest_debug = dbg->control;
7206         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7207                 vcpu->guest_debug = 0;
7208
7209         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7210                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7211                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7212                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7213         } else {
7214                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7215                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7216         }
7217         kvm_update_dr7(vcpu);
7218
7219         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7220                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7221                         get_segment_base(vcpu, VCPU_SREG_CS);
7222
7223         /*
7224          * Trigger an rflags update that will inject or remove the trace
7225          * flags.
7226          */
7227         kvm_set_rflags(vcpu, rflags);
7228
7229         kvm_x86_ops->update_bp_intercept(vcpu);
7230
7231         r = 0;
7232
7233 out:
7234
7235         return r;
7236 }
7237
7238 /*
7239  * Translate a guest virtual address to a guest physical address.
7240  */
7241 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7242                                     struct kvm_translation *tr)
7243 {
7244         unsigned long vaddr = tr->linear_address;
7245         gpa_t gpa;
7246         int idx;
7247
7248         idx = srcu_read_lock(&vcpu->kvm->srcu);
7249         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7250         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7251         tr->physical_address = gpa;
7252         tr->valid = gpa != UNMAPPED_GVA;
7253         tr->writeable = 1;
7254         tr->usermode = 0;
7255
7256         return 0;
7257 }
7258
7259 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7260 {
7261         struct fxregs_state *fxsave =
7262                         &vcpu->arch.guest_fpu.state.fxsave;
7263
7264         memcpy(fpu->fpr, fxsave->st_space, 128);
7265         fpu->fcw = fxsave->cwd;
7266         fpu->fsw = fxsave->swd;
7267         fpu->ftwx = fxsave->twd;
7268         fpu->last_opcode = fxsave->fop;
7269         fpu->last_ip = fxsave->rip;
7270         fpu->last_dp = fxsave->rdp;
7271         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7272
7273         return 0;
7274 }
7275
7276 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7277 {
7278         struct fxregs_state *fxsave =
7279                         &vcpu->arch.guest_fpu.state.fxsave;
7280
7281         memcpy(fxsave->st_space, fpu->fpr, 128);
7282         fxsave->cwd = fpu->fcw;
7283         fxsave->swd = fpu->fsw;
7284         fxsave->twd = fpu->ftwx;
7285         fxsave->fop = fpu->last_opcode;
7286         fxsave->rip = fpu->last_ip;
7287         fxsave->rdp = fpu->last_dp;
7288         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7289
7290         return 0;
7291 }
7292
7293 static void fx_init(struct kvm_vcpu *vcpu)
7294 {
7295         fpstate_init(&vcpu->arch.guest_fpu.state);
7296         if (cpu_has_xsaves)
7297                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7298                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7299
7300         /*
7301          * Ensure guest xcr0 is valid for loading
7302          */
7303         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7304
7305         vcpu->arch.cr0 |= X86_CR0_ET;
7306 }
7307
7308 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7309 {
7310         if (vcpu->guest_fpu_loaded)
7311                 return;
7312
7313         /*
7314          * Restore all possible states in the guest,
7315          * and assume host would use all available bits.
7316          * Guest xcr0 would be loaded later.
7317          */
7318         vcpu->guest_fpu_loaded = 1;
7319         __kernel_fpu_begin();
7320         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7321         trace_kvm_fpu(1);
7322 }
7323
7324 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7325 {
7326         if (!vcpu->guest_fpu_loaded) {
7327                 vcpu->fpu_counter = 0;
7328                 return;
7329         }
7330
7331         vcpu->guest_fpu_loaded = 0;
7332         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7333         __kernel_fpu_end();
7334         ++vcpu->stat.fpu_reload;
7335         /*
7336          * If using eager FPU mode, or if the guest is a frequent user
7337          * of the FPU, just leave the FPU active for next time.
7338          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7339          * the FPU in bursts will revert to loading it on demand.
7340          */
7341         if (!use_eager_fpu()) {
7342                 if (++vcpu->fpu_counter < 5)
7343                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7344         }
7345         trace_kvm_fpu(0);
7346 }
7347
7348 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7349 {
7350         kvmclock_reset(vcpu);
7351
7352         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7353         kvm_x86_ops->vcpu_free(vcpu);
7354 }
7355
7356 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7357                                                 unsigned int id)
7358 {
7359         struct kvm_vcpu *vcpu;
7360
7361         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7362                 printk_once(KERN_WARNING
7363                 "kvm: SMP vm created on host with unstable TSC; "
7364                 "guest TSC will not be reliable\n");
7365
7366         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7367
7368         return vcpu;
7369 }
7370
7371 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7372 {
7373         int r;
7374
7375         kvm_vcpu_mtrr_init(vcpu);
7376         r = vcpu_load(vcpu);
7377         if (r)
7378                 return r;
7379         kvm_vcpu_reset(vcpu, false);
7380         kvm_mmu_setup(vcpu);
7381         vcpu_put(vcpu);
7382         return r;
7383 }
7384
7385 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7386 {
7387         struct msr_data msr;
7388         struct kvm *kvm = vcpu->kvm;
7389
7390         if (vcpu_load(vcpu))
7391                 return;
7392         msr.data = 0x0;
7393         msr.index = MSR_IA32_TSC;
7394         msr.host_initiated = true;
7395         kvm_write_tsc(vcpu, &msr);
7396         vcpu_put(vcpu);
7397
7398         if (!kvmclock_periodic_sync)
7399                 return;
7400
7401         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7402                                         KVMCLOCK_SYNC_PERIOD);
7403 }
7404
7405 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7406 {
7407         int r;
7408         vcpu->arch.apf.msr_val = 0;
7409
7410         r = vcpu_load(vcpu);
7411         BUG_ON(r);
7412         kvm_mmu_unload(vcpu);
7413         vcpu_put(vcpu);
7414
7415         kvm_x86_ops->vcpu_free(vcpu);
7416 }
7417
7418 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7419 {
7420         vcpu->arch.hflags = 0;
7421
7422         atomic_set(&vcpu->arch.nmi_queued, 0);
7423         vcpu->arch.nmi_pending = 0;
7424         vcpu->arch.nmi_injected = false;
7425         kvm_clear_interrupt_queue(vcpu);
7426         kvm_clear_exception_queue(vcpu);
7427
7428         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7429         kvm_update_dr0123(vcpu);
7430         vcpu->arch.dr6 = DR6_INIT;
7431         kvm_update_dr6(vcpu);
7432         vcpu->arch.dr7 = DR7_FIXED_1;
7433         kvm_update_dr7(vcpu);
7434
7435         vcpu->arch.cr2 = 0;
7436
7437         kvm_make_request(KVM_REQ_EVENT, vcpu);
7438         vcpu->arch.apf.msr_val = 0;
7439         vcpu->arch.st.msr_val = 0;
7440
7441         kvmclock_reset(vcpu);
7442
7443         kvm_clear_async_pf_completion_queue(vcpu);
7444         kvm_async_pf_hash_reset(vcpu);
7445         vcpu->arch.apf.halted = false;
7446
7447         if (!init_event) {
7448                 kvm_pmu_reset(vcpu);
7449                 vcpu->arch.smbase = 0x30000;
7450         }
7451
7452         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7453         vcpu->arch.regs_avail = ~0;
7454         vcpu->arch.regs_dirty = ~0;
7455
7456         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7457 }
7458
7459 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7460 {
7461         struct kvm_segment cs;
7462
7463         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7464         cs.selector = vector << 8;
7465         cs.base = vector << 12;
7466         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7467         kvm_rip_write(vcpu, 0);
7468 }
7469
7470 int kvm_arch_hardware_enable(void)
7471 {
7472         struct kvm *kvm;
7473         struct kvm_vcpu *vcpu;
7474         int i;
7475         int ret;
7476         u64 local_tsc;
7477         u64 max_tsc = 0;
7478         bool stable, backwards_tsc = false;
7479
7480         kvm_shared_msr_cpu_online();
7481         ret = kvm_x86_ops->hardware_enable();
7482         if (ret != 0)
7483                 return ret;
7484
7485         local_tsc = rdtsc();
7486         stable = !check_tsc_unstable();
7487         list_for_each_entry(kvm, &vm_list, vm_list) {
7488                 kvm_for_each_vcpu(i, vcpu, kvm) {
7489                         if (!stable && vcpu->cpu == smp_processor_id())
7490                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7491                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7492                                 backwards_tsc = true;
7493                                 if (vcpu->arch.last_host_tsc > max_tsc)
7494                                         max_tsc = vcpu->arch.last_host_tsc;
7495                         }
7496                 }
7497         }
7498
7499         /*
7500          * Sometimes, even reliable TSCs go backwards.  This happens on
7501          * platforms that reset TSC during suspend or hibernate actions, but
7502          * maintain synchronization.  We must compensate.  Fortunately, we can
7503          * detect that condition here, which happens early in CPU bringup,
7504          * before any KVM threads can be running.  Unfortunately, we can't
7505          * bring the TSCs fully up to date with real time, as we aren't yet far
7506          * enough into CPU bringup that we know how much real time has actually
7507          * elapsed; our helper function, get_kernel_ns() will be using boot
7508          * variables that haven't been updated yet.
7509          *
7510          * So we simply find the maximum observed TSC above, then record the
7511          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7512          * the adjustment will be applied.  Note that we accumulate
7513          * adjustments, in case multiple suspend cycles happen before some VCPU
7514          * gets a chance to run again.  In the event that no KVM threads get a
7515          * chance to run, we will miss the entire elapsed period, as we'll have
7516          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7517          * loose cycle time.  This isn't too big a deal, since the loss will be
7518          * uniform across all VCPUs (not to mention the scenario is extremely
7519          * unlikely). It is possible that a second hibernate recovery happens
7520          * much faster than a first, causing the observed TSC here to be
7521          * smaller; this would require additional padding adjustment, which is
7522          * why we set last_host_tsc to the local tsc observed here.
7523          *
7524          * N.B. - this code below runs only on platforms with reliable TSC,
7525          * as that is the only way backwards_tsc is set above.  Also note
7526          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7527          * have the same delta_cyc adjustment applied if backwards_tsc
7528          * is detected.  Note further, this adjustment is only done once,
7529          * as we reset last_host_tsc on all VCPUs to stop this from being
7530          * called multiple times (one for each physical CPU bringup).
7531          *
7532          * Platforms with unreliable TSCs don't have to deal with this, they
7533          * will be compensated by the logic in vcpu_load, which sets the TSC to
7534          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7535          * guarantee that they stay in perfect synchronization.
7536          */
7537         if (backwards_tsc) {
7538                 u64 delta_cyc = max_tsc - local_tsc;
7539                 backwards_tsc_observed = true;
7540                 list_for_each_entry(kvm, &vm_list, vm_list) {
7541                         kvm_for_each_vcpu(i, vcpu, kvm) {
7542                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7543                                 vcpu->arch.last_host_tsc = local_tsc;
7544                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7545                         }
7546
7547                         /*
7548                          * We have to disable TSC offset matching.. if you were
7549                          * booting a VM while issuing an S4 host suspend....
7550                          * you may have some problem.  Solving this issue is
7551                          * left as an exercise to the reader.
7552                          */
7553                         kvm->arch.last_tsc_nsec = 0;
7554                         kvm->arch.last_tsc_write = 0;
7555                 }
7556
7557         }
7558         return 0;
7559 }
7560
7561 void kvm_arch_hardware_disable(void)
7562 {
7563         kvm_x86_ops->hardware_disable();
7564         drop_user_return_notifiers();
7565 }
7566
7567 int kvm_arch_hardware_setup(void)
7568 {
7569         int r;
7570
7571         r = kvm_x86_ops->hardware_setup();
7572         if (r != 0)
7573                 return r;
7574
7575         if (kvm_has_tsc_control) {
7576                 /*
7577                  * Make sure the user can only configure tsc_khz values that
7578                  * fit into a signed integer.
7579                  * A min value is not calculated needed because it will always
7580                  * be 1 on all machines.
7581                  */
7582                 u64 max = min(0x7fffffffULL,
7583                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7584                 kvm_max_guest_tsc_khz = max;
7585
7586                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7587         }
7588
7589         kvm_init_msr_list();
7590         return 0;
7591 }
7592
7593 void kvm_arch_hardware_unsetup(void)
7594 {
7595         kvm_x86_ops->hardware_unsetup();
7596 }
7597
7598 void kvm_arch_check_processor_compat(void *rtn)
7599 {
7600         kvm_x86_ops->check_processor_compatibility(rtn);
7601 }
7602
7603 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7604 {
7605         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7606 }
7607 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7608
7609 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7610 {
7611         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7612 }
7613
7614 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7615 {
7616         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7617 }
7618
7619 struct static_key kvm_no_apic_vcpu __read_mostly;
7620 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7621
7622 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7623 {
7624         struct page *page;
7625         struct kvm *kvm;
7626         int r;
7627
7628         BUG_ON(vcpu->kvm == NULL);
7629         kvm = vcpu->kvm;
7630
7631         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7632         vcpu->arch.pv.pv_unhalted = false;
7633         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7634         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7635                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7636         else
7637                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7638
7639         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7640         if (!page) {
7641                 r = -ENOMEM;
7642                 goto fail;
7643         }
7644         vcpu->arch.pio_data = page_address(page);
7645
7646         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7647
7648         r = kvm_mmu_create(vcpu);
7649         if (r < 0)
7650                 goto fail_free_pio_data;
7651
7652         if (irqchip_in_kernel(kvm)) {
7653                 r = kvm_create_lapic(vcpu);
7654                 if (r < 0)
7655                         goto fail_mmu_destroy;
7656         } else
7657                 static_key_slow_inc(&kvm_no_apic_vcpu);
7658
7659         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7660                                        GFP_KERNEL);
7661         if (!vcpu->arch.mce_banks) {
7662                 r = -ENOMEM;
7663                 goto fail_free_lapic;
7664         }
7665         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7666
7667         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7668                 r = -ENOMEM;
7669                 goto fail_free_mce_banks;
7670         }
7671
7672         fx_init(vcpu);
7673
7674         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7675         vcpu->arch.pv_time_enabled = false;
7676
7677         vcpu->arch.guest_supported_xcr0 = 0;
7678         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7679
7680         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7681
7682         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7683
7684         kvm_async_pf_hash_reset(vcpu);
7685         kvm_pmu_init(vcpu);
7686
7687         vcpu->arch.pending_external_vector = -1;
7688
7689         kvm_hv_vcpu_init(vcpu);
7690
7691         return 0;
7692
7693 fail_free_mce_banks:
7694         kfree(vcpu->arch.mce_banks);
7695 fail_free_lapic:
7696         kvm_free_lapic(vcpu);
7697 fail_mmu_destroy:
7698         kvm_mmu_destroy(vcpu);
7699 fail_free_pio_data:
7700         free_page((unsigned long)vcpu->arch.pio_data);
7701 fail:
7702         return r;
7703 }
7704
7705 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7706 {
7707         int idx;
7708
7709         kvm_hv_vcpu_uninit(vcpu);
7710         kvm_pmu_destroy(vcpu);
7711         kfree(vcpu->arch.mce_banks);
7712         kvm_free_lapic(vcpu);
7713         idx = srcu_read_lock(&vcpu->kvm->srcu);
7714         kvm_mmu_destroy(vcpu);
7715         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7716         free_page((unsigned long)vcpu->arch.pio_data);
7717         if (!lapic_in_kernel(vcpu))
7718                 static_key_slow_dec(&kvm_no_apic_vcpu);
7719 }
7720
7721 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7722 {
7723         kvm_x86_ops->sched_in(vcpu, cpu);
7724 }
7725
7726 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7727 {
7728         if (type)
7729                 return -EINVAL;
7730
7731         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7732         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7733         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7734         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7735         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7736
7737         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7738         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7739         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7740         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7741                 &kvm->arch.irq_sources_bitmap);
7742
7743         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7744         mutex_init(&kvm->arch.apic_map_lock);
7745         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7746
7747         pvclock_update_vm_gtod_copy(kvm);
7748
7749         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7750         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7751
7752         kvm_page_track_init(kvm);
7753         kvm_mmu_init_vm(kvm);
7754
7755         return 0;
7756 }
7757
7758 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7759 {
7760         int r;
7761         r = vcpu_load(vcpu);
7762         BUG_ON(r);
7763         kvm_mmu_unload(vcpu);
7764         vcpu_put(vcpu);
7765 }
7766
7767 static void kvm_free_vcpus(struct kvm *kvm)
7768 {
7769         unsigned int i;
7770         struct kvm_vcpu *vcpu;
7771
7772         /*
7773          * Unpin any mmu pages first.
7774          */
7775         kvm_for_each_vcpu(i, vcpu, kvm) {
7776                 kvm_clear_async_pf_completion_queue(vcpu);
7777                 kvm_unload_vcpu_mmu(vcpu);
7778         }
7779         kvm_for_each_vcpu(i, vcpu, kvm)
7780                 kvm_arch_vcpu_free(vcpu);
7781
7782         mutex_lock(&kvm->lock);
7783         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7784                 kvm->vcpus[i] = NULL;
7785
7786         atomic_set(&kvm->online_vcpus, 0);
7787         mutex_unlock(&kvm->lock);
7788 }
7789
7790 void kvm_arch_sync_events(struct kvm *kvm)
7791 {
7792         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7793         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7794         kvm_free_all_assigned_devices(kvm);
7795         kvm_free_pit(kvm);
7796 }
7797
7798 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7799 {
7800         int i, r;
7801         unsigned long hva;
7802         struct kvm_memslots *slots = kvm_memslots(kvm);
7803         struct kvm_memory_slot *slot, old;
7804
7805         /* Called with kvm->slots_lock held.  */
7806         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7807                 return -EINVAL;
7808
7809         slot = id_to_memslot(slots, id);
7810         if (size) {
7811                 if (WARN_ON(slot->npages))
7812                         return -EEXIST;
7813
7814                 /*
7815                  * MAP_SHARED to prevent internal slot pages from being moved
7816                  * by fork()/COW.
7817                  */
7818                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7819                               MAP_SHARED | MAP_ANONYMOUS, 0);
7820                 if (IS_ERR((void *)hva))
7821                         return PTR_ERR((void *)hva);
7822         } else {
7823                 if (!slot->npages)
7824                         return 0;
7825
7826                 hva = 0;
7827         }
7828
7829         old = *slot;
7830         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7831                 struct kvm_userspace_memory_region m;
7832
7833                 m.slot = id | (i << 16);
7834                 m.flags = 0;
7835                 m.guest_phys_addr = gpa;
7836                 m.userspace_addr = hva;
7837                 m.memory_size = size;
7838                 r = __kvm_set_memory_region(kvm, &m);
7839                 if (r < 0)
7840                         return r;
7841         }
7842
7843         if (!size) {
7844                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7845                 WARN_ON(r < 0);
7846         }
7847
7848         return 0;
7849 }
7850 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7851
7852 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7853 {
7854         int r;
7855
7856         mutex_lock(&kvm->slots_lock);
7857         r = __x86_set_memory_region(kvm, id, gpa, size);
7858         mutex_unlock(&kvm->slots_lock);
7859
7860         return r;
7861 }
7862 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7863
7864 void kvm_arch_destroy_vm(struct kvm *kvm)
7865 {
7866         if (current->mm == kvm->mm) {
7867                 /*
7868                  * Free memory regions allocated on behalf of userspace,
7869                  * unless the the memory map has changed due to process exit
7870                  * or fd copying.
7871                  */
7872                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7873                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7874                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7875         }
7876         kvm_iommu_unmap_guest(kvm);
7877         kfree(kvm->arch.vpic);
7878         kfree(kvm->arch.vioapic);
7879         kvm_free_vcpus(kvm);
7880         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7881         kvm_mmu_uninit_vm(kvm);
7882 }
7883
7884 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7885                            struct kvm_memory_slot *dont)
7886 {
7887         int i;
7888
7889         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7890                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7891                         kvfree(free->arch.rmap[i]);
7892                         free->arch.rmap[i] = NULL;
7893                 }
7894                 if (i == 0)
7895                         continue;
7896
7897                 if (!dont || free->arch.lpage_info[i - 1] !=
7898                              dont->arch.lpage_info[i - 1]) {
7899                         kvfree(free->arch.lpage_info[i - 1]);
7900                         free->arch.lpage_info[i - 1] = NULL;
7901                 }
7902         }
7903
7904         kvm_page_track_free_memslot(free, dont);
7905 }
7906
7907 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7908                             unsigned long npages)
7909 {
7910         int i;
7911
7912         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7913                 struct kvm_lpage_info *linfo;
7914                 unsigned long ugfn;
7915                 int lpages;
7916                 int level = i + 1;
7917
7918                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7919                                       slot->base_gfn, level) + 1;
7920
7921                 slot->arch.rmap[i] =
7922                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7923                 if (!slot->arch.rmap[i])
7924                         goto out_free;
7925                 if (i == 0)
7926                         continue;
7927
7928                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7929                 if (!linfo)
7930                         goto out_free;
7931
7932                 slot->arch.lpage_info[i - 1] = linfo;
7933
7934                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7935                         linfo[0].disallow_lpage = 1;
7936                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7937                         linfo[lpages - 1].disallow_lpage = 1;
7938                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7939                 /*
7940                  * If the gfn and userspace address are not aligned wrt each
7941                  * other, or if explicitly asked to, disable large page
7942                  * support for this slot
7943                  */
7944                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7945                     !kvm_largepages_enabled()) {
7946                         unsigned long j;
7947
7948                         for (j = 0; j < lpages; ++j)
7949                                 linfo[j].disallow_lpage = 1;
7950                 }
7951         }
7952
7953         if (kvm_page_track_create_memslot(slot, npages))
7954                 goto out_free;
7955
7956         return 0;
7957
7958 out_free:
7959         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7960                 kvfree(slot->arch.rmap[i]);
7961                 slot->arch.rmap[i] = NULL;
7962                 if (i == 0)
7963                         continue;
7964
7965                 kvfree(slot->arch.lpage_info[i - 1]);
7966                 slot->arch.lpage_info[i - 1] = NULL;
7967         }
7968         return -ENOMEM;
7969 }
7970
7971 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7972 {
7973         /*
7974          * memslots->generation has been incremented.
7975          * mmio generation may have reached its maximum value.
7976          */
7977         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7978 }
7979
7980 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7981                                 struct kvm_memory_slot *memslot,
7982                                 const struct kvm_userspace_memory_region *mem,
7983                                 enum kvm_mr_change change)
7984 {
7985         return 0;
7986 }
7987
7988 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7989                                      struct kvm_memory_slot *new)
7990 {
7991         /* Still write protect RO slot */
7992         if (new->flags & KVM_MEM_READONLY) {
7993                 kvm_mmu_slot_remove_write_access(kvm, new);
7994                 return;
7995         }
7996
7997         /*
7998          * Call kvm_x86_ops dirty logging hooks when they are valid.
7999          *
8000          * kvm_x86_ops->slot_disable_log_dirty is called when:
8001          *
8002          *  - KVM_MR_CREATE with dirty logging is disabled
8003          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8004          *
8005          * The reason is, in case of PML, we need to set D-bit for any slots
8006          * with dirty logging disabled in order to eliminate unnecessary GPA
8007          * logging in PML buffer (and potential PML buffer full VMEXT). This
8008          * guarantees leaving PML enabled during guest's lifetime won't have
8009          * any additonal overhead from PML when guest is running with dirty
8010          * logging disabled for memory slots.
8011          *
8012          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8013          * to dirty logging mode.
8014          *
8015          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8016          *
8017          * In case of write protect:
8018          *
8019          * Write protect all pages for dirty logging.
8020          *
8021          * All the sptes including the large sptes which point to this
8022          * slot are set to readonly. We can not create any new large
8023          * spte on this slot until the end of the logging.
8024          *
8025          * See the comments in fast_page_fault().
8026          */
8027         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8028                 if (kvm_x86_ops->slot_enable_log_dirty)
8029                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8030                 else
8031                         kvm_mmu_slot_remove_write_access(kvm, new);
8032         } else {
8033                 if (kvm_x86_ops->slot_disable_log_dirty)
8034                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8035         }
8036 }
8037
8038 void kvm_arch_commit_memory_region(struct kvm *kvm,
8039                                 const struct kvm_userspace_memory_region *mem,
8040                                 const struct kvm_memory_slot *old,
8041                                 const struct kvm_memory_slot *new,
8042                                 enum kvm_mr_change change)
8043 {
8044         int nr_mmu_pages = 0;
8045
8046         if (!kvm->arch.n_requested_mmu_pages)
8047                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8048
8049         if (nr_mmu_pages)
8050                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8051
8052         /*
8053          * Dirty logging tracks sptes in 4k granularity, meaning that large
8054          * sptes have to be split.  If live migration is successful, the guest
8055          * in the source machine will be destroyed and large sptes will be
8056          * created in the destination. However, if the guest continues to run
8057          * in the source machine (for example if live migration fails), small
8058          * sptes will remain around and cause bad performance.
8059          *
8060          * Scan sptes if dirty logging has been stopped, dropping those
8061          * which can be collapsed into a single large-page spte.  Later
8062          * page faults will create the large-page sptes.
8063          */
8064         if ((change != KVM_MR_DELETE) &&
8065                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8066                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8067                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8068
8069         /*
8070          * Set up write protection and/or dirty logging for the new slot.
8071          *
8072          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8073          * been zapped so no dirty logging staff is needed for old slot. For
8074          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8075          * new and it's also covered when dealing with the new slot.
8076          *
8077          * FIXME: const-ify all uses of struct kvm_memory_slot.
8078          */
8079         if (change != KVM_MR_DELETE)
8080                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8081 }
8082
8083 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8084 {
8085         kvm_mmu_invalidate_zap_all_pages(kvm);
8086 }
8087
8088 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8089                                    struct kvm_memory_slot *slot)
8090 {
8091         kvm_mmu_invalidate_zap_all_pages(kvm);
8092 }
8093
8094 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8095 {
8096         if (!list_empty_careful(&vcpu->async_pf.done))
8097                 return true;
8098
8099         if (kvm_apic_has_events(vcpu))
8100                 return true;
8101
8102         if (vcpu->arch.pv.pv_unhalted)
8103                 return true;
8104
8105         if (atomic_read(&vcpu->arch.nmi_queued))
8106                 return true;
8107
8108         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8109                 return true;
8110
8111         if (kvm_arch_interrupt_allowed(vcpu) &&
8112             kvm_cpu_has_interrupt(vcpu))
8113                 return true;
8114
8115         if (kvm_hv_has_stimer_pending(vcpu))
8116                 return true;
8117
8118         return false;
8119 }
8120
8121 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8122 {
8123         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8124                 kvm_x86_ops->check_nested_events(vcpu, false);
8125
8126         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8127 }
8128
8129 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8130 {
8131         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8132 }
8133
8134 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8135 {
8136         return kvm_x86_ops->interrupt_allowed(vcpu);
8137 }
8138
8139 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8140 {
8141         if (is_64_bit_mode(vcpu))
8142                 return kvm_rip_read(vcpu);
8143         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8144                      kvm_rip_read(vcpu));
8145 }
8146 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8147
8148 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8149 {
8150         return kvm_get_linear_rip(vcpu) == linear_rip;
8151 }
8152 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8153
8154 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8155 {
8156         unsigned long rflags;
8157
8158         rflags = kvm_x86_ops->get_rflags(vcpu);
8159         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8160                 rflags &= ~X86_EFLAGS_TF;
8161         return rflags;
8162 }
8163 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8164
8165 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8166 {
8167         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8168             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8169                 rflags |= X86_EFLAGS_TF;
8170         kvm_x86_ops->set_rflags(vcpu, rflags);
8171 }
8172
8173 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8174 {
8175         __kvm_set_rflags(vcpu, rflags);
8176         kvm_make_request(KVM_REQ_EVENT, vcpu);
8177 }
8178 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8179
8180 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8181 {
8182         int r;
8183
8184         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8185               work->wakeup_all)
8186                 return;
8187
8188         r = kvm_mmu_reload(vcpu);
8189         if (unlikely(r))
8190                 return;
8191
8192         if (!vcpu->arch.mmu.direct_map &&
8193               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8194                 return;
8195
8196         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8197 }
8198
8199 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8200 {
8201         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8202 }
8203
8204 static inline u32 kvm_async_pf_next_probe(u32 key)
8205 {
8206         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8207 }
8208
8209 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8210 {
8211         u32 key = kvm_async_pf_hash_fn(gfn);
8212
8213         while (vcpu->arch.apf.gfns[key] != ~0)
8214                 key = kvm_async_pf_next_probe(key);
8215
8216         vcpu->arch.apf.gfns[key] = gfn;
8217 }
8218
8219 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8220 {
8221         int i;
8222         u32 key = kvm_async_pf_hash_fn(gfn);
8223
8224         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8225                      (vcpu->arch.apf.gfns[key] != gfn &&
8226                       vcpu->arch.apf.gfns[key] != ~0); i++)
8227                 key = kvm_async_pf_next_probe(key);
8228
8229         return key;
8230 }
8231
8232 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8233 {
8234         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8235 }
8236
8237 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8238 {
8239         u32 i, j, k;
8240
8241         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8242         while (true) {
8243                 vcpu->arch.apf.gfns[i] = ~0;
8244                 do {
8245                         j = kvm_async_pf_next_probe(j);
8246                         if (vcpu->arch.apf.gfns[j] == ~0)
8247                                 return;
8248                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8249                         /*
8250                          * k lies cyclically in ]i,j]
8251                          * |    i.k.j |
8252                          * |....j i.k.| or  |.k..j i...|
8253                          */
8254                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8255                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8256                 i = j;
8257         }
8258 }
8259
8260 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8261 {
8262
8263         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8264                                       sizeof(val));
8265 }
8266
8267 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8268                                      struct kvm_async_pf *work)
8269 {
8270         struct x86_exception fault;
8271
8272         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8273         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8274
8275         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8276             (vcpu->arch.apf.send_user_only &&
8277              kvm_x86_ops->get_cpl(vcpu) == 0))
8278                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8279         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8280                 fault.vector = PF_VECTOR;
8281                 fault.error_code_valid = true;
8282                 fault.error_code = 0;
8283                 fault.nested_page_fault = false;
8284                 fault.address = work->arch.token;
8285                 kvm_inject_page_fault(vcpu, &fault);
8286         }
8287 }
8288
8289 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8290                                  struct kvm_async_pf *work)
8291 {
8292         struct x86_exception fault;
8293
8294         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8295         if (work->wakeup_all)
8296                 work->arch.token = ~0; /* broadcast wakeup */
8297         else
8298                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8299
8300         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8301             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8302                 fault.vector = PF_VECTOR;
8303                 fault.error_code_valid = true;
8304                 fault.error_code = 0;
8305                 fault.nested_page_fault = false;
8306                 fault.address = work->arch.token;
8307                 kvm_inject_page_fault(vcpu, &fault);
8308         }
8309         vcpu->arch.apf.halted = false;
8310         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8311 }
8312
8313 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8314 {
8315         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8316                 return true;
8317         else
8318                 return !kvm_event_needs_reinjection(vcpu) &&
8319                         kvm_x86_ops->interrupt_allowed(vcpu);
8320 }
8321
8322 void kvm_arch_start_assignment(struct kvm *kvm)
8323 {
8324         atomic_inc(&kvm->arch.assigned_device_count);
8325 }
8326 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8327
8328 void kvm_arch_end_assignment(struct kvm *kvm)
8329 {
8330         atomic_dec(&kvm->arch.assigned_device_count);
8331 }
8332 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8333
8334 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8335 {
8336         return atomic_read(&kvm->arch.assigned_device_count);
8337 }
8338 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8339
8340 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8341 {
8342         atomic_inc(&kvm->arch.noncoherent_dma_count);
8343 }
8344 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8345
8346 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8347 {
8348         atomic_dec(&kvm->arch.noncoherent_dma_count);
8349 }
8350 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8351
8352 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8353 {
8354         return atomic_read(&kvm->arch.noncoherent_dma_count);
8355 }
8356 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8357
8358 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8359                                       struct irq_bypass_producer *prod)
8360 {
8361         struct kvm_kernel_irqfd *irqfd =
8362                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8363
8364         if (kvm_x86_ops->update_pi_irte) {
8365                 irqfd->producer = prod;
8366                 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8367                                 prod->irq, irqfd->gsi, 1);
8368         }
8369
8370         return -EINVAL;
8371 }
8372
8373 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8374                                       struct irq_bypass_producer *prod)
8375 {
8376         int ret;
8377         struct kvm_kernel_irqfd *irqfd =
8378                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8379
8380         if (!kvm_x86_ops->update_pi_irte) {
8381                 WARN_ON(irqfd->producer != NULL);
8382                 return;
8383         }
8384
8385         WARN_ON(irqfd->producer != prod);
8386         irqfd->producer = NULL;
8387
8388         /*
8389          * When producer of consumer is unregistered, we change back to
8390          * remapped mode, so we can re-use the current implementation
8391          * when the irq is masked/disabed or the consumer side (KVM
8392          * int this case doesn't want to receive the interrupts.
8393         */
8394         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8395         if (ret)
8396                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8397                        " fails: %d\n", irqfd->consumer.token, ret);
8398 }
8399
8400 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8401                                    uint32_t guest_irq, bool set)
8402 {
8403         if (!kvm_x86_ops->update_pi_irte)
8404                 return -EINVAL;
8405
8406         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8407 }
8408
8409 bool kvm_vector_hashing_enabled(void)
8410 {
8411         return vector_hashing;
8412 }
8413 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8414
8415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);