]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
c1a00e9b2eaa462219a47af67f2c1f1ba332a898
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152
153 #define KVM_NR_SHARED_MSRS 16
154
155 struct kvm_shared_msrs_global {
156         int nr;
157         u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159
160 struct kvm_shared_msrs {
161         struct user_return_notifier urn;
162         bool registered;
163         struct kvm_shared_msr_values {
164                 u64 host;
165                 u64 curr;
166         } values[KVM_NR_SHARED_MSRS];
167 };
168
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173         { "pf_fixed", VCPU_STAT(pf_fixed) },
174         { "pf_guest", VCPU_STAT(pf_guest) },
175         { "tlb_flush", VCPU_STAT(tlb_flush) },
176         { "invlpg", VCPU_STAT(invlpg) },
177         { "exits", VCPU_STAT(exits) },
178         { "io_exits", VCPU_STAT(io_exits) },
179         { "mmio_exits", VCPU_STAT(mmio_exits) },
180         { "signal_exits", VCPU_STAT(signal_exits) },
181         { "irq_window", VCPU_STAT(irq_window_exits) },
182         { "nmi_window", VCPU_STAT(nmi_window_exits) },
183         { "halt_exits", VCPU_STAT(halt_exits) },
184         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188         { "hypercalls", VCPU_STAT(hypercalls) },
189         { "request_irq", VCPU_STAT(request_irq_exits) },
190         { "irq_exits", VCPU_STAT(irq_exits) },
191         { "host_state_reload", VCPU_STAT(host_state_reload) },
192         { "fpu_reload", VCPU_STAT(fpu_reload) },
193         { "insn_emulation", VCPU_STAT(insn_emulation) },
194         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195         { "irq_injections", VCPU_STAT(irq_injections) },
196         { "nmi_injections", VCPU_STAT(nmi_injections) },
197         { "req_event", VCPU_STAT(req_event) },
198         { "l1d_flush", VCPU_STAT(l1d_flush) },
199         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203         { "mmu_flooded", VM_STAT(mmu_flooded) },
204         { "mmu_recycled", VM_STAT(mmu_recycled) },
205         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206         { "mmu_unsync", VM_STAT(mmu_unsync) },
207         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208         { "largepages", VM_STAT(lpages) },
209         { "max_mmu_page_hash_collisions",
210                 VM_STAT(max_mmu_page_hash_collisions) },
211         { NULL }
212 };
213
214 u64 __read_mostly host_xcr0;
215
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
217
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
219 {
220         int i;
221         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222                 vcpu->arch.apf.gfns[i] = ~0;
223 }
224
225 static void kvm_on_user_return(struct user_return_notifier *urn)
226 {
227         unsigned slot;
228         struct kvm_shared_msrs *locals
229                 = container_of(urn, struct kvm_shared_msrs, urn);
230         struct kvm_shared_msr_values *values;
231         unsigned long flags;
232
233         /*
234          * Disabling irqs at this point since the following code could be
235          * interrupted and executed through kvm_arch_hardware_disable()
236          */
237         local_irq_save(flags);
238         if (locals->registered) {
239                 locals->registered = false;
240                 user_return_notifier_unregister(urn);
241         }
242         local_irq_restore(flags);
243         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244                 values = &locals->values[slot];
245                 if (values->host != values->curr) {
246                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
247                         values->curr = values->host;
248                 }
249         }
250 }
251
252 static void shared_msr_update(unsigned slot, u32 msr)
253 {
254         u64 value;
255         unsigned int cpu = smp_processor_id();
256         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257
258         /* only read, and nobody should modify it at this time,
259          * so don't need lock */
260         if (slot >= shared_msrs_global.nr) {
261                 printk(KERN_ERR "kvm: invalid MSR slot!");
262                 return;
263         }
264         rdmsrl_safe(msr, &value);
265         smsr->values[slot].host = value;
266         smsr->values[slot].curr = value;
267 }
268
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272         shared_msrs_global.msrs[slot] = msr;
273         if (slot >= shared_msrs_global.nr)
274                 shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277
278 static void kvm_shared_msr_cpu_online(void)
279 {
280         unsigned i;
281
282         for (i = 0; i < shared_msrs_global.nr; ++i)
283                 shared_msr_update(i, shared_msrs_global.msrs[i]);
284 }
285
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
287 {
288         unsigned int cpu = smp_processor_id();
289         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
290         int err;
291
292         if (((value ^ smsr->values[slot].curr) & mask) == 0)
293                 return 0;
294         smsr->values[slot].curr = value;
295         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
296         if (err)
297                 return 1;
298
299         if (!smsr->registered) {
300                 smsr->urn.on_user_return = kvm_on_user_return;
301                 user_return_notifier_register(&smsr->urn);
302                 smsr->registered = true;
303         }
304         return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
307
308 static void drop_user_return_notifiers(void)
309 {
310         unsigned int cpu = smp_processor_id();
311         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
312
313         if (smsr->registered)
314                 kvm_on_user_return(&smsr->urn);
315 }
316
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
318 {
319         return vcpu->arch.apic_base;
320 }
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
322
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
324 {
325         return kvm_apic_mode(kvm_get_apic_base(vcpu));
326 }
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
328
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
330 {
331         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
335
336         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
337                 return 1;
338         if (!msr_info->host_initiated) {
339                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
340                         return 1;
341                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
342                         return 1;
343         }
344
345         kvm_lapic_set_base(vcpu, msr_info->data);
346         return 0;
347 }
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
349
350 asmlinkage __visible void kvm_spurious_fault(void)
351 {
352         /* Fault while not rebooting.  We want the trace. */
353         BUG();
354 }
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
356
357 #define EXCPT_BENIGN            0
358 #define EXCPT_CONTRIBUTORY      1
359 #define EXCPT_PF                2
360
361 static int exception_class(int vector)
362 {
363         switch (vector) {
364         case PF_VECTOR:
365                 return EXCPT_PF;
366         case DE_VECTOR:
367         case TS_VECTOR:
368         case NP_VECTOR:
369         case SS_VECTOR:
370         case GP_VECTOR:
371                 return EXCPT_CONTRIBUTORY;
372         default:
373                 break;
374         }
375         return EXCPT_BENIGN;
376 }
377
378 #define EXCPT_FAULT             0
379 #define EXCPT_TRAP              1
380 #define EXCPT_ABORT             2
381 #define EXCPT_INTERRUPT         3
382
383 static int exception_type(int vector)
384 {
385         unsigned int mask;
386
387         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388                 return EXCPT_INTERRUPT;
389
390         mask = 1 << vector;
391
392         /* #DB is trap, as instruction watchpoints are handled elsewhere */
393         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
394                 return EXCPT_TRAP;
395
396         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
397                 return EXCPT_ABORT;
398
399         /* Reserved exceptions will result in fault */
400         return EXCPT_FAULT;
401 }
402
403 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
404 {
405         unsigned nr = vcpu->arch.exception.nr;
406         bool has_payload = vcpu->arch.exception.has_payload;
407         unsigned long payload = vcpu->arch.exception.payload;
408
409         if (!has_payload)
410                 return;
411
412         switch (nr) {
413         case DB_VECTOR:
414                 /*
415                  * "Certain debug exceptions may clear bit 0-3.  The
416                  * remaining contents of the DR6 register are never
417                  * cleared by the processor".
418                  */
419                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
420                 /*
421                  * DR6.RTM is set by all #DB exceptions that don't clear it.
422                  */
423                 vcpu->arch.dr6 |= DR6_RTM;
424                 vcpu->arch.dr6 |= payload;
425                 /*
426                  * Bit 16 should be set in the payload whenever the #DB
427                  * exception should clear DR6.RTM. This makes the payload
428                  * compatible with the pending debug exceptions under VMX.
429                  * Though not currently documented in the SDM, this also
430                  * makes the payload compatible with the exit qualification
431                  * for #DB exceptions under VMX.
432                  */
433                 vcpu->arch.dr6 ^= payload & DR6_RTM;
434                 break;
435         case PF_VECTOR:
436                 vcpu->arch.cr2 = payload;
437                 break;
438         }
439
440         vcpu->arch.exception.has_payload = false;
441         vcpu->arch.exception.payload = 0;
442 }
443 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
444
445 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
446                 unsigned nr, bool has_error, u32 error_code,
447                 bool has_payload, unsigned long payload, bool reinject)
448 {
449         u32 prev_nr;
450         int class1, class2;
451
452         kvm_make_request(KVM_REQ_EVENT, vcpu);
453
454         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
455         queue:
456                 if (has_error && !is_protmode(vcpu))
457                         has_error = false;
458                 if (reinject) {
459                         /*
460                          * On vmentry, vcpu->arch.exception.pending is only
461                          * true if an event injection was blocked by
462                          * nested_run_pending.  In that case, however,
463                          * vcpu_enter_guest requests an immediate exit,
464                          * and the guest shouldn't proceed far enough to
465                          * need reinjection.
466                          */
467                         WARN_ON_ONCE(vcpu->arch.exception.pending);
468                         vcpu->arch.exception.injected = true;
469                         if (WARN_ON_ONCE(has_payload)) {
470                                 /*
471                                  * A reinjected event has already
472                                  * delivered its payload.
473                                  */
474                                 has_payload = false;
475                                 payload = 0;
476                         }
477                 } else {
478                         vcpu->arch.exception.pending = true;
479                         vcpu->arch.exception.injected = false;
480                 }
481                 vcpu->arch.exception.has_error_code = has_error;
482                 vcpu->arch.exception.nr = nr;
483                 vcpu->arch.exception.error_code = error_code;
484                 vcpu->arch.exception.has_payload = has_payload;
485                 vcpu->arch.exception.payload = payload;
486                 /*
487                  * In guest mode, payload delivery should be deferred,
488                  * so that the L1 hypervisor can intercept #PF before
489                  * CR2 is modified (or intercept #DB before DR6 is
490                  * modified under nVMX).  However, for ABI
491                  * compatibility with KVM_GET_VCPU_EVENTS and
492                  * KVM_SET_VCPU_EVENTS, we can't delay payload
493                  * delivery unless userspace has enabled this
494                  * functionality via the per-VM capability,
495                  * KVM_CAP_EXCEPTION_PAYLOAD.
496                  */
497                 if (!vcpu->kvm->arch.exception_payload_enabled ||
498                     !is_guest_mode(vcpu))
499                         kvm_deliver_exception_payload(vcpu);
500                 return;
501         }
502
503         /* to check exception */
504         prev_nr = vcpu->arch.exception.nr;
505         if (prev_nr == DF_VECTOR) {
506                 /* triple fault -> shutdown */
507                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
508                 return;
509         }
510         class1 = exception_class(prev_nr);
511         class2 = exception_class(nr);
512         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
513                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
514                 /*
515                  * Generate double fault per SDM Table 5-5.  Set
516                  * exception.pending = true so that the double fault
517                  * can trigger a nested vmexit.
518                  */
519                 vcpu->arch.exception.pending = true;
520                 vcpu->arch.exception.injected = false;
521                 vcpu->arch.exception.has_error_code = true;
522                 vcpu->arch.exception.nr = DF_VECTOR;
523                 vcpu->arch.exception.error_code = 0;
524                 vcpu->arch.exception.has_payload = false;
525                 vcpu->arch.exception.payload = 0;
526         } else
527                 /* replace previous exception with a new one in a hope
528                    that instruction re-execution will regenerate lost
529                    exception */
530                 goto queue;
531 }
532
533 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
534 {
535         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
536 }
537 EXPORT_SYMBOL_GPL(kvm_queue_exception);
538
539 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
540 {
541         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
542 }
543 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
544
545 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
546                                   unsigned long payload)
547 {
548         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
549 }
550
551 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
552                                     u32 error_code, unsigned long payload)
553 {
554         kvm_multiple_exception(vcpu, nr, true, error_code,
555                                true, payload, false);
556 }
557
558 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
559 {
560         if (err)
561                 kvm_inject_gp(vcpu, 0);
562         else
563                 return kvm_skip_emulated_instruction(vcpu);
564
565         return 1;
566 }
567 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
568
569 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
570 {
571         ++vcpu->stat.pf_guest;
572         vcpu->arch.exception.nested_apf =
573                 is_guest_mode(vcpu) && fault->async_page_fault;
574         if (vcpu->arch.exception.nested_apf) {
575                 vcpu->arch.apf.nested_apf_token = fault->address;
576                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
577         } else {
578                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
579                                         fault->address);
580         }
581 }
582 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
583
584 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
585 {
586         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
587                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
588         else
589                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
590
591         return fault->nested_page_fault;
592 }
593
594 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
595 {
596         atomic_inc(&vcpu->arch.nmi_queued);
597         kvm_make_request(KVM_REQ_NMI, vcpu);
598 }
599 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
600
601 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
602 {
603         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
604 }
605 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
606
607 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
608 {
609         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
610 }
611 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
612
613 /*
614  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
615  * a #GP and return false.
616  */
617 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
618 {
619         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
620                 return true;
621         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
622         return false;
623 }
624 EXPORT_SYMBOL_GPL(kvm_require_cpl);
625
626 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
627 {
628         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
629                 return true;
630
631         kvm_queue_exception(vcpu, UD_VECTOR);
632         return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_dr);
635
636 /*
637  * This function will be used to read from the physical memory of the currently
638  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
639  * can read from guest physical or from the guest's guest physical memory.
640  */
641 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
642                             gfn_t ngfn, void *data, int offset, int len,
643                             u32 access)
644 {
645         struct x86_exception exception;
646         gfn_t real_gfn;
647         gpa_t ngpa;
648
649         ngpa     = gfn_to_gpa(ngfn);
650         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
651         if (real_gfn == UNMAPPED_GVA)
652                 return -EFAULT;
653
654         real_gfn = gpa_to_gfn(real_gfn);
655
656         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
657 }
658 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
659
660 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
661                                void *data, int offset, int len, u32 access)
662 {
663         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
664                                        data, offset, len, access);
665 }
666
667 /*
668  * Load the pae pdptrs.  Return true is they are all valid.
669  */
670 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
671 {
672         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
673         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
674         int i;
675         int ret;
676         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
677
678         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
679                                       offset * sizeof(u64), sizeof(pdpte),
680                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
681         if (ret < 0) {
682                 ret = 0;
683                 goto out;
684         }
685         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
686                 if ((pdpte[i] & PT_PRESENT_MASK) &&
687                     (pdpte[i] &
688                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
689                         ret = 0;
690                         goto out;
691                 }
692         }
693         ret = 1;
694
695         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
696         __set_bit(VCPU_EXREG_PDPTR,
697                   (unsigned long *)&vcpu->arch.regs_avail);
698         __set_bit(VCPU_EXREG_PDPTR,
699                   (unsigned long *)&vcpu->arch.regs_dirty);
700 out:
701
702         return ret;
703 }
704 EXPORT_SYMBOL_GPL(load_pdptrs);
705
706 bool pdptrs_changed(struct kvm_vcpu *vcpu)
707 {
708         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
709         bool changed = true;
710         int offset;
711         gfn_t gfn;
712         int r;
713
714         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
715                 return false;
716
717         if (!test_bit(VCPU_EXREG_PDPTR,
718                       (unsigned long *)&vcpu->arch.regs_avail))
719                 return true;
720
721         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
722         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
723         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
724                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
725         if (r < 0)
726                 goto out;
727         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
728 out:
729
730         return changed;
731 }
732 EXPORT_SYMBOL_GPL(pdptrs_changed);
733
734 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
735 {
736         unsigned long old_cr0 = kvm_read_cr0(vcpu);
737         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
738
739         cr0 |= X86_CR0_ET;
740
741 #ifdef CONFIG_X86_64
742         if (cr0 & 0xffffffff00000000UL)
743                 return 1;
744 #endif
745
746         cr0 &= ~CR0_RESERVED_BITS;
747
748         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
749                 return 1;
750
751         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
752                 return 1;
753
754         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
755 #ifdef CONFIG_X86_64
756                 if ((vcpu->arch.efer & EFER_LME)) {
757                         int cs_db, cs_l;
758
759                         if (!is_pae(vcpu))
760                                 return 1;
761                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
762                         if (cs_l)
763                                 return 1;
764                 } else
765 #endif
766                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
767                                                  kvm_read_cr3(vcpu)))
768                         return 1;
769         }
770
771         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
772                 return 1;
773
774         kvm_x86_ops->set_cr0(vcpu, cr0);
775
776         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
777                 kvm_clear_async_pf_completion_queue(vcpu);
778                 kvm_async_pf_hash_reset(vcpu);
779         }
780
781         if ((cr0 ^ old_cr0) & update_bits)
782                 kvm_mmu_reset_context(vcpu);
783
784         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
785             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
786             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
787                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
788
789         return 0;
790 }
791 EXPORT_SYMBOL_GPL(kvm_set_cr0);
792
793 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
794 {
795         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
796 }
797 EXPORT_SYMBOL_GPL(kvm_lmsw);
798
799 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
800 {
801         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
802                         !vcpu->guest_xcr0_loaded) {
803                 /* kvm_set_xcr() also depends on this */
804                 if (vcpu->arch.xcr0 != host_xcr0)
805                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
806                 vcpu->guest_xcr0_loaded = 1;
807         }
808 }
809
810 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
811 {
812         if (vcpu->guest_xcr0_loaded) {
813                 if (vcpu->arch.xcr0 != host_xcr0)
814                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
815                 vcpu->guest_xcr0_loaded = 0;
816         }
817 }
818
819 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
820 {
821         u64 xcr0 = xcr;
822         u64 old_xcr0 = vcpu->arch.xcr0;
823         u64 valid_bits;
824
825         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
826         if (index != XCR_XFEATURE_ENABLED_MASK)
827                 return 1;
828         if (!(xcr0 & XFEATURE_MASK_FP))
829                 return 1;
830         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
831                 return 1;
832
833         /*
834          * Do not allow the guest to set bits that we do not support
835          * saving.  However, xcr0 bit 0 is always set, even if the
836          * emulated CPU does not support XSAVE (see fx_init).
837          */
838         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
839         if (xcr0 & ~valid_bits)
840                 return 1;
841
842         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
843             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
844                 return 1;
845
846         if (xcr0 & XFEATURE_MASK_AVX512) {
847                 if (!(xcr0 & XFEATURE_MASK_YMM))
848                         return 1;
849                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
850                         return 1;
851         }
852         vcpu->arch.xcr0 = xcr0;
853
854         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
855                 kvm_update_cpuid(vcpu);
856         return 0;
857 }
858
859 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
860 {
861         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
862             __kvm_set_xcr(vcpu, index, xcr)) {
863                 kvm_inject_gp(vcpu, 0);
864                 return 1;
865         }
866         return 0;
867 }
868 EXPORT_SYMBOL_GPL(kvm_set_xcr);
869
870 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
871 {
872         unsigned long old_cr4 = kvm_read_cr4(vcpu);
873         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
874                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
875
876         if (cr4 & CR4_RESERVED_BITS)
877                 return 1;
878
879         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
880                 return 1;
881
882         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
883                 return 1;
884
885         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
886                 return 1;
887
888         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
889                 return 1;
890
891         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
892                 return 1;
893
894         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
895                 return 1;
896
897         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
898                 return 1;
899
900         if (is_long_mode(vcpu)) {
901                 if (!(cr4 & X86_CR4_PAE))
902                         return 1;
903         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
904                    && ((cr4 ^ old_cr4) & pdptr_bits)
905                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
906                                    kvm_read_cr3(vcpu)))
907                 return 1;
908
909         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
910                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
911                         return 1;
912
913                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
914                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
915                         return 1;
916         }
917
918         if (kvm_x86_ops->set_cr4(vcpu, cr4))
919                 return 1;
920
921         if (((cr4 ^ old_cr4) & pdptr_bits) ||
922             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
923                 kvm_mmu_reset_context(vcpu);
924
925         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
926                 kvm_update_cpuid(vcpu);
927
928         return 0;
929 }
930 EXPORT_SYMBOL_GPL(kvm_set_cr4);
931
932 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
933 {
934         bool skip_tlb_flush = false;
935 #ifdef CONFIG_X86_64
936         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
937
938         if (pcid_enabled) {
939                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
940                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
941         }
942 #endif
943
944         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
945                 if (!skip_tlb_flush) {
946                         kvm_mmu_sync_roots(vcpu);
947                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
948                 }
949                 return 0;
950         }
951
952         if (is_long_mode(vcpu) &&
953             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
954                 return 1;
955         else if (is_pae(vcpu) && is_paging(vcpu) &&
956                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
957                 return 1;
958
959         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
960         vcpu->arch.cr3 = cr3;
961         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
962
963         return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_cr3);
966
967 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
968 {
969         if (cr8 & CR8_RESERVED_BITS)
970                 return 1;
971         if (lapic_in_kernel(vcpu))
972                 kvm_lapic_set_tpr(vcpu, cr8);
973         else
974                 vcpu->arch.cr8 = cr8;
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr8);
978
979 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
980 {
981         if (lapic_in_kernel(vcpu))
982                 return kvm_lapic_get_cr8(vcpu);
983         else
984                 return vcpu->arch.cr8;
985 }
986 EXPORT_SYMBOL_GPL(kvm_get_cr8);
987
988 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
989 {
990         int i;
991
992         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
993                 for (i = 0; i < KVM_NR_DB_REGS; i++)
994                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
995                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
996         }
997 }
998
999 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1000 {
1001         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1002                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1003 }
1004
1005 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1006 {
1007         unsigned long dr7;
1008
1009         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1010                 dr7 = vcpu->arch.guest_debug_dr7;
1011         else
1012                 dr7 = vcpu->arch.dr7;
1013         kvm_x86_ops->set_dr7(vcpu, dr7);
1014         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1015         if (dr7 & DR7_BP_EN_MASK)
1016                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1017 }
1018
1019 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1020 {
1021         u64 fixed = DR6_FIXED_1;
1022
1023         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1024                 fixed |= DR6_RTM;
1025         return fixed;
1026 }
1027
1028 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1029 {
1030         switch (dr) {
1031         case 0 ... 3:
1032                 vcpu->arch.db[dr] = val;
1033                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1034                         vcpu->arch.eff_db[dr] = val;
1035                 break;
1036         case 4:
1037                 /* fall through */
1038         case 6:
1039                 if (val & 0xffffffff00000000ULL)
1040                         return -1; /* #GP */
1041                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1042                 kvm_update_dr6(vcpu);
1043                 break;
1044         case 5:
1045                 /* fall through */
1046         default: /* 7 */
1047                 if (val & 0xffffffff00000000ULL)
1048                         return -1; /* #GP */
1049                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1050                 kvm_update_dr7(vcpu);
1051                 break;
1052         }
1053
1054         return 0;
1055 }
1056
1057 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1058 {
1059         if (__kvm_set_dr(vcpu, dr, val)) {
1060                 kvm_inject_gp(vcpu, 0);
1061                 return 1;
1062         }
1063         return 0;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_set_dr);
1066
1067 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1068 {
1069         switch (dr) {
1070         case 0 ... 3:
1071                 *val = vcpu->arch.db[dr];
1072                 break;
1073         case 4:
1074                 /* fall through */
1075         case 6:
1076                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1077                         *val = vcpu->arch.dr6;
1078                 else
1079                         *val = kvm_x86_ops->get_dr6(vcpu);
1080                 break;
1081         case 5:
1082                 /* fall through */
1083         default: /* 7 */
1084                 *val = vcpu->arch.dr7;
1085                 break;
1086         }
1087         return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_get_dr);
1090
1091 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1092 {
1093         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1094         u64 data;
1095         int err;
1096
1097         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1098         if (err)
1099                 return err;
1100         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1101         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1102         return err;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1105
1106 /*
1107  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1108  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1109  *
1110  * This list is modified at module load time to reflect the
1111  * capabilities of the host cpu. This capabilities test skips MSRs that are
1112  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1113  * may depend on host virtualization features rather than host cpu features.
1114  */
1115
1116 static u32 msrs_to_save[] = {
1117         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1118         MSR_STAR,
1119 #ifdef CONFIG_X86_64
1120         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1121 #endif
1122         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1123         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1124         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1125 };
1126
1127 static unsigned num_msrs_to_save;
1128
1129 static u32 emulated_msrs[] = {
1130         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1131         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1132         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1133         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1134         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1135         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1136         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1137         HV_X64_MSR_RESET,
1138         HV_X64_MSR_VP_INDEX,
1139         HV_X64_MSR_VP_RUNTIME,
1140         HV_X64_MSR_SCONTROL,
1141         HV_X64_MSR_STIMER0_CONFIG,
1142         HV_X64_MSR_VP_ASSIST_PAGE,
1143         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1144         HV_X64_MSR_TSC_EMULATION_STATUS,
1145
1146         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1147         MSR_KVM_PV_EOI_EN,
1148
1149         MSR_IA32_TSC_ADJUST,
1150         MSR_IA32_TSCDEADLINE,
1151         MSR_IA32_MISC_ENABLE,
1152         MSR_IA32_MCG_STATUS,
1153         MSR_IA32_MCG_CTL,
1154         MSR_IA32_MCG_EXT_CTL,
1155         MSR_IA32_SMBASE,
1156         MSR_SMI_COUNT,
1157         MSR_PLATFORM_INFO,
1158         MSR_MISC_FEATURES_ENABLES,
1159         MSR_AMD64_VIRT_SPEC_CTRL,
1160 };
1161
1162 static unsigned num_emulated_msrs;
1163
1164 /*
1165  * List of msr numbers which are used to expose MSR-based features that
1166  * can be used by a hypervisor to validate requested CPU features.
1167  */
1168 static u32 msr_based_features[] = {
1169         MSR_IA32_VMX_BASIC,
1170         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1171         MSR_IA32_VMX_PINBASED_CTLS,
1172         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1173         MSR_IA32_VMX_PROCBASED_CTLS,
1174         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1175         MSR_IA32_VMX_EXIT_CTLS,
1176         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1177         MSR_IA32_VMX_ENTRY_CTLS,
1178         MSR_IA32_VMX_MISC,
1179         MSR_IA32_VMX_CR0_FIXED0,
1180         MSR_IA32_VMX_CR0_FIXED1,
1181         MSR_IA32_VMX_CR4_FIXED0,
1182         MSR_IA32_VMX_CR4_FIXED1,
1183         MSR_IA32_VMX_VMCS_ENUM,
1184         MSR_IA32_VMX_PROCBASED_CTLS2,
1185         MSR_IA32_VMX_EPT_VPID_CAP,
1186         MSR_IA32_VMX_VMFUNC,
1187
1188         MSR_F10H_DECFG,
1189         MSR_IA32_UCODE_REV,
1190         MSR_IA32_ARCH_CAPABILITIES,
1191 };
1192
1193 static unsigned int num_msr_based_features;
1194
1195 u64 kvm_get_arch_capabilities(void)
1196 {
1197         u64 data;
1198
1199         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1200
1201         /*
1202          * If we're doing cache flushes (either "always" or "cond")
1203          * we will do one whenever the guest does a vmlaunch/vmresume.
1204          * If an outer hypervisor is doing the cache flush for us
1205          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1206          * capability to the guest too, and if EPT is disabled we're not
1207          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1208          * require a nested hypervisor to do a flush of its own.
1209          */
1210         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1211                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1212
1213         return data;
1214 }
1215 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1216
1217 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1218 {
1219         switch (msr->index) {
1220         case MSR_IA32_ARCH_CAPABILITIES:
1221                 msr->data = kvm_get_arch_capabilities();
1222                 break;
1223         case MSR_IA32_UCODE_REV:
1224                 rdmsrl_safe(msr->index, &msr->data);
1225                 break;
1226         default:
1227                 if (kvm_x86_ops->get_msr_feature(msr))
1228                         return 1;
1229         }
1230         return 0;
1231 }
1232
1233 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1234 {
1235         struct kvm_msr_entry msr;
1236         int r;
1237
1238         msr.index = index;
1239         r = kvm_get_msr_feature(&msr);
1240         if (r)
1241                 return r;
1242
1243         *data = msr.data;
1244
1245         return 0;
1246 }
1247
1248 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1249 {
1250         if (efer & efer_reserved_bits)
1251                 return false;
1252
1253         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1254                         return false;
1255
1256         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1257                         return false;
1258
1259         return true;
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1262
1263 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1264 {
1265         u64 old_efer = vcpu->arch.efer;
1266
1267         if (!kvm_valid_efer(vcpu, efer))
1268                 return 1;
1269
1270         if (is_paging(vcpu)
1271             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1272                 return 1;
1273
1274         efer &= ~EFER_LMA;
1275         efer |= vcpu->arch.efer & EFER_LMA;
1276
1277         kvm_x86_ops->set_efer(vcpu, efer);
1278
1279         /* Update reserved bits */
1280         if ((efer ^ old_efer) & EFER_NX)
1281                 kvm_mmu_reset_context(vcpu);
1282
1283         return 0;
1284 }
1285
1286 void kvm_enable_efer_bits(u64 mask)
1287 {
1288        efer_reserved_bits &= ~mask;
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1291
1292 /*
1293  * Writes msr value into into the appropriate "register".
1294  * Returns 0 on success, non-0 otherwise.
1295  * Assumes vcpu_load() was already called.
1296  */
1297 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1298 {
1299         switch (msr->index) {
1300         case MSR_FS_BASE:
1301         case MSR_GS_BASE:
1302         case MSR_KERNEL_GS_BASE:
1303         case MSR_CSTAR:
1304         case MSR_LSTAR:
1305                 if (is_noncanonical_address(msr->data, vcpu))
1306                         return 1;
1307                 break;
1308         case MSR_IA32_SYSENTER_EIP:
1309         case MSR_IA32_SYSENTER_ESP:
1310                 /*
1311                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1312                  * non-canonical address is written on Intel but not on
1313                  * AMD (which ignores the top 32-bits, because it does
1314                  * not implement 64-bit SYSENTER).
1315                  *
1316                  * 64-bit code should hence be able to write a non-canonical
1317                  * value on AMD.  Making the address canonical ensures that
1318                  * vmentry does not fail on Intel after writing a non-canonical
1319                  * value, and that something deterministic happens if the guest
1320                  * invokes 64-bit SYSENTER.
1321                  */
1322                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1323         }
1324         return kvm_x86_ops->set_msr(vcpu, msr);
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_set_msr);
1327
1328 /*
1329  * Adapt set_msr() to msr_io()'s calling convention
1330  */
1331 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1332 {
1333         struct msr_data msr;
1334         int r;
1335
1336         msr.index = index;
1337         msr.host_initiated = true;
1338         r = kvm_get_msr(vcpu, &msr);
1339         if (r)
1340                 return r;
1341
1342         *data = msr.data;
1343         return 0;
1344 }
1345
1346 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1347 {
1348         struct msr_data msr;
1349
1350         msr.data = *data;
1351         msr.index = index;
1352         msr.host_initiated = true;
1353         return kvm_set_msr(vcpu, &msr);
1354 }
1355
1356 #ifdef CONFIG_X86_64
1357 struct pvclock_gtod_data {
1358         seqcount_t      seq;
1359
1360         struct { /* extract of a clocksource struct */
1361                 int vclock_mode;
1362                 u64     cycle_last;
1363                 u64     mask;
1364                 u32     mult;
1365                 u32     shift;
1366         } clock;
1367
1368         u64             boot_ns;
1369         u64             nsec_base;
1370         u64             wall_time_sec;
1371 };
1372
1373 static struct pvclock_gtod_data pvclock_gtod_data;
1374
1375 static void update_pvclock_gtod(struct timekeeper *tk)
1376 {
1377         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1378         u64 boot_ns;
1379
1380         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1381
1382         write_seqcount_begin(&vdata->seq);
1383
1384         /* copy pvclock gtod data */
1385         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1386         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1387         vdata->clock.mask               = tk->tkr_mono.mask;
1388         vdata->clock.mult               = tk->tkr_mono.mult;
1389         vdata->clock.shift              = tk->tkr_mono.shift;
1390
1391         vdata->boot_ns                  = boot_ns;
1392         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1393
1394         vdata->wall_time_sec            = tk->xtime_sec;
1395
1396         write_seqcount_end(&vdata->seq);
1397 }
1398 #endif
1399
1400 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1401 {
1402         /*
1403          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1404          * vcpu_enter_guest.  This function is only called from
1405          * the physical CPU that is running vcpu.
1406          */
1407         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1408 }
1409
1410 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1411 {
1412         int version;
1413         int r;
1414         struct pvclock_wall_clock wc;
1415         struct timespec64 boot;
1416
1417         if (!wall_clock)
1418                 return;
1419
1420         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1421         if (r)
1422                 return;
1423
1424         if (version & 1)
1425                 ++version;  /* first time write, random junk */
1426
1427         ++version;
1428
1429         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1430                 return;
1431
1432         /*
1433          * The guest calculates current wall clock time by adding
1434          * system time (updated by kvm_guest_time_update below) to the
1435          * wall clock specified here.  guest system time equals host
1436          * system time for us, thus we must fill in host boot time here.
1437          */
1438         getboottime64(&boot);
1439
1440         if (kvm->arch.kvmclock_offset) {
1441                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1442                 boot = timespec64_sub(boot, ts);
1443         }
1444         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1445         wc.nsec = boot.tv_nsec;
1446         wc.version = version;
1447
1448         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1449
1450         version++;
1451         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1452 }
1453
1454 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1455 {
1456         do_shl32_div32(dividend, divisor);
1457         return dividend;
1458 }
1459
1460 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1461                                s8 *pshift, u32 *pmultiplier)
1462 {
1463         uint64_t scaled64;
1464         int32_t  shift = 0;
1465         uint64_t tps64;
1466         uint32_t tps32;
1467
1468         tps64 = base_hz;
1469         scaled64 = scaled_hz;
1470         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1471                 tps64 >>= 1;
1472                 shift--;
1473         }
1474
1475         tps32 = (uint32_t)tps64;
1476         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1477                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1478                         scaled64 >>= 1;
1479                 else
1480                         tps32 <<= 1;
1481                 shift++;
1482         }
1483
1484         *pshift = shift;
1485         *pmultiplier = div_frac(scaled64, tps32);
1486
1487         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1488                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1489 }
1490
1491 #ifdef CONFIG_X86_64
1492 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1493 #endif
1494
1495 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1496 static unsigned long max_tsc_khz;
1497
1498 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1499 {
1500         u64 v = (u64)khz * (1000000 + ppm);
1501         do_div(v, 1000000);
1502         return v;
1503 }
1504
1505 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1506 {
1507         u64 ratio;
1508
1509         /* Guest TSC same frequency as host TSC? */
1510         if (!scale) {
1511                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1512                 return 0;
1513         }
1514
1515         /* TSC scaling supported? */
1516         if (!kvm_has_tsc_control) {
1517                 if (user_tsc_khz > tsc_khz) {
1518                         vcpu->arch.tsc_catchup = 1;
1519                         vcpu->arch.tsc_always_catchup = 1;
1520                         return 0;
1521                 } else {
1522                         WARN(1, "user requested TSC rate below hardware speed\n");
1523                         return -1;
1524                 }
1525         }
1526
1527         /* TSC scaling required  - calculate ratio */
1528         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1529                                 user_tsc_khz, tsc_khz);
1530
1531         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1532                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1533                           user_tsc_khz);
1534                 return -1;
1535         }
1536
1537         vcpu->arch.tsc_scaling_ratio = ratio;
1538         return 0;
1539 }
1540
1541 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1542 {
1543         u32 thresh_lo, thresh_hi;
1544         int use_scaling = 0;
1545
1546         /* tsc_khz can be zero if TSC calibration fails */
1547         if (user_tsc_khz == 0) {
1548                 /* set tsc_scaling_ratio to a safe value */
1549                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1550                 return -1;
1551         }
1552
1553         /* Compute a scale to convert nanoseconds in TSC cycles */
1554         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1555                            &vcpu->arch.virtual_tsc_shift,
1556                            &vcpu->arch.virtual_tsc_mult);
1557         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1558
1559         /*
1560          * Compute the variation in TSC rate which is acceptable
1561          * within the range of tolerance and decide if the
1562          * rate being applied is within that bounds of the hardware
1563          * rate.  If so, no scaling or compensation need be done.
1564          */
1565         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1566         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1567         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1568                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1569                 use_scaling = 1;
1570         }
1571         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1572 }
1573
1574 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1575 {
1576         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1577                                       vcpu->arch.virtual_tsc_mult,
1578                                       vcpu->arch.virtual_tsc_shift);
1579         tsc += vcpu->arch.this_tsc_write;
1580         return tsc;
1581 }
1582
1583 static inline int gtod_is_based_on_tsc(int mode)
1584 {
1585         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1586 }
1587
1588 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1589 {
1590 #ifdef CONFIG_X86_64
1591         bool vcpus_matched;
1592         struct kvm_arch *ka = &vcpu->kvm->arch;
1593         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1594
1595         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1596                          atomic_read(&vcpu->kvm->online_vcpus));
1597
1598         /*
1599          * Once the masterclock is enabled, always perform request in
1600          * order to update it.
1601          *
1602          * In order to enable masterclock, the host clocksource must be TSC
1603          * and the vcpus need to have matched TSCs.  When that happens,
1604          * perform request to enable masterclock.
1605          */
1606         if (ka->use_master_clock ||
1607             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1608                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1609
1610         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1611                             atomic_read(&vcpu->kvm->online_vcpus),
1612                             ka->use_master_clock, gtod->clock.vclock_mode);
1613 #endif
1614 }
1615
1616 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1617 {
1618         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1619         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1620 }
1621
1622 /*
1623  * Multiply tsc by a fixed point number represented by ratio.
1624  *
1625  * The most significant 64-N bits (mult) of ratio represent the
1626  * integral part of the fixed point number; the remaining N bits
1627  * (frac) represent the fractional part, ie. ratio represents a fixed
1628  * point number (mult + frac * 2^(-N)).
1629  *
1630  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1631  */
1632 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1633 {
1634         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1635 }
1636
1637 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1638 {
1639         u64 _tsc = tsc;
1640         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1641
1642         if (ratio != kvm_default_tsc_scaling_ratio)
1643                 _tsc = __scale_tsc(ratio, tsc);
1644
1645         return _tsc;
1646 }
1647 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1648
1649 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1650 {
1651         u64 tsc;
1652
1653         tsc = kvm_scale_tsc(vcpu, rdtsc());
1654
1655         return target_tsc - tsc;
1656 }
1657
1658 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1659 {
1660         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1661
1662         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1665
1666 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1667 {
1668         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1669 }
1670
1671 static inline bool kvm_check_tsc_unstable(void)
1672 {
1673 #ifdef CONFIG_X86_64
1674         /*
1675          * TSC is marked unstable when we're running on Hyper-V,
1676          * 'TSC page' clocksource is good.
1677          */
1678         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1679                 return false;
1680 #endif
1681         return check_tsc_unstable();
1682 }
1683
1684 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1685 {
1686         struct kvm *kvm = vcpu->kvm;
1687         u64 offset, ns, elapsed;
1688         unsigned long flags;
1689         bool matched;
1690         bool already_matched;
1691         u64 data = msr->data;
1692         bool synchronizing = false;
1693
1694         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1695         offset = kvm_compute_tsc_offset(vcpu, data);
1696         ns = ktime_get_boot_ns();
1697         elapsed = ns - kvm->arch.last_tsc_nsec;
1698
1699         if (vcpu->arch.virtual_tsc_khz) {
1700                 if (data == 0 && msr->host_initiated) {
1701                         /*
1702                          * detection of vcpu initialization -- need to sync
1703                          * with other vCPUs. This particularly helps to keep
1704                          * kvm_clock stable after CPU hotplug
1705                          */
1706                         synchronizing = true;
1707                 } else {
1708                         u64 tsc_exp = kvm->arch.last_tsc_write +
1709                                                 nsec_to_cycles(vcpu, elapsed);
1710                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1711                         /*
1712                          * Special case: TSC write with a small delta (1 second)
1713                          * of virtual cycle time against real time is
1714                          * interpreted as an attempt to synchronize the CPU.
1715                          */
1716                         synchronizing = data < tsc_exp + tsc_hz &&
1717                                         data + tsc_hz > tsc_exp;
1718                 }
1719         }
1720
1721         /*
1722          * For a reliable TSC, we can match TSC offsets, and for an unstable
1723          * TSC, we add elapsed time in this computation.  We could let the
1724          * compensation code attempt to catch up if we fall behind, but
1725          * it's better to try to match offsets from the beginning.
1726          */
1727         if (synchronizing &&
1728             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1729                 if (!kvm_check_tsc_unstable()) {
1730                         offset = kvm->arch.cur_tsc_offset;
1731                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1732                 } else {
1733                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1734                         data += delta;
1735                         offset = kvm_compute_tsc_offset(vcpu, data);
1736                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1737                 }
1738                 matched = true;
1739                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1740         } else {
1741                 /*
1742                  * We split periods of matched TSC writes into generations.
1743                  * For each generation, we track the original measured
1744                  * nanosecond time, offset, and write, so if TSCs are in
1745                  * sync, we can match exact offset, and if not, we can match
1746                  * exact software computation in compute_guest_tsc()
1747                  *
1748                  * These values are tracked in kvm->arch.cur_xxx variables.
1749                  */
1750                 kvm->arch.cur_tsc_generation++;
1751                 kvm->arch.cur_tsc_nsec = ns;
1752                 kvm->arch.cur_tsc_write = data;
1753                 kvm->arch.cur_tsc_offset = offset;
1754                 matched = false;
1755                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1756                          kvm->arch.cur_tsc_generation, data);
1757         }
1758
1759         /*
1760          * We also track th most recent recorded KHZ, write and time to
1761          * allow the matching interval to be extended at each write.
1762          */
1763         kvm->arch.last_tsc_nsec = ns;
1764         kvm->arch.last_tsc_write = data;
1765         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1766
1767         vcpu->arch.last_guest_tsc = data;
1768
1769         /* Keep track of which generation this VCPU has synchronized to */
1770         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1771         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1772         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1773
1774         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1775                 update_ia32_tsc_adjust_msr(vcpu, offset);
1776
1777         kvm_vcpu_write_tsc_offset(vcpu, offset);
1778         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1779
1780         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1781         if (!matched) {
1782                 kvm->arch.nr_vcpus_matched_tsc = 0;
1783         } else if (!already_matched) {
1784                 kvm->arch.nr_vcpus_matched_tsc++;
1785         }
1786
1787         kvm_track_tsc_matching(vcpu);
1788         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1789 }
1790
1791 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1792
1793 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1794                                            s64 adjustment)
1795 {
1796         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1797         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1798 }
1799
1800 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1801 {
1802         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1803                 WARN_ON(adjustment < 0);
1804         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1805         adjust_tsc_offset_guest(vcpu, adjustment);
1806 }
1807
1808 #ifdef CONFIG_X86_64
1809
1810 static u64 read_tsc(void)
1811 {
1812         u64 ret = (u64)rdtsc_ordered();
1813         u64 last = pvclock_gtod_data.clock.cycle_last;
1814
1815         if (likely(ret >= last))
1816                 return ret;
1817
1818         /*
1819          * GCC likes to generate cmov here, but this branch is extremely
1820          * predictable (it's just a function of time and the likely is
1821          * very likely) and there's a data dependence, so force GCC
1822          * to generate a branch instead.  I don't barrier() because
1823          * we don't actually need a barrier, and if this function
1824          * ever gets inlined it will generate worse code.
1825          */
1826         asm volatile ("");
1827         return last;
1828 }
1829
1830 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1831 {
1832         long v;
1833         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1834         u64 tsc_pg_val;
1835
1836         switch (gtod->clock.vclock_mode) {
1837         case VCLOCK_HVCLOCK:
1838                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1839                                                   tsc_timestamp);
1840                 if (tsc_pg_val != U64_MAX) {
1841                         /* TSC page valid */
1842                         *mode = VCLOCK_HVCLOCK;
1843                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1844                                 gtod->clock.mask;
1845                 } else {
1846                         /* TSC page invalid */
1847                         *mode = VCLOCK_NONE;
1848                 }
1849                 break;
1850         case VCLOCK_TSC:
1851                 *mode = VCLOCK_TSC;
1852                 *tsc_timestamp = read_tsc();
1853                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1854                         gtod->clock.mask;
1855                 break;
1856         default:
1857                 *mode = VCLOCK_NONE;
1858         }
1859
1860         if (*mode == VCLOCK_NONE)
1861                 *tsc_timestamp = v = 0;
1862
1863         return v * gtod->clock.mult;
1864 }
1865
1866 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1867 {
1868         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1869         unsigned long seq;
1870         int mode;
1871         u64 ns;
1872
1873         do {
1874                 seq = read_seqcount_begin(&gtod->seq);
1875                 ns = gtod->nsec_base;
1876                 ns += vgettsc(tsc_timestamp, &mode);
1877                 ns >>= gtod->clock.shift;
1878                 ns += gtod->boot_ns;
1879         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1880         *t = ns;
1881
1882         return mode;
1883 }
1884
1885 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1886 {
1887         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1888         unsigned long seq;
1889         int mode;
1890         u64 ns;
1891
1892         do {
1893                 seq = read_seqcount_begin(&gtod->seq);
1894                 ts->tv_sec = gtod->wall_time_sec;
1895                 ns = gtod->nsec_base;
1896                 ns += vgettsc(tsc_timestamp, &mode);
1897                 ns >>= gtod->clock.shift;
1898         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1899
1900         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1901         ts->tv_nsec = ns;
1902
1903         return mode;
1904 }
1905
1906 /* returns true if host is using TSC based clocksource */
1907 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1908 {
1909         /* checked again under seqlock below */
1910         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1911                 return false;
1912
1913         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1914                                                       tsc_timestamp));
1915 }
1916
1917 /* returns true if host is using TSC based clocksource */
1918 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1919                                            u64 *tsc_timestamp)
1920 {
1921         /* checked again under seqlock below */
1922         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1923                 return false;
1924
1925         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1926 }
1927 #endif
1928
1929 /*
1930  *
1931  * Assuming a stable TSC across physical CPUS, and a stable TSC
1932  * across virtual CPUs, the following condition is possible.
1933  * Each numbered line represents an event visible to both
1934  * CPUs at the next numbered event.
1935  *
1936  * "timespecX" represents host monotonic time. "tscX" represents
1937  * RDTSC value.
1938  *
1939  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1940  *
1941  * 1.  read timespec0,tsc0
1942  * 2.                                   | timespec1 = timespec0 + N
1943  *                                      | tsc1 = tsc0 + M
1944  * 3. transition to guest               | transition to guest
1945  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1946  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1947  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1948  *
1949  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1950  *
1951  *      - ret0 < ret1
1952  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1953  *              ...
1954  *      - 0 < N - M => M < N
1955  *
1956  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1957  * always the case (the difference between two distinct xtime instances
1958  * might be smaller then the difference between corresponding TSC reads,
1959  * when updating guest vcpus pvclock areas).
1960  *
1961  * To avoid that problem, do not allow visibility of distinct
1962  * system_timestamp/tsc_timestamp values simultaneously: use a master
1963  * copy of host monotonic time values. Update that master copy
1964  * in lockstep.
1965  *
1966  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1967  *
1968  */
1969
1970 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1971 {
1972 #ifdef CONFIG_X86_64
1973         struct kvm_arch *ka = &kvm->arch;
1974         int vclock_mode;
1975         bool host_tsc_clocksource, vcpus_matched;
1976
1977         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1978                         atomic_read(&kvm->online_vcpus));
1979
1980         /*
1981          * If the host uses TSC clock, then passthrough TSC as stable
1982          * to the guest.
1983          */
1984         host_tsc_clocksource = kvm_get_time_and_clockread(
1985                                         &ka->master_kernel_ns,
1986                                         &ka->master_cycle_now);
1987
1988         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1989                                 && !ka->backwards_tsc_observed
1990                                 && !ka->boot_vcpu_runs_old_kvmclock;
1991
1992         if (ka->use_master_clock)
1993                 atomic_set(&kvm_guest_has_master_clock, 1);
1994
1995         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1996         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1997                                         vcpus_matched);
1998 #endif
1999 }
2000
2001 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2002 {
2003         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2004 }
2005
2006 static void kvm_gen_update_masterclock(struct kvm *kvm)
2007 {
2008 #ifdef CONFIG_X86_64
2009         int i;
2010         struct kvm_vcpu *vcpu;
2011         struct kvm_arch *ka = &kvm->arch;
2012
2013         spin_lock(&ka->pvclock_gtod_sync_lock);
2014         kvm_make_mclock_inprogress_request(kvm);
2015         /* no guest entries from this point */
2016         pvclock_update_vm_gtod_copy(kvm);
2017
2018         kvm_for_each_vcpu(i, vcpu, kvm)
2019                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2020
2021         /* guest entries allowed */
2022         kvm_for_each_vcpu(i, vcpu, kvm)
2023                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2024
2025         spin_unlock(&ka->pvclock_gtod_sync_lock);
2026 #endif
2027 }
2028
2029 u64 get_kvmclock_ns(struct kvm *kvm)
2030 {
2031         struct kvm_arch *ka = &kvm->arch;
2032         struct pvclock_vcpu_time_info hv_clock;
2033         u64 ret;
2034
2035         spin_lock(&ka->pvclock_gtod_sync_lock);
2036         if (!ka->use_master_clock) {
2037                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2038                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2039         }
2040
2041         hv_clock.tsc_timestamp = ka->master_cycle_now;
2042         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2043         spin_unlock(&ka->pvclock_gtod_sync_lock);
2044
2045         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2046         get_cpu();
2047
2048         if (__this_cpu_read(cpu_tsc_khz)) {
2049                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2050                                    &hv_clock.tsc_shift,
2051                                    &hv_clock.tsc_to_system_mul);
2052                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2053         } else
2054                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2055
2056         put_cpu();
2057
2058         return ret;
2059 }
2060
2061 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2062 {
2063         struct kvm_vcpu_arch *vcpu = &v->arch;
2064         struct pvclock_vcpu_time_info guest_hv_clock;
2065
2066         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2067                 &guest_hv_clock, sizeof(guest_hv_clock))))
2068                 return;
2069
2070         /* This VCPU is paused, but it's legal for a guest to read another
2071          * VCPU's kvmclock, so we really have to follow the specification where
2072          * it says that version is odd if data is being modified, and even after
2073          * it is consistent.
2074          *
2075          * Version field updates must be kept separate.  This is because
2076          * kvm_write_guest_cached might use a "rep movs" instruction, and
2077          * writes within a string instruction are weakly ordered.  So there
2078          * are three writes overall.
2079          *
2080          * As a small optimization, only write the version field in the first
2081          * and third write.  The vcpu->pv_time cache is still valid, because the
2082          * version field is the first in the struct.
2083          */
2084         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2085
2086         if (guest_hv_clock.version & 1)
2087                 ++guest_hv_clock.version;  /* first time write, random junk */
2088
2089         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2090         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2091                                 &vcpu->hv_clock,
2092                                 sizeof(vcpu->hv_clock.version));
2093
2094         smp_wmb();
2095
2096         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2097         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2098
2099         if (vcpu->pvclock_set_guest_stopped_request) {
2100                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2101                 vcpu->pvclock_set_guest_stopped_request = false;
2102         }
2103
2104         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2105
2106         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2107                                 &vcpu->hv_clock,
2108                                 sizeof(vcpu->hv_clock));
2109
2110         smp_wmb();
2111
2112         vcpu->hv_clock.version++;
2113         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2114                                 &vcpu->hv_clock,
2115                                 sizeof(vcpu->hv_clock.version));
2116 }
2117
2118 static int kvm_guest_time_update(struct kvm_vcpu *v)
2119 {
2120         unsigned long flags, tgt_tsc_khz;
2121         struct kvm_vcpu_arch *vcpu = &v->arch;
2122         struct kvm_arch *ka = &v->kvm->arch;
2123         s64 kernel_ns;
2124         u64 tsc_timestamp, host_tsc;
2125         u8 pvclock_flags;
2126         bool use_master_clock;
2127
2128         kernel_ns = 0;
2129         host_tsc = 0;
2130
2131         /*
2132          * If the host uses TSC clock, then passthrough TSC as stable
2133          * to the guest.
2134          */
2135         spin_lock(&ka->pvclock_gtod_sync_lock);
2136         use_master_clock = ka->use_master_clock;
2137         if (use_master_clock) {
2138                 host_tsc = ka->master_cycle_now;
2139                 kernel_ns = ka->master_kernel_ns;
2140         }
2141         spin_unlock(&ka->pvclock_gtod_sync_lock);
2142
2143         /* Keep irq disabled to prevent changes to the clock */
2144         local_irq_save(flags);
2145         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2146         if (unlikely(tgt_tsc_khz == 0)) {
2147                 local_irq_restore(flags);
2148                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2149                 return 1;
2150         }
2151         if (!use_master_clock) {
2152                 host_tsc = rdtsc();
2153                 kernel_ns = ktime_get_boot_ns();
2154         }
2155
2156         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2157
2158         /*
2159          * We may have to catch up the TSC to match elapsed wall clock
2160          * time for two reasons, even if kvmclock is used.
2161          *   1) CPU could have been running below the maximum TSC rate
2162          *   2) Broken TSC compensation resets the base at each VCPU
2163          *      entry to avoid unknown leaps of TSC even when running
2164          *      again on the same CPU.  This may cause apparent elapsed
2165          *      time to disappear, and the guest to stand still or run
2166          *      very slowly.
2167          */
2168         if (vcpu->tsc_catchup) {
2169                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2170                 if (tsc > tsc_timestamp) {
2171                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2172                         tsc_timestamp = tsc;
2173                 }
2174         }
2175
2176         local_irq_restore(flags);
2177
2178         /* With all the info we got, fill in the values */
2179
2180         if (kvm_has_tsc_control)
2181                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2182
2183         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2184                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2185                                    &vcpu->hv_clock.tsc_shift,
2186                                    &vcpu->hv_clock.tsc_to_system_mul);
2187                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2188         }
2189
2190         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2191         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2192         vcpu->last_guest_tsc = tsc_timestamp;
2193
2194         /* If the host uses TSC clocksource, then it is stable */
2195         pvclock_flags = 0;
2196         if (use_master_clock)
2197                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2198
2199         vcpu->hv_clock.flags = pvclock_flags;
2200
2201         if (vcpu->pv_time_enabled)
2202                 kvm_setup_pvclock_page(v);
2203         if (v == kvm_get_vcpu(v->kvm, 0))
2204                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2205         return 0;
2206 }
2207
2208 /*
2209  * kvmclock updates which are isolated to a given vcpu, such as
2210  * vcpu->cpu migration, should not allow system_timestamp from
2211  * the rest of the vcpus to remain static. Otherwise ntp frequency
2212  * correction applies to one vcpu's system_timestamp but not
2213  * the others.
2214  *
2215  * So in those cases, request a kvmclock update for all vcpus.
2216  * We need to rate-limit these requests though, as they can
2217  * considerably slow guests that have a large number of vcpus.
2218  * The time for a remote vcpu to update its kvmclock is bound
2219  * by the delay we use to rate-limit the updates.
2220  */
2221
2222 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2223
2224 static void kvmclock_update_fn(struct work_struct *work)
2225 {
2226         int i;
2227         struct delayed_work *dwork = to_delayed_work(work);
2228         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2229                                            kvmclock_update_work);
2230         struct kvm *kvm = container_of(ka, struct kvm, arch);
2231         struct kvm_vcpu *vcpu;
2232
2233         kvm_for_each_vcpu(i, vcpu, kvm) {
2234                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2235                 kvm_vcpu_kick(vcpu);
2236         }
2237 }
2238
2239 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2240 {
2241         struct kvm *kvm = v->kvm;
2242
2243         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2244         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2245                                         KVMCLOCK_UPDATE_DELAY);
2246 }
2247
2248 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2249
2250 static void kvmclock_sync_fn(struct work_struct *work)
2251 {
2252         struct delayed_work *dwork = to_delayed_work(work);
2253         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2254                                            kvmclock_sync_work);
2255         struct kvm *kvm = container_of(ka, struct kvm, arch);
2256
2257         if (!kvmclock_periodic_sync)
2258                 return;
2259
2260         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2261         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2262                                         KVMCLOCK_SYNC_PERIOD);
2263 }
2264
2265 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2266 {
2267         u64 mcg_cap = vcpu->arch.mcg_cap;
2268         unsigned bank_num = mcg_cap & 0xff;
2269         u32 msr = msr_info->index;
2270         u64 data = msr_info->data;
2271
2272         switch (msr) {
2273         case MSR_IA32_MCG_STATUS:
2274                 vcpu->arch.mcg_status = data;
2275                 break;
2276         case MSR_IA32_MCG_CTL:
2277                 if (!(mcg_cap & MCG_CTL_P) &&
2278                     (data || !msr_info->host_initiated))
2279                         return 1;
2280                 if (data != 0 && data != ~(u64)0)
2281                         return 1;
2282                 vcpu->arch.mcg_ctl = data;
2283                 break;
2284         default:
2285                 if (msr >= MSR_IA32_MC0_CTL &&
2286                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2287                         u32 offset = msr - MSR_IA32_MC0_CTL;
2288                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2289                          * some Linux kernels though clear bit 10 in bank 4 to
2290                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2291                          * this to avoid an uncatched #GP in the guest
2292                          */
2293                         if ((offset & 0x3) == 0 &&
2294                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2295                                 return -1;
2296                         if (!msr_info->host_initiated &&
2297                                 (offset & 0x3) == 1 && data != 0)
2298                                 return -1;
2299                         vcpu->arch.mce_banks[offset] = data;
2300                         break;
2301                 }
2302                 return 1;
2303         }
2304         return 0;
2305 }
2306
2307 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2308 {
2309         struct kvm *kvm = vcpu->kvm;
2310         int lm = is_long_mode(vcpu);
2311         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2312                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2313         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2314                 : kvm->arch.xen_hvm_config.blob_size_32;
2315         u32 page_num = data & ~PAGE_MASK;
2316         u64 page_addr = data & PAGE_MASK;
2317         u8 *page;
2318         int r;
2319
2320         r = -E2BIG;
2321         if (page_num >= blob_size)
2322                 goto out;
2323         r = -ENOMEM;
2324         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2325         if (IS_ERR(page)) {
2326                 r = PTR_ERR(page);
2327                 goto out;
2328         }
2329         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2330                 goto out_free;
2331         r = 0;
2332 out_free:
2333         kfree(page);
2334 out:
2335         return r;
2336 }
2337
2338 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2339 {
2340         gpa_t gpa = data & ~0x3f;
2341
2342         /* Bits 3:5 are reserved, Should be zero */
2343         if (data & 0x38)
2344                 return 1;
2345
2346         vcpu->arch.apf.msr_val = data;
2347
2348         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2349                 kvm_clear_async_pf_completion_queue(vcpu);
2350                 kvm_async_pf_hash_reset(vcpu);
2351                 return 0;
2352         }
2353
2354         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2355                                         sizeof(u32)))
2356                 return 1;
2357
2358         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2359         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2360         kvm_async_pf_wakeup_all(vcpu);
2361         return 0;
2362 }
2363
2364 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2365 {
2366         vcpu->arch.pv_time_enabled = false;
2367 }
2368
2369 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2370 {
2371         ++vcpu->stat.tlb_flush;
2372         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2373 }
2374
2375 static void record_steal_time(struct kvm_vcpu *vcpu)
2376 {
2377         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2378                 return;
2379
2380         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2381                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2382                 return;
2383
2384         /*
2385          * Doing a TLB flush here, on the guest's behalf, can avoid
2386          * expensive IPIs.
2387          */
2388         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2389                 kvm_vcpu_flush_tlb(vcpu, false);
2390
2391         if (vcpu->arch.st.steal.version & 1)
2392                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2393
2394         vcpu->arch.st.steal.version += 1;
2395
2396         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2397                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2398
2399         smp_wmb();
2400
2401         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2402                 vcpu->arch.st.last_steal;
2403         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2404
2405         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2406                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2407
2408         smp_wmb();
2409
2410         vcpu->arch.st.steal.version += 1;
2411
2412         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2413                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2414 }
2415
2416 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2417 {
2418         bool pr = false;
2419         u32 msr = msr_info->index;
2420         u64 data = msr_info->data;
2421
2422         switch (msr) {
2423         case MSR_AMD64_NB_CFG:
2424         case MSR_IA32_UCODE_WRITE:
2425         case MSR_VM_HSAVE_PA:
2426         case MSR_AMD64_PATCH_LOADER:
2427         case MSR_AMD64_BU_CFG2:
2428         case MSR_AMD64_DC_CFG:
2429                 break;
2430
2431         case MSR_IA32_UCODE_REV:
2432                 if (msr_info->host_initiated)
2433                         vcpu->arch.microcode_version = data;
2434                 break;
2435         case MSR_EFER:
2436                 return set_efer(vcpu, data);
2437         case MSR_K7_HWCR:
2438                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2439                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2440                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2441                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2442                 if (data != 0) {
2443                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2444                                     data);
2445                         return 1;
2446                 }
2447                 break;
2448         case MSR_FAM10H_MMIO_CONF_BASE:
2449                 if (data != 0) {
2450                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2451                                     "0x%llx\n", data);
2452                         return 1;
2453                 }
2454                 break;
2455         case MSR_IA32_DEBUGCTLMSR:
2456                 if (!data) {
2457                         /* We support the non-activated case already */
2458                         break;
2459                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2460                         /* Values other than LBR and BTF are vendor-specific,
2461                            thus reserved and should throw a #GP */
2462                         return 1;
2463                 }
2464                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2465                             __func__, data);
2466                 break;
2467         case 0x200 ... 0x2ff:
2468                 return kvm_mtrr_set_msr(vcpu, msr, data);
2469         case MSR_IA32_APICBASE:
2470                 return kvm_set_apic_base(vcpu, msr_info);
2471         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2472                 return kvm_x2apic_msr_write(vcpu, msr, data);
2473         case MSR_IA32_TSCDEADLINE:
2474                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2475                 break;
2476         case MSR_IA32_TSC_ADJUST:
2477                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2478                         if (!msr_info->host_initiated) {
2479                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2480                                 adjust_tsc_offset_guest(vcpu, adj);
2481                         }
2482                         vcpu->arch.ia32_tsc_adjust_msr = data;
2483                 }
2484                 break;
2485         case MSR_IA32_MISC_ENABLE:
2486                 vcpu->arch.ia32_misc_enable_msr = data;
2487                 break;
2488         case MSR_IA32_SMBASE:
2489                 if (!msr_info->host_initiated)
2490                         return 1;
2491                 vcpu->arch.smbase = data;
2492                 break;
2493         case MSR_IA32_TSC:
2494                 kvm_write_tsc(vcpu, msr_info);
2495                 break;
2496         case MSR_SMI_COUNT:
2497                 if (!msr_info->host_initiated)
2498                         return 1;
2499                 vcpu->arch.smi_count = data;
2500                 break;
2501         case MSR_KVM_WALL_CLOCK_NEW:
2502         case MSR_KVM_WALL_CLOCK:
2503                 vcpu->kvm->arch.wall_clock = data;
2504                 kvm_write_wall_clock(vcpu->kvm, data);
2505                 break;
2506         case MSR_KVM_SYSTEM_TIME_NEW:
2507         case MSR_KVM_SYSTEM_TIME: {
2508                 struct kvm_arch *ka = &vcpu->kvm->arch;
2509
2510                 kvmclock_reset(vcpu);
2511
2512                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2513                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2514
2515                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2516                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2517
2518                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2519                 }
2520
2521                 vcpu->arch.time = data;
2522                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2523
2524                 /* we verify if the enable bit is set... */
2525                 if (!(data & 1))
2526                         break;
2527
2528                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2529                      &vcpu->arch.pv_time, data & ~1ULL,
2530                      sizeof(struct pvclock_vcpu_time_info)))
2531                         vcpu->arch.pv_time_enabled = false;
2532                 else
2533                         vcpu->arch.pv_time_enabled = true;
2534
2535                 break;
2536         }
2537         case MSR_KVM_ASYNC_PF_EN:
2538                 if (kvm_pv_enable_async_pf(vcpu, data))
2539                         return 1;
2540                 break;
2541         case MSR_KVM_STEAL_TIME:
2542
2543                 if (unlikely(!sched_info_on()))
2544                         return 1;
2545
2546                 if (data & KVM_STEAL_RESERVED_MASK)
2547                         return 1;
2548
2549                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2550                                                 data & KVM_STEAL_VALID_BITS,
2551                                                 sizeof(struct kvm_steal_time)))
2552                         return 1;
2553
2554                 vcpu->arch.st.msr_val = data;
2555
2556                 if (!(data & KVM_MSR_ENABLED))
2557                         break;
2558
2559                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2560
2561                 break;
2562         case MSR_KVM_PV_EOI_EN:
2563                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2564                         return 1;
2565                 break;
2566
2567         case MSR_IA32_MCG_CTL:
2568         case MSR_IA32_MCG_STATUS:
2569         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2570                 return set_msr_mce(vcpu, msr_info);
2571
2572         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2573         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2574                 pr = true; /* fall through */
2575         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2576         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2577                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2578                         return kvm_pmu_set_msr(vcpu, msr_info);
2579
2580                 if (pr || data != 0)
2581                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2582                                     "0x%x data 0x%llx\n", msr, data);
2583                 break;
2584         case MSR_K7_CLK_CTL:
2585                 /*
2586                  * Ignore all writes to this no longer documented MSR.
2587                  * Writes are only relevant for old K7 processors,
2588                  * all pre-dating SVM, but a recommended workaround from
2589                  * AMD for these chips. It is possible to specify the
2590                  * affected processor models on the command line, hence
2591                  * the need to ignore the workaround.
2592                  */
2593                 break;
2594         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2595         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2596         case HV_X64_MSR_CRASH_CTL:
2597         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2598         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2599         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2600         case HV_X64_MSR_TSC_EMULATION_STATUS:
2601                 return kvm_hv_set_msr_common(vcpu, msr, data,
2602                                              msr_info->host_initiated);
2603         case MSR_IA32_BBL_CR_CTL3:
2604                 /* Drop writes to this legacy MSR -- see rdmsr
2605                  * counterpart for further detail.
2606                  */
2607                 if (report_ignored_msrs)
2608                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2609                                 msr, data);
2610                 break;
2611         case MSR_AMD64_OSVW_ID_LENGTH:
2612                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2613                         return 1;
2614                 vcpu->arch.osvw.length = data;
2615                 break;
2616         case MSR_AMD64_OSVW_STATUS:
2617                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2618                         return 1;
2619                 vcpu->arch.osvw.status = data;
2620                 break;
2621         case MSR_PLATFORM_INFO:
2622                 if (!msr_info->host_initiated ||
2623                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2624                      cpuid_fault_enabled(vcpu)))
2625                         return 1;
2626                 vcpu->arch.msr_platform_info = data;
2627                 break;
2628         case MSR_MISC_FEATURES_ENABLES:
2629                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2630                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2631                      !supports_cpuid_fault(vcpu)))
2632                         return 1;
2633                 vcpu->arch.msr_misc_features_enables = data;
2634                 break;
2635         default:
2636                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2637                         return xen_hvm_config(vcpu, data);
2638                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2639                         return kvm_pmu_set_msr(vcpu, msr_info);
2640                 if (!ignore_msrs) {
2641                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2642                                     msr, data);
2643                         return 1;
2644                 } else {
2645                         if (report_ignored_msrs)
2646                                 vcpu_unimpl(vcpu,
2647                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2648                                         msr, data);
2649                         break;
2650                 }
2651         }
2652         return 0;
2653 }
2654 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2655
2656
2657 /*
2658  * Reads an msr value (of 'msr_index') into 'pdata'.
2659  * Returns 0 on success, non-0 otherwise.
2660  * Assumes vcpu_load() was already called.
2661  */
2662 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2663 {
2664         return kvm_x86_ops->get_msr(vcpu, msr);
2665 }
2666 EXPORT_SYMBOL_GPL(kvm_get_msr);
2667
2668 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2669 {
2670         u64 data;
2671         u64 mcg_cap = vcpu->arch.mcg_cap;
2672         unsigned bank_num = mcg_cap & 0xff;
2673
2674         switch (msr) {
2675         case MSR_IA32_P5_MC_ADDR:
2676         case MSR_IA32_P5_MC_TYPE:
2677                 data = 0;
2678                 break;
2679         case MSR_IA32_MCG_CAP:
2680                 data = vcpu->arch.mcg_cap;
2681                 break;
2682         case MSR_IA32_MCG_CTL:
2683                 if (!(mcg_cap & MCG_CTL_P) && !host)
2684                         return 1;
2685                 data = vcpu->arch.mcg_ctl;
2686                 break;
2687         case MSR_IA32_MCG_STATUS:
2688                 data = vcpu->arch.mcg_status;
2689                 break;
2690         default:
2691                 if (msr >= MSR_IA32_MC0_CTL &&
2692                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2693                         u32 offset = msr - MSR_IA32_MC0_CTL;
2694                         data = vcpu->arch.mce_banks[offset];
2695                         break;
2696                 }
2697                 return 1;
2698         }
2699         *pdata = data;
2700         return 0;
2701 }
2702
2703 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2704 {
2705         switch (msr_info->index) {
2706         case MSR_IA32_PLATFORM_ID:
2707         case MSR_IA32_EBL_CR_POWERON:
2708         case MSR_IA32_DEBUGCTLMSR:
2709         case MSR_IA32_LASTBRANCHFROMIP:
2710         case MSR_IA32_LASTBRANCHTOIP:
2711         case MSR_IA32_LASTINTFROMIP:
2712         case MSR_IA32_LASTINTTOIP:
2713         case MSR_K8_SYSCFG:
2714         case MSR_K8_TSEG_ADDR:
2715         case MSR_K8_TSEG_MASK:
2716         case MSR_K7_HWCR:
2717         case MSR_VM_HSAVE_PA:
2718         case MSR_K8_INT_PENDING_MSG:
2719         case MSR_AMD64_NB_CFG:
2720         case MSR_FAM10H_MMIO_CONF_BASE:
2721         case MSR_AMD64_BU_CFG2:
2722         case MSR_IA32_PERF_CTL:
2723         case MSR_AMD64_DC_CFG:
2724                 msr_info->data = 0;
2725                 break;
2726         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2727         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2728         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2729         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2730         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2731                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2732                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2733                 msr_info->data = 0;
2734                 break;
2735         case MSR_IA32_UCODE_REV:
2736                 msr_info->data = vcpu->arch.microcode_version;
2737                 break;
2738         case MSR_IA32_TSC:
2739                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2740                 break;
2741         case MSR_MTRRcap:
2742         case 0x200 ... 0x2ff:
2743                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2744         case 0xcd: /* fsb frequency */
2745                 msr_info->data = 3;
2746                 break;
2747                 /*
2748                  * MSR_EBC_FREQUENCY_ID
2749                  * Conservative value valid for even the basic CPU models.
2750                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2751                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2752                  * and 266MHz for model 3, or 4. Set Core Clock
2753                  * Frequency to System Bus Frequency Ratio to 1 (bits
2754                  * 31:24) even though these are only valid for CPU
2755                  * models > 2, however guests may end up dividing or
2756                  * multiplying by zero otherwise.
2757                  */
2758         case MSR_EBC_FREQUENCY_ID:
2759                 msr_info->data = 1 << 24;
2760                 break;
2761         case MSR_IA32_APICBASE:
2762                 msr_info->data = kvm_get_apic_base(vcpu);
2763                 break;
2764         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2765                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2766                 break;
2767         case MSR_IA32_TSCDEADLINE:
2768                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2769                 break;
2770         case MSR_IA32_TSC_ADJUST:
2771                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2772                 break;
2773         case MSR_IA32_MISC_ENABLE:
2774                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2775                 break;
2776         case MSR_IA32_SMBASE:
2777                 if (!msr_info->host_initiated)
2778                         return 1;
2779                 msr_info->data = vcpu->arch.smbase;
2780                 break;
2781         case MSR_SMI_COUNT:
2782                 msr_info->data = vcpu->arch.smi_count;
2783                 break;
2784         case MSR_IA32_PERF_STATUS:
2785                 /* TSC increment by tick */
2786                 msr_info->data = 1000ULL;
2787                 /* CPU multiplier */
2788                 msr_info->data |= (((uint64_t)4ULL) << 40);
2789                 break;
2790         case MSR_EFER:
2791                 msr_info->data = vcpu->arch.efer;
2792                 break;
2793         case MSR_KVM_WALL_CLOCK:
2794         case MSR_KVM_WALL_CLOCK_NEW:
2795                 msr_info->data = vcpu->kvm->arch.wall_clock;
2796                 break;
2797         case MSR_KVM_SYSTEM_TIME:
2798         case MSR_KVM_SYSTEM_TIME_NEW:
2799                 msr_info->data = vcpu->arch.time;
2800                 break;
2801         case MSR_KVM_ASYNC_PF_EN:
2802                 msr_info->data = vcpu->arch.apf.msr_val;
2803                 break;
2804         case MSR_KVM_STEAL_TIME:
2805                 msr_info->data = vcpu->arch.st.msr_val;
2806                 break;
2807         case MSR_KVM_PV_EOI_EN:
2808                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2809                 break;
2810         case MSR_IA32_P5_MC_ADDR:
2811         case MSR_IA32_P5_MC_TYPE:
2812         case MSR_IA32_MCG_CAP:
2813         case MSR_IA32_MCG_CTL:
2814         case MSR_IA32_MCG_STATUS:
2815         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2816                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2817                                    msr_info->host_initiated);
2818         case MSR_K7_CLK_CTL:
2819                 /*
2820                  * Provide expected ramp-up count for K7. All other
2821                  * are set to zero, indicating minimum divisors for
2822                  * every field.
2823                  *
2824                  * This prevents guest kernels on AMD host with CPU
2825                  * type 6, model 8 and higher from exploding due to
2826                  * the rdmsr failing.
2827                  */
2828                 msr_info->data = 0x20000000;
2829                 break;
2830         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2831         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2832         case HV_X64_MSR_CRASH_CTL:
2833         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2834         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2835         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2836         case HV_X64_MSR_TSC_EMULATION_STATUS:
2837                 return kvm_hv_get_msr_common(vcpu,
2838                                              msr_info->index, &msr_info->data,
2839                                              msr_info->host_initiated);
2840                 break;
2841         case MSR_IA32_BBL_CR_CTL3:
2842                 /* This legacy MSR exists but isn't fully documented in current
2843                  * silicon.  It is however accessed by winxp in very narrow
2844                  * scenarios where it sets bit #19, itself documented as
2845                  * a "reserved" bit.  Best effort attempt to source coherent
2846                  * read data here should the balance of the register be
2847                  * interpreted by the guest:
2848                  *
2849                  * L2 cache control register 3: 64GB range, 256KB size,
2850                  * enabled, latency 0x1, configured
2851                  */
2852                 msr_info->data = 0xbe702111;
2853                 break;
2854         case MSR_AMD64_OSVW_ID_LENGTH:
2855                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2856                         return 1;
2857                 msr_info->data = vcpu->arch.osvw.length;
2858                 break;
2859         case MSR_AMD64_OSVW_STATUS:
2860                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2861                         return 1;
2862                 msr_info->data = vcpu->arch.osvw.status;
2863                 break;
2864         case MSR_PLATFORM_INFO:
2865                 if (!msr_info->host_initiated &&
2866                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2867                         return 1;
2868                 msr_info->data = vcpu->arch.msr_platform_info;
2869                 break;
2870         case MSR_MISC_FEATURES_ENABLES:
2871                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2872                 break;
2873         default:
2874                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2875                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2876                 if (!ignore_msrs) {
2877                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2878                                                msr_info->index);
2879                         return 1;
2880                 } else {
2881                         if (report_ignored_msrs)
2882                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2883                                         msr_info->index);
2884                         msr_info->data = 0;
2885                 }
2886                 break;
2887         }
2888         return 0;
2889 }
2890 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2891
2892 /*
2893  * Read or write a bunch of msrs. All parameters are kernel addresses.
2894  *
2895  * @return number of msrs set successfully.
2896  */
2897 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2898                     struct kvm_msr_entry *entries,
2899                     int (*do_msr)(struct kvm_vcpu *vcpu,
2900                                   unsigned index, u64 *data))
2901 {
2902         int i;
2903
2904         for (i = 0; i < msrs->nmsrs; ++i)
2905                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2906                         break;
2907
2908         return i;
2909 }
2910
2911 /*
2912  * Read or write a bunch of msrs. Parameters are user addresses.
2913  *
2914  * @return number of msrs set successfully.
2915  */
2916 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2917                   int (*do_msr)(struct kvm_vcpu *vcpu,
2918                                 unsigned index, u64 *data),
2919                   int writeback)
2920 {
2921         struct kvm_msrs msrs;
2922         struct kvm_msr_entry *entries;
2923         int r, n;
2924         unsigned size;
2925
2926         r = -EFAULT;
2927         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2928                 goto out;
2929
2930         r = -E2BIG;
2931         if (msrs.nmsrs >= MAX_IO_MSRS)
2932                 goto out;
2933
2934         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2935         entries = memdup_user(user_msrs->entries, size);
2936         if (IS_ERR(entries)) {
2937                 r = PTR_ERR(entries);
2938                 goto out;
2939         }
2940
2941         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2942         if (r < 0)
2943                 goto out_free;
2944
2945         r = -EFAULT;
2946         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2947                 goto out_free;
2948
2949         r = n;
2950
2951 out_free:
2952         kfree(entries);
2953 out:
2954         return r;
2955 }
2956
2957 static inline bool kvm_can_mwait_in_guest(void)
2958 {
2959         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2960                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2961                 boot_cpu_has(X86_FEATURE_ARAT);
2962 }
2963
2964 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2965 {
2966         int r = 0;
2967
2968         switch (ext) {
2969         case KVM_CAP_IRQCHIP:
2970         case KVM_CAP_HLT:
2971         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2972         case KVM_CAP_SET_TSS_ADDR:
2973         case KVM_CAP_EXT_CPUID:
2974         case KVM_CAP_EXT_EMUL_CPUID:
2975         case KVM_CAP_CLOCKSOURCE:
2976         case KVM_CAP_PIT:
2977         case KVM_CAP_NOP_IO_DELAY:
2978         case KVM_CAP_MP_STATE:
2979         case KVM_CAP_SYNC_MMU:
2980         case KVM_CAP_USER_NMI:
2981         case KVM_CAP_REINJECT_CONTROL:
2982         case KVM_CAP_IRQ_INJECT_STATUS:
2983         case KVM_CAP_IOEVENTFD:
2984         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2985         case KVM_CAP_PIT2:
2986         case KVM_CAP_PIT_STATE2:
2987         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2988         case KVM_CAP_XEN_HVM:
2989         case KVM_CAP_VCPU_EVENTS:
2990         case KVM_CAP_HYPERV:
2991         case KVM_CAP_HYPERV_VAPIC:
2992         case KVM_CAP_HYPERV_SPIN:
2993         case KVM_CAP_HYPERV_SYNIC:
2994         case KVM_CAP_HYPERV_SYNIC2:
2995         case KVM_CAP_HYPERV_VP_INDEX:
2996         case KVM_CAP_HYPERV_EVENTFD:
2997         case KVM_CAP_HYPERV_TLBFLUSH:
2998         case KVM_CAP_HYPERV_SEND_IPI:
2999         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3000         case KVM_CAP_HYPERV_CPUID:
3001         case KVM_CAP_PCI_SEGMENT:
3002         case KVM_CAP_DEBUGREGS:
3003         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3004         case KVM_CAP_XSAVE:
3005         case KVM_CAP_ASYNC_PF:
3006         case KVM_CAP_GET_TSC_KHZ:
3007         case KVM_CAP_KVMCLOCK_CTRL:
3008         case KVM_CAP_READONLY_MEM:
3009         case KVM_CAP_HYPERV_TIME:
3010         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3011         case KVM_CAP_TSC_DEADLINE_TIMER:
3012         case KVM_CAP_DISABLE_QUIRKS:
3013         case KVM_CAP_SET_BOOT_CPU_ID:
3014         case KVM_CAP_SPLIT_IRQCHIP:
3015         case KVM_CAP_IMMEDIATE_EXIT:
3016         case KVM_CAP_GET_MSR_FEATURES:
3017         case KVM_CAP_MSR_PLATFORM_INFO:
3018         case KVM_CAP_EXCEPTION_PAYLOAD:
3019                 r = 1;
3020                 break;
3021         case KVM_CAP_SYNC_REGS:
3022                 r = KVM_SYNC_X86_VALID_FIELDS;
3023                 break;
3024         case KVM_CAP_ADJUST_CLOCK:
3025                 r = KVM_CLOCK_TSC_STABLE;
3026                 break;
3027         case KVM_CAP_X86_DISABLE_EXITS:
3028                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3029                 if(kvm_can_mwait_in_guest())
3030                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3031                 break;
3032         case KVM_CAP_X86_SMM:
3033                 /* SMBASE is usually relocated above 1M on modern chipsets,
3034                  * and SMM handlers might indeed rely on 4G segment limits,
3035                  * so do not report SMM to be available if real mode is
3036                  * emulated via vm86 mode.  Still, do not go to great lengths
3037                  * to avoid userspace's usage of the feature, because it is a
3038                  * fringe case that is not enabled except via specific settings
3039                  * of the module parameters.
3040                  */
3041                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3042                 break;
3043         case KVM_CAP_VAPIC:
3044                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3045                 break;
3046         case KVM_CAP_NR_VCPUS:
3047                 r = KVM_SOFT_MAX_VCPUS;
3048                 break;
3049         case KVM_CAP_MAX_VCPUS:
3050                 r = KVM_MAX_VCPUS;
3051                 break;
3052         case KVM_CAP_NR_MEMSLOTS:
3053                 r = KVM_USER_MEM_SLOTS;
3054                 break;
3055         case KVM_CAP_PV_MMU:    /* obsolete */
3056                 r = 0;
3057                 break;
3058         case KVM_CAP_MCE:
3059                 r = KVM_MAX_MCE_BANKS;
3060                 break;
3061         case KVM_CAP_XCRS:
3062                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3063                 break;
3064         case KVM_CAP_TSC_CONTROL:
3065                 r = kvm_has_tsc_control;
3066                 break;
3067         case KVM_CAP_X2APIC_API:
3068                 r = KVM_X2APIC_API_VALID_FLAGS;
3069                 break;
3070         case KVM_CAP_NESTED_STATE:
3071                 r = kvm_x86_ops->get_nested_state ?
3072                         kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
3073                 break;
3074         default:
3075                 break;
3076         }
3077         return r;
3078
3079 }
3080
3081 long kvm_arch_dev_ioctl(struct file *filp,
3082                         unsigned int ioctl, unsigned long arg)
3083 {
3084         void __user *argp = (void __user *)arg;
3085         long r;
3086
3087         switch (ioctl) {
3088         case KVM_GET_MSR_INDEX_LIST: {
3089                 struct kvm_msr_list __user *user_msr_list = argp;
3090                 struct kvm_msr_list msr_list;
3091                 unsigned n;
3092
3093                 r = -EFAULT;
3094                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3095                         goto out;
3096                 n = msr_list.nmsrs;
3097                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3098                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3099                         goto out;
3100                 r = -E2BIG;
3101                 if (n < msr_list.nmsrs)
3102                         goto out;
3103                 r = -EFAULT;
3104                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3105                                  num_msrs_to_save * sizeof(u32)))
3106                         goto out;
3107                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3108                                  &emulated_msrs,
3109                                  num_emulated_msrs * sizeof(u32)))
3110                         goto out;
3111                 r = 0;
3112                 break;
3113         }
3114         case KVM_GET_SUPPORTED_CPUID:
3115         case KVM_GET_EMULATED_CPUID: {
3116                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3117                 struct kvm_cpuid2 cpuid;
3118
3119                 r = -EFAULT;
3120                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3121                         goto out;
3122
3123                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3124                                             ioctl);
3125                 if (r)
3126                         goto out;
3127
3128                 r = -EFAULT;
3129                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3130                         goto out;
3131                 r = 0;
3132                 break;
3133         }
3134         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3135                 r = -EFAULT;
3136                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3137                                  sizeof(kvm_mce_cap_supported)))
3138                         goto out;
3139                 r = 0;
3140                 break;
3141         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3142                 struct kvm_msr_list __user *user_msr_list = argp;
3143                 struct kvm_msr_list msr_list;
3144                 unsigned int n;
3145
3146                 r = -EFAULT;
3147                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3148                         goto out;
3149                 n = msr_list.nmsrs;
3150                 msr_list.nmsrs = num_msr_based_features;
3151                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3152                         goto out;
3153                 r = -E2BIG;
3154                 if (n < msr_list.nmsrs)
3155                         goto out;
3156                 r = -EFAULT;
3157                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3158                                  num_msr_based_features * sizeof(u32)))
3159                         goto out;
3160                 r = 0;
3161                 break;
3162         }
3163         case KVM_GET_MSRS:
3164                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3165                 break;
3166         }
3167         default:
3168                 r = -EINVAL;
3169         }
3170 out:
3171         return r;
3172 }
3173
3174 static void wbinvd_ipi(void *garbage)
3175 {
3176         wbinvd();
3177 }
3178
3179 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3180 {
3181         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3182 }
3183
3184 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3185 {
3186         /* Address WBINVD may be executed by guest */
3187         if (need_emulate_wbinvd(vcpu)) {
3188                 if (kvm_x86_ops->has_wbinvd_exit())
3189                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3190                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3191                         smp_call_function_single(vcpu->cpu,
3192                                         wbinvd_ipi, NULL, 1);
3193         }
3194
3195         kvm_x86_ops->vcpu_load(vcpu, cpu);
3196
3197         /* Apply any externally detected TSC adjustments (due to suspend) */
3198         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3199                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3200                 vcpu->arch.tsc_offset_adjustment = 0;
3201                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3202         }
3203
3204         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3205                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3206                                 rdtsc() - vcpu->arch.last_host_tsc;
3207                 if (tsc_delta < 0)
3208                         mark_tsc_unstable("KVM discovered backwards TSC");
3209
3210                 if (kvm_check_tsc_unstable()) {
3211                         u64 offset = kvm_compute_tsc_offset(vcpu,
3212                                                 vcpu->arch.last_guest_tsc);
3213                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3214                         vcpu->arch.tsc_catchup = 1;
3215                 }
3216
3217                 if (kvm_lapic_hv_timer_in_use(vcpu))
3218                         kvm_lapic_restart_hv_timer(vcpu);
3219
3220                 /*
3221                  * On a host with synchronized TSC, there is no need to update
3222                  * kvmclock on vcpu->cpu migration
3223                  */
3224                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3225                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3226                 if (vcpu->cpu != cpu)
3227                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3228                 vcpu->cpu = cpu;
3229         }
3230
3231         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3232 }
3233
3234 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3235 {
3236         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3237                 return;
3238
3239         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3240
3241         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3242                         &vcpu->arch.st.steal.preempted,
3243                         offsetof(struct kvm_steal_time, preempted),
3244                         sizeof(vcpu->arch.st.steal.preempted));
3245 }
3246
3247 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3248 {
3249         int idx;
3250
3251         if (vcpu->preempted)
3252                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3253
3254         /*
3255          * Disable page faults because we're in atomic context here.
3256          * kvm_write_guest_offset_cached() would call might_fault()
3257          * that relies on pagefault_disable() to tell if there's a
3258          * bug. NOTE: the write to guest memory may not go through if
3259          * during postcopy live migration or if there's heavy guest
3260          * paging.
3261          */
3262         pagefault_disable();
3263         /*
3264          * kvm_memslots() will be called by
3265          * kvm_write_guest_offset_cached() so take the srcu lock.
3266          */
3267         idx = srcu_read_lock(&vcpu->kvm->srcu);
3268         kvm_steal_time_set_preempted(vcpu);
3269         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3270         pagefault_enable();
3271         kvm_x86_ops->vcpu_put(vcpu);
3272         vcpu->arch.last_host_tsc = rdtsc();
3273         /*
3274          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3275          * on every vmexit, but if not, we might have a stale dr6 from the
3276          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3277          */
3278         set_debugreg(0, 6);
3279 }
3280
3281 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3282                                     struct kvm_lapic_state *s)
3283 {
3284         if (vcpu->arch.apicv_active)
3285                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3286
3287         return kvm_apic_get_state(vcpu, s);
3288 }
3289
3290 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3291                                     struct kvm_lapic_state *s)
3292 {
3293         int r;
3294
3295         r = kvm_apic_set_state(vcpu, s);
3296         if (r)
3297                 return r;
3298         update_cr8_intercept(vcpu);
3299
3300         return 0;
3301 }
3302
3303 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3304 {
3305         return (!lapic_in_kernel(vcpu) ||
3306                 kvm_apic_accept_pic_intr(vcpu));
3307 }
3308
3309 /*
3310  * if userspace requested an interrupt window, check that the
3311  * interrupt window is open.
3312  *
3313  * No need to exit to userspace if we already have an interrupt queued.
3314  */
3315 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3316 {
3317         return kvm_arch_interrupt_allowed(vcpu) &&
3318                 !kvm_cpu_has_interrupt(vcpu) &&
3319                 !kvm_event_needs_reinjection(vcpu) &&
3320                 kvm_cpu_accept_dm_intr(vcpu);
3321 }
3322
3323 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3324                                     struct kvm_interrupt *irq)
3325 {
3326         if (irq->irq >= KVM_NR_INTERRUPTS)
3327                 return -EINVAL;
3328
3329         if (!irqchip_in_kernel(vcpu->kvm)) {
3330                 kvm_queue_interrupt(vcpu, irq->irq, false);
3331                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3332                 return 0;
3333         }
3334
3335         /*
3336          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3337          * fail for in-kernel 8259.
3338          */
3339         if (pic_in_kernel(vcpu->kvm))
3340                 return -ENXIO;
3341
3342         if (vcpu->arch.pending_external_vector != -1)
3343                 return -EEXIST;
3344
3345         vcpu->arch.pending_external_vector = irq->irq;
3346         kvm_make_request(KVM_REQ_EVENT, vcpu);
3347         return 0;
3348 }
3349
3350 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3351 {
3352         kvm_inject_nmi(vcpu);
3353
3354         return 0;
3355 }
3356
3357 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3358 {
3359         kvm_make_request(KVM_REQ_SMI, vcpu);
3360
3361         return 0;
3362 }
3363
3364 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3365                                            struct kvm_tpr_access_ctl *tac)
3366 {
3367         if (tac->flags)
3368                 return -EINVAL;
3369         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3370         return 0;
3371 }
3372
3373 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3374                                         u64 mcg_cap)
3375 {
3376         int r;
3377         unsigned bank_num = mcg_cap & 0xff, bank;
3378
3379         r = -EINVAL;
3380         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3381                 goto out;
3382         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3383                 goto out;
3384         r = 0;
3385         vcpu->arch.mcg_cap = mcg_cap;
3386         /* Init IA32_MCG_CTL to all 1s */
3387         if (mcg_cap & MCG_CTL_P)
3388                 vcpu->arch.mcg_ctl = ~(u64)0;
3389         /* Init IA32_MCi_CTL to all 1s */
3390         for (bank = 0; bank < bank_num; bank++)
3391                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3392
3393         if (kvm_x86_ops->setup_mce)
3394                 kvm_x86_ops->setup_mce(vcpu);
3395 out:
3396         return r;
3397 }
3398
3399 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3400                                       struct kvm_x86_mce *mce)
3401 {
3402         u64 mcg_cap = vcpu->arch.mcg_cap;
3403         unsigned bank_num = mcg_cap & 0xff;
3404         u64 *banks = vcpu->arch.mce_banks;
3405
3406         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3407                 return -EINVAL;
3408         /*
3409          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3410          * reporting is disabled
3411          */
3412         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3413             vcpu->arch.mcg_ctl != ~(u64)0)
3414                 return 0;
3415         banks += 4 * mce->bank;
3416         /*
3417          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3418          * reporting is disabled for the bank
3419          */
3420         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3421                 return 0;
3422         if (mce->status & MCI_STATUS_UC) {
3423                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3424                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3425                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3426                         return 0;
3427                 }
3428                 if (banks[1] & MCI_STATUS_VAL)
3429                         mce->status |= MCI_STATUS_OVER;
3430                 banks[2] = mce->addr;
3431                 banks[3] = mce->misc;
3432                 vcpu->arch.mcg_status = mce->mcg_status;
3433                 banks[1] = mce->status;
3434                 kvm_queue_exception(vcpu, MC_VECTOR);
3435         } else if (!(banks[1] & MCI_STATUS_VAL)
3436                    || !(banks[1] & MCI_STATUS_UC)) {
3437                 if (banks[1] & MCI_STATUS_VAL)
3438                         mce->status |= MCI_STATUS_OVER;
3439                 banks[2] = mce->addr;
3440                 banks[3] = mce->misc;
3441                 banks[1] = mce->status;
3442         } else
3443                 banks[1] |= MCI_STATUS_OVER;
3444         return 0;
3445 }
3446
3447 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3448                                                struct kvm_vcpu_events *events)
3449 {
3450         process_nmi(vcpu);
3451
3452         /*
3453          * The API doesn't provide the instruction length for software
3454          * exceptions, so don't report them. As long as the guest RIP
3455          * isn't advanced, we should expect to encounter the exception
3456          * again.
3457          */
3458         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3459                 events->exception.injected = 0;
3460                 events->exception.pending = 0;
3461         } else {
3462                 events->exception.injected = vcpu->arch.exception.injected;
3463                 events->exception.pending = vcpu->arch.exception.pending;
3464                 /*
3465                  * For ABI compatibility, deliberately conflate
3466                  * pending and injected exceptions when
3467                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3468                  */
3469                 if (!vcpu->kvm->arch.exception_payload_enabled)
3470                         events->exception.injected |=
3471                                 vcpu->arch.exception.pending;
3472         }
3473         events->exception.nr = vcpu->arch.exception.nr;
3474         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3475         events->exception.error_code = vcpu->arch.exception.error_code;
3476         events->exception_has_payload = vcpu->arch.exception.has_payload;
3477         events->exception_payload = vcpu->arch.exception.payload;
3478
3479         events->interrupt.injected =
3480                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3481         events->interrupt.nr = vcpu->arch.interrupt.nr;
3482         events->interrupt.soft = 0;
3483         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3484
3485         events->nmi.injected = vcpu->arch.nmi_injected;
3486         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3487         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3488         events->nmi.pad = 0;
3489
3490         events->sipi_vector = 0; /* never valid when reporting to user space */
3491
3492         events->smi.smm = is_smm(vcpu);
3493         events->smi.pending = vcpu->arch.smi_pending;
3494         events->smi.smm_inside_nmi =
3495                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3496         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3497
3498         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3499                          | KVM_VCPUEVENT_VALID_SHADOW
3500                          | KVM_VCPUEVENT_VALID_SMM);
3501         if (vcpu->kvm->arch.exception_payload_enabled)
3502                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3503
3504         memset(&events->reserved, 0, sizeof(events->reserved));
3505 }
3506
3507 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3508
3509 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3510                                               struct kvm_vcpu_events *events)
3511 {
3512         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3513                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3514                               | KVM_VCPUEVENT_VALID_SHADOW
3515                               | KVM_VCPUEVENT_VALID_SMM
3516                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3517                 return -EINVAL;
3518
3519         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3520                 if (!vcpu->kvm->arch.exception_payload_enabled)
3521                         return -EINVAL;
3522                 if (events->exception.pending)
3523                         events->exception.injected = 0;
3524                 else
3525                         events->exception_has_payload = 0;
3526         } else {
3527                 events->exception.pending = 0;
3528                 events->exception_has_payload = 0;
3529         }
3530
3531         if ((events->exception.injected || events->exception.pending) &&
3532             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3533                 return -EINVAL;
3534
3535         /* INITs are latched while in SMM */
3536         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3537             (events->smi.smm || events->smi.pending) &&
3538             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3539                 return -EINVAL;
3540
3541         process_nmi(vcpu);
3542         vcpu->arch.exception.injected = events->exception.injected;
3543         vcpu->arch.exception.pending = events->exception.pending;
3544         vcpu->arch.exception.nr = events->exception.nr;
3545         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3546         vcpu->arch.exception.error_code = events->exception.error_code;
3547         vcpu->arch.exception.has_payload = events->exception_has_payload;
3548         vcpu->arch.exception.payload = events->exception_payload;
3549
3550         vcpu->arch.interrupt.injected = events->interrupt.injected;
3551         vcpu->arch.interrupt.nr = events->interrupt.nr;
3552         vcpu->arch.interrupt.soft = events->interrupt.soft;
3553         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3554                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3555                                                   events->interrupt.shadow);
3556
3557         vcpu->arch.nmi_injected = events->nmi.injected;
3558         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3559                 vcpu->arch.nmi_pending = events->nmi.pending;
3560         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3561
3562         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3563             lapic_in_kernel(vcpu))
3564                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3565
3566         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3567                 u32 hflags = vcpu->arch.hflags;
3568                 if (events->smi.smm)
3569                         hflags |= HF_SMM_MASK;
3570                 else
3571                         hflags &= ~HF_SMM_MASK;
3572                 kvm_set_hflags(vcpu, hflags);
3573
3574                 vcpu->arch.smi_pending = events->smi.pending;
3575
3576                 if (events->smi.smm) {
3577                         if (events->smi.smm_inside_nmi)
3578                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3579                         else
3580                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3581                         if (lapic_in_kernel(vcpu)) {
3582                                 if (events->smi.latched_init)
3583                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3584                                 else
3585                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3586                         }
3587                 }
3588         }
3589
3590         kvm_make_request(KVM_REQ_EVENT, vcpu);
3591
3592         return 0;
3593 }
3594
3595 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3596                                              struct kvm_debugregs *dbgregs)
3597 {
3598         unsigned long val;
3599
3600         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3601         kvm_get_dr(vcpu, 6, &val);
3602         dbgregs->dr6 = val;
3603         dbgregs->dr7 = vcpu->arch.dr7;
3604         dbgregs->flags = 0;
3605         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3606 }
3607
3608 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3609                                             struct kvm_debugregs *dbgregs)
3610 {
3611         if (dbgregs->flags)
3612                 return -EINVAL;
3613
3614         if (dbgregs->dr6 & ~0xffffffffull)
3615                 return -EINVAL;
3616         if (dbgregs->dr7 & ~0xffffffffull)
3617                 return -EINVAL;
3618
3619         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3620         kvm_update_dr0123(vcpu);
3621         vcpu->arch.dr6 = dbgregs->dr6;
3622         kvm_update_dr6(vcpu);
3623         vcpu->arch.dr7 = dbgregs->dr7;
3624         kvm_update_dr7(vcpu);
3625
3626         return 0;
3627 }
3628
3629 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3630
3631 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3632 {
3633         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3634         u64 xstate_bv = xsave->header.xfeatures;
3635         u64 valid;
3636
3637         /*
3638          * Copy legacy XSAVE area, to avoid complications with CPUID
3639          * leaves 0 and 1 in the loop below.
3640          */
3641         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3642
3643         /* Set XSTATE_BV */
3644         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3645         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3646
3647         /*
3648          * Copy each region from the possibly compacted offset to the
3649          * non-compacted offset.
3650          */
3651         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3652         while (valid) {
3653                 u64 feature = valid & -valid;
3654                 int index = fls64(feature) - 1;
3655                 void *src = get_xsave_addr(xsave, feature);
3656
3657                 if (src) {
3658                         u32 size, offset, ecx, edx;
3659                         cpuid_count(XSTATE_CPUID, index,
3660                                     &size, &offset, &ecx, &edx);
3661                         if (feature == XFEATURE_MASK_PKRU)
3662                                 memcpy(dest + offset, &vcpu->arch.pkru,
3663                                        sizeof(vcpu->arch.pkru));
3664                         else
3665                                 memcpy(dest + offset, src, size);
3666
3667                 }
3668
3669                 valid -= feature;
3670         }
3671 }
3672
3673 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3674 {
3675         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3676         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3677         u64 valid;
3678
3679         /*
3680          * Copy legacy XSAVE area, to avoid complications with CPUID
3681          * leaves 0 and 1 in the loop below.
3682          */
3683         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3684
3685         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3686         xsave->header.xfeatures = xstate_bv;
3687         if (boot_cpu_has(X86_FEATURE_XSAVES))
3688                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3689
3690         /*
3691          * Copy each region from the non-compacted offset to the
3692          * possibly compacted offset.
3693          */
3694         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3695         while (valid) {
3696                 u64 feature = valid & -valid;
3697                 int index = fls64(feature) - 1;
3698                 void *dest = get_xsave_addr(xsave, feature);
3699
3700                 if (dest) {
3701                         u32 size, offset, ecx, edx;
3702                         cpuid_count(XSTATE_CPUID, index,
3703                                     &size, &offset, &ecx, &edx);
3704                         if (feature == XFEATURE_MASK_PKRU)
3705                                 memcpy(&vcpu->arch.pkru, src + offset,
3706                                        sizeof(vcpu->arch.pkru));
3707                         else
3708                                 memcpy(dest, src + offset, size);
3709                 }
3710
3711                 valid -= feature;
3712         }
3713 }
3714
3715 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3716                                          struct kvm_xsave *guest_xsave)
3717 {
3718         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3719                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3720                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3721         } else {
3722                 memcpy(guest_xsave->region,
3723                         &vcpu->arch.guest_fpu.state.fxsave,
3724                         sizeof(struct fxregs_state));
3725                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3726                         XFEATURE_MASK_FPSSE;
3727         }
3728 }
3729
3730 #define XSAVE_MXCSR_OFFSET 24
3731
3732 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3733                                         struct kvm_xsave *guest_xsave)
3734 {
3735         u64 xstate_bv =
3736                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3737         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3738
3739         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3740                 /*
3741                  * Here we allow setting states that are not present in
3742                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3743                  * with old userspace.
3744                  */
3745                 if (xstate_bv & ~kvm_supported_xcr0() ||
3746                         mxcsr & ~mxcsr_feature_mask)
3747                         return -EINVAL;
3748                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3749         } else {
3750                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3751                         mxcsr & ~mxcsr_feature_mask)
3752                         return -EINVAL;
3753                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3754                         guest_xsave->region, sizeof(struct fxregs_state));
3755         }
3756         return 0;
3757 }
3758
3759 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3760                                         struct kvm_xcrs *guest_xcrs)
3761 {
3762         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3763                 guest_xcrs->nr_xcrs = 0;
3764                 return;
3765         }
3766
3767         guest_xcrs->nr_xcrs = 1;
3768         guest_xcrs->flags = 0;
3769         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3770         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3771 }
3772
3773 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3774                                        struct kvm_xcrs *guest_xcrs)
3775 {
3776         int i, r = 0;
3777
3778         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3779                 return -EINVAL;
3780
3781         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3782                 return -EINVAL;
3783
3784         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3785                 /* Only support XCR0 currently */
3786                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3787                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3788                                 guest_xcrs->xcrs[i].value);
3789                         break;
3790                 }
3791         if (r)
3792                 r = -EINVAL;
3793         return r;
3794 }
3795
3796 /*
3797  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3798  * stopped by the hypervisor.  This function will be called from the host only.
3799  * EINVAL is returned when the host attempts to set the flag for a guest that
3800  * does not support pv clocks.
3801  */
3802 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3803 {
3804         if (!vcpu->arch.pv_time_enabled)
3805                 return -EINVAL;
3806         vcpu->arch.pvclock_set_guest_stopped_request = true;
3807         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3808         return 0;
3809 }
3810
3811 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3812                                      struct kvm_enable_cap *cap)
3813 {
3814         int r;
3815         uint16_t vmcs_version;
3816         void __user *user_ptr;
3817
3818         if (cap->flags)
3819                 return -EINVAL;
3820
3821         switch (cap->cap) {
3822         case KVM_CAP_HYPERV_SYNIC2:
3823                 if (cap->args[0])
3824                         return -EINVAL;
3825         case KVM_CAP_HYPERV_SYNIC:
3826                 if (!irqchip_in_kernel(vcpu->kvm))
3827                         return -EINVAL;
3828                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3829                                              KVM_CAP_HYPERV_SYNIC2);
3830         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3831                 if (!kvm_x86_ops->nested_enable_evmcs)
3832                         return -ENOTTY;
3833                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3834                 if (!r) {
3835                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3836                         if (copy_to_user(user_ptr, &vmcs_version,
3837                                          sizeof(vmcs_version)))
3838                                 r = -EFAULT;
3839                 }
3840                 return r;
3841
3842         default:
3843                 return -EINVAL;
3844         }
3845 }
3846
3847 long kvm_arch_vcpu_ioctl(struct file *filp,
3848                          unsigned int ioctl, unsigned long arg)
3849 {
3850         struct kvm_vcpu *vcpu = filp->private_data;
3851         void __user *argp = (void __user *)arg;
3852         int r;
3853         union {
3854                 struct kvm_lapic_state *lapic;
3855                 struct kvm_xsave *xsave;
3856                 struct kvm_xcrs *xcrs;
3857                 void *buffer;
3858         } u;
3859
3860         vcpu_load(vcpu);
3861
3862         u.buffer = NULL;
3863         switch (ioctl) {
3864         case KVM_GET_LAPIC: {
3865                 r = -EINVAL;
3866                 if (!lapic_in_kernel(vcpu))
3867                         goto out;
3868                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3869
3870                 r = -ENOMEM;
3871                 if (!u.lapic)
3872                         goto out;
3873                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3874                 if (r)
3875                         goto out;
3876                 r = -EFAULT;
3877                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3878                         goto out;
3879                 r = 0;
3880                 break;
3881         }
3882         case KVM_SET_LAPIC: {
3883                 r = -EINVAL;
3884                 if (!lapic_in_kernel(vcpu))
3885                         goto out;
3886                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3887                 if (IS_ERR(u.lapic)) {
3888                         r = PTR_ERR(u.lapic);
3889                         goto out_nofree;
3890                 }
3891
3892                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3893                 break;
3894         }
3895         case KVM_INTERRUPT: {
3896                 struct kvm_interrupt irq;
3897
3898                 r = -EFAULT;
3899                 if (copy_from_user(&irq, argp, sizeof(irq)))
3900                         goto out;
3901                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3902                 break;
3903         }
3904         case KVM_NMI: {
3905                 r = kvm_vcpu_ioctl_nmi(vcpu);
3906                 break;
3907         }
3908         case KVM_SMI: {
3909                 r = kvm_vcpu_ioctl_smi(vcpu);
3910                 break;
3911         }
3912         case KVM_SET_CPUID: {
3913                 struct kvm_cpuid __user *cpuid_arg = argp;
3914                 struct kvm_cpuid cpuid;
3915
3916                 r = -EFAULT;
3917                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3918                         goto out;
3919                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3920                 break;
3921         }
3922         case KVM_SET_CPUID2: {
3923                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3924                 struct kvm_cpuid2 cpuid;
3925
3926                 r = -EFAULT;
3927                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3928                         goto out;
3929                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3930                                               cpuid_arg->entries);
3931                 break;
3932         }
3933         case KVM_GET_CPUID2: {
3934                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3935                 struct kvm_cpuid2 cpuid;
3936
3937                 r = -EFAULT;
3938                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3939                         goto out;
3940                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3941                                               cpuid_arg->entries);
3942                 if (r)
3943                         goto out;
3944                 r = -EFAULT;
3945                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3946                         goto out;
3947                 r = 0;
3948                 break;
3949         }
3950         case KVM_GET_MSRS: {
3951                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3952                 r = msr_io(vcpu, argp, do_get_msr, 1);
3953                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3954                 break;
3955         }
3956         case KVM_SET_MSRS: {
3957                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3958                 r = msr_io(vcpu, argp, do_set_msr, 0);
3959                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3960                 break;
3961         }
3962         case KVM_TPR_ACCESS_REPORTING: {
3963                 struct kvm_tpr_access_ctl tac;
3964
3965                 r = -EFAULT;
3966                 if (copy_from_user(&tac, argp, sizeof(tac)))
3967                         goto out;
3968                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3969                 if (r)
3970                         goto out;
3971                 r = -EFAULT;
3972                 if (copy_to_user(argp, &tac, sizeof(tac)))
3973                         goto out;
3974                 r = 0;
3975                 break;
3976         };
3977         case KVM_SET_VAPIC_ADDR: {
3978                 struct kvm_vapic_addr va;
3979                 int idx;
3980
3981                 r = -EINVAL;
3982                 if (!lapic_in_kernel(vcpu))
3983                         goto out;
3984                 r = -EFAULT;
3985                 if (copy_from_user(&va, argp, sizeof(va)))
3986                         goto out;
3987                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3988                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3989                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3990                 break;
3991         }
3992         case KVM_X86_SETUP_MCE: {
3993                 u64 mcg_cap;
3994
3995                 r = -EFAULT;
3996                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
3997                         goto out;
3998                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3999                 break;
4000         }
4001         case KVM_X86_SET_MCE: {
4002                 struct kvm_x86_mce mce;
4003
4004                 r = -EFAULT;
4005                 if (copy_from_user(&mce, argp, sizeof(mce)))
4006                         goto out;
4007                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4008                 break;
4009         }
4010         case KVM_GET_VCPU_EVENTS: {
4011                 struct kvm_vcpu_events events;
4012
4013                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4014
4015                 r = -EFAULT;
4016                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4017                         break;
4018                 r = 0;
4019                 break;
4020         }
4021         case KVM_SET_VCPU_EVENTS: {
4022                 struct kvm_vcpu_events events;
4023
4024                 r = -EFAULT;
4025                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4026                         break;
4027
4028                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4029                 break;
4030         }
4031         case KVM_GET_DEBUGREGS: {
4032                 struct kvm_debugregs dbgregs;
4033
4034                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4035
4036                 r = -EFAULT;
4037                 if (copy_to_user(argp, &dbgregs,
4038                                  sizeof(struct kvm_debugregs)))
4039                         break;
4040                 r = 0;
4041                 break;
4042         }
4043         case KVM_SET_DEBUGREGS: {
4044                 struct kvm_debugregs dbgregs;
4045
4046                 r = -EFAULT;
4047                 if (copy_from_user(&dbgregs, argp,
4048                                    sizeof(struct kvm_debugregs)))
4049                         break;
4050
4051                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4052                 break;
4053         }
4054         case KVM_GET_XSAVE: {
4055                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
4056                 r = -ENOMEM;
4057                 if (!u.xsave)
4058                         break;
4059
4060                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4061
4062                 r = -EFAULT;
4063                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4064                         break;
4065                 r = 0;
4066                 break;
4067         }
4068         case KVM_SET_XSAVE: {
4069                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4070                 if (IS_ERR(u.xsave)) {
4071                         r = PTR_ERR(u.xsave);
4072                         goto out_nofree;
4073                 }
4074
4075                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4076                 break;
4077         }
4078         case KVM_GET_XCRS: {
4079                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
4080                 r = -ENOMEM;
4081                 if (!u.xcrs)
4082                         break;
4083
4084                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4085
4086                 r = -EFAULT;
4087                 if (copy_to_user(argp, u.xcrs,
4088                                  sizeof(struct kvm_xcrs)))
4089                         break;
4090                 r = 0;
4091                 break;
4092         }
4093         case KVM_SET_XCRS: {
4094                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4095                 if (IS_ERR(u.xcrs)) {
4096                         r = PTR_ERR(u.xcrs);
4097                         goto out_nofree;
4098                 }
4099
4100                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4101                 break;
4102         }
4103         case KVM_SET_TSC_KHZ: {
4104                 u32 user_tsc_khz;
4105
4106                 r = -EINVAL;
4107                 user_tsc_khz = (u32)arg;
4108
4109                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4110                         goto out;
4111
4112                 if (user_tsc_khz == 0)
4113                         user_tsc_khz = tsc_khz;
4114
4115                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4116                         r = 0;
4117
4118                 goto out;
4119         }
4120         case KVM_GET_TSC_KHZ: {
4121                 r = vcpu->arch.virtual_tsc_khz;
4122                 goto out;
4123         }
4124         case KVM_KVMCLOCK_CTRL: {
4125                 r = kvm_set_guest_paused(vcpu);
4126                 goto out;
4127         }
4128         case KVM_ENABLE_CAP: {
4129                 struct kvm_enable_cap cap;
4130
4131                 r = -EFAULT;
4132                 if (copy_from_user(&cap, argp, sizeof(cap)))
4133                         goto out;
4134                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4135                 break;
4136         }
4137         case KVM_GET_NESTED_STATE: {
4138                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4139                 u32 user_data_size;
4140
4141                 r = -EINVAL;
4142                 if (!kvm_x86_ops->get_nested_state)
4143                         break;
4144
4145                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4146                 r = -EFAULT;
4147                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4148                         break;
4149
4150                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4151                                                   user_data_size);
4152                 if (r < 0)
4153                         break;
4154
4155                 if (r > user_data_size) {
4156                         if (put_user(r, &user_kvm_nested_state->size))
4157                                 r = -EFAULT;
4158                         else
4159                                 r = -E2BIG;
4160                         break;
4161                 }
4162
4163                 r = 0;
4164                 break;
4165         }
4166         case KVM_SET_NESTED_STATE: {
4167                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4168                 struct kvm_nested_state kvm_state;
4169
4170                 r = -EINVAL;
4171                 if (!kvm_x86_ops->set_nested_state)
4172                         break;
4173
4174                 r = -EFAULT;
4175                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4176                         break;
4177
4178                 r = -EINVAL;
4179                 if (kvm_state.size < sizeof(kvm_state))
4180                         break;
4181
4182                 if (kvm_state.flags &
4183                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4184                       | KVM_STATE_NESTED_EVMCS))
4185                         break;
4186
4187                 /* nested_run_pending implies guest_mode.  */
4188                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4189                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4190                         break;
4191
4192                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4193                 break;
4194         }
4195         case KVM_GET_SUPPORTED_HV_CPUID: {
4196                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4197                 struct kvm_cpuid2 cpuid;
4198
4199                 r = -EFAULT;
4200                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4201                         goto out;
4202
4203                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4204                                                 cpuid_arg->entries);
4205                 if (r)
4206                         goto out;
4207
4208                 r = -EFAULT;
4209                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4210                         goto out;
4211                 r = 0;
4212                 break;
4213         }
4214         default:
4215                 r = -EINVAL;
4216         }
4217 out:
4218         kfree(u.buffer);
4219 out_nofree:
4220         vcpu_put(vcpu);
4221         return r;
4222 }
4223
4224 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4225 {
4226         return VM_FAULT_SIGBUS;
4227 }
4228
4229 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4230 {
4231         int ret;
4232
4233         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4234                 return -EINVAL;
4235         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4236         return ret;
4237 }
4238
4239 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4240                                               u64 ident_addr)
4241 {
4242         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4243 }
4244
4245 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4246                                           u32 kvm_nr_mmu_pages)
4247 {
4248         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4249                 return -EINVAL;
4250
4251         mutex_lock(&kvm->slots_lock);
4252
4253         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4254         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4255
4256         mutex_unlock(&kvm->slots_lock);
4257         return 0;
4258 }
4259
4260 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4261 {
4262         return kvm->arch.n_max_mmu_pages;
4263 }
4264
4265 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4266 {
4267         struct kvm_pic *pic = kvm->arch.vpic;
4268         int r;
4269
4270         r = 0;
4271         switch (chip->chip_id) {
4272         case KVM_IRQCHIP_PIC_MASTER:
4273                 memcpy(&chip->chip.pic, &pic->pics[0],
4274                         sizeof(struct kvm_pic_state));
4275                 break;
4276         case KVM_IRQCHIP_PIC_SLAVE:
4277                 memcpy(&chip->chip.pic, &pic->pics[1],
4278                         sizeof(struct kvm_pic_state));
4279                 break;
4280         case KVM_IRQCHIP_IOAPIC:
4281                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4282                 break;
4283         default:
4284                 r = -EINVAL;
4285                 break;
4286         }
4287         return r;
4288 }
4289
4290 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4291 {
4292         struct kvm_pic *pic = kvm->arch.vpic;
4293         int r;
4294
4295         r = 0;
4296         switch (chip->chip_id) {
4297         case KVM_IRQCHIP_PIC_MASTER:
4298                 spin_lock(&pic->lock);
4299                 memcpy(&pic->pics[0], &chip->chip.pic,
4300                         sizeof(struct kvm_pic_state));
4301                 spin_unlock(&pic->lock);
4302                 break;
4303         case KVM_IRQCHIP_PIC_SLAVE:
4304                 spin_lock(&pic->lock);
4305                 memcpy(&pic->pics[1], &chip->chip.pic,
4306                         sizeof(struct kvm_pic_state));
4307                 spin_unlock(&pic->lock);
4308                 break;
4309         case KVM_IRQCHIP_IOAPIC:
4310                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4311                 break;
4312         default:
4313                 r = -EINVAL;
4314                 break;
4315         }
4316         kvm_pic_update_irq(pic);
4317         return r;
4318 }
4319
4320 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4321 {
4322         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4323
4324         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4325
4326         mutex_lock(&kps->lock);
4327         memcpy(ps, &kps->channels, sizeof(*ps));
4328         mutex_unlock(&kps->lock);
4329         return 0;
4330 }
4331
4332 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4333 {
4334         int i;
4335         struct kvm_pit *pit = kvm->arch.vpit;
4336
4337         mutex_lock(&pit->pit_state.lock);
4338         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4339         for (i = 0; i < 3; i++)
4340                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4341         mutex_unlock(&pit->pit_state.lock);
4342         return 0;
4343 }
4344
4345 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4346 {
4347         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4348         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4349                 sizeof(ps->channels));
4350         ps->flags = kvm->arch.vpit->pit_state.flags;
4351         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4352         memset(&ps->reserved, 0, sizeof(ps->reserved));
4353         return 0;
4354 }
4355
4356 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4357 {
4358         int start = 0;
4359         int i;
4360         u32 prev_legacy, cur_legacy;
4361         struct kvm_pit *pit = kvm->arch.vpit;
4362
4363         mutex_lock(&pit->pit_state.lock);
4364         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4365         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4366         if (!prev_legacy && cur_legacy)
4367                 start = 1;
4368         memcpy(&pit->pit_state.channels, &ps->channels,
4369                sizeof(pit->pit_state.channels));
4370         pit->pit_state.flags = ps->flags;
4371         for (i = 0; i < 3; i++)
4372                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4373                                    start && i == 0);
4374         mutex_unlock(&pit->pit_state.lock);
4375         return 0;
4376 }
4377
4378 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4379                                  struct kvm_reinject_control *control)
4380 {
4381         struct kvm_pit *pit = kvm->arch.vpit;
4382
4383         if (!pit)
4384                 return -ENXIO;
4385
4386         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4387          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4388          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4389          */
4390         mutex_lock(&pit->pit_state.lock);
4391         kvm_pit_set_reinject(pit, control->pit_reinject);
4392         mutex_unlock(&pit->pit_state.lock);
4393
4394         return 0;
4395 }
4396
4397 /**
4398  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4399  * @kvm: kvm instance
4400  * @log: slot id and address to which we copy the log
4401  *
4402  * Steps 1-4 below provide general overview of dirty page logging. See
4403  * kvm_get_dirty_log_protect() function description for additional details.
4404  *
4405  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4406  * always flush the TLB (step 4) even if previous step failed  and the dirty
4407  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4408  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4409  * writes will be marked dirty for next log read.
4410  *
4411  *   1. Take a snapshot of the bit and clear it if needed.
4412  *   2. Write protect the corresponding page.
4413  *   3. Copy the snapshot to the userspace.
4414  *   4. Flush TLB's if needed.
4415  */
4416 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4417 {
4418         bool flush = false;
4419         int r;
4420
4421         mutex_lock(&kvm->slots_lock);
4422
4423         /*
4424          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4425          */
4426         if (kvm_x86_ops->flush_log_dirty)
4427                 kvm_x86_ops->flush_log_dirty(kvm);
4428
4429         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4430
4431         /*
4432          * All the TLBs can be flushed out of mmu lock, see the comments in
4433          * kvm_mmu_slot_remove_write_access().
4434          */
4435         lockdep_assert_held(&kvm->slots_lock);
4436         if (flush)
4437                 kvm_flush_remote_tlbs(kvm);
4438
4439         mutex_unlock(&kvm->slots_lock);
4440         return r;
4441 }
4442
4443 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4444 {
4445         bool flush = false;
4446         int r;
4447
4448         mutex_lock(&kvm->slots_lock);
4449
4450         /*
4451          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4452          */
4453         if (kvm_x86_ops->flush_log_dirty)
4454                 kvm_x86_ops->flush_log_dirty(kvm);
4455
4456         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4457
4458         /*
4459          * All the TLBs can be flushed out of mmu lock, see the comments in
4460          * kvm_mmu_slot_remove_write_access().
4461          */
4462         lockdep_assert_held(&kvm->slots_lock);
4463         if (flush)
4464                 kvm_flush_remote_tlbs(kvm);
4465
4466         mutex_unlock(&kvm->slots_lock);
4467         return r;
4468 }
4469
4470 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4471                         bool line_status)
4472 {
4473         if (!irqchip_in_kernel(kvm))
4474                 return -ENXIO;
4475
4476         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4477                                         irq_event->irq, irq_event->level,
4478                                         line_status);
4479         return 0;
4480 }
4481
4482 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4483                             struct kvm_enable_cap *cap)
4484 {
4485         int r;
4486
4487         if (cap->flags)
4488                 return -EINVAL;
4489
4490         switch (cap->cap) {
4491         case KVM_CAP_DISABLE_QUIRKS:
4492                 kvm->arch.disabled_quirks = cap->args[0];
4493                 r = 0;
4494                 break;
4495         case KVM_CAP_SPLIT_IRQCHIP: {
4496                 mutex_lock(&kvm->lock);
4497                 r = -EINVAL;
4498                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4499                         goto split_irqchip_unlock;
4500                 r = -EEXIST;
4501                 if (irqchip_in_kernel(kvm))
4502                         goto split_irqchip_unlock;
4503                 if (kvm->created_vcpus)
4504                         goto split_irqchip_unlock;
4505                 r = kvm_setup_empty_irq_routing(kvm);
4506                 if (r)
4507                         goto split_irqchip_unlock;
4508                 /* Pairs with irqchip_in_kernel. */
4509                 smp_wmb();
4510                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4511                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4512                 r = 0;
4513 split_irqchip_unlock:
4514                 mutex_unlock(&kvm->lock);
4515                 break;
4516         }
4517         case KVM_CAP_X2APIC_API:
4518                 r = -EINVAL;
4519                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4520                         break;
4521
4522                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4523                         kvm->arch.x2apic_format = true;
4524                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4525                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4526
4527                 r = 0;
4528                 break;
4529         case KVM_CAP_X86_DISABLE_EXITS:
4530                 r = -EINVAL;
4531                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4532                         break;
4533
4534                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4535                         kvm_can_mwait_in_guest())
4536                         kvm->arch.mwait_in_guest = true;
4537                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4538                         kvm->arch.hlt_in_guest = true;
4539                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4540                         kvm->arch.pause_in_guest = true;
4541                 r = 0;
4542                 break;
4543         case KVM_CAP_MSR_PLATFORM_INFO:
4544                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4545                 r = 0;
4546                 break;
4547         case KVM_CAP_EXCEPTION_PAYLOAD:
4548                 kvm->arch.exception_payload_enabled = cap->args[0];
4549                 r = 0;
4550                 break;
4551         default:
4552                 r = -EINVAL;
4553                 break;
4554         }
4555         return r;
4556 }
4557
4558 long kvm_arch_vm_ioctl(struct file *filp,
4559                        unsigned int ioctl, unsigned long arg)
4560 {
4561         struct kvm *kvm = filp->private_data;
4562         void __user *argp = (void __user *)arg;
4563         int r = -ENOTTY;
4564         /*
4565          * This union makes it completely explicit to gcc-3.x
4566          * that these two variables' stack usage should be
4567          * combined, not added together.
4568          */
4569         union {
4570                 struct kvm_pit_state ps;
4571                 struct kvm_pit_state2 ps2;
4572                 struct kvm_pit_config pit_config;
4573         } u;
4574
4575         switch (ioctl) {
4576         case KVM_SET_TSS_ADDR:
4577                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4578                 break;
4579         case KVM_SET_IDENTITY_MAP_ADDR: {
4580                 u64 ident_addr;
4581
4582                 mutex_lock(&kvm->lock);
4583                 r = -EINVAL;
4584                 if (kvm->created_vcpus)
4585                         goto set_identity_unlock;
4586                 r = -EFAULT;
4587                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4588                         goto set_identity_unlock;
4589                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4590 set_identity_unlock:
4591                 mutex_unlock(&kvm->lock);
4592                 break;
4593         }
4594         case KVM_SET_NR_MMU_PAGES:
4595                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4596                 break;
4597         case KVM_GET_NR_MMU_PAGES:
4598                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4599                 break;
4600         case KVM_CREATE_IRQCHIP: {
4601                 mutex_lock(&kvm->lock);
4602
4603                 r = -EEXIST;
4604                 if (irqchip_in_kernel(kvm))
4605                         goto create_irqchip_unlock;
4606
4607                 r = -EINVAL;
4608                 if (kvm->created_vcpus)
4609                         goto create_irqchip_unlock;
4610
4611                 r = kvm_pic_init(kvm);
4612                 if (r)
4613                         goto create_irqchip_unlock;
4614
4615                 r = kvm_ioapic_init(kvm);
4616                 if (r) {
4617                         kvm_pic_destroy(kvm);
4618                         goto create_irqchip_unlock;
4619                 }
4620
4621                 r = kvm_setup_default_irq_routing(kvm);
4622                 if (r) {
4623                         kvm_ioapic_destroy(kvm);
4624                         kvm_pic_destroy(kvm);
4625                         goto create_irqchip_unlock;
4626                 }
4627                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4628                 smp_wmb();
4629                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4630         create_irqchip_unlock:
4631                 mutex_unlock(&kvm->lock);
4632                 break;
4633         }
4634         case KVM_CREATE_PIT:
4635                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4636                 goto create_pit;
4637         case KVM_CREATE_PIT2:
4638                 r = -EFAULT;
4639                 if (copy_from_user(&u.pit_config, argp,
4640                                    sizeof(struct kvm_pit_config)))
4641                         goto out;
4642         create_pit:
4643                 mutex_lock(&kvm->lock);
4644                 r = -EEXIST;
4645                 if (kvm->arch.vpit)
4646                         goto create_pit_unlock;
4647                 r = -ENOMEM;
4648                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4649                 if (kvm->arch.vpit)
4650                         r = 0;
4651         create_pit_unlock:
4652                 mutex_unlock(&kvm->lock);
4653                 break;
4654         case KVM_GET_IRQCHIP: {
4655                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4656                 struct kvm_irqchip *chip;
4657
4658                 chip = memdup_user(argp, sizeof(*chip));
4659                 if (IS_ERR(chip)) {
4660                         r = PTR_ERR(chip);
4661                         goto out;
4662                 }
4663
4664                 r = -ENXIO;
4665                 if (!irqchip_kernel(kvm))
4666                         goto get_irqchip_out;
4667                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4668                 if (r)
4669                         goto get_irqchip_out;
4670                 r = -EFAULT;
4671                 if (copy_to_user(argp, chip, sizeof(*chip)))
4672                         goto get_irqchip_out;
4673                 r = 0;
4674         get_irqchip_out:
4675                 kfree(chip);
4676                 break;
4677         }
4678         case KVM_SET_IRQCHIP: {
4679                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4680                 struct kvm_irqchip *chip;
4681
4682                 chip = memdup_user(argp, sizeof(*chip));
4683                 if (IS_ERR(chip)) {
4684                         r = PTR_ERR(chip);
4685                         goto out;
4686                 }
4687
4688                 r = -ENXIO;
4689                 if (!irqchip_kernel(kvm))
4690                         goto set_irqchip_out;
4691                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4692                 if (r)
4693                         goto set_irqchip_out;
4694                 r = 0;
4695         set_irqchip_out:
4696                 kfree(chip);
4697                 break;
4698         }
4699         case KVM_GET_PIT: {
4700                 r = -EFAULT;
4701                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4702                         goto out;
4703                 r = -ENXIO;
4704                 if (!kvm->arch.vpit)
4705                         goto out;
4706                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4707                 if (r)
4708                         goto out;
4709                 r = -EFAULT;
4710                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4711                         goto out;
4712                 r = 0;
4713                 break;
4714         }
4715         case KVM_SET_PIT: {
4716                 r = -EFAULT;
4717                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4718                         goto out;
4719                 r = -ENXIO;
4720                 if (!kvm->arch.vpit)
4721                         goto out;
4722                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4723                 break;
4724         }
4725         case KVM_GET_PIT2: {
4726                 r = -ENXIO;
4727                 if (!kvm->arch.vpit)
4728                         goto out;
4729                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4730                 if (r)
4731                         goto out;
4732                 r = -EFAULT;
4733                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4734                         goto out;
4735                 r = 0;
4736                 break;
4737         }
4738         case KVM_SET_PIT2: {
4739                 r = -EFAULT;
4740                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4741                         goto out;
4742                 r = -ENXIO;
4743                 if (!kvm->arch.vpit)
4744                         goto out;
4745                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4746                 break;
4747         }
4748         case KVM_REINJECT_CONTROL: {
4749                 struct kvm_reinject_control control;
4750                 r =  -EFAULT;
4751                 if (copy_from_user(&control, argp, sizeof(control)))
4752                         goto out;
4753                 r = kvm_vm_ioctl_reinject(kvm, &control);
4754                 break;
4755         }
4756         case KVM_SET_BOOT_CPU_ID:
4757                 r = 0;
4758                 mutex_lock(&kvm->lock);
4759                 if (kvm->created_vcpus)
4760                         r = -EBUSY;
4761                 else
4762                         kvm->arch.bsp_vcpu_id = arg;
4763                 mutex_unlock(&kvm->lock);
4764                 break;
4765         case KVM_XEN_HVM_CONFIG: {
4766                 struct kvm_xen_hvm_config xhc;
4767                 r = -EFAULT;
4768                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4769                         goto out;
4770                 r = -EINVAL;
4771                 if (xhc.flags)
4772                         goto out;
4773                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4774                 r = 0;
4775                 break;
4776         }
4777         case KVM_SET_CLOCK: {
4778                 struct kvm_clock_data user_ns;
4779                 u64 now_ns;
4780
4781                 r = -EFAULT;
4782                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4783                         goto out;
4784
4785                 r = -EINVAL;
4786                 if (user_ns.flags)
4787                         goto out;
4788
4789                 r = 0;
4790                 /*
4791                  * TODO: userspace has to take care of races with VCPU_RUN, so
4792                  * kvm_gen_update_masterclock() can be cut down to locked
4793                  * pvclock_update_vm_gtod_copy().
4794                  */
4795                 kvm_gen_update_masterclock(kvm);
4796                 now_ns = get_kvmclock_ns(kvm);
4797                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4798                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4799                 break;
4800         }
4801         case KVM_GET_CLOCK: {
4802                 struct kvm_clock_data user_ns;
4803                 u64 now_ns;
4804
4805                 now_ns = get_kvmclock_ns(kvm);
4806                 user_ns.clock = now_ns;
4807                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4808                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4809
4810                 r = -EFAULT;
4811                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4812                         goto out;
4813                 r = 0;
4814                 break;
4815         }
4816         case KVM_MEMORY_ENCRYPT_OP: {
4817                 r = -ENOTTY;
4818                 if (kvm_x86_ops->mem_enc_op)
4819                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4820                 break;
4821         }
4822         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4823                 struct kvm_enc_region region;
4824
4825                 r = -EFAULT;
4826                 if (copy_from_user(&region, argp, sizeof(region)))
4827                         goto out;
4828
4829                 r = -ENOTTY;
4830                 if (kvm_x86_ops->mem_enc_reg_region)
4831                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4832                 break;
4833         }
4834         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4835                 struct kvm_enc_region region;
4836
4837                 r = -EFAULT;
4838                 if (copy_from_user(&region, argp, sizeof(region)))
4839                         goto out;
4840
4841                 r = -ENOTTY;
4842                 if (kvm_x86_ops->mem_enc_unreg_region)
4843                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4844                 break;
4845         }
4846         case KVM_HYPERV_EVENTFD: {
4847                 struct kvm_hyperv_eventfd hvevfd;
4848
4849                 r = -EFAULT;
4850                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4851                         goto out;
4852                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4853                 break;
4854         }
4855         default:
4856                 r = -ENOTTY;
4857         }
4858 out:
4859         return r;
4860 }
4861
4862 static void kvm_init_msr_list(void)
4863 {
4864         u32 dummy[2];
4865         unsigned i, j;
4866
4867         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4868                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4869                         continue;
4870
4871                 /*
4872                  * Even MSRs that are valid in the host may not be exposed
4873                  * to the guests in some cases.
4874                  */
4875                 switch (msrs_to_save[i]) {
4876                 case MSR_IA32_BNDCFGS:
4877                         if (!kvm_mpx_supported())
4878                                 continue;
4879                         break;
4880                 case MSR_TSC_AUX:
4881                         if (!kvm_x86_ops->rdtscp_supported())
4882                                 continue;
4883                         break;
4884                 default:
4885                         break;
4886                 }
4887
4888                 if (j < i)
4889                         msrs_to_save[j] = msrs_to_save[i];
4890                 j++;
4891         }
4892         num_msrs_to_save = j;
4893
4894         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4895                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4896                         continue;
4897
4898                 if (j < i)
4899                         emulated_msrs[j] = emulated_msrs[i];
4900                 j++;
4901         }
4902         num_emulated_msrs = j;
4903
4904         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4905                 struct kvm_msr_entry msr;
4906
4907                 msr.index = msr_based_features[i];
4908                 if (kvm_get_msr_feature(&msr))
4909                         continue;
4910
4911                 if (j < i)
4912                         msr_based_features[j] = msr_based_features[i];
4913                 j++;
4914         }
4915         num_msr_based_features = j;
4916 }
4917
4918 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4919                            const void *v)
4920 {
4921         int handled = 0;
4922         int n;
4923
4924         do {
4925                 n = min(len, 8);
4926                 if (!(lapic_in_kernel(vcpu) &&
4927                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4928                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4929                         break;
4930                 handled += n;
4931                 addr += n;
4932                 len -= n;
4933                 v += n;
4934         } while (len);
4935
4936         return handled;
4937 }
4938
4939 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4940 {
4941         int handled = 0;
4942         int n;
4943
4944         do {
4945                 n = min(len, 8);
4946                 if (!(lapic_in_kernel(vcpu) &&
4947                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4948                                          addr, n, v))
4949                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4950                         break;
4951                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4952                 handled += n;
4953                 addr += n;
4954                 len -= n;
4955                 v += n;
4956         } while (len);
4957
4958         return handled;
4959 }
4960
4961 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4962                         struct kvm_segment *var, int seg)
4963 {
4964         kvm_x86_ops->set_segment(vcpu, var, seg);
4965 }
4966
4967 void kvm_get_segment(struct kvm_vcpu *vcpu,
4968                      struct kvm_segment *var, int seg)
4969 {
4970         kvm_x86_ops->get_segment(vcpu, var, seg);
4971 }
4972
4973 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4974                            struct x86_exception *exception)
4975 {
4976         gpa_t t_gpa;
4977
4978         BUG_ON(!mmu_is_nested(vcpu));
4979
4980         /* NPT walks are always user-walks */
4981         access |= PFERR_USER_MASK;
4982         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
4983
4984         return t_gpa;
4985 }
4986
4987 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4988                               struct x86_exception *exception)
4989 {
4990         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4991         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4992 }
4993
4994  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4995                                 struct x86_exception *exception)
4996 {
4997         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4998         access |= PFERR_FETCH_MASK;
4999         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5000 }
5001
5002 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5003                                struct x86_exception *exception)
5004 {
5005         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5006         access |= PFERR_WRITE_MASK;
5007         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5008 }
5009
5010 /* uses this to access any guest's mapped memory without checking CPL */
5011 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5012                                 struct x86_exception *exception)
5013 {
5014         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5015 }
5016
5017 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5018                                       struct kvm_vcpu *vcpu, u32 access,
5019                                       struct x86_exception *exception)
5020 {
5021         void *data = val;
5022         int r = X86EMUL_CONTINUE;
5023
5024         while (bytes) {
5025                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5026                                                             exception);
5027                 unsigned offset = addr & (PAGE_SIZE-1);
5028                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5029                 int ret;
5030
5031                 if (gpa == UNMAPPED_GVA)
5032                         return X86EMUL_PROPAGATE_FAULT;
5033                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5034                                                offset, toread);
5035                 if (ret < 0) {
5036                         r = X86EMUL_IO_NEEDED;
5037                         goto out;
5038                 }
5039
5040                 bytes -= toread;
5041                 data += toread;
5042                 addr += toread;
5043         }
5044 out:
5045         return r;
5046 }
5047
5048 /* used for instruction fetching */
5049 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5050                                 gva_t addr, void *val, unsigned int bytes,
5051                                 struct x86_exception *exception)
5052 {
5053         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5054         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5055         unsigned offset;
5056         int ret;
5057
5058         /* Inline kvm_read_guest_virt_helper for speed.  */
5059         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5060                                                     exception);
5061         if (unlikely(gpa == UNMAPPED_GVA))
5062                 return X86EMUL_PROPAGATE_FAULT;
5063
5064         offset = addr & (PAGE_SIZE-1);
5065         if (WARN_ON(offset + bytes > PAGE_SIZE))
5066                 bytes = (unsigned)PAGE_SIZE - offset;
5067         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5068                                        offset, bytes);
5069         if (unlikely(ret < 0))
5070                 return X86EMUL_IO_NEEDED;
5071
5072         return X86EMUL_CONTINUE;
5073 }
5074
5075 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5076                                gva_t addr, void *val, unsigned int bytes,
5077                                struct x86_exception *exception)
5078 {
5079         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5080
5081         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5082                                           exception);
5083 }
5084 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5085
5086 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5087                              gva_t addr, void *val, unsigned int bytes,
5088                              struct x86_exception *exception, bool system)
5089 {
5090         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5091         u32 access = 0;
5092
5093         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5094                 access |= PFERR_USER_MASK;
5095
5096         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5097 }
5098
5099 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5100                 unsigned long addr, void *val, unsigned int bytes)
5101 {
5102         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5103         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5104
5105         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5106 }
5107
5108 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5109                                       struct kvm_vcpu *vcpu, u32 access,
5110                                       struct x86_exception *exception)
5111 {
5112         void *data = val;
5113         int r = X86EMUL_CONTINUE;
5114
5115         while (bytes) {
5116                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5117                                                              access,
5118                                                              exception);
5119                 unsigned offset = addr & (PAGE_SIZE-1);
5120                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5121                 int ret;
5122
5123                 if (gpa == UNMAPPED_GVA)
5124                         return X86EMUL_PROPAGATE_FAULT;
5125                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5126                 if (ret < 0) {
5127                         r = X86EMUL_IO_NEEDED;
5128                         goto out;
5129                 }
5130
5131                 bytes -= towrite;
5132                 data += towrite;
5133                 addr += towrite;
5134         }
5135 out:
5136         return r;
5137 }
5138
5139 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5140                               unsigned int bytes, struct x86_exception *exception,
5141                               bool system)
5142 {
5143         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5144         u32 access = PFERR_WRITE_MASK;
5145
5146         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5147                 access |= PFERR_USER_MASK;
5148
5149         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5150                                            access, exception);
5151 }
5152
5153 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5154                                 unsigned int bytes, struct x86_exception *exception)
5155 {
5156         /* kvm_write_guest_virt_system can pull in tons of pages. */
5157         vcpu->arch.l1tf_flush_l1d = true;
5158
5159         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5160                                            PFERR_WRITE_MASK, exception);
5161 }
5162 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5163
5164 int handle_ud(struct kvm_vcpu *vcpu)
5165 {
5166         int emul_type = EMULTYPE_TRAP_UD;
5167         enum emulation_result er;
5168         char sig[5]; /* ud2; .ascii "kvm" */
5169         struct x86_exception e;
5170
5171         if (force_emulation_prefix &&
5172             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5173                                 sig, sizeof(sig), &e) == 0 &&
5174             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5175                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5176                 emul_type = 0;
5177         }
5178
5179         er = kvm_emulate_instruction(vcpu, emul_type);
5180         if (er == EMULATE_USER_EXIT)
5181                 return 0;
5182         if (er != EMULATE_DONE)
5183                 kvm_queue_exception(vcpu, UD_VECTOR);
5184         return 1;
5185 }
5186 EXPORT_SYMBOL_GPL(handle_ud);
5187
5188 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5189                             gpa_t gpa, bool write)
5190 {
5191         /* For APIC access vmexit */
5192         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5193                 return 1;
5194
5195         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5196                 trace_vcpu_match_mmio(gva, gpa, write, true);
5197                 return 1;
5198         }
5199
5200         return 0;
5201 }
5202
5203 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5204                                 gpa_t *gpa, struct x86_exception *exception,
5205                                 bool write)
5206 {
5207         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5208                 | (write ? PFERR_WRITE_MASK : 0);
5209
5210         /*
5211          * currently PKRU is only applied to ept enabled guest so
5212          * there is no pkey in EPT page table for L1 guest or EPT
5213          * shadow page table for L2 guest.
5214          */
5215         if (vcpu_match_mmio_gva(vcpu, gva)
5216             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5217                                  vcpu->arch.access, 0, access)) {
5218                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5219                                         (gva & (PAGE_SIZE - 1));
5220                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5221                 return 1;
5222         }
5223
5224         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5225
5226         if (*gpa == UNMAPPED_GVA)
5227                 return -1;
5228
5229         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5230 }
5231
5232 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5233                         const void *val, int bytes)
5234 {
5235         int ret;
5236
5237         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5238         if (ret < 0)
5239                 return 0;
5240         kvm_page_track_write(vcpu, gpa, val, bytes);
5241         return 1;
5242 }
5243
5244 struct read_write_emulator_ops {
5245         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5246                                   int bytes);
5247         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5248                                   void *val, int bytes);
5249         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5250                                int bytes, void *val);
5251         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5252                                     void *val, int bytes);
5253         bool write;
5254 };
5255
5256 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5257 {
5258         if (vcpu->mmio_read_completed) {
5259                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5260                                vcpu->mmio_fragments[0].gpa, val);
5261                 vcpu->mmio_read_completed = 0;
5262                 return 1;
5263         }
5264
5265         return 0;
5266 }
5267
5268 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5269                         void *val, int bytes)
5270 {
5271         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5272 }
5273
5274 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5275                          void *val, int bytes)
5276 {
5277         return emulator_write_phys(vcpu, gpa, val, bytes);
5278 }
5279
5280 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5281 {
5282         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5283         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5284 }
5285
5286 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5287                           void *val, int bytes)
5288 {
5289         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5290         return X86EMUL_IO_NEEDED;
5291 }
5292
5293 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5294                            void *val, int bytes)
5295 {
5296         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5297
5298         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5299         return X86EMUL_CONTINUE;
5300 }
5301
5302 static const struct read_write_emulator_ops read_emultor = {
5303         .read_write_prepare = read_prepare,
5304         .read_write_emulate = read_emulate,
5305         .read_write_mmio = vcpu_mmio_read,
5306         .read_write_exit_mmio = read_exit_mmio,
5307 };
5308
5309 static const struct read_write_emulator_ops write_emultor = {
5310         .read_write_emulate = write_emulate,
5311         .read_write_mmio = write_mmio,
5312         .read_write_exit_mmio = write_exit_mmio,
5313         .write = true,
5314 };
5315
5316 static int emulator_read_write_onepage(unsigned long addr, void *val,
5317                                        unsigned int bytes,
5318                                        struct x86_exception *exception,
5319                                        struct kvm_vcpu *vcpu,
5320                                        const struct read_write_emulator_ops *ops)
5321 {
5322         gpa_t gpa;
5323         int handled, ret;
5324         bool write = ops->write;
5325         struct kvm_mmio_fragment *frag;
5326         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5327
5328         /*
5329          * If the exit was due to a NPF we may already have a GPA.
5330          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5331          * Note, this cannot be used on string operations since string
5332          * operation using rep will only have the initial GPA from the NPF
5333          * occurred.
5334          */
5335         if (vcpu->arch.gpa_available &&
5336             emulator_can_use_gpa(ctxt) &&
5337             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5338                 gpa = vcpu->arch.gpa_val;
5339                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5340         } else {
5341                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5342                 if (ret < 0)
5343                         return X86EMUL_PROPAGATE_FAULT;
5344         }
5345
5346         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5347                 return X86EMUL_CONTINUE;
5348
5349         /*
5350          * Is this MMIO handled locally?
5351          */
5352         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5353         if (handled == bytes)
5354                 return X86EMUL_CONTINUE;
5355
5356         gpa += handled;
5357         bytes -= handled;
5358         val += handled;
5359
5360         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5361         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5362         frag->gpa = gpa;
5363         frag->data = val;
5364         frag->len = bytes;
5365         return X86EMUL_CONTINUE;
5366 }
5367
5368 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5369                         unsigned long addr,
5370                         void *val, unsigned int bytes,
5371                         struct x86_exception *exception,
5372                         const struct read_write_emulator_ops *ops)
5373 {
5374         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5375         gpa_t gpa;
5376         int rc;
5377
5378         if (ops->read_write_prepare &&
5379                   ops->read_write_prepare(vcpu, val, bytes))
5380                 return X86EMUL_CONTINUE;
5381
5382         vcpu->mmio_nr_fragments = 0;
5383
5384         /* Crossing a page boundary? */
5385         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5386                 int now;
5387
5388                 now = -addr & ~PAGE_MASK;
5389                 rc = emulator_read_write_onepage(addr, val, now, exception,
5390                                                  vcpu, ops);
5391
5392                 if (rc != X86EMUL_CONTINUE)
5393                         return rc;
5394                 addr += now;
5395                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5396                         addr = (u32)addr;
5397                 val += now;
5398                 bytes -= now;
5399         }
5400
5401         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5402                                          vcpu, ops);
5403         if (rc != X86EMUL_CONTINUE)
5404                 return rc;
5405
5406         if (!vcpu->mmio_nr_fragments)
5407                 return rc;
5408
5409         gpa = vcpu->mmio_fragments[0].gpa;
5410
5411         vcpu->mmio_needed = 1;
5412         vcpu->mmio_cur_fragment = 0;
5413
5414         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5415         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5416         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5417         vcpu->run->mmio.phys_addr = gpa;
5418
5419         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5420 }
5421
5422 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5423                                   unsigned long addr,
5424                                   void *val,
5425                                   unsigned int bytes,
5426                                   struct x86_exception *exception)
5427 {
5428         return emulator_read_write(ctxt, addr, val, bytes,
5429                                    exception, &read_emultor);
5430 }
5431
5432 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5433                             unsigned long addr,
5434                             const void *val,
5435                             unsigned int bytes,
5436                             struct x86_exception *exception)
5437 {
5438         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5439                                    exception, &write_emultor);
5440 }
5441
5442 #define CMPXCHG_TYPE(t, ptr, old, new) \
5443         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5444
5445 #ifdef CONFIG_X86_64
5446 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5447 #else
5448 #  define CMPXCHG64(ptr, old, new) \
5449         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5450 #endif
5451
5452 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5453                                      unsigned long addr,
5454                                      const void *old,
5455                                      const void *new,
5456                                      unsigned int bytes,
5457                                      struct x86_exception *exception)
5458 {
5459         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5460         gpa_t gpa;
5461         struct page *page;
5462         char *kaddr;
5463         bool exchanged;
5464
5465         /* guests cmpxchg8b have to be emulated atomically */
5466         if (bytes > 8 || (bytes & (bytes - 1)))
5467                 goto emul_write;
5468
5469         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5470
5471         if (gpa == UNMAPPED_GVA ||
5472             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5473                 goto emul_write;
5474
5475         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5476                 goto emul_write;
5477
5478         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5479         if (is_error_page(page))
5480                 goto emul_write;
5481
5482         kaddr = kmap_atomic(page);
5483         kaddr += offset_in_page(gpa);
5484         switch (bytes) {
5485         case 1:
5486                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5487                 break;
5488         case 2:
5489                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5490                 break;
5491         case 4:
5492                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5493                 break;
5494         case 8:
5495                 exchanged = CMPXCHG64(kaddr, old, new);
5496                 break;
5497         default:
5498                 BUG();
5499         }
5500         kunmap_atomic(kaddr);
5501         kvm_release_page_dirty(page);
5502
5503         if (!exchanged)
5504                 return X86EMUL_CMPXCHG_FAILED;
5505
5506         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5507         kvm_page_track_write(vcpu, gpa, new, bytes);
5508
5509         return X86EMUL_CONTINUE;
5510
5511 emul_write:
5512         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5513
5514         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5515 }
5516
5517 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5518 {
5519         int r = 0, i;
5520
5521         for (i = 0; i < vcpu->arch.pio.count; i++) {
5522                 if (vcpu->arch.pio.in)
5523                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5524                                             vcpu->arch.pio.size, pd);
5525                 else
5526                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5527                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5528                                              pd);
5529                 if (r)
5530                         break;
5531                 pd += vcpu->arch.pio.size;
5532         }
5533         return r;
5534 }
5535
5536 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5537                                unsigned short port, void *val,
5538                                unsigned int count, bool in)
5539 {
5540         vcpu->arch.pio.port = port;
5541         vcpu->arch.pio.in = in;
5542         vcpu->arch.pio.count  = count;
5543         vcpu->arch.pio.size = size;
5544
5545         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5546                 vcpu->arch.pio.count = 0;
5547                 return 1;
5548         }
5549
5550         vcpu->run->exit_reason = KVM_EXIT_IO;
5551         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5552         vcpu->run->io.size = size;
5553         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5554         vcpu->run->io.count = count;
5555         vcpu->run->io.port = port;
5556
5557         return 0;
5558 }
5559
5560 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5561                                     int size, unsigned short port, void *val,
5562                                     unsigned int count)
5563 {
5564         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5565         int ret;
5566
5567         if (vcpu->arch.pio.count)
5568                 goto data_avail;
5569
5570         memset(vcpu->arch.pio_data, 0, size * count);
5571
5572         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5573         if (ret) {
5574 data_avail:
5575                 memcpy(val, vcpu->arch.pio_data, size * count);
5576                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5577                 vcpu->arch.pio.count = 0;
5578                 return 1;
5579         }
5580
5581         return 0;
5582 }
5583
5584 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5585                                      int size, unsigned short port,
5586                                      const void *val, unsigned int count)
5587 {
5588         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5589
5590         memcpy(vcpu->arch.pio_data, val, size * count);
5591         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5592         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5593 }
5594
5595 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5596 {
5597         return kvm_x86_ops->get_segment_base(vcpu, seg);
5598 }
5599
5600 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5601 {
5602         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5603 }
5604
5605 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5606 {
5607         if (!need_emulate_wbinvd(vcpu))
5608                 return X86EMUL_CONTINUE;
5609
5610         if (kvm_x86_ops->has_wbinvd_exit()) {
5611                 int cpu = get_cpu();
5612
5613                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5614                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5615                                 wbinvd_ipi, NULL, 1);
5616                 put_cpu();
5617                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5618         } else
5619                 wbinvd();
5620         return X86EMUL_CONTINUE;
5621 }
5622
5623 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5624 {
5625         kvm_emulate_wbinvd_noskip(vcpu);
5626         return kvm_skip_emulated_instruction(vcpu);
5627 }
5628 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5629
5630
5631
5632 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5633 {
5634         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5635 }
5636
5637 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5638                            unsigned long *dest)
5639 {
5640         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5641 }
5642
5643 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5644                            unsigned long value)
5645 {
5646
5647         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5648 }
5649
5650 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5651 {
5652         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5653 }
5654
5655 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5656 {
5657         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5658         unsigned long value;
5659
5660         switch (cr) {
5661         case 0:
5662                 value = kvm_read_cr0(vcpu);
5663                 break;
5664         case 2:
5665                 value = vcpu->arch.cr2;
5666                 break;
5667         case 3:
5668                 value = kvm_read_cr3(vcpu);
5669                 break;
5670         case 4:
5671                 value = kvm_read_cr4(vcpu);
5672                 break;
5673         case 8:
5674                 value = kvm_get_cr8(vcpu);
5675                 break;
5676         default:
5677                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5678                 return 0;
5679         }
5680
5681         return value;
5682 }
5683
5684 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5685 {
5686         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5687         int res = 0;
5688
5689         switch (cr) {
5690         case 0:
5691                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5692                 break;
5693         case 2:
5694                 vcpu->arch.cr2 = val;
5695                 break;
5696         case 3:
5697                 res = kvm_set_cr3(vcpu, val);
5698                 break;
5699         case 4:
5700                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5701                 break;
5702         case 8:
5703                 res = kvm_set_cr8(vcpu, val);
5704                 break;
5705         default:
5706                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5707                 res = -1;
5708         }
5709
5710         return res;
5711 }
5712
5713 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5714 {
5715         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5716 }
5717
5718 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5719 {
5720         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5721 }
5722
5723 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5724 {
5725         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5726 }
5727
5728 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5729 {
5730         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5731 }
5732
5733 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5734 {
5735         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5736 }
5737
5738 static unsigned long emulator_get_cached_segment_base(
5739         struct x86_emulate_ctxt *ctxt, int seg)
5740 {
5741         return get_segment_base(emul_to_vcpu(ctxt), seg);
5742 }
5743
5744 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5745                                  struct desc_struct *desc, u32 *base3,
5746                                  int seg)
5747 {
5748         struct kvm_segment var;
5749
5750         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5751         *selector = var.selector;
5752
5753         if (var.unusable) {
5754                 memset(desc, 0, sizeof(*desc));
5755                 if (base3)
5756                         *base3 = 0;
5757                 return false;
5758         }
5759
5760         if (var.g)
5761                 var.limit >>= 12;
5762         set_desc_limit(desc, var.limit);
5763         set_desc_base(desc, (unsigned long)var.base);
5764 #ifdef CONFIG_X86_64
5765         if (base3)
5766                 *base3 = var.base >> 32;
5767 #endif
5768         desc->type = var.type;
5769         desc->s = var.s;
5770         desc->dpl = var.dpl;
5771         desc->p = var.present;
5772         desc->avl = var.avl;
5773         desc->l = var.l;
5774         desc->d = var.db;
5775         desc->g = var.g;
5776
5777         return true;
5778 }
5779
5780 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5781                                  struct desc_struct *desc, u32 base3,
5782                                  int seg)
5783 {
5784         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5785         struct kvm_segment var;
5786
5787         var.selector = selector;
5788         var.base = get_desc_base(desc);
5789 #ifdef CONFIG_X86_64
5790         var.base |= ((u64)base3) << 32;
5791 #endif
5792         var.limit = get_desc_limit(desc);
5793         if (desc->g)
5794                 var.limit = (var.limit << 12) | 0xfff;
5795         var.type = desc->type;
5796         var.dpl = desc->dpl;
5797         var.db = desc->d;
5798         var.s = desc->s;
5799         var.l = desc->l;
5800         var.g = desc->g;
5801         var.avl = desc->avl;
5802         var.present = desc->p;
5803         var.unusable = !var.present;
5804         var.padding = 0;
5805
5806         kvm_set_segment(vcpu, &var, seg);
5807         return;
5808 }
5809
5810 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5811                             u32 msr_index, u64 *pdata)
5812 {
5813         struct msr_data msr;
5814         int r;
5815
5816         msr.index = msr_index;
5817         msr.host_initiated = false;
5818         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5819         if (r)
5820                 return r;
5821
5822         *pdata = msr.data;
5823         return 0;
5824 }
5825
5826 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5827                             u32 msr_index, u64 data)
5828 {
5829         struct msr_data msr;
5830
5831         msr.data = data;
5832         msr.index = msr_index;
5833         msr.host_initiated = false;
5834         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5835 }
5836
5837 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5838 {
5839         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5840
5841         return vcpu->arch.smbase;
5842 }
5843
5844 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5845 {
5846         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5847
5848         vcpu->arch.smbase = smbase;
5849 }
5850
5851 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5852                               u32 pmc)
5853 {
5854         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5855 }
5856
5857 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5858                              u32 pmc, u64 *pdata)
5859 {
5860         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5861 }
5862
5863 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5864 {
5865         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5866 }
5867
5868 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5869                               struct x86_instruction_info *info,
5870                               enum x86_intercept_stage stage)
5871 {
5872         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5873 }
5874
5875 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5876                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5877 {
5878         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5879 }
5880
5881 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5882 {
5883         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5884 }
5885
5886 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5887 {
5888         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5889 }
5890
5891 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5892 {
5893         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5894 }
5895
5896 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5897 {
5898         return emul_to_vcpu(ctxt)->arch.hflags;
5899 }
5900
5901 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5902 {
5903         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5904 }
5905
5906 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5907 {
5908         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5909 }
5910
5911 static const struct x86_emulate_ops emulate_ops = {
5912         .read_gpr            = emulator_read_gpr,
5913         .write_gpr           = emulator_write_gpr,
5914         .read_std            = emulator_read_std,
5915         .write_std           = emulator_write_std,
5916         .read_phys           = kvm_read_guest_phys_system,
5917         .fetch               = kvm_fetch_guest_virt,
5918         .read_emulated       = emulator_read_emulated,
5919         .write_emulated      = emulator_write_emulated,
5920         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5921         .invlpg              = emulator_invlpg,
5922         .pio_in_emulated     = emulator_pio_in_emulated,
5923         .pio_out_emulated    = emulator_pio_out_emulated,
5924         .get_segment         = emulator_get_segment,
5925         .set_segment         = emulator_set_segment,
5926         .get_cached_segment_base = emulator_get_cached_segment_base,
5927         .get_gdt             = emulator_get_gdt,
5928         .get_idt             = emulator_get_idt,
5929         .set_gdt             = emulator_set_gdt,
5930         .set_idt             = emulator_set_idt,
5931         .get_cr              = emulator_get_cr,
5932         .set_cr              = emulator_set_cr,
5933         .cpl                 = emulator_get_cpl,
5934         .get_dr              = emulator_get_dr,
5935         .set_dr              = emulator_set_dr,
5936         .get_smbase          = emulator_get_smbase,
5937         .set_smbase          = emulator_set_smbase,
5938         .set_msr             = emulator_set_msr,
5939         .get_msr             = emulator_get_msr,
5940         .check_pmc           = emulator_check_pmc,
5941         .read_pmc            = emulator_read_pmc,
5942         .halt                = emulator_halt,
5943         .wbinvd              = emulator_wbinvd,
5944         .fix_hypercall       = emulator_fix_hypercall,
5945         .intercept           = emulator_intercept,
5946         .get_cpuid           = emulator_get_cpuid,
5947         .set_nmi_mask        = emulator_set_nmi_mask,
5948         .get_hflags          = emulator_get_hflags,
5949         .set_hflags          = emulator_set_hflags,
5950         .pre_leave_smm       = emulator_pre_leave_smm,
5951 };
5952
5953 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5954 {
5955         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5956         /*
5957          * an sti; sti; sequence only disable interrupts for the first
5958          * instruction. So, if the last instruction, be it emulated or
5959          * not, left the system with the INT_STI flag enabled, it
5960          * means that the last instruction is an sti. We should not
5961          * leave the flag on in this case. The same goes for mov ss
5962          */
5963         if (int_shadow & mask)
5964                 mask = 0;
5965         if (unlikely(int_shadow || mask)) {
5966                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5967                 if (!mask)
5968                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5969         }
5970 }
5971
5972 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5973 {
5974         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5975         if (ctxt->exception.vector == PF_VECTOR)
5976                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5977
5978         if (ctxt->exception.error_code_valid)
5979                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5980                                       ctxt->exception.error_code);
5981         else
5982                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5983         return false;
5984 }
5985
5986 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5987 {
5988         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5989         int cs_db, cs_l;
5990
5991         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5992
5993         ctxt->eflags = kvm_get_rflags(vcpu);
5994         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5995
5996         ctxt->eip = kvm_rip_read(vcpu);
5997         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5998                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5999                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6000                      cs_db                              ? X86EMUL_MODE_PROT32 :
6001                                                           X86EMUL_MODE_PROT16;
6002         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6003         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6004         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6005
6006         init_decode_cache(ctxt);
6007         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6008 }
6009
6010 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6011 {
6012         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6013         int ret;
6014
6015         init_emulate_ctxt(vcpu);
6016
6017         ctxt->op_bytes = 2;
6018         ctxt->ad_bytes = 2;
6019         ctxt->_eip = ctxt->eip + inc_eip;
6020         ret = emulate_int_real(ctxt, irq);
6021
6022         if (ret != X86EMUL_CONTINUE)
6023                 return EMULATE_FAIL;
6024
6025         ctxt->eip = ctxt->_eip;
6026         kvm_rip_write(vcpu, ctxt->eip);
6027         kvm_set_rflags(vcpu, ctxt->eflags);
6028
6029         return EMULATE_DONE;
6030 }
6031 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6032
6033 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6034 {
6035         int r = EMULATE_DONE;
6036
6037         ++vcpu->stat.insn_emulation_fail;
6038         trace_kvm_emulate_insn_failed(vcpu);
6039
6040         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6041                 return EMULATE_FAIL;
6042
6043         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6044                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6045                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6046                 vcpu->run->internal.ndata = 0;
6047                 r = EMULATE_USER_EXIT;
6048         }
6049
6050         kvm_queue_exception(vcpu, UD_VECTOR);
6051
6052         return r;
6053 }
6054
6055 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6056                                   bool write_fault_to_shadow_pgtable,
6057                                   int emulation_type)
6058 {
6059         gpa_t gpa = cr2;
6060         kvm_pfn_t pfn;
6061
6062         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6063                 return false;
6064
6065         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6066                 return false;
6067
6068         if (!vcpu->arch.mmu->direct_map) {
6069                 /*
6070                  * Write permission should be allowed since only
6071                  * write access need to be emulated.
6072                  */
6073                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6074
6075                 /*
6076                  * If the mapping is invalid in guest, let cpu retry
6077                  * it to generate fault.
6078                  */
6079                 if (gpa == UNMAPPED_GVA)
6080                         return true;
6081         }
6082
6083         /*
6084          * Do not retry the unhandleable instruction if it faults on the
6085          * readonly host memory, otherwise it will goto a infinite loop:
6086          * retry instruction -> write #PF -> emulation fail -> retry
6087          * instruction -> ...
6088          */
6089         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6090
6091         /*
6092          * If the instruction failed on the error pfn, it can not be fixed,
6093          * report the error to userspace.
6094          */
6095         if (is_error_noslot_pfn(pfn))
6096                 return false;
6097
6098         kvm_release_pfn_clean(pfn);
6099
6100         /* The instructions are well-emulated on direct mmu. */
6101         if (vcpu->arch.mmu->direct_map) {
6102                 unsigned int indirect_shadow_pages;
6103
6104                 spin_lock(&vcpu->kvm->mmu_lock);
6105                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6106                 spin_unlock(&vcpu->kvm->mmu_lock);
6107
6108                 if (indirect_shadow_pages)
6109                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6110
6111                 return true;
6112         }
6113
6114         /*
6115          * if emulation was due to access to shadowed page table
6116          * and it failed try to unshadow page and re-enter the
6117          * guest to let CPU execute the instruction.
6118          */
6119         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6120
6121         /*
6122          * If the access faults on its page table, it can not
6123          * be fixed by unprotecting shadow page and it should
6124          * be reported to userspace.
6125          */
6126         return !write_fault_to_shadow_pgtable;
6127 }
6128
6129 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6130                               unsigned long cr2,  int emulation_type)
6131 {
6132         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6133         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6134
6135         last_retry_eip = vcpu->arch.last_retry_eip;
6136         last_retry_addr = vcpu->arch.last_retry_addr;
6137
6138         /*
6139          * If the emulation is caused by #PF and it is non-page_table
6140          * writing instruction, it means the VM-EXIT is caused by shadow
6141          * page protected, we can zap the shadow page and retry this
6142          * instruction directly.
6143          *
6144          * Note: if the guest uses a non-page-table modifying instruction
6145          * on the PDE that points to the instruction, then we will unmap
6146          * the instruction and go to an infinite loop. So, we cache the
6147          * last retried eip and the last fault address, if we meet the eip
6148          * and the address again, we can break out of the potential infinite
6149          * loop.
6150          */
6151         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6152
6153         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6154                 return false;
6155
6156         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6157                 return false;
6158
6159         if (x86_page_table_writing_insn(ctxt))
6160                 return false;
6161
6162         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6163                 return false;
6164
6165         vcpu->arch.last_retry_eip = ctxt->eip;
6166         vcpu->arch.last_retry_addr = cr2;
6167
6168         if (!vcpu->arch.mmu->direct_map)
6169                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6170
6171         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6172
6173         return true;
6174 }
6175
6176 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6177 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6178
6179 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6180 {
6181         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6182                 /* This is a good place to trace that we are exiting SMM.  */
6183                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6184
6185                 /* Process a latched INIT or SMI, if any.  */
6186                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6187         }
6188
6189         kvm_mmu_reset_context(vcpu);
6190 }
6191
6192 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6193 {
6194         unsigned changed = vcpu->arch.hflags ^ emul_flags;
6195
6196         vcpu->arch.hflags = emul_flags;
6197
6198         if (changed & HF_SMM_MASK)
6199                 kvm_smm_changed(vcpu);
6200 }
6201
6202 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6203                                 unsigned long *db)
6204 {
6205         u32 dr6 = 0;
6206         int i;
6207         u32 enable, rwlen;
6208
6209         enable = dr7;
6210         rwlen = dr7 >> 16;
6211         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6212                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6213                         dr6 |= (1 << i);
6214         return dr6;
6215 }
6216
6217 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6218 {
6219         struct kvm_run *kvm_run = vcpu->run;
6220
6221         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6222                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6223                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6224                 kvm_run->debug.arch.exception = DB_VECTOR;
6225                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6226                 *r = EMULATE_USER_EXIT;
6227         } else {
6228                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6229         }
6230 }
6231
6232 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6233 {
6234         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6235         int r = EMULATE_DONE;
6236
6237         kvm_x86_ops->skip_emulated_instruction(vcpu);
6238
6239         /*
6240          * rflags is the old, "raw" value of the flags.  The new value has
6241          * not been saved yet.
6242          *
6243          * This is correct even for TF set by the guest, because "the
6244          * processor will not generate this exception after the instruction
6245          * that sets the TF flag".
6246          */
6247         if (unlikely(rflags & X86_EFLAGS_TF))
6248                 kvm_vcpu_do_singlestep(vcpu, &r);
6249         return r == EMULATE_DONE;
6250 }
6251 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6252
6253 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6254 {
6255         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6256             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6257                 struct kvm_run *kvm_run = vcpu->run;
6258                 unsigned long eip = kvm_get_linear_rip(vcpu);
6259                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6260                                            vcpu->arch.guest_debug_dr7,
6261                                            vcpu->arch.eff_db);
6262
6263                 if (dr6 != 0) {
6264                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6265                         kvm_run->debug.arch.pc = eip;
6266                         kvm_run->debug.arch.exception = DB_VECTOR;
6267                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6268                         *r = EMULATE_USER_EXIT;
6269                         return true;
6270                 }
6271         }
6272
6273         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6274             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6275                 unsigned long eip = kvm_get_linear_rip(vcpu);
6276                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6277                                            vcpu->arch.dr7,
6278                                            vcpu->arch.db);
6279
6280                 if (dr6 != 0) {
6281                         vcpu->arch.dr6 &= ~15;
6282                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6283                         kvm_queue_exception(vcpu, DB_VECTOR);
6284                         *r = EMULATE_DONE;
6285                         return true;
6286                 }
6287         }
6288
6289         return false;
6290 }
6291
6292 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6293 {
6294         switch (ctxt->opcode_len) {
6295         case 1:
6296                 switch (ctxt->b) {
6297                 case 0xe4:      /* IN */
6298                 case 0xe5:
6299                 case 0xec:
6300                 case 0xed:
6301                 case 0xe6:      /* OUT */
6302                 case 0xe7:
6303                 case 0xee:
6304                 case 0xef:
6305                 case 0x6c:      /* INS */
6306                 case 0x6d:
6307                 case 0x6e:      /* OUTS */
6308                 case 0x6f:
6309                         return true;
6310                 }
6311                 break;
6312         case 2:
6313                 switch (ctxt->b) {
6314                 case 0x33:      /* RDPMC */
6315                         return true;
6316                 }
6317                 break;
6318         }
6319
6320         return false;
6321 }
6322
6323 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6324                             unsigned long cr2,
6325                             int emulation_type,
6326                             void *insn,
6327                             int insn_len)
6328 {
6329         int r;
6330         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6331         bool writeback = true;
6332         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6333
6334         vcpu->arch.l1tf_flush_l1d = true;
6335
6336         /*
6337          * Clear write_fault_to_shadow_pgtable here to ensure it is
6338          * never reused.
6339          */
6340         vcpu->arch.write_fault_to_shadow_pgtable = false;
6341         kvm_clear_exception_queue(vcpu);
6342
6343         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6344                 init_emulate_ctxt(vcpu);
6345
6346                 /*
6347                  * We will reenter on the same instruction since
6348                  * we do not set complete_userspace_io.  This does not
6349                  * handle watchpoints yet, those would be handled in
6350                  * the emulate_ops.
6351                  */
6352                 if (!(emulation_type & EMULTYPE_SKIP) &&
6353                     kvm_vcpu_check_breakpoint(vcpu, &r))
6354                         return r;
6355
6356                 ctxt->interruptibility = 0;
6357                 ctxt->have_exception = false;
6358                 ctxt->exception.vector = -1;
6359                 ctxt->perm_ok = false;
6360
6361                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6362
6363                 r = x86_decode_insn(ctxt, insn, insn_len);
6364
6365                 trace_kvm_emulate_insn_start(vcpu);
6366                 ++vcpu->stat.insn_emulation;
6367                 if (r != EMULATION_OK)  {
6368                         if (emulation_type & EMULTYPE_TRAP_UD)
6369                                 return EMULATE_FAIL;
6370                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6371                                                 emulation_type))
6372                                 return EMULATE_DONE;
6373                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6374                                 return EMULATE_DONE;
6375                         if (emulation_type & EMULTYPE_SKIP)
6376                                 return EMULATE_FAIL;
6377                         return handle_emulation_failure(vcpu, emulation_type);
6378                 }
6379         }
6380
6381         if ((emulation_type & EMULTYPE_VMWARE) &&
6382             !is_vmware_backdoor_opcode(ctxt))
6383                 return EMULATE_FAIL;
6384
6385         if (emulation_type & EMULTYPE_SKIP) {
6386                 kvm_rip_write(vcpu, ctxt->_eip);
6387                 if (ctxt->eflags & X86_EFLAGS_RF)
6388                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6389                 return EMULATE_DONE;
6390         }
6391
6392         if (retry_instruction(ctxt, cr2, emulation_type))
6393                 return EMULATE_DONE;
6394
6395         /* this is needed for vmware backdoor interface to work since it
6396            changes registers values  during IO operation */
6397         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6398                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6399                 emulator_invalidate_register_cache(ctxt);
6400         }
6401
6402 restart:
6403         /* Save the faulting GPA (cr2) in the address field */
6404         ctxt->exception.address = cr2;
6405
6406         r = x86_emulate_insn(ctxt);
6407
6408         if (r == EMULATION_INTERCEPTED)
6409                 return EMULATE_DONE;
6410
6411         if (r == EMULATION_FAILED) {
6412                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6413                                         emulation_type))
6414                         return EMULATE_DONE;
6415
6416                 return handle_emulation_failure(vcpu, emulation_type);
6417         }
6418
6419         if (ctxt->have_exception) {
6420                 r = EMULATE_DONE;
6421                 if (inject_emulated_exception(vcpu))
6422                         return r;
6423         } else if (vcpu->arch.pio.count) {
6424                 if (!vcpu->arch.pio.in) {
6425                         /* FIXME: return into emulator if single-stepping.  */
6426                         vcpu->arch.pio.count = 0;
6427                 } else {
6428                         writeback = false;
6429                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6430                 }
6431                 r = EMULATE_USER_EXIT;
6432         } else if (vcpu->mmio_needed) {
6433                 if (!vcpu->mmio_is_write)
6434                         writeback = false;
6435                 r = EMULATE_USER_EXIT;
6436                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6437         } else if (r == EMULATION_RESTART)
6438                 goto restart;
6439         else
6440                 r = EMULATE_DONE;
6441
6442         if (writeback) {
6443                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6444                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6445                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6446                 kvm_rip_write(vcpu, ctxt->eip);
6447                 if (r == EMULATE_DONE &&
6448                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6449                         kvm_vcpu_do_singlestep(vcpu, &r);
6450                 if (!ctxt->have_exception ||
6451                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6452                         __kvm_set_rflags(vcpu, ctxt->eflags);
6453
6454                 /*
6455                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6456                  * do nothing, and it will be requested again as soon as
6457                  * the shadow expires.  But we still need to check here,
6458                  * because POPF has no interrupt shadow.
6459                  */
6460                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6461                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6462         } else
6463                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6464
6465         return r;
6466 }
6467
6468 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6469 {
6470         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6471 }
6472 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6473
6474 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6475                                         void *insn, int insn_len)
6476 {
6477         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6478 }
6479 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6480
6481 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6482                             unsigned short port)
6483 {
6484         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6485         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6486                                             size, port, &val, 1);
6487         /* do not return to emulator after return from userspace */
6488         vcpu->arch.pio.count = 0;
6489         return ret;
6490 }
6491
6492 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6493 {
6494         unsigned long val;
6495
6496         /* We should only ever be called with arch.pio.count equal to 1 */
6497         BUG_ON(vcpu->arch.pio.count != 1);
6498
6499         /* For size less than 4 we merge, else we zero extend */
6500         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6501                                         : 0;
6502
6503         /*
6504          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6505          * the copy and tracing
6506          */
6507         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6508                                  vcpu->arch.pio.port, &val, 1);
6509         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6510
6511         return 1;
6512 }
6513
6514 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6515                            unsigned short port)
6516 {
6517         unsigned long val;
6518         int ret;
6519
6520         /* For size less than 4 we merge, else we zero extend */
6521         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6522
6523         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6524                                        &val, 1);
6525         if (ret) {
6526                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6527                 return ret;
6528         }
6529
6530         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6531
6532         return 0;
6533 }
6534
6535 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6536 {
6537         int ret = kvm_skip_emulated_instruction(vcpu);
6538
6539         /*
6540          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6541          * KVM_EXIT_DEBUG here.
6542          */
6543         if (in)
6544                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6545         else
6546                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6547 }
6548 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6549
6550 static int kvmclock_cpu_down_prep(unsigned int cpu)
6551 {
6552         __this_cpu_write(cpu_tsc_khz, 0);
6553         return 0;
6554 }
6555
6556 static void tsc_khz_changed(void *data)
6557 {
6558         struct cpufreq_freqs *freq = data;
6559         unsigned long khz = 0;
6560
6561         if (data)
6562                 khz = freq->new;
6563         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6564                 khz = cpufreq_quick_get(raw_smp_processor_id());
6565         if (!khz)
6566                 khz = tsc_khz;
6567         __this_cpu_write(cpu_tsc_khz, khz);
6568 }
6569
6570 #ifdef CONFIG_X86_64
6571 static void kvm_hyperv_tsc_notifier(void)
6572 {
6573         struct kvm *kvm;
6574         struct kvm_vcpu *vcpu;
6575         int cpu;
6576
6577         spin_lock(&kvm_lock);
6578         list_for_each_entry(kvm, &vm_list, vm_list)
6579                 kvm_make_mclock_inprogress_request(kvm);
6580
6581         hyperv_stop_tsc_emulation();
6582
6583         /* TSC frequency always matches when on Hyper-V */
6584         for_each_present_cpu(cpu)
6585                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6586         kvm_max_guest_tsc_khz = tsc_khz;
6587
6588         list_for_each_entry(kvm, &vm_list, vm_list) {
6589                 struct kvm_arch *ka = &kvm->arch;
6590
6591                 spin_lock(&ka->pvclock_gtod_sync_lock);
6592
6593                 pvclock_update_vm_gtod_copy(kvm);
6594
6595                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6596                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6597
6598                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6599                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6600
6601                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6602         }
6603         spin_unlock(&kvm_lock);
6604 }
6605 #endif
6606
6607 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6608                                      void *data)
6609 {
6610         struct cpufreq_freqs *freq = data;
6611         struct kvm *kvm;
6612         struct kvm_vcpu *vcpu;
6613         int i, send_ipi = 0;
6614
6615         /*
6616          * We allow guests to temporarily run on slowing clocks,
6617          * provided we notify them after, or to run on accelerating
6618          * clocks, provided we notify them before.  Thus time never
6619          * goes backwards.
6620          *
6621          * However, we have a problem.  We can't atomically update
6622          * the frequency of a given CPU from this function; it is
6623          * merely a notifier, which can be called from any CPU.
6624          * Changing the TSC frequency at arbitrary points in time
6625          * requires a recomputation of local variables related to
6626          * the TSC for each VCPU.  We must flag these local variables
6627          * to be updated and be sure the update takes place with the
6628          * new frequency before any guests proceed.
6629          *
6630          * Unfortunately, the combination of hotplug CPU and frequency
6631          * change creates an intractable locking scenario; the order
6632          * of when these callouts happen is undefined with respect to
6633          * CPU hotplug, and they can race with each other.  As such,
6634          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6635          * undefined; you can actually have a CPU frequency change take
6636          * place in between the computation of X and the setting of the
6637          * variable.  To protect against this problem, all updates of
6638          * the per_cpu tsc_khz variable are done in an interrupt
6639          * protected IPI, and all callers wishing to update the value
6640          * must wait for a synchronous IPI to complete (which is trivial
6641          * if the caller is on the CPU already).  This establishes the
6642          * necessary total order on variable updates.
6643          *
6644          * Note that because a guest time update may take place
6645          * anytime after the setting of the VCPU's request bit, the
6646          * correct TSC value must be set before the request.  However,
6647          * to ensure the update actually makes it to any guest which
6648          * starts running in hardware virtualization between the set
6649          * and the acquisition of the spinlock, we must also ping the
6650          * CPU after setting the request bit.
6651          *
6652          */
6653
6654         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6655                 return 0;
6656         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6657                 return 0;
6658
6659         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6660
6661         spin_lock(&kvm_lock);
6662         list_for_each_entry(kvm, &vm_list, vm_list) {
6663                 kvm_for_each_vcpu(i, vcpu, kvm) {
6664                         if (vcpu->cpu != freq->cpu)
6665                                 continue;
6666                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6667                         if (vcpu->cpu != smp_processor_id())
6668                                 send_ipi = 1;
6669                 }
6670         }
6671         spin_unlock(&kvm_lock);
6672
6673         if (freq->old < freq->new && send_ipi) {
6674                 /*
6675                  * We upscale the frequency.  Must make the guest
6676                  * doesn't see old kvmclock values while running with
6677                  * the new frequency, otherwise we risk the guest sees
6678                  * time go backwards.
6679                  *
6680                  * In case we update the frequency for another cpu
6681                  * (which might be in guest context) send an interrupt
6682                  * to kick the cpu out of guest context.  Next time
6683                  * guest context is entered kvmclock will be updated,
6684                  * so the guest will not see stale values.
6685                  */
6686                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6687         }
6688         return 0;
6689 }
6690
6691 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6692         .notifier_call  = kvmclock_cpufreq_notifier
6693 };
6694
6695 static int kvmclock_cpu_online(unsigned int cpu)
6696 {
6697         tsc_khz_changed(NULL);
6698         return 0;
6699 }
6700
6701 static void kvm_timer_init(void)
6702 {
6703         max_tsc_khz = tsc_khz;
6704
6705         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6706 #ifdef CONFIG_CPU_FREQ
6707                 struct cpufreq_policy policy;
6708                 int cpu;
6709
6710                 memset(&policy, 0, sizeof(policy));
6711                 cpu = get_cpu();
6712                 cpufreq_get_policy(&policy, cpu);
6713                 if (policy.cpuinfo.max_freq)
6714                         max_tsc_khz = policy.cpuinfo.max_freq;
6715                 put_cpu();
6716 #endif
6717                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6718                                           CPUFREQ_TRANSITION_NOTIFIER);
6719         }
6720         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6721
6722         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6723                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6724 }
6725
6726 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6727 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6728
6729 int kvm_is_in_guest(void)
6730 {
6731         return __this_cpu_read(current_vcpu) != NULL;
6732 }
6733
6734 static int kvm_is_user_mode(void)
6735 {
6736         int user_mode = 3;
6737
6738         if (__this_cpu_read(current_vcpu))
6739                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6740
6741         return user_mode != 0;
6742 }
6743
6744 static unsigned long kvm_get_guest_ip(void)
6745 {
6746         unsigned long ip = 0;
6747
6748         if (__this_cpu_read(current_vcpu))
6749                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6750
6751         return ip;
6752 }
6753
6754 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6755         .is_in_guest            = kvm_is_in_guest,
6756         .is_user_mode           = kvm_is_user_mode,
6757         .get_guest_ip           = kvm_get_guest_ip,
6758 };
6759
6760 static void kvm_set_mmio_spte_mask(void)
6761 {
6762         u64 mask;
6763         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6764
6765         /*
6766          * Set the reserved bits and the present bit of an paging-structure
6767          * entry to generate page fault with PFER.RSV = 1.
6768          */
6769
6770         /*
6771          * Mask the uppermost physical address bit, which would be reserved as
6772          * long as the supported physical address width is less than 52.
6773          */
6774         mask = 1ull << 51;
6775
6776         /* Set the present bit. */
6777         mask |= 1ull;
6778
6779         /*
6780          * If reserved bit is not supported, clear the present bit to disable
6781          * mmio page fault.
6782          */
6783         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6784                 mask &= ~1ull;
6785
6786         kvm_mmu_set_mmio_spte_mask(mask, mask);
6787 }
6788
6789 #ifdef CONFIG_X86_64
6790 static void pvclock_gtod_update_fn(struct work_struct *work)
6791 {
6792         struct kvm *kvm;
6793
6794         struct kvm_vcpu *vcpu;
6795         int i;
6796
6797         spin_lock(&kvm_lock);
6798         list_for_each_entry(kvm, &vm_list, vm_list)
6799                 kvm_for_each_vcpu(i, vcpu, kvm)
6800                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6801         atomic_set(&kvm_guest_has_master_clock, 0);
6802         spin_unlock(&kvm_lock);
6803 }
6804
6805 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6806
6807 /*
6808  * Notification about pvclock gtod data update.
6809  */
6810 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6811                                void *priv)
6812 {
6813         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6814         struct timekeeper *tk = priv;
6815
6816         update_pvclock_gtod(tk);
6817
6818         /* disable master clock if host does not trust, or does not
6819          * use, TSC based clocksource.
6820          */
6821         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6822             atomic_read(&kvm_guest_has_master_clock) != 0)
6823                 queue_work(system_long_wq, &pvclock_gtod_work);
6824
6825         return 0;
6826 }
6827
6828 static struct notifier_block pvclock_gtod_notifier = {
6829         .notifier_call = pvclock_gtod_notify,
6830 };
6831 #endif
6832
6833 int kvm_arch_init(void *opaque)
6834 {
6835         int r;
6836         struct kvm_x86_ops *ops = opaque;
6837
6838         if (kvm_x86_ops) {
6839                 printk(KERN_ERR "kvm: already loaded the other module\n");
6840                 r = -EEXIST;
6841                 goto out;
6842         }
6843
6844         if (!ops->cpu_has_kvm_support()) {
6845                 printk(KERN_ERR "kvm: no hardware support\n");
6846                 r = -EOPNOTSUPP;
6847                 goto out;
6848         }
6849         if (ops->disabled_by_bios()) {
6850                 printk(KERN_ERR "kvm: disabled by bios\n");
6851                 r = -EOPNOTSUPP;
6852                 goto out;
6853         }
6854
6855         r = -ENOMEM;
6856         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6857         if (!shared_msrs) {
6858                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6859                 goto out;
6860         }
6861
6862         r = kvm_mmu_module_init();
6863         if (r)
6864                 goto out_free_percpu;
6865
6866         kvm_set_mmio_spte_mask();
6867
6868         kvm_x86_ops = ops;
6869
6870         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6871                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6872                         PT_PRESENT_MASK, 0, sme_me_mask);
6873         kvm_timer_init();
6874
6875         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6876
6877         if (boot_cpu_has(X86_FEATURE_XSAVE))
6878                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6879
6880         kvm_lapic_init();
6881 #ifdef CONFIG_X86_64
6882         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6883
6884         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6885                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6886 #endif
6887
6888         return 0;
6889
6890 out_free_percpu:
6891         free_percpu(shared_msrs);
6892 out:
6893         return r;
6894 }
6895
6896 void kvm_arch_exit(void)
6897 {
6898 #ifdef CONFIG_X86_64
6899         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6900                 clear_hv_tscchange_cb();
6901 #endif
6902         kvm_lapic_exit();
6903         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6904
6905         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6906                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6907                                             CPUFREQ_TRANSITION_NOTIFIER);
6908         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6909 #ifdef CONFIG_X86_64
6910         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6911 #endif
6912         kvm_x86_ops = NULL;
6913         kvm_mmu_module_exit();
6914         free_percpu(shared_msrs);
6915 }
6916
6917 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6918 {
6919         ++vcpu->stat.halt_exits;
6920         if (lapic_in_kernel(vcpu)) {
6921                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6922                 return 1;
6923         } else {
6924                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6925                 return 0;
6926         }
6927 }
6928 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6929
6930 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6931 {
6932         int ret = kvm_skip_emulated_instruction(vcpu);
6933         /*
6934          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6935          * KVM_EXIT_DEBUG here.
6936          */
6937         return kvm_vcpu_halt(vcpu) && ret;
6938 }
6939 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6940
6941 #ifdef CONFIG_X86_64
6942 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6943                                 unsigned long clock_type)
6944 {
6945         struct kvm_clock_pairing clock_pairing;
6946         struct timespec64 ts;
6947         u64 cycle;
6948         int ret;
6949
6950         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6951                 return -KVM_EOPNOTSUPP;
6952
6953         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6954                 return -KVM_EOPNOTSUPP;
6955
6956         clock_pairing.sec = ts.tv_sec;
6957         clock_pairing.nsec = ts.tv_nsec;
6958         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6959         clock_pairing.flags = 0;
6960         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
6961
6962         ret = 0;
6963         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6964                             sizeof(struct kvm_clock_pairing)))
6965                 ret = -KVM_EFAULT;
6966
6967         return ret;
6968 }
6969 #endif
6970
6971 /*
6972  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6973  *
6974  * @apicid - apicid of vcpu to be kicked.
6975  */
6976 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6977 {
6978         struct kvm_lapic_irq lapic_irq;
6979
6980         lapic_irq.shorthand = 0;
6981         lapic_irq.dest_mode = 0;
6982         lapic_irq.level = 0;
6983         lapic_irq.dest_id = apicid;
6984         lapic_irq.msi_redir_hint = false;
6985
6986         lapic_irq.delivery_mode = APIC_DM_REMRD;
6987         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6988 }
6989
6990 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6991 {
6992         vcpu->arch.apicv_active = false;
6993         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6994 }
6995
6996 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6997 {
6998         unsigned long nr, a0, a1, a2, a3, ret;
6999         int op_64_bit;
7000
7001         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7002                 return kvm_hv_hypercall(vcpu);
7003
7004         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
7005         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
7006         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
7007         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
7008         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
7009
7010         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7011
7012         op_64_bit = is_64_bit_mode(vcpu);
7013         if (!op_64_bit) {
7014                 nr &= 0xFFFFFFFF;
7015                 a0 &= 0xFFFFFFFF;
7016                 a1 &= 0xFFFFFFFF;
7017                 a2 &= 0xFFFFFFFF;
7018                 a3 &= 0xFFFFFFFF;
7019         }
7020
7021         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7022                 ret = -KVM_EPERM;
7023                 goto out;
7024         }
7025
7026         switch (nr) {
7027         case KVM_HC_VAPIC_POLL_IRQ:
7028                 ret = 0;
7029                 break;
7030         case KVM_HC_KICK_CPU:
7031                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7032                 ret = 0;
7033                 break;
7034 #ifdef CONFIG_X86_64
7035         case KVM_HC_CLOCK_PAIRING:
7036                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7037                 break;
7038         case KVM_HC_SEND_IPI:
7039                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7040                 break;
7041 #endif
7042         default:
7043                 ret = -KVM_ENOSYS;
7044                 break;
7045         }
7046 out:
7047         if (!op_64_bit)
7048                 ret = (u32)ret;
7049         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7050
7051         ++vcpu->stat.hypercalls;
7052         return kvm_skip_emulated_instruction(vcpu);
7053 }
7054 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7055
7056 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7057 {
7058         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7059         char instruction[3];
7060         unsigned long rip = kvm_rip_read(vcpu);
7061
7062         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7063
7064         return emulator_write_emulated(ctxt, rip, instruction, 3,
7065                 &ctxt->exception);
7066 }
7067
7068 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7069 {
7070         return vcpu->run->request_interrupt_window &&
7071                 likely(!pic_in_kernel(vcpu->kvm));
7072 }
7073
7074 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7075 {
7076         struct kvm_run *kvm_run = vcpu->run;
7077
7078         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7079         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7080         kvm_run->cr8 = kvm_get_cr8(vcpu);
7081         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7082         kvm_run->ready_for_interrupt_injection =
7083                 pic_in_kernel(vcpu->kvm) ||
7084                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7085 }
7086
7087 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7088 {
7089         int max_irr, tpr;
7090
7091         if (!kvm_x86_ops->update_cr8_intercept)
7092                 return;
7093
7094         if (!lapic_in_kernel(vcpu))
7095                 return;
7096
7097         if (vcpu->arch.apicv_active)
7098                 return;
7099
7100         if (!vcpu->arch.apic->vapic_addr)
7101                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7102         else
7103                 max_irr = -1;
7104
7105         if (max_irr != -1)
7106                 max_irr >>= 4;
7107
7108         tpr = kvm_lapic_get_cr8(vcpu);
7109
7110         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7111 }
7112
7113 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7114 {
7115         int r;
7116
7117         /* try to reinject previous events if any */
7118
7119         if (vcpu->arch.exception.injected)
7120                 kvm_x86_ops->queue_exception(vcpu);
7121         /*
7122          * Do not inject an NMI or interrupt if there is a pending
7123          * exception.  Exceptions and interrupts are recognized at
7124          * instruction boundaries, i.e. the start of an instruction.
7125          * Trap-like exceptions, e.g. #DB, have higher priority than
7126          * NMIs and interrupts, i.e. traps are recognized before an
7127          * NMI/interrupt that's pending on the same instruction.
7128          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7129          * priority, but are only generated (pended) during instruction
7130          * execution, i.e. a pending fault-like exception means the
7131          * fault occurred on the *previous* instruction and must be
7132          * serviced prior to recognizing any new events in order to
7133          * fully complete the previous instruction.
7134          */
7135         else if (!vcpu->arch.exception.pending) {
7136                 if (vcpu->arch.nmi_injected)
7137                         kvm_x86_ops->set_nmi(vcpu);
7138                 else if (vcpu->arch.interrupt.injected)
7139                         kvm_x86_ops->set_irq(vcpu);
7140         }
7141
7142         /*
7143          * Call check_nested_events() even if we reinjected a previous event
7144          * in order for caller to determine if it should require immediate-exit
7145          * from L2 to L1 due to pending L1 events which require exit
7146          * from L2 to L1.
7147          */
7148         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7149                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7150                 if (r != 0)
7151                         return r;
7152         }
7153
7154         /* try to inject new event if pending */
7155         if (vcpu->arch.exception.pending) {
7156                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7157                                         vcpu->arch.exception.has_error_code,
7158                                         vcpu->arch.exception.error_code);
7159
7160                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7161                 vcpu->arch.exception.pending = false;
7162                 vcpu->arch.exception.injected = true;
7163
7164                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7165                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7166                                              X86_EFLAGS_RF);
7167
7168                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7169                         /*
7170                          * This code assumes that nSVM doesn't use
7171                          * check_nested_events(). If it does, the
7172                          * DR6/DR7 changes should happen before L1
7173                          * gets a #VMEXIT for an intercepted #DB in
7174                          * L2.  (Under VMX, on the other hand, the
7175                          * DR6/DR7 changes should not happen in the
7176                          * event of a VM-exit to L1 for an intercepted
7177                          * #DB in L2.)
7178                          */
7179                         kvm_deliver_exception_payload(vcpu);
7180                         if (vcpu->arch.dr7 & DR7_GD) {
7181                                 vcpu->arch.dr7 &= ~DR7_GD;
7182                                 kvm_update_dr7(vcpu);
7183                         }
7184                 }
7185
7186                 kvm_x86_ops->queue_exception(vcpu);
7187         }
7188
7189         /* Don't consider new event if we re-injected an event */
7190         if (kvm_event_needs_reinjection(vcpu))
7191                 return 0;
7192
7193         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7194             kvm_x86_ops->smi_allowed(vcpu)) {
7195                 vcpu->arch.smi_pending = false;
7196                 ++vcpu->arch.smi_count;
7197                 enter_smm(vcpu);
7198         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7199                 --vcpu->arch.nmi_pending;
7200                 vcpu->arch.nmi_injected = true;
7201                 kvm_x86_ops->set_nmi(vcpu);
7202         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7203                 /*
7204                  * Because interrupts can be injected asynchronously, we are
7205                  * calling check_nested_events again here to avoid a race condition.
7206                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7207                  * proposal and current concerns.  Perhaps we should be setting
7208                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7209                  */
7210                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7211                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7212                         if (r != 0)
7213                                 return r;
7214                 }
7215                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7216                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7217                                             false);
7218                         kvm_x86_ops->set_irq(vcpu);
7219                 }
7220         }
7221
7222         return 0;
7223 }
7224
7225 static void process_nmi(struct kvm_vcpu *vcpu)
7226 {
7227         unsigned limit = 2;
7228
7229         /*
7230          * x86 is limited to one NMI running, and one NMI pending after it.
7231          * If an NMI is already in progress, limit further NMIs to just one.
7232          * Otherwise, allow two (and we'll inject the first one immediately).
7233          */
7234         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7235                 limit = 1;
7236
7237         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7238         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7239         kvm_make_request(KVM_REQ_EVENT, vcpu);
7240 }
7241
7242 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7243 {
7244         u32 flags = 0;
7245         flags |= seg->g       << 23;
7246         flags |= seg->db      << 22;
7247         flags |= seg->l       << 21;
7248         flags |= seg->avl     << 20;
7249         flags |= seg->present << 15;
7250         flags |= seg->dpl     << 13;
7251         flags |= seg->s       << 12;
7252         flags |= seg->type    << 8;
7253         return flags;
7254 }
7255
7256 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7257 {
7258         struct kvm_segment seg;
7259         int offset;
7260
7261         kvm_get_segment(vcpu, &seg, n);
7262         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7263
7264         if (n < 3)
7265                 offset = 0x7f84 + n * 12;
7266         else
7267                 offset = 0x7f2c + (n - 3) * 12;
7268
7269         put_smstate(u32, buf, offset + 8, seg.base);
7270         put_smstate(u32, buf, offset + 4, seg.limit);
7271         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7272 }
7273
7274 #ifdef CONFIG_X86_64
7275 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7276 {
7277         struct kvm_segment seg;
7278         int offset;
7279         u16 flags;
7280
7281         kvm_get_segment(vcpu, &seg, n);
7282         offset = 0x7e00 + n * 16;
7283
7284         flags = enter_smm_get_segment_flags(&seg) >> 8;
7285         put_smstate(u16, buf, offset, seg.selector);
7286         put_smstate(u16, buf, offset + 2, flags);
7287         put_smstate(u32, buf, offset + 4, seg.limit);
7288         put_smstate(u64, buf, offset + 8, seg.base);
7289 }
7290 #endif
7291
7292 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7293 {
7294         struct desc_ptr dt;
7295         struct kvm_segment seg;
7296         unsigned long val;
7297         int i;
7298
7299         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7300         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7301         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7302         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7303
7304         for (i = 0; i < 8; i++)
7305                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7306
7307         kvm_get_dr(vcpu, 6, &val);
7308         put_smstate(u32, buf, 0x7fcc, (u32)val);
7309         kvm_get_dr(vcpu, 7, &val);
7310         put_smstate(u32, buf, 0x7fc8, (u32)val);
7311
7312         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7313         put_smstate(u32, buf, 0x7fc4, seg.selector);
7314         put_smstate(u32, buf, 0x7f64, seg.base);
7315         put_smstate(u32, buf, 0x7f60, seg.limit);
7316         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7317
7318         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7319         put_smstate(u32, buf, 0x7fc0, seg.selector);
7320         put_smstate(u32, buf, 0x7f80, seg.base);
7321         put_smstate(u32, buf, 0x7f7c, seg.limit);
7322         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7323
7324         kvm_x86_ops->get_gdt(vcpu, &dt);
7325         put_smstate(u32, buf, 0x7f74, dt.address);
7326         put_smstate(u32, buf, 0x7f70, dt.size);
7327
7328         kvm_x86_ops->get_idt(vcpu, &dt);
7329         put_smstate(u32, buf, 0x7f58, dt.address);
7330         put_smstate(u32, buf, 0x7f54, dt.size);
7331
7332         for (i = 0; i < 6; i++)
7333                 enter_smm_save_seg_32(vcpu, buf, i);
7334
7335         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7336
7337         /* revision id */
7338         put_smstate(u32, buf, 0x7efc, 0x00020000);
7339         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7340 }
7341
7342 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7343 {
7344 #ifdef CONFIG_X86_64
7345         struct desc_ptr dt;
7346         struct kvm_segment seg;
7347         unsigned long val;
7348         int i;
7349
7350         for (i = 0; i < 16; i++)
7351                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7352
7353         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7354         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7355
7356         kvm_get_dr(vcpu, 6, &val);
7357         put_smstate(u64, buf, 0x7f68, val);
7358         kvm_get_dr(vcpu, 7, &val);
7359         put_smstate(u64, buf, 0x7f60, val);
7360
7361         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7362         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7363         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7364
7365         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7366
7367         /* revision id */
7368         put_smstate(u32, buf, 0x7efc, 0x00020064);
7369
7370         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7371
7372         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7373         put_smstate(u16, buf, 0x7e90, seg.selector);
7374         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7375         put_smstate(u32, buf, 0x7e94, seg.limit);
7376         put_smstate(u64, buf, 0x7e98, seg.base);
7377
7378         kvm_x86_ops->get_idt(vcpu, &dt);
7379         put_smstate(u32, buf, 0x7e84, dt.size);
7380         put_smstate(u64, buf, 0x7e88, dt.address);
7381
7382         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7383         put_smstate(u16, buf, 0x7e70, seg.selector);
7384         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7385         put_smstate(u32, buf, 0x7e74, seg.limit);
7386         put_smstate(u64, buf, 0x7e78, seg.base);
7387
7388         kvm_x86_ops->get_gdt(vcpu, &dt);
7389         put_smstate(u32, buf, 0x7e64, dt.size);
7390         put_smstate(u64, buf, 0x7e68, dt.address);
7391
7392         for (i = 0; i < 6; i++)
7393                 enter_smm_save_seg_64(vcpu, buf, i);
7394 #else
7395         WARN_ON_ONCE(1);
7396 #endif
7397 }
7398
7399 static void enter_smm(struct kvm_vcpu *vcpu)
7400 {
7401         struct kvm_segment cs, ds;
7402         struct desc_ptr dt;
7403         char buf[512];
7404         u32 cr0;
7405
7406         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7407         memset(buf, 0, 512);
7408         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7409                 enter_smm_save_state_64(vcpu, buf);
7410         else
7411                 enter_smm_save_state_32(vcpu, buf);
7412
7413         /*
7414          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7415          * vCPU state (e.g. leave guest mode) after we've saved the state into
7416          * the SMM state-save area.
7417          */
7418         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7419
7420         vcpu->arch.hflags |= HF_SMM_MASK;
7421         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7422
7423         if (kvm_x86_ops->get_nmi_mask(vcpu))
7424                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7425         else
7426                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7427
7428         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7429         kvm_rip_write(vcpu, 0x8000);
7430
7431         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7432         kvm_x86_ops->set_cr0(vcpu, cr0);
7433         vcpu->arch.cr0 = cr0;
7434
7435         kvm_x86_ops->set_cr4(vcpu, 0);
7436
7437         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7438         dt.address = dt.size = 0;
7439         kvm_x86_ops->set_idt(vcpu, &dt);
7440
7441         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7442
7443         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7444         cs.base = vcpu->arch.smbase;
7445
7446         ds.selector = 0;
7447         ds.base = 0;
7448
7449         cs.limit    = ds.limit = 0xffffffff;
7450         cs.type     = ds.type = 0x3;
7451         cs.dpl      = ds.dpl = 0;
7452         cs.db       = ds.db = 0;
7453         cs.s        = ds.s = 1;
7454         cs.l        = ds.l = 0;
7455         cs.g        = ds.g = 1;
7456         cs.avl      = ds.avl = 0;
7457         cs.present  = ds.present = 1;
7458         cs.unusable = ds.unusable = 0;
7459         cs.padding  = ds.padding = 0;
7460
7461         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7462         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7463         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7464         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7465         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7466         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7467
7468         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7469                 kvm_x86_ops->set_efer(vcpu, 0);
7470
7471         kvm_update_cpuid(vcpu);
7472         kvm_mmu_reset_context(vcpu);
7473 }
7474
7475 static void process_smi(struct kvm_vcpu *vcpu)
7476 {
7477         vcpu->arch.smi_pending = true;
7478         kvm_make_request(KVM_REQ_EVENT, vcpu);
7479 }
7480
7481 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7482 {
7483         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7484 }
7485
7486 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7487 {
7488         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7489                 return;
7490
7491         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7492
7493         if (irqchip_split(vcpu->kvm))
7494                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7495         else {
7496                 if (vcpu->arch.apicv_active)
7497                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7498                 if (ioapic_in_kernel(vcpu->kvm))
7499                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7500         }
7501
7502         if (is_guest_mode(vcpu))
7503                 vcpu->arch.load_eoi_exitmap_pending = true;
7504         else
7505                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7506 }
7507
7508 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7509 {
7510         u64 eoi_exit_bitmap[4];
7511
7512         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7513                 return;
7514
7515         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7516                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7517         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7518 }
7519
7520 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7521                 unsigned long start, unsigned long end,
7522                 bool blockable)
7523 {
7524         unsigned long apic_address;
7525
7526         /*
7527          * The physical address of apic access page is stored in the VMCS.
7528          * Update it when it becomes invalid.
7529          */
7530         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7531         if (start <= apic_address && apic_address < end)
7532                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7533
7534         return 0;
7535 }
7536
7537 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7538 {
7539         struct page *page = NULL;
7540
7541         if (!lapic_in_kernel(vcpu))
7542                 return;
7543
7544         if (!kvm_x86_ops->set_apic_access_page_addr)
7545                 return;
7546
7547         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7548         if (is_error_page(page))
7549                 return;
7550         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7551
7552         /*
7553          * Do not pin apic access page in memory, the MMU notifier
7554          * will call us again if it is migrated or swapped out.
7555          */
7556         put_page(page);
7557 }
7558 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7559
7560 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7561 {
7562         smp_send_reschedule(vcpu->cpu);
7563 }
7564 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7565
7566 /*
7567  * Returns 1 to let vcpu_run() continue the guest execution loop without
7568  * exiting to the userspace.  Otherwise, the value will be returned to the
7569  * userspace.
7570  */
7571 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7572 {
7573         int r;
7574         bool req_int_win =
7575                 dm_request_for_irq_injection(vcpu) &&
7576                 kvm_cpu_accept_dm_intr(vcpu);
7577
7578         bool req_immediate_exit = false;
7579
7580         if (kvm_request_pending(vcpu)) {
7581                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7582                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7583                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7584                         kvm_mmu_unload(vcpu);
7585                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7586                         __kvm_migrate_timers(vcpu);
7587                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7588                         kvm_gen_update_masterclock(vcpu->kvm);
7589                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7590                         kvm_gen_kvmclock_update(vcpu);
7591                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7592                         r = kvm_guest_time_update(vcpu);
7593                         if (unlikely(r))
7594                                 goto out;
7595                 }
7596                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7597                         kvm_mmu_sync_roots(vcpu);
7598                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7599                         kvm_mmu_load_cr3(vcpu);
7600                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7601                         kvm_vcpu_flush_tlb(vcpu, true);
7602                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7603                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7604                         r = 0;
7605                         goto out;
7606                 }
7607                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7608                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7609                         vcpu->mmio_needed = 0;
7610                         r = 0;
7611                         goto out;
7612                 }
7613                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7614                         /* Page is swapped out. Do synthetic halt */
7615                         vcpu->arch.apf.halted = true;
7616                         r = 1;
7617                         goto out;
7618                 }
7619                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7620                         record_steal_time(vcpu);
7621                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7622                         process_smi(vcpu);
7623                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7624                         process_nmi(vcpu);
7625                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7626                         kvm_pmu_handle_event(vcpu);
7627                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7628                         kvm_pmu_deliver_pmi(vcpu);
7629                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7630                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7631                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7632                                      vcpu->arch.ioapic_handled_vectors)) {
7633                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7634                                 vcpu->run->eoi.vector =
7635                                                 vcpu->arch.pending_ioapic_eoi;
7636                                 r = 0;
7637                                 goto out;
7638                         }
7639                 }
7640                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7641                         vcpu_scan_ioapic(vcpu);
7642                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7643                         vcpu_load_eoi_exitmap(vcpu);
7644                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7645                         kvm_vcpu_reload_apic_access_page(vcpu);
7646                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7647                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7648                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7649                         r = 0;
7650                         goto out;
7651                 }
7652                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7653                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7654                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7655                         r = 0;
7656                         goto out;
7657                 }
7658                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7659                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7660                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7661                         r = 0;
7662                         goto out;
7663                 }
7664
7665                 /*
7666                  * KVM_REQ_HV_STIMER has to be processed after
7667                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7668                  * depend on the guest clock being up-to-date
7669                  */
7670                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7671                         kvm_hv_process_stimers(vcpu);
7672         }
7673
7674         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7675                 ++vcpu->stat.req_event;
7676                 kvm_apic_accept_events(vcpu);
7677                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7678                         r = 1;
7679                         goto out;
7680                 }
7681
7682                 if (inject_pending_event(vcpu, req_int_win) != 0)
7683                         req_immediate_exit = true;
7684                 else {
7685                         /* Enable SMI/NMI/IRQ window open exits if needed.
7686                          *
7687                          * SMIs have three cases:
7688                          * 1) They can be nested, and then there is nothing to
7689                          *    do here because RSM will cause a vmexit anyway.
7690                          * 2) There is an ISA-specific reason why SMI cannot be
7691                          *    injected, and the moment when this changes can be
7692                          *    intercepted.
7693                          * 3) Or the SMI can be pending because
7694                          *    inject_pending_event has completed the injection
7695                          *    of an IRQ or NMI from the previous vmexit, and
7696                          *    then we request an immediate exit to inject the
7697                          *    SMI.
7698                          */
7699                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7700                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7701                                         req_immediate_exit = true;
7702                         if (vcpu->arch.nmi_pending)
7703                                 kvm_x86_ops->enable_nmi_window(vcpu);
7704                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7705                                 kvm_x86_ops->enable_irq_window(vcpu);
7706                         WARN_ON(vcpu->arch.exception.pending);
7707                 }
7708
7709                 if (kvm_lapic_enabled(vcpu)) {
7710                         update_cr8_intercept(vcpu);
7711                         kvm_lapic_sync_to_vapic(vcpu);
7712                 }
7713         }
7714
7715         r = kvm_mmu_reload(vcpu);
7716         if (unlikely(r)) {
7717                 goto cancel_injection;
7718         }
7719
7720         preempt_disable();
7721
7722         kvm_x86_ops->prepare_guest_switch(vcpu);
7723
7724         /*
7725          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7726          * IPI are then delayed after guest entry, which ensures that they
7727          * result in virtual interrupt delivery.
7728          */
7729         local_irq_disable();
7730         vcpu->mode = IN_GUEST_MODE;
7731
7732         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7733
7734         /*
7735          * 1) We should set ->mode before checking ->requests.  Please see
7736          * the comment in kvm_vcpu_exiting_guest_mode().
7737          *
7738          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7739          * pairs with the memory barrier implicit in pi_test_and_set_on
7740          * (see vmx_deliver_posted_interrupt).
7741          *
7742          * 3) This also orders the write to mode from any reads to the page
7743          * tables done while the VCPU is running.  Please see the comment
7744          * in kvm_flush_remote_tlbs.
7745          */
7746         smp_mb__after_srcu_read_unlock();
7747
7748         /*
7749          * This handles the case where a posted interrupt was
7750          * notified with kvm_vcpu_kick.
7751          */
7752         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7753                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7754
7755         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7756             || need_resched() || signal_pending(current)) {
7757                 vcpu->mode = OUTSIDE_GUEST_MODE;
7758                 smp_wmb();
7759                 local_irq_enable();
7760                 preempt_enable();
7761                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7762                 r = 1;
7763                 goto cancel_injection;
7764         }
7765
7766         kvm_load_guest_xcr0(vcpu);
7767
7768         if (req_immediate_exit) {
7769                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7770                 kvm_x86_ops->request_immediate_exit(vcpu);
7771         }
7772
7773         trace_kvm_entry(vcpu->vcpu_id);
7774         if (lapic_timer_advance_ns)
7775                 wait_lapic_expire(vcpu);
7776         guest_enter_irqoff();
7777
7778         if (unlikely(vcpu->arch.switch_db_regs)) {
7779                 set_debugreg(0, 7);
7780                 set_debugreg(vcpu->arch.eff_db[0], 0);
7781                 set_debugreg(vcpu->arch.eff_db[1], 1);
7782                 set_debugreg(vcpu->arch.eff_db[2], 2);
7783                 set_debugreg(vcpu->arch.eff_db[3], 3);
7784                 set_debugreg(vcpu->arch.dr6, 6);
7785                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7786         }
7787
7788         kvm_x86_ops->run(vcpu);
7789
7790         /*
7791          * Do this here before restoring debug registers on the host.  And
7792          * since we do this before handling the vmexit, a DR access vmexit
7793          * can (a) read the correct value of the debug registers, (b) set
7794          * KVM_DEBUGREG_WONT_EXIT again.
7795          */
7796         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7797                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7798                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7799                 kvm_update_dr0123(vcpu);
7800                 kvm_update_dr6(vcpu);
7801                 kvm_update_dr7(vcpu);
7802                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7803         }
7804
7805         /*
7806          * If the guest has used debug registers, at least dr7
7807          * will be disabled while returning to the host.
7808          * If we don't have active breakpoints in the host, we don't
7809          * care about the messed up debug address registers. But if
7810          * we have some of them active, restore the old state.
7811          */
7812         if (hw_breakpoint_active())
7813                 hw_breakpoint_restore();
7814
7815         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7816
7817         vcpu->mode = OUTSIDE_GUEST_MODE;
7818         smp_wmb();
7819
7820         kvm_put_guest_xcr0(vcpu);
7821
7822         kvm_before_interrupt(vcpu);
7823         kvm_x86_ops->handle_external_intr(vcpu);
7824         kvm_after_interrupt(vcpu);
7825
7826         ++vcpu->stat.exits;
7827
7828         guest_exit_irqoff();
7829
7830         local_irq_enable();
7831         preempt_enable();
7832
7833         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7834
7835         /*
7836          * Profile KVM exit RIPs:
7837          */
7838         if (unlikely(prof_on == KVM_PROFILING)) {
7839                 unsigned long rip = kvm_rip_read(vcpu);
7840                 profile_hit(KVM_PROFILING, (void *)rip);
7841         }
7842
7843         if (unlikely(vcpu->arch.tsc_always_catchup))
7844                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7845
7846         if (vcpu->arch.apic_attention)
7847                 kvm_lapic_sync_from_vapic(vcpu);
7848
7849         vcpu->arch.gpa_available = false;
7850         r = kvm_x86_ops->handle_exit(vcpu);
7851         return r;
7852
7853 cancel_injection:
7854         kvm_x86_ops->cancel_injection(vcpu);
7855         if (unlikely(vcpu->arch.apic_attention))
7856                 kvm_lapic_sync_from_vapic(vcpu);
7857 out:
7858         return r;
7859 }
7860
7861 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7862 {
7863         if (!kvm_arch_vcpu_runnable(vcpu) &&
7864             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7865                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7866                 kvm_vcpu_block(vcpu);
7867                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7868
7869                 if (kvm_x86_ops->post_block)
7870                         kvm_x86_ops->post_block(vcpu);
7871
7872                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7873                         return 1;
7874         }
7875
7876         kvm_apic_accept_events(vcpu);
7877         switch(vcpu->arch.mp_state) {
7878         case KVM_MP_STATE_HALTED:
7879                 vcpu->arch.pv.pv_unhalted = false;
7880                 vcpu->arch.mp_state =
7881                         KVM_MP_STATE_RUNNABLE;
7882         case KVM_MP_STATE_RUNNABLE:
7883                 vcpu->arch.apf.halted = false;
7884                 break;
7885         case KVM_MP_STATE_INIT_RECEIVED:
7886                 break;
7887         default:
7888                 return -EINTR;
7889                 break;
7890         }
7891         return 1;
7892 }
7893
7894 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7895 {
7896         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7897                 kvm_x86_ops->check_nested_events(vcpu, false);
7898
7899         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7900                 !vcpu->arch.apf.halted);
7901 }
7902
7903 static int vcpu_run(struct kvm_vcpu *vcpu)
7904 {
7905         int r;
7906         struct kvm *kvm = vcpu->kvm;
7907
7908         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7909         vcpu->arch.l1tf_flush_l1d = true;
7910
7911         for (;;) {
7912                 if (kvm_vcpu_running(vcpu)) {
7913                         r = vcpu_enter_guest(vcpu);
7914                 } else {
7915                         r = vcpu_block(kvm, vcpu);
7916                 }
7917
7918                 if (r <= 0)
7919                         break;
7920
7921                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7922                 if (kvm_cpu_has_pending_timer(vcpu))
7923                         kvm_inject_pending_timer_irqs(vcpu);
7924
7925                 if (dm_request_for_irq_injection(vcpu) &&
7926                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7927                         r = 0;
7928                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7929                         ++vcpu->stat.request_irq_exits;
7930                         break;
7931                 }
7932
7933                 kvm_check_async_pf_completion(vcpu);
7934
7935                 if (signal_pending(current)) {
7936                         r = -EINTR;
7937                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7938                         ++vcpu->stat.signal_exits;
7939                         break;
7940                 }
7941                 if (need_resched()) {
7942                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7943                         cond_resched();
7944                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7945                 }
7946         }
7947
7948         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7949
7950         return r;
7951 }
7952
7953 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7954 {
7955         int r;
7956         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7957         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7958         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7959         if (r != EMULATE_DONE)
7960                 return 0;
7961         return 1;
7962 }
7963
7964 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7965 {
7966         BUG_ON(!vcpu->arch.pio.count);
7967
7968         return complete_emulated_io(vcpu);
7969 }
7970
7971 /*
7972  * Implements the following, as a state machine:
7973  *
7974  * read:
7975  *   for each fragment
7976  *     for each mmio piece in the fragment
7977  *       write gpa, len
7978  *       exit
7979  *       copy data
7980  *   execute insn
7981  *
7982  * write:
7983  *   for each fragment
7984  *     for each mmio piece in the fragment
7985  *       write gpa, len
7986  *       copy data
7987  *       exit
7988  */
7989 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7990 {
7991         struct kvm_run *run = vcpu->run;
7992         struct kvm_mmio_fragment *frag;
7993         unsigned len;
7994
7995         BUG_ON(!vcpu->mmio_needed);
7996
7997         /* Complete previous fragment */
7998         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7999         len = min(8u, frag->len);
8000         if (!vcpu->mmio_is_write)
8001                 memcpy(frag->data, run->mmio.data, len);
8002
8003         if (frag->len <= 8) {
8004                 /* Switch to the next fragment. */
8005                 frag++;
8006                 vcpu->mmio_cur_fragment++;
8007         } else {
8008                 /* Go forward to the next mmio piece. */
8009                 frag->data += len;
8010                 frag->gpa += len;
8011                 frag->len -= len;
8012         }
8013
8014         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8015                 vcpu->mmio_needed = 0;
8016
8017                 /* FIXME: return into emulator if single-stepping.  */
8018                 if (vcpu->mmio_is_write)
8019                         return 1;
8020                 vcpu->mmio_read_completed = 1;
8021                 return complete_emulated_io(vcpu);
8022         }
8023
8024         run->exit_reason = KVM_EXIT_MMIO;
8025         run->mmio.phys_addr = frag->gpa;
8026         if (vcpu->mmio_is_write)
8027                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8028         run->mmio.len = min(8u, frag->len);
8029         run->mmio.is_write = vcpu->mmio_is_write;
8030         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8031         return 0;
8032 }
8033
8034 /* Swap (qemu) user FPU context for the guest FPU context. */
8035 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8036 {
8037         preempt_disable();
8038         copy_fpregs_to_fpstate(&current->thread.fpu);
8039         /* PKRU is separately restored in kvm_x86_ops->run.  */
8040         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8041                                 ~XFEATURE_MASK_PKRU);
8042         preempt_enable();
8043         trace_kvm_fpu(1);
8044 }
8045
8046 /* When vcpu_run ends, restore user space FPU context. */
8047 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8048 {
8049         preempt_disable();
8050         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8051         copy_kernel_to_fpregs(&current->thread.fpu.state);
8052         preempt_enable();
8053         ++vcpu->stat.fpu_reload;
8054         trace_kvm_fpu(0);
8055 }
8056
8057 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8058 {
8059         int r;
8060
8061         vcpu_load(vcpu);
8062         kvm_sigset_activate(vcpu);
8063         kvm_load_guest_fpu(vcpu);
8064
8065         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8066                 if (kvm_run->immediate_exit) {
8067                         r = -EINTR;
8068                         goto out;
8069                 }
8070                 kvm_vcpu_block(vcpu);
8071                 kvm_apic_accept_events(vcpu);
8072                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8073                 r = -EAGAIN;
8074                 if (signal_pending(current)) {
8075                         r = -EINTR;
8076                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8077                         ++vcpu->stat.signal_exits;
8078                 }
8079                 goto out;
8080         }
8081
8082         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8083                 r = -EINVAL;
8084                 goto out;
8085         }
8086
8087         if (vcpu->run->kvm_dirty_regs) {
8088                 r = sync_regs(vcpu);
8089                 if (r != 0)
8090                         goto out;
8091         }
8092
8093         /* re-sync apic's tpr */
8094         if (!lapic_in_kernel(vcpu)) {
8095                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8096                         r = -EINVAL;
8097                         goto out;
8098                 }
8099         }
8100
8101         if (unlikely(vcpu->arch.complete_userspace_io)) {
8102                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8103                 vcpu->arch.complete_userspace_io = NULL;
8104                 r = cui(vcpu);
8105                 if (r <= 0)
8106                         goto out;
8107         } else
8108                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8109
8110         if (kvm_run->immediate_exit)
8111                 r = -EINTR;
8112         else
8113                 r = vcpu_run(vcpu);
8114
8115 out:
8116         kvm_put_guest_fpu(vcpu);
8117         if (vcpu->run->kvm_valid_regs)
8118                 store_regs(vcpu);
8119         post_kvm_run_save(vcpu);
8120         kvm_sigset_deactivate(vcpu);
8121
8122         vcpu_put(vcpu);
8123         return r;
8124 }
8125
8126 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8127 {
8128         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8129                 /*
8130                  * We are here if userspace calls get_regs() in the middle of
8131                  * instruction emulation. Registers state needs to be copied
8132                  * back from emulation context to vcpu. Userspace shouldn't do
8133                  * that usually, but some bad designed PV devices (vmware
8134                  * backdoor interface) need this to work
8135                  */
8136                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8137                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8138         }
8139         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8140         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8141         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8142         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8143         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8144         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8145         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8146         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8147 #ifdef CONFIG_X86_64
8148         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8149         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8150         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8151         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8152         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8153         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8154         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8155         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8156 #endif
8157
8158         regs->rip = kvm_rip_read(vcpu);
8159         regs->rflags = kvm_get_rflags(vcpu);
8160 }
8161
8162 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8163 {
8164         vcpu_load(vcpu);
8165         __get_regs(vcpu, regs);
8166         vcpu_put(vcpu);
8167         return 0;
8168 }
8169
8170 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8171 {
8172         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8173         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8174
8175         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8176         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8177         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8178         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8179         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8180         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8181         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8182         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8183 #ifdef CONFIG_X86_64
8184         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8185         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8186         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8187         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8188         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8189         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8190         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8191         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8192 #endif
8193
8194         kvm_rip_write(vcpu, regs->rip);
8195         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8196
8197         vcpu->arch.exception.pending = false;
8198
8199         kvm_make_request(KVM_REQ_EVENT, vcpu);
8200 }
8201
8202 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8203 {
8204         vcpu_load(vcpu);
8205         __set_regs(vcpu, regs);
8206         vcpu_put(vcpu);
8207         return 0;
8208 }
8209
8210 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8211 {
8212         struct kvm_segment cs;
8213
8214         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8215         *db = cs.db;
8216         *l = cs.l;
8217 }
8218 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8219
8220 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8221 {
8222         struct desc_ptr dt;
8223
8224         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8225         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8226         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8227         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8228         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8229         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8230
8231         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8232         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8233
8234         kvm_x86_ops->get_idt(vcpu, &dt);
8235         sregs->idt.limit = dt.size;
8236         sregs->idt.base = dt.address;
8237         kvm_x86_ops->get_gdt(vcpu, &dt);
8238         sregs->gdt.limit = dt.size;
8239         sregs->gdt.base = dt.address;
8240
8241         sregs->cr0 = kvm_read_cr0(vcpu);
8242         sregs->cr2 = vcpu->arch.cr2;
8243         sregs->cr3 = kvm_read_cr3(vcpu);
8244         sregs->cr4 = kvm_read_cr4(vcpu);
8245         sregs->cr8 = kvm_get_cr8(vcpu);
8246         sregs->efer = vcpu->arch.efer;
8247         sregs->apic_base = kvm_get_apic_base(vcpu);
8248
8249         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8250
8251         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8252                 set_bit(vcpu->arch.interrupt.nr,
8253                         (unsigned long *)sregs->interrupt_bitmap);
8254 }
8255
8256 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8257                                   struct kvm_sregs *sregs)
8258 {
8259         vcpu_load(vcpu);
8260         __get_sregs(vcpu, sregs);
8261         vcpu_put(vcpu);
8262         return 0;
8263 }
8264
8265 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8266                                     struct kvm_mp_state *mp_state)
8267 {
8268         vcpu_load(vcpu);
8269
8270         kvm_apic_accept_events(vcpu);
8271         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8272                                         vcpu->arch.pv.pv_unhalted)
8273                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8274         else
8275                 mp_state->mp_state = vcpu->arch.mp_state;
8276
8277         vcpu_put(vcpu);
8278         return 0;
8279 }
8280
8281 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8282                                     struct kvm_mp_state *mp_state)
8283 {
8284         int ret = -EINVAL;
8285
8286         vcpu_load(vcpu);
8287
8288         if (!lapic_in_kernel(vcpu) &&
8289             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8290                 goto out;
8291
8292         /* INITs are latched while in SMM */
8293         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8294             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8295              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8296                 goto out;
8297
8298         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8299                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8300                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8301         } else
8302                 vcpu->arch.mp_state = mp_state->mp_state;
8303         kvm_make_request(KVM_REQ_EVENT, vcpu);
8304
8305         ret = 0;
8306 out:
8307         vcpu_put(vcpu);
8308         return ret;
8309 }
8310
8311 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8312                     int reason, bool has_error_code, u32 error_code)
8313 {
8314         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8315         int ret;
8316
8317         init_emulate_ctxt(vcpu);
8318
8319         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8320                                    has_error_code, error_code);
8321
8322         if (ret)
8323                 return EMULATE_FAIL;
8324
8325         kvm_rip_write(vcpu, ctxt->eip);
8326         kvm_set_rflags(vcpu, ctxt->eflags);
8327         kvm_make_request(KVM_REQ_EVENT, vcpu);
8328         return EMULATE_DONE;
8329 }
8330 EXPORT_SYMBOL_GPL(kvm_task_switch);
8331
8332 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8333 {
8334         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8335                         (sregs->cr4 & X86_CR4_OSXSAVE))
8336                 return  -EINVAL;
8337
8338         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8339                 /*
8340                  * When EFER.LME and CR0.PG are set, the processor is in
8341                  * 64-bit mode (though maybe in a 32-bit code segment).
8342                  * CR4.PAE and EFER.LMA must be set.
8343                  */
8344                 if (!(sregs->cr4 & X86_CR4_PAE)
8345                     || !(sregs->efer & EFER_LMA))
8346                         return -EINVAL;
8347         } else {
8348                 /*
8349                  * Not in 64-bit mode: EFER.LMA is clear and the code
8350                  * segment cannot be 64-bit.
8351                  */
8352                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8353                         return -EINVAL;
8354         }
8355
8356         return 0;
8357 }
8358
8359 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8360 {
8361         struct msr_data apic_base_msr;
8362         int mmu_reset_needed = 0;
8363         int cpuid_update_needed = 0;
8364         int pending_vec, max_bits, idx;
8365         struct desc_ptr dt;
8366         int ret = -EINVAL;
8367
8368         if (kvm_valid_sregs(vcpu, sregs))
8369                 goto out;
8370
8371         apic_base_msr.data = sregs->apic_base;
8372         apic_base_msr.host_initiated = true;
8373         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8374                 goto out;
8375
8376         dt.size = sregs->idt.limit;
8377         dt.address = sregs->idt.base;
8378         kvm_x86_ops->set_idt(vcpu, &dt);
8379         dt.size = sregs->gdt.limit;
8380         dt.address = sregs->gdt.base;
8381         kvm_x86_ops->set_gdt(vcpu, &dt);
8382
8383         vcpu->arch.cr2 = sregs->cr2;
8384         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8385         vcpu->arch.cr3 = sregs->cr3;
8386         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8387
8388         kvm_set_cr8(vcpu, sregs->cr8);
8389
8390         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8391         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8392
8393         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8394         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8395         vcpu->arch.cr0 = sregs->cr0;
8396
8397         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8398         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8399                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8400         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8401         if (cpuid_update_needed)
8402                 kvm_update_cpuid(vcpu);
8403
8404         idx = srcu_read_lock(&vcpu->kvm->srcu);
8405         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8406                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8407                 mmu_reset_needed = 1;
8408         }
8409         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8410
8411         if (mmu_reset_needed)
8412                 kvm_mmu_reset_context(vcpu);
8413
8414         max_bits = KVM_NR_INTERRUPTS;
8415         pending_vec = find_first_bit(
8416                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8417         if (pending_vec < max_bits) {
8418                 kvm_queue_interrupt(vcpu, pending_vec, false);
8419                 pr_debug("Set back pending irq %d\n", pending_vec);
8420         }
8421
8422         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8423         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8424         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8425         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8426         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8427         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8428
8429         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8430         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8431
8432         update_cr8_intercept(vcpu);
8433
8434         /* Older userspace won't unhalt the vcpu on reset. */
8435         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8436             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8437             !is_protmode(vcpu))
8438                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8439
8440         kvm_make_request(KVM_REQ_EVENT, vcpu);
8441
8442         ret = 0;
8443 out:
8444         return ret;
8445 }
8446
8447 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8448                                   struct kvm_sregs *sregs)
8449 {
8450         int ret;
8451
8452         vcpu_load(vcpu);
8453         ret = __set_sregs(vcpu, sregs);
8454         vcpu_put(vcpu);
8455         return ret;
8456 }
8457
8458 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8459                                         struct kvm_guest_debug *dbg)
8460 {
8461         unsigned long rflags;
8462         int i, r;
8463
8464         vcpu_load(vcpu);
8465
8466         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8467                 r = -EBUSY;
8468                 if (vcpu->arch.exception.pending)
8469                         goto out;
8470                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8471                         kvm_queue_exception(vcpu, DB_VECTOR);
8472                 else
8473                         kvm_queue_exception(vcpu, BP_VECTOR);
8474         }
8475
8476         /*
8477          * Read rflags as long as potentially injected trace flags are still
8478          * filtered out.
8479          */
8480         rflags = kvm_get_rflags(vcpu);
8481
8482         vcpu->guest_debug = dbg->control;
8483         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8484                 vcpu->guest_debug = 0;
8485
8486         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8487                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8488                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8489                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8490         } else {
8491                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8492                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8493         }
8494         kvm_update_dr7(vcpu);
8495
8496         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8497                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8498                         get_segment_base(vcpu, VCPU_SREG_CS);
8499
8500         /*
8501          * Trigger an rflags update that will inject or remove the trace
8502          * flags.
8503          */
8504         kvm_set_rflags(vcpu, rflags);
8505
8506         kvm_x86_ops->update_bp_intercept(vcpu);
8507
8508         r = 0;
8509
8510 out:
8511         vcpu_put(vcpu);
8512         return r;
8513 }
8514
8515 /*
8516  * Translate a guest virtual address to a guest physical address.
8517  */
8518 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8519                                     struct kvm_translation *tr)
8520 {
8521         unsigned long vaddr = tr->linear_address;
8522         gpa_t gpa;
8523         int idx;
8524
8525         vcpu_load(vcpu);
8526
8527         idx = srcu_read_lock(&vcpu->kvm->srcu);
8528         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8529         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8530         tr->physical_address = gpa;
8531         tr->valid = gpa != UNMAPPED_GVA;
8532         tr->writeable = 1;
8533         tr->usermode = 0;
8534
8535         vcpu_put(vcpu);
8536         return 0;
8537 }
8538
8539 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8540 {
8541         struct fxregs_state *fxsave;
8542
8543         vcpu_load(vcpu);
8544
8545         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8546         memcpy(fpu->fpr, fxsave->st_space, 128);
8547         fpu->fcw = fxsave->cwd;
8548         fpu->fsw = fxsave->swd;
8549         fpu->ftwx = fxsave->twd;
8550         fpu->last_opcode = fxsave->fop;
8551         fpu->last_ip = fxsave->rip;
8552         fpu->last_dp = fxsave->rdp;
8553         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8554
8555         vcpu_put(vcpu);
8556         return 0;
8557 }
8558
8559 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8560 {
8561         struct fxregs_state *fxsave;
8562
8563         vcpu_load(vcpu);
8564
8565         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8566
8567         memcpy(fxsave->st_space, fpu->fpr, 128);
8568         fxsave->cwd = fpu->fcw;
8569         fxsave->swd = fpu->fsw;
8570         fxsave->twd = fpu->ftwx;
8571         fxsave->fop = fpu->last_opcode;
8572         fxsave->rip = fpu->last_ip;
8573         fxsave->rdp = fpu->last_dp;
8574         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8575
8576         vcpu_put(vcpu);
8577         return 0;
8578 }
8579
8580 static void store_regs(struct kvm_vcpu *vcpu)
8581 {
8582         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8583
8584         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8585                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8586
8587         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8588                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8589
8590         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8591                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8592                                 vcpu, &vcpu->run->s.regs.events);
8593 }
8594
8595 static int sync_regs(struct kvm_vcpu *vcpu)
8596 {
8597         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8598                 return -EINVAL;
8599
8600         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8601                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8602                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8603         }
8604         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8605                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8606                         return -EINVAL;
8607                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8608         }
8609         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8610                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8611                                 vcpu, &vcpu->run->s.regs.events))
8612                         return -EINVAL;
8613                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8614         }
8615
8616         return 0;
8617 }
8618
8619 static void fx_init(struct kvm_vcpu *vcpu)
8620 {
8621         fpstate_init(&vcpu->arch.guest_fpu.state);
8622         if (boot_cpu_has(X86_FEATURE_XSAVES))
8623                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8624                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8625
8626         /*
8627          * Ensure guest xcr0 is valid for loading
8628          */
8629         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8630
8631         vcpu->arch.cr0 |= X86_CR0_ET;
8632 }
8633
8634 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8635 {
8636         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8637
8638         kvmclock_reset(vcpu);
8639
8640         kvm_x86_ops->vcpu_free(vcpu);
8641         free_cpumask_var(wbinvd_dirty_mask);
8642 }
8643
8644 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8645                                                 unsigned int id)
8646 {
8647         struct kvm_vcpu *vcpu;
8648
8649         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8650                 printk_once(KERN_WARNING
8651                 "kvm: SMP vm created on host with unstable TSC; "
8652                 "guest TSC will not be reliable\n");
8653
8654         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8655
8656         return vcpu;
8657 }
8658
8659 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8660 {
8661         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8662         kvm_vcpu_mtrr_init(vcpu);
8663         vcpu_load(vcpu);
8664         kvm_vcpu_reset(vcpu, false);
8665         kvm_init_mmu(vcpu, false);
8666         vcpu_put(vcpu);
8667         return 0;
8668 }
8669
8670 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8671 {
8672         struct msr_data msr;
8673         struct kvm *kvm = vcpu->kvm;
8674
8675         kvm_hv_vcpu_postcreate(vcpu);
8676
8677         if (mutex_lock_killable(&vcpu->mutex))
8678                 return;
8679         vcpu_load(vcpu);
8680         msr.data = 0x0;
8681         msr.index = MSR_IA32_TSC;
8682         msr.host_initiated = true;
8683         kvm_write_tsc(vcpu, &msr);
8684         vcpu_put(vcpu);
8685         mutex_unlock(&vcpu->mutex);
8686
8687         if (!kvmclock_periodic_sync)
8688                 return;
8689
8690         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8691                                         KVMCLOCK_SYNC_PERIOD);
8692 }
8693
8694 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8695 {
8696         vcpu->arch.apf.msr_val = 0;
8697
8698         vcpu_load(vcpu);
8699         kvm_mmu_unload(vcpu);
8700         vcpu_put(vcpu);
8701
8702         kvm_x86_ops->vcpu_free(vcpu);
8703 }
8704
8705 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8706 {
8707         kvm_lapic_reset(vcpu, init_event);
8708
8709         vcpu->arch.hflags = 0;
8710
8711         vcpu->arch.smi_pending = 0;
8712         vcpu->arch.smi_count = 0;
8713         atomic_set(&vcpu->arch.nmi_queued, 0);
8714         vcpu->arch.nmi_pending = 0;
8715         vcpu->arch.nmi_injected = false;
8716         kvm_clear_interrupt_queue(vcpu);
8717         kvm_clear_exception_queue(vcpu);
8718         vcpu->arch.exception.pending = false;
8719
8720         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8721         kvm_update_dr0123(vcpu);
8722         vcpu->arch.dr6 = DR6_INIT;
8723         kvm_update_dr6(vcpu);
8724         vcpu->arch.dr7 = DR7_FIXED_1;
8725         kvm_update_dr7(vcpu);
8726
8727         vcpu->arch.cr2 = 0;
8728
8729         kvm_make_request(KVM_REQ_EVENT, vcpu);
8730         vcpu->arch.apf.msr_val = 0;
8731         vcpu->arch.st.msr_val = 0;
8732
8733         kvmclock_reset(vcpu);
8734
8735         kvm_clear_async_pf_completion_queue(vcpu);
8736         kvm_async_pf_hash_reset(vcpu);
8737         vcpu->arch.apf.halted = false;
8738
8739         if (kvm_mpx_supported()) {
8740                 void *mpx_state_buffer;
8741
8742                 /*
8743                  * To avoid have the INIT path from kvm_apic_has_events() that be
8744                  * called with loaded FPU and does not let userspace fix the state.
8745                  */
8746                 if (init_event)
8747                         kvm_put_guest_fpu(vcpu);
8748                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8749                                         XFEATURE_MASK_BNDREGS);
8750                 if (mpx_state_buffer)
8751                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8752                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8753                                         XFEATURE_MASK_BNDCSR);
8754                 if (mpx_state_buffer)
8755                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8756                 if (init_event)
8757                         kvm_load_guest_fpu(vcpu);
8758         }
8759
8760         if (!init_event) {
8761                 kvm_pmu_reset(vcpu);
8762                 vcpu->arch.smbase = 0x30000;
8763
8764                 vcpu->arch.msr_misc_features_enables = 0;
8765
8766                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8767         }
8768
8769         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8770         vcpu->arch.regs_avail = ~0;
8771         vcpu->arch.regs_dirty = ~0;
8772
8773         vcpu->arch.ia32_xss = 0;
8774
8775         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8776 }
8777
8778 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8779 {
8780         struct kvm_segment cs;
8781
8782         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8783         cs.selector = vector << 8;
8784         cs.base = vector << 12;
8785         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8786         kvm_rip_write(vcpu, 0);
8787 }
8788
8789 int kvm_arch_hardware_enable(void)
8790 {
8791         struct kvm *kvm;
8792         struct kvm_vcpu *vcpu;
8793         int i;
8794         int ret;
8795         u64 local_tsc;
8796         u64 max_tsc = 0;
8797         bool stable, backwards_tsc = false;
8798
8799         kvm_shared_msr_cpu_online();
8800         ret = kvm_x86_ops->hardware_enable();
8801         if (ret != 0)
8802                 return ret;
8803
8804         local_tsc = rdtsc();
8805         stable = !kvm_check_tsc_unstable();
8806         list_for_each_entry(kvm, &vm_list, vm_list) {
8807                 kvm_for_each_vcpu(i, vcpu, kvm) {
8808                         if (!stable && vcpu->cpu == smp_processor_id())
8809                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8810                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8811                                 backwards_tsc = true;
8812                                 if (vcpu->arch.last_host_tsc > max_tsc)
8813                                         max_tsc = vcpu->arch.last_host_tsc;
8814                         }
8815                 }
8816         }
8817
8818         /*
8819          * Sometimes, even reliable TSCs go backwards.  This happens on
8820          * platforms that reset TSC during suspend or hibernate actions, but
8821          * maintain synchronization.  We must compensate.  Fortunately, we can
8822          * detect that condition here, which happens early in CPU bringup,
8823          * before any KVM threads can be running.  Unfortunately, we can't
8824          * bring the TSCs fully up to date with real time, as we aren't yet far
8825          * enough into CPU bringup that we know how much real time has actually
8826          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8827          * variables that haven't been updated yet.
8828          *
8829          * So we simply find the maximum observed TSC above, then record the
8830          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8831          * the adjustment will be applied.  Note that we accumulate
8832          * adjustments, in case multiple suspend cycles happen before some VCPU
8833          * gets a chance to run again.  In the event that no KVM threads get a
8834          * chance to run, we will miss the entire elapsed period, as we'll have
8835          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8836          * loose cycle time.  This isn't too big a deal, since the loss will be
8837          * uniform across all VCPUs (not to mention the scenario is extremely
8838          * unlikely). It is possible that a second hibernate recovery happens
8839          * much faster than a first, causing the observed TSC here to be
8840          * smaller; this would require additional padding adjustment, which is
8841          * why we set last_host_tsc to the local tsc observed here.
8842          *
8843          * N.B. - this code below runs only on platforms with reliable TSC,
8844          * as that is the only way backwards_tsc is set above.  Also note
8845          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8846          * have the same delta_cyc adjustment applied if backwards_tsc
8847          * is detected.  Note further, this adjustment is only done once,
8848          * as we reset last_host_tsc on all VCPUs to stop this from being
8849          * called multiple times (one for each physical CPU bringup).
8850          *
8851          * Platforms with unreliable TSCs don't have to deal with this, they
8852          * will be compensated by the logic in vcpu_load, which sets the TSC to
8853          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8854          * guarantee that they stay in perfect synchronization.
8855          */
8856         if (backwards_tsc) {
8857                 u64 delta_cyc = max_tsc - local_tsc;
8858                 list_for_each_entry(kvm, &vm_list, vm_list) {
8859                         kvm->arch.backwards_tsc_observed = true;
8860                         kvm_for_each_vcpu(i, vcpu, kvm) {
8861                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8862                                 vcpu->arch.last_host_tsc = local_tsc;
8863                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8864                         }
8865
8866                         /*
8867                          * We have to disable TSC offset matching.. if you were
8868                          * booting a VM while issuing an S4 host suspend....
8869                          * you may have some problem.  Solving this issue is
8870                          * left as an exercise to the reader.
8871                          */
8872                         kvm->arch.last_tsc_nsec = 0;
8873                         kvm->arch.last_tsc_write = 0;
8874                 }
8875
8876         }
8877         return 0;
8878 }
8879
8880 void kvm_arch_hardware_disable(void)
8881 {
8882         kvm_x86_ops->hardware_disable();
8883         drop_user_return_notifiers();
8884 }
8885
8886 int kvm_arch_hardware_setup(void)
8887 {
8888         int r;
8889
8890         r = kvm_x86_ops->hardware_setup();
8891         if (r != 0)
8892                 return r;
8893
8894         if (kvm_has_tsc_control) {
8895                 /*
8896                  * Make sure the user can only configure tsc_khz values that
8897                  * fit into a signed integer.
8898                  * A min value is not calculated because it will always
8899                  * be 1 on all machines.
8900                  */
8901                 u64 max = min(0x7fffffffULL,
8902                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8903                 kvm_max_guest_tsc_khz = max;
8904
8905                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8906         }
8907
8908         kvm_init_msr_list();
8909         return 0;
8910 }
8911
8912 void kvm_arch_hardware_unsetup(void)
8913 {
8914         kvm_x86_ops->hardware_unsetup();
8915 }
8916
8917 void kvm_arch_check_processor_compat(void *rtn)
8918 {
8919         kvm_x86_ops->check_processor_compatibility(rtn);
8920 }
8921
8922 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8923 {
8924         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8925 }
8926 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8927
8928 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8929 {
8930         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8931 }
8932
8933 struct static_key kvm_no_apic_vcpu __read_mostly;
8934 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8935
8936 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8937 {
8938         struct page *page;
8939         int r;
8940
8941         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8942         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8943         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8944                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8945         else
8946                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8947
8948         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8949         if (!page) {
8950                 r = -ENOMEM;
8951                 goto fail;
8952         }
8953         vcpu->arch.pio_data = page_address(page);
8954
8955         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8956
8957         r = kvm_mmu_create(vcpu);
8958         if (r < 0)
8959                 goto fail_free_pio_data;
8960
8961         if (irqchip_in_kernel(vcpu->kvm)) {
8962                 r = kvm_create_lapic(vcpu);
8963                 if (r < 0)
8964                         goto fail_mmu_destroy;
8965         } else
8966                 static_key_slow_inc(&kvm_no_apic_vcpu);
8967
8968         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8969                                        GFP_KERNEL);
8970         if (!vcpu->arch.mce_banks) {
8971                 r = -ENOMEM;
8972                 goto fail_free_lapic;
8973         }
8974         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8975
8976         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8977                 r = -ENOMEM;
8978                 goto fail_free_mce_banks;
8979         }
8980
8981         fx_init(vcpu);
8982
8983         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8984
8985         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8986
8987         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8988
8989         kvm_async_pf_hash_reset(vcpu);
8990         kvm_pmu_init(vcpu);
8991
8992         vcpu->arch.pending_external_vector = -1;
8993         vcpu->arch.preempted_in_kernel = false;
8994
8995         kvm_hv_vcpu_init(vcpu);
8996
8997         return 0;
8998
8999 fail_free_mce_banks:
9000         kfree(vcpu->arch.mce_banks);
9001 fail_free_lapic:
9002         kvm_free_lapic(vcpu);
9003 fail_mmu_destroy:
9004         kvm_mmu_destroy(vcpu);
9005 fail_free_pio_data:
9006         free_page((unsigned long)vcpu->arch.pio_data);
9007 fail:
9008         return r;
9009 }
9010
9011 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9012 {
9013         int idx;
9014
9015         kvm_hv_vcpu_uninit(vcpu);
9016         kvm_pmu_destroy(vcpu);
9017         kfree(vcpu->arch.mce_banks);
9018         kvm_free_lapic(vcpu);
9019         idx = srcu_read_lock(&vcpu->kvm->srcu);
9020         kvm_mmu_destroy(vcpu);
9021         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9022         free_page((unsigned long)vcpu->arch.pio_data);
9023         if (!lapic_in_kernel(vcpu))
9024                 static_key_slow_dec(&kvm_no_apic_vcpu);
9025 }
9026
9027 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9028 {
9029         vcpu->arch.l1tf_flush_l1d = true;
9030         kvm_x86_ops->sched_in(vcpu, cpu);
9031 }
9032
9033 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9034 {
9035         if (type)
9036                 return -EINVAL;
9037
9038         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9039         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9040         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9041         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9042         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9043
9044         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9045         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9046         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9047         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9048                 &kvm->arch.irq_sources_bitmap);
9049
9050         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9051         mutex_init(&kvm->arch.apic_map_lock);
9052         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9053
9054         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9055         pvclock_update_vm_gtod_copy(kvm);
9056
9057         kvm->arch.guest_can_read_msr_platform_info = true;
9058
9059         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9060         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9061
9062         kvm_hv_init_vm(kvm);
9063         kvm_page_track_init(kvm);
9064         kvm_mmu_init_vm(kvm);
9065
9066         if (kvm_x86_ops->vm_init)
9067                 return kvm_x86_ops->vm_init(kvm);
9068
9069         return 0;
9070 }
9071
9072 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9073 {
9074         vcpu_load(vcpu);
9075         kvm_mmu_unload(vcpu);
9076         vcpu_put(vcpu);
9077 }
9078
9079 static void kvm_free_vcpus(struct kvm *kvm)
9080 {
9081         unsigned int i;
9082         struct kvm_vcpu *vcpu;
9083
9084         /*
9085          * Unpin any mmu pages first.
9086          */
9087         kvm_for_each_vcpu(i, vcpu, kvm) {
9088                 kvm_clear_async_pf_completion_queue(vcpu);
9089                 kvm_unload_vcpu_mmu(vcpu);
9090         }
9091         kvm_for_each_vcpu(i, vcpu, kvm)
9092                 kvm_arch_vcpu_free(vcpu);
9093
9094         mutex_lock(&kvm->lock);
9095         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9096                 kvm->vcpus[i] = NULL;
9097
9098         atomic_set(&kvm->online_vcpus, 0);
9099         mutex_unlock(&kvm->lock);
9100 }
9101
9102 void kvm_arch_sync_events(struct kvm *kvm)
9103 {
9104         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9105         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9106         kvm_free_pit(kvm);
9107 }
9108
9109 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9110 {
9111         int i, r;
9112         unsigned long hva;
9113         struct kvm_memslots *slots = kvm_memslots(kvm);
9114         struct kvm_memory_slot *slot, old;
9115
9116         /* Called with kvm->slots_lock held.  */
9117         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9118                 return -EINVAL;
9119
9120         slot = id_to_memslot(slots, id);
9121         if (size) {
9122                 if (slot->npages)
9123                         return -EEXIST;
9124
9125                 /*
9126                  * MAP_SHARED to prevent internal slot pages from being moved
9127                  * by fork()/COW.
9128                  */
9129                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9130                               MAP_SHARED | MAP_ANONYMOUS, 0);
9131                 if (IS_ERR((void *)hva))
9132                         return PTR_ERR((void *)hva);
9133         } else {
9134                 if (!slot->npages)
9135                         return 0;
9136
9137                 hva = 0;
9138         }
9139
9140         old = *slot;
9141         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9142                 struct kvm_userspace_memory_region m;
9143
9144                 m.slot = id | (i << 16);
9145                 m.flags = 0;
9146                 m.guest_phys_addr = gpa;
9147                 m.userspace_addr = hva;
9148                 m.memory_size = size;
9149                 r = __kvm_set_memory_region(kvm, &m);
9150                 if (r < 0)
9151                         return r;
9152         }
9153
9154         if (!size)
9155                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9156
9157         return 0;
9158 }
9159 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9160
9161 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9162 {
9163         int r;
9164
9165         mutex_lock(&kvm->slots_lock);
9166         r = __x86_set_memory_region(kvm, id, gpa, size);
9167         mutex_unlock(&kvm->slots_lock);
9168
9169         return r;
9170 }
9171 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9172
9173 void kvm_arch_destroy_vm(struct kvm *kvm)
9174 {
9175         if (current->mm == kvm->mm) {
9176                 /*
9177                  * Free memory regions allocated on behalf of userspace,
9178                  * unless the the memory map has changed due to process exit
9179                  * or fd copying.
9180                  */
9181                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9182                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9183                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9184         }
9185         if (kvm_x86_ops->vm_destroy)
9186                 kvm_x86_ops->vm_destroy(kvm);
9187         kvm_pic_destroy(kvm);
9188         kvm_ioapic_destroy(kvm);
9189         kvm_free_vcpus(kvm);
9190         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9191         kvm_mmu_uninit_vm(kvm);
9192         kvm_page_track_cleanup(kvm);
9193         kvm_hv_destroy_vm(kvm);
9194 }
9195
9196 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9197                            struct kvm_memory_slot *dont)
9198 {
9199         int i;
9200
9201         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9202                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9203                         kvfree(free->arch.rmap[i]);
9204                         free->arch.rmap[i] = NULL;
9205                 }
9206                 if (i == 0)
9207                         continue;
9208
9209                 if (!dont || free->arch.lpage_info[i - 1] !=
9210                              dont->arch.lpage_info[i - 1]) {
9211                         kvfree(free->arch.lpage_info[i - 1]);
9212                         free->arch.lpage_info[i - 1] = NULL;
9213                 }
9214         }
9215
9216         kvm_page_track_free_memslot(free, dont);
9217 }
9218
9219 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9220                             unsigned long npages)
9221 {
9222         int i;
9223
9224         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9225                 struct kvm_lpage_info *linfo;
9226                 unsigned long ugfn;
9227                 int lpages;
9228                 int level = i + 1;
9229
9230                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9231                                       slot->base_gfn, level) + 1;
9232
9233                 slot->arch.rmap[i] =
9234                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9235                                  GFP_KERNEL);
9236                 if (!slot->arch.rmap[i])
9237                         goto out_free;
9238                 if (i == 0)
9239                         continue;
9240
9241                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9242                 if (!linfo)
9243                         goto out_free;
9244
9245                 slot->arch.lpage_info[i - 1] = linfo;
9246
9247                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9248                         linfo[0].disallow_lpage = 1;
9249                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9250                         linfo[lpages - 1].disallow_lpage = 1;
9251                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9252                 /*
9253                  * If the gfn and userspace address are not aligned wrt each
9254                  * other, or if explicitly asked to, disable large page
9255                  * support for this slot
9256                  */
9257                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9258                     !kvm_largepages_enabled()) {
9259                         unsigned long j;
9260
9261                         for (j = 0; j < lpages; ++j)
9262                                 linfo[j].disallow_lpage = 1;
9263                 }
9264         }
9265
9266         if (kvm_page_track_create_memslot(slot, npages))
9267                 goto out_free;
9268
9269         return 0;
9270
9271 out_free:
9272         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9273                 kvfree(slot->arch.rmap[i]);
9274                 slot->arch.rmap[i] = NULL;
9275                 if (i == 0)
9276                         continue;
9277
9278                 kvfree(slot->arch.lpage_info[i - 1]);
9279                 slot->arch.lpage_info[i - 1] = NULL;
9280         }
9281         return -ENOMEM;
9282 }
9283
9284 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9285 {
9286         /*
9287          * memslots->generation has been incremented.
9288          * mmio generation may have reached its maximum value.
9289          */
9290         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9291 }
9292
9293 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9294                                 struct kvm_memory_slot *memslot,
9295                                 const struct kvm_userspace_memory_region *mem,
9296                                 enum kvm_mr_change change)
9297 {
9298         return 0;
9299 }
9300
9301 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9302                                      struct kvm_memory_slot *new)
9303 {
9304         /* Still write protect RO slot */
9305         if (new->flags & KVM_MEM_READONLY) {
9306                 kvm_mmu_slot_remove_write_access(kvm, new);
9307                 return;
9308         }
9309
9310         /*
9311          * Call kvm_x86_ops dirty logging hooks when they are valid.
9312          *
9313          * kvm_x86_ops->slot_disable_log_dirty is called when:
9314          *
9315          *  - KVM_MR_CREATE with dirty logging is disabled
9316          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9317          *
9318          * The reason is, in case of PML, we need to set D-bit for any slots
9319          * with dirty logging disabled in order to eliminate unnecessary GPA
9320          * logging in PML buffer (and potential PML buffer full VMEXT). This
9321          * guarantees leaving PML enabled during guest's lifetime won't have
9322          * any additonal overhead from PML when guest is running with dirty
9323          * logging disabled for memory slots.
9324          *
9325          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9326          * to dirty logging mode.
9327          *
9328          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9329          *
9330          * In case of write protect:
9331          *
9332          * Write protect all pages for dirty logging.
9333          *
9334          * All the sptes including the large sptes which point to this
9335          * slot are set to readonly. We can not create any new large
9336          * spte on this slot until the end of the logging.
9337          *
9338          * See the comments in fast_page_fault().
9339          */
9340         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9341                 if (kvm_x86_ops->slot_enable_log_dirty)
9342                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9343                 else
9344                         kvm_mmu_slot_remove_write_access(kvm, new);
9345         } else {
9346                 if (kvm_x86_ops->slot_disable_log_dirty)
9347                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9348         }
9349 }
9350
9351 void kvm_arch_commit_memory_region(struct kvm *kvm,
9352                                 const struct kvm_userspace_memory_region *mem,
9353                                 const struct kvm_memory_slot *old,
9354                                 const struct kvm_memory_slot *new,
9355                                 enum kvm_mr_change change)
9356 {
9357         int nr_mmu_pages = 0;
9358
9359         if (!kvm->arch.n_requested_mmu_pages)
9360                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9361
9362         if (nr_mmu_pages)
9363                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9364
9365         /*
9366          * Dirty logging tracks sptes in 4k granularity, meaning that large
9367          * sptes have to be split.  If live migration is successful, the guest
9368          * in the source machine will be destroyed and large sptes will be
9369          * created in the destination. However, if the guest continues to run
9370          * in the source machine (for example if live migration fails), small
9371          * sptes will remain around and cause bad performance.
9372          *
9373          * Scan sptes if dirty logging has been stopped, dropping those
9374          * which can be collapsed into a single large-page spte.  Later
9375          * page faults will create the large-page sptes.
9376          */
9377         if ((change != KVM_MR_DELETE) &&
9378                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9379                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9380                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9381
9382         /*
9383          * Set up write protection and/or dirty logging for the new slot.
9384          *
9385          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9386          * been zapped so no dirty logging staff is needed for old slot. For
9387          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9388          * new and it's also covered when dealing with the new slot.
9389          *
9390          * FIXME: const-ify all uses of struct kvm_memory_slot.
9391          */
9392         if (change != KVM_MR_DELETE)
9393                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9394 }
9395
9396 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9397 {
9398         kvm_mmu_invalidate_zap_all_pages(kvm);
9399 }
9400
9401 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9402                                    struct kvm_memory_slot *slot)
9403 {
9404         kvm_page_track_flush_slot(kvm, slot);
9405 }
9406
9407 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9408 {
9409         return (is_guest_mode(vcpu) &&
9410                         kvm_x86_ops->guest_apic_has_interrupt &&
9411                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9412 }
9413
9414 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9415 {
9416         if (!list_empty_careful(&vcpu->async_pf.done))
9417                 return true;
9418
9419         if (kvm_apic_has_events(vcpu))
9420                 return true;
9421
9422         if (vcpu->arch.pv.pv_unhalted)
9423                 return true;
9424
9425         if (vcpu->arch.exception.pending)
9426                 return true;
9427
9428         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9429             (vcpu->arch.nmi_pending &&
9430              kvm_x86_ops->nmi_allowed(vcpu)))
9431                 return true;
9432
9433         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9434             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9435                 return true;
9436
9437         if (kvm_arch_interrupt_allowed(vcpu) &&
9438             (kvm_cpu_has_interrupt(vcpu) ||
9439             kvm_guest_apic_has_interrupt(vcpu)))
9440                 return true;
9441
9442         if (kvm_hv_has_stimer_pending(vcpu))
9443                 return true;
9444
9445         return false;
9446 }
9447
9448 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9449 {
9450         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9451 }
9452
9453 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9454 {
9455         return vcpu->arch.preempted_in_kernel;
9456 }
9457
9458 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9459 {
9460         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9461 }
9462
9463 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9464 {
9465         return kvm_x86_ops->interrupt_allowed(vcpu);
9466 }
9467
9468 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9469 {
9470         if (is_64_bit_mode(vcpu))
9471                 return kvm_rip_read(vcpu);
9472         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9473                      kvm_rip_read(vcpu));
9474 }
9475 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9476
9477 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9478 {
9479         return kvm_get_linear_rip(vcpu) == linear_rip;
9480 }
9481 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9482
9483 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9484 {
9485         unsigned long rflags;
9486
9487         rflags = kvm_x86_ops->get_rflags(vcpu);
9488         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9489                 rflags &= ~X86_EFLAGS_TF;
9490         return rflags;
9491 }
9492 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9493
9494 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9495 {
9496         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9497             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9498                 rflags |= X86_EFLAGS_TF;
9499         kvm_x86_ops->set_rflags(vcpu, rflags);
9500 }
9501
9502 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9503 {
9504         __kvm_set_rflags(vcpu, rflags);
9505         kvm_make_request(KVM_REQ_EVENT, vcpu);
9506 }
9507 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9508
9509 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9510 {
9511         int r;
9512
9513         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9514               work->wakeup_all)
9515                 return;
9516
9517         r = kvm_mmu_reload(vcpu);
9518         if (unlikely(r))
9519                 return;
9520
9521         if (!vcpu->arch.mmu->direct_map &&
9522               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9523                 return;
9524
9525         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9526 }
9527
9528 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9529 {
9530         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9531 }
9532
9533 static inline u32 kvm_async_pf_next_probe(u32 key)
9534 {
9535         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9536 }
9537
9538 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9539 {
9540         u32 key = kvm_async_pf_hash_fn(gfn);
9541
9542         while (vcpu->arch.apf.gfns[key] != ~0)
9543                 key = kvm_async_pf_next_probe(key);
9544
9545         vcpu->arch.apf.gfns[key] = gfn;
9546 }
9547
9548 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9549 {
9550         int i;
9551         u32 key = kvm_async_pf_hash_fn(gfn);
9552
9553         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9554                      (vcpu->arch.apf.gfns[key] != gfn &&
9555                       vcpu->arch.apf.gfns[key] != ~0); i++)
9556                 key = kvm_async_pf_next_probe(key);
9557
9558         return key;
9559 }
9560
9561 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9562 {
9563         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9564 }
9565
9566 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9567 {
9568         u32 i, j, k;
9569
9570         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9571         while (true) {
9572                 vcpu->arch.apf.gfns[i] = ~0;
9573                 do {
9574                         j = kvm_async_pf_next_probe(j);
9575                         if (vcpu->arch.apf.gfns[j] == ~0)
9576                                 return;
9577                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9578                         /*
9579                          * k lies cyclically in ]i,j]
9580                          * |    i.k.j |
9581                          * |....j i.k.| or  |.k..j i...|
9582                          */
9583                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9584                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9585                 i = j;
9586         }
9587 }
9588
9589 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9590 {
9591
9592         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9593                                       sizeof(val));
9594 }
9595
9596 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9597 {
9598
9599         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9600                                       sizeof(u32));
9601 }
9602
9603 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9604                                      struct kvm_async_pf *work)
9605 {
9606         struct x86_exception fault;
9607
9608         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9609         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9610
9611         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9612             (vcpu->arch.apf.send_user_only &&
9613              kvm_x86_ops->get_cpl(vcpu) == 0))
9614                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9615         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9616                 fault.vector = PF_VECTOR;
9617                 fault.error_code_valid = true;
9618                 fault.error_code = 0;
9619                 fault.nested_page_fault = false;
9620                 fault.address = work->arch.token;
9621                 fault.async_page_fault = true;
9622                 kvm_inject_page_fault(vcpu, &fault);
9623         }
9624 }
9625
9626 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9627                                  struct kvm_async_pf *work)
9628 {
9629         struct x86_exception fault;
9630         u32 val;
9631
9632         if (work->wakeup_all)
9633                 work->arch.token = ~0; /* broadcast wakeup */
9634         else
9635                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9636         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9637
9638         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9639             !apf_get_user(vcpu, &val)) {
9640                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9641                     vcpu->arch.exception.pending &&
9642                     vcpu->arch.exception.nr == PF_VECTOR &&
9643                     !apf_put_user(vcpu, 0)) {
9644                         vcpu->arch.exception.injected = false;
9645                         vcpu->arch.exception.pending = false;
9646                         vcpu->arch.exception.nr = 0;
9647                         vcpu->arch.exception.has_error_code = false;
9648                         vcpu->arch.exception.error_code = 0;
9649                         vcpu->arch.exception.has_payload = false;
9650                         vcpu->arch.exception.payload = 0;
9651                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9652                         fault.vector = PF_VECTOR;
9653                         fault.error_code_valid = true;
9654                         fault.error_code = 0;
9655                         fault.nested_page_fault = false;
9656                         fault.address = work->arch.token;
9657                         fault.async_page_fault = true;
9658                         kvm_inject_page_fault(vcpu, &fault);
9659                 }
9660         }
9661         vcpu->arch.apf.halted = false;
9662         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9663 }
9664
9665 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9666 {
9667         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9668                 return true;
9669         else
9670                 return kvm_can_do_async_pf(vcpu);
9671 }
9672
9673 void kvm_arch_start_assignment(struct kvm *kvm)
9674 {
9675         atomic_inc(&kvm->arch.assigned_device_count);
9676 }
9677 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9678
9679 void kvm_arch_end_assignment(struct kvm *kvm)
9680 {
9681         atomic_dec(&kvm->arch.assigned_device_count);
9682 }
9683 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9684
9685 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9686 {
9687         return atomic_read(&kvm->arch.assigned_device_count);
9688 }
9689 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9690
9691 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9692 {
9693         atomic_inc(&kvm->arch.noncoherent_dma_count);
9694 }
9695 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9696
9697 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9698 {
9699         atomic_dec(&kvm->arch.noncoherent_dma_count);
9700 }
9701 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9702
9703 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9704 {
9705         return atomic_read(&kvm->arch.noncoherent_dma_count);
9706 }
9707 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9708
9709 bool kvm_arch_has_irq_bypass(void)
9710 {
9711         return kvm_x86_ops->update_pi_irte != NULL;
9712 }
9713
9714 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9715                                       struct irq_bypass_producer *prod)
9716 {
9717         struct kvm_kernel_irqfd *irqfd =
9718                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9719
9720         irqfd->producer = prod;
9721
9722         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9723                                            prod->irq, irqfd->gsi, 1);
9724 }
9725
9726 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9727                                       struct irq_bypass_producer *prod)
9728 {
9729         int ret;
9730         struct kvm_kernel_irqfd *irqfd =
9731                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9732
9733         WARN_ON(irqfd->producer != prod);
9734         irqfd->producer = NULL;
9735
9736         /*
9737          * When producer of consumer is unregistered, we change back to
9738          * remapped mode, so we can re-use the current implementation
9739          * when the irq is masked/disabled or the consumer side (KVM
9740          * int this case doesn't want to receive the interrupts.
9741         */
9742         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9743         if (ret)
9744                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9745                        " fails: %d\n", irqfd->consumer.token, ret);
9746 }
9747
9748 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9749                                    uint32_t guest_irq, bool set)
9750 {
9751         if (!kvm_x86_ops->update_pi_irte)
9752                 return -EINVAL;
9753
9754         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9755 }
9756
9757 bool kvm_vector_hashing_enabled(void)
9758 {
9759         return vector_hashing;
9760 }
9761 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9762
9763 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9764 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9765 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9766 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9767 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9768 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9769 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9770 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9771 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9772 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9773 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9774 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9775 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9776 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9777 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9778 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9779 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9780 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9781 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);