]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
c4aea2adeaea4d59f60e717844f671dcdb7aa51e
[linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159
160 #define KVM_NR_SHARED_MSRS 16
161
162 struct kvm_shared_msrs_global {
163         int nr;
164         u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166
167 struct kvm_shared_msrs {
168         struct user_return_notifier urn;
169         bool registered;
170         struct kvm_shared_msr_values {
171                 u64 host;
172                 u64 curr;
173         } values[KVM_NR_SHARED_MSRS];
174 };
175
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180         { "pf_fixed", VCPU_STAT(pf_fixed) },
181         { "pf_guest", VCPU_STAT(pf_guest) },
182         { "tlb_flush", VCPU_STAT(tlb_flush) },
183         { "invlpg", VCPU_STAT(invlpg) },
184         { "exits", VCPU_STAT(exits) },
185         { "io_exits", VCPU_STAT(io_exits) },
186         { "mmio_exits", VCPU_STAT(mmio_exits) },
187         { "signal_exits", VCPU_STAT(signal_exits) },
188         { "irq_window", VCPU_STAT(irq_window_exits) },
189         { "nmi_window", VCPU_STAT(nmi_window_exits) },
190         { "halt_exits", VCPU_STAT(halt_exits) },
191         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
195         { "hypercalls", VCPU_STAT(hypercalls) },
196         { "request_irq", VCPU_STAT(request_irq_exits) },
197         { "irq_exits", VCPU_STAT(irq_exits) },
198         { "host_state_reload", VCPU_STAT(host_state_reload) },
199         { "fpu_reload", VCPU_STAT(fpu_reload) },
200         { "insn_emulation", VCPU_STAT(insn_emulation) },
201         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202         { "irq_injections", VCPU_STAT(irq_injections) },
203         { "nmi_injections", VCPU_STAT(nmi_injections) },
204         { "req_event", VCPU_STAT(req_event) },
205         { "l1d_flush", VCPU_STAT(l1d_flush) },
206         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
208         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210         { "mmu_flooded", VM_STAT(mmu_flooded) },
211         { "mmu_recycled", VM_STAT(mmu_recycled) },
212         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213         { "mmu_unsync", VM_STAT(mmu_unsync) },
214         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215         { "largepages", VM_STAT(lpages) },
216         { "max_mmu_page_hash_collisions",
217                 VM_STAT(max_mmu_page_hash_collisions) },
218         { NULL }
219 };
220
221 u64 __read_mostly host_xcr0;
222
223 struct kmem_cache *x86_fpu_cache;
224 EXPORT_SYMBOL_GPL(x86_fpu_cache);
225
226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
227
228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
229 {
230         int i;
231         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
232                 vcpu->arch.apf.gfns[i] = ~0;
233 }
234
235 static void kvm_on_user_return(struct user_return_notifier *urn)
236 {
237         unsigned slot;
238         struct kvm_shared_msrs *locals
239                 = container_of(urn, struct kvm_shared_msrs, urn);
240         struct kvm_shared_msr_values *values;
241         unsigned long flags;
242
243         /*
244          * Disabling irqs at this point since the following code could be
245          * interrupted and executed through kvm_arch_hardware_disable()
246          */
247         local_irq_save(flags);
248         if (locals->registered) {
249                 locals->registered = false;
250                 user_return_notifier_unregister(urn);
251         }
252         local_irq_restore(flags);
253         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
254                 values = &locals->values[slot];
255                 if (values->host != values->curr) {
256                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
257                         values->curr = values->host;
258                 }
259         }
260 }
261
262 static void shared_msr_update(unsigned slot, u32 msr)
263 {
264         u64 value;
265         unsigned int cpu = smp_processor_id();
266         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267
268         /* only read, and nobody should modify it at this time,
269          * so don't need lock */
270         if (slot >= shared_msrs_global.nr) {
271                 printk(KERN_ERR "kvm: invalid MSR slot!");
272                 return;
273         }
274         rdmsrl_safe(msr, &value);
275         smsr->values[slot].host = value;
276         smsr->values[slot].curr = value;
277 }
278
279 void kvm_define_shared_msr(unsigned slot, u32 msr)
280 {
281         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
282         shared_msrs_global.msrs[slot] = msr;
283         if (slot >= shared_msrs_global.nr)
284                 shared_msrs_global.nr = slot + 1;
285 }
286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
287
288 static void kvm_shared_msr_cpu_online(void)
289 {
290         unsigned i;
291
292         for (i = 0; i < shared_msrs_global.nr; ++i)
293                 shared_msr_update(i, shared_msrs_global.msrs[i]);
294 }
295
296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
297 {
298         unsigned int cpu = smp_processor_id();
299         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300         int err;
301
302         if (((value ^ smsr->values[slot].curr) & mask) == 0)
303                 return 0;
304         smsr->values[slot].curr = value;
305         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
306         if (err)
307                 return 1;
308
309         if (!smsr->registered) {
310                 smsr->urn.on_user_return = kvm_on_user_return;
311                 user_return_notifier_register(&smsr->urn);
312                 smsr->registered = true;
313         }
314         return 0;
315 }
316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
317
318 static void drop_user_return_notifiers(void)
319 {
320         unsigned int cpu = smp_processor_id();
321         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322
323         if (smsr->registered)
324                 kvm_on_user_return(&smsr->urn);
325 }
326
327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
328 {
329         return vcpu->arch.apic_base;
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
332
333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
334 {
335         return kvm_apic_mode(kvm_get_apic_base(vcpu));
336 }
337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
338
339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
340 {
341         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
342         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
343         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
344                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
345
346         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
347                 return 1;
348         if (!msr_info->host_initiated) {
349                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
350                         return 1;
351                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
352                         return 1;
353         }
354
355         kvm_lapic_set_base(vcpu, msr_info->data);
356         return 0;
357 }
358 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
359
360 asmlinkage __visible void kvm_spurious_fault(void)
361 {
362         /* Fault while not rebooting.  We want the trace. */
363         BUG();
364 }
365 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
366
367 #define EXCPT_BENIGN            0
368 #define EXCPT_CONTRIBUTORY      1
369 #define EXCPT_PF                2
370
371 static int exception_class(int vector)
372 {
373         switch (vector) {
374         case PF_VECTOR:
375                 return EXCPT_PF;
376         case DE_VECTOR:
377         case TS_VECTOR:
378         case NP_VECTOR:
379         case SS_VECTOR:
380         case GP_VECTOR:
381                 return EXCPT_CONTRIBUTORY;
382         default:
383                 break;
384         }
385         return EXCPT_BENIGN;
386 }
387
388 #define EXCPT_FAULT             0
389 #define EXCPT_TRAP              1
390 #define EXCPT_ABORT             2
391 #define EXCPT_INTERRUPT         3
392
393 static int exception_type(int vector)
394 {
395         unsigned int mask;
396
397         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
398                 return EXCPT_INTERRUPT;
399
400         mask = 1 << vector;
401
402         /* #DB is trap, as instruction watchpoints are handled elsewhere */
403         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
404                 return EXCPT_TRAP;
405
406         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
407                 return EXCPT_ABORT;
408
409         /* Reserved exceptions will result in fault */
410         return EXCPT_FAULT;
411 }
412
413 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
414 {
415         unsigned nr = vcpu->arch.exception.nr;
416         bool has_payload = vcpu->arch.exception.has_payload;
417         unsigned long payload = vcpu->arch.exception.payload;
418
419         if (!has_payload)
420                 return;
421
422         switch (nr) {
423         case DB_VECTOR:
424                 /*
425                  * "Certain debug exceptions may clear bit 0-3.  The
426                  * remaining contents of the DR6 register are never
427                  * cleared by the processor".
428                  */
429                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
430                 /*
431                  * DR6.RTM is set by all #DB exceptions that don't clear it.
432                  */
433                 vcpu->arch.dr6 |= DR6_RTM;
434                 vcpu->arch.dr6 |= payload;
435                 /*
436                  * Bit 16 should be set in the payload whenever the #DB
437                  * exception should clear DR6.RTM. This makes the payload
438                  * compatible with the pending debug exceptions under VMX.
439                  * Though not currently documented in the SDM, this also
440                  * makes the payload compatible with the exit qualification
441                  * for #DB exceptions under VMX.
442                  */
443                 vcpu->arch.dr6 ^= payload & DR6_RTM;
444                 break;
445         case PF_VECTOR:
446                 vcpu->arch.cr2 = payload;
447                 break;
448         }
449
450         vcpu->arch.exception.has_payload = false;
451         vcpu->arch.exception.payload = 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
454
455 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
456                 unsigned nr, bool has_error, u32 error_code,
457                 bool has_payload, unsigned long payload, bool reinject)
458 {
459         u32 prev_nr;
460         int class1, class2;
461
462         kvm_make_request(KVM_REQ_EVENT, vcpu);
463
464         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
465         queue:
466                 if (has_error && !is_protmode(vcpu))
467                         has_error = false;
468                 if (reinject) {
469                         /*
470                          * On vmentry, vcpu->arch.exception.pending is only
471                          * true if an event injection was blocked by
472                          * nested_run_pending.  In that case, however,
473                          * vcpu_enter_guest requests an immediate exit,
474                          * and the guest shouldn't proceed far enough to
475                          * need reinjection.
476                          */
477                         WARN_ON_ONCE(vcpu->arch.exception.pending);
478                         vcpu->arch.exception.injected = true;
479                         if (WARN_ON_ONCE(has_payload)) {
480                                 /*
481                                  * A reinjected event has already
482                                  * delivered its payload.
483                                  */
484                                 has_payload = false;
485                                 payload = 0;
486                         }
487                 } else {
488                         vcpu->arch.exception.pending = true;
489                         vcpu->arch.exception.injected = false;
490                 }
491                 vcpu->arch.exception.has_error_code = has_error;
492                 vcpu->arch.exception.nr = nr;
493                 vcpu->arch.exception.error_code = error_code;
494                 vcpu->arch.exception.has_payload = has_payload;
495                 vcpu->arch.exception.payload = payload;
496                 /*
497                  * In guest mode, payload delivery should be deferred,
498                  * so that the L1 hypervisor can intercept #PF before
499                  * CR2 is modified (or intercept #DB before DR6 is
500                  * modified under nVMX).  However, for ABI
501                  * compatibility with KVM_GET_VCPU_EVENTS and
502                  * KVM_SET_VCPU_EVENTS, we can't delay payload
503                  * delivery unless userspace has enabled this
504                  * functionality via the per-VM capability,
505                  * KVM_CAP_EXCEPTION_PAYLOAD.
506                  */
507                 if (!vcpu->kvm->arch.exception_payload_enabled ||
508                     !is_guest_mode(vcpu))
509                         kvm_deliver_exception_payload(vcpu);
510                 return;
511         }
512
513         /* to check exception */
514         prev_nr = vcpu->arch.exception.nr;
515         if (prev_nr == DF_VECTOR) {
516                 /* triple fault -> shutdown */
517                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
518                 return;
519         }
520         class1 = exception_class(prev_nr);
521         class2 = exception_class(nr);
522         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
523                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
524                 /*
525                  * Generate double fault per SDM Table 5-5.  Set
526                  * exception.pending = true so that the double fault
527                  * can trigger a nested vmexit.
528                  */
529                 vcpu->arch.exception.pending = true;
530                 vcpu->arch.exception.injected = false;
531                 vcpu->arch.exception.has_error_code = true;
532                 vcpu->arch.exception.nr = DF_VECTOR;
533                 vcpu->arch.exception.error_code = 0;
534                 vcpu->arch.exception.has_payload = false;
535                 vcpu->arch.exception.payload = 0;
536         } else
537                 /* replace previous exception with a new one in a hope
538                    that instruction re-execution will regenerate lost
539                    exception */
540                 goto queue;
541 }
542
543 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
546 }
547 EXPORT_SYMBOL_GPL(kvm_queue_exception);
548
549 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
550 {
551         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
552 }
553 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
554
555 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
556                                   unsigned long payload)
557 {
558         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
559 }
560
561 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
562                                     u32 error_code, unsigned long payload)
563 {
564         kvm_multiple_exception(vcpu, nr, true, error_code,
565                                true, payload, false);
566 }
567
568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
569 {
570         if (err)
571                 kvm_inject_gp(vcpu, 0);
572         else
573                 return kvm_skip_emulated_instruction(vcpu);
574
575         return 1;
576 }
577 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
578
579 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
580 {
581         ++vcpu->stat.pf_guest;
582         vcpu->arch.exception.nested_apf =
583                 is_guest_mode(vcpu) && fault->async_page_fault;
584         if (vcpu->arch.exception.nested_apf) {
585                 vcpu->arch.apf.nested_apf_token = fault->address;
586                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
587         } else {
588                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
589                                         fault->address);
590         }
591 }
592 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
593
594 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
595 {
596         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
597                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
598         else
599                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
600
601         return fault->nested_page_fault;
602 }
603
604 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
605 {
606         atomic_inc(&vcpu->arch.nmi_queued);
607         kvm_make_request(KVM_REQ_NMI, vcpu);
608 }
609 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
610
611 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
614 }
615 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
616
617 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
618 {
619         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
620 }
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
622
623 /*
624  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
625  * a #GP and return false.
626  */
627 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
628 {
629         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
630                 return true;
631         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
632         return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_cpl);
635
636 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
637 {
638         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
639                 return true;
640
641         kvm_queue_exception(vcpu, UD_VECTOR);
642         return false;
643 }
644 EXPORT_SYMBOL_GPL(kvm_require_dr);
645
646 /*
647  * This function will be used to read from the physical memory of the currently
648  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
649  * can read from guest physical or from the guest's guest physical memory.
650  */
651 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
652                             gfn_t ngfn, void *data, int offset, int len,
653                             u32 access)
654 {
655         struct x86_exception exception;
656         gfn_t real_gfn;
657         gpa_t ngpa;
658
659         ngpa     = gfn_to_gpa(ngfn);
660         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
661         if (real_gfn == UNMAPPED_GVA)
662                 return -EFAULT;
663
664         real_gfn = gpa_to_gfn(real_gfn);
665
666         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
667 }
668 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
669
670 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
671                                void *data, int offset, int len, u32 access)
672 {
673         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
674                                        data, offset, len, access);
675 }
676
677 /*
678  * Load the pae pdptrs.  Return true is they are all valid.
679  */
680 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
681 {
682         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
683         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
684         int i;
685         int ret;
686         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
687
688         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
689                                       offset * sizeof(u64), sizeof(pdpte),
690                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
691         if (ret < 0) {
692                 ret = 0;
693                 goto out;
694         }
695         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
696                 if ((pdpte[i] & PT_PRESENT_MASK) &&
697                     (pdpte[i] &
698                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
699                         ret = 0;
700                         goto out;
701                 }
702         }
703         ret = 1;
704
705         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
706         __set_bit(VCPU_EXREG_PDPTR,
707                   (unsigned long *)&vcpu->arch.regs_avail);
708         __set_bit(VCPU_EXREG_PDPTR,
709                   (unsigned long *)&vcpu->arch.regs_dirty);
710 out:
711
712         return ret;
713 }
714 EXPORT_SYMBOL_GPL(load_pdptrs);
715
716 bool pdptrs_changed(struct kvm_vcpu *vcpu)
717 {
718         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
719         bool changed = true;
720         int offset;
721         gfn_t gfn;
722         int r;
723
724         if (!is_pae_paging(vcpu))
725                 return false;
726
727         if (!test_bit(VCPU_EXREG_PDPTR,
728                       (unsigned long *)&vcpu->arch.regs_avail))
729                 return true;
730
731         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
732         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
733         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
734                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
735         if (r < 0)
736                 goto out;
737         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
738 out:
739
740         return changed;
741 }
742 EXPORT_SYMBOL_GPL(pdptrs_changed);
743
744 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
745 {
746         unsigned long old_cr0 = kvm_read_cr0(vcpu);
747         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
748
749         cr0 |= X86_CR0_ET;
750
751 #ifdef CONFIG_X86_64
752         if (cr0 & 0xffffffff00000000UL)
753                 return 1;
754 #endif
755
756         cr0 &= ~CR0_RESERVED_BITS;
757
758         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
759                 return 1;
760
761         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
762                 return 1;
763
764         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
765 #ifdef CONFIG_X86_64
766                 if ((vcpu->arch.efer & EFER_LME)) {
767                         int cs_db, cs_l;
768
769                         if (!is_pae(vcpu))
770                                 return 1;
771                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
772                         if (cs_l)
773                                 return 1;
774                 } else
775 #endif
776                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
777                                                  kvm_read_cr3(vcpu)))
778                         return 1;
779         }
780
781         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
782                 return 1;
783
784         kvm_x86_ops->set_cr0(vcpu, cr0);
785
786         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
787                 kvm_clear_async_pf_completion_queue(vcpu);
788                 kvm_async_pf_hash_reset(vcpu);
789         }
790
791         if ((cr0 ^ old_cr0) & update_bits)
792                 kvm_mmu_reset_context(vcpu);
793
794         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
795             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
796             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
797                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
798
799         return 0;
800 }
801 EXPORT_SYMBOL_GPL(kvm_set_cr0);
802
803 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
804 {
805         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
806 }
807 EXPORT_SYMBOL_GPL(kvm_lmsw);
808
809 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
810 {
811         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
812                         !vcpu->guest_xcr0_loaded) {
813                 /* kvm_set_xcr() also depends on this */
814                 if (vcpu->arch.xcr0 != host_xcr0)
815                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
816                 vcpu->guest_xcr0_loaded = 1;
817         }
818 }
819 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
820
821 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
822 {
823         if (vcpu->guest_xcr0_loaded) {
824                 if (vcpu->arch.xcr0 != host_xcr0)
825                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
826                 vcpu->guest_xcr0_loaded = 0;
827         }
828 }
829 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
830
831 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
832 {
833         u64 xcr0 = xcr;
834         u64 old_xcr0 = vcpu->arch.xcr0;
835         u64 valid_bits;
836
837         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
838         if (index != XCR_XFEATURE_ENABLED_MASK)
839                 return 1;
840         if (!(xcr0 & XFEATURE_MASK_FP))
841                 return 1;
842         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
843                 return 1;
844
845         /*
846          * Do not allow the guest to set bits that we do not support
847          * saving.  However, xcr0 bit 0 is always set, even if the
848          * emulated CPU does not support XSAVE (see fx_init).
849          */
850         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
851         if (xcr0 & ~valid_bits)
852                 return 1;
853
854         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
855             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
856                 return 1;
857
858         if (xcr0 & XFEATURE_MASK_AVX512) {
859                 if (!(xcr0 & XFEATURE_MASK_YMM))
860                         return 1;
861                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
862                         return 1;
863         }
864         vcpu->arch.xcr0 = xcr0;
865
866         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
867                 kvm_update_cpuid(vcpu);
868         return 0;
869 }
870
871 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
872 {
873         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
874             __kvm_set_xcr(vcpu, index, xcr)) {
875                 kvm_inject_gp(vcpu, 0);
876                 return 1;
877         }
878         return 0;
879 }
880 EXPORT_SYMBOL_GPL(kvm_set_xcr);
881
882 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
883 {
884         unsigned long old_cr4 = kvm_read_cr4(vcpu);
885         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
886                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
887
888         if (cr4 & CR4_RESERVED_BITS)
889                 return 1;
890
891         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
892                 return 1;
893
894         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
895                 return 1;
896
897         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
898                 return 1;
899
900         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
901                 return 1;
902
903         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
904                 return 1;
905
906         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
907                 return 1;
908
909         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
910                 return 1;
911
912         if (is_long_mode(vcpu)) {
913                 if (!(cr4 & X86_CR4_PAE))
914                         return 1;
915         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
916                    && ((cr4 ^ old_cr4) & pdptr_bits)
917                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
918                                    kvm_read_cr3(vcpu)))
919                 return 1;
920
921         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
922                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
923                         return 1;
924
925                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
926                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
927                         return 1;
928         }
929
930         if (kvm_x86_ops->set_cr4(vcpu, cr4))
931                 return 1;
932
933         if (((cr4 ^ old_cr4) & pdptr_bits) ||
934             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
935                 kvm_mmu_reset_context(vcpu);
936
937         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
938                 kvm_update_cpuid(vcpu);
939
940         return 0;
941 }
942 EXPORT_SYMBOL_GPL(kvm_set_cr4);
943
944 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
945 {
946         bool skip_tlb_flush = false;
947 #ifdef CONFIG_X86_64
948         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
949
950         if (pcid_enabled) {
951                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
952                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
953         }
954 #endif
955
956         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
957                 if (!skip_tlb_flush) {
958                         kvm_mmu_sync_roots(vcpu);
959                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
960                 }
961                 return 0;
962         }
963
964         if (is_long_mode(vcpu) &&
965             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
966                 return 1;
967         else if (is_pae_paging(vcpu) &&
968                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
969                 return 1;
970
971         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
972         vcpu->arch.cr3 = cr3;
973         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
974
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr3);
978
979 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
980 {
981         if (cr8 & CR8_RESERVED_BITS)
982                 return 1;
983         if (lapic_in_kernel(vcpu))
984                 kvm_lapic_set_tpr(vcpu, cr8);
985         else
986                 vcpu->arch.cr8 = cr8;
987         return 0;
988 }
989 EXPORT_SYMBOL_GPL(kvm_set_cr8);
990
991 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
992 {
993         if (lapic_in_kernel(vcpu))
994                 return kvm_lapic_get_cr8(vcpu);
995         else
996                 return vcpu->arch.cr8;
997 }
998 EXPORT_SYMBOL_GPL(kvm_get_cr8);
999
1000 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1001 {
1002         int i;
1003
1004         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1005                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1006                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1007                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1008         }
1009 }
1010
1011 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1012 {
1013         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1014                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1015 }
1016
1017 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1018 {
1019         unsigned long dr7;
1020
1021         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1022                 dr7 = vcpu->arch.guest_debug_dr7;
1023         else
1024                 dr7 = vcpu->arch.dr7;
1025         kvm_x86_ops->set_dr7(vcpu, dr7);
1026         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1027         if (dr7 & DR7_BP_EN_MASK)
1028                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1029 }
1030
1031 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1032 {
1033         u64 fixed = DR6_FIXED_1;
1034
1035         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1036                 fixed |= DR6_RTM;
1037         return fixed;
1038 }
1039
1040 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1041 {
1042         switch (dr) {
1043         case 0 ... 3:
1044                 vcpu->arch.db[dr] = val;
1045                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1046                         vcpu->arch.eff_db[dr] = val;
1047                 break;
1048         case 4:
1049                 /* fall through */
1050         case 6:
1051                 if (val & 0xffffffff00000000ULL)
1052                         return -1; /* #GP */
1053                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1054                 kvm_update_dr6(vcpu);
1055                 break;
1056         case 5:
1057                 /* fall through */
1058         default: /* 7 */
1059                 if (val & 0xffffffff00000000ULL)
1060                         return -1; /* #GP */
1061                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1062                 kvm_update_dr7(vcpu);
1063                 break;
1064         }
1065
1066         return 0;
1067 }
1068
1069 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1070 {
1071         if (__kvm_set_dr(vcpu, dr, val)) {
1072                 kvm_inject_gp(vcpu, 0);
1073                 return 1;
1074         }
1075         return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_set_dr);
1078
1079 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1080 {
1081         switch (dr) {
1082         case 0 ... 3:
1083                 *val = vcpu->arch.db[dr];
1084                 break;
1085         case 4:
1086                 /* fall through */
1087         case 6:
1088                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1089                         *val = vcpu->arch.dr6;
1090                 else
1091                         *val = kvm_x86_ops->get_dr6(vcpu);
1092                 break;
1093         case 5:
1094                 /* fall through */
1095         default: /* 7 */
1096                 *val = vcpu->arch.dr7;
1097                 break;
1098         }
1099         return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_get_dr);
1102
1103 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1104 {
1105         u32 ecx = kvm_rcx_read(vcpu);
1106         u64 data;
1107         int err;
1108
1109         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1110         if (err)
1111                 return err;
1112         kvm_rax_write(vcpu, (u32)data);
1113         kvm_rdx_write(vcpu, data >> 32);
1114         return err;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1117
1118 /*
1119  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1120  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1121  *
1122  * This list is modified at module load time to reflect the
1123  * capabilities of the host cpu. This capabilities test skips MSRs that are
1124  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1125  * may depend on host virtualization features rather than host cpu features.
1126  */
1127
1128 static u32 msrs_to_save[] = {
1129         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1130         MSR_STAR,
1131 #ifdef CONFIG_X86_64
1132         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1133 #endif
1134         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1135         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1136         MSR_IA32_SPEC_CTRL,
1137         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1138         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1139         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1140         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1141         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1142         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1143 };
1144
1145 static unsigned num_msrs_to_save;
1146
1147 static u32 emulated_msrs[] = {
1148         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1149         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1150         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1151         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1152         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1153         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1154         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1155         HV_X64_MSR_RESET,
1156         HV_X64_MSR_VP_INDEX,
1157         HV_X64_MSR_VP_RUNTIME,
1158         HV_X64_MSR_SCONTROL,
1159         HV_X64_MSR_STIMER0_CONFIG,
1160         HV_X64_MSR_VP_ASSIST_PAGE,
1161         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1162         HV_X64_MSR_TSC_EMULATION_STATUS,
1163
1164         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1165         MSR_KVM_PV_EOI_EN,
1166
1167         MSR_IA32_TSC_ADJUST,
1168         MSR_IA32_TSCDEADLINE,
1169         MSR_IA32_ARCH_CAPABILITIES,
1170         MSR_IA32_MISC_ENABLE,
1171         MSR_IA32_MCG_STATUS,
1172         MSR_IA32_MCG_CTL,
1173         MSR_IA32_MCG_EXT_CTL,
1174         MSR_IA32_SMBASE,
1175         MSR_SMI_COUNT,
1176         MSR_PLATFORM_INFO,
1177         MSR_MISC_FEATURES_ENABLES,
1178         MSR_AMD64_VIRT_SPEC_CTRL,
1179         MSR_IA32_POWER_CTL,
1180
1181         /*
1182          * The following list leaves out MSRs whose values are determined
1183          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1184          * We always support the "true" VMX control MSRs, even if the host
1185          * processor does not, so I am putting these registers here rather
1186          * than in msrs_to_save.
1187          */
1188         MSR_IA32_VMX_BASIC,
1189         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1190         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1191         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1192         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1193         MSR_IA32_VMX_MISC,
1194         MSR_IA32_VMX_CR0_FIXED0,
1195         MSR_IA32_VMX_CR4_FIXED0,
1196         MSR_IA32_VMX_VMCS_ENUM,
1197         MSR_IA32_VMX_PROCBASED_CTLS2,
1198         MSR_IA32_VMX_EPT_VPID_CAP,
1199         MSR_IA32_VMX_VMFUNC,
1200
1201         MSR_K7_HWCR,
1202         MSR_KVM_POLL_CONTROL,
1203 };
1204
1205 static unsigned num_emulated_msrs;
1206
1207 /*
1208  * List of msr numbers which are used to expose MSR-based features that
1209  * can be used by a hypervisor to validate requested CPU features.
1210  */
1211 static u32 msr_based_features[] = {
1212         MSR_IA32_VMX_BASIC,
1213         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1214         MSR_IA32_VMX_PINBASED_CTLS,
1215         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1216         MSR_IA32_VMX_PROCBASED_CTLS,
1217         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1218         MSR_IA32_VMX_EXIT_CTLS,
1219         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1220         MSR_IA32_VMX_ENTRY_CTLS,
1221         MSR_IA32_VMX_MISC,
1222         MSR_IA32_VMX_CR0_FIXED0,
1223         MSR_IA32_VMX_CR0_FIXED1,
1224         MSR_IA32_VMX_CR4_FIXED0,
1225         MSR_IA32_VMX_CR4_FIXED1,
1226         MSR_IA32_VMX_VMCS_ENUM,
1227         MSR_IA32_VMX_PROCBASED_CTLS2,
1228         MSR_IA32_VMX_EPT_VPID_CAP,
1229         MSR_IA32_VMX_VMFUNC,
1230
1231         MSR_F10H_DECFG,
1232         MSR_IA32_UCODE_REV,
1233         MSR_IA32_ARCH_CAPABILITIES,
1234 };
1235
1236 static unsigned int num_msr_based_features;
1237
1238 static u64 kvm_get_arch_capabilities(void)
1239 {
1240         u64 data = 0;
1241
1242         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1243                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1244
1245         /*
1246          * If we're doing cache flushes (either "always" or "cond")
1247          * we will do one whenever the guest does a vmlaunch/vmresume.
1248          * If an outer hypervisor is doing the cache flush for us
1249          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1250          * capability to the guest too, and if EPT is disabled we're not
1251          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1252          * require a nested hypervisor to do a flush of its own.
1253          */
1254         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1255                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1256
1257         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1258                 data |= ARCH_CAP_RDCL_NO;
1259         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1260                 data |= ARCH_CAP_SSB_NO;
1261         if (!boot_cpu_has_bug(X86_BUG_MDS))
1262                 data |= ARCH_CAP_MDS_NO;
1263
1264         return data;
1265 }
1266
1267 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1268 {
1269         switch (msr->index) {
1270         case MSR_IA32_ARCH_CAPABILITIES:
1271                 msr->data = kvm_get_arch_capabilities();
1272                 break;
1273         case MSR_IA32_UCODE_REV:
1274                 rdmsrl_safe(msr->index, &msr->data);
1275                 break;
1276         default:
1277                 if (kvm_x86_ops->get_msr_feature(msr))
1278                         return 1;
1279         }
1280         return 0;
1281 }
1282
1283 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1284 {
1285         struct kvm_msr_entry msr;
1286         int r;
1287
1288         msr.index = index;
1289         r = kvm_get_msr_feature(&msr);
1290         if (r)
1291                 return r;
1292
1293         *data = msr.data;
1294
1295         return 0;
1296 }
1297
1298 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1299 {
1300         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1301                 return false;
1302
1303         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1304                 return false;
1305
1306         if (efer & (EFER_LME | EFER_LMA) &&
1307             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1308                 return false;
1309
1310         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1311                 return false;
1312
1313         return true;
1314
1315 }
1316 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1317 {
1318         if (efer & efer_reserved_bits)
1319                 return false;
1320
1321         return __kvm_valid_efer(vcpu, efer);
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1324
1325 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1326 {
1327         u64 old_efer = vcpu->arch.efer;
1328         u64 efer = msr_info->data;
1329
1330         if (efer & efer_reserved_bits)
1331                 return 1;
1332
1333         if (!msr_info->host_initiated) {
1334                 if (!__kvm_valid_efer(vcpu, efer))
1335                         return 1;
1336
1337                 if (is_paging(vcpu) &&
1338                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1339                         return 1;
1340         }
1341
1342         efer &= ~EFER_LMA;
1343         efer |= vcpu->arch.efer & EFER_LMA;
1344
1345         kvm_x86_ops->set_efer(vcpu, efer);
1346
1347         /* Update reserved bits */
1348         if ((efer ^ old_efer) & EFER_NX)
1349                 kvm_mmu_reset_context(vcpu);
1350
1351         return 0;
1352 }
1353
1354 void kvm_enable_efer_bits(u64 mask)
1355 {
1356        efer_reserved_bits &= ~mask;
1357 }
1358 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1359
1360 /*
1361  * Writes msr value into into the appropriate "register".
1362  * Returns 0 on success, non-0 otherwise.
1363  * Assumes vcpu_load() was already called.
1364  */
1365 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1366 {
1367         switch (msr->index) {
1368         case MSR_FS_BASE:
1369         case MSR_GS_BASE:
1370         case MSR_KERNEL_GS_BASE:
1371         case MSR_CSTAR:
1372         case MSR_LSTAR:
1373                 if (is_noncanonical_address(msr->data, vcpu))
1374                         return 1;
1375                 break;
1376         case MSR_IA32_SYSENTER_EIP:
1377         case MSR_IA32_SYSENTER_ESP:
1378                 /*
1379                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1380                  * non-canonical address is written on Intel but not on
1381                  * AMD (which ignores the top 32-bits, because it does
1382                  * not implement 64-bit SYSENTER).
1383                  *
1384                  * 64-bit code should hence be able to write a non-canonical
1385                  * value on AMD.  Making the address canonical ensures that
1386                  * vmentry does not fail on Intel after writing a non-canonical
1387                  * value, and that something deterministic happens if the guest
1388                  * invokes 64-bit SYSENTER.
1389                  */
1390                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1391         }
1392         return kvm_x86_ops->set_msr(vcpu, msr);
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_set_msr);
1395
1396 /*
1397  * Adapt set_msr() to msr_io()'s calling convention
1398  */
1399 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1400 {
1401         struct msr_data msr;
1402         int r;
1403
1404         msr.index = index;
1405         msr.host_initiated = true;
1406         r = kvm_get_msr(vcpu, &msr);
1407         if (r)
1408                 return r;
1409
1410         *data = msr.data;
1411         return 0;
1412 }
1413
1414 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1415 {
1416         struct msr_data msr;
1417
1418         msr.data = *data;
1419         msr.index = index;
1420         msr.host_initiated = true;
1421         return kvm_set_msr(vcpu, &msr);
1422 }
1423
1424 #ifdef CONFIG_X86_64
1425 struct pvclock_gtod_data {
1426         seqcount_t      seq;
1427
1428         struct { /* extract of a clocksource struct */
1429                 int vclock_mode;
1430                 u64     cycle_last;
1431                 u64     mask;
1432                 u32     mult;
1433                 u32     shift;
1434         } clock;
1435
1436         u64             boot_ns;
1437         u64             nsec_base;
1438         u64             wall_time_sec;
1439 };
1440
1441 static struct pvclock_gtod_data pvclock_gtod_data;
1442
1443 static void update_pvclock_gtod(struct timekeeper *tk)
1444 {
1445         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1446         u64 boot_ns;
1447
1448         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1449
1450         write_seqcount_begin(&vdata->seq);
1451
1452         /* copy pvclock gtod data */
1453         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1454         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1455         vdata->clock.mask               = tk->tkr_mono.mask;
1456         vdata->clock.mult               = tk->tkr_mono.mult;
1457         vdata->clock.shift              = tk->tkr_mono.shift;
1458
1459         vdata->boot_ns                  = boot_ns;
1460         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1461
1462         vdata->wall_time_sec            = tk->xtime_sec;
1463
1464         write_seqcount_end(&vdata->seq);
1465 }
1466 #endif
1467
1468 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1469 {
1470         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1471         kvm_vcpu_kick(vcpu);
1472 }
1473
1474 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1475 {
1476         int version;
1477         int r;
1478         struct pvclock_wall_clock wc;
1479         struct timespec64 boot;
1480
1481         if (!wall_clock)
1482                 return;
1483
1484         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1485         if (r)
1486                 return;
1487
1488         if (version & 1)
1489                 ++version;  /* first time write, random junk */
1490
1491         ++version;
1492
1493         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1494                 return;
1495
1496         /*
1497          * The guest calculates current wall clock time by adding
1498          * system time (updated by kvm_guest_time_update below) to the
1499          * wall clock specified here.  guest system time equals host
1500          * system time for us, thus we must fill in host boot time here.
1501          */
1502         getboottime64(&boot);
1503
1504         if (kvm->arch.kvmclock_offset) {
1505                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1506                 boot = timespec64_sub(boot, ts);
1507         }
1508         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1509         wc.nsec = boot.tv_nsec;
1510         wc.version = version;
1511
1512         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1513
1514         version++;
1515         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1516 }
1517
1518 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1519 {
1520         do_shl32_div32(dividend, divisor);
1521         return dividend;
1522 }
1523
1524 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1525                                s8 *pshift, u32 *pmultiplier)
1526 {
1527         uint64_t scaled64;
1528         int32_t  shift = 0;
1529         uint64_t tps64;
1530         uint32_t tps32;
1531
1532         tps64 = base_hz;
1533         scaled64 = scaled_hz;
1534         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1535                 tps64 >>= 1;
1536                 shift--;
1537         }
1538
1539         tps32 = (uint32_t)tps64;
1540         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1541                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1542                         scaled64 >>= 1;
1543                 else
1544                         tps32 <<= 1;
1545                 shift++;
1546         }
1547
1548         *pshift = shift;
1549         *pmultiplier = div_frac(scaled64, tps32);
1550 }
1551
1552 #ifdef CONFIG_X86_64
1553 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1554 #endif
1555
1556 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1557 static unsigned long max_tsc_khz;
1558
1559 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1560 {
1561         u64 v = (u64)khz * (1000000 + ppm);
1562         do_div(v, 1000000);
1563         return v;
1564 }
1565
1566 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1567 {
1568         u64 ratio;
1569
1570         /* Guest TSC same frequency as host TSC? */
1571         if (!scale) {
1572                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1573                 return 0;
1574         }
1575
1576         /* TSC scaling supported? */
1577         if (!kvm_has_tsc_control) {
1578                 if (user_tsc_khz > tsc_khz) {
1579                         vcpu->arch.tsc_catchup = 1;
1580                         vcpu->arch.tsc_always_catchup = 1;
1581                         return 0;
1582                 } else {
1583                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1584                         return -1;
1585                 }
1586         }
1587
1588         /* TSC scaling required  - calculate ratio */
1589         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1590                                 user_tsc_khz, tsc_khz);
1591
1592         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1593                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1594                                     user_tsc_khz);
1595                 return -1;
1596         }
1597
1598         vcpu->arch.tsc_scaling_ratio = ratio;
1599         return 0;
1600 }
1601
1602 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1603 {
1604         u32 thresh_lo, thresh_hi;
1605         int use_scaling = 0;
1606
1607         /* tsc_khz can be zero if TSC calibration fails */
1608         if (user_tsc_khz == 0) {
1609                 /* set tsc_scaling_ratio to a safe value */
1610                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1611                 return -1;
1612         }
1613
1614         /* Compute a scale to convert nanoseconds in TSC cycles */
1615         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1616                            &vcpu->arch.virtual_tsc_shift,
1617                            &vcpu->arch.virtual_tsc_mult);
1618         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1619
1620         /*
1621          * Compute the variation in TSC rate which is acceptable
1622          * within the range of tolerance and decide if the
1623          * rate being applied is within that bounds of the hardware
1624          * rate.  If so, no scaling or compensation need be done.
1625          */
1626         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1627         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1628         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1629                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1630                 use_scaling = 1;
1631         }
1632         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1633 }
1634
1635 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1636 {
1637         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1638                                       vcpu->arch.virtual_tsc_mult,
1639                                       vcpu->arch.virtual_tsc_shift);
1640         tsc += vcpu->arch.this_tsc_write;
1641         return tsc;
1642 }
1643
1644 static inline int gtod_is_based_on_tsc(int mode)
1645 {
1646         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1647 }
1648
1649 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1650 {
1651 #ifdef CONFIG_X86_64
1652         bool vcpus_matched;
1653         struct kvm_arch *ka = &vcpu->kvm->arch;
1654         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1655
1656         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1657                          atomic_read(&vcpu->kvm->online_vcpus));
1658
1659         /*
1660          * Once the masterclock is enabled, always perform request in
1661          * order to update it.
1662          *
1663          * In order to enable masterclock, the host clocksource must be TSC
1664          * and the vcpus need to have matched TSCs.  When that happens,
1665          * perform request to enable masterclock.
1666          */
1667         if (ka->use_master_clock ||
1668             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1669                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1670
1671         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1672                             atomic_read(&vcpu->kvm->online_vcpus),
1673                             ka->use_master_clock, gtod->clock.vclock_mode);
1674 #endif
1675 }
1676
1677 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1678 {
1679         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1680         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1681 }
1682
1683 /*
1684  * Multiply tsc by a fixed point number represented by ratio.
1685  *
1686  * The most significant 64-N bits (mult) of ratio represent the
1687  * integral part of the fixed point number; the remaining N bits
1688  * (frac) represent the fractional part, ie. ratio represents a fixed
1689  * point number (mult + frac * 2^(-N)).
1690  *
1691  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1692  */
1693 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1694 {
1695         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1696 }
1697
1698 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1699 {
1700         u64 _tsc = tsc;
1701         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1702
1703         if (ratio != kvm_default_tsc_scaling_ratio)
1704                 _tsc = __scale_tsc(ratio, tsc);
1705
1706         return _tsc;
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1709
1710 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1711 {
1712         u64 tsc;
1713
1714         tsc = kvm_scale_tsc(vcpu, rdtsc());
1715
1716         return target_tsc - tsc;
1717 }
1718
1719 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1720 {
1721         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1722
1723         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1726
1727 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1728 {
1729         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1730 }
1731
1732 static inline bool kvm_check_tsc_unstable(void)
1733 {
1734 #ifdef CONFIG_X86_64
1735         /*
1736          * TSC is marked unstable when we're running on Hyper-V,
1737          * 'TSC page' clocksource is good.
1738          */
1739         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1740                 return false;
1741 #endif
1742         return check_tsc_unstable();
1743 }
1744
1745 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1746 {
1747         struct kvm *kvm = vcpu->kvm;
1748         u64 offset, ns, elapsed;
1749         unsigned long flags;
1750         bool matched;
1751         bool already_matched;
1752         u64 data = msr->data;
1753         bool synchronizing = false;
1754
1755         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1756         offset = kvm_compute_tsc_offset(vcpu, data);
1757         ns = ktime_get_boottime_ns();
1758         elapsed = ns - kvm->arch.last_tsc_nsec;
1759
1760         if (vcpu->arch.virtual_tsc_khz) {
1761                 if (data == 0 && msr->host_initiated) {
1762                         /*
1763                          * detection of vcpu initialization -- need to sync
1764                          * with other vCPUs. This particularly helps to keep
1765                          * kvm_clock stable after CPU hotplug
1766                          */
1767                         synchronizing = true;
1768                 } else {
1769                         u64 tsc_exp = kvm->arch.last_tsc_write +
1770                                                 nsec_to_cycles(vcpu, elapsed);
1771                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1772                         /*
1773                          * Special case: TSC write with a small delta (1 second)
1774                          * of virtual cycle time against real time is
1775                          * interpreted as an attempt to synchronize the CPU.
1776                          */
1777                         synchronizing = data < tsc_exp + tsc_hz &&
1778                                         data + tsc_hz > tsc_exp;
1779                 }
1780         }
1781
1782         /*
1783          * For a reliable TSC, we can match TSC offsets, and for an unstable
1784          * TSC, we add elapsed time in this computation.  We could let the
1785          * compensation code attempt to catch up if we fall behind, but
1786          * it's better to try to match offsets from the beginning.
1787          */
1788         if (synchronizing &&
1789             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1790                 if (!kvm_check_tsc_unstable()) {
1791                         offset = kvm->arch.cur_tsc_offset;
1792                 } else {
1793                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1794                         data += delta;
1795                         offset = kvm_compute_tsc_offset(vcpu, data);
1796                 }
1797                 matched = true;
1798                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1799         } else {
1800                 /*
1801                  * We split periods of matched TSC writes into generations.
1802                  * For each generation, we track the original measured
1803                  * nanosecond time, offset, and write, so if TSCs are in
1804                  * sync, we can match exact offset, and if not, we can match
1805                  * exact software computation in compute_guest_tsc()
1806                  *
1807                  * These values are tracked in kvm->arch.cur_xxx variables.
1808                  */
1809                 kvm->arch.cur_tsc_generation++;
1810                 kvm->arch.cur_tsc_nsec = ns;
1811                 kvm->arch.cur_tsc_write = data;
1812                 kvm->arch.cur_tsc_offset = offset;
1813                 matched = false;
1814         }
1815
1816         /*
1817          * We also track th most recent recorded KHZ, write and time to
1818          * allow the matching interval to be extended at each write.
1819          */
1820         kvm->arch.last_tsc_nsec = ns;
1821         kvm->arch.last_tsc_write = data;
1822         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1823
1824         vcpu->arch.last_guest_tsc = data;
1825
1826         /* Keep track of which generation this VCPU has synchronized to */
1827         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1828         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1829         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1830
1831         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1832                 update_ia32_tsc_adjust_msr(vcpu, offset);
1833
1834         kvm_vcpu_write_tsc_offset(vcpu, offset);
1835         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1836
1837         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1838         if (!matched) {
1839                 kvm->arch.nr_vcpus_matched_tsc = 0;
1840         } else if (!already_matched) {
1841                 kvm->arch.nr_vcpus_matched_tsc++;
1842         }
1843
1844         kvm_track_tsc_matching(vcpu);
1845         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1846 }
1847
1848 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1849
1850 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1851                                            s64 adjustment)
1852 {
1853         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1854         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1855 }
1856
1857 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1858 {
1859         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1860                 WARN_ON(adjustment < 0);
1861         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1862         adjust_tsc_offset_guest(vcpu, adjustment);
1863 }
1864
1865 #ifdef CONFIG_X86_64
1866
1867 static u64 read_tsc(void)
1868 {
1869         u64 ret = (u64)rdtsc_ordered();
1870         u64 last = pvclock_gtod_data.clock.cycle_last;
1871
1872         if (likely(ret >= last))
1873                 return ret;
1874
1875         /*
1876          * GCC likes to generate cmov here, but this branch is extremely
1877          * predictable (it's just a function of time and the likely is
1878          * very likely) and there's a data dependence, so force GCC
1879          * to generate a branch instead.  I don't barrier() because
1880          * we don't actually need a barrier, and if this function
1881          * ever gets inlined it will generate worse code.
1882          */
1883         asm volatile ("");
1884         return last;
1885 }
1886
1887 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1888 {
1889         long v;
1890         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1891         u64 tsc_pg_val;
1892
1893         switch (gtod->clock.vclock_mode) {
1894         case VCLOCK_HVCLOCK:
1895                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1896                                                   tsc_timestamp);
1897                 if (tsc_pg_val != U64_MAX) {
1898                         /* TSC page valid */
1899                         *mode = VCLOCK_HVCLOCK;
1900                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1901                                 gtod->clock.mask;
1902                 } else {
1903                         /* TSC page invalid */
1904                         *mode = VCLOCK_NONE;
1905                 }
1906                 break;
1907         case VCLOCK_TSC:
1908                 *mode = VCLOCK_TSC;
1909                 *tsc_timestamp = read_tsc();
1910                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1911                         gtod->clock.mask;
1912                 break;
1913         default:
1914                 *mode = VCLOCK_NONE;
1915         }
1916
1917         if (*mode == VCLOCK_NONE)
1918                 *tsc_timestamp = v = 0;
1919
1920         return v * gtod->clock.mult;
1921 }
1922
1923 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1924 {
1925         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1926         unsigned long seq;
1927         int mode;
1928         u64 ns;
1929
1930         do {
1931                 seq = read_seqcount_begin(&gtod->seq);
1932                 ns = gtod->nsec_base;
1933                 ns += vgettsc(tsc_timestamp, &mode);
1934                 ns >>= gtod->clock.shift;
1935                 ns += gtod->boot_ns;
1936         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1937         *t = ns;
1938
1939         return mode;
1940 }
1941
1942 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1943 {
1944         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1945         unsigned long seq;
1946         int mode;
1947         u64 ns;
1948
1949         do {
1950                 seq = read_seqcount_begin(&gtod->seq);
1951                 ts->tv_sec = gtod->wall_time_sec;
1952                 ns = gtod->nsec_base;
1953                 ns += vgettsc(tsc_timestamp, &mode);
1954                 ns >>= gtod->clock.shift;
1955         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1956
1957         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1958         ts->tv_nsec = ns;
1959
1960         return mode;
1961 }
1962
1963 /* returns true if host is using TSC based clocksource */
1964 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1965 {
1966         /* checked again under seqlock below */
1967         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1968                 return false;
1969
1970         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1971                                                       tsc_timestamp));
1972 }
1973
1974 /* returns true if host is using TSC based clocksource */
1975 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1976                                            u64 *tsc_timestamp)
1977 {
1978         /* checked again under seqlock below */
1979         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1980                 return false;
1981
1982         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1983 }
1984 #endif
1985
1986 /*
1987  *
1988  * Assuming a stable TSC across physical CPUS, and a stable TSC
1989  * across virtual CPUs, the following condition is possible.
1990  * Each numbered line represents an event visible to both
1991  * CPUs at the next numbered event.
1992  *
1993  * "timespecX" represents host monotonic time. "tscX" represents
1994  * RDTSC value.
1995  *
1996  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1997  *
1998  * 1.  read timespec0,tsc0
1999  * 2.                                   | timespec1 = timespec0 + N
2000  *                                      | tsc1 = tsc0 + M
2001  * 3. transition to guest               | transition to guest
2002  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2003  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2004  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2005  *
2006  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2007  *
2008  *      - ret0 < ret1
2009  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2010  *              ...
2011  *      - 0 < N - M => M < N
2012  *
2013  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2014  * always the case (the difference between two distinct xtime instances
2015  * might be smaller then the difference between corresponding TSC reads,
2016  * when updating guest vcpus pvclock areas).
2017  *
2018  * To avoid that problem, do not allow visibility of distinct
2019  * system_timestamp/tsc_timestamp values simultaneously: use a master
2020  * copy of host monotonic time values. Update that master copy
2021  * in lockstep.
2022  *
2023  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2024  *
2025  */
2026
2027 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2028 {
2029 #ifdef CONFIG_X86_64
2030         struct kvm_arch *ka = &kvm->arch;
2031         int vclock_mode;
2032         bool host_tsc_clocksource, vcpus_matched;
2033
2034         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2035                         atomic_read(&kvm->online_vcpus));
2036
2037         /*
2038          * If the host uses TSC clock, then passthrough TSC as stable
2039          * to the guest.
2040          */
2041         host_tsc_clocksource = kvm_get_time_and_clockread(
2042                                         &ka->master_kernel_ns,
2043                                         &ka->master_cycle_now);
2044
2045         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2046                                 && !ka->backwards_tsc_observed
2047                                 && !ka->boot_vcpu_runs_old_kvmclock;
2048
2049         if (ka->use_master_clock)
2050                 atomic_set(&kvm_guest_has_master_clock, 1);
2051
2052         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2053         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2054                                         vcpus_matched);
2055 #endif
2056 }
2057
2058 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2059 {
2060         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2061 }
2062
2063 static void kvm_gen_update_masterclock(struct kvm *kvm)
2064 {
2065 #ifdef CONFIG_X86_64
2066         int i;
2067         struct kvm_vcpu *vcpu;
2068         struct kvm_arch *ka = &kvm->arch;
2069
2070         spin_lock(&ka->pvclock_gtod_sync_lock);
2071         kvm_make_mclock_inprogress_request(kvm);
2072         /* no guest entries from this point */
2073         pvclock_update_vm_gtod_copy(kvm);
2074
2075         kvm_for_each_vcpu(i, vcpu, kvm)
2076                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2077
2078         /* guest entries allowed */
2079         kvm_for_each_vcpu(i, vcpu, kvm)
2080                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2081
2082         spin_unlock(&ka->pvclock_gtod_sync_lock);
2083 #endif
2084 }
2085
2086 u64 get_kvmclock_ns(struct kvm *kvm)
2087 {
2088         struct kvm_arch *ka = &kvm->arch;
2089         struct pvclock_vcpu_time_info hv_clock;
2090         u64 ret;
2091
2092         spin_lock(&ka->pvclock_gtod_sync_lock);
2093         if (!ka->use_master_clock) {
2094                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2095                 return ktime_get_boottime_ns() + ka->kvmclock_offset;
2096         }
2097
2098         hv_clock.tsc_timestamp = ka->master_cycle_now;
2099         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2100         spin_unlock(&ka->pvclock_gtod_sync_lock);
2101
2102         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2103         get_cpu();
2104
2105         if (__this_cpu_read(cpu_tsc_khz)) {
2106                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2107                                    &hv_clock.tsc_shift,
2108                                    &hv_clock.tsc_to_system_mul);
2109                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2110         } else
2111                 ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2112
2113         put_cpu();
2114
2115         return ret;
2116 }
2117
2118 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2119 {
2120         struct kvm_vcpu_arch *vcpu = &v->arch;
2121         struct pvclock_vcpu_time_info guest_hv_clock;
2122
2123         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2124                 &guest_hv_clock, sizeof(guest_hv_clock))))
2125                 return;
2126
2127         /* This VCPU is paused, but it's legal for a guest to read another
2128          * VCPU's kvmclock, so we really have to follow the specification where
2129          * it says that version is odd if data is being modified, and even after
2130          * it is consistent.
2131          *
2132          * Version field updates must be kept separate.  This is because
2133          * kvm_write_guest_cached might use a "rep movs" instruction, and
2134          * writes within a string instruction are weakly ordered.  So there
2135          * are three writes overall.
2136          *
2137          * As a small optimization, only write the version field in the first
2138          * and third write.  The vcpu->pv_time cache is still valid, because the
2139          * version field is the first in the struct.
2140          */
2141         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2142
2143         if (guest_hv_clock.version & 1)
2144                 ++guest_hv_clock.version;  /* first time write, random junk */
2145
2146         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2147         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2148                                 &vcpu->hv_clock,
2149                                 sizeof(vcpu->hv_clock.version));
2150
2151         smp_wmb();
2152
2153         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2154         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2155
2156         if (vcpu->pvclock_set_guest_stopped_request) {
2157                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2158                 vcpu->pvclock_set_guest_stopped_request = false;
2159         }
2160
2161         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2162
2163         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2164                                 &vcpu->hv_clock,
2165                                 sizeof(vcpu->hv_clock));
2166
2167         smp_wmb();
2168
2169         vcpu->hv_clock.version++;
2170         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2171                                 &vcpu->hv_clock,
2172                                 sizeof(vcpu->hv_clock.version));
2173 }
2174
2175 static int kvm_guest_time_update(struct kvm_vcpu *v)
2176 {
2177         unsigned long flags, tgt_tsc_khz;
2178         struct kvm_vcpu_arch *vcpu = &v->arch;
2179         struct kvm_arch *ka = &v->kvm->arch;
2180         s64 kernel_ns;
2181         u64 tsc_timestamp, host_tsc;
2182         u8 pvclock_flags;
2183         bool use_master_clock;
2184
2185         kernel_ns = 0;
2186         host_tsc = 0;
2187
2188         /*
2189          * If the host uses TSC clock, then passthrough TSC as stable
2190          * to the guest.
2191          */
2192         spin_lock(&ka->pvclock_gtod_sync_lock);
2193         use_master_clock = ka->use_master_clock;
2194         if (use_master_clock) {
2195                 host_tsc = ka->master_cycle_now;
2196                 kernel_ns = ka->master_kernel_ns;
2197         }
2198         spin_unlock(&ka->pvclock_gtod_sync_lock);
2199
2200         /* Keep irq disabled to prevent changes to the clock */
2201         local_irq_save(flags);
2202         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2203         if (unlikely(tgt_tsc_khz == 0)) {
2204                 local_irq_restore(flags);
2205                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2206                 return 1;
2207         }
2208         if (!use_master_clock) {
2209                 host_tsc = rdtsc();
2210                 kernel_ns = ktime_get_boottime_ns();
2211         }
2212
2213         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2214
2215         /*
2216          * We may have to catch up the TSC to match elapsed wall clock
2217          * time for two reasons, even if kvmclock is used.
2218          *   1) CPU could have been running below the maximum TSC rate
2219          *   2) Broken TSC compensation resets the base at each VCPU
2220          *      entry to avoid unknown leaps of TSC even when running
2221          *      again on the same CPU.  This may cause apparent elapsed
2222          *      time to disappear, and the guest to stand still or run
2223          *      very slowly.
2224          */
2225         if (vcpu->tsc_catchup) {
2226                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2227                 if (tsc > tsc_timestamp) {
2228                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2229                         tsc_timestamp = tsc;
2230                 }
2231         }
2232
2233         local_irq_restore(flags);
2234
2235         /* With all the info we got, fill in the values */
2236
2237         if (kvm_has_tsc_control)
2238                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2239
2240         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2241                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2242                                    &vcpu->hv_clock.tsc_shift,
2243                                    &vcpu->hv_clock.tsc_to_system_mul);
2244                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2245         }
2246
2247         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2248         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2249         vcpu->last_guest_tsc = tsc_timestamp;
2250
2251         /* If the host uses TSC clocksource, then it is stable */
2252         pvclock_flags = 0;
2253         if (use_master_clock)
2254                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2255
2256         vcpu->hv_clock.flags = pvclock_flags;
2257
2258         if (vcpu->pv_time_enabled)
2259                 kvm_setup_pvclock_page(v);
2260         if (v == kvm_get_vcpu(v->kvm, 0))
2261                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2262         return 0;
2263 }
2264
2265 /*
2266  * kvmclock updates which are isolated to a given vcpu, such as
2267  * vcpu->cpu migration, should not allow system_timestamp from
2268  * the rest of the vcpus to remain static. Otherwise ntp frequency
2269  * correction applies to one vcpu's system_timestamp but not
2270  * the others.
2271  *
2272  * So in those cases, request a kvmclock update for all vcpus.
2273  * We need to rate-limit these requests though, as they can
2274  * considerably slow guests that have a large number of vcpus.
2275  * The time for a remote vcpu to update its kvmclock is bound
2276  * by the delay we use to rate-limit the updates.
2277  */
2278
2279 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2280
2281 static void kvmclock_update_fn(struct work_struct *work)
2282 {
2283         int i;
2284         struct delayed_work *dwork = to_delayed_work(work);
2285         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2286                                            kvmclock_update_work);
2287         struct kvm *kvm = container_of(ka, struct kvm, arch);
2288         struct kvm_vcpu *vcpu;
2289
2290         kvm_for_each_vcpu(i, vcpu, kvm) {
2291                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2292                 kvm_vcpu_kick(vcpu);
2293         }
2294 }
2295
2296 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2297 {
2298         struct kvm *kvm = v->kvm;
2299
2300         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2301         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2302                                         KVMCLOCK_UPDATE_DELAY);
2303 }
2304
2305 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2306
2307 static void kvmclock_sync_fn(struct work_struct *work)
2308 {
2309         struct delayed_work *dwork = to_delayed_work(work);
2310         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2311                                            kvmclock_sync_work);
2312         struct kvm *kvm = container_of(ka, struct kvm, arch);
2313
2314         if (!kvmclock_periodic_sync)
2315                 return;
2316
2317         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2318         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2319                                         KVMCLOCK_SYNC_PERIOD);
2320 }
2321
2322 /*
2323  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2324  */
2325 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2326 {
2327         /* McStatusWrEn enabled? */
2328         if (guest_cpuid_is_amd(vcpu))
2329                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2330
2331         return false;
2332 }
2333
2334 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2335 {
2336         u64 mcg_cap = vcpu->arch.mcg_cap;
2337         unsigned bank_num = mcg_cap & 0xff;
2338         u32 msr = msr_info->index;
2339         u64 data = msr_info->data;
2340
2341         switch (msr) {
2342         case MSR_IA32_MCG_STATUS:
2343                 vcpu->arch.mcg_status = data;
2344                 break;
2345         case MSR_IA32_MCG_CTL:
2346                 if (!(mcg_cap & MCG_CTL_P) &&
2347                     (data || !msr_info->host_initiated))
2348                         return 1;
2349                 if (data != 0 && data != ~(u64)0)
2350                         return 1;
2351                 vcpu->arch.mcg_ctl = data;
2352                 break;
2353         default:
2354                 if (msr >= MSR_IA32_MC0_CTL &&
2355                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2356                         u32 offset = msr - MSR_IA32_MC0_CTL;
2357                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2358                          * some Linux kernels though clear bit 10 in bank 4 to
2359                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2360                          * this to avoid an uncatched #GP in the guest
2361                          */
2362                         if ((offset & 0x3) == 0 &&
2363                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2364                                 return -1;
2365
2366                         /* MCi_STATUS */
2367                         if (!msr_info->host_initiated &&
2368                             (offset & 0x3) == 1 && data != 0) {
2369                                 if (!can_set_mci_status(vcpu))
2370                                         return -1;
2371                         }
2372
2373                         vcpu->arch.mce_banks[offset] = data;
2374                         break;
2375                 }
2376                 return 1;
2377         }
2378         return 0;
2379 }
2380
2381 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2382 {
2383         struct kvm *kvm = vcpu->kvm;
2384         int lm = is_long_mode(vcpu);
2385         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2386                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2387         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2388                 : kvm->arch.xen_hvm_config.blob_size_32;
2389         u32 page_num = data & ~PAGE_MASK;
2390         u64 page_addr = data & PAGE_MASK;
2391         u8 *page;
2392         int r;
2393
2394         r = -E2BIG;
2395         if (page_num >= blob_size)
2396                 goto out;
2397         r = -ENOMEM;
2398         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2399         if (IS_ERR(page)) {
2400                 r = PTR_ERR(page);
2401                 goto out;
2402         }
2403         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2404                 goto out_free;
2405         r = 0;
2406 out_free:
2407         kfree(page);
2408 out:
2409         return r;
2410 }
2411
2412 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2413 {
2414         gpa_t gpa = data & ~0x3f;
2415
2416         /* Bits 3:5 are reserved, Should be zero */
2417         if (data & 0x38)
2418                 return 1;
2419
2420         vcpu->arch.apf.msr_val = data;
2421
2422         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2423                 kvm_clear_async_pf_completion_queue(vcpu);
2424                 kvm_async_pf_hash_reset(vcpu);
2425                 return 0;
2426         }
2427
2428         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2429                                         sizeof(u32)))
2430                 return 1;
2431
2432         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2433         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2434         kvm_async_pf_wakeup_all(vcpu);
2435         return 0;
2436 }
2437
2438 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2439 {
2440         vcpu->arch.pv_time_enabled = false;
2441 }
2442
2443 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2444 {
2445         ++vcpu->stat.tlb_flush;
2446         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2447 }
2448
2449 static void record_steal_time(struct kvm_vcpu *vcpu)
2450 {
2451         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2452                 return;
2453
2454         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2455                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2456                 return;
2457
2458         /*
2459          * Doing a TLB flush here, on the guest's behalf, can avoid
2460          * expensive IPIs.
2461          */
2462         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2463                 kvm_vcpu_flush_tlb(vcpu, false);
2464
2465         if (vcpu->arch.st.steal.version & 1)
2466                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2467
2468         vcpu->arch.st.steal.version += 1;
2469
2470         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2471                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2472
2473         smp_wmb();
2474
2475         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2476                 vcpu->arch.st.last_steal;
2477         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2478
2479         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2480                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2481
2482         smp_wmb();
2483
2484         vcpu->arch.st.steal.version += 1;
2485
2486         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2487                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2488 }
2489
2490 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2491 {
2492         bool pr = false;
2493         u32 msr = msr_info->index;
2494         u64 data = msr_info->data;
2495
2496         switch (msr) {
2497         case MSR_AMD64_NB_CFG:
2498         case MSR_IA32_UCODE_WRITE:
2499         case MSR_VM_HSAVE_PA:
2500         case MSR_AMD64_PATCH_LOADER:
2501         case MSR_AMD64_BU_CFG2:
2502         case MSR_AMD64_DC_CFG:
2503         case MSR_F15H_EX_CFG:
2504                 break;
2505
2506         case MSR_IA32_UCODE_REV:
2507                 if (msr_info->host_initiated)
2508                         vcpu->arch.microcode_version = data;
2509                 break;
2510         case MSR_IA32_ARCH_CAPABILITIES:
2511                 if (!msr_info->host_initiated)
2512                         return 1;
2513                 vcpu->arch.arch_capabilities = data;
2514                 break;
2515         case MSR_EFER:
2516                 return set_efer(vcpu, msr_info);
2517         case MSR_K7_HWCR:
2518                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2519                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2520                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2521
2522                 /* Handle McStatusWrEn */
2523                 if (data == BIT_ULL(18)) {
2524                         vcpu->arch.msr_hwcr = data;
2525                 } else if (data != 0) {
2526                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2527                                     data);
2528                         return 1;
2529                 }
2530                 break;
2531         case MSR_FAM10H_MMIO_CONF_BASE:
2532                 if (data != 0) {
2533                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2534                                     "0x%llx\n", data);
2535                         return 1;
2536                 }
2537                 break;
2538         case MSR_IA32_DEBUGCTLMSR:
2539                 if (!data) {
2540                         /* We support the non-activated case already */
2541                         break;
2542                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2543                         /* Values other than LBR and BTF are vendor-specific,
2544                            thus reserved and should throw a #GP */
2545                         return 1;
2546                 }
2547                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2548                             __func__, data);
2549                 break;
2550         case 0x200 ... 0x2ff:
2551                 return kvm_mtrr_set_msr(vcpu, msr, data);
2552         case MSR_IA32_APICBASE:
2553                 return kvm_set_apic_base(vcpu, msr_info);
2554         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2555                 return kvm_x2apic_msr_write(vcpu, msr, data);
2556         case MSR_IA32_TSCDEADLINE:
2557                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2558                 break;
2559         case MSR_IA32_TSC_ADJUST:
2560                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2561                         if (!msr_info->host_initiated) {
2562                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2563                                 adjust_tsc_offset_guest(vcpu, adj);
2564                         }
2565                         vcpu->arch.ia32_tsc_adjust_msr = data;
2566                 }
2567                 break;
2568         case MSR_IA32_MISC_ENABLE:
2569                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2570                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2571                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2572                                 return 1;
2573                         vcpu->arch.ia32_misc_enable_msr = data;
2574                         kvm_update_cpuid(vcpu);
2575                 } else {
2576                         vcpu->arch.ia32_misc_enable_msr = data;
2577                 }
2578                 break;
2579         case MSR_IA32_SMBASE:
2580                 if (!msr_info->host_initiated)
2581                         return 1;
2582                 vcpu->arch.smbase = data;
2583                 break;
2584         case MSR_IA32_POWER_CTL:
2585                 vcpu->arch.msr_ia32_power_ctl = data;
2586                 break;
2587         case MSR_IA32_TSC:
2588                 kvm_write_tsc(vcpu, msr_info);
2589                 break;
2590         case MSR_SMI_COUNT:
2591                 if (!msr_info->host_initiated)
2592                         return 1;
2593                 vcpu->arch.smi_count = data;
2594                 break;
2595         case MSR_KVM_WALL_CLOCK_NEW:
2596         case MSR_KVM_WALL_CLOCK:
2597                 vcpu->kvm->arch.wall_clock = data;
2598                 kvm_write_wall_clock(vcpu->kvm, data);
2599                 break;
2600         case MSR_KVM_SYSTEM_TIME_NEW:
2601         case MSR_KVM_SYSTEM_TIME: {
2602                 struct kvm_arch *ka = &vcpu->kvm->arch;
2603
2604                 kvmclock_reset(vcpu);
2605
2606                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2607                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2608
2609                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2610                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2611
2612                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2613                 }
2614
2615                 vcpu->arch.time = data;
2616                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2617
2618                 /* we verify if the enable bit is set... */
2619                 if (!(data & 1))
2620                         break;
2621
2622                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2623                      &vcpu->arch.pv_time, data & ~1ULL,
2624                      sizeof(struct pvclock_vcpu_time_info)))
2625                         vcpu->arch.pv_time_enabled = false;
2626                 else
2627                         vcpu->arch.pv_time_enabled = true;
2628
2629                 break;
2630         }
2631         case MSR_KVM_ASYNC_PF_EN:
2632                 if (kvm_pv_enable_async_pf(vcpu, data))
2633                         return 1;
2634                 break;
2635         case MSR_KVM_STEAL_TIME:
2636
2637                 if (unlikely(!sched_info_on()))
2638                         return 1;
2639
2640                 if (data & KVM_STEAL_RESERVED_MASK)
2641                         return 1;
2642
2643                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2644                                                 data & KVM_STEAL_VALID_BITS,
2645                                                 sizeof(struct kvm_steal_time)))
2646                         return 1;
2647
2648                 vcpu->arch.st.msr_val = data;
2649
2650                 if (!(data & KVM_MSR_ENABLED))
2651                         break;
2652
2653                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2654
2655                 break;
2656         case MSR_KVM_PV_EOI_EN:
2657                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2658                         return 1;
2659                 break;
2660
2661         case MSR_KVM_POLL_CONTROL:
2662                 /* only enable bit supported */
2663                 if (data & (-1ULL << 1))
2664                         return 1;
2665
2666                 vcpu->arch.msr_kvm_poll_control = data;
2667                 break;
2668
2669         case MSR_IA32_MCG_CTL:
2670         case MSR_IA32_MCG_STATUS:
2671         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2672                 return set_msr_mce(vcpu, msr_info);
2673
2674         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2675         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2676                 pr = true; /* fall through */
2677         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2678         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2679                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2680                         return kvm_pmu_set_msr(vcpu, msr_info);
2681
2682                 if (pr || data != 0)
2683                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2684                                     "0x%x data 0x%llx\n", msr, data);
2685                 break;
2686         case MSR_K7_CLK_CTL:
2687                 /*
2688                  * Ignore all writes to this no longer documented MSR.
2689                  * Writes are only relevant for old K7 processors,
2690                  * all pre-dating SVM, but a recommended workaround from
2691                  * AMD for these chips. It is possible to specify the
2692                  * affected processor models on the command line, hence
2693                  * the need to ignore the workaround.
2694                  */
2695                 break;
2696         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2697         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2698         case HV_X64_MSR_CRASH_CTL:
2699         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2700         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2701         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2702         case HV_X64_MSR_TSC_EMULATION_STATUS:
2703                 return kvm_hv_set_msr_common(vcpu, msr, data,
2704                                              msr_info->host_initiated);
2705         case MSR_IA32_BBL_CR_CTL3:
2706                 /* Drop writes to this legacy MSR -- see rdmsr
2707                  * counterpart for further detail.
2708                  */
2709                 if (report_ignored_msrs)
2710                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2711                                 msr, data);
2712                 break;
2713         case MSR_AMD64_OSVW_ID_LENGTH:
2714                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2715                         return 1;
2716                 vcpu->arch.osvw.length = data;
2717                 break;
2718         case MSR_AMD64_OSVW_STATUS:
2719                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2720                         return 1;
2721                 vcpu->arch.osvw.status = data;
2722                 break;
2723         case MSR_PLATFORM_INFO:
2724                 if (!msr_info->host_initiated ||
2725                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2726                      cpuid_fault_enabled(vcpu)))
2727                         return 1;
2728                 vcpu->arch.msr_platform_info = data;
2729                 break;
2730         case MSR_MISC_FEATURES_ENABLES:
2731                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2732                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2733                      !supports_cpuid_fault(vcpu)))
2734                         return 1;
2735                 vcpu->arch.msr_misc_features_enables = data;
2736                 break;
2737         default:
2738                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2739                         return xen_hvm_config(vcpu, data);
2740                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2741                         return kvm_pmu_set_msr(vcpu, msr_info);
2742                 if (!ignore_msrs) {
2743                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2744                                     msr, data);
2745                         return 1;
2746                 } else {
2747                         if (report_ignored_msrs)
2748                                 vcpu_unimpl(vcpu,
2749                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2750                                         msr, data);
2751                         break;
2752                 }
2753         }
2754         return 0;
2755 }
2756 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2757
2758
2759 /*
2760  * Reads an msr value (of 'msr_index') into 'pdata'.
2761  * Returns 0 on success, non-0 otherwise.
2762  * Assumes vcpu_load() was already called.
2763  */
2764 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2765 {
2766         return kvm_x86_ops->get_msr(vcpu, msr);
2767 }
2768 EXPORT_SYMBOL_GPL(kvm_get_msr);
2769
2770 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2771 {
2772         u64 data;
2773         u64 mcg_cap = vcpu->arch.mcg_cap;
2774         unsigned bank_num = mcg_cap & 0xff;
2775
2776         switch (msr) {
2777         case MSR_IA32_P5_MC_ADDR:
2778         case MSR_IA32_P5_MC_TYPE:
2779                 data = 0;
2780                 break;
2781         case MSR_IA32_MCG_CAP:
2782                 data = vcpu->arch.mcg_cap;
2783                 break;
2784         case MSR_IA32_MCG_CTL:
2785                 if (!(mcg_cap & MCG_CTL_P) && !host)
2786                         return 1;
2787                 data = vcpu->arch.mcg_ctl;
2788                 break;
2789         case MSR_IA32_MCG_STATUS:
2790                 data = vcpu->arch.mcg_status;
2791                 break;
2792         default:
2793                 if (msr >= MSR_IA32_MC0_CTL &&
2794                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2795                         u32 offset = msr - MSR_IA32_MC0_CTL;
2796                         data = vcpu->arch.mce_banks[offset];
2797                         break;
2798                 }
2799                 return 1;
2800         }
2801         *pdata = data;
2802         return 0;
2803 }
2804
2805 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2806 {
2807         switch (msr_info->index) {
2808         case MSR_IA32_PLATFORM_ID:
2809         case MSR_IA32_EBL_CR_POWERON:
2810         case MSR_IA32_DEBUGCTLMSR:
2811         case MSR_IA32_LASTBRANCHFROMIP:
2812         case MSR_IA32_LASTBRANCHTOIP:
2813         case MSR_IA32_LASTINTFROMIP:
2814         case MSR_IA32_LASTINTTOIP:
2815         case MSR_K8_SYSCFG:
2816         case MSR_K8_TSEG_ADDR:
2817         case MSR_K8_TSEG_MASK:
2818         case MSR_VM_HSAVE_PA:
2819         case MSR_K8_INT_PENDING_MSG:
2820         case MSR_AMD64_NB_CFG:
2821         case MSR_FAM10H_MMIO_CONF_BASE:
2822         case MSR_AMD64_BU_CFG2:
2823         case MSR_IA32_PERF_CTL:
2824         case MSR_AMD64_DC_CFG:
2825         case MSR_F15H_EX_CFG:
2826                 msr_info->data = 0;
2827                 break;
2828         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2829         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2830         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2831         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2832         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2833                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2834                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2835                 msr_info->data = 0;
2836                 break;
2837         case MSR_IA32_UCODE_REV:
2838                 msr_info->data = vcpu->arch.microcode_version;
2839                 break;
2840         case MSR_IA32_ARCH_CAPABILITIES:
2841                 if (!msr_info->host_initiated &&
2842                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2843                         return 1;
2844                 msr_info->data = vcpu->arch.arch_capabilities;
2845                 break;
2846         case MSR_IA32_POWER_CTL:
2847                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2848                 break;
2849         case MSR_IA32_TSC:
2850                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2851                 break;
2852         case MSR_MTRRcap:
2853         case 0x200 ... 0x2ff:
2854                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2855         case 0xcd: /* fsb frequency */
2856                 msr_info->data = 3;
2857                 break;
2858                 /*
2859                  * MSR_EBC_FREQUENCY_ID
2860                  * Conservative value valid for even the basic CPU models.
2861                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2862                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2863                  * and 266MHz for model 3, or 4. Set Core Clock
2864                  * Frequency to System Bus Frequency Ratio to 1 (bits
2865                  * 31:24) even though these are only valid for CPU
2866                  * models > 2, however guests may end up dividing or
2867                  * multiplying by zero otherwise.
2868                  */
2869         case MSR_EBC_FREQUENCY_ID:
2870                 msr_info->data = 1 << 24;
2871                 break;
2872         case MSR_IA32_APICBASE:
2873                 msr_info->data = kvm_get_apic_base(vcpu);
2874                 break;
2875         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2876                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2877                 break;
2878         case MSR_IA32_TSCDEADLINE:
2879                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2880                 break;
2881         case MSR_IA32_TSC_ADJUST:
2882                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2883                 break;
2884         case MSR_IA32_MISC_ENABLE:
2885                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2886                 break;
2887         case MSR_IA32_SMBASE:
2888                 if (!msr_info->host_initiated)
2889                         return 1;
2890                 msr_info->data = vcpu->arch.smbase;
2891                 break;
2892         case MSR_SMI_COUNT:
2893                 msr_info->data = vcpu->arch.smi_count;
2894                 break;
2895         case MSR_IA32_PERF_STATUS:
2896                 /* TSC increment by tick */
2897                 msr_info->data = 1000ULL;
2898                 /* CPU multiplier */
2899                 msr_info->data |= (((uint64_t)4ULL) << 40);
2900                 break;
2901         case MSR_EFER:
2902                 msr_info->data = vcpu->arch.efer;
2903                 break;
2904         case MSR_KVM_WALL_CLOCK:
2905         case MSR_KVM_WALL_CLOCK_NEW:
2906                 msr_info->data = vcpu->kvm->arch.wall_clock;
2907                 break;
2908         case MSR_KVM_SYSTEM_TIME:
2909         case MSR_KVM_SYSTEM_TIME_NEW:
2910                 msr_info->data = vcpu->arch.time;
2911                 break;
2912         case MSR_KVM_ASYNC_PF_EN:
2913                 msr_info->data = vcpu->arch.apf.msr_val;
2914                 break;
2915         case MSR_KVM_STEAL_TIME:
2916                 msr_info->data = vcpu->arch.st.msr_val;
2917                 break;
2918         case MSR_KVM_PV_EOI_EN:
2919                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2920                 break;
2921         case MSR_KVM_POLL_CONTROL:
2922                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
2923                 break;
2924         case MSR_IA32_P5_MC_ADDR:
2925         case MSR_IA32_P5_MC_TYPE:
2926         case MSR_IA32_MCG_CAP:
2927         case MSR_IA32_MCG_CTL:
2928         case MSR_IA32_MCG_STATUS:
2929         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2930                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2931                                    msr_info->host_initiated);
2932         case MSR_K7_CLK_CTL:
2933                 /*
2934                  * Provide expected ramp-up count for K7. All other
2935                  * are set to zero, indicating minimum divisors for
2936                  * every field.
2937                  *
2938                  * This prevents guest kernels on AMD host with CPU
2939                  * type 6, model 8 and higher from exploding due to
2940                  * the rdmsr failing.
2941                  */
2942                 msr_info->data = 0x20000000;
2943                 break;
2944         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2945         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2946         case HV_X64_MSR_CRASH_CTL:
2947         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2948         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2949         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2950         case HV_X64_MSR_TSC_EMULATION_STATUS:
2951                 return kvm_hv_get_msr_common(vcpu,
2952                                              msr_info->index, &msr_info->data,
2953                                              msr_info->host_initiated);
2954                 break;
2955         case MSR_IA32_BBL_CR_CTL3:
2956                 /* This legacy MSR exists but isn't fully documented in current
2957                  * silicon.  It is however accessed by winxp in very narrow
2958                  * scenarios where it sets bit #19, itself documented as
2959                  * a "reserved" bit.  Best effort attempt to source coherent
2960                  * read data here should the balance of the register be
2961                  * interpreted by the guest:
2962                  *
2963                  * L2 cache control register 3: 64GB range, 256KB size,
2964                  * enabled, latency 0x1, configured
2965                  */
2966                 msr_info->data = 0xbe702111;
2967                 break;
2968         case MSR_AMD64_OSVW_ID_LENGTH:
2969                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2970                         return 1;
2971                 msr_info->data = vcpu->arch.osvw.length;
2972                 break;
2973         case MSR_AMD64_OSVW_STATUS:
2974                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2975                         return 1;
2976                 msr_info->data = vcpu->arch.osvw.status;
2977                 break;
2978         case MSR_PLATFORM_INFO:
2979                 if (!msr_info->host_initiated &&
2980                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2981                         return 1;
2982                 msr_info->data = vcpu->arch.msr_platform_info;
2983                 break;
2984         case MSR_MISC_FEATURES_ENABLES:
2985                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2986                 break;
2987         case MSR_K7_HWCR:
2988                 msr_info->data = vcpu->arch.msr_hwcr;
2989                 break;
2990         default:
2991                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2992                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2993                 if (!ignore_msrs) {
2994                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2995                                                msr_info->index);
2996                         return 1;
2997                 } else {
2998                         if (report_ignored_msrs)
2999                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3000                                         msr_info->index);
3001                         msr_info->data = 0;
3002                 }
3003                 break;
3004         }
3005         return 0;
3006 }
3007 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3008
3009 /*
3010  * Read or write a bunch of msrs. All parameters are kernel addresses.
3011  *
3012  * @return number of msrs set successfully.
3013  */
3014 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3015                     struct kvm_msr_entry *entries,
3016                     int (*do_msr)(struct kvm_vcpu *vcpu,
3017                                   unsigned index, u64 *data))
3018 {
3019         int i;
3020
3021         for (i = 0; i < msrs->nmsrs; ++i)
3022                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3023                         break;
3024
3025         return i;
3026 }
3027
3028 /*
3029  * Read or write a bunch of msrs. Parameters are user addresses.
3030  *
3031  * @return number of msrs set successfully.
3032  */
3033 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3034                   int (*do_msr)(struct kvm_vcpu *vcpu,
3035                                 unsigned index, u64 *data),
3036                   int writeback)
3037 {
3038         struct kvm_msrs msrs;
3039         struct kvm_msr_entry *entries;
3040         int r, n;
3041         unsigned size;
3042
3043         r = -EFAULT;
3044         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3045                 goto out;
3046
3047         r = -E2BIG;
3048         if (msrs.nmsrs >= MAX_IO_MSRS)
3049                 goto out;
3050
3051         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3052         entries = memdup_user(user_msrs->entries, size);
3053         if (IS_ERR(entries)) {
3054                 r = PTR_ERR(entries);
3055                 goto out;
3056         }
3057
3058         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3059         if (r < 0)
3060                 goto out_free;
3061
3062         r = -EFAULT;
3063         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3064                 goto out_free;
3065
3066         r = n;
3067
3068 out_free:
3069         kfree(entries);
3070 out:
3071         return r;
3072 }
3073
3074 static inline bool kvm_can_mwait_in_guest(void)
3075 {
3076         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3077                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3078                 boot_cpu_has(X86_FEATURE_ARAT);
3079 }
3080
3081 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3082 {
3083         int r = 0;
3084
3085         switch (ext) {
3086         case KVM_CAP_IRQCHIP:
3087         case KVM_CAP_HLT:
3088         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3089         case KVM_CAP_SET_TSS_ADDR:
3090         case KVM_CAP_EXT_CPUID:
3091         case KVM_CAP_EXT_EMUL_CPUID:
3092         case KVM_CAP_CLOCKSOURCE:
3093         case KVM_CAP_PIT:
3094         case KVM_CAP_NOP_IO_DELAY:
3095         case KVM_CAP_MP_STATE:
3096         case KVM_CAP_SYNC_MMU:
3097         case KVM_CAP_USER_NMI:
3098         case KVM_CAP_REINJECT_CONTROL:
3099         case KVM_CAP_IRQ_INJECT_STATUS:
3100         case KVM_CAP_IOEVENTFD:
3101         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3102         case KVM_CAP_PIT2:
3103         case KVM_CAP_PIT_STATE2:
3104         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3105         case KVM_CAP_XEN_HVM:
3106         case KVM_CAP_VCPU_EVENTS:
3107         case KVM_CAP_HYPERV:
3108         case KVM_CAP_HYPERV_VAPIC:
3109         case KVM_CAP_HYPERV_SPIN:
3110         case KVM_CAP_HYPERV_SYNIC:
3111         case KVM_CAP_HYPERV_SYNIC2:
3112         case KVM_CAP_HYPERV_VP_INDEX:
3113         case KVM_CAP_HYPERV_EVENTFD:
3114         case KVM_CAP_HYPERV_TLBFLUSH:
3115         case KVM_CAP_HYPERV_SEND_IPI:
3116         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3117         case KVM_CAP_HYPERV_CPUID:
3118         case KVM_CAP_PCI_SEGMENT:
3119         case KVM_CAP_DEBUGREGS:
3120         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3121         case KVM_CAP_XSAVE:
3122         case KVM_CAP_ASYNC_PF:
3123         case KVM_CAP_GET_TSC_KHZ:
3124         case KVM_CAP_KVMCLOCK_CTRL:
3125         case KVM_CAP_READONLY_MEM:
3126         case KVM_CAP_HYPERV_TIME:
3127         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3128         case KVM_CAP_TSC_DEADLINE_TIMER:
3129         case KVM_CAP_DISABLE_QUIRKS:
3130         case KVM_CAP_SET_BOOT_CPU_ID:
3131         case KVM_CAP_SPLIT_IRQCHIP:
3132         case KVM_CAP_IMMEDIATE_EXIT:
3133         case KVM_CAP_PMU_EVENT_FILTER:
3134         case KVM_CAP_GET_MSR_FEATURES:
3135         case KVM_CAP_MSR_PLATFORM_INFO:
3136         case KVM_CAP_EXCEPTION_PAYLOAD:
3137                 r = 1;
3138                 break;
3139         case KVM_CAP_SYNC_REGS:
3140                 r = KVM_SYNC_X86_VALID_FIELDS;
3141                 break;
3142         case KVM_CAP_ADJUST_CLOCK:
3143                 r = KVM_CLOCK_TSC_STABLE;
3144                 break;
3145         case KVM_CAP_X86_DISABLE_EXITS:
3146                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3147                       KVM_X86_DISABLE_EXITS_CSTATE;
3148                 if(kvm_can_mwait_in_guest())
3149                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3150                 break;
3151         case KVM_CAP_X86_SMM:
3152                 /* SMBASE is usually relocated above 1M on modern chipsets,
3153                  * and SMM handlers might indeed rely on 4G segment limits,
3154                  * so do not report SMM to be available if real mode is
3155                  * emulated via vm86 mode.  Still, do not go to great lengths
3156                  * to avoid userspace's usage of the feature, because it is a
3157                  * fringe case that is not enabled except via specific settings
3158                  * of the module parameters.
3159                  */
3160                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3161                 break;
3162         case KVM_CAP_VAPIC:
3163                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3164                 break;
3165         case KVM_CAP_NR_VCPUS:
3166                 r = KVM_SOFT_MAX_VCPUS;
3167                 break;
3168         case KVM_CAP_MAX_VCPUS:
3169                 r = KVM_MAX_VCPUS;
3170                 break;
3171         case KVM_CAP_MAX_VCPU_ID:
3172                 r = KVM_MAX_VCPU_ID;
3173                 break;
3174         case KVM_CAP_PV_MMU:    /* obsolete */
3175                 r = 0;
3176                 break;
3177         case KVM_CAP_MCE:
3178                 r = KVM_MAX_MCE_BANKS;
3179                 break;
3180         case KVM_CAP_XCRS:
3181                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3182                 break;
3183         case KVM_CAP_TSC_CONTROL:
3184                 r = kvm_has_tsc_control;
3185                 break;
3186         case KVM_CAP_X2APIC_API:
3187                 r = KVM_X2APIC_API_VALID_FLAGS;
3188                 break;
3189         case KVM_CAP_NESTED_STATE:
3190                 r = kvm_x86_ops->get_nested_state ?
3191                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3192                 break;
3193         default:
3194                 break;
3195         }
3196         return r;
3197
3198 }
3199
3200 long kvm_arch_dev_ioctl(struct file *filp,
3201                         unsigned int ioctl, unsigned long arg)
3202 {
3203         void __user *argp = (void __user *)arg;
3204         long r;
3205
3206         switch (ioctl) {
3207         case KVM_GET_MSR_INDEX_LIST: {
3208                 struct kvm_msr_list __user *user_msr_list = argp;
3209                 struct kvm_msr_list msr_list;
3210                 unsigned n;
3211
3212                 r = -EFAULT;
3213                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3214                         goto out;
3215                 n = msr_list.nmsrs;
3216                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3217                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3218                         goto out;
3219                 r = -E2BIG;
3220                 if (n < msr_list.nmsrs)
3221                         goto out;
3222                 r = -EFAULT;
3223                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3224                                  num_msrs_to_save * sizeof(u32)))
3225                         goto out;
3226                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3227                                  &emulated_msrs,
3228                                  num_emulated_msrs * sizeof(u32)))
3229                         goto out;
3230                 r = 0;
3231                 break;
3232         }
3233         case KVM_GET_SUPPORTED_CPUID:
3234         case KVM_GET_EMULATED_CPUID: {
3235                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3236                 struct kvm_cpuid2 cpuid;
3237
3238                 r = -EFAULT;
3239                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3240                         goto out;
3241
3242                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3243                                             ioctl);
3244                 if (r)
3245                         goto out;
3246
3247                 r = -EFAULT;
3248                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3249                         goto out;
3250                 r = 0;
3251                 break;
3252         }
3253         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3254                 r = -EFAULT;
3255                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3256                                  sizeof(kvm_mce_cap_supported)))
3257                         goto out;
3258                 r = 0;
3259                 break;
3260         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3261                 struct kvm_msr_list __user *user_msr_list = argp;
3262                 struct kvm_msr_list msr_list;
3263                 unsigned int n;
3264
3265                 r = -EFAULT;
3266                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3267                         goto out;
3268                 n = msr_list.nmsrs;
3269                 msr_list.nmsrs = num_msr_based_features;
3270                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3271                         goto out;
3272                 r = -E2BIG;
3273                 if (n < msr_list.nmsrs)
3274                         goto out;
3275                 r = -EFAULT;
3276                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3277                                  num_msr_based_features * sizeof(u32)))
3278                         goto out;
3279                 r = 0;
3280                 break;
3281         }
3282         case KVM_GET_MSRS:
3283                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3284                 break;
3285         }
3286         default:
3287                 r = -EINVAL;
3288         }
3289 out:
3290         return r;
3291 }
3292
3293 static void wbinvd_ipi(void *garbage)
3294 {
3295         wbinvd();
3296 }
3297
3298 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3299 {
3300         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3301 }
3302
3303 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3304 {
3305         /* Address WBINVD may be executed by guest */
3306         if (need_emulate_wbinvd(vcpu)) {
3307                 if (kvm_x86_ops->has_wbinvd_exit())
3308                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3309                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3310                         smp_call_function_single(vcpu->cpu,
3311                                         wbinvd_ipi, NULL, 1);
3312         }
3313
3314         kvm_x86_ops->vcpu_load(vcpu, cpu);
3315
3316         fpregs_assert_state_consistent();
3317         if (test_thread_flag(TIF_NEED_FPU_LOAD))
3318                 switch_fpu_return();
3319
3320         /* Apply any externally detected TSC adjustments (due to suspend) */
3321         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3322                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3323                 vcpu->arch.tsc_offset_adjustment = 0;
3324                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3325         }
3326
3327         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3328                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3329                                 rdtsc() - vcpu->arch.last_host_tsc;
3330                 if (tsc_delta < 0)
3331                         mark_tsc_unstable("KVM discovered backwards TSC");
3332
3333                 if (kvm_check_tsc_unstable()) {
3334                         u64 offset = kvm_compute_tsc_offset(vcpu,
3335                                                 vcpu->arch.last_guest_tsc);
3336                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3337                         vcpu->arch.tsc_catchup = 1;
3338                 }
3339
3340                 if (kvm_lapic_hv_timer_in_use(vcpu))
3341                         kvm_lapic_restart_hv_timer(vcpu);
3342
3343                 /*
3344                  * On a host with synchronized TSC, there is no need to update
3345                  * kvmclock on vcpu->cpu migration
3346                  */
3347                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3348                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3349                 if (vcpu->cpu != cpu)
3350                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3351                 vcpu->cpu = cpu;
3352         }
3353
3354         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3355 }
3356
3357 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3358 {
3359         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3360                 return;
3361
3362         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3363
3364         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3365                         &vcpu->arch.st.steal.preempted,
3366                         offsetof(struct kvm_steal_time, preempted),
3367                         sizeof(vcpu->arch.st.steal.preempted));
3368 }
3369
3370 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3371 {
3372         int idx;
3373
3374         if (vcpu->preempted)
3375                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3376
3377         /*
3378          * Disable page faults because we're in atomic context here.
3379          * kvm_write_guest_offset_cached() would call might_fault()
3380          * that relies on pagefault_disable() to tell if there's a
3381          * bug. NOTE: the write to guest memory may not go through if
3382          * during postcopy live migration or if there's heavy guest
3383          * paging.
3384          */
3385         pagefault_disable();
3386         /*
3387          * kvm_memslots() will be called by
3388          * kvm_write_guest_offset_cached() so take the srcu lock.
3389          */
3390         idx = srcu_read_lock(&vcpu->kvm->srcu);
3391         kvm_steal_time_set_preempted(vcpu);
3392         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3393         pagefault_enable();
3394         kvm_x86_ops->vcpu_put(vcpu);
3395         vcpu->arch.last_host_tsc = rdtsc();
3396         /*
3397          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3398          * on every vmexit, but if not, we might have a stale dr6 from the
3399          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3400          */
3401         set_debugreg(0, 6);
3402 }
3403
3404 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3405                                     struct kvm_lapic_state *s)
3406 {
3407         if (vcpu->arch.apicv_active)
3408                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3409
3410         return kvm_apic_get_state(vcpu, s);
3411 }
3412
3413 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3414                                     struct kvm_lapic_state *s)
3415 {
3416         int r;
3417
3418         r = kvm_apic_set_state(vcpu, s);
3419         if (r)
3420                 return r;
3421         update_cr8_intercept(vcpu);
3422
3423         return 0;
3424 }
3425
3426 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3427 {
3428         return (!lapic_in_kernel(vcpu) ||
3429                 kvm_apic_accept_pic_intr(vcpu));
3430 }
3431
3432 /*
3433  * if userspace requested an interrupt window, check that the
3434  * interrupt window is open.
3435  *
3436  * No need to exit to userspace if we already have an interrupt queued.
3437  */
3438 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3439 {
3440         return kvm_arch_interrupt_allowed(vcpu) &&
3441                 !kvm_cpu_has_interrupt(vcpu) &&
3442                 !kvm_event_needs_reinjection(vcpu) &&
3443                 kvm_cpu_accept_dm_intr(vcpu);
3444 }
3445
3446 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3447                                     struct kvm_interrupt *irq)
3448 {
3449         if (irq->irq >= KVM_NR_INTERRUPTS)
3450                 return -EINVAL;
3451
3452         if (!irqchip_in_kernel(vcpu->kvm)) {
3453                 kvm_queue_interrupt(vcpu, irq->irq, false);
3454                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3455                 return 0;
3456         }
3457
3458         /*
3459          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3460          * fail for in-kernel 8259.
3461          */
3462         if (pic_in_kernel(vcpu->kvm))
3463                 return -ENXIO;
3464
3465         if (vcpu->arch.pending_external_vector != -1)
3466                 return -EEXIST;
3467
3468         vcpu->arch.pending_external_vector = irq->irq;
3469         kvm_make_request(KVM_REQ_EVENT, vcpu);
3470         return 0;
3471 }
3472
3473 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3474 {
3475         kvm_inject_nmi(vcpu);
3476
3477         return 0;
3478 }
3479
3480 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3481 {
3482         kvm_make_request(KVM_REQ_SMI, vcpu);
3483
3484         return 0;
3485 }
3486
3487 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3488                                            struct kvm_tpr_access_ctl *tac)
3489 {
3490         if (tac->flags)
3491                 return -EINVAL;
3492         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3493         return 0;
3494 }
3495
3496 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3497                                         u64 mcg_cap)
3498 {
3499         int r;
3500         unsigned bank_num = mcg_cap & 0xff, bank;
3501
3502         r = -EINVAL;
3503         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3504                 goto out;
3505         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3506                 goto out;
3507         r = 0;
3508         vcpu->arch.mcg_cap = mcg_cap;
3509         /* Init IA32_MCG_CTL to all 1s */
3510         if (mcg_cap & MCG_CTL_P)
3511                 vcpu->arch.mcg_ctl = ~(u64)0;
3512         /* Init IA32_MCi_CTL to all 1s */
3513         for (bank = 0; bank < bank_num; bank++)
3514                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3515
3516         if (kvm_x86_ops->setup_mce)
3517                 kvm_x86_ops->setup_mce(vcpu);
3518 out:
3519         return r;
3520 }
3521
3522 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3523                                       struct kvm_x86_mce *mce)
3524 {
3525         u64 mcg_cap = vcpu->arch.mcg_cap;
3526         unsigned bank_num = mcg_cap & 0xff;
3527         u64 *banks = vcpu->arch.mce_banks;
3528
3529         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3530                 return -EINVAL;
3531         /*
3532          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3533          * reporting is disabled
3534          */
3535         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3536             vcpu->arch.mcg_ctl != ~(u64)0)
3537                 return 0;
3538         banks += 4 * mce->bank;
3539         /*
3540          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3541          * reporting is disabled for the bank
3542          */
3543         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3544                 return 0;
3545         if (mce->status & MCI_STATUS_UC) {
3546                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3547                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3548                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3549                         return 0;
3550                 }
3551                 if (banks[1] & MCI_STATUS_VAL)
3552                         mce->status |= MCI_STATUS_OVER;
3553                 banks[2] = mce->addr;
3554                 banks[3] = mce->misc;
3555                 vcpu->arch.mcg_status = mce->mcg_status;
3556                 banks[1] = mce->status;
3557                 kvm_queue_exception(vcpu, MC_VECTOR);
3558         } else if (!(banks[1] & MCI_STATUS_VAL)
3559                    || !(banks[1] & MCI_STATUS_UC)) {
3560                 if (banks[1] & MCI_STATUS_VAL)
3561                         mce->status |= MCI_STATUS_OVER;
3562                 banks[2] = mce->addr;
3563                 banks[3] = mce->misc;
3564                 banks[1] = mce->status;
3565         } else
3566                 banks[1] |= MCI_STATUS_OVER;
3567         return 0;
3568 }
3569
3570 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3571                                                struct kvm_vcpu_events *events)
3572 {
3573         process_nmi(vcpu);
3574
3575         /*
3576          * The API doesn't provide the instruction length for software
3577          * exceptions, so don't report them. As long as the guest RIP
3578          * isn't advanced, we should expect to encounter the exception
3579          * again.
3580          */
3581         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3582                 events->exception.injected = 0;
3583                 events->exception.pending = 0;
3584         } else {
3585                 events->exception.injected = vcpu->arch.exception.injected;
3586                 events->exception.pending = vcpu->arch.exception.pending;
3587                 /*
3588                  * For ABI compatibility, deliberately conflate
3589                  * pending and injected exceptions when
3590                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3591                  */
3592                 if (!vcpu->kvm->arch.exception_payload_enabled)
3593                         events->exception.injected |=
3594                                 vcpu->arch.exception.pending;
3595         }
3596         events->exception.nr = vcpu->arch.exception.nr;
3597         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3598         events->exception.error_code = vcpu->arch.exception.error_code;
3599         events->exception_has_payload = vcpu->arch.exception.has_payload;
3600         events->exception_payload = vcpu->arch.exception.payload;
3601
3602         events->interrupt.injected =
3603                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3604         events->interrupt.nr = vcpu->arch.interrupt.nr;
3605         events->interrupt.soft = 0;
3606         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3607
3608         events->nmi.injected = vcpu->arch.nmi_injected;
3609         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3610         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3611         events->nmi.pad = 0;
3612
3613         events->sipi_vector = 0; /* never valid when reporting to user space */
3614
3615         events->smi.smm = is_smm(vcpu);
3616         events->smi.pending = vcpu->arch.smi_pending;
3617         events->smi.smm_inside_nmi =
3618                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3619         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3620
3621         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3622                          | KVM_VCPUEVENT_VALID_SHADOW
3623                          | KVM_VCPUEVENT_VALID_SMM);
3624         if (vcpu->kvm->arch.exception_payload_enabled)
3625                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3626
3627         memset(&events->reserved, 0, sizeof(events->reserved));
3628 }
3629
3630 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3631
3632 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3633                                               struct kvm_vcpu_events *events)
3634 {
3635         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3636                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3637                               | KVM_VCPUEVENT_VALID_SHADOW
3638                               | KVM_VCPUEVENT_VALID_SMM
3639                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3640                 return -EINVAL;
3641
3642         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3643                 if (!vcpu->kvm->arch.exception_payload_enabled)
3644                         return -EINVAL;
3645                 if (events->exception.pending)
3646                         events->exception.injected = 0;
3647                 else
3648                         events->exception_has_payload = 0;
3649         } else {
3650                 events->exception.pending = 0;
3651                 events->exception_has_payload = 0;
3652         }
3653
3654         if ((events->exception.injected || events->exception.pending) &&
3655             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3656                 return -EINVAL;
3657
3658         /* INITs are latched while in SMM */
3659         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3660             (events->smi.smm || events->smi.pending) &&
3661             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3662                 return -EINVAL;
3663
3664         process_nmi(vcpu);
3665         vcpu->arch.exception.injected = events->exception.injected;
3666         vcpu->arch.exception.pending = events->exception.pending;
3667         vcpu->arch.exception.nr = events->exception.nr;
3668         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3669         vcpu->arch.exception.error_code = events->exception.error_code;
3670         vcpu->arch.exception.has_payload = events->exception_has_payload;
3671         vcpu->arch.exception.payload = events->exception_payload;
3672
3673         vcpu->arch.interrupt.injected = events->interrupt.injected;
3674         vcpu->arch.interrupt.nr = events->interrupt.nr;
3675         vcpu->arch.interrupt.soft = events->interrupt.soft;
3676         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3677                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3678                                                   events->interrupt.shadow);
3679
3680         vcpu->arch.nmi_injected = events->nmi.injected;
3681         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3682                 vcpu->arch.nmi_pending = events->nmi.pending;
3683         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3684
3685         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3686             lapic_in_kernel(vcpu))
3687                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3688
3689         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3690                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3691                         if (events->smi.smm)
3692                                 vcpu->arch.hflags |= HF_SMM_MASK;
3693                         else
3694                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3695                         kvm_smm_changed(vcpu);
3696                 }
3697
3698                 vcpu->arch.smi_pending = events->smi.pending;
3699
3700                 if (events->smi.smm) {
3701                         if (events->smi.smm_inside_nmi)
3702                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3703                         else
3704                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3705                         if (lapic_in_kernel(vcpu)) {
3706                                 if (events->smi.latched_init)
3707                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3708                                 else
3709                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3710                         }
3711                 }
3712         }
3713
3714         kvm_make_request(KVM_REQ_EVENT, vcpu);
3715
3716         return 0;
3717 }
3718
3719 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3720                                              struct kvm_debugregs *dbgregs)
3721 {
3722         unsigned long val;
3723
3724         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3725         kvm_get_dr(vcpu, 6, &val);
3726         dbgregs->dr6 = val;
3727         dbgregs->dr7 = vcpu->arch.dr7;
3728         dbgregs->flags = 0;
3729         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3730 }
3731
3732 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3733                                             struct kvm_debugregs *dbgregs)
3734 {
3735         if (dbgregs->flags)
3736                 return -EINVAL;
3737
3738         if (dbgregs->dr6 & ~0xffffffffull)
3739                 return -EINVAL;
3740         if (dbgregs->dr7 & ~0xffffffffull)
3741                 return -EINVAL;
3742
3743         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3744         kvm_update_dr0123(vcpu);
3745         vcpu->arch.dr6 = dbgregs->dr6;
3746         kvm_update_dr6(vcpu);
3747         vcpu->arch.dr7 = dbgregs->dr7;
3748         kvm_update_dr7(vcpu);
3749
3750         return 0;
3751 }
3752
3753 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3754
3755 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3756 {
3757         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3758         u64 xstate_bv = xsave->header.xfeatures;
3759         u64 valid;
3760
3761         /*
3762          * Copy legacy XSAVE area, to avoid complications with CPUID
3763          * leaves 0 and 1 in the loop below.
3764          */
3765         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3766
3767         /* Set XSTATE_BV */
3768         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3769         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3770
3771         /*
3772          * Copy each region from the possibly compacted offset to the
3773          * non-compacted offset.
3774          */
3775         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3776         while (valid) {
3777                 u64 xfeature_mask = valid & -valid;
3778                 int xfeature_nr = fls64(xfeature_mask) - 1;
3779                 void *src = get_xsave_addr(xsave, xfeature_nr);
3780
3781                 if (src) {
3782                         u32 size, offset, ecx, edx;
3783                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3784                                     &size, &offset, &ecx, &edx);
3785                         if (xfeature_nr == XFEATURE_PKRU)
3786                                 memcpy(dest + offset, &vcpu->arch.pkru,
3787                                        sizeof(vcpu->arch.pkru));
3788                         else
3789                                 memcpy(dest + offset, src, size);
3790
3791                 }
3792
3793                 valid -= xfeature_mask;
3794         }
3795 }
3796
3797 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3798 {
3799         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3800         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3801         u64 valid;
3802
3803         /*
3804          * Copy legacy XSAVE area, to avoid complications with CPUID
3805          * leaves 0 and 1 in the loop below.
3806          */
3807         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3808
3809         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3810         xsave->header.xfeatures = xstate_bv;
3811         if (boot_cpu_has(X86_FEATURE_XSAVES))
3812                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3813
3814         /*
3815          * Copy each region from the non-compacted offset to the
3816          * possibly compacted offset.
3817          */
3818         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3819         while (valid) {
3820                 u64 xfeature_mask = valid & -valid;
3821                 int xfeature_nr = fls64(xfeature_mask) - 1;
3822                 void *dest = get_xsave_addr(xsave, xfeature_nr);
3823
3824                 if (dest) {
3825                         u32 size, offset, ecx, edx;
3826                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3827                                     &size, &offset, &ecx, &edx);
3828                         if (xfeature_nr == XFEATURE_PKRU)
3829                                 memcpy(&vcpu->arch.pkru, src + offset,
3830                                        sizeof(vcpu->arch.pkru));
3831                         else
3832                                 memcpy(dest, src + offset, size);
3833                 }
3834
3835                 valid -= xfeature_mask;
3836         }
3837 }
3838
3839 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3840                                          struct kvm_xsave *guest_xsave)
3841 {
3842         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3843                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3844                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3845         } else {
3846                 memcpy(guest_xsave->region,
3847                         &vcpu->arch.guest_fpu->state.fxsave,
3848                         sizeof(struct fxregs_state));
3849                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3850                         XFEATURE_MASK_FPSSE;
3851         }
3852 }
3853
3854 #define XSAVE_MXCSR_OFFSET 24
3855
3856 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3857                                         struct kvm_xsave *guest_xsave)
3858 {
3859         u64 xstate_bv =
3860                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3861         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3862
3863         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3864                 /*
3865                  * Here we allow setting states that are not present in
3866                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3867                  * with old userspace.
3868                  */
3869                 if (xstate_bv & ~kvm_supported_xcr0() ||
3870                         mxcsr & ~mxcsr_feature_mask)
3871                         return -EINVAL;
3872                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3873         } else {
3874                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3875                         mxcsr & ~mxcsr_feature_mask)
3876                         return -EINVAL;
3877                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3878                         guest_xsave->region, sizeof(struct fxregs_state));
3879         }
3880         return 0;
3881 }
3882
3883 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3884                                         struct kvm_xcrs *guest_xcrs)
3885 {
3886         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3887                 guest_xcrs->nr_xcrs = 0;
3888                 return;
3889         }
3890
3891         guest_xcrs->nr_xcrs = 1;
3892         guest_xcrs->flags = 0;
3893         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3894         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3895 }
3896
3897 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3898                                        struct kvm_xcrs *guest_xcrs)
3899 {
3900         int i, r = 0;
3901
3902         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3903                 return -EINVAL;
3904
3905         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3906                 return -EINVAL;
3907
3908         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3909                 /* Only support XCR0 currently */
3910                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3911                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3912                                 guest_xcrs->xcrs[i].value);
3913                         break;
3914                 }
3915         if (r)
3916                 r = -EINVAL;
3917         return r;
3918 }
3919
3920 /*
3921  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3922  * stopped by the hypervisor.  This function will be called from the host only.
3923  * EINVAL is returned when the host attempts to set the flag for a guest that
3924  * does not support pv clocks.
3925  */
3926 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3927 {
3928         if (!vcpu->arch.pv_time_enabled)
3929                 return -EINVAL;
3930         vcpu->arch.pvclock_set_guest_stopped_request = true;
3931         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3932         return 0;
3933 }
3934
3935 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3936                                      struct kvm_enable_cap *cap)
3937 {
3938         int r;
3939         uint16_t vmcs_version;
3940         void __user *user_ptr;
3941
3942         if (cap->flags)
3943                 return -EINVAL;
3944
3945         switch (cap->cap) {
3946         case KVM_CAP_HYPERV_SYNIC2:
3947                 if (cap->args[0])
3948                         return -EINVAL;
3949                 /* fall through */
3950
3951         case KVM_CAP_HYPERV_SYNIC:
3952                 if (!irqchip_in_kernel(vcpu->kvm))
3953                         return -EINVAL;
3954                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3955                                              KVM_CAP_HYPERV_SYNIC2);
3956         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3957                 if (!kvm_x86_ops->nested_enable_evmcs)
3958                         return -ENOTTY;
3959                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3960                 if (!r) {
3961                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3962                         if (copy_to_user(user_ptr, &vmcs_version,
3963                                          sizeof(vmcs_version)))
3964                                 r = -EFAULT;
3965                 }
3966                 return r;
3967
3968         default:
3969                 return -EINVAL;
3970         }
3971 }
3972
3973 long kvm_arch_vcpu_ioctl(struct file *filp,
3974                          unsigned int ioctl, unsigned long arg)
3975 {
3976         struct kvm_vcpu *vcpu = filp->private_data;
3977         void __user *argp = (void __user *)arg;
3978         int r;
3979         union {
3980                 struct kvm_lapic_state *lapic;
3981                 struct kvm_xsave *xsave;
3982                 struct kvm_xcrs *xcrs;
3983                 void *buffer;
3984         } u;
3985
3986         vcpu_load(vcpu);
3987
3988         u.buffer = NULL;
3989         switch (ioctl) {
3990         case KVM_GET_LAPIC: {
3991                 r = -EINVAL;
3992                 if (!lapic_in_kernel(vcpu))
3993                         goto out;
3994                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3995                                 GFP_KERNEL_ACCOUNT);
3996
3997                 r = -ENOMEM;
3998                 if (!u.lapic)
3999                         goto out;
4000                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4001                 if (r)
4002                         goto out;
4003                 r = -EFAULT;
4004                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4005                         goto out;
4006                 r = 0;
4007                 break;
4008         }
4009         case KVM_SET_LAPIC: {
4010                 r = -EINVAL;
4011                 if (!lapic_in_kernel(vcpu))
4012                         goto out;
4013                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4014                 if (IS_ERR(u.lapic)) {
4015                         r = PTR_ERR(u.lapic);
4016                         goto out_nofree;
4017                 }
4018
4019                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4020                 break;
4021         }
4022         case KVM_INTERRUPT: {
4023                 struct kvm_interrupt irq;
4024
4025                 r = -EFAULT;
4026                 if (copy_from_user(&irq, argp, sizeof(irq)))
4027                         goto out;
4028                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4029                 break;
4030         }
4031         case KVM_NMI: {
4032                 r = kvm_vcpu_ioctl_nmi(vcpu);
4033                 break;
4034         }
4035         case KVM_SMI: {
4036                 r = kvm_vcpu_ioctl_smi(vcpu);
4037                 break;
4038         }
4039         case KVM_SET_CPUID: {
4040                 struct kvm_cpuid __user *cpuid_arg = argp;
4041                 struct kvm_cpuid cpuid;
4042
4043                 r = -EFAULT;
4044                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4045                         goto out;
4046                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4047                 break;
4048         }
4049         case KVM_SET_CPUID2: {
4050                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4051                 struct kvm_cpuid2 cpuid;
4052
4053                 r = -EFAULT;
4054                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4055                         goto out;
4056                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4057                                               cpuid_arg->entries);
4058                 break;
4059         }
4060         case KVM_GET_CPUID2: {
4061                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4062                 struct kvm_cpuid2 cpuid;
4063
4064                 r = -EFAULT;
4065                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4066                         goto out;
4067                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4068                                               cpuid_arg->entries);
4069                 if (r)
4070                         goto out;
4071                 r = -EFAULT;
4072                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4073                         goto out;
4074                 r = 0;
4075                 break;
4076         }
4077         case KVM_GET_MSRS: {
4078                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4079                 r = msr_io(vcpu, argp, do_get_msr, 1);
4080                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4081                 break;
4082         }
4083         case KVM_SET_MSRS: {
4084                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4085                 r = msr_io(vcpu, argp, do_set_msr, 0);
4086                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4087                 break;
4088         }
4089         case KVM_TPR_ACCESS_REPORTING: {
4090                 struct kvm_tpr_access_ctl tac;
4091
4092                 r = -EFAULT;
4093                 if (copy_from_user(&tac, argp, sizeof(tac)))
4094                         goto out;
4095                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4096                 if (r)
4097                         goto out;
4098                 r = -EFAULT;
4099                 if (copy_to_user(argp, &tac, sizeof(tac)))
4100                         goto out;
4101                 r = 0;
4102                 break;
4103         };
4104         case KVM_SET_VAPIC_ADDR: {
4105                 struct kvm_vapic_addr va;
4106                 int idx;
4107
4108                 r = -EINVAL;
4109                 if (!lapic_in_kernel(vcpu))
4110                         goto out;
4111                 r = -EFAULT;
4112                 if (copy_from_user(&va, argp, sizeof(va)))
4113                         goto out;
4114                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4115                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4116                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4117                 break;
4118         }
4119         case KVM_X86_SETUP_MCE: {
4120                 u64 mcg_cap;
4121
4122                 r = -EFAULT;
4123                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4124                         goto out;
4125                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4126                 break;
4127         }
4128         case KVM_X86_SET_MCE: {
4129                 struct kvm_x86_mce mce;
4130
4131                 r = -EFAULT;
4132                 if (copy_from_user(&mce, argp, sizeof(mce)))
4133                         goto out;
4134                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4135                 break;
4136         }
4137         case KVM_GET_VCPU_EVENTS: {
4138                 struct kvm_vcpu_events events;
4139
4140                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4141
4142                 r = -EFAULT;
4143                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4144                         break;
4145                 r = 0;
4146                 break;
4147         }
4148         case KVM_SET_VCPU_EVENTS: {
4149                 struct kvm_vcpu_events events;
4150
4151                 r = -EFAULT;
4152                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4153                         break;
4154
4155                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4156                 break;
4157         }
4158         case KVM_GET_DEBUGREGS: {
4159                 struct kvm_debugregs dbgregs;
4160
4161                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4162
4163                 r = -EFAULT;
4164                 if (copy_to_user(argp, &dbgregs,
4165                                  sizeof(struct kvm_debugregs)))
4166                         break;
4167                 r = 0;
4168                 break;
4169         }
4170         case KVM_SET_DEBUGREGS: {
4171                 struct kvm_debugregs dbgregs;
4172
4173                 r = -EFAULT;
4174                 if (copy_from_user(&dbgregs, argp,
4175                                    sizeof(struct kvm_debugregs)))
4176                         break;
4177
4178                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4179                 break;
4180         }
4181         case KVM_GET_XSAVE: {
4182                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4183                 r = -ENOMEM;
4184                 if (!u.xsave)
4185                         break;
4186
4187                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4188
4189                 r = -EFAULT;
4190                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4191                         break;
4192                 r = 0;
4193                 break;
4194         }
4195         case KVM_SET_XSAVE: {
4196                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4197                 if (IS_ERR(u.xsave)) {
4198                         r = PTR_ERR(u.xsave);
4199                         goto out_nofree;
4200                 }
4201
4202                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4203                 break;
4204         }
4205         case KVM_GET_XCRS: {
4206                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4207                 r = -ENOMEM;
4208                 if (!u.xcrs)
4209                         break;
4210
4211                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4212
4213                 r = -EFAULT;
4214                 if (copy_to_user(argp, u.xcrs,
4215                                  sizeof(struct kvm_xcrs)))
4216                         break;
4217                 r = 0;
4218                 break;
4219         }
4220         case KVM_SET_XCRS: {
4221                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4222                 if (IS_ERR(u.xcrs)) {
4223                         r = PTR_ERR(u.xcrs);
4224                         goto out_nofree;
4225                 }
4226
4227                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4228                 break;
4229         }
4230         case KVM_SET_TSC_KHZ: {
4231                 u32 user_tsc_khz;
4232
4233                 r = -EINVAL;
4234                 user_tsc_khz = (u32)arg;
4235
4236                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4237                         goto out;
4238
4239                 if (user_tsc_khz == 0)
4240                         user_tsc_khz = tsc_khz;
4241
4242                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4243                         r = 0;
4244
4245                 goto out;
4246         }
4247         case KVM_GET_TSC_KHZ: {
4248                 r = vcpu->arch.virtual_tsc_khz;
4249                 goto out;
4250         }
4251         case KVM_KVMCLOCK_CTRL: {
4252                 r = kvm_set_guest_paused(vcpu);
4253                 goto out;
4254         }
4255         case KVM_ENABLE_CAP: {
4256                 struct kvm_enable_cap cap;
4257
4258                 r = -EFAULT;
4259                 if (copy_from_user(&cap, argp, sizeof(cap)))
4260                         goto out;
4261                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4262                 break;
4263         }
4264         case KVM_GET_NESTED_STATE: {
4265                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4266                 u32 user_data_size;
4267
4268                 r = -EINVAL;
4269                 if (!kvm_x86_ops->get_nested_state)
4270                         break;
4271
4272                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4273                 r = -EFAULT;
4274                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4275                         break;
4276
4277                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4278                                                   user_data_size);
4279                 if (r < 0)
4280                         break;
4281
4282                 if (r > user_data_size) {
4283                         if (put_user(r, &user_kvm_nested_state->size))
4284                                 r = -EFAULT;
4285                         else
4286                                 r = -E2BIG;
4287                         break;
4288                 }
4289
4290                 r = 0;
4291                 break;
4292         }
4293         case KVM_SET_NESTED_STATE: {
4294                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4295                 struct kvm_nested_state kvm_state;
4296
4297                 r = -EINVAL;
4298                 if (!kvm_x86_ops->set_nested_state)
4299                         break;
4300
4301                 r = -EFAULT;
4302                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4303                         break;
4304
4305                 r = -EINVAL;
4306                 if (kvm_state.size < sizeof(kvm_state))
4307                         break;
4308
4309                 if (kvm_state.flags &
4310                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4311                       | KVM_STATE_NESTED_EVMCS))
4312                         break;
4313
4314                 /* nested_run_pending implies guest_mode.  */
4315                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4316                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4317                         break;
4318
4319                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4320                 break;
4321         }
4322         case KVM_GET_SUPPORTED_HV_CPUID: {
4323                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4324                 struct kvm_cpuid2 cpuid;
4325
4326                 r = -EFAULT;
4327                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4328                         goto out;
4329
4330                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4331                                                 cpuid_arg->entries);
4332                 if (r)
4333                         goto out;
4334
4335                 r = -EFAULT;
4336                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4337                         goto out;
4338                 r = 0;
4339                 break;
4340         }
4341         default:
4342                 r = -EINVAL;
4343         }
4344 out:
4345         kfree(u.buffer);
4346 out_nofree:
4347         vcpu_put(vcpu);
4348         return r;
4349 }
4350
4351 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4352 {
4353         return VM_FAULT_SIGBUS;
4354 }
4355
4356 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4357 {
4358         int ret;
4359
4360         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4361                 return -EINVAL;
4362         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4363         return ret;
4364 }
4365
4366 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4367                                               u64 ident_addr)
4368 {
4369         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4370 }
4371
4372 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4373                                          unsigned long kvm_nr_mmu_pages)
4374 {
4375         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4376                 return -EINVAL;
4377
4378         mutex_lock(&kvm->slots_lock);
4379
4380         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4381         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4382
4383         mutex_unlock(&kvm->slots_lock);
4384         return 0;
4385 }
4386
4387 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4388 {
4389         return kvm->arch.n_max_mmu_pages;
4390 }
4391
4392 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4393 {
4394         struct kvm_pic *pic = kvm->arch.vpic;
4395         int r;
4396
4397         r = 0;
4398         switch (chip->chip_id) {
4399         case KVM_IRQCHIP_PIC_MASTER:
4400                 memcpy(&chip->chip.pic, &pic->pics[0],
4401                         sizeof(struct kvm_pic_state));
4402                 break;
4403         case KVM_IRQCHIP_PIC_SLAVE:
4404                 memcpy(&chip->chip.pic, &pic->pics[1],
4405                         sizeof(struct kvm_pic_state));
4406                 break;
4407         case KVM_IRQCHIP_IOAPIC:
4408                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4409                 break;
4410         default:
4411                 r = -EINVAL;
4412                 break;
4413         }
4414         return r;
4415 }
4416
4417 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4418 {
4419         struct kvm_pic *pic = kvm->arch.vpic;
4420         int r;
4421
4422         r = 0;
4423         switch (chip->chip_id) {
4424         case KVM_IRQCHIP_PIC_MASTER:
4425                 spin_lock(&pic->lock);
4426                 memcpy(&pic->pics[0], &chip->chip.pic,
4427                         sizeof(struct kvm_pic_state));
4428                 spin_unlock(&pic->lock);
4429                 break;
4430         case KVM_IRQCHIP_PIC_SLAVE:
4431                 spin_lock(&pic->lock);
4432                 memcpy(&pic->pics[1], &chip->chip.pic,
4433                         sizeof(struct kvm_pic_state));
4434                 spin_unlock(&pic->lock);
4435                 break;
4436         case KVM_IRQCHIP_IOAPIC:
4437                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4438                 break;
4439         default:
4440                 r = -EINVAL;
4441                 break;
4442         }
4443         kvm_pic_update_irq(pic);
4444         return r;
4445 }
4446
4447 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4448 {
4449         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4450
4451         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4452
4453         mutex_lock(&kps->lock);
4454         memcpy(ps, &kps->channels, sizeof(*ps));
4455         mutex_unlock(&kps->lock);
4456         return 0;
4457 }
4458
4459 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4460 {
4461         int i;
4462         struct kvm_pit *pit = kvm->arch.vpit;
4463
4464         mutex_lock(&pit->pit_state.lock);
4465         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4466         for (i = 0; i < 3; i++)
4467                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4468         mutex_unlock(&pit->pit_state.lock);
4469         return 0;
4470 }
4471
4472 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4473 {
4474         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4475         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4476                 sizeof(ps->channels));
4477         ps->flags = kvm->arch.vpit->pit_state.flags;
4478         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4479         memset(&ps->reserved, 0, sizeof(ps->reserved));
4480         return 0;
4481 }
4482
4483 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4484 {
4485         int start = 0;
4486         int i;
4487         u32 prev_legacy, cur_legacy;
4488         struct kvm_pit *pit = kvm->arch.vpit;
4489
4490         mutex_lock(&pit->pit_state.lock);
4491         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4492         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4493         if (!prev_legacy && cur_legacy)
4494                 start = 1;
4495         memcpy(&pit->pit_state.channels, &ps->channels,
4496                sizeof(pit->pit_state.channels));
4497         pit->pit_state.flags = ps->flags;
4498         for (i = 0; i < 3; i++)
4499                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4500                                    start && i == 0);
4501         mutex_unlock(&pit->pit_state.lock);
4502         return 0;
4503 }
4504
4505 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4506                                  struct kvm_reinject_control *control)
4507 {
4508         struct kvm_pit *pit = kvm->arch.vpit;
4509
4510         if (!pit)
4511                 return -ENXIO;
4512
4513         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4514          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4515          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4516          */
4517         mutex_lock(&pit->pit_state.lock);
4518         kvm_pit_set_reinject(pit, control->pit_reinject);
4519         mutex_unlock(&pit->pit_state.lock);
4520
4521         return 0;
4522 }
4523
4524 /**
4525  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4526  * @kvm: kvm instance
4527  * @log: slot id and address to which we copy the log
4528  *
4529  * Steps 1-4 below provide general overview of dirty page logging. See
4530  * kvm_get_dirty_log_protect() function description for additional details.
4531  *
4532  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4533  * always flush the TLB (step 4) even if previous step failed  and the dirty
4534  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4535  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4536  * writes will be marked dirty for next log read.
4537  *
4538  *   1. Take a snapshot of the bit and clear it if needed.
4539  *   2. Write protect the corresponding page.
4540  *   3. Copy the snapshot to the userspace.
4541  *   4. Flush TLB's if needed.
4542  */
4543 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4544 {
4545         bool flush = false;
4546         int r;
4547
4548         mutex_lock(&kvm->slots_lock);
4549
4550         /*
4551          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4552          */
4553         if (kvm_x86_ops->flush_log_dirty)
4554                 kvm_x86_ops->flush_log_dirty(kvm);
4555
4556         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4557
4558         /*
4559          * All the TLBs can be flushed out of mmu lock, see the comments in
4560          * kvm_mmu_slot_remove_write_access().
4561          */
4562         lockdep_assert_held(&kvm->slots_lock);
4563         if (flush)
4564                 kvm_flush_remote_tlbs(kvm);
4565
4566         mutex_unlock(&kvm->slots_lock);
4567         return r;
4568 }
4569
4570 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4571 {
4572         bool flush = false;
4573         int r;
4574
4575         mutex_lock(&kvm->slots_lock);
4576
4577         /*
4578          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4579          */
4580         if (kvm_x86_ops->flush_log_dirty)
4581                 kvm_x86_ops->flush_log_dirty(kvm);
4582
4583         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4584
4585         /*
4586          * All the TLBs can be flushed out of mmu lock, see the comments in
4587          * kvm_mmu_slot_remove_write_access().
4588          */
4589         lockdep_assert_held(&kvm->slots_lock);
4590         if (flush)
4591                 kvm_flush_remote_tlbs(kvm);
4592
4593         mutex_unlock(&kvm->slots_lock);
4594         return r;
4595 }
4596
4597 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4598                         bool line_status)
4599 {
4600         if (!irqchip_in_kernel(kvm))
4601                 return -ENXIO;
4602
4603         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4604                                         irq_event->irq, irq_event->level,
4605                                         line_status);
4606         return 0;
4607 }
4608
4609 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4610                             struct kvm_enable_cap *cap)
4611 {
4612         int r;
4613
4614         if (cap->flags)
4615                 return -EINVAL;
4616
4617         switch (cap->cap) {
4618         case KVM_CAP_DISABLE_QUIRKS:
4619                 kvm->arch.disabled_quirks = cap->args[0];
4620                 r = 0;
4621                 break;
4622         case KVM_CAP_SPLIT_IRQCHIP: {
4623                 mutex_lock(&kvm->lock);
4624                 r = -EINVAL;
4625                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4626                         goto split_irqchip_unlock;
4627                 r = -EEXIST;
4628                 if (irqchip_in_kernel(kvm))
4629                         goto split_irqchip_unlock;
4630                 if (kvm->created_vcpus)
4631                         goto split_irqchip_unlock;
4632                 r = kvm_setup_empty_irq_routing(kvm);
4633                 if (r)
4634                         goto split_irqchip_unlock;
4635                 /* Pairs with irqchip_in_kernel. */
4636                 smp_wmb();
4637                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4638                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4639                 r = 0;
4640 split_irqchip_unlock:
4641                 mutex_unlock(&kvm->lock);
4642                 break;
4643         }
4644         case KVM_CAP_X2APIC_API:
4645                 r = -EINVAL;
4646                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4647                         break;
4648
4649                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4650                         kvm->arch.x2apic_format = true;
4651                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4652                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4653
4654                 r = 0;
4655                 break;
4656         case KVM_CAP_X86_DISABLE_EXITS:
4657                 r = -EINVAL;
4658                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4659                         break;
4660
4661                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4662                         kvm_can_mwait_in_guest())
4663                         kvm->arch.mwait_in_guest = true;
4664                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4665                         kvm->arch.hlt_in_guest = true;
4666                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4667                         kvm->arch.pause_in_guest = true;
4668                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4669                         kvm->arch.cstate_in_guest = true;
4670                 r = 0;
4671                 break;
4672         case KVM_CAP_MSR_PLATFORM_INFO:
4673                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4674                 r = 0;
4675                 break;
4676         case KVM_CAP_EXCEPTION_PAYLOAD:
4677                 kvm->arch.exception_payload_enabled = cap->args[0];
4678                 r = 0;
4679                 break;
4680         default:
4681                 r = -EINVAL;
4682                 break;
4683         }
4684         return r;
4685 }
4686
4687 long kvm_arch_vm_ioctl(struct file *filp,
4688                        unsigned int ioctl, unsigned long arg)
4689 {
4690         struct kvm *kvm = filp->private_data;
4691         void __user *argp = (void __user *)arg;
4692         int r = -ENOTTY;
4693         /*
4694          * This union makes it completely explicit to gcc-3.x
4695          * that these two variables' stack usage should be
4696          * combined, not added together.
4697          */
4698         union {
4699                 struct kvm_pit_state ps;
4700                 struct kvm_pit_state2 ps2;
4701                 struct kvm_pit_config pit_config;
4702         } u;
4703
4704         switch (ioctl) {
4705         case KVM_SET_TSS_ADDR:
4706                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4707                 break;
4708         case KVM_SET_IDENTITY_MAP_ADDR: {
4709                 u64 ident_addr;
4710
4711                 mutex_lock(&kvm->lock);
4712                 r = -EINVAL;
4713                 if (kvm->created_vcpus)
4714                         goto set_identity_unlock;
4715                 r = -EFAULT;
4716                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4717                         goto set_identity_unlock;
4718                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4719 set_identity_unlock:
4720                 mutex_unlock(&kvm->lock);
4721                 break;
4722         }
4723         case KVM_SET_NR_MMU_PAGES:
4724                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4725                 break;
4726         case KVM_GET_NR_MMU_PAGES:
4727                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4728                 break;
4729         case KVM_CREATE_IRQCHIP: {
4730                 mutex_lock(&kvm->lock);
4731
4732                 r = -EEXIST;
4733                 if (irqchip_in_kernel(kvm))
4734                         goto create_irqchip_unlock;
4735
4736                 r = -EINVAL;
4737                 if (kvm->created_vcpus)
4738                         goto create_irqchip_unlock;
4739
4740                 r = kvm_pic_init(kvm);
4741                 if (r)
4742                         goto create_irqchip_unlock;
4743
4744                 r = kvm_ioapic_init(kvm);
4745                 if (r) {
4746                         kvm_pic_destroy(kvm);
4747                         goto create_irqchip_unlock;
4748                 }
4749
4750                 r = kvm_setup_default_irq_routing(kvm);
4751                 if (r) {
4752                         kvm_ioapic_destroy(kvm);
4753                         kvm_pic_destroy(kvm);
4754                         goto create_irqchip_unlock;
4755                 }
4756                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4757                 smp_wmb();
4758                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4759         create_irqchip_unlock:
4760                 mutex_unlock(&kvm->lock);
4761                 break;
4762         }
4763         case KVM_CREATE_PIT:
4764                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4765                 goto create_pit;
4766         case KVM_CREATE_PIT2:
4767                 r = -EFAULT;
4768                 if (copy_from_user(&u.pit_config, argp,
4769                                    sizeof(struct kvm_pit_config)))
4770                         goto out;
4771         create_pit:
4772                 mutex_lock(&kvm->lock);
4773                 r = -EEXIST;
4774                 if (kvm->arch.vpit)
4775                         goto create_pit_unlock;
4776                 r = -ENOMEM;
4777                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4778                 if (kvm->arch.vpit)
4779                         r = 0;
4780         create_pit_unlock:
4781                 mutex_unlock(&kvm->lock);
4782                 break;
4783         case KVM_GET_IRQCHIP: {
4784                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4785                 struct kvm_irqchip *chip;
4786
4787                 chip = memdup_user(argp, sizeof(*chip));
4788                 if (IS_ERR(chip)) {
4789                         r = PTR_ERR(chip);
4790                         goto out;
4791                 }
4792
4793                 r = -ENXIO;
4794                 if (!irqchip_kernel(kvm))
4795                         goto get_irqchip_out;
4796                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4797                 if (r)
4798                         goto get_irqchip_out;
4799                 r = -EFAULT;
4800                 if (copy_to_user(argp, chip, sizeof(*chip)))
4801                         goto get_irqchip_out;
4802                 r = 0;
4803         get_irqchip_out:
4804                 kfree(chip);
4805                 break;
4806         }
4807         case KVM_SET_IRQCHIP: {
4808                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4809                 struct kvm_irqchip *chip;
4810
4811                 chip = memdup_user(argp, sizeof(*chip));
4812                 if (IS_ERR(chip)) {
4813                         r = PTR_ERR(chip);
4814                         goto out;
4815                 }
4816
4817                 r = -ENXIO;
4818                 if (!irqchip_kernel(kvm))
4819                         goto set_irqchip_out;
4820                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4821                 if (r)
4822                         goto set_irqchip_out;
4823                 r = 0;
4824         set_irqchip_out:
4825                 kfree(chip);
4826                 break;
4827         }
4828         case KVM_GET_PIT: {
4829                 r = -EFAULT;
4830                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4831                         goto out;
4832                 r = -ENXIO;
4833                 if (!kvm->arch.vpit)
4834                         goto out;
4835                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4836                 if (r)
4837                         goto out;
4838                 r = -EFAULT;
4839                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4840                         goto out;
4841                 r = 0;
4842                 break;
4843         }
4844         case KVM_SET_PIT: {
4845                 r = -EFAULT;
4846                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4847                         goto out;
4848                 r = -ENXIO;
4849                 if (!kvm->arch.vpit)
4850                         goto out;
4851                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4852                 break;
4853         }
4854         case KVM_GET_PIT2: {
4855                 r = -ENXIO;
4856                 if (!kvm->arch.vpit)
4857                         goto out;
4858                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4859                 if (r)
4860                         goto out;
4861                 r = -EFAULT;
4862                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4863                         goto out;
4864                 r = 0;
4865                 break;
4866         }
4867         case KVM_SET_PIT2: {
4868                 r = -EFAULT;
4869                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4870                         goto out;
4871                 r = -ENXIO;
4872                 if (!kvm->arch.vpit)
4873                         goto out;
4874                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4875                 break;
4876         }
4877         case KVM_REINJECT_CONTROL: {
4878                 struct kvm_reinject_control control;
4879                 r =  -EFAULT;
4880                 if (copy_from_user(&control, argp, sizeof(control)))
4881                         goto out;
4882                 r = kvm_vm_ioctl_reinject(kvm, &control);
4883                 break;
4884         }
4885         case KVM_SET_BOOT_CPU_ID:
4886                 r = 0;
4887                 mutex_lock(&kvm->lock);
4888                 if (kvm->created_vcpus)
4889                         r = -EBUSY;
4890                 else
4891                         kvm->arch.bsp_vcpu_id = arg;
4892                 mutex_unlock(&kvm->lock);
4893                 break;
4894         case KVM_XEN_HVM_CONFIG: {
4895                 struct kvm_xen_hvm_config xhc;
4896                 r = -EFAULT;
4897                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4898                         goto out;
4899                 r = -EINVAL;
4900                 if (xhc.flags)
4901                         goto out;
4902                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4903                 r = 0;
4904                 break;
4905         }
4906         case KVM_SET_CLOCK: {
4907                 struct kvm_clock_data user_ns;
4908                 u64 now_ns;
4909
4910                 r = -EFAULT;
4911                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4912                         goto out;
4913
4914                 r = -EINVAL;
4915                 if (user_ns.flags)
4916                         goto out;
4917
4918                 r = 0;
4919                 /*
4920                  * TODO: userspace has to take care of races with VCPU_RUN, so
4921                  * kvm_gen_update_masterclock() can be cut down to locked
4922                  * pvclock_update_vm_gtod_copy().
4923                  */
4924                 kvm_gen_update_masterclock(kvm);
4925                 now_ns = get_kvmclock_ns(kvm);
4926                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4927                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4928                 break;
4929         }
4930         case KVM_GET_CLOCK: {
4931                 struct kvm_clock_data user_ns;
4932                 u64 now_ns;
4933
4934                 now_ns = get_kvmclock_ns(kvm);
4935                 user_ns.clock = now_ns;
4936                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4937                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4938
4939                 r = -EFAULT;
4940                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4941                         goto out;
4942                 r = 0;
4943                 break;
4944         }
4945         case KVM_MEMORY_ENCRYPT_OP: {
4946                 r = -ENOTTY;
4947                 if (kvm_x86_ops->mem_enc_op)
4948                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4949                 break;
4950         }
4951         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4952                 struct kvm_enc_region region;
4953
4954                 r = -EFAULT;
4955                 if (copy_from_user(&region, argp, sizeof(region)))
4956                         goto out;
4957
4958                 r = -ENOTTY;
4959                 if (kvm_x86_ops->mem_enc_reg_region)
4960                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4961                 break;
4962         }
4963         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4964                 struct kvm_enc_region region;
4965
4966                 r = -EFAULT;
4967                 if (copy_from_user(&region, argp, sizeof(region)))
4968                         goto out;
4969
4970                 r = -ENOTTY;
4971                 if (kvm_x86_ops->mem_enc_unreg_region)
4972                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4973                 break;
4974         }
4975         case KVM_HYPERV_EVENTFD: {
4976                 struct kvm_hyperv_eventfd hvevfd;
4977
4978                 r = -EFAULT;
4979                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4980                         goto out;
4981                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4982                 break;
4983         }
4984         case KVM_SET_PMU_EVENT_FILTER:
4985                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
4986                 break;
4987         default:
4988                 r = -ENOTTY;
4989         }
4990 out:
4991         return r;
4992 }
4993
4994 static void kvm_init_msr_list(void)
4995 {
4996         u32 dummy[2];
4997         unsigned i, j;
4998
4999         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
5000                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
5001                         continue;
5002
5003                 /*
5004                  * Even MSRs that are valid in the host may not be exposed
5005                  * to the guests in some cases.
5006                  */
5007                 switch (msrs_to_save[i]) {
5008                 case MSR_IA32_BNDCFGS:
5009                         if (!kvm_mpx_supported())
5010                                 continue;
5011                         break;
5012                 case MSR_TSC_AUX:
5013                         if (!kvm_x86_ops->rdtscp_supported())
5014                                 continue;
5015                         break;
5016                 case MSR_IA32_RTIT_CTL:
5017                 case MSR_IA32_RTIT_STATUS:
5018                         if (!kvm_x86_ops->pt_supported())
5019                                 continue;
5020                         break;
5021                 case MSR_IA32_RTIT_CR3_MATCH:
5022                         if (!kvm_x86_ops->pt_supported() ||
5023                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5024                                 continue;
5025                         break;
5026                 case MSR_IA32_RTIT_OUTPUT_BASE:
5027                 case MSR_IA32_RTIT_OUTPUT_MASK:
5028                         if (!kvm_x86_ops->pt_supported() ||
5029                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5030                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5031                                 continue;
5032                         break;
5033                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5034                         if (!kvm_x86_ops->pt_supported() ||
5035                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
5036                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5037                                 continue;
5038                         break;
5039                 }
5040                 default:
5041                         break;
5042                 }
5043
5044                 if (j < i)
5045                         msrs_to_save[j] = msrs_to_save[i];
5046                 j++;
5047         }
5048         num_msrs_to_save = j;
5049
5050         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5051                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5052                         continue;
5053
5054                 if (j < i)
5055                         emulated_msrs[j] = emulated_msrs[i];
5056                 j++;
5057         }
5058         num_emulated_msrs = j;
5059
5060         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5061                 struct kvm_msr_entry msr;
5062
5063                 msr.index = msr_based_features[i];
5064                 if (kvm_get_msr_feature(&msr))
5065                         continue;
5066
5067                 if (j < i)
5068                         msr_based_features[j] = msr_based_features[i];
5069                 j++;
5070         }
5071         num_msr_based_features = j;
5072 }
5073
5074 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5075                            const void *v)
5076 {
5077         int handled = 0;
5078         int n;
5079
5080         do {
5081                 n = min(len, 8);
5082                 if (!(lapic_in_kernel(vcpu) &&
5083                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5084                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5085                         break;
5086                 handled += n;
5087                 addr += n;
5088                 len -= n;
5089                 v += n;
5090         } while (len);
5091
5092         return handled;
5093 }
5094
5095 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5096 {
5097         int handled = 0;
5098         int n;
5099
5100         do {
5101                 n = min(len, 8);
5102                 if (!(lapic_in_kernel(vcpu) &&
5103                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5104                                          addr, n, v))
5105                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5106                         break;
5107                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5108                 handled += n;
5109                 addr += n;
5110                 len -= n;
5111                 v += n;
5112         } while (len);
5113
5114         return handled;
5115 }
5116
5117 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5118                         struct kvm_segment *var, int seg)
5119 {
5120         kvm_x86_ops->set_segment(vcpu, var, seg);
5121 }
5122
5123 void kvm_get_segment(struct kvm_vcpu *vcpu,
5124                      struct kvm_segment *var, int seg)
5125 {
5126         kvm_x86_ops->get_segment(vcpu, var, seg);
5127 }
5128
5129 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5130                            struct x86_exception *exception)
5131 {
5132         gpa_t t_gpa;
5133
5134         BUG_ON(!mmu_is_nested(vcpu));
5135
5136         /* NPT walks are always user-walks */
5137         access |= PFERR_USER_MASK;
5138         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5139
5140         return t_gpa;
5141 }
5142
5143 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5144                               struct x86_exception *exception)
5145 {
5146         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5147         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5148 }
5149
5150  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5151                                 struct x86_exception *exception)
5152 {
5153         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5154         access |= PFERR_FETCH_MASK;
5155         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5156 }
5157
5158 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5159                                struct x86_exception *exception)
5160 {
5161         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5162         access |= PFERR_WRITE_MASK;
5163         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5164 }
5165
5166 /* uses this to access any guest's mapped memory without checking CPL */
5167 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5168                                 struct x86_exception *exception)
5169 {
5170         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5171 }
5172
5173 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5174                                       struct kvm_vcpu *vcpu, u32 access,
5175                                       struct x86_exception *exception)
5176 {
5177         void *data = val;
5178         int r = X86EMUL_CONTINUE;
5179
5180         while (bytes) {
5181                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5182                                                             exception);
5183                 unsigned offset = addr & (PAGE_SIZE-1);
5184                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5185                 int ret;
5186
5187                 if (gpa == UNMAPPED_GVA)
5188                         return X86EMUL_PROPAGATE_FAULT;
5189                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5190                                                offset, toread);
5191                 if (ret < 0) {
5192                         r = X86EMUL_IO_NEEDED;
5193                         goto out;
5194                 }
5195
5196                 bytes -= toread;
5197                 data += toread;
5198                 addr += toread;
5199         }
5200 out:
5201         return r;
5202 }
5203
5204 /* used for instruction fetching */
5205 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5206                                 gva_t addr, void *val, unsigned int bytes,
5207                                 struct x86_exception *exception)
5208 {
5209         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5210         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5211         unsigned offset;
5212         int ret;
5213
5214         /* Inline kvm_read_guest_virt_helper for speed.  */
5215         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5216                                                     exception);
5217         if (unlikely(gpa == UNMAPPED_GVA))
5218                 return X86EMUL_PROPAGATE_FAULT;
5219
5220         offset = addr & (PAGE_SIZE-1);
5221         if (WARN_ON(offset + bytes > PAGE_SIZE))
5222                 bytes = (unsigned)PAGE_SIZE - offset;
5223         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5224                                        offset, bytes);
5225         if (unlikely(ret < 0))
5226                 return X86EMUL_IO_NEEDED;
5227
5228         return X86EMUL_CONTINUE;
5229 }
5230
5231 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5232                                gva_t addr, void *val, unsigned int bytes,
5233                                struct x86_exception *exception)
5234 {
5235         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5236
5237         /*
5238          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5239          * is returned, but our callers are not ready for that and they blindly
5240          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5241          * uninitialized kernel stack memory into cr2 and error code.
5242          */
5243         memset(exception, 0, sizeof(*exception));
5244         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5245                                           exception);
5246 }
5247 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5248
5249 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5250                              gva_t addr, void *val, unsigned int bytes,
5251                              struct x86_exception *exception, bool system)
5252 {
5253         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5254         u32 access = 0;
5255
5256         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5257                 access |= PFERR_USER_MASK;
5258
5259         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5260 }
5261
5262 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5263                 unsigned long addr, void *val, unsigned int bytes)
5264 {
5265         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5266         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5267
5268         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5269 }
5270
5271 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5272                                       struct kvm_vcpu *vcpu, u32 access,
5273                                       struct x86_exception *exception)
5274 {
5275         void *data = val;
5276         int r = X86EMUL_CONTINUE;
5277
5278         while (bytes) {
5279                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5280                                                              access,
5281                                                              exception);
5282                 unsigned offset = addr & (PAGE_SIZE-1);
5283                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5284                 int ret;
5285
5286                 if (gpa == UNMAPPED_GVA)
5287                         return X86EMUL_PROPAGATE_FAULT;
5288                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5289                 if (ret < 0) {
5290                         r = X86EMUL_IO_NEEDED;
5291                         goto out;
5292                 }
5293
5294                 bytes -= towrite;
5295                 data += towrite;
5296                 addr += towrite;
5297         }
5298 out:
5299         return r;
5300 }
5301
5302 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5303                               unsigned int bytes, struct x86_exception *exception,
5304                               bool system)
5305 {
5306         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5307         u32 access = PFERR_WRITE_MASK;
5308
5309         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5310                 access |= PFERR_USER_MASK;
5311
5312         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5313                                            access, exception);
5314 }
5315
5316 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5317                                 unsigned int bytes, struct x86_exception *exception)
5318 {
5319         /* kvm_write_guest_virt_system can pull in tons of pages. */
5320         vcpu->arch.l1tf_flush_l1d = true;
5321
5322         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5323                                            PFERR_WRITE_MASK, exception);
5324 }
5325 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5326
5327 int handle_ud(struct kvm_vcpu *vcpu)
5328 {
5329         int emul_type = EMULTYPE_TRAP_UD;
5330         enum emulation_result er;
5331         char sig[5]; /* ud2; .ascii "kvm" */
5332         struct x86_exception e;
5333
5334         if (force_emulation_prefix &&
5335             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5336                                 sig, sizeof(sig), &e) == 0 &&
5337             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5338                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5339                 emul_type = 0;
5340         }
5341
5342         er = kvm_emulate_instruction(vcpu, emul_type);
5343         if (er == EMULATE_USER_EXIT)
5344                 return 0;
5345         if (er != EMULATE_DONE)
5346                 kvm_queue_exception(vcpu, UD_VECTOR);
5347         return 1;
5348 }
5349 EXPORT_SYMBOL_GPL(handle_ud);
5350
5351 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5352                             gpa_t gpa, bool write)
5353 {
5354         /* For APIC access vmexit */
5355         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5356                 return 1;
5357
5358         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5359                 trace_vcpu_match_mmio(gva, gpa, write, true);
5360                 return 1;
5361         }
5362
5363         return 0;
5364 }
5365
5366 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5367                                 gpa_t *gpa, struct x86_exception *exception,
5368                                 bool write)
5369 {
5370         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5371                 | (write ? PFERR_WRITE_MASK : 0);
5372
5373         /*
5374          * currently PKRU is only applied to ept enabled guest so
5375          * there is no pkey in EPT page table for L1 guest or EPT
5376          * shadow page table for L2 guest.
5377          */
5378         if (vcpu_match_mmio_gva(vcpu, gva)
5379             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5380                                  vcpu->arch.mmio_access, 0, access)) {
5381                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5382                                         (gva & (PAGE_SIZE - 1));
5383                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5384                 return 1;
5385         }
5386
5387         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5388
5389         if (*gpa == UNMAPPED_GVA)
5390                 return -1;
5391
5392         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5393 }
5394
5395 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5396                         const void *val, int bytes)
5397 {
5398         int ret;
5399
5400         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5401         if (ret < 0)
5402                 return 0;
5403         kvm_page_track_write(vcpu, gpa, val, bytes);
5404         return 1;
5405 }
5406
5407 struct read_write_emulator_ops {
5408         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5409                                   int bytes);
5410         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5411                                   void *val, int bytes);
5412         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5413                                int bytes, void *val);
5414         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5415                                     void *val, int bytes);
5416         bool write;
5417 };
5418
5419 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5420 {
5421         if (vcpu->mmio_read_completed) {
5422                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5423                                vcpu->mmio_fragments[0].gpa, val);
5424                 vcpu->mmio_read_completed = 0;
5425                 return 1;
5426         }
5427
5428         return 0;
5429 }
5430
5431 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5432                         void *val, int bytes)
5433 {
5434         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5435 }
5436
5437 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5438                          void *val, int bytes)
5439 {
5440         return emulator_write_phys(vcpu, gpa, val, bytes);
5441 }
5442
5443 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5444 {
5445         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5446         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5447 }
5448
5449 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5450                           void *val, int bytes)
5451 {
5452         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5453         return X86EMUL_IO_NEEDED;
5454 }
5455
5456 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5457                            void *val, int bytes)
5458 {
5459         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5460
5461         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5462         return X86EMUL_CONTINUE;
5463 }
5464
5465 static const struct read_write_emulator_ops read_emultor = {
5466         .read_write_prepare = read_prepare,
5467         .read_write_emulate = read_emulate,
5468         .read_write_mmio = vcpu_mmio_read,
5469         .read_write_exit_mmio = read_exit_mmio,
5470 };
5471
5472 static const struct read_write_emulator_ops write_emultor = {
5473         .read_write_emulate = write_emulate,
5474         .read_write_mmio = write_mmio,
5475         .read_write_exit_mmio = write_exit_mmio,
5476         .write = true,
5477 };
5478
5479 static int emulator_read_write_onepage(unsigned long addr, void *val,
5480                                        unsigned int bytes,
5481                                        struct x86_exception *exception,
5482                                        struct kvm_vcpu *vcpu,
5483                                        const struct read_write_emulator_ops *ops)
5484 {
5485         gpa_t gpa;
5486         int handled, ret;
5487         bool write = ops->write;
5488         struct kvm_mmio_fragment *frag;
5489         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5490
5491         /*
5492          * If the exit was due to a NPF we may already have a GPA.
5493          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5494          * Note, this cannot be used on string operations since string
5495          * operation using rep will only have the initial GPA from the NPF
5496          * occurred.
5497          */
5498         if (vcpu->arch.gpa_available &&
5499             emulator_can_use_gpa(ctxt) &&
5500             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5501                 gpa = vcpu->arch.gpa_val;
5502                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5503         } else {
5504                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5505                 if (ret < 0)
5506                         return X86EMUL_PROPAGATE_FAULT;
5507         }
5508
5509         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5510                 return X86EMUL_CONTINUE;
5511
5512         /*
5513          * Is this MMIO handled locally?
5514          */
5515         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5516         if (handled == bytes)
5517                 return X86EMUL_CONTINUE;
5518
5519         gpa += handled;
5520         bytes -= handled;
5521         val += handled;
5522
5523         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5524         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5525         frag->gpa = gpa;
5526         frag->data = val;
5527         frag->len = bytes;
5528         return X86EMUL_CONTINUE;
5529 }
5530
5531 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5532                         unsigned long addr,
5533                         void *val, unsigned int bytes,
5534                         struct x86_exception *exception,
5535                         const struct read_write_emulator_ops *ops)
5536 {
5537         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5538         gpa_t gpa;
5539         int rc;
5540
5541         if (ops->read_write_prepare &&
5542                   ops->read_write_prepare(vcpu, val, bytes))
5543                 return X86EMUL_CONTINUE;
5544
5545         vcpu->mmio_nr_fragments = 0;
5546
5547         /* Crossing a page boundary? */
5548         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5549                 int now;
5550
5551                 now = -addr & ~PAGE_MASK;
5552                 rc = emulator_read_write_onepage(addr, val, now, exception,
5553                                                  vcpu, ops);
5554
5555                 if (rc != X86EMUL_CONTINUE)
5556                         return rc;
5557                 addr += now;
5558                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5559                         addr = (u32)addr;
5560                 val += now;
5561                 bytes -= now;
5562         }
5563
5564         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5565                                          vcpu, ops);
5566         if (rc != X86EMUL_CONTINUE)
5567                 return rc;
5568
5569         if (!vcpu->mmio_nr_fragments)
5570                 return rc;
5571
5572         gpa = vcpu->mmio_fragments[0].gpa;
5573
5574         vcpu->mmio_needed = 1;
5575         vcpu->mmio_cur_fragment = 0;
5576
5577         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5578         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5579         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5580         vcpu->run->mmio.phys_addr = gpa;
5581
5582         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5583 }
5584
5585 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5586                                   unsigned long addr,
5587                                   void *val,
5588                                   unsigned int bytes,
5589                                   struct x86_exception *exception)
5590 {
5591         return emulator_read_write(ctxt, addr, val, bytes,
5592                                    exception, &read_emultor);
5593 }
5594
5595 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5596                             unsigned long addr,
5597                             const void *val,
5598                             unsigned int bytes,
5599                             struct x86_exception *exception)
5600 {
5601         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5602                                    exception, &write_emultor);
5603 }
5604
5605 #define CMPXCHG_TYPE(t, ptr, old, new) \
5606         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5607
5608 #ifdef CONFIG_X86_64
5609 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5610 #else
5611 #  define CMPXCHG64(ptr, old, new) \
5612         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5613 #endif
5614
5615 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5616                                      unsigned long addr,
5617                                      const void *old,
5618                                      const void *new,
5619                                      unsigned int bytes,
5620                                      struct x86_exception *exception)
5621 {
5622         struct kvm_host_map map;
5623         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5624         gpa_t gpa;
5625         char *kaddr;
5626         bool exchanged;
5627
5628         /* guests cmpxchg8b have to be emulated atomically */
5629         if (bytes > 8 || (bytes & (bytes - 1)))
5630                 goto emul_write;
5631
5632         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5633
5634         if (gpa == UNMAPPED_GVA ||
5635             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5636                 goto emul_write;
5637
5638         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5639                 goto emul_write;
5640
5641         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5642                 goto emul_write;
5643
5644         kaddr = map.hva + offset_in_page(gpa);
5645
5646         switch (bytes) {
5647         case 1:
5648                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5649                 break;
5650         case 2:
5651                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5652                 break;
5653         case 4:
5654                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5655                 break;
5656         case 8:
5657                 exchanged = CMPXCHG64(kaddr, old, new);
5658                 break;
5659         default:
5660                 BUG();
5661         }
5662
5663         kvm_vcpu_unmap(vcpu, &map, true);
5664
5665         if (!exchanged)
5666                 return X86EMUL_CMPXCHG_FAILED;
5667
5668         kvm_page_track_write(vcpu, gpa, new, bytes);
5669
5670         return X86EMUL_CONTINUE;
5671
5672 emul_write:
5673         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5674
5675         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5676 }
5677
5678 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5679 {
5680         int r = 0, i;
5681
5682         for (i = 0; i < vcpu->arch.pio.count; i++) {
5683                 if (vcpu->arch.pio.in)
5684                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5685                                             vcpu->arch.pio.size, pd);
5686                 else
5687                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5688                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5689                                              pd);
5690                 if (r)
5691                         break;
5692                 pd += vcpu->arch.pio.size;
5693         }
5694         return r;
5695 }
5696
5697 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5698                                unsigned short port, void *val,
5699                                unsigned int count, bool in)
5700 {
5701         vcpu->arch.pio.port = port;
5702         vcpu->arch.pio.in = in;
5703         vcpu->arch.pio.count  = count;
5704         vcpu->arch.pio.size = size;
5705
5706         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5707                 vcpu->arch.pio.count = 0;
5708                 return 1;
5709         }
5710
5711         vcpu->run->exit_reason = KVM_EXIT_IO;
5712         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5713         vcpu->run->io.size = size;
5714         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5715         vcpu->run->io.count = count;
5716         vcpu->run->io.port = port;
5717
5718         return 0;
5719 }
5720
5721 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5722                                     int size, unsigned short port, void *val,
5723                                     unsigned int count)
5724 {
5725         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5726         int ret;
5727
5728         if (vcpu->arch.pio.count)
5729                 goto data_avail;
5730
5731         memset(vcpu->arch.pio_data, 0, size * count);
5732
5733         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5734         if (ret) {
5735 data_avail:
5736                 memcpy(val, vcpu->arch.pio_data, size * count);
5737                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5738                 vcpu->arch.pio.count = 0;
5739                 return 1;
5740         }
5741
5742         return 0;
5743 }
5744
5745 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5746                                      int size, unsigned short port,
5747                                      const void *val, unsigned int count)
5748 {
5749         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5750
5751         memcpy(vcpu->arch.pio_data, val, size * count);
5752         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5753         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5754 }
5755
5756 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5757 {
5758         return kvm_x86_ops->get_segment_base(vcpu, seg);
5759 }
5760
5761 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5762 {
5763         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5764 }
5765
5766 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5767 {
5768         if (!need_emulate_wbinvd(vcpu))
5769                 return X86EMUL_CONTINUE;
5770
5771         if (kvm_x86_ops->has_wbinvd_exit()) {
5772                 int cpu = get_cpu();
5773
5774                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5775                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5776                                 wbinvd_ipi, NULL, 1);
5777                 put_cpu();
5778                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5779         } else
5780                 wbinvd();
5781         return X86EMUL_CONTINUE;
5782 }
5783
5784 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5785 {
5786         kvm_emulate_wbinvd_noskip(vcpu);
5787         return kvm_skip_emulated_instruction(vcpu);
5788 }
5789 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5790
5791
5792
5793 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5794 {
5795         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5796 }
5797
5798 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5799                            unsigned long *dest)
5800 {
5801         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5802 }
5803
5804 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5805                            unsigned long value)
5806 {
5807
5808         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5809 }
5810
5811 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5812 {
5813         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5814 }
5815
5816 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5817 {
5818         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5819         unsigned long value;
5820
5821         switch (cr) {
5822         case 0:
5823                 value = kvm_read_cr0(vcpu);
5824                 break;
5825         case 2:
5826                 value = vcpu->arch.cr2;
5827                 break;
5828         case 3:
5829                 value = kvm_read_cr3(vcpu);
5830                 break;
5831         case 4:
5832                 value = kvm_read_cr4(vcpu);
5833                 break;
5834         case 8:
5835                 value = kvm_get_cr8(vcpu);
5836                 break;
5837         default:
5838                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5839                 return 0;
5840         }
5841
5842         return value;
5843 }
5844
5845 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5846 {
5847         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5848         int res = 0;
5849
5850         switch (cr) {
5851         case 0:
5852                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5853                 break;
5854         case 2:
5855                 vcpu->arch.cr2 = val;
5856                 break;
5857         case 3:
5858                 res = kvm_set_cr3(vcpu, val);
5859                 break;
5860         case 4:
5861                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5862                 break;
5863         case 8:
5864                 res = kvm_set_cr8(vcpu, val);
5865                 break;
5866         default:
5867                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5868                 res = -1;
5869         }
5870
5871         return res;
5872 }
5873
5874 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5875 {
5876         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5877 }
5878
5879 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5880 {
5881         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5882 }
5883
5884 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5885 {
5886         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5887 }
5888
5889 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5890 {
5891         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5892 }
5893
5894 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5895 {
5896         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5897 }
5898
5899 static unsigned long emulator_get_cached_segment_base(
5900         struct x86_emulate_ctxt *ctxt, int seg)
5901 {
5902         return get_segment_base(emul_to_vcpu(ctxt), seg);
5903 }
5904
5905 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5906                                  struct desc_struct *desc, u32 *base3,
5907                                  int seg)
5908 {
5909         struct kvm_segment var;
5910
5911         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5912         *selector = var.selector;
5913
5914         if (var.unusable) {
5915                 memset(desc, 0, sizeof(*desc));
5916                 if (base3)
5917                         *base3 = 0;
5918                 return false;
5919         }
5920
5921         if (var.g)
5922                 var.limit >>= 12;
5923         set_desc_limit(desc, var.limit);
5924         set_desc_base(desc, (unsigned long)var.base);
5925 #ifdef CONFIG_X86_64
5926         if (base3)
5927                 *base3 = var.base >> 32;
5928 #endif
5929         desc->type = var.type;
5930         desc->s = var.s;
5931         desc->dpl = var.dpl;
5932         desc->p = var.present;
5933         desc->avl = var.avl;
5934         desc->l = var.l;
5935         desc->d = var.db;
5936         desc->g = var.g;
5937
5938         return true;
5939 }
5940
5941 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5942                                  struct desc_struct *desc, u32 base3,
5943                                  int seg)
5944 {
5945         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5946         struct kvm_segment var;
5947
5948         var.selector = selector;
5949         var.base = get_desc_base(desc);
5950 #ifdef CONFIG_X86_64
5951         var.base |= ((u64)base3) << 32;
5952 #endif
5953         var.limit = get_desc_limit(desc);
5954         if (desc->g)
5955                 var.limit = (var.limit << 12) | 0xfff;
5956         var.type = desc->type;
5957         var.dpl = desc->dpl;
5958         var.db = desc->d;
5959         var.s = desc->s;
5960         var.l = desc->l;
5961         var.g = desc->g;
5962         var.avl = desc->avl;
5963         var.present = desc->p;
5964         var.unusable = !var.present;
5965         var.padding = 0;
5966
5967         kvm_set_segment(vcpu, &var, seg);
5968         return;
5969 }
5970
5971 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5972                             u32 msr_index, u64 *pdata)
5973 {
5974         struct msr_data msr;
5975         int r;
5976
5977         msr.index = msr_index;
5978         msr.host_initiated = false;
5979         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5980         if (r)
5981                 return r;
5982
5983         *pdata = msr.data;
5984         return 0;
5985 }
5986
5987 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5988                             u32 msr_index, u64 data)
5989 {
5990         struct msr_data msr;
5991
5992         msr.data = data;
5993         msr.index = msr_index;
5994         msr.host_initiated = false;
5995         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5996 }
5997
5998 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5999 {
6000         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6001
6002         return vcpu->arch.smbase;
6003 }
6004
6005 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6006 {
6007         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6008
6009         vcpu->arch.smbase = smbase;
6010 }
6011
6012 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6013                               u32 pmc)
6014 {
6015         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6016 }
6017
6018 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6019                              u32 pmc, u64 *pdata)
6020 {
6021         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6022 }
6023
6024 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6025 {
6026         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6027 }
6028
6029 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6030                               struct x86_instruction_info *info,
6031                               enum x86_intercept_stage stage)
6032 {
6033         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6034 }
6035
6036 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6037                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6038 {
6039         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6040 }
6041
6042 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6043 {
6044         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6045 }
6046
6047 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6048 {
6049         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6050 }
6051
6052 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6053 {
6054         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6055 }
6056
6057 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6058 {
6059         return emul_to_vcpu(ctxt)->arch.hflags;
6060 }
6061
6062 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6063 {
6064         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6065 }
6066
6067 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6068                                   const char *smstate)
6069 {
6070         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6071 }
6072
6073 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6074 {
6075         kvm_smm_changed(emul_to_vcpu(ctxt));
6076 }
6077
6078 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6079 {
6080         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6081 }
6082
6083 static const struct x86_emulate_ops emulate_ops = {
6084         .read_gpr            = emulator_read_gpr,
6085         .write_gpr           = emulator_write_gpr,
6086         .read_std            = emulator_read_std,
6087         .write_std           = emulator_write_std,
6088         .read_phys           = kvm_read_guest_phys_system,
6089         .fetch               = kvm_fetch_guest_virt,
6090         .read_emulated       = emulator_read_emulated,
6091         .write_emulated      = emulator_write_emulated,
6092         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6093         .invlpg              = emulator_invlpg,
6094         .pio_in_emulated     = emulator_pio_in_emulated,
6095         .pio_out_emulated    = emulator_pio_out_emulated,
6096         .get_segment         = emulator_get_segment,
6097         .set_segment         = emulator_set_segment,
6098         .get_cached_segment_base = emulator_get_cached_segment_base,
6099         .get_gdt             = emulator_get_gdt,
6100         .get_idt             = emulator_get_idt,
6101         .set_gdt             = emulator_set_gdt,
6102         .set_idt             = emulator_set_idt,
6103         .get_cr              = emulator_get_cr,
6104         .set_cr              = emulator_set_cr,
6105         .cpl                 = emulator_get_cpl,
6106         .get_dr              = emulator_get_dr,
6107         .set_dr              = emulator_set_dr,
6108         .get_smbase          = emulator_get_smbase,
6109         .set_smbase          = emulator_set_smbase,
6110         .set_msr             = emulator_set_msr,
6111         .get_msr             = emulator_get_msr,
6112         .check_pmc           = emulator_check_pmc,
6113         .read_pmc            = emulator_read_pmc,
6114         .halt                = emulator_halt,
6115         .wbinvd              = emulator_wbinvd,
6116         .fix_hypercall       = emulator_fix_hypercall,
6117         .intercept           = emulator_intercept,
6118         .get_cpuid           = emulator_get_cpuid,
6119         .set_nmi_mask        = emulator_set_nmi_mask,
6120         .get_hflags          = emulator_get_hflags,
6121         .set_hflags          = emulator_set_hflags,
6122         .pre_leave_smm       = emulator_pre_leave_smm,
6123         .post_leave_smm      = emulator_post_leave_smm,
6124         .set_xcr             = emulator_set_xcr,
6125 };
6126
6127 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6128 {
6129         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6130         /*
6131          * an sti; sti; sequence only disable interrupts for the first
6132          * instruction. So, if the last instruction, be it emulated or
6133          * not, left the system with the INT_STI flag enabled, it
6134          * means that the last instruction is an sti. We should not
6135          * leave the flag on in this case. The same goes for mov ss
6136          */
6137         if (int_shadow & mask)
6138                 mask = 0;
6139         if (unlikely(int_shadow || mask)) {
6140                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6141                 if (!mask)
6142                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6143         }
6144 }
6145
6146 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6147 {
6148         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6149         if (ctxt->exception.vector == PF_VECTOR)
6150                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6151
6152         if (ctxt->exception.error_code_valid)
6153                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6154                                       ctxt->exception.error_code);
6155         else
6156                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6157         return false;
6158 }
6159
6160 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6161 {
6162         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6163         int cs_db, cs_l;
6164
6165         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6166
6167         ctxt->eflags = kvm_get_rflags(vcpu);
6168         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6169
6170         ctxt->eip = kvm_rip_read(vcpu);
6171         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6172                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6173                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6174                      cs_db                              ? X86EMUL_MODE_PROT32 :
6175                                                           X86EMUL_MODE_PROT16;
6176         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6177         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6178         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6179
6180         init_decode_cache(ctxt);
6181         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6182 }
6183
6184 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6185 {
6186         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6187         int ret;
6188
6189         init_emulate_ctxt(vcpu);
6190
6191         ctxt->op_bytes = 2;
6192         ctxt->ad_bytes = 2;
6193         ctxt->_eip = ctxt->eip + inc_eip;
6194         ret = emulate_int_real(ctxt, irq);
6195
6196         if (ret != X86EMUL_CONTINUE)
6197                 return EMULATE_FAIL;
6198
6199         ctxt->eip = ctxt->_eip;
6200         kvm_rip_write(vcpu, ctxt->eip);
6201         kvm_set_rflags(vcpu, ctxt->eflags);
6202
6203         return EMULATE_DONE;
6204 }
6205 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6206
6207 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6208 {
6209         int r = EMULATE_DONE;
6210
6211         ++vcpu->stat.insn_emulation_fail;
6212         trace_kvm_emulate_insn_failed(vcpu);
6213
6214         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6215                 return EMULATE_FAIL;
6216
6217         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6218                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6219                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6220                 vcpu->run->internal.ndata = 0;
6221                 r = EMULATE_USER_EXIT;
6222         }
6223
6224         kvm_queue_exception(vcpu, UD_VECTOR);
6225
6226         return r;
6227 }
6228
6229 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6230                                   bool write_fault_to_shadow_pgtable,
6231                                   int emulation_type)
6232 {
6233         gpa_t gpa = cr2;
6234         kvm_pfn_t pfn;
6235
6236         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6237                 return false;
6238
6239         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6240                 return false;
6241
6242         if (!vcpu->arch.mmu->direct_map) {
6243                 /*
6244                  * Write permission should be allowed since only
6245                  * write access need to be emulated.
6246                  */
6247                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6248
6249                 /*
6250                  * If the mapping is invalid in guest, let cpu retry
6251                  * it to generate fault.
6252                  */
6253                 if (gpa == UNMAPPED_GVA)
6254                         return true;
6255         }
6256
6257         /*
6258          * Do not retry the unhandleable instruction if it faults on the
6259          * readonly host memory, otherwise it will goto a infinite loop:
6260          * retry instruction -> write #PF -> emulation fail -> retry
6261          * instruction -> ...
6262          */
6263         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6264
6265         /*
6266          * If the instruction failed on the error pfn, it can not be fixed,
6267          * report the error to userspace.
6268          */
6269         if (is_error_noslot_pfn(pfn))
6270                 return false;
6271
6272         kvm_release_pfn_clean(pfn);
6273
6274         /* The instructions are well-emulated on direct mmu. */
6275         if (vcpu->arch.mmu->direct_map) {
6276                 unsigned int indirect_shadow_pages;
6277
6278                 spin_lock(&vcpu->kvm->mmu_lock);
6279                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6280                 spin_unlock(&vcpu->kvm->mmu_lock);
6281
6282                 if (indirect_shadow_pages)
6283                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6284
6285                 return true;
6286         }
6287
6288         /*
6289          * if emulation was due to access to shadowed page table
6290          * and it failed try to unshadow page and re-enter the
6291          * guest to let CPU execute the instruction.
6292          */
6293         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6294
6295         /*
6296          * If the access faults on its page table, it can not
6297          * be fixed by unprotecting shadow page and it should
6298          * be reported to userspace.
6299          */
6300         return !write_fault_to_shadow_pgtable;
6301 }
6302
6303 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6304                               unsigned long cr2,  int emulation_type)
6305 {
6306         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6307         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6308
6309         last_retry_eip = vcpu->arch.last_retry_eip;
6310         last_retry_addr = vcpu->arch.last_retry_addr;
6311
6312         /*
6313          * If the emulation is caused by #PF and it is non-page_table
6314          * writing instruction, it means the VM-EXIT is caused by shadow
6315          * page protected, we can zap the shadow page and retry this
6316          * instruction directly.
6317          *
6318          * Note: if the guest uses a non-page-table modifying instruction
6319          * on the PDE that points to the instruction, then we will unmap
6320          * the instruction and go to an infinite loop. So, we cache the
6321          * last retried eip and the last fault address, if we meet the eip
6322          * and the address again, we can break out of the potential infinite
6323          * loop.
6324          */
6325         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6326
6327         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6328                 return false;
6329
6330         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6331                 return false;
6332
6333         if (x86_page_table_writing_insn(ctxt))
6334                 return false;
6335
6336         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6337                 return false;
6338
6339         vcpu->arch.last_retry_eip = ctxt->eip;
6340         vcpu->arch.last_retry_addr = cr2;
6341
6342         if (!vcpu->arch.mmu->direct_map)
6343                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6344
6345         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6346
6347         return true;
6348 }
6349
6350 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6351 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6352
6353 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6354 {
6355         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6356                 /* This is a good place to trace that we are exiting SMM.  */
6357                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6358
6359                 /* Process a latched INIT or SMI, if any.  */
6360                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6361         }
6362
6363         kvm_mmu_reset_context(vcpu);
6364 }
6365
6366 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6367                                 unsigned long *db)
6368 {
6369         u32 dr6 = 0;
6370         int i;
6371         u32 enable, rwlen;
6372
6373         enable = dr7;
6374         rwlen = dr7 >> 16;
6375         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6376                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6377                         dr6 |= (1 << i);
6378         return dr6;
6379 }
6380
6381 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6382 {
6383         struct kvm_run *kvm_run = vcpu->run;
6384
6385         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6386                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6387                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6388                 kvm_run->debug.arch.exception = DB_VECTOR;
6389                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6390                 *r = EMULATE_USER_EXIT;
6391         } else {
6392                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6393         }
6394 }
6395
6396 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6397 {
6398         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6399         int r;
6400
6401         r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6402         if (unlikely(r != EMULATE_DONE))
6403                 return 0;
6404
6405         /*
6406          * rflags is the old, "raw" value of the flags.  The new value has
6407          * not been saved yet.
6408          *
6409          * This is correct even for TF set by the guest, because "the
6410          * processor will not generate this exception after the instruction
6411          * that sets the TF flag".
6412          */
6413         if (unlikely(rflags & X86_EFLAGS_TF))
6414                 kvm_vcpu_do_singlestep(vcpu, &r);
6415         return r == EMULATE_DONE;
6416 }
6417 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6418
6419 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6420 {
6421         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6422             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6423                 struct kvm_run *kvm_run = vcpu->run;
6424                 unsigned long eip = kvm_get_linear_rip(vcpu);
6425                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6426                                            vcpu->arch.guest_debug_dr7,
6427                                            vcpu->arch.eff_db);
6428
6429                 if (dr6 != 0) {
6430                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6431                         kvm_run->debug.arch.pc = eip;
6432                         kvm_run->debug.arch.exception = DB_VECTOR;
6433                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6434                         *r = EMULATE_USER_EXIT;
6435                         return true;
6436                 }
6437         }
6438
6439         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6440             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6441                 unsigned long eip = kvm_get_linear_rip(vcpu);
6442                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6443                                            vcpu->arch.dr7,
6444                                            vcpu->arch.db);
6445
6446                 if (dr6 != 0) {
6447                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6448                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6449                         kvm_queue_exception(vcpu, DB_VECTOR);
6450                         *r = EMULATE_DONE;
6451                         return true;
6452                 }
6453         }
6454
6455         return false;
6456 }
6457
6458 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6459 {
6460         switch (ctxt->opcode_len) {
6461         case 1:
6462                 switch (ctxt->b) {
6463                 case 0xe4:      /* IN */
6464                 case 0xe5:
6465                 case 0xec:
6466                 case 0xed:
6467                 case 0xe6:      /* OUT */
6468                 case 0xe7:
6469                 case 0xee:
6470                 case 0xef:
6471                 case 0x6c:      /* INS */
6472                 case 0x6d:
6473                 case 0x6e:      /* OUTS */
6474                 case 0x6f:
6475                         return true;
6476                 }
6477                 break;
6478         case 2:
6479                 switch (ctxt->b) {
6480                 case 0x33:      /* RDPMC */
6481                         return true;
6482                 }
6483                 break;
6484         }
6485
6486         return false;
6487 }
6488
6489 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6490                             unsigned long cr2,
6491                             int emulation_type,
6492                             void *insn,
6493                             int insn_len)
6494 {
6495         int r;
6496         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6497         bool writeback = true;
6498         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6499
6500         vcpu->arch.l1tf_flush_l1d = true;
6501
6502         /*
6503          * Clear write_fault_to_shadow_pgtable here to ensure it is
6504          * never reused.
6505          */
6506         vcpu->arch.write_fault_to_shadow_pgtable = false;
6507         kvm_clear_exception_queue(vcpu);
6508
6509         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6510                 init_emulate_ctxt(vcpu);
6511
6512                 /*
6513                  * We will reenter on the same instruction since
6514                  * we do not set complete_userspace_io.  This does not
6515                  * handle watchpoints yet, those would be handled in
6516                  * the emulate_ops.
6517                  */
6518                 if (!(emulation_type & EMULTYPE_SKIP) &&
6519                     kvm_vcpu_check_breakpoint(vcpu, &r))
6520                         return r;
6521
6522                 ctxt->interruptibility = 0;
6523                 ctxt->have_exception = false;
6524                 ctxt->exception.vector = -1;
6525                 ctxt->perm_ok = false;
6526
6527                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6528
6529                 r = x86_decode_insn(ctxt, insn, insn_len);
6530
6531                 trace_kvm_emulate_insn_start(vcpu);
6532                 ++vcpu->stat.insn_emulation;
6533                 if (r != EMULATION_OK)  {
6534                         if (emulation_type & EMULTYPE_TRAP_UD)
6535                                 return EMULATE_FAIL;
6536                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6537                                                 emulation_type))
6538                                 return EMULATE_DONE;
6539                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6540                                 return EMULATE_DONE;
6541                         if (emulation_type & EMULTYPE_SKIP)
6542                                 return EMULATE_FAIL;
6543                         return handle_emulation_failure(vcpu, emulation_type);
6544                 }
6545         }
6546
6547         if ((emulation_type & EMULTYPE_VMWARE) &&
6548             !is_vmware_backdoor_opcode(ctxt))
6549                 return EMULATE_FAIL;
6550
6551         if (emulation_type & EMULTYPE_SKIP) {
6552                 kvm_rip_write(vcpu, ctxt->_eip);
6553                 if (ctxt->eflags & X86_EFLAGS_RF)
6554                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6555                 kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
6556                 return EMULATE_DONE;
6557         }
6558
6559         if (retry_instruction(ctxt, cr2, emulation_type))
6560                 return EMULATE_DONE;
6561
6562         /* this is needed for vmware backdoor interface to work since it
6563            changes registers values  during IO operation */
6564         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6565                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6566                 emulator_invalidate_register_cache(ctxt);
6567         }
6568
6569 restart:
6570         /* Save the faulting GPA (cr2) in the address field */
6571         ctxt->exception.address = cr2;
6572
6573         r = x86_emulate_insn(ctxt);
6574
6575         if (r == EMULATION_INTERCEPTED)
6576                 return EMULATE_DONE;
6577
6578         if (r == EMULATION_FAILED) {
6579                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6580                                         emulation_type))
6581                         return EMULATE_DONE;
6582
6583                 return handle_emulation_failure(vcpu, emulation_type);
6584         }
6585
6586         if (ctxt->have_exception) {
6587                 r = EMULATE_DONE;
6588                 if (inject_emulated_exception(vcpu))
6589                         return r;
6590         } else if (vcpu->arch.pio.count) {
6591                 if (!vcpu->arch.pio.in) {
6592                         /* FIXME: return into emulator if single-stepping.  */
6593                         vcpu->arch.pio.count = 0;
6594                 } else {
6595                         writeback = false;
6596                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6597                 }
6598                 r = EMULATE_USER_EXIT;
6599         } else if (vcpu->mmio_needed) {
6600                 if (!vcpu->mmio_is_write)
6601                         writeback = false;
6602                 r = EMULATE_USER_EXIT;
6603                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6604         } else if (r == EMULATION_RESTART)
6605                 goto restart;
6606         else
6607                 r = EMULATE_DONE;
6608
6609         if (writeback) {
6610                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6611                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6612                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6613                 kvm_rip_write(vcpu, ctxt->eip);
6614                 if (r == EMULATE_DONE && ctxt->tf)
6615                         kvm_vcpu_do_singlestep(vcpu, &r);
6616                 if (!ctxt->have_exception ||
6617                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6618                         __kvm_set_rflags(vcpu, ctxt->eflags);
6619
6620                 /*
6621                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6622                  * do nothing, and it will be requested again as soon as
6623                  * the shadow expires.  But we still need to check here,
6624                  * because POPF has no interrupt shadow.
6625                  */
6626                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6627                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6628         } else
6629                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6630
6631         return r;
6632 }
6633
6634 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6635 {
6636         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6637 }
6638 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6639
6640 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6641                                         void *insn, int insn_len)
6642 {
6643         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6644 }
6645 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6646
6647 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6648 {
6649         vcpu->arch.pio.count = 0;
6650         return 1;
6651 }
6652
6653 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6654 {
6655         vcpu->arch.pio.count = 0;
6656
6657         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6658                 return 1;
6659
6660         return kvm_skip_emulated_instruction(vcpu);
6661 }
6662
6663 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6664                             unsigned short port)
6665 {
6666         unsigned long val = kvm_rax_read(vcpu);
6667         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6668                                             size, port, &val, 1);
6669         if (ret)
6670                 return ret;
6671
6672         /*
6673          * Workaround userspace that relies on old KVM behavior of %rip being
6674          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6675          */
6676         if (port == 0x7e &&
6677             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6678                 vcpu->arch.complete_userspace_io =
6679                         complete_fast_pio_out_port_0x7e;
6680                 kvm_skip_emulated_instruction(vcpu);
6681         } else {
6682                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6683                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6684         }
6685         return 0;
6686 }
6687
6688 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6689 {
6690         unsigned long val;
6691
6692         /* We should only ever be called with arch.pio.count equal to 1 */
6693         BUG_ON(vcpu->arch.pio.count != 1);
6694
6695         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6696                 vcpu->arch.pio.count = 0;
6697                 return 1;
6698         }
6699
6700         /* For size less than 4 we merge, else we zero extend */
6701         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6702
6703         /*
6704          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6705          * the copy and tracing
6706          */
6707         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6708                                  vcpu->arch.pio.port, &val, 1);
6709         kvm_rax_write(vcpu, val);
6710
6711         return kvm_skip_emulated_instruction(vcpu);
6712 }
6713
6714 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6715                            unsigned short port)
6716 {
6717         unsigned long val;
6718         int ret;
6719
6720         /* For size less than 4 we merge, else we zero extend */
6721         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6722
6723         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6724                                        &val, 1);
6725         if (ret) {
6726                 kvm_rax_write(vcpu, val);
6727                 return ret;
6728         }
6729
6730         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6731         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6732
6733         return 0;
6734 }
6735
6736 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6737 {
6738         int ret;
6739
6740         if (in)
6741                 ret = kvm_fast_pio_in(vcpu, size, port);
6742         else
6743                 ret = kvm_fast_pio_out(vcpu, size, port);
6744         return ret && kvm_skip_emulated_instruction(vcpu);
6745 }
6746 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6747
6748 static int kvmclock_cpu_down_prep(unsigned int cpu)
6749 {
6750         __this_cpu_write(cpu_tsc_khz, 0);
6751         return 0;
6752 }
6753
6754 static void tsc_khz_changed(void *data)
6755 {
6756         struct cpufreq_freqs *freq = data;
6757         unsigned long khz = 0;
6758
6759         if (data)
6760                 khz = freq->new;
6761         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6762                 khz = cpufreq_quick_get(raw_smp_processor_id());
6763         if (!khz)
6764                 khz = tsc_khz;
6765         __this_cpu_write(cpu_tsc_khz, khz);
6766 }
6767
6768 #ifdef CONFIG_X86_64
6769 static void kvm_hyperv_tsc_notifier(void)
6770 {
6771         struct kvm *kvm;
6772         struct kvm_vcpu *vcpu;
6773         int cpu;
6774
6775         mutex_lock(&kvm_lock);
6776         list_for_each_entry(kvm, &vm_list, vm_list)
6777                 kvm_make_mclock_inprogress_request(kvm);
6778
6779         hyperv_stop_tsc_emulation();
6780
6781         /* TSC frequency always matches when on Hyper-V */
6782         for_each_present_cpu(cpu)
6783                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6784         kvm_max_guest_tsc_khz = tsc_khz;
6785
6786         list_for_each_entry(kvm, &vm_list, vm_list) {
6787                 struct kvm_arch *ka = &kvm->arch;
6788
6789                 spin_lock(&ka->pvclock_gtod_sync_lock);
6790
6791                 pvclock_update_vm_gtod_copy(kvm);
6792
6793                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6794                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6795
6796                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6797                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6798
6799                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6800         }
6801         mutex_unlock(&kvm_lock);
6802 }
6803 #endif
6804
6805 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6806 {
6807         struct kvm *kvm;
6808         struct kvm_vcpu *vcpu;
6809         int i, send_ipi = 0;
6810
6811         /*
6812          * We allow guests to temporarily run on slowing clocks,
6813          * provided we notify them after, or to run on accelerating
6814          * clocks, provided we notify them before.  Thus time never
6815          * goes backwards.
6816          *
6817          * However, we have a problem.  We can't atomically update
6818          * the frequency of a given CPU from this function; it is
6819          * merely a notifier, which can be called from any CPU.
6820          * Changing the TSC frequency at arbitrary points in time
6821          * requires a recomputation of local variables related to
6822          * the TSC for each VCPU.  We must flag these local variables
6823          * to be updated and be sure the update takes place with the
6824          * new frequency before any guests proceed.
6825          *
6826          * Unfortunately, the combination of hotplug CPU and frequency
6827          * change creates an intractable locking scenario; the order
6828          * of when these callouts happen is undefined with respect to
6829          * CPU hotplug, and they can race with each other.  As such,
6830          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6831          * undefined; you can actually have a CPU frequency change take
6832          * place in between the computation of X and the setting of the
6833          * variable.  To protect against this problem, all updates of
6834          * the per_cpu tsc_khz variable are done in an interrupt
6835          * protected IPI, and all callers wishing to update the value
6836          * must wait for a synchronous IPI to complete (which is trivial
6837          * if the caller is on the CPU already).  This establishes the
6838          * necessary total order on variable updates.
6839          *
6840          * Note that because a guest time update may take place
6841          * anytime after the setting of the VCPU's request bit, the
6842          * correct TSC value must be set before the request.  However,
6843          * to ensure the update actually makes it to any guest which
6844          * starts running in hardware virtualization between the set
6845          * and the acquisition of the spinlock, we must also ping the
6846          * CPU after setting the request bit.
6847          *
6848          */
6849
6850         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6851
6852         mutex_lock(&kvm_lock);
6853         list_for_each_entry(kvm, &vm_list, vm_list) {
6854                 kvm_for_each_vcpu(i, vcpu, kvm) {
6855                         if (vcpu->cpu != cpu)
6856                                 continue;
6857                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6858                         if (vcpu->cpu != raw_smp_processor_id())
6859                                 send_ipi = 1;
6860                 }
6861         }
6862         mutex_unlock(&kvm_lock);
6863
6864         if (freq->old < freq->new && send_ipi) {
6865                 /*
6866                  * We upscale the frequency.  Must make the guest
6867                  * doesn't see old kvmclock values while running with
6868                  * the new frequency, otherwise we risk the guest sees
6869                  * time go backwards.
6870                  *
6871                  * In case we update the frequency for another cpu
6872                  * (which might be in guest context) send an interrupt
6873                  * to kick the cpu out of guest context.  Next time
6874                  * guest context is entered kvmclock will be updated,
6875                  * so the guest will not see stale values.
6876                  */
6877                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6878         }
6879 }
6880
6881 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6882                                      void *data)
6883 {
6884         struct cpufreq_freqs *freq = data;
6885         int cpu;
6886
6887         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6888                 return 0;
6889         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6890                 return 0;
6891
6892         for_each_cpu(cpu, freq->policy->cpus)
6893                 __kvmclock_cpufreq_notifier(freq, cpu);
6894
6895         return 0;
6896 }
6897
6898 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6899         .notifier_call  = kvmclock_cpufreq_notifier
6900 };
6901
6902 static int kvmclock_cpu_online(unsigned int cpu)
6903 {
6904         tsc_khz_changed(NULL);
6905         return 0;
6906 }
6907
6908 static void kvm_timer_init(void)
6909 {
6910         max_tsc_khz = tsc_khz;
6911
6912         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6913 #ifdef CONFIG_CPU_FREQ
6914                 struct cpufreq_policy policy;
6915                 int cpu;
6916
6917                 memset(&policy, 0, sizeof(policy));
6918                 cpu = get_cpu();
6919                 cpufreq_get_policy(&policy, cpu);
6920                 if (policy.cpuinfo.max_freq)
6921                         max_tsc_khz = policy.cpuinfo.max_freq;
6922                 put_cpu();
6923 #endif
6924                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6925                                           CPUFREQ_TRANSITION_NOTIFIER);
6926         }
6927
6928         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6929                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6930 }
6931
6932 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6933 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6934
6935 int kvm_is_in_guest(void)
6936 {
6937         return __this_cpu_read(current_vcpu) != NULL;
6938 }
6939
6940 static int kvm_is_user_mode(void)
6941 {
6942         int user_mode = 3;
6943
6944         if (__this_cpu_read(current_vcpu))
6945                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6946
6947         return user_mode != 0;
6948 }
6949
6950 static unsigned long kvm_get_guest_ip(void)
6951 {
6952         unsigned long ip = 0;
6953
6954         if (__this_cpu_read(current_vcpu))
6955                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6956
6957         return ip;
6958 }
6959
6960 static void kvm_handle_intel_pt_intr(void)
6961 {
6962         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6963
6964         kvm_make_request(KVM_REQ_PMI, vcpu);
6965         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6966                         (unsigned long *)&vcpu->arch.pmu.global_status);
6967 }
6968
6969 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6970         .is_in_guest            = kvm_is_in_guest,
6971         .is_user_mode           = kvm_is_user_mode,
6972         .get_guest_ip           = kvm_get_guest_ip,
6973         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
6974 };
6975
6976 #ifdef CONFIG_X86_64
6977 static void pvclock_gtod_update_fn(struct work_struct *work)
6978 {
6979         struct kvm *kvm;
6980
6981         struct kvm_vcpu *vcpu;
6982         int i;
6983
6984         mutex_lock(&kvm_lock);
6985         list_for_each_entry(kvm, &vm_list, vm_list)
6986                 kvm_for_each_vcpu(i, vcpu, kvm)
6987                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6988         atomic_set(&kvm_guest_has_master_clock, 0);
6989         mutex_unlock(&kvm_lock);
6990 }
6991
6992 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6993
6994 /*
6995  * Notification about pvclock gtod data update.
6996  */
6997 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6998                                void *priv)
6999 {
7000         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7001         struct timekeeper *tk = priv;
7002
7003         update_pvclock_gtod(tk);
7004
7005         /* disable master clock if host does not trust, or does not
7006          * use, TSC based clocksource.
7007          */
7008         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7009             atomic_read(&kvm_guest_has_master_clock) != 0)
7010                 queue_work(system_long_wq, &pvclock_gtod_work);
7011
7012         return 0;
7013 }
7014
7015 static struct notifier_block pvclock_gtod_notifier = {
7016         .notifier_call = pvclock_gtod_notify,
7017 };
7018 #endif
7019
7020 int kvm_arch_init(void *opaque)
7021 {
7022         int r;
7023         struct kvm_x86_ops *ops = opaque;
7024
7025         if (kvm_x86_ops) {
7026                 printk(KERN_ERR "kvm: already loaded the other module\n");
7027                 r = -EEXIST;
7028                 goto out;
7029         }
7030
7031         if (!ops->cpu_has_kvm_support()) {
7032                 printk(KERN_ERR "kvm: no hardware support\n");
7033                 r = -EOPNOTSUPP;
7034                 goto out;
7035         }
7036         if (ops->disabled_by_bios()) {
7037                 printk(KERN_ERR "kvm: disabled by bios\n");
7038                 r = -EOPNOTSUPP;
7039                 goto out;
7040         }
7041
7042         /*
7043          * KVM explicitly assumes that the guest has an FPU and
7044          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7045          * vCPU's FPU state as a fxregs_state struct.
7046          */
7047         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7048                 printk(KERN_ERR "kvm: inadequate fpu\n");
7049                 r = -EOPNOTSUPP;
7050                 goto out;
7051         }
7052
7053         r = -ENOMEM;
7054         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7055                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7056                                           NULL);
7057         if (!x86_fpu_cache) {
7058                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7059                 goto out;
7060         }
7061
7062         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7063         if (!shared_msrs) {
7064                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7065                 goto out_free_x86_fpu_cache;
7066         }
7067
7068         r = kvm_mmu_module_init();
7069         if (r)
7070                 goto out_free_percpu;
7071
7072         kvm_x86_ops = ops;
7073
7074         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7075                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7076                         PT_PRESENT_MASK, 0, sme_me_mask);
7077         kvm_timer_init();
7078
7079         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7080
7081         if (boot_cpu_has(X86_FEATURE_XSAVE))
7082                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7083
7084         kvm_lapic_init();
7085         if (pi_inject_timer == -1)
7086                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7087 #ifdef CONFIG_X86_64
7088         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7089
7090         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7091                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7092 #endif
7093
7094         return 0;
7095
7096 out_free_percpu:
7097         free_percpu(shared_msrs);
7098 out_free_x86_fpu_cache:
7099         kmem_cache_destroy(x86_fpu_cache);
7100 out:
7101         return r;
7102 }
7103
7104 void kvm_arch_exit(void)
7105 {
7106 #ifdef CONFIG_X86_64
7107         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7108                 clear_hv_tscchange_cb();
7109 #endif
7110         kvm_lapic_exit();
7111         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7112
7113         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7114                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7115                                             CPUFREQ_TRANSITION_NOTIFIER);
7116         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7117 #ifdef CONFIG_X86_64
7118         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7119 #endif
7120         kvm_x86_ops = NULL;
7121         kvm_mmu_module_exit();
7122         free_percpu(shared_msrs);
7123         kmem_cache_destroy(x86_fpu_cache);
7124 }
7125
7126 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7127 {
7128         ++vcpu->stat.halt_exits;
7129         if (lapic_in_kernel(vcpu)) {
7130                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7131                 return 1;
7132         } else {
7133                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7134                 return 0;
7135         }
7136 }
7137 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7138
7139 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7140 {
7141         int ret = kvm_skip_emulated_instruction(vcpu);
7142         /*
7143          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7144          * KVM_EXIT_DEBUG here.
7145          */
7146         return kvm_vcpu_halt(vcpu) && ret;
7147 }
7148 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7149
7150 #ifdef CONFIG_X86_64
7151 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7152                                 unsigned long clock_type)
7153 {
7154         struct kvm_clock_pairing clock_pairing;
7155         struct timespec64 ts;
7156         u64 cycle;
7157         int ret;
7158
7159         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7160                 return -KVM_EOPNOTSUPP;
7161
7162         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7163                 return -KVM_EOPNOTSUPP;
7164
7165         clock_pairing.sec = ts.tv_sec;
7166         clock_pairing.nsec = ts.tv_nsec;
7167         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7168         clock_pairing.flags = 0;
7169         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7170
7171         ret = 0;
7172         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7173                             sizeof(struct kvm_clock_pairing)))
7174                 ret = -KVM_EFAULT;
7175
7176         return ret;
7177 }
7178 #endif
7179
7180 /*
7181  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7182  *
7183  * @apicid - apicid of vcpu to be kicked.
7184  */
7185 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7186 {
7187         struct kvm_lapic_irq lapic_irq;
7188
7189         lapic_irq.shorthand = 0;
7190         lapic_irq.dest_mode = 0;
7191         lapic_irq.level = 0;
7192         lapic_irq.dest_id = apicid;
7193         lapic_irq.msi_redir_hint = false;
7194
7195         lapic_irq.delivery_mode = APIC_DM_REMRD;
7196         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7197 }
7198
7199 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7200 {
7201         if (!lapic_in_kernel(vcpu)) {
7202                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7203                 return;
7204         }
7205         if (!vcpu->arch.apicv_active)
7206                 return;
7207
7208         vcpu->arch.apicv_active = false;
7209         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7210 }
7211
7212 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7213 {
7214         struct kvm_vcpu *target = NULL;
7215         struct kvm_apic_map *map;
7216
7217         rcu_read_lock();
7218         map = rcu_dereference(kvm->arch.apic_map);
7219
7220         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7221                 target = map->phys_map[dest_id]->vcpu;
7222
7223         rcu_read_unlock();
7224
7225         if (target && READ_ONCE(target->ready))
7226                 kvm_vcpu_yield_to(target);
7227 }
7228
7229 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7230 {
7231         unsigned long nr, a0, a1, a2, a3, ret;
7232         int op_64_bit;
7233
7234         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7235                 return kvm_hv_hypercall(vcpu);
7236
7237         nr = kvm_rax_read(vcpu);
7238         a0 = kvm_rbx_read(vcpu);
7239         a1 = kvm_rcx_read(vcpu);
7240         a2 = kvm_rdx_read(vcpu);
7241         a3 = kvm_rsi_read(vcpu);
7242
7243         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7244
7245         op_64_bit = is_64_bit_mode(vcpu);
7246         if (!op_64_bit) {
7247                 nr &= 0xFFFFFFFF;
7248                 a0 &= 0xFFFFFFFF;
7249                 a1 &= 0xFFFFFFFF;
7250                 a2 &= 0xFFFFFFFF;
7251                 a3 &= 0xFFFFFFFF;
7252         }
7253
7254         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7255                 ret = -KVM_EPERM;
7256                 goto out;
7257         }
7258
7259         switch (nr) {
7260         case KVM_HC_VAPIC_POLL_IRQ:
7261                 ret = 0;
7262                 break;
7263         case KVM_HC_KICK_CPU:
7264                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7265                 kvm_sched_yield(vcpu->kvm, a1);
7266                 ret = 0;
7267                 break;
7268 #ifdef CONFIG_X86_64
7269         case KVM_HC_CLOCK_PAIRING:
7270                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7271                 break;
7272 #endif
7273         case KVM_HC_SEND_IPI:
7274                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7275                 break;
7276         case KVM_HC_SCHED_YIELD:
7277                 kvm_sched_yield(vcpu->kvm, a0);
7278                 ret = 0;
7279                 break;
7280         default:
7281                 ret = -KVM_ENOSYS;
7282                 break;
7283         }
7284 out:
7285         if (!op_64_bit)
7286                 ret = (u32)ret;
7287         kvm_rax_write(vcpu, ret);
7288
7289         ++vcpu->stat.hypercalls;
7290         return kvm_skip_emulated_instruction(vcpu);
7291 }
7292 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7293
7294 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7295 {
7296         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7297         char instruction[3];
7298         unsigned long rip = kvm_rip_read(vcpu);
7299
7300         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7301
7302         return emulator_write_emulated(ctxt, rip, instruction, 3,
7303                 &ctxt->exception);
7304 }
7305
7306 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7307 {
7308         return vcpu->run->request_interrupt_window &&
7309                 likely(!pic_in_kernel(vcpu->kvm));
7310 }
7311
7312 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7313 {
7314         struct kvm_run *kvm_run = vcpu->run;
7315
7316         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7317         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7318         kvm_run->cr8 = kvm_get_cr8(vcpu);
7319         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7320         kvm_run->ready_for_interrupt_injection =
7321                 pic_in_kernel(vcpu->kvm) ||
7322                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7323 }
7324
7325 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7326 {
7327         int max_irr, tpr;
7328
7329         if (!kvm_x86_ops->update_cr8_intercept)
7330                 return;
7331
7332         if (!lapic_in_kernel(vcpu))
7333                 return;
7334
7335         if (vcpu->arch.apicv_active)
7336                 return;
7337
7338         if (!vcpu->arch.apic->vapic_addr)
7339                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7340         else
7341                 max_irr = -1;
7342
7343         if (max_irr != -1)
7344                 max_irr >>= 4;
7345
7346         tpr = kvm_lapic_get_cr8(vcpu);
7347
7348         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7349 }
7350
7351 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7352 {
7353         int r;
7354
7355         /* try to reinject previous events if any */
7356
7357         if (vcpu->arch.exception.injected)
7358                 kvm_x86_ops->queue_exception(vcpu);
7359         /*
7360          * Do not inject an NMI or interrupt if there is a pending
7361          * exception.  Exceptions and interrupts are recognized at
7362          * instruction boundaries, i.e. the start of an instruction.
7363          * Trap-like exceptions, e.g. #DB, have higher priority than
7364          * NMIs and interrupts, i.e. traps are recognized before an
7365          * NMI/interrupt that's pending on the same instruction.
7366          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7367          * priority, but are only generated (pended) during instruction
7368          * execution, i.e. a pending fault-like exception means the
7369          * fault occurred on the *previous* instruction and must be
7370          * serviced prior to recognizing any new events in order to
7371          * fully complete the previous instruction.
7372          */
7373         else if (!vcpu->arch.exception.pending) {
7374                 if (vcpu->arch.nmi_injected)
7375                         kvm_x86_ops->set_nmi(vcpu);
7376                 else if (vcpu->arch.interrupt.injected)
7377                         kvm_x86_ops->set_irq(vcpu);
7378         }
7379
7380         /*
7381          * Call check_nested_events() even if we reinjected a previous event
7382          * in order for caller to determine if it should require immediate-exit
7383          * from L2 to L1 due to pending L1 events which require exit
7384          * from L2 to L1.
7385          */
7386         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7387                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7388                 if (r != 0)
7389                         return r;
7390         }
7391
7392         /* try to inject new event if pending */
7393         if (vcpu->arch.exception.pending) {
7394                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7395                                         vcpu->arch.exception.has_error_code,
7396                                         vcpu->arch.exception.error_code);
7397
7398                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7399                 vcpu->arch.exception.pending = false;
7400                 vcpu->arch.exception.injected = true;
7401
7402                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7403                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7404                                              X86_EFLAGS_RF);
7405
7406                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7407                         /*
7408                          * This code assumes that nSVM doesn't use
7409                          * check_nested_events(). If it does, the
7410                          * DR6/DR7 changes should happen before L1
7411                          * gets a #VMEXIT for an intercepted #DB in
7412                          * L2.  (Under VMX, on the other hand, the
7413                          * DR6/DR7 changes should not happen in the
7414                          * event of a VM-exit to L1 for an intercepted
7415                          * #DB in L2.)
7416                          */
7417                         kvm_deliver_exception_payload(vcpu);
7418                         if (vcpu->arch.dr7 & DR7_GD) {
7419                                 vcpu->arch.dr7 &= ~DR7_GD;
7420                                 kvm_update_dr7(vcpu);
7421                         }
7422                 }
7423
7424                 kvm_x86_ops->queue_exception(vcpu);
7425         }
7426
7427         /* Don't consider new event if we re-injected an event */
7428         if (kvm_event_needs_reinjection(vcpu))
7429                 return 0;
7430
7431         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7432             kvm_x86_ops->smi_allowed(vcpu)) {
7433                 vcpu->arch.smi_pending = false;
7434                 ++vcpu->arch.smi_count;
7435                 enter_smm(vcpu);
7436         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7437                 --vcpu->arch.nmi_pending;
7438                 vcpu->arch.nmi_injected = true;
7439                 kvm_x86_ops->set_nmi(vcpu);
7440         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7441                 /*
7442                  * Because interrupts can be injected asynchronously, we are
7443                  * calling check_nested_events again here to avoid a race condition.
7444                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7445                  * proposal and current concerns.  Perhaps we should be setting
7446                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7447                  */
7448                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7449                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7450                         if (r != 0)
7451                                 return r;
7452                 }
7453                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7454                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7455                                             false);
7456                         kvm_x86_ops->set_irq(vcpu);
7457                 }
7458         }
7459
7460         return 0;
7461 }
7462
7463 static void process_nmi(struct kvm_vcpu *vcpu)
7464 {
7465         unsigned limit = 2;
7466
7467         /*
7468          * x86 is limited to one NMI running, and one NMI pending after it.
7469          * If an NMI is already in progress, limit further NMIs to just one.
7470          * Otherwise, allow two (and we'll inject the first one immediately).
7471          */
7472         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7473                 limit = 1;
7474
7475         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7476         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7477         kvm_make_request(KVM_REQ_EVENT, vcpu);
7478 }
7479
7480 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7481 {
7482         u32 flags = 0;
7483         flags |= seg->g       << 23;
7484         flags |= seg->db      << 22;
7485         flags |= seg->l       << 21;
7486         flags |= seg->avl     << 20;
7487         flags |= seg->present << 15;
7488         flags |= seg->dpl     << 13;
7489         flags |= seg->s       << 12;
7490         flags |= seg->type    << 8;
7491         return flags;
7492 }
7493
7494 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7495 {
7496         struct kvm_segment seg;
7497         int offset;
7498
7499         kvm_get_segment(vcpu, &seg, n);
7500         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7501
7502         if (n < 3)
7503                 offset = 0x7f84 + n * 12;
7504         else
7505                 offset = 0x7f2c + (n - 3) * 12;
7506
7507         put_smstate(u32, buf, offset + 8, seg.base);
7508         put_smstate(u32, buf, offset + 4, seg.limit);
7509         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7510 }
7511
7512 #ifdef CONFIG_X86_64
7513 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7514 {
7515         struct kvm_segment seg;
7516         int offset;
7517         u16 flags;
7518
7519         kvm_get_segment(vcpu, &seg, n);
7520         offset = 0x7e00 + n * 16;
7521
7522         flags = enter_smm_get_segment_flags(&seg) >> 8;
7523         put_smstate(u16, buf, offset, seg.selector);
7524         put_smstate(u16, buf, offset + 2, flags);
7525         put_smstate(u32, buf, offset + 4, seg.limit);
7526         put_smstate(u64, buf, offset + 8, seg.base);
7527 }
7528 #endif
7529
7530 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7531 {
7532         struct desc_ptr dt;
7533         struct kvm_segment seg;
7534         unsigned long val;
7535         int i;
7536
7537         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7538         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7539         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7540         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7541
7542         for (i = 0; i < 8; i++)
7543                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7544
7545         kvm_get_dr(vcpu, 6, &val);
7546         put_smstate(u32, buf, 0x7fcc, (u32)val);
7547         kvm_get_dr(vcpu, 7, &val);
7548         put_smstate(u32, buf, 0x7fc8, (u32)val);
7549
7550         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7551         put_smstate(u32, buf, 0x7fc4, seg.selector);
7552         put_smstate(u32, buf, 0x7f64, seg.base);
7553         put_smstate(u32, buf, 0x7f60, seg.limit);
7554         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7555
7556         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7557         put_smstate(u32, buf, 0x7fc0, seg.selector);
7558         put_smstate(u32, buf, 0x7f80, seg.base);
7559         put_smstate(u32, buf, 0x7f7c, seg.limit);
7560         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7561
7562         kvm_x86_ops->get_gdt(vcpu, &dt);
7563         put_smstate(u32, buf, 0x7f74, dt.address);
7564         put_smstate(u32, buf, 0x7f70, dt.size);
7565
7566         kvm_x86_ops->get_idt(vcpu, &dt);
7567         put_smstate(u32, buf, 0x7f58, dt.address);
7568         put_smstate(u32, buf, 0x7f54, dt.size);
7569
7570         for (i = 0; i < 6; i++)
7571                 enter_smm_save_seg_32(vcpu, buf, i);
7572
7573         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7574
7575         /* revision id */
7576         put_smstate(u32, buf, 0x7efc, 0x00020000);
7577         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7578 }
7579
7580 #ifdef CONFIG_X86_64
7581 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7582 {
7583         struct desc_ptr dt;
7584         struct kvm_segment seg;
7585         unsigned long val;
7586         int i;
7587
7588         for (i = 0; i < 16; i++)
7589                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7590
7591         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7592         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7593
7594         kvm_get_dr(vcpu, 6, &val);
7595         put_smstate(u64, buf, 0x7f68, val);
7596         kvm_get_dr(vcpu, 7, &val);
7597         put_smstate(u64, buf, 0x7f60, val);
7598
7599         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7600         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7601         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7602
7603         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7604
7605         /* revision id */
7606         put_smstate(u32, buf, 0x7efc, 0x00020064);
7607
7608         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7609
7610         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7611         put_smstate(u16, buf, 0x7e90, seg.selector);
7612         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7613         put_smstate(u32, buf, 0x7e94, seg.limit);
7614         put_smstate(u64, buf, 0x7e98, seg.base);
7615
7616         kvm_x86_ops->get_idt(vcpu, &dt);
7617         put_smstate(u32, buf, 0x7e84, dt.size);
7618         put_smstate(u64, buf, 0x7e88, dt.address);
7619
7620         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7621         put_smstate(u16, buf, 0x7e70, seg.selector);
7622         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7623         put_smstate(u32, buf, 0x7e74, seg.limit);
7624         put_smstate(u64, buf, 0x7e78, seg.base);
7625
7626         kvm_x86_ops->get_gdt(vcpu, &dt);
7627         put_smstate(u32, buf, 0x7e64, dt.size);
7628         put_smstate(u64, buf, 0x7e68, dt.address);
7629
7630         for (i = 0; i < 6; i++)
7631                 enter_smm_save_seg_64(vcpu, buf, i);
7632 }
7633 #endif
7634
7635 static void enter_smm(struct kvm_vcpu *vcpu)
7636 {
7637         struct kvm_segment cs, ds;
7638         struct desc_ptr dt;
7639         char buf[512];
7640         u32 cr0;
7641
7642         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7643         memset(buf, 0, 512);
7644 #ifdef CONFIG_X86_64
7645         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7646                 enter_smm_save_state_64(vcpu, buf);
7647         else
7648 #endif
7649                 enter_smm_save_state_32(vcpu, buf);
7650
7651         /*
7652          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7653          * vCPU state (e.g. leave guest mode) after we've saved the state into
7654          * the SMM state-save area.
7655          */
7656         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7657
7658         vcpu->arch.hflags |= HF_SMM_MASK;
7659         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7660
7661         if (kvm_x86_ops->get_nmi_mask(vcpu))
7662                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7663         else
7664                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7665
7666         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7667         kvm_rip_write(vcpu, 0x8000);
7668
7669         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7670         kvm_x86_ops->set_cr0(vcpu, cr0);
7671         vcpu->arch.cr0 = cr0;
7672
7673         kvm_x86_ops->set_cr4(vcpu, 0);
7674
7675         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7676         dt.address = dt.size = 0;
7677         kvm_x86_ops->set_idt(vcpu, &dt);
7678
7679         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7680
7681         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7682         cs.base = vcpu->arch.smbase;
7683
7684         ds.selector = 0;
7685         ds.base = 0;
7686
7687         cs.limit    = ds.limit = 0xffffffff;
7688         cs.type     = ds.type = 0x3;
7689         cs.dpl      = ds.dpl = 0;
7690         cs.db       = ds.db = 0;
7691         cs.s        = ds.s = 1;
7692         cs.l        = ds.l = 0;
7693         cs.g        = ds.g = 1;
7694         cs.avl      = ds.avl = 0;
7695         cs.present  = ds.present = 1;
7696         cs.unusable = ds.unusable = 0;
7697         cs.padding  = ds.padding = 0;
7698
7699         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7700         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7701         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7702         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7703         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7704         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7705
7706 #ifdef CONFIG_X86_64
7707         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7708                 kvm_x86_ops->set_efer(vcpu, 0);
7709 #endif
7710
7711         kvm_update_cpuid(vcpu);
7712         kvm_mmu_reset_context(vcpu);
7713 }
7714
7715 static void process_smi(struct kvm_vcpu *vcpu)
7716 {
7717         vcpu->arch.smi_pending = true;
7718         kvm_make_request(KVM_REQ_EVENT, vcpu);
7719 }
7720
7721 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7722 {
7723         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7724 }
7725
7726 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7727 {
7728         if (!kvm_apic_present(vcpu))
7729                 return;
7730
7731         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7732
7733         if (irqchip_split(vcpu->kvm))
7734                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7735         else {
7736                 if (vcpu->arch.apicv_active)
7737                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7738                 if (ioapic_in_kernel(vcpu->kvm))
7739                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7740         }
7741
7742         if (is_guest_mode(vcpu))
7743                 vcpu->arch.load_eoi_exitmap_pending = true;
7744         else
7745                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7746 }
7747
7748 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7749 {
7750         u64 eoi_exit_bitmap[4];
7751
7752         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7753                 return;
7754
7755         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7756                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7757         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7758 }
7759
7760 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7761                 unsigned long start, unsigned long end,
7762                 bool blockable)
7763 {
7764         unsigned long apic_address;
7765
7766         /*
7767          * The physical address of apic access page is stored in the VMCS.
7768          * Update it when it becomes invalid.
7769          */
7770         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7771         if (start <= apic_address && apic_address < end)
7772                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7773
7774         return 0;
7775 }
7776
7777 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7778 {
7779         struct page *page = NULL;
7780
7781         if (!lapic_in_kernel(vcpu))
7782                 return;
7783
7784         if (!kvm_x86_ops->set_apic_access_page_addr)
7785                 return;
7786
7787         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7788         if (is_error_page(page))
7789                 return;
7790         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7791
7792         /*
7793          * Do not pin apic access page in memory, the MMU notifier
7794          * will call us again if it is migrated or swapped out.
7795          */
7796         put_page(page);
7797 }
7798 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7799
7800 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7801 {
7802         smp_send_reschedule(vcpu->cpu);
7803 }
7804 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7805
7806 /*
7807  * Returns 1 to let vcpu_run() continue the guest execution loop without
7808  * exiting to the userspace.  Otherwise, the value will be returned to the
7809  * userspace.
7810  */
7811 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7812 {
7813         int r;
7814         bool req_int_win =
7815                 dm_request_for_irq_injection(vcpu) &&
7816                 kvm_cpu_accept_dm_intr(vcpu);
7817
7818         bool req_immediate_exit = false;
7819
7820         if (kvm_request_pending(vcpu)) {
7821                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7822                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7823                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7824                         kvm_mmu_unload(vcpu);
7825                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7826                         __kvm_migrate_timers(vcpu);
7827                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7828                         kvm_gen_update_masterclock(vcpu->kvm);
7829                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7830                         kvm_gen_kvmclock_update(vcpu);
7831                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7832                         r = kvm_guest_time_update(vcpu);
7833                         if (unlikely(r))
7834                                 goto out;
7835                 }
7836                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7837                         kvm_mmu_sync_roots(vcpu);
7838                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7839                         kvm_mmu_load_cr3(vcpu);
7840                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7841                         kvm_vcpu_flush_tlb(vcpu, true);
7842                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7843                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7844                         r = 0;
7845                         goto out;
7846                 }
7847                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7848                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7849                         vcpu->mmio_needed = 0;
7850                         r = 0;
7851                         goto out;
7852                 }
7853                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7854                         /* Page is swapped out. Do synthetic halt */
7855                         vcpu->arch.apf.halted = true;
7856                         r = 1;
7857                         goto out;
7858                 }
7859                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7860                         record_steal_time(vcpu);
7861                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7862                         process_smi(vcpu);
7863                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7864                         process_nmi(vcpu);
7865                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7866                         kvm_pmu_handle_event(vcpu);
7867                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7868                         kvm_pmu_deliver_pmi(vcpu);
7869                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7870                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7871                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7872                                      vcpu->arch.ioapic_handled_vectors)) {
7873                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7874                                 vcpu->run->eoi.vector =
7875                                                 vcpu->arch.pending_ioapic_eoi;
7876                                 r = 0;
7877                                 goto out;
7878                         }
7879                 }
7880                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7881                         vcpu_scan_ioapic(vcpu);
7882                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7883                         vcpu_load_eoi_exitmap(vcpu);
7884                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7885                         kvm_vcpu_reload_apic_access_page(vcpu);
7886                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7887                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7888                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7889                         r = 0;
7890                         goto out;
7891                 }
7892                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7893                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7894                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7895                         r = 0;
7896                         goto out;
7897                 }
7898                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7899                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7900                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7901                         r = 0;
7902                         goto out;
7903                 }
7904
7905                 /*
7906                  * KVM_REQ_HV_STIMER has to be processed after
7907                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7908                  * depend on the guest clock being up-to-date
7909                  */
7910                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7911                         kvm_hv_process_stimers(vcpu);
7912         }
7913
7914         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7915                 ++vcpu->stat.req_event;
7916                 kvm_apic_accept_events(vcpu);
7917                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7918                         r = 1;
7919                         goto out;
7920                 }
7921
7922                 if (inject_pending_event(vcpu, req_int_win) != 0)
7923                         req_immediate_exit = true;
7924                 else {
7925                         /* Enable SMI/NMI/IRQ window open exits if needed.
7926                          *
7927                          * SMIs have three cases:
7928                          * 1) They can be nested, and then there is nothing to
7929                          *    do here because RSM will cause a vmexit anyway.
7930                          * 2) There is an ISA-specific reason why SMI cannot be
7931                          *    injected, and the moment when this changes can be
7932                          *    intercepted.
7933                          * 3) Or the SMI can be pending because
7934                          *    inject_pending_event has completed the injection
7935                          *    of an IRQ or NMI from the previous vmexit, and
7936                          *    then we request an immediate exit to inject the
7937                          *    SMI.
7938                          */
7939                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7940                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7941                                         req_immediate_exit = true;
7942                         if (vcpu->arch.nmi_pending)
7943                                 kvm_x86_ops->enable_nmi_window(vcpu);
7944                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7945                                 kvm_x86_ops->enable_irq_window(vcpu);
7946                         WARN_ON(vcpu->arch.exception.pending);
7947                 }
7948
7949                 if (kvm_lapic_enabled(vcpu)) {
7950                         update_cr8_intercept(vcpu);
7951                         kvm_lapic_sync_to_vapic(vcpu);
7952                 }
7953         }
7954
7955         r = kvm_mmu_reload(vcpu);
7956         if (unlikely(r)) {
7957                 goto cancel_injection;
7958         }
7959
7960         preempt_disable();
7961
7962         kvm_x86_ops->prepare_guest_switch(vcpu);
7963
7964         /*
7965          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7966          * IPI are then delayed after guest entry, which ensures that they
7967          * result in virtual interrupt delivery.
7968          */
7969         local_irq_disable();
7970         vcpu->mode = IN_GUEST_MODE;
7971
7972         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7973
7974         /*
7975          * 1) We should set ->mode before checking ->requests.  Please see
7976          * the comment in kvm_vcpu_exiting_guest_mode().
7977          *
7978          * 2) For APICv, we should set ->mode before checking PID.ON. This
7979          * pairs with the memory barrier implicit in pi_test_and_set_on
7980          * (see vmx_deliver_posted_interrupt).
7981          *
7982          * 3) This also orders the write to mode from any reads to the page
7983          * tables done while the VCPU is running.  Please see the comment
7984          * in kvm_flush_remote_tlbs.
7985          */
7986         smp_mb__after_srcu_read_unlock();
7987
7988         /*
7989          * This handles the case where a posted interrupt was
7990          * notified with kvm_vcpu_kick.
7991          */
7992         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7993                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7994
7995         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7996             || need_resched() || signal_pending(current)) {
7997                 vcpu->mode = OUTSIDE_GUEST_MODE;
7998                 smp_wmb();
7999                 local_irq_enable();
8000                 preempt_enable();
8001                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8002                 r = 1;
8003                 goto cancel_injection;
8004         }
8005
8006         if (req_immediate_exit) {
8007                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8008                 kvm_x86_ops->request_immediate_exit(vcpu);
8009         }
8010
8011         trace_kvm_entry(vcpu->vcpu_id);
8012         guest_enter_irqoff();
8013
8014         /* The preempt notifier should have taken care of the FPU already.  */
8015         WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8016
8017         if (unlikely(vcpu->arch.switch_db_regs)) {
8018                 set_debugreg(0, 7);
8019                 set_debugreg(vcpu->arch.eff_db[0], 0);
8020                 set_debugreg(vcpu->arch.eff_db[1], 1);
8021                 set_debugreg(vcpu->arch.eff_db[2], 2);
8022                 set_debugreg(vcpu->arch.eff_db[3], 3);
8023                 set_debugreg(vcpu->arch.dr6, 6);
8024                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8025         }
8026
8027         kvm_x86_ops->run(vcpu);
8028
8029         /*
8030          * Do this here before restoring debug registers on the host.  And
8031          * since we do this before handling the vmexit, a DR access vmexit
8032          * can (a) read the correct value of the debug registers, (b) set
8033          * KVM_DEBUGREG_WONT_EXIT again.
8034          */
8035         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8036                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8037                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8038                 kvm_update_dr0123(vcpu);
8039                 kvm_update_dr6(vcpu);
8040                 kvm_update_dr7(vcpu);
8041                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8042         }
8043
8044         /*
8045          * If the guest has used debug registers, at least dr7
8046          * will be disabled while returning to the host.
8047          * If we don't have active breakpoints in the host, we don't
8048          * care about the messed up debug address registers. But if
8049          * we have some of them active, restore the old state.
8050          */
8051         if (hw_breakpoint_active())
8052                 hw_breakpoint_restore();
8053
8054         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8055
8056         vcpu->mode = OUTSIDE_GUEST_MODE;
8057         smp_wmb();
8058
8059         kvm_x86_ops->handle_exit_irqoff(vcpu);
8060
8061         /*
8062          * Consume any pending interrupts, including the possible source of
8063          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8064          * An instruction is required after local_irq_enable() to fully unblock
8065          * interrupts on processors that implement an interrupt shadow, the
8066          * stat.exits increment will do nicely.
8067          */
8068         kvm_before_interrupt(vcpu);
8069         local_irq_enable();
8070         ++vcpu->stat.exits;
8071         local_irq_disable();
8072         kvm_after_interrupt(vcpu);
8073
8074         guest_exit_irqoff();
8075         if (lapic_in_kernel(vcpu)) {
8076                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8077                 if (delta != S64_MIN) {
8078                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8079                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8080                 }
8081         }
8082
8083         local_irq_enable();
8084         preempt_enable();
8085
8086         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8087
8088         /*
8089          * Profile KVM exit RIPs:
8090          */
8091         if (unlikely(prof_on == KVM_PROFILING)) {
8092                 unsigned long rip = kvm_rip_read(vcpu);
8093                 profile_hit(KVM_PROFILING, (void *)rip);
8094         }
8095
8096         if (unlikely(vcpu->arch.tsc_always_catchup))
8097                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8098
8099         if (vcpu->arch.apic_attention)
8100                 kvm_lapic_sync_from_vapic(vcpu);
8101
8102         vcpu->arch.gpa_available = false;
8103         r = kvm_x86_ops->handle_exit(vcpu);
8104         return r;
8105
8106 cancel_injection:
8107         kvm_x86_ops->cancel_injection(vcpu);
8108         if (unlikely(vcpu->arch.apic_attention))
8109                 kvm_lapic_sync_from_vapic(vcpu);
8110 out:
8111         return r;
8112 }
8113
8114 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8115 {
8116         if (!kvm_arch_vcpu_runnable(vcpu) &&
8117             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8118                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8119                 kvm_vcpu_block(vcpu);
8120                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8121
8122                 if (kvm_x86_ops->post_block)
8123                         kvm_x86_ops->post_block(vcpu);
8124
8125                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8126                         return 1;
8127         }
8128
8129         kvm_apic_accept_events(vcpu);
8130         switch(vcpu->arch.mp_state) {
8131         case KVM_MP_STATE_HALTED:
8132                 vcpu->arch.pv.pv_unhalted = false;
8133                 vcpu->arch.mp_state =
8134                         KVM_MP_STATE_RUNNABLE;
8135                 /* fall through */
8136         case KVM_MP_STATE_RUNNABLE:
8137                 vcpu->arch.apf.halted = false;
8138                 break;
8139         case KVM_MP_STATE_INIT_RECEIVED:
8140                 break;
8141         default:
8142                 return -EINTR;
8143                 break;
8144         }
8145         return 1;
8146 }
8147
8148 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8149 {
8150         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8151                 kvm_x86_ops->check_nested_events(vcpu, false);
8152
8153         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8154                 !vcpu->arch.apf.halted);
8155 }
8156
8157 static int vcpu_run(struct kvm_vcpu *vcpu)
8158 {
8159         int r;
8160         struct kvm *kvm = vcpu->kvm;
8161
8162         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8163         vcpu->arch.l1tf_flush_l1d = true;
8164
8165         for (;;) {
8166                 if (kvm_vcpu_running(vcpu)) {
8167                         r = vcpu_enter_guest(vcpu);
8168                 } else {
8169                         r = vcpu_block(kvm, vcpu);
8170                 }
8171
8172                 if (r <= 0)
8173                         break;
8174
8175                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8176                 if (kvm_cpu_has_pending_timer(vcpu))
8177                         kvm_inject_pending_timer_irqs(vcpu);
8178
8179                 if (dm_request_for_irq_injection(vcpu) &&
8180                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8181                         r = 0;
8182                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8183                         ++vcpu->stat.request_irq_exits;
8184                         break;
8185                 }
8186
8187                 kvm_check_async_pf_completion(vcpu);
8188
8189                 if (signal_pending(current)) {
8190                         r = -EINTR;
8191                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8192                         ++vcpu->stat.signal_exits;
8193                         break;
8194                 }
8195                 if (need_resched()) {
8196                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8197                         cond_resched();
8198                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8199                 }
8200         }
8201
8202         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8203
8204         return r;
8205 }
8206
8207 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8208 {
8209         int r;
8210         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8211         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8212         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8213         if (r != EMULATE_DONE)
8214                 return 0;
8215         return 1;
8216 }
8217
8218 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8219 {
8220         BUG_ON(!vcpu->arch.pio.count);
8221
8222         return complete_emulated_io(vcpu);
8223 }
8224
8225 /*
8226  * Implements the following, as a state machine:
8227  *
8228  * read:
8229  *   for each fragment
8230  *     for each mmio piece in the fragment
8231  *       write gpa, len
8232  *       exit
8233  *       copy data
8234  *   execute insn
8235  *
8236  * write:
8237  *   for each fragment
8238  *     for each mmio piece in the fragment
8239  *       write gpa, len
8240  *       copy data
8241  *       exit
8242  */
8243 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8244 {
8245         struct kvm_run *run = vcpu->run;
8246         struct kvm_mmio_fragment *frag;
8247         unsigned len;
8248
8249         BUG_ON(!vcpu->mmio_needed);
8250
8251         /* Complete previous fragment */
8252         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8253         len = min(8u, frag->len);
8254         if (!vcpu->mmio_is_write)
8255                 memcpy(frag->data, run->mmio.data, len);
8256
8257         if (frag->len <= 8) {
8258                 /* Switch to the next fragment. */
8259                 frag++;
8260                 vcpu->mmio_cur_fragment++;
8261         } else {
8262                 /* Go forward to the next mmio piece. */
8263                 frag->data += len;
8264                 frag->gpa += len;
8265                 frag->len -= len;
8266         }
8267
8268         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8269                 vcpu->mmio_needed = 0;
8270
8271                 /* FIXME: return into emulator if single-stepping.  */
8272                 if (vcpu->mmio_is_write)
8273                         return 1;
8274                 vcpu->mmio_read_completed = 1;
8275                 return complete_emulated_io(vcpu);
8276         }
8277
8278         run->exit_reason = KVM_EXIT_MMIO;
8279         run->mmio.phys_addr = frag->gpa;
8280         if (vcpu->mmio_is_write)
8281                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8282         run->mmio.len = min(8u, frag->len);
8283         run->mmio.is_write = vcpu->mmio_is_write;
8284         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8285         return 0;
8286 }
8287
8288 /* Swap (qemu) user FPU context for the guest FPU context. */
8289 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8290 {
8291         fpregs_lock();
8292
8293         copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8294         /* PKRU is separately restored in kvm_x86_ops->run.  */
8295         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8296                                 ~XFEATURE_MASK_PKRU);
8297
8298         fpregs_mark_activate();
8299         fpregs_unlock();
8300
8301         trace_kvm_fpu(1);
8302 }
8303
8304 /* When vcpu_run ends, restore user space FPU context. */
8305 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8306 {
8307         fpregs_lock();
8308
8309         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8310         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8311
8312         fpregs_mark_activate();
8313         fpregs_unlock();
8314
8315         ++vcpu->stat.fpu_reload;
8316         trace_kvm_fpu(0);
8317 }
8318
8319 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8320 {
8321         int r;
8322
8323         vcpu_load(vcpu);
8324         kvm_sigset_activate(vcpu);
8325         kvm_load_guest_fpu(vcpu);
8326
8327         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8328                 if (kvm_run->immediate_exit) {
8329                         r = -EINTR;
8330                         goto out;
8331                 }
8332                 kvm_vcpu_block(vcpu);
8333                 kvm_apic_accept_events(vcpu);
8334                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8335                 r = -EAGAIN;
8336                 if (signal_pending(current)) {
8337                         r = -EINTR;
8338                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8339                         ++vcpu->stat.signal_exits;
8340                 }
8341                 goto out;
8342         }
8343
8344         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8345                 r = -EINVAL;
8346                 goto out;
8347         }
8348
8349         if (vcpu->run->kvm_dirty_regs) {
8350                 r = sync_regs(vcpu);
8351                 if (r != 0)
8352                         goto out;
8353         }
8354
8355         /* re-sync apic's tpr */
8356         if (!lapic_in_kernel(vcpu)) {
8357                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8358                         r = -EINVAL;
8359                         goto out;
8360                 }
8361         }
8362
8363         if (unlikely(vcpu->arch.complete_userspace_io)) {
8364                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8365                 vcpu->arch.complete_userspace_io = NULL;
8366                 r = cui(vcpu);
8367                 if (r <= 0)
8368                         goto out;
8369         } else
8370                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8371
8372         if (kvm_run->immediate_exit)
8373                 r = -EINTR;
8374         else
8375                 r = vcpu_run(vcpu);
8376
8377 out:
8378         kvm_put_guest_fpu(vcpu);
8379         if (vcpu->run->kvm_valid_regs)
8380                 store_regs(vcpu);
8381         post_kvm_run_save(vcpu);
8382         kvm_sigset_deactivate(vcpu);
8383
8384         vcpu_put(vcpu);
8385         return r;
8386 }
8387
8388 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8389 {
8390         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8391                 /*
8392                  * We are here if userspace calls get_regs() in the middle of
8393                  * instruction emulation. Registers state needs to be copied
8394                  * back from emulation context to vcpu. Userspace shouldn't do
8395                  * that usually, but some bad designed PV devices (vmware
8396                  * backdoor interface) need this to work
8397                  */
8398                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8399                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8400         }
8401         regs->rax = kvm_rax_read(vcpu);
8402         regs->rbx = kvm_rbx_read(vcpu);
8403         regs->rcx = kvm_rcx_read(vcpu);
8404         regs->rdx = kvm_rdx_read(vcpu);
8405         regs->rsi = kvm_rsi_read(vcpu);
8406         regs->rdi = kvm_rdi_read(vcpu);
8407         regs->rsp = kvm_rsp_read(vcpu);
8408         regs->rbp = kvm_rbp_read(vcpu);
8409 #ifdef CONFIG_X86_64
8410         regs->r8 = kvm_r8_read(vcpu);
8411         regs->r9 = kvm_r9_read(vcpu);
8412         regs->r10 = kvm_r10_read(vcpu);
8413         regs->r11 = kvm_r11_read(vcpu);
8414         regs->r12 = kvm_r12_read(vcpu);
8415         regs->r13 = kvm_r13_read(vcpu);
8416         regs->r14 = kvm_r14_read(vcpu);
8417         regs->r15 = kvm_r15_read(vcpu);
8418 #endif
8419
8420         regs->rip = kvm_rip_read(vcpu);
8421         regs->rflags = kvm_get_rflags(vcpu);
8422 }
8423
8424 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8425 {
8426         vcpu_load(vcpu);
8427         __get_regs(vcpu, regs);
8428         vcpu_put(vcpu);
8429         return 0;
8430 }
8431
8432 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8433 {
8434         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8435         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8436
8437         kvm_rax_write(vcpu, regs->rax);
8438         kvm_rbx_write(vcpu, regs->rbx);
8439         kvm_rcx_write(vcpu, regs->rcx);
8440         kvm_rdx_write(vcpu, regs->rdx);
8441         kvm_rsi_write(vcpu, regs->rsi);
8442         kvm_rdi_write(vcpu, regs->rdi);
8443         kvm_rsp_write(vcpu, regs->rsp);
8444         kvm_rbp_write(vcpu, regs->rbp);
8445 #ifdef CONFIG_X86_64
8446         kvm_r8_write(vcpu, regs->r8);
8447         kvm_r9_write(vcpu, regs->r9);
8448         kvm_r10_write(vcpu, regs->r10);
8449         kvm_r11_write(vcpu, regs->r11);
8450         kvm_r12_write(vcpu, regs->r12);
8451         kvm_r13_write(vcpu, regs->r13);
8452         kvm_r14_write(vcpu, regs->r14);
8453         kvm_r15_write(vcpu, regs->r15);
8454 #endif
8455
8456         kvm_rip_write(vcpu, regs->rip);
8457         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8458
8459         vcpu->arch.exception.pending = false;
8460
8461         kvm_make_request(KVM_REQ_EVENT, vcpu);
8462 }
8463
8464 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8465 {
8466         vcpu_load(vcpu);
8467         __set_regs(vcpu, regs);
8468         vcpu_put(vcpu);
8469         return 0;
8470 }
8471
8472 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8473 {
8474         struct kvm_segment cs;
8475
8476         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8477         *db = cs.db;
8478         *l = cs.l;
8479 }
8480 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8481
8482 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8483 {
8484         struct desc_ptr dt;
8485
8486         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8487         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8488         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8489         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8490         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8491         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8492
8493         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8494         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8495
8496         kvm_x86_ops->get_idt(vcpu, &dt);
8497         sregs->idt.limit = dt.size;
8498         sregs->idt.base = dt.address;
8499         kvm_x86_ops->get_gdt(vcpu, &dt);
8500         sregs->gdt.limit = dt.size;
8501         sregs->gdt.base = dt.address;
8502
8503         sregs->cr0 = kvm_read_cr0(vcpu);
8504         sregs->cr2 = vcpu->arch.cr2;
8505         sregs->cr3 = kvm_read_cr3(vcpu);
8506         sregs->cr4 = kvm_read_cr4(vcpu);
8507         sregs->cr8 = kvm_get_cr8(vcpu);
8508         sregs->efer = vcpu->arch.efer;
8509         sregs->apic_base = kvm_get_apic_base(vcpu);
8510
8511         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8512
8513         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8514                 set_bit(vcpu->arch.interrupt.nr,
8515                         (unsigned long *)sregs->interrupt_bitmap);
8516 }
8517
8518 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8519                                   struct kvm_sregs *sregs)
8520 {
8521         vcpu_load(vcpu);
8522         __get_sregs(vcpu, sregs);
8523         vcpu_put(vcpu);
8524         return 0;
8525 }
8526
8527 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8528                                     struct kvm_mp_state *mp_state)
8529 {
8530         vcpu_load(vcpu);
8531
8532         kvm_apic_accept_events(vcpu);
8533         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8534                                         vcpu->arch.pv.pv_unhalted)
8535                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8536         else
8537                 mp_state->mp_state = vcpu->arch.mp_state;
8538
8539         vcpu_put(vcpu);
8540         return 0;
8541 }
8542
8543 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8544                                     struct kvm_mp_state *mp_state)
8545 {
8546         int ret = -EINVAL;
8547
8548         vcpu_load(vcpu);
8549
8550         if (!lapic_in_kernel(vcpu) &&
8551             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8552                 goto out;
8553
8554         /* INITs are latched while in SMM */
8555         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8556             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8557              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8558                 goto out;
8559
8560         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8561                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8562                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8563         } else
8564                 vcpu->arch.mp_state = mp_state->mp_state;
8565         kvm_make_request(KVM_REQ_EVENT, vcpu);
8566
8567         ret = 0;
8568 out:
8569         vcpu_put(vcpu);
8570         return ret;
8571 }
8572
8573 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8574                     int reason, bool has_error_code, u32 error_code)
8575 {
8576         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8577         int ret;
8578
8579         init_emulate_ctxt(vcpu);
8580
8581         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8582                                    has_error_code, error_code);
8583
8584         if (ret)
8585                 return EMULATE_FAIL;
8586
8587         kvm_rip_write(vcpu, ctxt->eip);
8588         kvm_set_rflags(vcpu, ctxt->eflags);
8589         kvm_make_request(KVM_REQ_EVENT, vcpu);
8590         return EMULATE_DONE;
8591 }
8592 EXPORT_SYMBOL_GPL(kvm_task_switch);
8593
8594 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8595 {
8596         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8597                         (sregs->cr4 & X86_CR4_OSXSAVE))
8598                 return  -EINVAL;
8599
8600         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8601                 /*
8602                  * When EFER.LME and CR0.PG are set, the processor is in
8603                  * 64-bit mode (though maybe in a 32-bit code segment).
8604                  * CR4.PAE and EFER.LMA must be set.
8605                  */
8606                 if (!(sregs->cr4 & X86_CR4_PAE)
8607                     || !(sregs->efer & EFER_LMA))
8608                         return -EINVAL;
8609         } else {
8610                 /*
8611                  * Not in 64-bit mode: EFER.LMA is clear and the code
8612                  * segment cannot be 64-bit.
8613                  */
8614                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8615                         return -EINVAL;
8616         }
8617
8618         return 0;
8619 }
8620
8621 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8622 {
8623         struct msr_data apic_base_msr;
8624         int mmu_reset_needed = 0;
8625         int cpuid_update_needed = 0;
8626         int pending_vec, max_bits, idx;
8627         struct desc_ptr dt;
8628         int ret = -EINVAL;
8629
8630         if (kvm_valid_sregs(vcpu, sregs))
8631                 goto out;
8632
8633         apic_base_msr.data = sregs->apic_base;
8634         apic_base_msr.host_initiated = true;
8635         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8636                 goto out;
8637
8638         dt.size = sregs->idt.limit;
8639         dt.address = sregs->idt.base;
8640         kvm_x86_ops->set_idt(vcpu, &dt);
8641         dt.size = sregs->gdt.limit;
8642         dt.address = sregs->gdt.base;
8643         kvm_x86_ops->set_gdt(vcpu, &dt);
8644
8645         vcpu->arch.cr2 = sregs->cr2;
8646         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8647         vcpu->arch.cr3 = sregs->cr3;
8648         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8649
8650         kvm_set_cr8(vcpu, sregs->cr8);
8651
8652         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8653         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8654
8655         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8656         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8657         vcpu->arch.cr0 = sregs->cr0;
8658
8659         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8660         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8661                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8662         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8663         if (cpuid_update_needed)
8664                 kvm_update_cpuid(vcpu);
8665
8666         idx = srcu_read_lock(&vcpu->kvm->srcu);
8667         if (is_pae_paging(vcpu)) {
8668                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8669                 mmu_reset_needed = 1;
8670         }
8671         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8672
8673         if (mmu_reset_needed)
8674                 kvm_mmu_reset_context(vcpu);
8675
8676         max_bits = KVM_NR_INTERRUPTS;
8677         pending_vec = find_first_bit(
8678                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8679         if (pending_vec < max_bits) {
8680                 kvm_queue_interrupt(vcpu, pending_vec, false);
8681                 pr_debug("Set back pending irq %d\n", pending_vec);
8682         }
8683
8684         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8685         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8686         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8687         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8688         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8689         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8690
8691         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8692         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8693
8694         update_cr8_intercept(vcpu);
8695
8696         /* Older userspace won't unhalt the vcpu on reset. */
8697         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8698             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8699             !is_protmode(vcpu))
8700                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8701
8702         kvm_make_request(KVM_REQ_EVENT, vcpu);
8703
8704         ret = 0;
8705 out:
8706         return ret;
8707 }
8708
8709 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8710                                   struct kvm_sregs *sregs)
8711 {
8712         int ret;
8713
8714         vcpu_load(vcpu);
8715         ret = __set_sregs(vcpu, sregs);
8716         vcpu_put(vcpu);
8717         return ret;
8718 }
8719
8720 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8721                                         struct kvm_guest_debug *dbg)
8722 {
8723         unsigned long rflags;
8724         int i, r;
8725
8726         vcpu_load(vcpu);
8727
8728         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8729                 r = -EBUSY;
8730                 if (vcpu->arch.exception.pending)
8731                         goto out;
8732                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8733                         kvm_queue_exception(vcpu, DB_VECTOR);
8734                 else
8735                         kvm_queue_exception(vcpu, BP_VECTOR);
8736         }
8737
8738         /*
8739          * Read rflags as long as potentially injected trace flags are still
8740          * filtered out.
8741          */
8742         rflags = kvm_get_rflags(vcpu);
8743
8744         vcpu->guest_debug = dbg->control;
8745         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8746                 vcpu->guest_debug = 0;
8747
8748         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8749                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8750                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8751                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8752         } else {
8753                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8754                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8755         }
8756         kvm_update_dr7(vcpu);
8757
8758         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8759                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8760                         get_segment_base(vcpu, VCPU_SREG_CS);
8761
8762         /*
8763          * Trigger an rflags update that will inject or remove the trace
8764          * flags.
8765          */
8766         kvm_set_rflags(vcpu, rflags);
8767
8768         kvm_x86_ops->update_bp_intercept(vcpu);
8769
8770         r = 0;
8771
8772 out:
8773         vcpu_put(vcpu);
8774         return r;
8775 }
8776
8777 /*
8778  * Translate a guest virtual address to a guest physical address.
8779  */
8780 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8781                                     struct kvm_translation *tr)
8782 {
8783         unsigned long vaddr = tr->linear_address;
8784         gpa_t gpa;
8785         int idx;
8786
8787         vcpu_load(vcpu);
8788
8789         idx = srcu_read_lock(&vcpu->kvm->srcu);
8790         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8791         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8792         tr->physical_address = gpa;
8793         tr->valid = gpa != UNMAPPED_GVA;
8794         tr->writeable = 1;
8795         tr->usermode = 0;
8796
8797         vcpu_put(vcpu);
8798         return 0;
8799 }
8800
8801 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8802 {
8803         struct fxregs_state *fxsave;
8804
8805         vcpu_load(vcpu);
8806
8807         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8808         memcpy(fpu->fpr, fxsave->st_space, 128);
8809         fpu->fcw = fxsave->cwd;
8810         fpu->fsw = fxsave->swd;
8811         fpu->ftwx = fxsave->twd;
8812         fpu->last_opcode = fxsave->fop;
8813         fpu->last_ip = fxsave->rip;
8814         fpu->last_dp = fxsave->rdp;
8815         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8816
8817         vcpu_put(vcpu);
8818         return 0;
8819 }
8820
8821 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8822 {
8823         struct fxregs_state *fxsave;
8824
8825         vcpu_load(vcpu);
8826
8827         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8828
8829         memcpy(fxsave->st_space, fpu->fpr, 128);
8830         fxsave->cwd = fpu->fcw;
8831         fxsave->swd = fpu->fsw;
8832         fxsave->twd = fpu->ftwx;
8833         fxsave->fop = fpu->last_opcode;
8834         fxsave->rip = fpu->last_ip;
8835         fxsave->rdp = fpu->last_dp;
8836         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8837
8838         vcpu_put(vcpu);
8839         return 0;
8840 }
8841
8842 static void store_regs(struct kvm_vcpu *vcpu)
8843 {
8844         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8845
8846         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8847                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8848
8849         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8850                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8851
8852         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8853                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8854                                 vcpu, &vcpu->run->s.regs.events);
8855 }
8856
8857 static int sync_regs(struct kvm_vcpu *vcpu)
8858 {
8859         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8860                 return -EINVAL;
8861
8862         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8863                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8864                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8865         }
8866         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8867                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8868                         return -EINVAL;
8869                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8870         }
8871         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8872                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8873                                 vcpu, &vcpu->run->s.regs.events))
8874                         return -EINVAL;
8875                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8876         }
8877
8878         return 0;
8879 }
8880
8881 static void fx_init(struct kvm_vcpu *vcpu)
8882 {
8883         fpstate_init(&vcpu->arch.guest_fpu->state);
8884         if (boot_cpu_has(X86_FEATURE_XSAVES))
8885                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8886                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8887
8888         /*
8889          * Ensure guest xcr0 is valid for loading
8890          */
8891         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8892
8893         vcpu->arch.cr0 |= X86_CR0_ET;
8894 }
8895
8896 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8897 {
8898         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8899
8900         kvmclock_reset(vcpu);
8901
8902         kvm_x86_ops->vcpu_free(vcpu);
8903         free_cpumask_var(wbinvd_dirty_mask);
8904 }
8905
8906 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8907                                                 unsigned int id)
8908 {
8909         struct kvm_vcpu *vcpu;
8910
8911         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8912                 printk_once(KERN_WARNING
8913                 "kvm: SMP vm created on host with unstable TSC; "
8914                 "guest TSC will not be reliable\n");
8915
8916         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8917
8918         return vcpu;
8919 }
8920
8921 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8922 {
8923         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8924         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8925         kvm_vcpu_mtrr_init(vcpu);
8926         vcpu_load(vcpu);
8927         kvm_vcpu_reset(vcpu, false);
8928         kvm_init_mmu(vcpu, false);
8929         vcpu_put(vcpu);
8930         return 0;
8931 }
8932
8933 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8934 {
8935         struct msr_data msr;
8936         struct kvm *kvm = vcpu->kvm;
8937
8938         kvm_hv_vcpu_postcreate(vcpu);
8939
8940         if (mutex_lock_killable(&vcpu->mutex))
8941                 return;
8942         vcpu_load(vcpu);
8943         msr.data = 0x0;
8944         msr.index = MSR_IA32_TSC;
8945         msr.host_initiated = true;
8946         kvm_write_tsc(vcpu, &msr);
8947         vcpu_put(vcpu);
8948
8949         /* poll control enabled by default */
8950         vcpu->arch.msr_kvm_poll_control = 1;
8951
8952         mutex_unlock(&vcpu->mutex);
8953
8954         if (!kvmclock_periodic_sync)
8955                 return;
8956
8957         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8958                                         KVMCLOCK_SYNC_PERIOD);
8959 }
8960
8961 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8962 {
8963         vcpu->arch.apf.msr_val = 0;
8964
8965         vcpu_load(vcpu);
8966         kvm_mmu_unload(vcpu);
8967         vcpu_put(vcpu);
8968
8969         kvm_x86_ops->vcpu_free(vcpu);
8970 }
8971
8972 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8973 {
8974         kvm_lapic_reset(vcpu, init_event);
8975
8976         vcpu->arch.hflags = 0;
8977
8978         vcpu->arch.smi_pending = 0;
8979         vcpu->arch.smi_count = 0;
8980         atomic_set(&vcpu->arch.nmi_queued, 0);
8981         vcpu->arch.nmi_pending = 0;
8982         vcpu->arch.nmi_injected = false;
8983         kvm_clear_interrupt_queue(vcpu);
8984         kvm_clear_exception_queue(vcpu);
8985         vcpu->arch.exception.pending = false;
8986
8987         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8988         kvm_update_dr0123(vcpu);
8989         vcpu->arch.dr6 = DR6_INIT;
8990         kvm_update_dr6(vcpu);
8991         vcpu->arch.dr7 = DR7_FIXED_1;
8992         kvm_update_dr7(vcpu);
8993
8994         vcpu->arch.cr2 = 0;
8995
8996         kvm_make_request(KVM_REQ_EVENT, vcpu);
8997         vcpu->arch.apf.msr_val = 0;
8998         vcpu->arch.st.msr_val = 0;
8999
9000         kvmclock_reset(vcpu);
9001
9002         kvm_clear_async_pf_completion_queue(vcpu);
9003         kvm_async_pf_hash_reset(vcpu);
9004         vcpu->arch.apf.halted = false;
9005
9006         if (kvm_mpx_supported()) {
9007                 void *mpx_state_buffer;
9008
9009                 /*
9010                  * To avoid have the INIT path from kvm_apic_has_events() that be
9011                  * called with loaded FPU and does not let userspace fix the state.
9012                  */
9013                 if (init_event)
9014                         kvm_put_guest_fpu(vcpu);
9015                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9016                                         XFEATURE_BNDREGS);
9017                 if (mpx_state_buffer)
9018                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9019                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9020                                         XFEATURE_BNDCSR);
9021                 if (mpx_state_buffer)
9022                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9023                 if (init_event)
9024                         kvm_load_guest_fpu(vcpu);
9025         }
9026
9027         if (!init_event) {
9028                 kvm_pmu_reset(vcpu);
9029                 vcpu->arch.smbase = 0x30000;
9030
9031                 vcpu->arch.msr_misc_features_enables = 0;
9032
9033                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9034         }
9035
9036         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9037         vcpu->arch.regs_avail = ~0;
9038         vcpu->arch.regs_dirty = ~0;
9039
9040         vcpu->arch.ia32_xss = 0;
9041
9042         kvm_x86_ops->vcpu_reset(vcpu, init_event);
9043 }
9044
9045 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9046 {
9047         struct kvm_segment cs;
9048
9049         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9050         cs.selector = vector << 8;
9051         cs.base = vector << 12;
9052         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9053         kvm_rip_write(vcpu, 0);
9054 }
9055
9056 int kvm_arch_hardware_enable(void)
9057 {
9058         struct kvm *kvm;
9059         struct kvm_vcpu *vcpu;
9060         int i;
9061         int ret;
9062         u64 local_tsc;
9063         u64 max_tsc = 0;
9064         bool stable, backwards_tsc = false;
9065
9066         kvm_shared_msr_cpu_online();
9067         ret = kvm_x86_ops->hardware_enable();
9068         if (ret != 0)
9069                 return ret;
9070
9071         local_tsc = rdtsc();
9072         stable = !kvm_check_tsc_unstable();
9073         list_for_each_entry(kvm, &vm_list, vm_list) {
9074                 kvm_for_each_vcpu(i, vcpu, kvm) {
9075                         if (!stable && vcpu->cpu == smp_processor_id())
9076                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9077                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9078                                 backwards_tsc = true;
9079                                 if (vcpu->arch.last_host_tsc > max_tsc)
9080                                         max_tsc = vcpu->arch.last_host_tsc;
9081                         }
9082                 }
9083         }
9084
9085         /*
9086          * Sometimes, even reliable TSCs go backwards.  This happens on
9087          * platforms that reset TSC during suspend or hibernate actions, but
9088          * maintain synchronization.  We must compensate.  Fortunately, we can
9089          * detect that condition here, which happens early in CPU bringup,
9090          * before any KVM threads can be running.  Unfortunately, we can't
9091          * bring the TSCs fully up to date with real time, as we aren't yet far
9092          * enough into CPU bringup that we know how much real time has actually
9093          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9094          * variables that haven't been updated yet.
9095          *
9096          * So we simply find the maximum observed TSC above, then record the
9097          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9098          * the adjustment will be applied.  Note that we accumulate
9099          * adjustments, in case multiple suspend cycles happen before some VCPU
9100          * gets a chance to run again.  In the event that no KVM threads get a
9101          * chance to run, we will miss the entire elapsed period, as we'll have
9102          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9103          * loose cycle time.  This isn't too big a deal, since the loss will be
9104          * uniform across all VCPUs (not to mention the scenario is extremely
9105          * unlikely). It is possible that a second hibernate recovery happens
9106          * much faster than a first, causing the observed TSC here to be
9107          * smaller; this would require additional padding adjustment, which is
9108          * why we set last_host_tsc to the local tsc observed here.
9109          *
9110          * N.B. - this code below runs only on platforms with reliable TSC,
9111          * as that is the only way backwards_tsc is set above.  Also note
9112          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9113          * have the same delta_cyc adjustment applied if backwards_tsc
9114          * is detected.  Note further, this adjustment is only done once,
9115          * as we reset last_host_tsc on all VCPUs to stop this from being
9116          * called multiple times (one for each physical CPU bringup).
9117          *
9118          * Platforms with unreliable TSCs don't have to deal with this, they
9119          * will be compensated by the logic in vcpu_load, which sets the TSC to
9120          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9121          * guarantee that they stay in perfect synchronization.
9122          */
9123         if (backwards_tsc) {
9124                 u64 delta_cyc = max_tsc - local_tsc;
9125                 list_for_each_entry(kvm, &vm_list, vm_list) {
9126                         kvm->arch.backwards_tsc_observed = true;
9127                         kvm_for_each_vcpu(i, vcpu, kvm) {
9128                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9129                                 vcpu->arch.last_host_tsc = local_tsc;
9130                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9131                         }
9132
9133                         /*
9134                          * We have to disable TSC offset matching.. if you were
9135                          * booting a VM while issuing an S4 host suspend....
9136                          * you may have some problem.  Solving this issue is
9137                          * left as an exercise to the reader.
9138                          */
9139                         kvm->arch.last_tsc_nsec = 0;
9140                         kvm->arch.last_tsc_write = 0;
9141                 }
9142
9143         }
9144         return 0;
9145 }
9146
9147 void kvm_arch_hardware_disable(void)
9148 {
9149         kvm_x86_ops->hardware_disable();
9150         drop_user_return_notifiers();
9151 }
9152
9153 int kvm_arch_hardware_setup(void)
9154 {
9155         int r;
9156
9157         r = kvm_x86_ops->hardware_setup();
9158         if (r != 0)
9159                 return r;
9160
9161         if (kvm_has_tsc_control) {
9162                 /*
9163                  * Make sure the user can only configure tsc_khz values that
9164                  * fit into a signed integer.
9165                  * A min value is not calculated because it will always
9166                  * be 1 on all machines.
9167                  */
9168                 u64 max = min(0x7fffffffULL,
9169                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9170                 kvm_max_guest_tsc_khz = max;
9171
9172                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9173         }
9174
9175         kvm_init_msr_list();
9176         return 0;
9177 }
9178
9179 void kvm_arch_hardware_unsetup(void)
9180 {
9181         kvm_x86_ops->hardware_unsetup();
9182 }
9183
9184 int kvm_arch_check_processor_compat(void)
9185 {
9186         return kvm_x86_ops->check_processor_compatibility();
9187 }
9188
9189 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9190 {
9191         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9192 }
9193 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9194
9195 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9196 {
9197         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9198 }
9199
9200 struct static_key kvm_no_apic_vcpu __read_mostly;
9201 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9202
9203 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9204 {
9205         struct page *page;
9206         int r;
9207
9208         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9209         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9210                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9211         else
9212                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9213
9214         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9215         if (!page) {
9216                 r = -ENOMEM;
9217                 goto fail;
9218         }
9219         vcpu->arch.pio_data = page_address(page);
9220
9221         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9222
9223         r = kvm_mmu_create(vcpu);
9224         if (r < 0)
9225                 goto fail_free_pio_data;
9226
9227         if (irqchip_in_kernel(vcpu->kvm)) {
9228                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9229                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9230                 if (r < 0)
9231                         goto fail_mmu_destroy;
9232         } else
9233                 static_key_slow_inc(&kvm_no_apic_vcpu);
9234
9235         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9236                                        GFP_KERNEL_ACCOUNT);
9237         if (!vcpu->arch.mce_banks) {
9238                 r = -ENOMEM;
9239                 goto fail_free_lapic;
9240         }
9241         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9242
9243         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9244                                 GFP_KERNEL_ACCOUNT)) {
9245                 r = -ENOMEM;
9246                 goto fail_free_mce_banks;
9247         }
9248
9249         fx_init(vcpu);
9250
9251         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9252
9253         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9254
9255         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9256
9257         kvm_async_pf_hash_reset(vcpu);
9258         kvm_pmu_init(vcpu);
9259
9260         vcpu->arch.pending_external_vector = -1;
9261         vcpu->arch.preempted_in_kernel = false;
9262
9263         kvm_hv_vcpu_init(vcpu);
9264
9265         return 0;
9266
9267 fail_free_mce_banks:
9268         kfree(vcpu->arch.mce_banks);
9269 fail_free_lapic:
9270         kvm_free_lapic(vcpu);
9271 fail_mmu_destroy:
9272         kvm_mmu_destroy(vcpu);
9273 fail_free_pio_data:
9274         free_page((unsigned long)vcpu->arch.pio_data);
9275 fail:
9276         return r;
9277 }
9278
9279 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9280 {
9281         int idx;
9282
9283         kvm_hv_vcpu_uninit(vcpu);
9284         kvm_pmu_destroy(vcpu);
9285         kfree(vcpu->arch.mce_banks);
9286         kvm_free_lapic(vcpu);
9287         idx = srcu_read_lock(&vcpu->kvm->srcu);
9288         kvm_mmu_destroy(vcpu);
9289         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9290         free_page((unsigned long)vcpu->arch.pio_data);
9291         if (!lapic_in_kernel(vcpu))
9292                 static_key_slow_dec(&kvm_no_apic_vcpu);
9293 }
9294
9295 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9296 {
9297         vcpu->arch.l1tf_flush_l1d = true;
9298         kvm_x86_ops->sched_in(vcpu, cpu);
9299 }
9300
9301 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9302 {
9303         if (type)
9304                 return -EINVAL;
9305
9306         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9307         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9308         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9309         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9310
9311         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9312         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9313         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9314         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9315                 &kvm->arch.irq_sources_bitmap);
9316
9317         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9318         mutex_init(&kvm->arch.apic_map_lock);
9319         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9320
9321         kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9322         pvclock_update_vm_gtod_copy(kvm);
9323
9324         kvm->arch.guest_can_read_msr_platform_info = true;
9325
9326         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9327         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9328
9329         kvm_hv_init_vm(kvm);
9330         kvm_page_track_init(kvm);
9331         kvm_mmu_init_vm(kvm);
9332
9333         if (kvm_x86_ops->vm_init)
9334                 return kvm_x86_ops->vm_init(kvm);
9335
9336         return 0;
9337 }
9338
9339 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9340 {
9341         vcpu_load(vcpu);
9342         kvm_mmu_unload(vcpu);
9343         vcpu_put(vcpu);
9344 }
9345
9346 static void kvm_free_vcpus(struct kvm *kvm)
9347 {
9348         unsigned int i;
9349         struct kvm_vcpu *vcpu;
9350
9351         /*
9352          * Unpin any mmu pages first.
9353          */
9354         kvm_for_each_vcpu(i, vcpu, kvm) {
9355                 kvm_clear_async_pf_completion_queue(vcpu);
9356                 kvm_unload_vcpu_mmu(vcpu);
9357         }
9358         kvm_for_each_vcpu(i, vcpu, kvm)
9359                 kvm_arch_vcpu_free(vcpu);
9360
9361         mutex_lock(&kvm->lock);
9362         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9363                 kvm->vcpus[i] = NULL;
9364
9365         atomic_set(&kvm->online_vcpus, 0);
9366         mutex_unlock(&kvm->lock);
9367 }
9368
9369 void kvm_arch_sync_events(struct kvm *kvm)
9370 {
9371         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9372         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9373         kvm_free_pit(kvm);
9374 }
9375
9376 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9377 {
9378         int i, r;
9379         unsigned long hva;
9380         struct kvm_memslots *slots = kvm_memslots(kvm);
9381         struct kvm_memory_slot *slot, old;
9382
9383         /* Called with kvm->slots_lock held.  */
9384         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9385                 return -EINVAL;
9386
9387         slot = id_to_memslot(slots, id);
9388         if (size) {
9389                 if (slot->npages)
9390                         return -EEXIST;
9391
9392                 /*
9393                  * MAP_SHARED to prevent internal slot pages from being moved
9394                  * by fork()/COW.
9395                  */
9396                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9397                               MAP_SHARED | MAP_ANONYMOUS, 0);
9398                 if (IS_ERR((void *)hva))
9399                         return PTR_ERR((void *)hva);
9400         } else {
9401                 if (!slot->npages)
9402                         return 0;
9403
9404                 hva = 0;
9405         }
9406
9407         old = *slot;
9408         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9409                 struct kvm_userspace_memory_region m;
9410
9411                 m.slot = id | (i << 16);
9412                 m.flags = 0;
9413                 m.guest_phys_addr = gpa;
9414                 m.userspace_addr = hva;
9415                 m.memory_size = size;
9416                 r = __kvm_set_memory_region(kvm, &m);
9417                 if (r < 0)
9418                         return r;
9419         }
9420
9421         if (!size)
9422                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9423
9424         return 0;
9425 }
9426 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9427
9428 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9429 {
9430         int r;
9431
9432         mutex_lock(&kvm->slots_lock);
9433         r = __x86_set_memory_region(kvm, id, gpa, size);
9434         mutex_unlock(&kvm->slots_lock);
9435
9436         return r;
9437 }
9438 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9439
9440 void kvm_arch_destroy_vm(struct kvm *kvm)
9441 {
9442         if (current->mm == kvm->mm) {
9443                 /*
9444                  * Free memory regions allocated on behalf of userspace,
9445                  * unless the the memory map has changed due to process exit
9446                  * or fd copying.
9447                  */
9448                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9449                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9450                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9451         }
9452         if (kvm_x86_ops->vm_destroy)
9453                 kvm_x86_ops->vm_destroy(kvm);
9454         kvm_pic_destroy(kvm);
9455         kvm_ioapic_destroy(kvm);
9456         kvm_free_vcpus(kvm);
9457         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9458         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9459         kvm_mmu_uninit_vm(kvm);
9460         kvm_page_track_cleanup(kvm);
9461         kvm_hv_destroy_vm(kvm);
9462 }
9463
9464 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9465                            struct kvm_memory_slot *dont)
9466 {
9467         int i;
9468
9469         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9470                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9471                         kvfree(free->arch.rmap[i]);
9472                         free->arch.rmap[i] = NULL;
9473                 }
9474                 if (i == 0)
9475                         continue;
9476
9477                 if (!dont || free->arch.lpage_info[i - 1] !=
9478                              dont->arch.lpage_info[i - 1]) {
9479                         kvfree(free->arch.lpage_info[i - 1]);
9480                         free->arch.lpage_info[i - 1] = NULL;
9481                 }
9482         }
9483
9484         kvm_page_track_free_memslot(free, dont);
9485 }
9486
9487 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9488                             unsigned long npages)
9489 {
9490         int i;
9491
9492         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9493                 struct kvm_lpage_info *linfo;
9494                 unsigned long ugfn;
9495                 int lpages;
9496                 int level = i + 1;
9497
9498                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9499                                       slot->base_gfn, level) + 1;
9500
9501                 slot->arch.rmap[i] =
9502                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9503                                  GFP_KERNEL_ACCOUNT);
9504                 if (!slot->arch.rmap[i])
9505                         goto out_free;
9506                 if (i == 0)
9507                         continue;
9508
9509                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9510                 if (!linfo)
9511                         goto out_free;
9512
9513                 slot->arch.lpage_info[i - 1] = linfo;
9514
9515                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9516                         linfo[0].disallow_lpage = 1;
9517                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9518                         linfo[lpages - 1].disallow_lpage = 1;
9519                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9520                 /*
9521                  * If the gfn and userspace address are not aligned wrt each
9522                  * other, or if explicitly asked to, disable large page
9523                  * support for this slot
9524                  */
9525                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9526                     !kvm_largepages_enabled()) {
9527                         unsigned long j;
9528
9529                         for (j = 0; j < lpages; ++j)
9530                                 linfo[j].disallow_lpage = 1;
9531                 }
9532         }
9533
9534         if (kvm_page_track_create_memslot(slot, npages))
9535                 goto out_free;
9536
9537         return 0;
9538
9539 out_free:
9540         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9541                 kvfree(slot->arch.rmap[i]);
9542                 slot->arch.rmap[i] = NULL;
9543                 if (i == 0)
9544                         continue;
9545
9546                 kvfree(slot->arch.lpage_info[i - 1]);
9547                 slot->arch.lpage_info[i - 1] = NULL;
9548         }
9549         return -ENOMEM;
9550 }
9551
9552 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9553 {
9554         /*
9555          * memslots->generation has been incremented.
9556          * mmio generation may have reached its maximum value.
9557          */
9558         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9559 }
9560
9561 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9562                                 struct kvm_memory_slot *memslot,
9563                                 const struct kvm_userspace_memory_region *mem,
9564                                 enum kvm_mr_change change)
9565 {
9566         return 0;
9567 }
9568
9569 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9570                                      struct kvm_memory_slot *new)
9571 {
9572         /* Still write protect RO slot */
9573         if (new->flags & KVM_MEM_READONLY) {
9574                 kvm_mmu_slot_remove_write_access(kvm, new);
9575                 return;
9576         }
9577
9578         /*
9579          * Call kvm_x86_ops dirty logging hooks when they are valid.
9580          *
9581          * kvm_x86_ops->slot_disable_log_dirty is called when:
9582          *
9583          *  - KVM_MR_CREATE with dirty logging is disabled
9584          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9585          *
9586          * The reason is, in case of PML, we need to set D-bit for any slots
9587          * with dirty logging disabled in order to eliminate unnecessary GPA
9588          * logging in PML buffer (and potential PML buffer full VMEXT). This
9589          * guarantees leaving PML enabled during guest's lifetime won't have
9590          * any additional overhead from PML when guest is running with dirty
9591          * logging disabled for memory slots.
9592          *
9593          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9594          * to dirty logging mode.
9595          *
9596          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9597          *
9598          * In case of write protect:
9599          *
9600          * Write protect all pages for dirty logging.
9601          *
9602          * All the sptes including the large sptes which point to this
9603          * slot are set to readonly. We can not create any new large
9604          * spte on this slot until the end of the logging.
9605          *
9606          * See the comments in fast_page_fault().
9607          */
9608         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9609                 if (kvm_x86_ops->slot_enable_log_dirty)
9610                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9611                 else
9612                         kvm_mmu_slot_remove_write_access(kvm, new);
9613         } else {
9614                 if (kvm_x86_ops->slot_disable_log_dirty)
9615                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9616         }
9617 }
9618
9619 void kvm_arch_commit_memory_region(struct kvm *kvm,
9620                                 const struct kvm_userspace_memory_region *mem,
9621                                 const struct kvm_memory_slot *old,
9622                                 const struct kvm_memory_slot *new,
9623                                 enum kvm_mr_change change)
9624 {
9625         if (!kvm->arch.n_requested_mmu_pages)
9626                 kvm_mmu_change_mmu_pages(kvm,
9627                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9628
9629         /*
9630          * Dirty logging tracks sptes in 4k granularity, meaning that large
9631          * sptes have to be split.  If live migration is successful, the guest
9632          * in the source machine will be destroyed and large sptes will be
9633          * created in the destination. However, if the guest continues to run
9634          * in the source machine (for example if live migration fails), small
9635          * sptes will remain around and cause bad performance.
9636          *
9637          * Scan sptes if dirty logging has been stopped, dropping those
9638          * which can be collapsed into a single large-page spte.  Later
9639          * page faults will create the large-page sptes.
9640          */
9641         if ((change != KVM_MR_DELETE) &&
9642                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9643                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9644                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9645
9646         /*
9647          * Set up write protection and/or dirty logging for the new slot.
9648          *
9649          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9650          * been zapped so no dirty logging staff is needed for old slot. For
9651          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9652          * new and it's also covered when dealing with the new slot.
9653          *
9654          * FIXME: const-ify all uses of struct kvm_memory_slot.
9655          */
9656         if (change != KVM_MR_DELETE)
9657                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9658 }
9659
9660 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9661 {
9662         kvm_mmu_zap_all(kvm);
9663 }
9664
9665 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9666                                    struct kvm_memory_slot *slot)
9667 {
9668         kvm_page_track_flush_slot(kvm, slot);
9669 }
9670
9671 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9672 {
9673         return (is_guest_mode(vcpu) &&
9674                         kvm_x86_ops->guest_apic_has_interrupt &&
9675                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9676 }
9677
9678 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9679 {
9680         if (!list_empty_careful(&vcpu->async_pf.done))
9681                 return true;
9682
9683         if (kvm_apic_has_events(vcpu))
9684                 return true;
9685
9686         if (vcpu->arch.pv.pv_unhalted)
9687                 return true;
9688
9689         if (vcpu->arch.exception.pending)
9690                 return true;
9691
9692         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9693             (vcpu->arch.nmi_pending &&
9694              kvm_x86_ops->nmi_allowed(vcpu)))
9695                 return true;
9696
9697         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9698             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9699                 return true;
9700
9701         if (kvm_arch_interrupt_allowed(vcpu) &&
9702             (kvm_cpu_has_interrupt(vcpu) ||
9703             kvm_guest_apic_has_interrupt(vcpu)))
9704                 return true;
9705
9706         if (kvm_hv_has_stimer_pending(vcpu))
9707                 return true;
9708
9709         return false;
9710 }
9711
9712 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9713 {
9714         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9715 }
9716
9717 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9718 {
9719         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9720                 return true;
9721
9722         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9723                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
9724                  kvm_test_request(KVM_REQ_EVENT, vcpu))
9725                 return true;
9726
9727         if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9728                 return true;
9729
9730         return false;
9731 }
9732
9733 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9734 {
9735         return vcpu->arch.preempted_in_kernel;
9736 }
9737
9738 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9739 {
9740         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9741 }
9742
9743 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9744 {
9745         return kvm_x86_ops->interrupt_allowed(vcpu);
9746 }
9747
9748 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9749 {
9750         if (is_64_bit_mode(vcpu))
9751                 return kvm_rip_read(vcpu);
9752         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9753                      kvm_rip_read(vcpu));
9754 }
9755 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9756
9757 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9758 {
9759         return kvm_get_linear_rip(vcpu) == linear_rip;
9760 }
9761 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9762
9763 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9764 {
9765         unsigned long rflags;
9766
9767         rflags = kvm_x86_ops->get_rflags(vcpu);
9768         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9769                 rflags &= ~X86_EFLAGS_TF;
9770         return rflags;
9771 }
9772 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9773
9774 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9775 {
9776         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9777             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9778                 rflags |= X86_EFLAGS_TF;
9779         kvm_x86_ops->set_rflags(vcpu, rflags);
9780 }
9781
9782 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9783 {
9784         __kvm_set_rflags(vcpu, rflags);
9785         kvm_make_request(KVM_REQ_EVENT, vcpu);
9786 }
9787 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9788
9789 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9790 {
9791         int r;
9792
9793         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9794               work->wakeup_all)
9795                 return;
9796
9797         r = kvm_mmu_reload(vcpu);
9798         if (unlikely(r))
9799                 return;
9800
9801         if (!vcpu->arch.mmu->direct_map &&
9802               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9803                 return;
9804
9805         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9806 }
9807
9808 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9809 {
9810         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9811 }
9812
9813 static inline u32 kvm_async_pf_next_probe(u32 key)
9814 {
9815         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9816 }
9817
9818 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9819 {
9820         u32 key = kvm_async_pf_hash_fn(gfn);
9821
9822         while (vcpu->arch.apf.gfns[key] != ~0)
9823                 key = kvm_async_pf_next_probe(key);
9824
9825         vcpu->arch.apf.gfns[key] = gfn;
9826 }
9827
9828 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9829 {
9830         int i;
9831         u32 key = kvm_async_pf_hash_fn(gfn);
9832
9833         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9834                      (vcpu->arch.apf.gfns[key] != gfn &&
9835                       vcpu->arch.apf.gfns[key] != ~0); i++)
9836                 key = kvm_async_pf_next_probe(key);
9837
9838         return key;
9839 }
9840
9841 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9842 {
9843         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9844 }
9845
9846 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9847 {
9848         u32 i, j, k;
9849
9850         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9851         while (true) {
9852                 vcpu->arch.apf.gfns[i] = ~0;
9853                 do {
9854                         j = kvm_async_pf_next_probe(j);
9855                         if (vcpu->arch.apf.gfns[j] == ~0)
9856                                 return;
9857                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9858                         /*
9859                          * k lies cyclically in ]i,j]
9860                          * |    i.k.j |
9861                          * |....j i.k.| or  |.k..j i...|
9862                          */
9863                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9864                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9865                 i = j;
9866         }
9867 }
9868
9869 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9870 {
9871
9872         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9873                                       sizeof(val));
9874 }
9875
9876 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9877 {
9878
9879         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9880                                       sizeof(u32));
9881 }
9882
9883 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
9884 {
9885         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9886                 return false;
9887
9888         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9889             (vcpu->arch.apf.send_user_only &&
9890              kvm_x86_ops->get_cpl(vcpu) == 0))
9891                 return false;
9892
9893         return true;
9894 }
9895
9896 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
9897 {
9898         if (unlikely(!lapic_in_kernel(vcpu) ||
9899                      kvm_event_needs_reinjection(vcpu) ||
9900                      vcpu->arch.exception.pending))
9901                 return false;
9902
9903         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
9904                 return false;
9905
9906         /*
9907          * If interrupts are off we cannot even use an artificial
9908          * halt state.
9909          */
9910         return kvm_x86_ops->interrupt_allowed(vcpu);
9911 }
9912
9913 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9914                                      struct kvm_async_pf *work)
9915 {
9916         struct x86_exception fault;
9917
9918         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9919         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9920
9921         if (kvm_can_deliver_async_pf(vcpu) &&
9922             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9923                 fault.vector = PF_VECTOR;
9924                 fault.error_code_valid = true;
9925                 fault.error_code = 0;
9926                 fault.nested_page_fault = false;
9927                 fault.address = work->arch.token;
9928                 fault.async_page_fault = true;
9929                 kvm_inject_page_fault(vcpu, &fault);
9930         } else {
9931                 /*
9932                  * It is not possible to deliver a paravirtualized asynchronous
9933                  * page fault, but putting the guest in an artificial halt state
9934                  * can be beneficial nevertheless: if an interrupt arrives, we
9935                  * can deliver it timely and perhaps the guest will schedule
9936                  * another process.  When the instruction that triggered a page
9937                  * fault is retried, hopefully the page will be ready in the host.
9938                  */
9939                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9940         }
9941 }
9942
9943 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9944                                  struct kvm_async_pf *work)
9945 {
9946         struct x86_exception fault;
9947         u32 val;
9948
9949         if (work->wakeup_all)
9950                 work->arch.token = ~0; /* broadcast wakeup */
9951         else
9952                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9953         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9954
9955         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9956             !apf_get_user(vcpu, &val)) {
9957                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9958                     vcpu->arch.exception.pending &&
9959                     vcpu->arch.exception.nr == PF_VECTOR &&
9960                     !apf_put_user(vcpu, 0)) {
9961                         vcpu->arch.exception.injected = false;
9962                         vcpu->arch.exception.pending = false;
9963                         vcpu->arch.exception.nr = 0;
9964                         vcpu->arch.exception.has_error_code = false;
9965                         vcpu->arch.exception.error_code = 0;
9966                         vcpu->arch.exception.has_payload = false;
9967                         vcpu->arch.exception.payload = 0;
9968                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9969                         fault.vector = PF_VECTOR;
9970                         fault.error_code_valid = true;
9971                         fault.error_code = 0;
9972                         fault.nested_page_fault = false;
9973                         fault.address = work->arch.token;
9974                         fault.async_page_fault = true;
9975                         kvm_inject_page_fault(vcpu, &fault);
9976                 }
9977         }
9978         vcpu->arch.apf.halted = false;
9979         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9980 }
9981
9982 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9983 {
9984         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9985                 return true;
9986         else
9987                 return kvm_can_do_async_pf(vcpu);
9988 }
9989
9990 void kvm_arch_start_assignment(struct kvm *kvm)
9991 {
9992         atomic_inc(&kvm->arch.assigned_device_count);
9993 }
9994 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9995
9996 void kvm_arch_end_assignment(struct kvm *kvm)
9997 {
9998         atomic_dec(&kvm->arch.assigned_device_count);
9999 }
10000 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10001
10002 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10003 {
10004         return atomic_read(&kvm->arch.assigned_device_count);
10005 }
10006 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10007
10008 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10009 {
10010         atomic_inc(&kvm->arch.noncoherent_dma_count);
10011 }
10012 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10013
10014 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10015 {
10016         atomic_dec(&kvm->arch.noncoherent_dma_count);
10017 }
10018 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10019
10020 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10021 {
10022         return atomic_read(&kvm->arch.noncoherent_dma_count);
10023 }
10024 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10025
10026 bool kvm_arch_has_irq_bypass(void)
10027 {
10028         return kvm_x86_ops->update_pi_irte != NULL;
10029 }
10030
10031 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10032                                       struct irq_bypass_producer *prod)
10033 {
10034         struct kvm_kernel_irqfd *irqfd =
10035                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10036
10037         irqfd->producer = prod;
10038
10039         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10040                                            prod->irq, irqfd->gsi, 1);
10041 }
10042
10043 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10044                                       struct irq_bypass_producer *prod)
10045 {
10046         int ret;
10047         struct kvm_kernel_irqfd *irqfd =
10048                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10049
10050         WARN_ON(irqfd->producer != prod);
10051         irqfd->producer = NULL;
10052
10053         /*
10054          * When producer of consumer is unregistered, we change back to
10055          * remapped mode, so we can re-use the current implementation
10056          * when the irq is masked/disabled or the consumer side (KVM
10057          * int this case doesn't want to receive the interrupts.
10058         */
10059         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10060         if (ret)
10061                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10062                        " fails: %d\n", irqfd->consumer.token, ret);
10063 }
10064
10065 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10066                                    uint32_t guest_irq, bool set)
10067 {
10068         if (!kvm_x86_ops->update_pi_irte)
10069                 return -EINVAL;
10070
10071         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10072 }
10073
10074 bool kvm_vector_hashing_enabled(void)
10075 {
10076         return vector_hashing;
10077 }
10078 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10079
10080 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10081 {
10082         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10083 }
10084 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10085
10086
10087 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
10102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10103 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10104 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10105 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);