]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'drm-misc-fixes-2019-11-25' of git://anongit.freedesktop.org/drm/drm-misc...
[linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <asm/emulate_prefix.h>
72 #include <clocksource/hyperv_timer.h>
73
74 #define CREATE_TRACE_POINTS
75 #include "trace.h"
76
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
81
82 #define emul_to_vcpu(ctxt) \
83         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
84
85 /* EFER defaults:
86  * - enable syscall per default because its emulated by KVM
87  * - enable LME and LMA per default on 64 bit KVM
88  */
89 #ifdef CONFIG_X86_64
90 static
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
92 #else
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
94 #endif
95
96 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
97 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
98
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
101
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
108
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
111
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
114
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
117
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
120
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
123
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32  __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64  __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
134
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
138
139 /*
140  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
141  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
142  * advancement entirely.  Any other value is used as-is and disables adaptive
143  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
144  */
145 static int __read_mostly lapic_timer_advance_ns = -1;
146 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
147
148 static bool __read_mostly vector_hashing = true;
149 module_param(vector_hashing, bool, S_IRUGO);
150
151 bool __read_mostly enable_vmware_backdoor = false;
152 module_param(enable_vmware_backdoor, bool, S_IRUGO);
153 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
154
155 static bool __read_mostly force_emulation_prefix = false;
156 module_param(force_emulation_prefix, bool, S_IRUGO);
157
158 int __read_mostly pi_inject_timer = -1;
159 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
160
161 #define KVM_NR_SHARED_MSRS 16
162
163 struct kvm_shared_msrs_global {
164         int nr;
165         u32 msrs[KVM_NR_SHARED_MSRS];
166 };
167
168 struct kvm_shared_msrs {
169         struct user_return_notifier urn;
170         bool registered;
171         struct kvm_shared_msr_values {
172                 u64 host;
173                 u64 curr;
174         } values[KVM_NR_SHARED_MSRS];
175 };
176
177 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
178 static struct kvm_shared_msrs __percpu *shared_msrs;
179
180 static u64 __read_mostly host_xss;
181
182 struct kvm_stats_debugfs_item debugfs_entries[] = {
183         { "pf_fixed", VCPU_STAT(pf_fixed) },
184         { "pf_guest", VCPU_STAT(pf_guest) },
185         { "tlb_flush", VCPU_STAT(tlb_flush) },
186         { "invlpg", VCPU_STAT(invlpg) },
187         { "exits", VCPU_STAT(exits) },
188         { "io_exits", VCPU_STAT(io_exits) },
189         { "mmio_exits", VCPU_STAT(mmio_exits) },
190         { "signal_exits", VCPU_STAT(signal_exits) },
191         { "irq_window", VCPU_STAT(irq_window_exits) },
192         { "nmi_window", VCPU_STAT(nmi_window_exits) },
193         { "halt_exits", VCPU_STAT(halt_exits) },
194         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
195         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
196         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
197         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
198         { "hypercalls", VCPU_STAT(hypercalls) },
199         { "request_irq", VCPU_STAT(request_irq_exits) },
200         { "irq_exits", VCPU_STAT(irq_exits) },
201         { "host_state_reload", VCPU_STAT(host_state_reload) },
202         { "fpu_reload", VCPU_STAT(fpu_reload) },
203         { "insn_emulation", VCPU_STAT(insn_emulation) },
204         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
205         { "irq_injections", VCPU_STAT(irq_injections) },
206         { "nmi_injections", VCPU_STAT(nmi_injections) },
207         { "req_event", VCPU_STAT(req_event) },
208         { "l1d_flush", VCPU_STAT(l1d_flush) },
209         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
210         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
211         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
212         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
213         { "mmu_flooded", VM_STAT(mmu_flooded) },
214         { "mmu_recycled", VM_STAT(mmu_recycled) },
215         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
216         { "mmu_unsync", VM_STAT(mmu_unsync) },
217         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
218         { "largepages", VM_STAT(lpages, .mode = 0444) },
219         { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
220         { "max_mmu_page_hash_collisions",
221                 VM_STAT(max_mmu_page_hash_collisions) },
222         { NULL }
223 };
224
225 u64 __read_mostly host_xcr0;
226
227 struct kmem_cache *x86_fpu_cache;
228 EXPORT_SYMBOL_GPL(x86_fpu_cache);
229
230 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
231
232 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
233 {
234         int i;
235         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
236                 vcpu->arch.apf.gfns[i] = ~0;
237 }
238
239 static void kvm_on_user_return(struct user_return_notifier *urn)
240 {
241         unsigned slot;
242         struct kvm_shared_msrs *locals
243                 = container_of(urn, struct kvm_shared_msrs, urn);
244         struct kvm_shared_msr_values *values;
245         unsigned long flags;
246
247         /*
248          * Disabling irqs at this point since the following code could be
249          * interrupted and executed through kvm_arch_hardware_disable()
250          */
251         local_irq_save(flags);
252         if (locals->registered) {
253                 locals->registered = false;
254                 user_return_notifier_unregister(urn);
255         }
256         local_irq_restore(flags);
257         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
258                 values = &locals->values[slot];
259                 if (values->host != values->curr) {
260                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
261                         values->curr = values->host;
262                 }
263         }
264 }
265
266 void kvm_define_shared_msr(unsigned slot, u32 msr)
267 {
268         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
269         shared_msrs_global.msrs[slot] = msr;
270         if (slot >= shared_msrs_global.nr)
271                 shared_msrs_global.nr = slot + 1;
272 }
273 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
274
275 static void kvm_shared_msr_cpu_online(void)
276 {
277         unsigned int cpu = smp_processor_id();
278         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279         u64 value;
280         int i;
281
282         for (i = 0; i < shared_msrs_global.nr; ++i) {
283                 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
284                 smsr->values[i].host = value;
285                 smsr->values[i].curr = value;
286         }
287 }
288
289 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
290 {
291         unsigned int cpu = smp_processor_id();
292         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
293         int err;
294
295         value = (value & mask) | (smsr->values[slot].host & ~mask);
296         if (value == smsr->values[slot].curr)
297                 return 0;
298         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
299         if (err)
300                 return 1;
301
302         smsr->values[slot].curr = value;
303         if (!smsr->registered) {
304                 smsr->urn.on_user_return = kvm_on_user_return;
305                 user_return_notifier_register(&smsr->urn);
306                 smsr->registered = true;
307         }
308         return 0;
309 }
310 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
311
312 static void drop_user_return_notifiers(void)
313 {
314         unsigned int cpu = smp_processor_id();
315         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
316
317         if (smsr->registered)
318                 kvm_on_user_return(&smsr->urn);
319 }
320
321 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
322 {
323         return vcpu->arch.apic_base;
324 }
325 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
326
327 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
328 {
329         return kvm_apic_mode(kvm_get_apic_base(vcpu));
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
332
333 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
334 {
335         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
336         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
337         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
338                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
339
340         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
341                 return 1;
342         if (!msr_info->host_initiated) {
343                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
344                         return 1;
345                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
346                         return 1;
347         }
348
349         kvm_lapic_set_base(vcpu, msr_info->data);
350         return 0;
351 }
352 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
353
354 asmlinkage __visible void kvm_spurious_fault(void)
355 {
356         /* Fault while not rebooting.  We want the trace. */
357         BUG_ON(!kvm_rebooting);
358 }
359 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
360
361 #define EXCPT_BENIGN            0
362 #define EXCPT_CONTRIBUTORY      1
363 #define EXCPT_PF                2
364
365 static int exception_class(int vector)
366 {
367         switch (vector) {
368         case PF_VECTOR:
369                 return EXCPT_PF;
370         case DE_VECTOR:
371         case TS_VECTOR:
372         case NP_VECTOR:
373         case SS_VECTOR:
374         case GP_VECTOR:
375                 return EXCPT_CONTRIBUTORY;
376         default:
377                 break;
378         }
379         return EXCPT_BENIGN;
380 }
381
382 #define EXCPT_FAULT             0
383 #define EXCPT_TRAP              1
384 #define EXCPT_ABORT             2
385 #define EXCPT_INTERRUPT         3
386
387 static int exception_type(int vector)
388 {
389         unsigned int mask;
390
391         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
392                 return EXCPT_INTERRUPT;
393
394         mask = 1 << vector;
395
396         /* #DB is trap, as instruction watchpoints are handled elsewhere */
397         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
398                 return EXCPT_TRAP;
399
400         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
401                 return EXCPT_ABORT;
402
403         /* Reserved exceptions will result in fault */
404         return EXCPT_FAULT;
405 }
406
407 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
408 {
409         unsigned nr = vcpu->arch.exception.nr;
410         bool has_payload = vcpu->arch.exception.has_payload;
411         unsigned long payload = vcpu->arch.exception.payload;
412
413         if (!has_payload)
414                 return;
415
416         switch (nr) {
417         case DB_VECTOR:
418                 /*
419                  * "Certain debug exceptions may clear bit 0-3.  The
420                  * remaining contents of the DR6 register are never
421                  * cleared by the processor".
422                  */
423                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
424                 /*
425                  * DR6.RTM is set by all #DB exceptions that don't clear it.
426                  */
427                 vcpu->arch.dr6 |= DR6_RTM;
428                 vcpu->arch.dr6 |= payload;
429                 /*
430                  * Bit 16 should be set in the payload whenever the #DB
431                  * exception should clear DR6.RTM. This makes the payload
432                  * compatible with the pending debug exceptions under VMX.
433                  * Though not currently documented in the SDM, this also
434                  * makes the payload compatible with the exit qualification
435                  * for #DB exceptions under VMX.
436                  */
437                 vcpu->arch.dr6 ^= payload & DR6_RTM;
438                 break;
439         case PF_VECTOR:
440                 vcpu->arch.cr2 = payload;
441                 break;
442         }
443
444         vcpu->arch.exception.has_payload = false;
445         vcpu->arch.exception.payload = 0;
446 }
447 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
448
449 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
450                 unsigned nr, bool has_error, u32 error_code,
451                 bool has_payload, unsigned long payload, bool reinject)
452 {
453         u32 prev_nr;
454         int class1, class2;
455
456         kvm_make_request(KVM_REQ_EVENT, vcpu);
457
458         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
459         queue:
460                 if (has_error && !is_protmode(vcpu))
461                         has_error = false;
462                 if (reinject) {
463                         /*
464                          * On vmentry, vcpu->arch.exception.pending is only
465                          * true if an event injection was blocked by
466                          * nested_run_pending.  In that case, however,
467                          * vcpu_enter_guest requests an immediate exit,
468                          * and the guest shouldn't proceed far enough to
469                          * need reinjection.
470                          */
471                         WARN_ON_ONCE(vcpu->arch.exception.pending);
472                         vcpu->arch.exception.injected = true;
473                         if (WARN_ON_ONCE(has_payload)) {
474                                 /*
475                                  * A reinjected event has already
476                                  * delivered its payload.
477                                  */
478                                 has_payload = false;
479                                 payload = 0;
480                         }
481                 } else {
482                         vcpu->arch.exception.pending = true;
483                         vcpu->arch.exception.injected = false;
484                 }
485                 vcpu->arch.exception.has_error_code = has_error;
486                 vcpu->arch.exception.nr = nr;
487                 vcpu->arch.exception.error_code = error_code;
488                 vcpu->arch.exception.has_payload = has_payload;
489                 vcpu->arch.exception.payload = payload;
490                 /*
491                  * In guest mode, payload delivery should be deferred,
492                  * so that the L1 hypervisor can intercept #PF before
493                  * CR2 is modified (or intercept #DB before DR6 is
494                  * modified under nVMX).  However, for ABI
495                  * compatibility with KVM_GET_VCPU_EVENTS and
496                  * KVM_SET_VCPU_EVENTS, we can't delay payload
497                  * delivery unless userspace has enabled this
498                  * functionality via the per-VM capability,
499                  * KVM_CAP_EXCEPTION_PAYLOAD.
500                  */
501                 if (!vcpu->kvm->arch.exception_payload_enabled ||
502                     !is_guest_mode(vcpu))
503                         kvm_deliver_exception_payload(vcpu);
504                 return;
505         }
506
507         /* to check exception */
508         prev_nr = vcpu->arch.exception.nr;
509         if (prev_nr == DF_VECTOR) {
510                 /* triple fault -> shutdown */
511                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
512                 return;
513         }
514         class1 = exception_class(prev_nr);
515         class2 = exception_class(nr);
516         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
517                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
518                 /*
519                  * Generate double fault per SDM Table 5-5.  Set
520                  * exception.pending = true so that the double fault
521                  * can trigger a nested vmexit.
522                  */
523                 vcpu->arch.exception.pending = true;
524                 vcpu->arch.exception.injected = false;
525                 vcpu->arch.exception.has_error_code = true;
526                 vcpu->arch.exception.nr = DF_VECTOR;
527                 vcpu->arch.exception.error_code = 0;
528                 vcpu->arch.exception.has_payload = false;
529                 vcpu->arch.exception.payload = 0;
530         } else
531                 /* replace previous exception with a new one in a hope
532                    that instruction re-execution will regenerate lost
533                    exception */
534                 goto queue;
535 }
536
537 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
538 {
539         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
540 }
541 EXPORT_SYMBOL_GPL(kvm_queue_exception);
542
543 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
546 }
547 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
548
549 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
550                                   unsigned long payload)
551 {
552         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
553 }
554
555 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
556                                     u32 error_code, unsigned long payload)
557 {
558         kvm_multiple_exception(vcpu, nr, true, error_code,
559                                true, payload, false);
560 }
561
562 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
563 {
564         if (err)
565                 kvm_inject_gp(vcpu, 0);
566         else
567                 return kvm_skip_emulated_instruction(vcpu);
568
569         return 1;
570 }
571 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
572
573 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
574 {
575         ++vcpu->stat.pf_guest;
576         vcpu->arch.exception.nested_apf =
577                 is_guest_mode(vcpu) && fault->async_page_fault;
578         if (vcpu->arch.exception.nested_apf) {
579                 vcpu->arch.apf.nested_apf_token = fault->address;
580                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
581         } else {
582                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
583                                         fault->address);
584         }
585 }
586 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
587
588 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
589 {
590         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
591                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
592         else
593                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
594
595         return fault->nested_page_fault;
596 }
597
598 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
599 {
600         atomic_inc(&vcpu->arch.nmi_queued);
601         kvm_make_request(KVM_REQ_NMI, vcpu);
602 }
603 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
604
605 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
606 {
607         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
608 }
609 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
610
611 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
614 }
615 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
616
617 /*
618  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
619  * a #GP and return false.
620  */
621 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
622 {
623         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
624                 return true;
625         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
626         return false;
627 }
628 EXPORT_SYMBOL_GPL(kvm_require_cpl);
629
630 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
631 {
632         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
633                 return true;
634
635         kvm_queue_exception(vcpu, UD_VECTOR);
636         return false;
637 }
638 EXPORT_SYMBOL_GPL(kvm_require_dr);
639
640 /*
641  * This function will be used to read from the physical memory of the currently
642  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
643  * can read from guest physical or from the guest's guest physical memory.
644  */
645 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
646                             gfn_t ngfn, void *data, int offset, int len,
647                             u32 access)
648 {
649         struct x86_exception exception;
650         gfn_t real_gfn;
651         gpa_t ngpa;
652
653         ngpa     = gfn_to_gpa(ngfn);
654         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
655         if (real_gfn == UNMAPPED_GVA)
656                 return -EFAULT;
657
658         real_gfn = gpa_to_gfn(real_gfn);
659
660         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
661 }
662 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
663
664 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
665                                void *data, int offset, int len, u32 access)
666 {
667         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
668                                        data, offset, len, access);
669 }
670
671 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
672 {
673         return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
674                rsvd_bits(1, 2);
675 }
676
677 /*
678  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
679  */
680 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
681 {
682         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
683         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
684         int i;
685         int ret;
686         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
687
688         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
689                                       offset * sizeof(u64), sizeof(pdpte),
690                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
691         if (ret < 0) {
692                 ret = 0;
693                 goto out;
694         }
695         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
696                 if ((pdpte[i] & PT_PRESENT_MASK) &&
697                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
698                         ret = 0;
699                         goto out;
700                 }
701         }
702         ret = 1;
703
704         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
705         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
706
707 out:
708
709         return ret;
710 }
711 EXPORT_SYMBOL_GPL(load_pdptrs);
712
713 bool pdptrs_changed(struct kvm_vcpu *vcpu)
714 {
715         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
716         int offset;
717         gfn_t gfn;
718         int r;
719
720         if (!is_pae_paging(vcpu))
721                 return false;
722
723         if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
724                 return true;
725
726         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
727         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
728         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
729                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
730         if (r < 0)
731                 return true;
732
733         return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
734 }
735 EXPORT_SYMBOL_GPL(pdptrs_changed);
736
737 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
738 {
739         unsigned long old_cr0 = kvm_read_cr0(vcpu);
740         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
741
742         cr0 |= X86_CR0_ET;
743
744 #ifdef CONFIG_X86_64
745         if (cr0 & 0xffffffff00000000UL)
746                 return 1;
747 #endif
748
749         cr0 &= ~CR0_RESERVED_BITS;
750
751         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
752                 return 1;
753
754         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
755                 return 1;
756
757         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
758 #ifdef CONFIG_X86_64
759                 if ((vcpu->arch.efer & EFER_LME)) {
760                         int cs_db, cs_l;
761
762                         if (!is_pae(vcpu))
763                                 return 1;
764                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
765                         if (cs_l)
766                                 return 1;
767                 } else
768 #endif
769                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
770                                                  kvm_read_cr3(vcpu)))
771                         return 1;
772         }
773
774         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
775                 return 1;
776
777         kvm_x86_ops->set_cr0(vcpu, cr0);
778
779         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
780                 kvm_clear_async_pf_completion_queue(vcpu);
781                 kvm_async_pf_hash_reset(vcpu);
782         }
783
784         if ((cr0 ^ old_cr0) & update_bits)
785                 kvm_mmu_reset_context(vcpu);
786
787         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
788             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
789             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
790                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
791
792         return 0;
793 }
794 EXPORT_SYMBOL_GPL(kvm_set_cr0);
795
796 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
797 {
798         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
799 }
800 EXPORT_SYMBOL_GPL(kvm_lmsw);
801
802 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
803 {
804         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
805
806                 if (vcpu->arch.xcr0 != host_xcr0)
807                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
808
809                 if (vcpu->arch.xsaves_enabled &&
810                     vcpu->arch.ia32_xss != host_xss)
811                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
812         }
813 }
814 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
815
816 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
817 {
818         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
819
820                 if (vcpu->arch.xcr0 != host_xcr0)
821                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
822
823                 if (vcpu->arch.xsaves_enabled &&
824                     vcpu->arch.ia32_xss != host_xss)
825                         wrmsrl(MSR_IA32_XSS, host_xss);
826         }
827
828 }
829 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
830
831 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
832 {
833         u64 xcr0 = xcr;
834         u64 old_xcr0 = vcpu->arch.xcr0;
835         u64 valid_bits;
836
837         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
838         if (index != XCR_XFEATURE_ENABLED_MASK)
839                 return 1;
840         if (!(xcr0 & XFEATURE_MASK_FP))
841                 return 1;
842         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
843                 return 1;
844
845         /*
846          * Do not allow the guest to set bits that we do not support
847          * saving.  However, xcr0 bit 0 is always set, even if the
848          * emulated CPU does not support XSAVE (see fx_init).
849          */
850         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
851         if (xcr0 & ~valid_bits)
852                 return 1;
853
854         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
855             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
856                 return 1;
857
858         if (xcr0 & XFEATURE_MASK_AVX512) {
859                 if (!(xcr0 & XFEATURE_MASK_YMM))
860                         return 1;
861                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
862                         return 1;
863         }
864         vcpu->arch.xcr0 = xcr0;
865
866         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
867                 kvm_update_cpuid(vcpu);
868         return 0;
869 }
870
871 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
872 {
873         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
874             __kvm_set_xcr(vcpu, index, xcr)) {
875                 kvm_inject_gp(vcpu, 0);
876                 return 1;
877         }
878         return 0;
879 }
880 EXPORT_SYMBOL_GPL(kvm_set_xcr);
881
882 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
883 {
884         if (cr4 & CR4_RESERVED_BITS)
885                 return -EINVAL;
886
887         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
888                 return -EINVAL;
889
890         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
891                 return -EINVAL;
892
893         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
894                 return -EINVAL;
895
896         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
897                 return -EINVAL;
898
899         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
900                 return -EINVAL;
901
902         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
903                 return -EINVAL;
904
905         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
906                 return -EINVAL;
907
908         return 0;
909 }
910
911 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
912 {
913         unsigned long old_cr4 = kvm_read_cr4(vcpu);
914         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
915                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
916
917         if (kvm_valid_cr4(vcpu, cr4))
918                 return 1;
919
920         if (is_long_mode(vcpu)) {
921                 if (!(cr4 & X86_CR4_PAE))
922                         return 1;
923         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
924                    && ((cr4 ^ old_cr4) & pdptr_bits)
925                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
926                                    kvm_read_cr3(vcpu)))
927                 return 1;
928
929         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
930                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
931                         return 1;
932
933                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
934                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
935                         return 1;
936         }
937
938         if (kvm_x86_ops->set_cr4(vcpu, cr4))
939                 return 1;
940
941         if (((cr4 ^ old_cr4) & pdptr_bits) ||
942             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
943                 kvm_mmu_reset_context(vcpu);
944
945         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
946                 kvm_update_cpuid(vcpu);
947
948         return 0;
949 }
950 EXPORT_SYMBOL_GPL(kvm_set_cr4);
951
952 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
953 {
954         bool skip_tlb_flush = false;
955 #ifdef CONFIG_X86_64
956         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
957
958         if (pcid_enabled) {
959                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
960                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
961         }
962 #endif
963
964         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
965                 if (!skip_tlb_flush) {
966                         kvm_mmu_sync_roots(vcpu);
967                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
968                 }
969                 return 0;
970         }
971
972         if (is_long_mode(vcpu) &&
973             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
974                 return 1;
975         else if (is_pae_paging(vcpu) &&
976                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
977                 return 1;
978
979         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
980         vcpu->arch.cr3 = cr3;
981         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
982
983         return 0;
984 }
985 EXPORT_SYMBOL_GPL(kvm_set_cr3);
986
987 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
988 {
989         if (cr8 & CR8_RESERVED_BITS)
990                 return 1;
991         if (lapic_in_kernel(vcpu))
992                 kvm_lapic_set_tpr(vcpu, cr8);
993         else
994                 vcpu->arch.cr8 = cr8;
995         return 0;
996 }
997 EXPORT_SYMBOL_GPL(kvm_set_cr8);
998
999 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1000 {
1001         if (lapic_in_kernel(vcpu))
1002                 return kvm_lapic_get_cr8(vcpu);
1003         else
1004                 return vcpu->arch.cr8;
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1007
1008 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1009 {
1010         int i;
1011
1012         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1013                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1014                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1015                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1016         }
1017 }
1018
1019 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1020 {
1021         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1022                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1023 }
1024
1025 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1026 {
1027         unsigned long dr7;
1028
1029         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1030                 dr7 = vcpu->arch.guest_debug_dr7;
1031         else
1032                 dr7 = vcpu->arch.dr7;
1033         kvm_x86_ops->set_dr7(vcpu, dr7);
1034         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1035         if (dr7 & DR7_BP_EN_MASK)
1036                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1037 }
1038
1039 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1040 {
1041         u64 fixed = DR6_FIXED_1;
1042
1043         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1044                 fixed |= DR6_RTM;
1045         return fixed;
1046 }
1047
1048 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1049 {
1050         switch (dr) {
1051         case 0 ... 3:
1052                 vcpu->arch.db[dr] = val;
1053                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1054                         vcpu->arch.eff_db[dr] = val;
1055                 break;
1056         case 4:
1057                 /* fall through */
1058         case 6:
1059                 if (val & 0xffffffff00000000ULL)
1060                         return -1; /* #GP */
1061                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1062                 kvm_update_dr6(vcpu);
1063                 break;
1064         case 5:
1065                 /* fall through */
1066         default: /* 7 */
1067                 if (val & 0xffffffff00000000ULL)
1068                         return -1; /* #GP */
1069                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1070                 kvm_update_dr7(vcpu);
1071                 break;
1072         }
1073
1074         return 0;
1075 }
1076
1077 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1078 {
1079         if (__kvm_set_dr(vcpu, dr, val)) {
1080                 kvm_inject_gp(vcpu, 0);
1081                 return 1;
1082         }
1083         return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_set_dr);
1086
1087 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1088 {
1089         switch (dr) {
1090         case 0 ... 3:
1091                 *val = vcpu->arch.db[dr];
1092                 break;
1093         case 4:
1094                 /* fall through */
1095         case 6:
1096                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1097                         *val = vcpu->arch.dr6;
1098                 else
1099                         *val = kvm_x86_ops->get_dr6(vcpu);
1100                 break;
1101         case 5:
1102                 /* fall through */
1103         default: /* 7 */
1104                 *val = vcpu->arch.dr7;
1105                 break;
1106         }
1107         return 0;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_get_dr);
1110
1111 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1112 {
1113         u32 ecx = kvm_rcx_read(vcpu);
1114         u64 data;
1115         int err;
1116
1117         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1118         if (err)
1119                 return err;
1120         kvm_rax_write(vcpu, (u32)data);
1121         kvm_rdx_write(vcpu, data >> 32);
1122         return err;
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1125
1126 /*
1127  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1128  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1129  *
1130  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1131  * extract the supported MSRs from the related const lists.
1132  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1133  * capabilities of the host cpu. This capabilities test skips MSRs that are
1134  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1135  * may depend on host virtualization features rather than host cpu features.
1136  */
1137
1138 static const u32 msrs_to_save_all[] = {
1139         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1140         MSR_STAR,
1141 #ifdef CONFIG_X86_64
1142         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1143 #endif
1144         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1145         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1146         MSR_IA32_SPEC_CTRL,
1147         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1148         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1149         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1150         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1151         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1152         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1153         MSR_IA32_UMWAIT_CONTROL,
1154
1155         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1156         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1157         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1158         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1159         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1160         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1161         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1162         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1163         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1164         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1165         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1166         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1167         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1168         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1169         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1170         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1171         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1172         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1173         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1174         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1175         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1176         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1177 };
1178
1179 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1180 static unsigned num_msrs_to_save;
1181
1182 static const u32 emulated_msrs_all[] = {
1183         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1184         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1185         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1186         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1187         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1188         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1189         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1190         HV_X64_MSR_RESET,
1191         HV_X64_MSR_VP_INDEX,
1192         HV_X64_MSR_VP_RUNTIME,
1193         HV_X64_MSR_SCONTROL,
1194         HV_X64_MSR_STIMER0_CONFIG,
1195         HV_X64_MSR_VP_ASSIST_PAGE,
1196         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1197         HV_X64_MSR_TSC_EMULATION_STATUS,
1198
1199         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1200         MSR_KVM_PV_EOI_EN,
1201
1202         MSR_IA32_TSC_ADJUST,
1203         MSR_IA32_TSCDEADLINE,
1204         MSR_IA32_ARCH_CAPABILITIES,
1205         MSR_IA32_MISC_ENABLE,
1206         MSR_IA32_MCG_STATUS,
1207         MSR_IA32_MCG_CTL,
1208         MSR_IA32_MCG_EXT_CTL,
1209         MSR_IA32_SMBASE,
1210         MSR_SMI_COUNT,
1211         MSR_PLATFORM_INFO,
1212         MSR_MISC_FEATURES_ENABLES,
1213         MSR_AMD64_VIRT_SPEC_CTRL,
1214         MSR_IA32_POWER_CTL,
1215
1216         /*
1217          * The following list leaves out MSRs whose values are determined
1218          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1219          * We always support the "true" VMX control MSRs, even if the host
1220          * processor does not, so I am putting these registers here rather
1221          * than in msrs_to_save_all.
1222          */
1223         MSR_IA32_VMX_BASIC,
1224         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1225         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1226         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1227         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1228         MSR_IA32_VMX_MISC,
1229         MSR_IA32_VMX_CR0_FIXED0,
1230         MSR_IA32_VMX_CR4_FIXED0,
1231         MSR_IA32_VMX_VMCS_ENUM,
1232         MSR_IA32_VMX_PROCBASED_CTLS2,
1233         MSR_IA32_VMX_EPT_VPID_CAP,
1234         MSR_IA32_VMX_VMFUNC,
1235
1236         MSR_K7_HWCR,
1237         MSR_KVM_POLL_CONTROL,
1238 };
1239
1240 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1241 static unsigned num_emulated_msrs;
1242
1243 /*
1244  * List of msr numbers which are used to expose MSR-based features that
1245  * can be used by a hypervisor to validate requested CPU features.
1246  */
1247 static const u32 msr_based_features_all[] = {
1248         MSR_IA32_VMX_BASIC,
1249         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1250         MSR_IA32_VMX_PINBASED_CTLS,
1251         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1252         MSR_IA32_VMX_PROCBASED_CTLS,
1253         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1254         MSR_IA32_VMX_EXIT_CTLS,
1255         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1256         MSR_IA32_VMX_ENTRY_CTLS,
1257         MSR_IA32_VMX_MISC,
1258         MSR_IA32_VMX_CR0_FIXED0,
1259         MSR_IA32_VMX_CR0_FIXED1,
1260         MSR_IA32_VMX_CR4_FIXED0,
1261         MSR_IA32_VMX_CR4_FIXED1,
1262         MSR_IA32_VMX_VMCS_ENUM,
1263         MSR_IA32_VMX_PROCBASED_CTLS2,
1264         MSR_IA32_VMX_EPT_VPID_CAP,
1265         MSR_IA32_VMX_VMFUNC,
1266
1267         MSR_F10H_DECFG,
1268         MSR_IA32_UCODE_REV,
1269         MSR_IA32_ARCH_CAPABILITIES,
1270 };
1271
1272 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1273 static unsigned int num_msr_based_features;
1274
1275 static u64 kvm_get_arch_capabilities(void)
1276 {
1277         u64 data = 0;
1278
1279         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1280                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1281
1282         /*
1283          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1284          * the nested hypervisor runs with NX huge pages.  If it is not,
1285          * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1286          * L1 guests, so it need not worry about its own (L2) guests.
1287          */
1288         data |= ARCH_CAP_PSCHANGE_MC_NO;
1289
1290         /*
1291          * If we're doing cache flushes (either "always" or "cond")
1292          * we will do one whenever the guest does a vmlaunch/vmresume.
1293          * If an outer hypervisor is doing the cache flush for us
1294          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1295          * capability to the guest too, and if EPT is disabled we're not
1296          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1297          * require a nested hypervisor to do a flush of its own.
1298          */
1299         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1300                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1301
1302         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1303                 data |= ARCH_CAP_RDCL_NO;
1304         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1305                 data |= ARCH_CAP_SSB_NO;
1306         if (!boot_cpu_has_bug(X86_BUG_MDS))
1307                 data |= ARCH_CAP_MDS_NO;
1308
1309         /*
1310          * On TAA affected systems:
1311          *      - nothing to do if TSX is disabled on the host.
1312          *      - we emulate TSX_CTRL if present on the host.
1313          *        This lets the guest use VERW to clear CPU buffers.
1314          */
1315         if (!boot_cpu_has(X86_FEATURE_RTM))
1316                 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1317         else if (!boot_cpu_has_bug(X86_BUG_TAA))
1318                 data |= ARCH_CAP_TAA_NO;
1319
1320         return data;
1321 }
1322
1323 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1324 {
1325         switch (msr->index) {
1326         case MSR_IA32_ARCH_CAPABILITIES:
1327                 msr->data = kvm_get_arch_capabilities();
1328                 break;
1329         case MSR_IA32_UCODE_REV:
1330                 rdmsrl_safe(msr->index, &msr->data);
1331                 break;
1332         default:
1333                 if (kvm_x86_ops->get_msr_feature(msr))
1334                         return 1;
1335         }
1336         return 0;
1337 }
1338
1339 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1340 {
1341         struct kvm_msr_entry msr;
1342         int r;
1343
1344         msr.index = index;
1345         r = kvm_get_msr_feature(&msr);
1346         if (r)
1347                 return r;
1348
1349         *data = msr.data;
1350
1351         return 0;
1352 }
1353
1354 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1355 {
1356         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1357                 return false;
1358
1359         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1360                 return false;
1361
1362         if (efer & (EFER_LME | EFER_LMA) &&
1363             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1364                 return false;
1365
1366         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1367                 return false;
1368
1369         return true;
1370
1371 }
1372 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1373 {
1374         if (efer & efer_reserved_bits)
1375                 return false;
1376
1377         return __kvm_valid_efer(vcpu, efer);
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1380
1381 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1382 {
1383         u64 old_efer = vcpu->arch.efer;
1384         u64 efer = msr_info->data;
1385
1386         if (efer & efer_reserved_bits)
1387                 return 1;
1388
1389         if (!msr_info->host_initiated) {
1390                 if (!__kvm_valid_efer(vcpu, efer))
1391                         return 1;
1392
1393                 if (is_paging(vcpu) &&
1394                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1395                         return 1;
1396         }
1397
1398         efer &= ~EFER_LMA;
1399         efer |= vcpu->arch.efer & EFER_LMA;
1400
1401         kvm_x86_ops->set_efer(vcpu, efer);
1402
1403         /* Update reserved bits */
1404         if ((efer ^ old_efer) & EFER_NX)
1405                 kvm_mmu_reset_context(vcpu);
1406
1407         return 0;
1408 }
1409
1410 void kvm_enable_efer_bits(u64 mask)
1411 {
1412        efer_reserved_bits &= ~mask;
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1415
1416 /*
1417  * Write @data into the MSR specified by @index.  Select MSR specific fault
1418  * checks are bypassed if @host_initiated is %true.
1419  * Returns 0 on success, non-0 otherwise.
1420  * Assumes vcpu_load() was already called.
1421  */
1422 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1423                          bool host_initiated)
1424 {
1425         struct msr_data msr;
1426
1427         switch (index) {
1428         case MSR_FS_BASE:
1429         case MSR_GS_BASE:
1430         case MSR_KERNEL_GS_BASE:
1431         case MSR_CSTAR:
1432         case MSR_LSTAR:
1433                 if (is_noncanonical_address(data, vcpu))
1434                         return 1;
1435                 break;
1436         case MSR_IA32_SYSENTER_EIP:
1437         case MSR_IA32_SYSENTER_ESP:
1438                 /*
1439                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1440                  * non-canonical address is written on Intel but not on
1441                  * AMD (which ignores the top 32-bits, because it does
1442                  * not implement 64-bit SYSENTER).
1443                  *
1444                  * 64-bit code should hence be able to write a non-canonical
1445                  * value on AMD.  Making the address canonical ensures that
1446                  * vmentry does not fail on Intel after writing a non-canonical
1447                  * value, and that something deterministic happens if the guest
1448                  * invokes 64-bit SYSENTER.
1449                  */
1450                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1451         }
1452
1453         msr.data = data;
1454         msr.index = index;
1455         msr.host_initiated = host_initiated;
1456
1457         return kvm_x86_ops->set_msr(vcpu, &msr);
1458 }
1459
1460 /*
1461  * Read the MSR specified by @index into @data.  Select MSR specific fault
1462  * checks are bypassed if @host_initiated is %true.
1463  * Returns 0 on success, non-0 otherwise.
1464  * Assumes vcpu_load() was already called.
1465  */
1466 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1467                   bool host_initiated)
1468 {
1469         struct msr_data msr;
1470         int ret;
1471
1472         msr.index = index;
1473         msr.host_initiated = host_initiated;
1474
1475         ret = kvm_x86_ops->get_msr(vcpu, &msr);
1476         if (!ret)
1477                 *data = msr.data;
1478         return ret;
1479 }
1480
1481 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1482 {
1483         return __kvm_get_msr(vcpu, index, data, false);
1484 }
1485 EXPORT_SYMBOL_GPL(kvm_get_msr);
1486
1487 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1488 {
1489         return __kvm_set_msr(vcpu, index, data, false);
1490 }
1491 EXPORT_SYMBOL_GPL(kvm_set_msr);
1492
1493 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1494 {
1495         u32 ecx = kvm_rcx_read(vcpu);
1496         u64 data;
1497
1498         if (kvm_get_msr(vcpu, ecx, &data)) {
1499                 trace_kvm_msr_read_ex(ecx);
1500                 kvm_inject_gp(vcpu, 0);
1501                 return 1;
1502         }
1503
1504         trace_kvm_msr_read(ecx, data);
1505
1506         kvm_rax_write(vcpu, data & -1u);
1507         kvm_rdx_write(vcpu, (data >> 32) & -1u);
1508         return kvm_skip_emulated_instruction(vcpu);
1509 }
1510 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1511
1512 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1513 {
1514         u32 ecx = kvm_rcx_read(vcpu);
1515         u64 data = kvm_read_edx_eax(vcpu);
1516
1517         if (kvm_set_msr(vcpu, ecx, data)) {
1518                 trace_kvm_msr_write_ex(ecx, data);
1519                 kvm_inject_gp(vcpu, 0);
1520                 return 1;
1521         }
1522
1523         trace_kvm_msr_write(ecx, data);
1524         return kvm_skip_emulated_instruction(vcpu);
1525 }
1526 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1527
1528 /*
1529  * Adapt set_msr() to msr_io()'s calling convention
1530  */
1531 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1532 {
1533         return __kvm_get_msr(vcpu, index, data, true);
1534 }
1535
1536 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1537 {
1538         return __kvm_set_msr(vcpu, index, *data, true);
1539 }
1540
1541 #ifdef CONFIG_X86_64
1542 struct pvclock_clock {
1543         int vclock_mode;
1544         u64 cycle_last;
1545         u64 mask;
1546         u32 mult;
1547         u32 shift;
1548 };
1549
1550 struct pvclock_gtod_data {
1551         seqcount_t      seq;
1552
1553         struct pvclock_clock clock; /* extract of a clocksource struct */
1554         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1555
1556         u64             boot_ns_raw;
1557         u64             boot_ns;
1558         u64             nsec_base;
1559         u64             wall_time_sec;
1560         u64             monotonic_raw_nsec;
1561 };
1562
1563 static struct pvclock_gtod_data pvclock_gtod_data;
1564
1565 static void update_pvclock_gtod(struct timekeeper *tk)
1566 {
1567         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1568         u64 boot_ns, boot_ns_raw;
1569
1570         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1571         boot_ns_raw = ktime_to_ns(ktime_add(tk->tkr_raw.base, tk->offs_boot));
1572
1573         write_seqcount_begin(&vdata->seq);
1574
1575         /* copy pvclock gtod data */
1576         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1577         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1578         vdata->clock.mask               = tk->tkr_mono.mask;
1579         vdata->clock.mult               = tk->tkr_mono.mult;
1580         vdata->clock.shift              = tk->tkr_mono.shift;
1581
1582         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->archdata.vclock_mode;
1583         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
1584         vdata->raw_clock.mask           = tk->tkr_raw.mask;
1585         vdata->raw_clock.mult           = tk->tkr_raw.mult;
1586         vdata->raw_clock.shift          = tk->tkr_raw.shift;
1587
1588         vdata->boot_ns                  = boot_ns;
1589         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1590
1591         vdata->wall_time_sec            = tk->xtime_sec;
1592
1593         vdata->boot_ns_raw              = boot_ns_raw;
1594         vdata->monotonic_raw_nsec       = tk->tkr_raw.xtime_nsec;
1595
1596         write_seqcount_end(&vdata->seq);
1597 }
1598 #endif
1599
1600 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1601 {
1602         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1603         kvm_vcpu_kick(vcpu);
1604 }
1605
1606 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1607 {
1608         int version;
1609         int r;
1610         struct pvclock_wall_clock wc;
1611         struct timespec64 boot;
1612
1613         if (!wall_clock)
1614                 return;
1615
1616         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1617         if (r)
1618                 return;
1619
1620         if (version & 1)
1621                 ++version;  /* first time write, random junk */
1622
1623         ++version;
1624
1625         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1626                 return;
1627
1628         /*
1629          * The guest calculates current wall clock time by adding
1630          * system time (updated by kvm_guest_time_update below) to the
1631          * wall clock specified here.  guest system time equals host
1632          * system time for us, thus we must fill in host boot time here.
1633          */
1634         getboottime64(&boot);
1635
1636         if (kvm->arch.kvmclock_offset) {
1637                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1638                 boot = timespec64_sub(boot, ts);
1639         }
1640         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1641         wc.nsec = boot.tv_nsec;
1642         wc.version = version;
1643
1644         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1645
1646         version++;
1647         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1648 }
1649
1650 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1651 {
1652         do_shl32_div32(dividend, divisor);
1653         return dividend;
1654 }
1655
1656 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1657                                s8 *pshift, u32 *pmultiplier)
1658 {
1659         uint64_t scaled64;
1660         int32_t  shift = 0;
1661         uint64_t tps64;
1662         uint32_t tps32;
1663
1664         tps64 = base_hz;
1665         scaled64 = scaled_hz;
1666         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1667                 tps64 >>= 1;
1668                 shift--;
1669         }
1670
1671         tps32 = (uint32_t)tps64;
1672         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1673                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1674                         scaled64 >>= 1;
1675                 else
1676                         tps32 <<= 1;
1677                 shift++;
1678         }
1679
1680         *pshift = shift;
1681         *pmultiplier = div_frac(scaled64, tps32);
1682 }
1683
1684 #ifdef CONFIG_X86_64
1685 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1686 #endif
1687
1688 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1689 static unsigned long max_tsc_khz;
1690
1691 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1692 {
1693         u64 v = (u64)khz * (1000000 + ppm);
1694         do_div(v, 1000000);
1695         return v;
1696 }
1697
1698 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1699 {
1700         u64 ratio;
1701
1702         /* Guest TSC same frequency as host TSC? */
1703         if (!scale) {
1704                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1705                 return 0;
1706         }
1707
1708         /* TSC scaling supported? */
1709         if (!kvm_has_tsc_control) {
1710                 if (user_tsc_khz > tsc_khz) {
1711                         vcpu->arch.tsc_catchup = 1;
1712                         vcpu->arch.tsc_always_catchup = 1;
1713                         return 0;
1714                 } else {
1715                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1716                         return -1;
1717                 }
1718         }
1719
1720         /* TSC scaling required  - calculate ratio */
1721         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1722                                 user_tsc_khz, tsc_khz);
1723
1724         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1725                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1726                                     user_tsc_khz);
1727                 return -1;
1728         }
1729
1730         vcpu->arch.tsc_scaling_ratio = ratio;
1731         return 0;
1732 }
1733
1734 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1735 {
1736         u32 thresh_lo, thresh_hi;
1737         int use_scaling = 0;
1738
1739         /* tsc_khz can be zero if TSC calibration fails */
1740         if (user_tsc_khz == 0) {
1741                 /* set tsc_scaling_ratio to a safe value */
1742                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1743                 return -1;
1744         }
1745
1746         /* Compute a scale to convert nanoseconds in TSC cycles */
1747         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1748                            &vcpu->arch.virtual_tsc_shift,
1749                            &vcpu->arch.virtual_tsc_mult);
1750         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1751
1752         /*
1753          * Compute the variation in TSC rate which is acceptable
1754          * within the range of tolerance and decide if the
1755          * rate being applied is within that bounds of the hardware
1756          * rate.  If so, no scaling or compensation need be done.
1757          */
1758         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1759         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1760         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1761                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1762                 use_scaling = 1;
1763         }
1764         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1765 }
1766
1767 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1768 {
1769         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1770                                       vcpu->arch.virtual_tsc_mult,
1771                                       vcpu->arch.virtual_tsc_shift);
1772         tsc += vcpu->arch.this_tsc_write;
1773         return tsc;
1774 }
1775
1776 static inline int gtod_is_based_on_tsc(int mode)
1777 {
1778         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1779 }
1780
1781 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1782 {
1783 #ifdef CONFIG_X86_64
1784         bool vcpus_matched;
1785         struct kvm_arch *ka = &vcpu->kvm->arch;
1786         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1787
1788         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1789                          atomic_read(&vcpu->kvm->online_vcpus));
1790
1791         /*
1792          * Once the masterclock is enabled, always perform request in
1793          * order to update it.
1794          *
1795          * In order to enable masterclock, the host clocksource must be TSC
1796          * and the vcpus need to have matched TSCs.  When that happens,
1797          * perform request to enable masterclock.
1798          */
1799         if (ka->use_master_clock ||
1800             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1801                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1802
1803         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1804                             atomic_read(&vcpu->kvm->online_vcpus),
1805                             ka->use_master_clock, gtod->clock.vclock_mode);
1806 #endif
1807 }
1808
1809 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1810 {
1811         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1812         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1813 }
1814
1815 /*
1816  * Multiply tsc by a fixed point number represented by ratio.
1817  *
1818  * The most significant 64-N bits (mult) of ratio represent the
1819  * integral part of the fixed point number; the remaining N bits
1820  * (frac) represent the fractional part, ie. ratio represents a fixed
1821  * point number (mult + frac * 2^(-N)).
1822  *
1823  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1824  */
1825 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1826 {
1827         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1828 }
1829
1830 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1831 {
1832         u64 _tsc = tsc;
1833         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1834
1835         if (ratio != kvm_default_tsc_scaling_ratio)
1836                 _tsc = __scale_tsc(ratio, tsc);
1837
1838         return _tsc;
1839 }
1840 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1841
1842 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1843 {
1844         u64 tsc;
1845
1846         tsc = kvm_scale_tsc(vcpu, rdtsc());
1847
1848         return target_tsc - tsc;
1849 }
1850
1851 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1852 {
1853         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1854
1855         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1856 }
1857 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1858
1859 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1860 {
1861         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1862 }
1863
1864 static inline bool kvm_check_tsc_unstable(void)
1865 {
1866 #ifdef CONFIG_X86_64
1867         /*
1868          * TSC is marked unstable when we're running on Hyper-V,
1869          * 'TSC page' clocksource is good.
1870          */
1871         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1872                 return false;
1873 #endif
1874         return check_tsc_unstable();
1875 }
1876
1877 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1878 {
1879         struct kvm *kvm = vcpu->kvm;
1880         u64 offset, ns, elapsed;
1881         unsigned long flags;
1882         bool matched;
1883         bool already_matched;
1884         u64 data = msr->data;
1885         bool synchronizing = false;
1886
1887         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1888         offset = kvm_compute_tsc_offset(vcpu, data);
1889         ns = ktime_get_boottime_ns();
1890         elapsed = ns - kvm->arch.last_tsc_nsec;
1891
1892         if (vcpu->arch.virtual_tsc_khz) {
1893                 if (data == 0 && msr->host_initiated) {
1894                         /*
1895                          * detection of vcpu initialization -- need to sync
1896                          * with other vCPUs. This particularly helps to keep
1897                          * kvm_clock stable after CPU hotplug
1898                          */
1899                         synchronizing = true;
1900                 } else {
1901                         u64 tsc_exp = kvm->arch.last_tsc_write +
1902                                                 nsec_to_cycles(vcpu, elapsed);
1903                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1904                         /*
1905                          * Special case: TSC write with a small delta (1 second)
1906                          * of virtual cycle time against real time is
1907                          * interpreted as an attempt to synchronize the CPU.
1908                          */
1909                         synchronizing = data < tsc_exp + tsc_hz &&
1910                                         data + tsc_hz > tsc_exp;
1911                 }
1912         }
1913
1914         /*
1915          * For a reliable TSC, we can match TSC offsets, and for an unstable
1916          * TSC, we add elapsed time in this computation.  We could let the
1917          * compensation code attempt to catch up if we fall behind, but
1918          * it's better to try to match offsets from the beginning.
1919          */
1920         if (synchronizing &&
1921             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1922                 if (!kvm_check_tsc_unstable()) {
1923                         offset = kvm->arch.cur_tsc_offset;
1924                 } else {
1925                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1926                         data += delta;
1927                         offset = kvm_compute_tsc_offset(vcpu, data);
1928                 }
1929                 matched = true;
1930                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1931         } else {
1932                 /*
1933                  * We split periods of matched TSC writes into generations.
1934                  * For each generation, we track the original measured
1935                  * nanosecond time, offset, and write, so if TSCs are in
1936                  * sync, we can match exact offset, and if not, we can match
1937                  * exact software computation in compute_guest_tsc()
1938                  *
1939                  * These values are tracked in kvm->arch.cur_xxx variables.
1940                  */
1941                 kvm->arch.cur_tsc_generation++;
1942                 kvm->arch.cur_tsc_nsec = ns;
1943                 kvm->arch.cur_tsc_write = data;
1944                 kvm->arch.cur_tsc_offset = offset;
1945                 matched = false;
1946         }
1947
1948         /*
1949          * We also track th most recent recorded KHZ, write and time to
1950          * allow the matching interval to be extended at each write.
1951          */
1952         kvm->arch.last_tsc_nsec = ns;
1953         kvm->arch.last_tsc_write = data;
1954         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1955
1956         vcpu->arch.last_guest_tsc = data;
1957
1958         /* Keep track of which generation this VCPU has synchronized to */
1959         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1960         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1961         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1962
1963         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1964                 update_ia32_tsc_adjust_msr(vcpu, offset);
1965
1966         kvm_vcpu_write_tsc_offset(vcpu, offset);
1967         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1968
1969         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1970         if (!matched) {
1971                 kvm->arch.nr_vcpus_matched_tsc = 0;
1972         } else if (!already_matched) {
1973                 kvm->arch.nr_vcpus_matched_tsc++;
1974         }
1975
1976         kvm_track_tsc_matching(vcpu);
1977         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1978 }
1979
1980 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1981
1982 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1983                                            s64 adjustment)
1984 {
1985         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1986         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1987 }
1988
1989 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1990 {
1991         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1992                 WARN_ON(adjustment < 0);
1993         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1994         adjust_tsc_offset_guest(vcpu, adjustment);
1995 }
1996
1997 #ifdef CONFIG_X86_64
1998
1999 static u64 read_tsc(void)
2000 {
2001         u64 ret = (u64)rdtsc_ordered();
2002         u64 last = pvclock_gtod_data.clock.cycle_last;
2003
2004         if (likely(ret >= last))
2005                 return ret;
2006
2007         /*
2008          * GCC likes to generate cmov here, but this branch is extremely
2009          * predictable (it's just a function of time and the likely is
2010          * very likely) and there's a data dependence, so force GCC
2011          * to generate a branch instead.  I don't barrier() because
2012          * we don't actually need a barrier, and if this function
2013          * ever gets inlined it will generate worse code.
2014          */
2015         asm volatile ("");
2016         return last;
2017 }
2018
2019 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2020                           int *mode)
2021 {
2022         long v;
2023         u64 tsc_pg_val;
2024
2025         switch (clock->vclock_mode) {
2026         case VCLOCK_HVCLOCK:
2027                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2028                                                   tsc_timestamp);
2029                 if (tsc_pg_val != U64_MAX) {
2030                         /* TSC page valid */
2031                         *mode = VCLOCK_HVCLOCK;
2032                         v = (tsc_pg_val - clock->cycle_last) &
2033                                 clock->mask;
2034                 } else {
2035                         /* TSC page invalid */
2036                         *mode = VCLOCK_NONE;
2037                 }
2038                 break;
2039         case VCLOCK_TSC:
2040                 *mode = VCLOCK_TSC;
2041                 *tsc_timestamp = read_tsc();
2042                 v = (*tsc_timestamp - clock->cycle_last) &
2043                         clock->mask;
2044                 break;
2045         default:
2046                 *mode = VCLOCK_NONE;
2047         }
2048
2049         if (*mode == VCLOCK_NONE)
2050                 *tsc_timestamp = v = 0;
2051
2052         return v * clock->mult;
2053 }
2054
2055 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2056 {
2057         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2058         unsigned long seq;
2059         int mode;
2060         u64 ns;
2061
2062         do {
2063                 seq = read_seqcount_begin(&gtod->seq);
2064                 ns = gtod->monotonic_raw_nsec;
2065                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2066                 ns >>= gtod->clock.shift;
2067                 ns += gtod->boot_ns_raw;
2068         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2069         *t = ns;
2070
2071         return mode;
2072 }
2073
2074 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2075 {
2076         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2077         unsigned long seq;
2078         int mode;
2079         u64 ns;
2080
2081         do {
2082                 seq = read_seqcount_begin(&gtod->seq);
2083                 ts->tv_sec = gtod->wall_time_sec;
2084                 ns = gtod->nsec_base;
2085                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2086                 ns >>= gtod->clock.shift;
2087         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2088
2089         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2090         ts->tv_nsec = ns;
2091
2092         return mode;
2093 }
2094
2095 /* returns true if host is using TSC based clocksource */
2096 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2097 {
2098         /* checked again under seqlock below */
2099         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2100                 return false;
2101
2102         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2103                                                       tsc_timestamp));
2104 }
2105
2106 /* returns true if host is using TSC based clocksource */
2107 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2108                                            u64 *tsc_timestamp)
2109 {
2110         /* checked again under seqlock below */
2111         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2112                 return false;
2113
2114         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2115 }
2116 #endif
2117
2118 /*
2119  *
2120  * Assuming a stable TSC across physical CPUS, and a stable TSC
2121  * across virtual CPUs, the following condition is possible.
2122  * Each numbered line represents an event visible to both
2123  * CPUs at the next numbered event.
2124  *
2125  * "timespecX" represents host monotonic time. "tscX" represents
2126  * RDTSC value.
2127  *
2128  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2129  *
2130  * 1.  read timespec0,tsc0
2131  * 2.                                   | timespec1 = timespec0 + N
2132  *                                      | tsc1 = tsc0 + M
2133  * 3. transition to guest               | transition to guest
2134  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2135  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2136  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2137  *
2138  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2139  *
2140  *      - ret0 < ret1
2141  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2142  *              ...
2143  *      - 0 < N - M => M < N
2144  *
2145  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2146  * always the case (the difference between two distinct xtime instances
2147  * might be smaller then the difference between corresponding TSC reads,
2148  * when updating guest vcpus pvclock areas).
2149  *
2150  * To avoid that problem, do not allow visibility of distinct
2151  * system_timestamp/tsc_timestamp values simultaneously: use a master
2152  * copy of host monotonic time values. Update that master copy
2153  * in lockstep.
2154  *
2155  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2156  *
2157  */
2158
2159 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2160 {
2161 #ifdef CONFIG_X86_64
2162         struct kvm_arch *ka = &kvm->arch;
2163         int vclock_mode;
2164         bool host_tsc_clocksource, vcpus_matched;
2165
2166         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2167                         atomic_read(&kvm->online_vcpus));
2168
2169         /*
2170          * If the host uses TSC clock, then passthrough TSC as stable
2171          * to the guest.
2172          */
2173         host_tsc_clocksource = kvm_get_time_and_clockread(
2174                                         &ka->master_kernel_ns,
2175                                         &ka->master_cycle_now);
2176
2177         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2178                                 && !ka->backwards_tsc_observed
2179                                 && !ka->boot_vcpu_runs_old_kvmclock;
2180
2181         if (ka->use_master_clock)
2182                 atomic_set(&kvm_guest_has_master_clock, 1);
2183
2184         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2185         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2186                                         vcpus_matched);
2187 #endif
2188 }
2189
2190 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2191 {
2192         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2193 }
2194
2195 static void kvm_gen_update_masterclock(struct kvm *kvm)
2196 {
2197 #ifdef CONFIG_X86_64
2198         int i;
2199         struct kvm_vcpu *vcpu;
2200         struct kvm_arch *ka = &kvm->arch;
2201
2202         spin_lock(&ka->pvclock_gtod_sync_lock);
2203         kvm_make_mclock_inprogress_request(kvm);
2204         /* no guest entries from this point */
2205         pvclock_update_vm_gtod_copy(kvm);
2206
2207         kvm_for_each_vcpu(i, vcpu, kvm)
2208                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2209
2210         /* guest entries allowed */
2211         kvm_for_each_vcpu(i, vcpu, kvm)
2212                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2213
2214         spin_unlock(&ka->pvclock_gtod_sync_lock);
2215 #endif
2216 }
2217
2218 u64 get_kvmclock_ns(struct kvm *kvm)
2219 {
2220         struct kvm_arch *ka = &kvm->arch;
2221         struct pvclock_vcpu_time_info hv_clock;
2222         u64 ret;
2223
2224         spin_lock(&ka->pvclock_gtod_sync_lock);
2225         if (!ka->use_master_clock) {
2226                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2227                 return ktime_get_boottime_ns() + ka->kvmclock_offset;
2228         }
2229
2230         hv_clock.tsc_timestamp = ka->master_cycle_now;
2231         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2232         spin_unlock(&ka->pvclock_gtod_sync_lock);
2233
2234         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2235         get_cpu();
2236
2237         if (__this_cpu_read(cpu_tsc_khz)) {
2238                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2239                                    &hv_clock.tsc_shift,
2240                                    &hv_clock.tsc_to_system_mul);
2241                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2242         } else
2243                 ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2244
2245         put_cpu();
2246
2247         return ret;
2248 }
2249
2250 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2251 {
2252         struct kvm_vcpu_arch *vcpu = &v->arch;
2253         struct pvclock_vcpu_time_info guest_hv_clock;
2254
2255         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2256                 &guest_hv_clock, sizeof(guest_hv_clock))))
2257                 return;
2258
2259         /* This VCPU is paused, but it's legal for a guest to read another
2260          * VCPU's kvmclock, so we really have to follow the specification where
2261          * it says that version is odd if data is being modified, and even after
2262          * it is consistent.
2263          *
2264          * Version field updates must be kept separate.  This is because
2265          * kvm_write_guest_cached might use a "rep movs" instruction, and
2266          * writes within a string instruction are weakly ordered.  So there
2267          * are three writes overall.
2268          *
2269          * As a small optimization, only write the version field in the first
2270          * and third write.  The vcpu->pv_time cache is still valid, because the
2271          * version field is the first in the struct.
2272          */
2273         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2274
2275         if (guest_hv_clock.version & 1)
2276                 ++guest_hv_clock.version;  /* first time write, random junk */
2277
2278         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2279         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2280                                 &vcpu->hv_clock,
2281                                 sizeof(vcpu->hv_clock.version));
2282
2283         smp_wmb();
2284
2285         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2286         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2287
2288         if (vcpu->pvclock_set_guest_stopped_request) {
2289                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2290                 vcpu->pvclock_set_guest_stopped_request = false;
2291         }
2292
2293         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2294
2295         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2296                                 &vcpu->hv_clock,
2297                                 sizeof(vcpu->hv_clock));
2298
2299         smp_wmb();
2300
2301         vcpu->hv_clock.version++;
2302         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2303                                 &vcpu->hv_clock,
2304                                 sizeof(vcpu->hv_clock.version));
2305 }
2306
2307 static int kvm_guest_time_update(struct kvm_vcpu *v)
2308 {
2309         unsigned long flags, tgt_tsc_khz;
2310         struct kvm_vcpu_arch *vcpu = &v->arch;
2311         struct kvm_arch *ka = &v->kvm->arch;
2312         s64 kernel_ns;
2313         u64 tsc_timestamp, host_tsc;
2314         u8 pvclock_flags;
2315         bool use_master_clock;
2316
2317         kernel_ns = 0;
2318         host_tsc = 0;
2319
2320         /*
2321          * If the host uses TSC clock, then passthrough TSC as stable
2322          * to the guest.
2323          */
2324         spin_lock(&ka->pvclock_gtod_sync_lock);
2325         use_master_clock = ka->use_master_clock;
2326         if (use_master_clock) {
2327                 host_tsc = ka->master_cycle_now;
2328                 kernel_ns = ka->master_kernel_ns;
2329         }
2330         spin_unlock(&ka->pvclock_gtod_sync_lock);
2331
2332         /* Keep irq disabled to prevent changes to the clock */
2333         local_irq_save(flags);
2334         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2335         if (unlikely(tgt_tsc_khz == 0)) {
2336                 local_irq_restore(flags);
2337                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2338                 return 1;
2339         }
2340         if (!use_master_clock) {
2341                 host_tsc = rdtsc();
2342                 kernel_ns = ktime_get_boottime_ns();
2343         }
2344
2345         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2346
2347         /*
2348          * We may have to catch up the TSC to match elapsed wall clock
2349          * time for two reasons, even if kvmclock is used.
2350          *   1) CPU could have been running below the maximum TSC rate
2351          *   2) Broken TSC compensation resets the base at each VCPU
2352          *      entry to avoid unknown leaps of TSC even when running
2353          *      again on the same CPU.  This may cause apparent elapsed
2354          *      time to disappear, and the guest to stand still or run
2355          *      very slowly.
2356          */
2357         if (vcpu->tsc_catchup) {
2358                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2359                 if (tsc > tsc_timestamp) {
2360                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2361                         tsc_timestamp = tsc;
2362                 }
2363         }
2364
2365         local_irq_restore(flags);
2366
2367         /* With all the info we got, fill in the values */
2368
2369         if (kvm_has_tsc_control)
2370                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2371
2372         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2373                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2374                                    &vcpu->hv_clock.tsc_shift,
2375                                    &vcpu->hv_clock.tsc_to_system_mul);
2376                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2377         }
2378
2379         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2380         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2381         vcpu->last_guest_tsc = tsc_timestamp;
2382
2383         /* If the host uses TSC clocksource, then it is stable */
2384         pvclock_flags = 0;
2385         if (use_master_clock)
2386                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2387
2388         vcpu->hv_clock.flags = pvclock_flags;
2389
2390         if (vcpu->pv_time_enabled)
2391                 kvm_setup_pvclock_page(v);
2392         if (v == kvm_get_vcpu(v->kvm, 0))
2393                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2394         return 0;
2395 }
2396
2397 /*
2398  * kvmclock updates which are isolated to a given vcpu, such as
2399  * vcpu->cpu migration, should not allow system_timestamp from
2400  * the rest of the vcpus to remain static. Otherwise ntp frequency
2401  * correction applies to one vcpu's system_timestamp but not
2402  * the others.
2403  *
2404  * So in those cases, request a kvmclock update for all vcpus.
2405  * We need to rate-limit these requests though, as they can
2406  * considerably slow guests that have a large number of vcpus.
2407  * The time for a remote vcpu to update its kvmclock is bound
2408  * by the delay we use to rate-limit the updates.
2409  */
2410
2411 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2412
2413 static void kvmclock_update_fn(struct work_struct *work)
2414 {
2415         int i;
2416         struct delayed_work *dwork = to_delayed_work(work);
2417         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2418                                            kvmclock_update_work);
2419         struct kvm *kvm = container_of(ka, struct kvm, arch);
2420         struct kvm_vcpu *vcpu;
2421
2422         kvm_for_each_vcpu(i, vcpu, kvm) {
2423                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2424                 kvm_vcpu_kick(vcpu);
2425         }
2426 }
2427
2428 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2429 {
2430         struct kvm *kvm = v->kvm;
2431
2432         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2433         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2434                                         KVMCLOCK_UPDATE_DELAY);
2435 }
2436
2437 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2438
2439 static void kvmclock_sync_fn(struct work_struct *work)
2440 {
2441         struct delayed_work *dwork = to_delayed_work(work);
2442         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2443                                            kvmclock_sync_work);
2444         struct kvm *kvm = container_of(ka, struct kvm, arch);
2445
2446         if (!kvmclock_periodic_sync)
2447                 return;
2448
2449         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2450         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2451                                         KVMCLOCK_SYNC_PERIOD);
2452 }
2453
2454 /*
2455  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2456  */
2457 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2458 {
2459         /* McStatusWrEn enabled? */
2460         if (guest_cpuid_is_amd(vcpu))
2461                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2462
2463         return false;
2464 }
2465
2466 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2467 {
2468         u64 mcg_cap = vcpu->arch.mcg_cap;
2469         unsigned bank_num = mcg_cap & 0xff;
2470         u32 msr = msr_info->index;
2471         u64 data = msr_info->data;
2472
2473         switch (msr) {
2474         case MSR_IA32_MCG_STATUS:
2475                 vcpu->arch.mcg_status = data;
2476                 break;
2477         case MSR_IA32_MCG_CTL:
2478                 if (!(mcg_cap & MCG_CTL_P) &&
2479                     (data || !msr_info->host_initiated))
2480                         return 1;
2481                 if (data != 0 && data != ~(u64)0)
2482                         return 1;
2483                 vcpu->arch.mcg_ctl = data;
2484                 break;
2485         default:
2486                 if (msr >= MSR_IA32_MC0_CTL &&
2487                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2488                         u32 offset = msr - MSR_IA32_MC0_CTL;
2489                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2490                          * some Linux kernels though clear bit 10 in bank 4 to
2491                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2492                          * this to avoid an uncatched #GP in the guest
2493                          */
2494                         if ((offset & 0x3) == 0 &&
2495                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2496                                 return -1;
2497
2498                         /* MCi_STATUS */
2499                         if (!msr_info->host_initiated &&
2500                             (offset & 0x3) == 1 && data != 0) {
2501                                 if (!can_set_mci_status(vcpu))
2502                                         return -1;
2503                         }
2504
2505                         vcpu->arch.mce_banks[offset] = data;
2506                         break;
2507                 }
2508                 return 1;
2509         }
2510         return 0;
2511 }
2512
2513 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2514 {
2515         struct kvm *kvm = vcpu->kvm;
2516         int lm = is_long_mode(vcpu);
2517         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2518                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2519         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2520                 : kvm->arch.xen_hvm_config.blob_size_32;
2521         u32 page_num = data & ~PAGE_MASK;
2522         u64 page_addr = data & PAGE_MASK;
2523         u8 *page;
2524         int r;
2525
2526         r = -E2BIG;
2527         if (page_num >= blob_size)
2528                 goto out;
2529         r = -ENOMEM;
2530         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2531         if (IS_ERR(page)) {
2532                 r = PTR_ERR(page);
2533                 goto out;
2534         }
2535         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2536                 goto out_free;
2537         r = 0;
2538 out_free:
2539         kfree(page);
2540 out:
2541         return r;
2542 }
2543
2544 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2545 {
2546         gpa_t gpa = data & ~0x3f;
2547
2548         /* Bits 3:5 are reserved, Should be zero */
2549         if (data & 0x38)
2550                 return 1;
2551
2552         vcpu->arch.apf.msr_val = data;
2553
2554         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2555                 kvm_clear_async_pf_completion_queue(vcpu);
2556                 kvm_async_pf_hash_reset(vcpu);
2557                 return 0;
2558         }
2559
2560         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2561                                         sizeof(u32)))
2562                 return 1;
2563
2564         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2565         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2566         kvm_async_pf_wakeup_all(vcpu);
2567         return 0;
2568 }
2569
2570 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2571 {
2572         vcpu->arch.pv_time_enabled = false;
2573         vcpu->arch.time = 0;
2574 }
2575
2576 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2577 {
2578         ++vcpu->stat.tlb_flush;
2579         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2580 }
2581
2582 static void record_steal_time(struct kvm_vcpu *vcpu)
2583 {
2584         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2585                 return;
2586
2587         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2588                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2589                 return;
2590
2591         /*
2592          * Doing a TLB flush here, on the guest's behalf, can avoid
2593          * expensive IPIs.
2594          */
2595         trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2596                 vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2597         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2598                 kvm_vcpu_flush_tlb(vcpu, false);
2599
2600         if (vcpu->arch.st.steal.version & 1)
2601                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2602
2603         vcpu->arch.st.steal.version += 1;
2604
2605         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2606                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2607
2608         smp_wmb();
2609
2610         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2611                 vcpu->arch.st.last_steal;
2612         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2613
2614         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2615                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2616
2617         smp_wmb();
2618
2619         vcpu->arch.st.steal.version += 1;
2620
2621         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2622                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2623 }
2624
2625 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2626 {
2627         bool pr = false;
2628         u32 msr = msr_info->index;
2629         u64 data = msr_info->data;
2630
2631         switch (msr) {
2632         case MSR_AMD64_NB_CFG:
2633         case MSR_IA32_UCODE_WRITE:
2634         case MSR_VM_HSAVE_PA:
2635         case MSR_AMD64_PATCH_LOADER:
2636         case MSR_AMD64_BU_CFG2:
2637         case MSR_AMD64_DC_CFG:
2638         case MSR_F15H_EX_CFG:
2639                 break;
2640
2641         case MSR_IA32_UCODE_REV:
2642                 if (msr_info->host_initiated)
2643                         vcpu->arch.microcode_version = data;
2644                 break;
2645         case MSR_IA32_ARCH_CAPABILITIES:
2646                 if (!msr_info->host_initiated)
2647                         return 1;
2648                 vcpu->arch.arch_capabilities = data;
2649                 break;
2650         case MSR_EFER:
2651                 return set_efer(vcpu, msr_info);
2652         case MSR_K7_HWCR:
2653                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2654                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2655                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2656
2657                 /* Handle McStatusWrEn */
2658                 if (data == BIT_ULL(18)) {
2659                         vcpu->arch.msr_hwcr = data;
2660                 } else if (data != 0) {
2661                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2662                                     data);
2663                         return 1;
2664                 }
2665                 break;
2666         case MSR_FAM10H_MMIO_CONF_BASE:
2667                 if (data != 0) {
2668                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2669                                     "0x%llx\n", data);
2670                         return 1;
2671                 }
2672                 break;
2673         case MSR_IA32_DEBUGCTLMSR:
2674                 if (!data) {
2675                         /* We support the non-activated case already */
2676                         break;
2677                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2678                         /* Values other than LBR and BTF are vendor-specific,
2679                            thus reserved and should throw a #GP */
2680                         return 1;
2681                 }
2682                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2683                             __func__, data);
2684                 break;
2685         case 0x200 ... 0x2ff:
2686                 return kvm_mtrr_set_msr(vcpu, msr, data);
2687         case MSR_IA32_APICBASE:
2688                 return kvm_set_apic_base(vcpu, msr_info);
2689         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2690                 return kvm_x2apic_msr_write(vcpu, msr, data);
2691         case MSR_IA32_TSCDEADLINE:
2692                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2693                 break;
2694         case MSR_IA32_TSC_ADJUST:
2695                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2696                         if (!msr_info->host_initiated) {
2697                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2698                                 adjust_tsc_offset_guest(vcpu, adj);
2699                         }
2700                         vcpu->arch.ia32_tsc_adjust_msr = data;
2701                 }
2702                 break;
2703         case MSR_IA32_MISC_ENABLE:
2704                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2705                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2706                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2707                                 return 1;
2708                         vcpu->arch.ia32_misc_enable_msr = data;
2709                         kvm_update_cpuid(vcpu);
2710                 } else {
2711                         vcpu->arch.ia32_misc_enable_msr = data;
2712                 }
2713                 break;
2714         case MSR_IA32_SMBASE:
2715                 if (!msr_info->host_initiated)
2716                         return 1;
2717                 vcpu->arch.smbase = data;
2718                 break;
2719         case MSR_IA32_POWER_CTL:
2720                 vcpu->arch.msr_ia32_power_ctl = data;
2721                 break;
2722         case MSR_IA32_TSC:
2723                 kvm_write_tsc(vcpu, msr_info);
2724                 break;
2725         case MSR_IA32_XSS:
2726                 if (!msr_info->host_initiated &&
2727                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2728                         return 1;
2729                 /*
2730                  * We do support PT if kvm_x86_ops->pt_supported(), but we do
2731                  * not support IA32_XSS[bit 8]. Guests will have to use
2732                  * RDMSR/WRMSR rather than XSAVES/XRSTORS to save/restore PT
2733                  * MSRs.
2734                  */
2735                 if (data != 0)
2736                         return 1;
2737                 vcpu->arch.ia32_xss = data;
2738                 break;
2739         case MSR_SMI_COUNT:
2740                 if (!msr_info->host_initiated)
2741                         return 1;
2742                 vcpu->arch.smi_count = data;
2743                 break;
2744         case MSR_KVM_WALL_CLOCK_NEW:
2745         case MSR_KVM_WALL_CLOCK:
2746                 vcpu->kvm->arch.wall_clock = data;
2747                 kvm_write_wall_clock(vcpu->kvm, data);
2748                 break;
2749         case MSR_KVM_SYSTEM_TIME_NEW:
2750         case MSR_KVM_SYSTEM_TIME: {
2751                 struct kvm_arch *ka = &vcpu->kvm->arch;
2752
2753                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2754                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2755
2756                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2757                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2758
2759                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2760                 }
2761
2762                 vcpu->arch.time = data;
2763                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2764
2765                 /* we verify if the enable bit is set... */
2766                 vcpu->arch.pv_time_enabled = false;
2767                 if (!(data & 1))
2768                         break;
2769
2770                 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2771                      &vcpu->arch.pv_time, data & ~1ULL,
2772                      sizeof(struct pvclock_vcpu_time_info)))
2773                         vcpu->arch.pv_time_enabled = true;
2774
2775                 break;
2776         }
2777         case MSR_KVM_ASYNC_PF_EN:
2778                 if (kvm_pv_enable_async_pf(vcpu, data))
2779                         return 1;
2780                 break;
2781         case MSR_KVM_STEAL_TIME:
2782
2783                 if (unlikely(!sched_info_on()))
2784                         return 1;
2785
2786                 if (data & KVM_STEAL_RESERVED_MASK)
2787                         return 1;
2788
2789                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2790                                                 data & KVM_STEAL_VALID_BITS,
2791                                                 sizeof(struct kvm_steal_time)))
2792                         return 1;
2793
2794                 vcpu->arch.st.msr_val = data;
2795
2796                 if (!(data & KVM_MSR_ENABLED))
2797                         break;
2798
2799                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2800
2801                 break;
2802         case MSR_KVM_PV_EOI_EN:
2803                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2804                         return 1;
2805                 break;
2806
2807         case MSR_KVM_POLL_CONTROL:
2808                 /* only enable bit supported */
2809                 if (data & (-1ULL << 1))
2810                         return 1;
2811
2812                 vcpu->arch.msr_kvm_poll_control = data;
2813                 break;
2814
2815         case MSR_IA32_MCG_CTL:
2816         case MSR_IA32_MCG_STATUS:
2817         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2818                 return set_msr_mce(vcpu, msr_info);
2819
2820         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2821         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2822                 pr = true; /* fall through */
2823         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2824         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2825                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2826                         return kvm_pmu_set_msr(vcpu, msr_info);
2827
2828                 if (pr || data != 0)
2829                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2830                                     "0x%x data 0x%llx\n", msr, data);
2831                 break;
2832         case MSR_K7_CLK_CTL:
2833                 /*
2834                  * Ignore all writes to this no longer documented MSR.
2835                  * Writes are only relevant for old K7 processors,
2836                  * all pre-dating SVM, but a recommended workaround from
2837                  * AMD for these chips. It is possible to specify the
2838                  * affected processor models on the command line, hence
2839                  * the need to ignore the workaround.
2840                  */
2841                 break;
2842         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2843         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2844         case HV_X64_MSR_CRASH_CTL:
2845         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2846         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2847         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2848         case HV_X64_MSR_TSC_EMULATION_STATUS:
2849                 return kvm_hv_set_msr_common(vcpu, msr, data,
2850                                              msr_info->host_initiated);
2851         case MSR_IA32_BBL_CR_CTL3:
2852                 /* Drop writes to this legacy MSR -- see rdmsr
2853                  * counterpart for further detail.
2854                  */
2855                 if (report_ignored_msrs)
2856                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2857                                 msr, data);
2858                 break;
2859         case MSR_AMD64_OSVW_ID_LENGTH:
2860                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2861                         return 1;
2862                 vcpu->arch.osvw.length = data;
2863                 break;
2864         case MSR_AMD64_OSVW_STATUS:
2865                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2866                         return 1;
2867                 vcpu->arch.osvw.status = data;
2868                 break;
2869         case MSR_PLATFORM_INFO:
2870                 if (!msr_info->host_initiated ||
2871                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2872                      cpuid_fault_enabled(vcpu)))
2873                         return 1;
2874                 vcpu->arch.msr_platform_info = data;
2875                 break;
2876         case MSR_MISC_FEATURES_ENABLES:
2877                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2878                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2879                      !supports_cpuid_fault(vcpu)))
2880                         return 1;
2881                 vcpu->arch.msr_misc_features_enables = data;
2882                 break;
2883         default:
2884                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2885                         return xen_hvm_config(vcpu, data);
2886                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2887                         return kvm_pmu_set_msr(vcpu, msr_info);
2888                 if (!ignore_msrs) {
2889                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2890                                     msr, data);
2891                         return 1;
2892                 } else {
2893                         if (report_ignored_msrs)
2894                                 vcpu_unimpl(vcpu,
2895                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2896                                         msr, data);
2897                         break;
2898                 }
2899         }
2900         return 0;
2901 }
2902 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2903
2904 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2905 {
2906         u64 data;
2907         u64 mcg_cap = vcpu->arch.mcg_cap;
2908         unsigned bank_num = mcg_cap & 0xff;
2909
2910         switch (msr) {
2911         case MSR_IA32_P5_MC_ADDR:
2912         case MSR_IA32_P5_MC_TYPE:
2913                 data = 0;
2914                 break;
2915         case MSR_IA32_MCG_CAP:
2916                 data = vcpu->arch.mcg_cap;
2917                 break;
2918         case MSR_IA32_MCG_CTL:
2919                 if (!(mcg_cap & MCG_CTL_P) && !host)
2920                         return 1;
2921                 data = vcpu->arch.mcg_ctl;
2922                 break;
2923         case MSR_IA32_MCG_STATUS:
2924                 data = vcpu->arch.mcg_status;
2925                 break;
2926         default:
2927                 if (msr >= MSR_IA32_MC0_CTL &&
2928                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2929                         u32 offset = msr - MSR_IA32_MC0_CTL;
2930                         data = vcpu->arch.mce_banks[offset];
2931                         break;
2932                 }
2933                 return 1;
2934         }
2935         *pdata = data;
2936         return 0;
2937 }
2938
2939 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2940 {
2941         switch (msr_info->index) {
2942         case MSR_IA32_PLATFORM_ID:
2943         case MSR_IA32_EBL_CR_POWERON:
2944         case MSR_IA32_DEBUGCTLMSR:
2945         case MSR_IA32_LASTBRANCHFROMIP:
2946         case MSR_IA32_LASTBRANCHTOIP:
2947         case MSR_IA32_LASTINTFROMIP:
2948         case MSR_IA32_LASTINTTOIP:
2949         case MSR_K8_SYSCFG:
2950         case MSR_K8_TSEG_ADDR:
2951         case MSR_K8_TSEG_MASK:
2952         case MSR_VM_HSAVE_PA:
2953         case MSR_K8_INT_PENDING_MSG:
2954         case MSR_AMD64_NB_CFG:
2955         case MSR_FAM10H_MMIO_CONF_BASE:
2956         case MSR_AMD64_BU_CFG2:
2957         case MSR_IA32_PERF_CTL:
2958         case MSR_AMD64_DC_CFG:
2959         case MSR_F15H_EX_CFG:
2960                 msr_info->data = 0;
2961                 break;
2962         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2963         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2964         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2965         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2966         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2967                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2968                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2969                 msr_info->data = 0;
2970                 break;
2971         case MSR_IA32_UCODE_REV:
2972                 msr_info->data = vcpu->arch.microcode_version;
2973                 break;
2974         case MSR_IA32_ARCH_CAPABILITIES:
2975                 if (!msr_info->host_initiated &&
2976                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2977                         return 1;
2978                 msr_info->data = vcpu->arch.arch_capabilities;
2979                 break;
2980         case MSR_IA32_POWER_CTL:
2981                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2982                 break;
2983         case MSR_IA32_TSC:
2984                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2985                 break;
2986         case MSR_MTRRcap:
2987         case 0x200 ... 0x2ff:
2988                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2989         case 0xcd: /* fsb frequency */
2990                 msr_info->data = 3;
2991                 break;
2992                 /*
2993                  * MSR_EBC_FREQUENCY_ID
2994                  * Conservative value valid for even the basic CPU models.
2995                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2996                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2997                  * and 266MHz for model 3, or 4. Set Core Clock
2998                  * Frequency to System Bus Frequency Ratio to 1 (bits
2999                  * 31:24) even though these are only valid for CPU
3000                  * models > 2, however guests may end up dividing or
3001                  * multiplying by zero otherwise.
3002                  */
3003         case MSR_EBC_FREQUENCY_ID:
3004                 msr_info->data = 1 << 24;
3005                 break;
3006         case MSR_IA32_APICBASE:
3007                 msr_info->data = kvm_get_apic_base(vcpu);
3008                 break;
3009         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3010                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3011                 break;
3012         case MSR_IA32_TSCDEADLINE:
3013                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3014                 break;
3015         case MSR_IA32_TSC_ADJUST:
3016                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3017                 break;
3018         case MSR_IA32_MISC_ENABLE:
3019                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3020                 break;
3021         case MSR_IA32_SMBASE:
3022                 if (!msr_info->host_initiated)
3023                         return 1;
3024                 msr_info->data = vcpu->arch.smbase;
3025                 break;
3026         case MSR_SMI_COUNT:
3027                 msr_info->data = vcpu->arch.smi_count;
3028                 break;
3029         case MSR_IA32_PERF_STATUS:
3030                 /* TSC increment by tick */
3031                 msr_info->data = 1000ULL;
3032                 /* CPU multiplier */
3033                 msr_info->data |= (((uint64_t)4ULL) << 40);
3034                 break;
3035         case MSR_EFER:
3036                 msr_info->data = vcpu->arch.efer;
3037                 break;
3038         case MSR_KVM_WALL_CLOCK:
3039         case MSR_KVM_WALL_CLOCK_NEW:
3040                 msr_info->data = vcpu->kvm->arch.wall_clock;
3041                 break;
3042         case MSR_KVM_SYSTEM_TIME:
3043         case MSR_KVM_SYSTEM_TIME_NEW:
3044                 msr_info->data = vcpu->arch.time;
3045                 break;
3046         case MSR_KVM_ASYNC_PF_EN:
3047                 msr_info->data = vcpu->arch.apf.msr_val;
3048                 break;
3049         case MSR_KVM_STEAL_TIME:
3050                 msr_info->data = vcpu->arch.st.msr_val;
3051                 break;
3052         case MSR_KVM_PV_EOI_EN:
3053                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3054                 break;
3055         case MSR_KVM_POLL_CONTROL:
3056                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3057                 break;
3058         case MSR_IA32_P5_MC_ADDR:
3059         case MSR_IA32_P5_MC_TYPE:
3060         case MSR_IA32_MCG_CAP:
3061         case MSR_IA32_MCG_CTL:
3062         case MSR_IA32_MCG_STATUS:
3063         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3064                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3065                                    msr_info->host_initiated);
3066         case MSR_IA32_XSS:
3067                 if (!msr_info->host_initiated &&
3068                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3069                         return 1;
3070                 msr_info->data = vcpu->arch.ia32_xss;
3071                 break;
3072         case MSR_K7_CLK_CTL:
3073                 /*
3074                  * Provide expected ramp-up count for K7. All other
3075                  * are set to zero, indicating minimum divisors for
3076                  * every field.
3077                  *
3078                  * This prevents guest kernels on AMD host with CPU
3079                  * type 6, model 8 and higher from exploding due to
3080                  * the rdmsr failing.
3081                  */
3082                 msr_info->data = 0x20000000;
3083                 break;
3084         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3085         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3086         case HV_X64_MSR_CRASH_CTL:
3087         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3088         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3089         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3090         case HV_X64_MSR_TSC_EMULATION_STATUS:
3091                 return kvm_hv_get_msr_common(vcpu,
3092                                              msr_info->index, &msr_info->data,
3093                                              msr_info->host_initiated);
3094                 break;
3095         case MSR_IA32_BBL_CR_CTL3:
3096                 /* This legacy MSR exists but isn't fully documented in current
3097                  * silicon.  It is however accessed by winxp in very narrow
3098                  * scenarios where it sets bit #19, itself documented as
3099                  * a "reserved" bit.  Best effort attempt to source coherent
3100                  * read data here should the balance of the register be
3101                  * interpreted by the guest:
3102                  *
3103                  * L2 cache control register 3: 64GB range, 256KB size,
3104                  * enabled, latency 0x1, configured
3105                  */
3106                 msr_info->data = 0xbe702111;
3107                 break;
3108         case MSR_AMD64_OSVW_ID_LENGTH:
3109                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3110                         return 1;
3111                 msr_info->data = vcpu->arch.osvw.length;
3112                 break;
3113         case MSR_AMD64_OSVW_STATUS:
3114                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3115                         return 1;
3116                 msr_info->data = vcpu->arch.osvw.status;
3117                 break;
3118         case MSR_PLATFORM_INFO:
3119                 if (!msr_info->host_initiated &&
3120                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3121                         return 1;
3122                 msr_info->data = vcpu->arch.msr_platform_info;
3123                 break;
3124         case MSR_MISC_FEATURES_ENABLES:
3125                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3126                 break;
3127         case MSR_K7_HWCR:
3128                 msr_info->data = vcpu->arch.msr_hwcr;
3129                 break;
3130         default:
3131                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3132                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3133                 if (!ignore_msrs) {
3134                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3135                                                msr_info->index);
3136                         return 1;
3137                 } else {
3138                         if (report_ignored_msrs)
3139                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3140                                         msr_info->index);
3141                         msr_info->data = 0;
3142                 }
3143                 break;
3144         }
3145         return 0;
3146 }
3147 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3148
3149 /*
3150  * Read or write a bunch of msrs. All parameters are kernel addresses.
3151  *
3152  * @return number of msrs set successfully.
3153  */
3154 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3155                     struct kvm_msr_entry *entries,
3156                     int (*do_msr)(struct kvm_vcpu *vcpu,
3157                                   unsigned index, u64 *data))
3158 {
3159         int i;
3160
3161         for (i = 0; i < msrs->nmsrs; ++i)
3162                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3163                         break;
3164
3165         return i;
3166 }
3167
3168 /*
3169  * Read or write a bunch of msrs. Parameters are user addresses.
3170  *
3171  * @return number of msrs set successfully.
3172  */
3173 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3174                   int (*do_msr)(struct kvm_vcpu *vcpu,
3175                                 unsigned index, u64 *data),
3176                   int writeback)
3177 {
3178         struct kvm_msrs msrs;
3179         struct kvm_msr_entry *entries;
3180         int r, n;
3181         unsigned size;
3182
3183         r = -EFAULT;
3184         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3185                 goto out;
3186
3187         r = -E2BIG;
3188         if (msrs.nmsrs >= MAX_IO_MSRS)
3189                 goto out;
3190
3191         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3192         entries = memdup_user(user_msrs->entries, size);
3193         if (IS_ERR(entries)) {
3194                 r = PTR_ERR(entries);
3195                 goto out;
3196         }
3197
3198         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3199         if (r < 0)
3200                 goto out_free;
3201
3202         r = -EFAULT;
3203         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3204                 goto out_free;
3205
3206         r = n;
3207
3208 out_free:
3209         kfree(entries);
3210 out:
3211         return r;
3212 }
3213
3214 static inline bool kvm_can_mwait_in_guest(void)
3215 {
3216         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3217                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3218                 boot_cpu_has(X86_FEATURE_ARAT);
3219 }
3220
3221 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3222 {
3223         int r = 0;
3224
3225         switch (ext) {
3226         case KVM_CAP_IRQCHIP:
3227         case KVM_CAP_HLT:
3228         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3229         case KVM_CAP_SET_TSS_ADDR:
3230         case KVM_CAP_EXT_CPUID:
3231         case KVM_CAP_EXT_EMUL_CPUID:
3232         case KVM_CAP_CLOCKSOURCE:
3233         case KVM_CAP_PIT:
3234         case KVM_CAP_NOP_IO_DELAY:
3235         case KVM_CAP_MP_STATE:
3236         case KVM_CAP_SYNC_MMU:
3237         case KVM_CAP_USER_NMI:
3238         case KVM_CAP_REINJECT_CONTROL:
3239         case KVM_CAP_IRQ_INJECT_STATUS:
3240         case KVM_CAP_IOEVENTFD:
3241         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3242         case KVM_CAP_PIT2:
3243         case KVM_CAP_PIT_STATE2:
3244         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3245         case KVM_CAP_XEN_HVM:
3246         case KVM_CAP_VCPU_EVENTS:
3247         case KVM_CAP_HYPERV:
3248         case KVM_CAP_HYPERV_VAPIC:
3249         case KVM_CAP_HYPERV_SPIN:
3250         case KVM_CAP_HYPERV_SYNIC:
3251         case KVM_CAP_HYPERV_SYNIC2:
3252         case KVM_CAP_HYPERV_VP_INDEX:
3253         case KVM_CAP_HYPERV_EVENTFD:
3254         case KVM_CAP_HYPERV_TLBFLUSH:
3255         case KVM_CAP_HYPERV_SEND_IPI:
3256         case KVM_CAP_HYPERV_CPUID:
3257         case KVM_CAP_PCI_SEGMENT:
3258         case KVM_CAP_DEBUGREGS:
3259         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3260         case KVM_CAP_XSAVE:
3261         case KVM_CAP_ASYNC_PF:
3262         case KVM_CAP_GET_TSC_KHZ:
3263         case KVM_CAP_KVMCLOCK_CTRL:
3264         case KVM_CAP_READONLY_MEM:
3265         case KVM_CAP_HYPERV_TIME:
3266         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3267         case KVM_CAP_TSC_DEADLINE_TIMER:
3268         case KVM_CAP_DISABLE_QUIRKS:
3269         case KVM_CAP_SET_BOOT_CPU_ID:
3270         case KVM_CAP_SPLIT_IRQCHIP:
3271         case KVM_CAP_IMMEDIATE_EXIT:
3272         case KVM_CAP_PMU_EVENT_FILTER:
3273         case KVM_CAP_GET_MSR_FEATURES:
3274         case KVM_CAP_MSR_PLATFORM_INFO:
3275         case KVM_CAP_EXCEPTION_PAYLOAD:
3276                 r = 1;
3277                 break;
3278         case KVM_CAP_SYNC_REGS:
3279                 r = KVM_SYNC_X86_VALID_FIELDS;
3280                 break;
3281         case KVM_CAP_ADJUST_CLOCK:
3282                 r = KVM_CLOCK_TSC_STABLE;
3283                 break;
3284         case KVM_CAP_X86_DISABLE_EXITS:
3285                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3286                       KVM_X86_DISABLE_EXITS_CSTATE;
3287                 if(kvm_can_mwait_in_guest())
3288                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3289                 break;
3290         case KVM_CAP_X86_SMM:
3291                 /* SMBASE is usually relocated above 1M on modern chipsets,
3292                  * and SMM handlers might indeed rely on 4G segment limits,
3293                  * so do not report SMM to be available if real mode is
3294                  * emulated via vm86 mode.  Still, do not go to great lengths
3295                  * to avoid userspace's usage of the feature, because it is a
3296                  * fringe case that is not enabled except via specific settings
3297                  * of the module parameters.
3298                  */
3299                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3300                 break;
3301         case KVM_CAP_VAPIC:
3302                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3303                 break;
3304         case KVM_CAP_NR_VCPUS:
3305                 r = KVM_SOFT_MAX_VCPUS;
3306                 break;
3307         case KVM_CAP_MAX_VCPUS:
3308                 r = KVM_MAX_VCPUS;
3309                 break;
3310         case KVM_CAP_MAX_VCPU_ID:
3311                 r = KVM_MAX_VCPU_ID;
3312                 break;
3313         case KVM_CAP_PV_MMU:    /* obsolete */
3314                 r = 0;
3315                 break;
3316         case KVM_CAP_MCE:
3317                 r = KVM_MAX_MCE_BANKS;
3318                 break;
3319         case KVM_CAP_XCRS:
3320                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3321                 break;
3322         case KVM_CAP_TSC_CONTROL:
3323                 r = kvm_has_tsc_control;
3324                 break;
3325         case KVM_CAP_X2APIC_API:
3326                 r = KVM_X2APIC_API_VALID_FLAGS;
3327                 break;
3328         case KVM_CAP_NESTED_STATE:
3329                 r = kvm_x86_ops->get_nested_state ?
3330                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3331                 break;
3332         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3333                 r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3334                 break;
3335         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3336                 r = kvm_x86_ops->nested_enable_evmcs != NULL;
3337                 break;
3338         default:
3339                 break;
3340         }
3341         return r;
3342
3343 }
3344
3345 long kvm_arch_dev_ioctl(struct file *filp,
3346                         unsigned int ioctl, unsigned long arg)
3347 {
3348         void __user *argp = (void __user *)arg;
3349         long r;
3350
3351         switch (ioctl) {
3352         case KVM_GET_MSR_INDEX_LIST: {
3353                 struct kvm_msr_list __user *user_msr_list = argp;
3354                 struct kvm_msr_list msr_list;
3355                 unsigned n;
3356
3357                 r = -EFAULT;
3358                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3359                         goto out;
3360                 n = msr_list.nmsrs;
3361                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3362                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3363                         goto out;
3364                 r = -E2BIG;
3365                 if (n < msr_list.nmsrs)
3366                         goto out;
3367                 r = -EFAULT;
3368                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3369                                  num_msrs_to_save * sizeof(u32)))
3370                         goto out;
3371                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3372                                  &emulated_msrs,
3373                                  num_emulated_msrs * sizeof(u32)))
3374                         goto out;
3375                 r = 0;
3376                 break;
3377         }
3378         case KVM_GET_SUPPORTED_CPUID:
3379         case KVM_GET_EMULATED_CPUID: {
3380                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3381                 struct kvm_cpuid2 cpuid;
3382
3383                 r = -EFAULT;
3384                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3385                         goto out;
3386
3387                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3388                                             ioctl);
3389                 if (r)
3390                         goto out;
3391
3392                 r = -EFAULT;
3393                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3394                         goto out;
3395                 r = 0;
3396                 break;
3397         }
3398         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3399                 r = -EFAULT;
3400                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3401                                  sizeof(kvm_mce_cap_supported)))
3402                         goto out;
3403                 r = 0;
3404                 break;
3405         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3406                 struct kvm_msr_list __user *user_msr_list = argp;
3407                 struct kvm_msr_list msr_list;
3408                 unsigned int n;
3409
3410                 r = -EFAULT;
3411                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3412                         goto out;
3413                 n = msr_list.nmsrs;
3414                 msr_list.nmsrs = num_msr_based_features;
3415                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3416                         goto out;
3417                 r = -E2BIG;
3418                 if (n < msr_list.nmsrs)
3419                         goto out;
3420                 r = -EFAULT;
3421                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3422                                  num_msr_based_features * sizeof(u32)))
3423                         goto out;
3424                 r = 0;
3425                 break;
3426         }
3427         case KVM_GET_MSRS:
3428                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3429                 break;
3430         }
3431         default:
3432                 r = -EINVAL;
3433         }
3434 out:
3435         return r;
3436 }
3437
3438 static void wbinvd_ipi(void *garbage)
3439 {
3440         wbinvd();
3441 }
3442
3443 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3444 {
3445         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3446 }
3447
3448 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3449 {
3450         /* Address WBINVD may be executed by guest */
3451         if (need_emulate_wbinvd(vcpu)) {
3452                 if (kvm_x86_ops->has_wbinvd_exit())
3453                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3454                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3455                         smp_call_function_single(vcpu->cpu,
3456                                         wbinvd_ipi, NULL, 1);
3457         }
3458
3459         kvm_x86_ops->vcpu_load(vcpu, cpu);
3460
3461         fpregs_assert_state_consistent();
3462         if (test_thread_flag(TIF_NEED_FPU_LOAD))
3463                 switch_fpu_return();
3464
3465         /* Apply any externally detected TSC adjustments (due to suspend) */
3466         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3467                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3468                 vcpu->arch.tsc_offset_adjustment = 0;
3469                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3470         }
3471
3472         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3473                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3474                                 rdtsc() - vcpu->arch.last_host_tsc;
3475                 if (tsc_delta < 0)
3476                         mark_tsc_unstable("KVM discovered backwards TSC");
3477
3478                 if (kvm_check_tsc_unstable()) {
3479                         u64 offset = kvm_compute_tsc_offset(vcpu,
3480                                                 vcpu->arch.last_guest_tsc);
3481                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3482                         vcpu->arch.tsc_catchup = 1;
3483                 }
3484
3485                 if (kvm_lapic_hv_timer_in_use(vcpu))
3486                         kvm_lapic_restart_hv_timer(vcpu);
3487
3488                 /*
3489                  * On a host with synchronized TSC, there is no need to update
3490                  * kvmclock on vcpu->cpu migration
3491                  */
3492                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3493                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3494                 if (vcpu->cpu != cpu)
3495                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3496                 vcpu->cpu = cpu;
3497         }
3498
3499         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3500 }
3501
3502 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3503 {
3504         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3505                 return;
3506
3507         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3508
3509         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3510                         &vcpu->arch.st.steal.preempted,
3511                         offsetof(struct kvm_steal_time, preempted),
3512                         sizeof(vcpu->arch.st.steal.preempted));
3513 }
3514
3515 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3516 {
3517         int idx;
3518
3519         if (vcpu->preempted)
3520                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3521
3522         /*
3523          * Disable page faults because we're in atomic context here.
3524          * kvm_write_guest_offset_cached() would call might_fault()
3525          * that relies on pagefault_disable() to tell if there's a
3526          * bug. NOTE: the write to guest memory may not go through if
3527          * during postcopy live migration or if there's heavy guest
3528          * paging.
3529          */
3530         pagefault_disable();
3531         /*
3532          * kvm_memslots() will be called by
3533          * kvm_write_guest_offset_cached() so take the srcu lock.
3534          */
3535         idx = srcu_read_lock(&vcpu->kvm->srcu);
3536         kvm_steal_time_set_preempted(vcpu);
3537         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3538         pagefault_enable();
3539         kvm_x86_ops->vcpu_put(vcpu);
3540         vcpu->arch.last_host_tsc = rdtsc();
3541         /*
3542          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3543          * on every vmexit, but if not, we might have a stale dr6 from the
3544          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3545          */
3546         set_debugreg(0, 6);
3547 }
3548
3549 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3550                                     struct kvm_lapic_state *s)
3551 {
3552         if (vcpu->arch.apicv_active)
3553                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3554
3555         return kvm_apic_get_state(vcpu, s);
3556 }
3557
3558 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3559                                     struct kvm_lapic_state *s)
3560 {
3561         int r;
3562
3563         r = kvm_apic_set_state(vcpu, s);
3564         if (r)
3565                 return r;
3566         update_cr8_intercept(vcpu);
3567
3568         return 0;
3569 }
3570
3571 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3572 {
3573         return (!lapic_in_kernel(vcpu) ||
3574                 kvm_apic_accept_pic_intr(vcpu));
3575 }
3576
3577 /*
3578  * if userspace requested an interrupt window, check that the
3579  * interrupt window is open.
3580  *
3581  * No need to exit to userspace if we already have an interrupt queued.
3582  */
3583 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3584 {
3585         return kvm_arch_interrupt_allowed(vcpu) &&
3586                 !kvm_cpu_has_interrupt(vcpu) &&
3587                 !kvm_event_needs_reinjection(vcpu) &&
3588                 kvm_cpu_accept_dm_intr(vcpu);
3589 }
3590
3591 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3592                                     struct kvm_interrupt *irq)
3593 {
3594         if (irq->irq >= KVM_NR_INTERRUPTS)
3595                 return -EINVAL;
3596
3597         if (!irqchip_in_kernel(vcpu->kvm)) {
3598                 kvm_queue_interrupt(vcpu, irq->irq, false);
3599                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3600                 return 0;
3601         }
3602
3603         /*
3604          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3605          * fail for in-kernel 8259.
3606          */
3607         if (pic_in_kernel(vcpu->kvm))
3608                 return -ENXIO;
3609
3610         if (vcpu->arch.pending_external_vector != -1)
3611                 return -EEXIST;
3612
3613         vcpu->arch.pending_external_vector = irq->irq;
3614         kvm_make_request(KVM_REQ_EVENT, vcpu);
3615         return 0;
3616 }
3617
3618 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3619 {
3620         kvm_inject_nmi(vcpu);
3621
3622         return 0;
3623 }
3624
3625 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3626 {
3627         kvm_make_request(KVM_REQ_SMI, vcpu);
3628
3629         return 0;
3630 }
3631
3632 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3633                                            struct kvm_tpr_access_ctl *tac)
3634 {
3635         if (tac->flags)
3636                 return -EINVAL;
3637         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3638         return 0;
3639 }
3640
3641 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3642                                         u64 mcg_cap)
3643 {
3644         int r;
3645         unsigned bank_num = mcg_cap & 0xff, bank;
3646
3647         r = -EINVAL;
3648         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3649                 goto out;
3650         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3651                 goto out;
3652         r = 0;
3653         vcpu->arch.mcg_cap = mcg_cap;
3654         /* Init IA32_MCG_CTL to all 1s */
3655         if (mcg_cap & MCG_CTL_P)
3656                 vcpu->arch.mcg_ctl = ~(u64)0;
3657         /* Init IA32_MCi_CTL to all 1s */
3658         for (bank = 0; bank < bank_num; bank++)
3659                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3660
3661         kvm_x86_ops->setup_mce(vcpu);
3662 out:
3663         return r;
3664 }
3665
3666 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3667                                       struct kvm_x86_mce *mce)
3668 {
3669         u64 mcg_cap = vcpu->arch.mcg_cap;
3670         unsigned bank_num = mcg_cap & 0xff;
3671         u64 *banks = vcpu->arch.mce_banks;
3672
3673         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3674                 return -EINVAL;
3675         /*
3676          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3677          * reporting is disabled
3678          */
3679         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3680             vcpu->arch.mcg_ctl != ~(u64)0)
3681                 return 0;
3682         banks += 4 * mce->bank;
3683         /*
3684          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3685          * reporting is disabled for the bank
3686          */
3687         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3688                 return 0;
3689         if (mce->status & MCI_STATUS_UC) {
3690                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3691                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3692                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3693                         return 0;
3694                 }
3695                 if (banks[1] & MCI_STATUS_VAL)
3696                         mce->status |= MCI_STATUS_OVER;
3697                 banks[2] = mce->addr;
3698                 banks[3] = mce->misc;
3699                 vcpu->arch.mcg_status = mce->mcg_status;
3700                 banks[1] = mce->status;
3701                 kvm_queue_exception(vcpu, MC_VECTOR);
3702         } else if (!(banks[1] & MCI_STATUS_VAL)
3703                    || !(banks[1] & MCI_STATUS_UC)) {
3704                 if (banks[1] & MCI_STATUS_VAL)
3705                         mce->status |= MCI_STATUS_OVER;
3706                 banks[2] = mce->addr;
3707                 banks[3] = mce->misc;
3708                 banks[1] = mce->status;
3709         } else
3710                 banks[1] |= MCI_STATUS_OVER;
3711         return 0;
3712 }
3713
3714 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3715                                                struct kvm_vcpu_events *events)
3716 {
3717         process_nmi(vcpu);
3718
3719         /*
3720          * The API doesn't provide the instruction length for software
3721          * exceptions, so don't report them. As long as the guest RIP
3722          * isn't advanced, we should expect to encounter the exception
3723          * again.
3724          */
3725         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3726                 events->exception.injected = 0;
3727                 events->exception.pending = 0;
3728         } else {
3729                 events->exception.injected = vcpu->arch.exception.injected;
3730                 events->exception.pending = vcpu->arch.exception.pending;
3731                 /*
3732                  * For ABI compatibility, deliberately conflate
3733                  * pending and injected exceptions when
3734                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3735                  */
3736                 if (!vcpu->kvm->arch.exception_payload_enabled)
3737                         events->exception.injected |=
3738                                 vcpu->arch.exception.pending;
3739         }
3740         events->exception.nr = vcpu->arch.exception.nr;
3741         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3742         events->exception.error_code = vcpu->arch.exception.error_code;
3743         events->exception_has_payload = vcpu->arch.exception.has_payload;
3744         events->exception_payload = vcpu->arch.exception.payload;
3745
3746         events->interrupt.injected =
3747                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3748         events->interrupt.nr = vcpu->arch.interrupt.nr;
3749         events->interrupt.soft = 0;
3750         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3751
3752         events->nmi.injected = vcpu->arch.nmi_injected;
3753         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3754         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3755         events->nmi.pad = 0;
3756
3757         events->sipi_vector = 0; /* never valid when reporting to user space */
3758
3759         events->smi.smm = is_smm(vcpu);
3760         events->smi.pending = vcpu->arch.smi_pending;
3761         events->smi.smm_inside_nmi =
3762                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3763         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3764
3765         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3766                          | KVM_VCPUEVENT_VALID_SHADOW
3767                          | KVM_VCPUEVENT_VALID_SMM);
3768         if (vcpu->kvm->arch.exception_payload_enabled)
3769                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3770
3771         memset(&events->reserved, 0, sizeof(events->reserved));
3772 }
3773
3774 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3775
3776 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3777                                               struct kvm_vcpu_events *events)
3778 {
3779         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3780                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3781                               | KVM_VCPUEVENT_VALID_SHADOW
3782                               | KVM_VCPUEVENT_VALID_SMM
3783                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3784                 return -EINVAL;
3785
3786         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3787                 if (!vcpu->kvm->arch.exception_payload_enabled)
3788                         return -EINVAL;
3789                 if (events->exception.pending)
3790                         events->exception.injected = 0;
3791                 else
3792                         events->exception_has_payload = 0;
3793         } else {
3794                 events->exception.pending = 0;
3795                 events->exception_has_payload = 0;
3796         }
3797
3798         if ((events->exception.injected || events->exception.pending) &&
3799             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3800                 return -EINVAL;
3801
3802         /* INITs are latched while in SMM */
3803         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3804             (events->smi.smm || events->smi.pending) &&
3805             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3806                 return -EINVAL;
3807
3808         process_nmi(vcpu);
3809         vcpu->arch.exception.injected = events->exception.injected;
3810         vcpu->arch.exception.pending = events->exception.pending;
3811         vcpu->arch.exception.nr = events->exception.nr;
3812         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3813         vcpu->arch.exception.error_code = events->exception.error_code;
3814         vcpu->arch.exception.has_payload = events->exception_has_payload;
3815         vcpu->arch.exception.payload = events->exception_payload;
3816
3817         vcpu->arch.interrupt.injected = events->interrupt.injected;
3818         vcpu->arch.interrupt.nr = events->interrupt.nr;
3819         vcpu->arch.interrupt.soft = events->interrupt.soft;
3820         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3821                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3822                                                   events->interrupt.shadow);
3823
3824         vcpu->arch.nmi_injected = events->nmi.injected;
3825         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3826                 vcpu->arch.nmi_pending = events->nmi.pending;
3827         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3828
3829         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3830             lapic_in_kernel(vcpu))
3831                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3832
3833         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3834                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3835                         if (events->smi.smm)
3836                                 vcpu->arch.hflags |= HF_SMM_MASK;
3837                         else
3838                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3839                         kvm_smm_changed(vcpu);
3840                 }
3841
3842                 vcpu->arch.smi_pending = events->smi.pending;
3843
3844                 if (events->smi.smm) {
3845                         if (events->smi.smm_inside_nmi)
3846                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3847                         else
3848                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3849                 }
3850
3851                 if (lapic_in_kernel(vcpu)) {
3852                         if (events->smi.latched_init)
3853                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3854                         else
3855                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3856                 }
3857         }
3858
3859         kvm_make_request(KVM_REQ_EVENT, vcpu);
3860
3861         return 0;
3862 }
3863
3864 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3865                                              struct kvm_debugregs *dbgregs)
3866 {
3867         unsigned long val;
3868
3869         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3870         kvm_get_dr(vcpu, 6, &val);
3871         dbgregs->dr6 = val;
3872         dbgregs->dr7 = vcpu->arch.dr7;
3873         dbgregs->flags = 0;
3874         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3875 }
3876
3877 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3878                                             struct kvm_debugregs *dbgregs)
3879 {
3880         if (dbgregs->flags)
3881                 return -EINVAL;
3882
3883         if (dbgregs->dr6 & ~0xffffffffull)
3884                 return -EINVAL;
3885         if (dbgregs->dr7 & ~0xffffffffull)
3886                 return -EINVAL;
3887
3888         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3889         kvm_update_dr0123(vcpu);
3890         vcpu->arch.dr6 = dbgregs->dr6;
3891         kvm_update_dr6(vcpu);
3892         vcpu->arch.dr7 = dbgregs->dr7;
3893         kvm_update_dr7(vcpu);
3894
3895         return 0;
3896 }
3897
3898 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3899
3900 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3901 {
3902         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3903         u64 xstate_bv = xsave->header.xfeatures;
3904         u64 valid;
3905
3906         /*
3907          * Copy legacy XSAVE area, to avoid complications with CPUID
3908          * leaves 0 and 1 in the loop below.
3909          */
3910         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3911
3912         /* Set XSTATE_BV */
3913         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3914         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3915
3916         /*
3917          * Copy each region from the possibly compacted offset to the
3918          * non-compacted offset.
3919          */
3920         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3921         while (valid) {
3922                 u64 xfeature_mask = valid & -valid;
3923                 int xfeature_nr = fls64(xfeature_mask) - 1;
3924                 void *src = get_xsave_addr(xsave, xfeature_nr);
3925
3926                 if (src) {
3927                         u32 size, offset, ecx, edx;
3928                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3929                                     &size, &offset, &ecx, &edx);
3930                         if (xfeature_nr == XFEATURE_PKRU)
3931                                 memcpy(dest + offset, &vcpu->arch.pkru,
3932                                        sizeof(vcpu->arch.pkru));
3933                         else
3934                                 memcpy(dest + offset, src, size);
3935
3936                 }
3937
3938                 valid -= xfeature_mask;
3939         }
3940 }
3941
3942 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3943 {
3944         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3945         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3946         u64 valid;
3947
3948         /*
3949          * Copy legacy XSAVE area, to avoid complications with CPUID
3950          * leaves 0 and 1 in the loop below.
3951          */
3952         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3953
3954         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3955         xsave->header.xfeatures = xstate_bv;
3956         if (boot_cpu_has(X86_FEATURE_XSAVES))
3957                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3958
3959         /*
3960          * Copy each region from the non-compacted offset to the
3961          * possibly compacted offset.
3962          */
3963         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3964         while (valid) {
3965                 u64 xfeature_mask = valid & -valid;
3966                 int xfeature_nr = fls64(xfeature_mask) - 1;
3967                 void *dest = get_xsave_addr(xsave, xfeature_nr);
3968
3969                 if (dest) {
3970                         u32 size, offset, ecx, edx;
3971                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3972                                     &size, &offset, &ecx, &edx);
3973                         if (xfeature_nr == XFEATURE_PKRU)
3974                                 memcpy(&vcpu->arch.pkru, src + offset,
3975                                        sizeof(vcpu->arch.pkru));
3976                         else
3977                                 memcpy(dest, src + offset, size);
3978                 }
3979
3980                 valid -= xfeature_mask;
3981         }
3982 }
3983
3984 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3985                                          struct kvm_xsave *guest_xsave)
3986 {
3987         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3988                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3989                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3990         } else {
3991                 memcpy(guest_xsave->region,
3992                         &vcpu->arch.guest_fpu->state.fxsave,
3993                         sizeof(struct fxregs_state));
3994                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3995                         XFEATURE_MASK_FPSSE;
3996         }
3997 }
3998
3999 #define XSAVE_MXCSR_OFFSET 24
4000
4001 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4002                                         struct kvm_xsave *guest_xsave)
4003 {
4004         u64 xstate_bv =
4005                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4006         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4007
4008         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4009                 /*
4010                  * Here we allow setting states that are not present in
4011                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4012                  * with old userspace.
4013                  */
4014                 if (xstate_bv & ~kvm_supported_xcr0() ||
4015                         mxcsr & ~mxcsr_feature_mask)
4016                         return -EINVAL;
4017                 load_xsave(vcpu, (u8 *)guest_xsave->region);
4018         } else {
4019                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4020                         mxcsr & ~mxcsr_feature_mask)
4021                         return -EINVAL;
4022                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4023                         guest_xsave->region, sizeof(struct fxregs_state));
4024         }
4025         return 0;
4026 }
4027
4028 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4029                                         struct kvm_xcrs *guest_xcrs)
4030 {
4031         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4032                 guest_xcrs->nr_xcrs = 0;
4033                 return;
4034         }
4035
4036         guest_xcrs->nr_xcrs = 1;
4037         guest_xcrs->flags = 0;
4038         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4039         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4040 }
4041
4042 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4043                                        struct kvm_xcrs *guest_xcrs)
4044 {
4045         int i, r = 0;
4046
4047         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4048                 return -EINVAL;
4049
4050         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4051                 return -EINVAL;
4052
4053         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4054                 /* Only support XCR0 currently */
4055                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4056                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4057                                 guest_xcrs->xcrs[i].value);
4058                         break;
4059                 }
4060         if (r)
4061                 r = -EINVAL;
4062         return r;
4063 }
4064
4065 /*
4066  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4067  * stopped by the hypervisor.  This function will be called from the host only.
4068  * EINVAL is returned when the host attempts to set the flag for a guest that
4069  * does not support pv clocks.
4070  */
4071 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4072 {
4073         if (!vcpu->arch.pv_time_enabled)
4074                 return -EINVAL;
4075         vcpu->arch.pvclock_set_guest_stopped_request = true;
4076         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4077         return 0;
4078 }
4079
4080 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4081                                      struct kvm_enable_cap *cap)
4082 {
4083         int r;
4084         uint16_t vmcs_version;
4085         void __user *user_ptr;
4086
4087         if (cap->flags)
4088                 return -EINVAL;
4089
4090         switch (cap->cap) {
4091         case KVM_CAP_HYPERV_SYNIC2:
4092                 if (cap->args[0])
4093                         return -EINVAL;
4094                 /* fall through */
4095
4096         case KVM_CAP_HYPERV_SYNIC:
4097                 if (!irqchip_in_kernel(vcpu->kvm))
4098                         return -EINVAL;
4099                 return kvm_hv_activate_synic(vcpu, cap->cap ==
4100                                              KVM_CAP_HYPERV_SYNIC2);
4101         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4102                 if (!kvm_x86_ops->nested_enable_evmcs)
4103                         return -ENOTTY;
4104                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4105                 if (!r) {
4106                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
4107                         if (copy_to_user(user_ptr, &vmcs_version,
4108                                          sizeof(vmcs_version)))
4109                                 r = -EFAULT;
4110                 }
4111                 return r;
4112         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4113                 if (!kvm_x86_ops->enable_direct_tlbflush)
4114                         return -ENOTTY;
4115
4116                 return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4117
4118         default:
4119                 return -EINVAL;
4120         }
4121 }
4122
4123 long kvm_arch_vcpu_ioctl(struct file *filp,
4124                          unsigned int ioctl, unsigned long arg)
4125 {
4126         struct kvm_vcpu *vcpu = filp->private_data;
4127         void __user *argp = (void __user *)arg;
4128         int r;
4129         union {
4130                 struct kvm_lapic_state *lapic;
4131                 struct kvm_xsave *xsave;
4132                 struct kvm_xcrs *xcrs;
4133                 void *buffer;
4134         } u;
4135
4136         vcpu_load(vcpu);
4137
4138         u.buffer = NULL;
4139         switch (ioctl) {
4140         case KVM_GET_LAPIC: {
4141                 r = -EINVAL;
4142                 if (!lapic_in_kernel(vcpu))
4143                         goto out;
4144                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4145                                 GFP_KERNEL_ACCOUNT);
4146
4147                 r = -ENOMEM;
4148                 if (!u.lapic)
4149                         goto out;
4150                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4151                 if (r)
4152                         goto out;
4153                 r = -EFAULT;
4154                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4155                         goto out;
4156                 r = 0;
4157                 break;
4158         }
4159         case KVM_SET_LAPIC: {
4160                 r = -EINVAL;
4161                 if (!lapic_in_kernel(vcpu))
4162                         goto out;
4163                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4164                 if (IS_ERR(u.lapic)) {
4165                         r = PTR_ERR(u.lapic);
4166                         goto out_nofree;
4167                 }
4168
4169                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4170                 break;
4171         }
4172         case KVM_INTERRUPT: {
4173                 struct kvm_interrupt irq;
4174
4175                 r = -EFAULT;
4176                 if (copy_from_user(&irq, argp, sizeof(irq)))
4177                         goto out;
4178                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4179                 break;
4180         }
4181         case KVM_NMI: {
4182                 r = kvm_vcpu_ioctl_nmi(vcpu);
4183                 break;
4184         }
4185         case KVM_SMI: {
4186                 r = kvm_vcpu_ioctl_smi(vcpu);
4187                 break;
4188         }
4189         case KVM_SET_CPUID: {
4190                 struct kvm_cpuid __user *cpuid_arg = argp;
4191                 struct kvm_cpuid cpuid;
4192
4193                 r = -EFAULT;
4194                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4195                         goto out;
4196                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4197                 break;
4198         }
4199         case KVM_SET_CPUID2: {
4200                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4201                 struct kvm_cpuid2 cpuid;
4202
4203                 r = -EFAULT;
4204                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4205                         goto out;
4206                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4207                                               cpuid_arg->entries);
4208                 break;
4209         }
4210         case KVM_GET_CPUID2: {
4211                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4212                 struct kvm_cpuid2 cpuid;
4213
4214                 r = -EFAULT;
4215                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4216                         goto out;
4217                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4218                                               cpuid_arg->entries);
4219                 if (r)
4220                         goto out;
4221                 r = -EFAULT;
4222                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4223                         goto out;
4224                 r = 0;
4225                 break;
4226         }
4227         case KVM_GET_MSRS: {
4228                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4229                 r = msr_io(vcpu, argp, do_get_msr, 1);
4230                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4231                 break;
4232         }
4233         case KVM_SET_MSRS: {
4234                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4235                 r = msr_io(vcpu, argp, do_set_msr, 0);
4236                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4237                 break;
4238         }
4239         case KVM_TPR_ACCESS_REPORTING: {
4240                 struct kvm_tpr_access_ctl tac;
4241
4242                 r = -EFAULT;
4243                 if (copy_from_user(&tac, argp, sizeof(tac)))
4244                         goto out;
4245                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4246                 if (r)
4247                         goto out;
4248                 r = -EFAULT;
4249                 if (copy_to_user(argp, &tac, sizeof(tac)))
4250                         goto out;
4251                 r = 0;
4252                 break;
4253         };
4254         case KVM_SET_VAPIC_ADDR: {
4255                 struct kvm_vapic_addr va;
4256                 int idx;
4257
4258                 r = -EINVAL;
4259                 if (!lapic_in_kernel(vcpu))
4260                         goto out;
4261                 r = -EFAULT;
4262                 if (copy_from_user(&va, argp, sizeof(va)))
4263                         goto out;
4264                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4265                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4266                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4267                 break;
4268         }
4269         case KVM_X86_SETUP_MCE: {
4270                 u64 mcg_cap;
4271
4272                 r = -EFAULT;
4273                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4274                         goto out;
4275                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4276                 break;
4277         }
4278         case KVM_X86_SET_MCE: {
4279                 struct kvm_x86_mce mce;
4280
4281                 r = -EFAULT;
4282                 if (copy_from_user(&mce, argp, sizeof(mce)))
4283                         goto out;
4284                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4285                 break;
4286         }
4287         case KVM_GET_VCPU_EVENTS: {
4288                 struct kvm_vcpu_events events;
4289
4290                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4291
4292                 r = -EFAULT;
4293                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4294                         break;
4295                 r = 0;
4296                 break;
4297         }
4298         case KVM_SET_VCPU_EVENTS: {
4299                 struct kvm_vcpu_events events;
4300
4301                 r = -EFAULT;
4302                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4303                         break;
4304
4305                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4306                 break;
4307         }
4308         case KVM_GET_DEBUGREGS: {
4309                 struct kvm_debugregs dbgregs;
4310
4311                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4312
4313                 r = -EFAULT;
4314                 if (copy_to_user(argp, &dbgregs,
4315                                  sizeof(struct kvm_debugregs)))
4316                         break;
4317                 r = 0;
4318                 break;
4319         }
4320         case KVM_SET_DEBUGREGS: {
4321                 struct kvm_debugregs dbgregs;
4322
4323                 r = -EFAULT;
4324                 if (copy_from_user(&dbgregs, argp,
4325                                    sizeof(struct kvm_debugregs)))
4326                         break;
4327
4328                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4329                 break;
4330         }
4331         case KVM_GET_XSAVE: {
4332                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4333                 r = -ENOMEM;
4334                 if (!u.xsave)
4335                         break;
4336
4337                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4338
4339                 r = -EFAULT;
4340                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4341                         break;
4342                 r = 0;
4343                 break;
4344         }
4345         case KVM_SET_XSAVE: {
4346                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4347                 if (IS_ERR(u.xsave)) {
4348                         r = PTR_ERR(u.xsave);
4349                         goto out_nofree;
4350                 }
4351
4352                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4353                 break;
4354         }
4355         case KVM_GET_XCRS: {
4356                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4357                 r = -ENOMEM;
4358                 if (!u.xcrs)
4359                         break;
4360
4361                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4362
4363                 r = -EFAULT;
4364                 if (copy_to_user(argp, u.xcrs,
4365                                  sizeof(struct kvm_xcrs)))
4366                         break;
4367                 r = 0;
4368                 break;
4369         }
4370         case KVM_SET_XCRS: {
4371                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4372                 if (IS_ERR(u.xcrs)) {
4373                         r = PTR_ERR(u.xcrs);
4374                         goto out_nofree;
4375                 }
4376
4377                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4378                 break;
4379         }
4380         case KVM_SET_TSC_KHZ: {
4381                 u32 user_tsc_khz;
4382
4383                 r = -EINVAL;
4384                 user_tsc_khz = (u32)arg;
4385
4386                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4387                         goto out;
4388
4389                 if (user_tsc_khz == 0)
4390                         user_tsc_khz = tsc_khz;
4391
4392                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4393                         r = 0;
4394
4395                 goto out;
4396         }
4397         case KVM_GET_TSC_KHZ: {
4398                 r = vcpu->arch.virtual_tsc_khz;
4399                 goto out;
4400         }
4401         case KVM_KVMCLOCK_CTRL: {
4402                 r = kvm_set_guest_paused(vcpu);
4403                 goto out;
4404         }
4405         case KVM_ENABLE_CAP: {
4406                 struct kvm_enable_cap cap;
4407
4408                 r = -EFAULT;
4409                 if (copy_from_user(&cap, argp, sizeof(cap)))
4410                         goto out;
4411                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4412                 break;
4413         }
4414         case KVM_GET_NESTED_STATE: {
4415                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4416                 u32 user_data_size;
4417
4418                 r = -EINVAL;
4419                 if (!kvm_x86_ops->get_nested_state)
4420                         break;
4421
4422                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4423                 r = -EFAULT;
4424                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4425                         break;
4426
4427                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4428                                                   user_data_size);
4429                 if (r < 0)
4430                         break;
4431
4432                 if (r > user_data_size) {
4433                         if (put_user(r, &user_kvm_nested_state->size))
4434                                 r = -EFAULT;
4435                         else
4436                                 r = -E2BIG;
4437                         break;
4438                 }
4439
4440                 r = 0;
4441                 break;
4442         }
4443         case KVM_SET_NESTED_STATE: {
4444                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4445                 struct kvm_nested_state kvm_state;
4446                 int idx;
4447
4448                 r = -EINVAL;
4449                 if (!kvm_x86_ops->set_nested_state)
4450                         break;
4451
4452                 r = -EFAULT;
4453                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4454                         break;
4455
4456                 r = -EINVAL;
4457                 if (kvm_state.size < sizeof(kvm_state))
4458                         break;
4459
4460                 if (kvm_state.flags &
4461                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4462                       | KVM_STATE_NESTED_EVMCS))
4463                         break;
4464
4465                 /* nested_run_pending implies guest_mode.  */
4466                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4467                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4468                         break;
4469
4470                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4471                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4472                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4473                 break;
4474         }
4475         case KVM_GET_SUPPORTED_HV_CPUID: {
4476                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4477                 struct kvm_cpuid2 cpuid;
4478
4479                 r = -EFAULT;
4480                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4481                         goto out;
4482
4483                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4484                                                 cpuid_arg->entries);
4485                 if (r)
4486                         goto out;
4487
4488                 r = -EFAULT;
4489                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4490                         goto out;
4491                 r = 0;
4492                 break;
4493         }
4494         default:
4495                 r = -EINVAL;
4496         }
4497 out:
4498         kfree(u.buffer);
4499 out_nofree:
4500         vcpu_put(vcpu);
4501         return r;
4502 }
4503
4504 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4505 {
4506         return VM_FAULT_SIGBUS;
4507 }
4508
4509 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4510 {
4511         int ret;
4512
4513         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4514                 return -EINVAL;
4515         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4516         return ret;
4517 }
4518
4519 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4520                                               u64 ident_addr)
4521 {
4522         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4523 }
4524
4525 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4526                                          unsigned long kvm_nr_mmu_pages)
4527 {
4528         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4529                 return -EINVAL;
4530
4531         mutex_lock(&kvm->slots_lock);
4532
4533         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4534         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4535
4536         mutex_unlock(&kvm->slots_lock);
4537         return 0;
4538 }
4539
4540 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4541 {
4542         return kvm->arch.n_max_mmu_pages;
4543 }
4544
4545 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4546 {
4547         struct kvm_pic *pic = kvm->arch.vpic;
4548         int r;
4549
4550         r = 0;
4551         switch (chip->chip_id) {
4552         case KVM_IRQCHIP_PIC_MASTER:
4553                 memcpy(&chip->chip.pic, &pic->pics[0],
4554                         sizeof(struct kvm_pic_state));
4555                 break;
4556         case KVM_IRQCHIP_PIC_SLAVE:
4557                 memcpy(&chip->chip.pic, &pic->pics[1],
4558                         sizeof(struct kvm_pic_state));
4559                 break;
4560         case KVM_IRQCHIP_IOAPIC:
4561                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4562                 break;
4563         default:
4564                 r = -EINVAL;
4565                 break;
4566         }
4567         return r;
4568 }
4569
4570 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4571 {
4572         struct kvm_pic *pic = kvm->arch.vpic;
4573         int r;
4574
4575         r = 0;
4576         switch (chip->chip_id) {
4577         case KVM_IRQCHIP_PIC_MASTER:
4578                 spin_lock(&pic->lock);
4579                 memcpy(&pic->pics[0], &chip->chip.pic,
4580                         sizeof(struct kvm_pic_state));
4581                 spin_unlock(&pic->lock);
4582                 break;
4583         case KVM_IRQCHIP_PIC_SLAVE:
4584                 spin_lock(&pic->lock);
4585                 memcpy(&pic->pics[1], &chip->chip.pic,
4586                         sizeof(struct kvm_pic_state));
4587                 spin_unlock(&pic->lock);
4588                 break;
4589         case KVM_IRQCHIP_IOAPIC:
4590                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4591                 break;
4592         default:
4593                 r = -EINVAL;
4594                 break;
4595         }
4596         kvm_pic_update_irq(pic);
4597         return r;
4598 }
4599
4600 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4601 {
4602         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4603
4604         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4605
4606         mutex_lock(&kps->lock);
4607         memcpy(ps, &kps->channels, sizeof(*ps));
4608         mutex_unlock(&kps->lock);
4609         return 0;
4610 }
4611
4612 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4613 {
4614         int i;
4615         struct kvm_pit *pit = kvm->arch.vpit;
4616
4617         mutex_lock(&pit->pit_state.lock);
4618         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4619         for (i = 0; i < 3; i++)
4620                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4621         mutex_unlock(&pit->pit_state.lock);
4622         return 0;
4623 }
4624
4625 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4626 {
4627         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4628         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4629                 sizeof(ps->channels));
4630         ps->flags = kvm->arch.vpit->pit_state.flags;
4631         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4632         memset(&ps->reserved, 0, sizeof(ps->reserved));
4633         return 0;
4634 }
4635
4636 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4637 {
4638         int start = 0;
4639         int i;
4640         u32 prev_legacy, cur_legacy;
4641         struct kvm_pit *pit = kvm->arch.vpit;
4642
4643         mutex_lock(&pit->pit_state.lock);
4644         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4645         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4646         if (!prev_legacy && cur_legacy)
4647                 start = 1;
4648         memcpy(&pit->pit_state.channels, &ps->channels,
4649                sizeof(pit->pit_state.channels));
4650         pit->pit_state.flags = ps->flags;
4651         for (i = 0; i < 3; i++)
4652                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4653                                    start && i == 0);
4654         mutex_unlock(&pit->pit_state.lock);
4655         return 0;
4656 }
4657
4658 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4659                                  struct kvm_reinject_control *control)
4660 {
4661         struct kvm_pit *pit = kvm->arch.vpit;
4662
4663         if (!pit)
4664                 return -ENXIO;
4665
4666         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4667          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4668          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4669          */
4670         mutex_lock(&pit->pit_state.lock);
4671         kvm_pit_set_reinject(pit, control->pit_reinject);
4672         mutex_unlock(&pit->pit_state.lock);
4673
4674         return 0;
4675 }
4676
4677 /**
4678  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4679  * @kvm: kvm instance
4680  * @log: slot id and address to which we copy the log
4681  *
4682  * Steps 1-4 below provide general overview of dirty page logging. See
4683  * kvm_get_dirty_log_protect() function description for additional details.
4684  *
4685  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4686  * always flush the TLB (step 4) even if previous step failed  and the dirty
4687  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4688  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4689  * writes will be marked dirty for next log read.
4690  *
4691  *   1. Take a snapshot of the bit and clear it if needed.
4692  *   2. Write protect the corresponding page.
4693  *   3. Copy the snapshot to the userspace.
4694  *   4. Flush TLB's if needed.
4695  */
4696 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4697 {
4698         bool flush = false;
4699         int r;
4700
4701         mutex_lock(&kvm->slots_lock);
4702
4703         /*
4704          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4705          */
4706         if (kvm_x86_ops->flush_log_dirty)
4707                 kvm_x86_ops->flush_log_dirty(kvm);
4708
4709         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4710
4711         /*
4712          * All the TLBs can be flushed out of mmu lock, see the comments in
4713          * kvm_mmu_slot_remove_write_access().
4714          */
4715         lockdep_assert_held(&kvm->slots_lock);
4716         if (flush)
4717                 kvm_flush_remote_tlbs(kvm);
4718
4719         mutex_unlock(&kvm->slots_lock);
4720         return r;
4721 }
4722
4723 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4724 {
4725         bool flush = false;
4726         int r;
4727
4728         mutex_lock(&kvm->slots_lock);
4729
4730         /*
4731          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4732          */
4733         if (kvm_x86_ops->flush_log_dirty)
4734                 kvm_x86_ops->flush_log_dirty(kvm);
4735
4736         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4737
4738         /*
4739          * All the TLBs can be flushed out of mmu lock, see the comments in
4740          * kvm_mmu_slot_remove_write_access().
4741          */
4742         lockdep_assert_held(&kvm->slots_lock);
4743         if (flush)
4744                 kvm_flush_remote_tlbs(kvm);
4745
4746         mutex_unlock(&kvm->slots_lock);
4747         return r;
4748 }
4749
4750 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4751                         bool line_status)
4752 {
4753         if (!irqchip_in_kernel(kvm))
4754                 return -ENXIO;
4755
4756         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4757                                         irq_event->irq, irq_event->level,
4758                                         line_status);
4759         return 0;
4760 }
4761
4762 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4763                             struct kvm_enable_cap *cap)
4764 {
4765         int r;
4766
4767         if (cap->flags)
4768                 return -EINVAL;
4769
4770         switch (cap->cap) {
4771         case KVM_CAP_DISABLE_QUIRKS:
4772                 kvm->arch.disabled_quirks = cap->args[0];
4773                 r = 0;
4774                 break;
4775         case KVM_CAP_SPLIT_IRQCHIP: {
4776                 mutex_lock(&kvm->lock);
4777                 r = -EINVAL;
4778                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4779                         goto split_irqchip_unlock;
4780                 r = -EEXIST;
4781                 if (irqchip_in_kernel(kvm))
4782                         goto split_irqchip_unlock;
4783                 if (kvm->created_vcpus)
4784                         goto split_irqchip_unlock;
4785                 r = kvm_setup_empty_irq_routing(kvm);
4786                 if (r)
4787                         goto split_irqchip_unlock;
4788                 /* Pairs with irqchip_in_kernel. */
4789                 smp_wmb();
4790                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4791                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4792                 r = 0;
4793 split_irqchip_unlock:
4794                 mutex_unlock(&kvm->lock);
4795                 break;
4796         }
4797         case KVM_CAP_X2APIC_API:
4798                 r = -EINVAL;
4799                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4800                         break;
4801
4802                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4803                         kvm->arch.x2apic_format = true;
4804                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4805                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4806
4807                 r = 0;
4808                 break;
4809         case KVM_CAP_X86_DISABLE_EXITS:
4810                 r = -EINVAL;
4811                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4812                         break;
4813
4814                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4815                         kvm_can_mwait_in_guest())
4816                         kvm->arch.mwait_in_guest = true;
4817                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4818                         kvm->arch.hlt_in_guest = true;
4819                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4820                         kvm->arch.pause_in_guest = true;
4821                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4822                         kvm->arch.cstate_in_guest = true;
4823                 r = 0;
4824                 break;
4825         case KVM_CAP_MSR_PLATFORM_INFO:
4826                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4827                 r = 0;
4828                 break;
4829         case KVM_CAP_EXCEPTION_PAYLOAD:
4830                 kvm->arch.exception_payload_enabled = cap->args[0];
4831                 r = 0;
4832                 break;
4833         default:
4834                 r = -EINVAL;
4835                 break;
4836         }
4837         return r;
4838 }
4839
4840 long kvm_arch_vm_ioctl(struct file *filp,
4841                        unsigned int ioctl, unsigned long arg)
4842 {
4843         struct kvm *kvm = filp->private_data;
4844         void __user *argp = (void __user *)arg;
4845         int r = -ENOTTY;
4846         /*
4847          * This union makes it completely explicit to gcc-3.x
4848          * that these two variables' stack usage should be
4849          * combined, not added together.
4850          */
4851         union {
4852                 struct kvm_pit_state ps;
4853                 struct kvm_pit_state2 ps2;
4854                 struct kvm_pit_config pit_config;
4855         } u;
4856
4857         switch (ioctl) {
4858         case KVM_SET_TSS_ADDR:
4859                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4860                 break;
4861         case KVM_SET_IDENTITY_MAP_ADDR: {
4862                 u64 ident_addr;
4863
4864                 mutex_lock(&kvm->lock);
4865                 r = -EINVAL;
4866                 if (kvm->created_vcpus)
4867                         goto set_identity_unlock;
4868                 r = -EFAULT;
4869                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4870                         goto set_identity_unlock;
4871                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4872 set_identity_unlock:
4873                 mutex_unlock(&kvm->lock);
4874                 break;
4875         }
4876         case KVM_SET_NR_MMU_PAGES:
4877                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4878                 break;
4879         case KVM_GET_NR_MMU_PAGES:
4880                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4881                 break;
4882         case KVM_CREATE_IRQCHIP: {
4883                 mutex_lock(&kvm->lock);
4884
4885                 r = -EEXIST;
4886                 if (irqchip_in_kernel(kvm))
4887                         goto create_irqchip_unlock;
4888
4889                 r = -EINVAL;
4890                 if (kvm->created_vcpus)
4891                         goto create_irqchip_unlock;
4892
4893                 r = kvm_pic_init(kvm);
4894                 if (r)
4895                         goto create_irqchip_unlock;
4896
4897                 r = kvm_ioapic_init(kvm);
4898                 if (r) {
4899                         kvm_pic_destroy(kvm);
4900                         goto create_irqchip_unlock;
4901                 }
4902
4903                 r = kvm_setup_default_irq_routing(kvm);
4904                 if (r) {
4905                         kvm_ioapic_destroy(kvm);
4906                         kvm_pic_destroy(kvm);
4907                         goto create_irqchip_unlock;
4908                 }
4909                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4910                 smp_wmb();
4911                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4912         create_irqchip_unlock:
4913                 mutex_unlock(&kvm->lock);
4914                 break;
4915         }
4916         case KVM_CREATE_PIT:
4917                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4918                 goto create_pit;
4919         case KVM_CREATE_PIT2:
4920                 r = -EFAULT;
4921                 if (copy_from_user(&u.pit_config, argp,
4922                                    sizeof(struct kvm_pit_config)))
4923                         goto out;
4924         create_pit:
4925                 mutex_lock(&kvm->lock);
4926                 r = -EEXIST;
4927                 if (kvm->arch.vpit)
4928                         goto create_pit_unlock;
4929                 r = -ENOMEM;
4930                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4931                 if (kvm->arch.vpit)
4932                         r = 0;
4933         create_pit_unlock:
4934                 mutex_unlock(&kvm->lock);
4935                 break;
4936         case KVM_GET_IRQCHIP: {
4937                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4938                 struct kvm_irqchip *chip;
4939
4940                 chip = memdup_user(argp, sizeof(*chip));
4941                 if (IS_ERR(chip)) {
4942                         r = PTR_ERR(chip);
4943                         goto out;
4944                 }
4945
4946                 r = -ENXIO;
4947                 if (!irqchip_kernel(kvm))
4948                         goto get_irqchip_out;
4949                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4950                 if (r)
4951                         goto get_irqchip_out;
4952                 r = -EFAULT;
4953                 if (copy_to_user(argp, chip, sizeof(*chip)))
4954                         goto get_irqchip_out;
4955                 r = 0;
4956         get_irqchip_out:
4957                 kfree(chip);
4958                 break;
4959         }
4960         case KVM_SET_IRQCHIP: {
4961                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4962                 struct kvm_irqchip *chip;
4963
4964                 chip = memdup_user(argp, sizeof(*chip));
4965                 if (IS_ERR(chip)) {
4966                         r = PTR_ERR(chip);
4967                         goto out;
4968                 }
4969
4970                 r = -ENXIO;
4971                 if (!irqchip_kernel(kvm))
4972                         goto set_irqchip_out;
4973                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4974         set_irqchip_out:
4975                 kfree(chip);
4976                 break;
4977         }
4978         case KVM_GET_PIT: {
4979                 r = -EFAULT;
4980                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4981                         goto out;
4982                 r = -ENXIO;
4983                 if (!kvm->arch.vpit)
4984                         goto out;
4985                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4986                 if (r)
4987                         goto out;
4988                 r = -EFAULT;
4989                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4990                         goto out;
4991                 r = 0;
4992                 break;
4993         }
4994         case KVM_SET_PIT: {
4995                 r = -EFAULT;
4996                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4997                         goto out;
4998                 r = -ENXIO;
4999                 if (!kvm->arch.vpit)
5000                         goto out;
5001                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5002                 break;
5003         }
5004         case KVM_GET_PIT2: {
5005                 r = -ENXIO;
5006                 if (!kvm->arch.vpit)
5007                         goto out;
5008                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5009                 if (r)
5010                         goto out;
5011                 r = -EFAULT;
5012                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5013                         goto out;
5014                 r = 0;
5015                 break;
5016         }
5017         case KVM_SET_PIT2: {
5018                 r = -EFAULT;
5019                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5020                         goto out;
5021                 r = -ENXIO;
5022                 if (!kvm->arch.vpit)
5023                         goto out;
5024                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5025                 break;
5026         }
5027         case KVM_REINJECT_CONTROL: {
5028                 struct kvm_reinject_control control;
5029                 r =  -EFAULT;
5030                 if (copy_from_user(&control, argp, sizeof(control)))
5031                         goto out;
5032                 r = kvm_vm_ioctl_reinject(kvm, &control);
5033                 break;
5034         }
5035         case KVM_SET_BOOT_CPU_ID:
5036                 r = 0;
5037                 mutex_lock(&kvm->lock);
5038                 if (kvm->created_vcpus)
5039                         r = -EBUSY;
5040                 else
5041                         kvm->arch.bsp_vcpu_id = arg;
5042                 mutex_unlock(&kvm->lock);
5043                 break;
5044         case KVM_XEN_HVM_CONFIG: {
5045                 struct kvm_xen_hvm_config xhc;
5046                 r = -EFAULT;
5047                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5048                         goto out;
5049                 r = -EINVAL;
5050                 if (xhc.flags)
5051                         goto out;
5052                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5053                 r = 0;
5054                 break;
5055         }
5056         case KVM_SET_CLOCK: {
5057                 struct kvm_clock_data user_ns;
5058                 u64 now_ns;
5059
5060                 r = -EFAULT;
5061                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5062                         goto out;
5063
5064                 r = -EINVAL;
5065                 if (user_ns.flags)
5066                         goto out;
5067
5068                 r = 0;
5069                 /*
5070                  * TODO: userspace has to take care of races with VCPU_RUN, so
5071                  * kvm_gen_update_masterclock() can be cut down to locked
5072                  * pvclock_update_vm_gtod_copy().
5073                  */
5074                 kvm_gen_update_masterclock(kvm);
5075                 now_ns = get_kvmclock_ns(kvm);
5076                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5077                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5078                 break;
5079         }
5080         case KVM_GET_CLOCK: {
5081                 struct kvm_clock_data user_ns;
5082                 u64 now_ns;
5083
5084                 now_ns = get_kvmclock_ns(kvm);
5085                 user_ns.clock = now_ns;
5086                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5087                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5088
5089                 r = -EFAULT;
5090                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5091                         goto out;
5092                 r = 0;
5093                 break;
5094         }
5095         case KVM_MEMORY_ENCRYPT_OP: {
5096                 r = -ENOTTY;
5097                 if (kvm_x86_ops->mem_enc_op)
5098                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
5099                 break;
5100         }
5101         case KVM_MEMORY_ENCRYPT_REG_REGION: {
5102                 struct kvm_enc_region region;
5103
5104                 r = -EFAULT;
5105                 if (copy_from_user(&region, argp, sizeof(region)))
5106                         goto out;
5107
5108                 r = -ENOTTY;
5109                 if (kvm_x86_ops->mem_enc_reg_region)
5110                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
5111                 break;
5112         }
5113         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5114                 struct kvm_enc_region region;
5115
5116                 r = -EFAULT;
5117                 if (copy_from_user(&region, argp, sizeof(region)))
5118                         goto out;
5119
5120                 r = -ENOTTY;
5121                 if (kvm_x86_ops->mem_enc_unreg_region)
5122                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
5123                 break;
5124         }
5125         case KVM_HYPERV_EVENTFD: {
5126                 struct kvm_hyperv_eventfd hvevfd;
5127
5128                 r = -EFAULT;
5129                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5130                         goto out;
5131                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5132                 break;
5133         }
5134         case KVM_SET_PMU_EVENT_FILTER:
5135                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5136                 break;
5137         default:
5138                 r = -ENOTTY;
5139         }
5140 out:
5141         return r;
5142 }
5143
5144 static void kvm_init_msr_list(void)
5145 {
5146         struct x86_pmu_capability x86_pmu;
5147         u32 dummy[2];
5148         unsigned i;
5149
5150         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5151                          "Please update the fixed PMCs in msrs_to_saved_all[]");
5152
5153         perf_get_x86_pmu_capability(&x86_pmu);
5154
5155         num_msrs_to_save = 0;
5156         num_emulated_msrs = 0;
5157         num_msr_based_features = 0;
5158
5159         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5160                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5161                         continue;
5162
5163                 /*
5164                  * Even MSRs that are valid in the host may not be exposed
5165                  * to the guests in some cases.
5166                  */
5167                 switch (msrs_to_save_all[i]) {
5168                 case MSR_IA32_BNDCFGS:
5169                         if (!kvm_mpx_supported())
5170                                 continue;
5171                         break;
5172                 case MSR_TSC_AUX:
5173                         if (!kvm_x86_ops->rdtscp_supported())
5174                                 continue;
5175                         break;
5176                 case MSR_IA32_RTIT_CTL:
5177                 case MSR_IA32_RTIT_STATUS:
5178                         if (!kvm_x86_ops->pt_supported())
5179                                 continue;
5180                         break;
5181                 case MSR_IA32_RTIT_CR3_MATCH:
5182                         if (!kvm_x86_ops->pt_supported() ||
5183                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5184                                 continue;
5185                         break;
5186                 case MSR_IA32_RTIT_OUTPUT_BASE:
5187                 case MSR_IA32_RTIT_OUTPUT_MASK:
5188                         if (!kvm_x86_ops->pt_supported() ||
5189                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5190                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5191                                 continue;
5192                         break;
5193                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5194                         if (!kvm_x86_ops->pt_supported() ||
5195                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5196                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5197                                 continue;
5198                         break;
5199                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5200                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5201                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5202                                 continue;
5203                         break;
5204                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5205                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5206                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5207                                 continue;
5208                 }
5209                 default:
5210                         break;
5211                 }
5212
5213                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5214         }
5215
5216         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5217                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5218                         continue;
5219
5220                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5221         }
5222
5223         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5224                 struct kvm_msr_entry msr;
5225
5226                 msr.index = msr_based_features_all[i];
5227                 if (kvm_get_msr_feature(&msr))
5228                         continue;
5229
5230                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5231         }
5232 }
5233
5234 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5235                            const void *v)
5236 {
5237         int handled = 0;
5238         int n;
5239
5240         do {
5241                 n = min(len, 8);
5242                 if (!(lapic_in_kernel(vcpu) &&
5243                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5244                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5245                         break;
5246                 handled += n;
5247                 addr += n;
5248                 len -= n;
5249                 v += n;
5250         } while (len);
5251
5252         return handled;
5253 }
5254
5255 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5256 {
5257         int handled = 0;
5258         int n;
5259
5260         do {
5261                 n = min(len, 8);
5262                 if (!(lapic_in_kernel(vcpu) &&
5263                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5264                                          addr, n, v))
5265                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5266                         break;
5267                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5268                 handled += n;
5269                 addr += n;
5270                 len -= n;
5271                 v += n;
5272         } while (len);
5273
5274         return handled;
5275 }
5276
5277 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5278                         struct kvm_segment *var, int seg)
5279 {
5280         kvm_x86_ops->set_segment(vcpu, var, seg);
5281 }
5282
5283 void kvm_get_segment(struct kvm_vcpu *vcpu,
5284                      struct kvm_segment *var, int seg)
5285 {
5286         kvm_x86_ops->get_segment(vcpu, var, seg);
5287 }
5288
5289 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5290                            struct x86_exception *exception)
5291 {
5292         gpa_t t_gpa;
5293
5294         BUG_ON(!mmu_is_nested(vcpu));
5295
5296         /* NPT walks are always user-walks */
5297         access |= PFERR_USER_MASK;
5298         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5299
5300         return t_gpa;
5301 }
5302
5303 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5304                               struct x86_exception *exception)
5305 {
5306         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5307         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5308 }
5309
5310  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5311                                 struct x86_exception *exception)
5312 {
5313         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5314         access |= PFERR_FETCH_MASK;
5315         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5316 }
5317
5318 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5319                                struct x86_exception *exception)
5320 {
5321         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5322         access |= PFERR_WRITE_MASK;
5323         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5324 }
5325
5326 /* uses this to access any guest's mapped memory without checking CPL */
5327 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5328                                 struct x86_exception *exception)
5329 {
5330         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5331 }
5332
5333 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5334                                       struct kvm_vcpu *vcpu, u32 access,
5335                                       struct x86_exception *exception)
5336 {
5337         void *data = val;
5338         int r = X86EMUL_CONTINUE;
5339
5340         while (bytes) {
5341                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5342                                                             exception);
5343                 unsigned offset = addr & (PAGE_SIZE-1);
5344                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5345                 int ret;
5346
5347                 if (gpa == UNMAPPED_GVA)
5348                         return X86EMUL_PROPAGATE_FAULT;
5349                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5350                                                offset, toread);
5351                 if (ret < 0) {
5352                         r = X86EMUL_IO_NEEDED;
5353                         goto out;
5354                 }
5355
5356                 bytes -= toread;
5357                 data += toread;
5358                 addr += toread;
5359         }
5360 out:
5361         return r;
5362 }
5363
5364 /* used for instruction fetching */
5365 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5366                                 gva_t addr, void *val, unsigned int bytes,
5367                                 struct x86_exception *exception)
5368 {
5369         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5370         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5371         unsigned offset;
5372         int ret;
5373
5374         /* Inline kvm_read_guest_virt_helper for speed.  */
5375         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5376                                                     exception);
5377         if (unlikely(gpa == UNMAPPED_GVA))
5378                 return X86EMUL_PROPAGATE_FAULT;
5379
5380         offset = addr & (PAGE_SIZE-1);
5381         if (WARN_ON(offset + bytes > PAGE_SIZE))
5382                 bytes = (unsigned)PAGE_SIZE - offset;
5383         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5384                                        offset, bytes);
5385         if (unlikely(ret < 0))
5386                 return X86EMUL_IO_NEEDED;
5387
5388         return X86EMUL_CONTINUE;
5389 }
5390
5391 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5392                                gva_t addr, void *val, unsigned int bytes,
5393                                struct x86_exception *exception)
5394 {
5395         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5396
5397         /*
5398          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5399          * is returned, but our callers are not ready for that and they blindly
5400          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5401          * uninitialized kernel stack memory into cr2 and error code.
5402          */
5403         memset(exception, 0, sizeof(*exception));
5404         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5405                                           exception);
5406 }
5407 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5408
5409 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5410                              gva_t addr, void *val, unsigned int bytes,
5411                              struct x86_exception *exception, bool system)
5412 {
5413         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5414         u32 access = 0;
5415
5416         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5417                 access |= PFERR_USER_MASK;
5418
5419         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5420 }
5421
5422 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5423                 unsigned long addr, void *val, unsigned int bytes)
5424 {
5425         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5426         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5427
5428         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5429 }
5430
5431 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5432                                       struct kvm_vcpu *vcpu, u32 access,
5433                                       struct x86_exception *exception)
5434 {
5435         void *data = val;
5436         int r = X86EMUL_CONTINUE;
5437
5438         while (bytes) {
5439                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5440                                                              access,
5441                                                              exception);
5442                 unsigned offset = addr & (PAGE_SIZE-1);
5443                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5444                 int ret;
5445
5446                 if (gpa == UNMAPPED_GVA)
5447                         return X86EMUL_PROPAGATE_FAULT;
5448                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5449                 if (ret < 0) {
5450                         r = X86EMUL_IO_NEEDED;
5451                         goto out;
5452                 }
5453
5454                 bytes -= towrite;
5455                 data += towrite;
5456                 addr += towrite;
5457         }
5458 out:
5459         return r;
5460 }
5461
5462 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5463                               unsigned int bytes, struct x86_exception *exception,
5464                               bool system)
5465 {
5466         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5467         u32 access = PFERR_WRITE_MASK;
5468
5469         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5470                 access |= PFERR_USER_MASK;
5471
5472         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5473                                            access, exception);
5474 }
5475
5476 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5477                                 unsigned int bytes, struct x86_exception *exception)
5478 {
5479         /* kvm_write_guest_virt_system can pull in tons of pages. */
5480         vcpu->arch.l1tf_flush_l1d = true;
5481
5482         /*
5483          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5484          * is returned, but our callers are not ready for that and they blindly
5485          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5486          * uninitialized kernel stack memory into cr2 and error code.
5487          */
5488         memset(exception, 0, sizeof(*exception));
5489         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5490                                            PFERR_WRITE_MASK, exception);
5491 }
5492 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5493
5494 int handle_ud(struct kvm_vcpu *vcpu)
5495 {
5496         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5497         int emul_type = EMULTYPE_TRAP_UD;
5498         char sig[5]; /* ud2; .ascii "kvm" */
5499         struct x86_exception e;
5500
5501         if (force_emulation_prefix &&
5502             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5503                                 sig, sizeof(sig), &e) == 0 &&
5504             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5505                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5506                 emul_type = EMULTYPE_TRAP_UD_FORCED;
5507         }
5508
5509         return kvm_emulate_instruction(vcpu, emul_type);
5510 }
5511 EXPORT_SYMBOL_GPL(handle_ud);
5512
5513 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5514                             gpa_t gpa, bool write)
5515 {
5516         /* For APIC access vmexit */
5517         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5518                 return 1;
5519
5520         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5521                 trace_vcpu_match_mmio(gva, gpa, write, true);
5522                 return 1;
5523         }
5524
5525         return 0;
5526 }
5527
5528 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5529                                 gpa_t *gpa, struct x86_exception *exception,
5530                                 bool write)
5531 {
5532         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5533                 | (write ? PFERR_WRITE_MASK : 0);
5534
5535         /*
5536          * currently PKRU is only applied to ept enabled guest so
5537          * there is no pkey in EPT page table for L1 guest or EPT
5538          * shadow page table for L2 guest.
5539          */
5540         if (vcpu_match_mmio_gva(vcpu, gva)
5541             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5542                                  vcpu->arch.mmio_access, 0, access)) {
5543                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5544                                         (gva & (PAGE_SIZE - 1));
5545                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5546                 return 1;
5547         }
5548
5549         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5550
5551         if (*gpa == UNMAPPED_GVA)
5552                 return -1;
5553
5554         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5555 }
5556
5557 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5558                         const void *val, int bytes)
5559 {
5560         int ret;
5561
5562         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5563         if (ret < 0)
5564                 return 0;
5565         kvm_page_track_write(vcpu, gpa, val, bytes);
5566         return 1;
5567 }
5568
5569 struct read_write_emulator_ops {
5570         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5571                                   int bytes);
5572         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5573                                   void *val, int bytes);
5574         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5575                                int bytes, void *val);
5576         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5577                                     void *val, int bytes);
5578         bool write;
5579 };
5580
5581 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5582 {
5583         if (vcpu->mmio_read_completed) {
5584                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5585                                vcpu->mmio_fragments[0].gpa, val);
5586                 vcpu->mmio_read_completed = 0;
5587                 return 1;
5588         }
5589
5590         return 0;
5591 }
5592
5593 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5594                         void *val, int bytes)
5595 {
5596         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5597 }
5598
5599 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5600                          void *val, int bytes)
5601 {
5602         return emulator_write_phys(vcpu, gpa, val, bytes);
5603 }
5604
5605 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5606 {
5607         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5608         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5609 }
5610
5611 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5612                           void *val, int bytes)
5613 {
5614         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5615         return X86EMUL_IO_NEEDED;
5616 }
5617
5618 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5619                            void *val, int bytes)
5620 {
5621         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5622
5623         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5624         return X86EMUL_CONTINUE;
5625 }
5626
5627 static const struct read_write_emulator_ops read_emultor = {
5628         .read_write_prepare = read_prepare,
5629         .read_write_emulate = read_emulate,
5630         .read_write_mmio = vcpu_mmio_read,
5631         .read_write_exit_mmio = read_exit_mmio,
5632 };
5633
5634 static const struct read_write_emulator_ops write_emultor = {
5635         .read_write_emulate = write_emulate,
5636         .read_write_mmio = write_mmio,
5637         .read_write_exit_mmio = write_exit_mmio,
5638         .write = true,
5639 };
5640
5641 static int emulator_read_write_onepage(unsigned long addr, void *val,
5642                                        unsigned int bytes,
5643                                        struct x86_exception *exception,
5644                                        struct kvm_vcpu *vcpu,
5645                                        const struct read_write_emulator_ops *ops)
5646 {
5647         gpa_t gpa;
5648         int handled, ret;
5649         bool write = ops->write;
5650         struct kvm_mmio_fragment *frag;
5651         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5652
5653         /*
5654          * If the exit was due to a NPF we may already have a GPA.
5655          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5656          * Note, this cannot be used on string operations since string
5657          * operation using rep will only have the initial GPA from the NPF
5658          * occurred.
5659          */
5660         if (vcpu->arch.gpa_available &&
5661             emulator_can_use_gpa(ctxt) &&
5662             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5663                 gpa = vcpu->arch.gpa_val;
5664                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5665         } else {
5666                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5667                 if (ret < 0)
5668                         return X86EMUL_PROPAGATE_FAULT;
5669         }
5670
5671         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5672                 return X86EMUL_CONTINUE;
5673
5674         /*
5675          * Is this MMIO handled locally?
5676          */
5677         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5678         if (handled == bytes)
5679                 return X86EMUL_CONTINUE;
5680
5681         gpa += handled;
5682         bytes -= handled;
5683         val += handled;
5684
5685         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5686         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5687         frag->gpa = gpa;
5688         frag->data = val;
5689         frag->len = bytes;
5690         return X86EMUL_CONTINUE;
5691 }
5692
5693 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5694                         unsigned long addr,
5695                         void *val, unsigned int bytes,
5696                         struct x86_exception *exception,
5697                         const struct read_write_emulator_ops *ops)
5698 {
5699         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5700         gpa_t gpa;
5701         int rc;
5702
5703         if (ops->read_write_prepare &&
5704                   ops->read_write_prepare(vcpu, val, bytes))
5705                 return X86EMUL_CONTINUE;
5706
5707         vcpu->mmio_nr_fragments = 0;
5708
5709         /* Crossing a page boundary? */
5710         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5711                 int now;
5712
5713                 now = -addr & ~PAGE_MASK;
5714                 rc = emulator_read_write_onepage(addr, val, now, exception,
5715                                                  vcpu, ops);
5716
5717                 if (rc != X86EMUL_CONTINUE)
5718                         return rc;
5719                 addr += now;
5720                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5721                         addr = (u32)addr;
5722                 val += now;
5723                 bytes -= now;
5724         }
5725
5726         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5727                                          vcpu, ops);
5728         if (rc != X86EMUL_CONTINUE)
5729                 return rc;
5730
5731         if (!vcpu->mmio_nr_fragments)
5732                 return rc;
5733
5734         gpa = vcpu->mmio_fragments[0].gpa;
5735
5736         vcpu->mmio_needed = 1;
5737         vcpu->mmio_cur_fragment = 0;
5738
5739         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5740         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5741         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5742         vcpu->run->mmio.phys_addr = gpa;
5743
5744         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5745 }
5746
5747 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5748                                   unsigned long addr,
5749                                   void *val,
5750                                   unsigned int bytes,
5751                                   struct x86_exception *exception)
5752 {
5753         return emulator_read_write(ctxt, addr, val, bytes,
5754                                    exception, &read_emultor);
5755 }
5756
5757 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5758                             unsigned long addr,
5759                             const void *val,
5760                             unsigned int bytes,
5761                             struct x86_exception *exception)
5762 {
5763         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5764                                    exception, &write_emultor);
5765 }
5766
5767 #define CMPXCHG_TYPE(t, ptr, old, new) \
5768         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5769
5770 #ifdef CONFIG_X86_64
5771 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5772 #else
5773 #  define CMPXCHG64(ptr, old, new) \
5774         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5775 #endif
5776
5777 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5778                                      unsigned long addr,
5779                                      const void *old,
5780                                      const void *new,
5781                                      unsigned int bytes,
5782                                      struct x86_exception *exception)
5783 {
5784         struct kvm_host_map map;
5785         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5786         gpa_t gpa;
5787         char *kaddr;
5788         bool exchanged;
5789
5790         /* guests cmpxchg8b have to be emulated atomically */
5791         if (bytes > 8 || (bytes & (bytes - 1)))
5792                 goto emul_write;
5793
5794         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5795
5796         if (gpa == UNMAPPED_GVA ||
5797             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5798                 goto emul_write;
5799
5800         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5801                 goto emul_write;
5802
5803         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5804                 goto emul_write;
5805
5806         kaddr = map.hva + offset_in_page(gpa);
5807
5808         switch (bytes) {
5809         case 1:
5810                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5811                 break;
5812         case 2:
5813                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5814                 break;
5815         case 4:
5816                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5817                 break;
5818         case 8:
5819                 exchanged = CMPXCHG64(kaddr, old, new);
5820                 break;
5821         default:
5822                 BUG();
5823         }
5824
5825         kvm_vcpu_unmap(vcpu, &map, true);
5826
5827         if (!exchanged)
5828                 return X86EMUL_CMPXCHG_FAILED;
5829
5830         kvm_page_track_write(vcpu, gpa, new, bytes);
5831
5832         return X86EMUL_CONTINUE;
5833
5834 emul_write:
5835         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5836
5837         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5838 }
5839
5840 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5841 {
5842         int r = 0, i;
5843
5844         for (i = 0; i < vcpu->arch.pio.count; i++) {
5845                 if (vcpu->arch.pio.in)
5846                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5847                                             vcpu->arch.pio.size, pd);
5848                 else
5849                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5850                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5851                                              pd);
5852                 if (r)
5853                         break;
5854                 pd += vcpu->arch.pio.size;
5855         }
5856         return r;
5857 }
5858
5859 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5860                                unsigned short port, void *val,
5861                                unsigned int count, bool in)
5862 {
5863         vcpu->arch.pio.port = port;
5864         vcpu->arch.pio.in = in;
5865         vcpu->arch.pio.count  = count;
5866         vcpu->arch.pio.size = size;
5867
5868         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5869                 vcpu->arch.pio.count = 0;
5870                 return 1;
5871         }
5872
5873         vcpu->run->exit_reason = KVM_EXIT_IO;
5874         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5875         vcpu->run->io.size = size;
5876         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5877         vcpu->run->io.count = count;
5878         vcpu->run->io.port = port;
5879
5880         return 0;
5881 }
5882
5883 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5884                                     int size, unsigned short port, void *val,
5885                                     unsigned int count)
5886 {
5887         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5888         int ret;
5889
5890         if (vcpu->arch.pio.count)
5891                 goto data_avail;
5892
5893         memset(vcpu->arch.pio_data, 0, size * count);
5894
5895         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5896         if (ret) {
5897 data_avail:
5898                 memcpy(val, vcpu->arch.pio_data, size * count);
5899                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5900                 vcpu->arch.pio.count = 0;
5901                 return 1;
5902         }
5903
5904         return 0;
5905 }
5906
5907 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5908                                      int size, unsigned short port,
5909                                      const void *val, unsigned int count)
5910 {
5911         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5912
5913         memcpy(vcpu->arch.pio_data, val, size * count);
5914         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5915         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5916 }
5917
5918 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5919 {
5920         return kvm_x86_ops->get_segment_base(vcpu, seg);
5921 }
5922
5923 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5924 {
5925         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5926 }
5927
5928 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5929 {
5930         if (!need_emulate_wbinvd(vcpu))
5931                 return X86EMUL_CONTINUE;
5932
5933         if (kvm_x86_ops->has_wbinvd_exit()) {
5934                 int cpu = get_cpu();
5935
5936                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5937                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5938                                 wbinvd_ipi, NULL, 1);
5939                 put_cpu();
5940                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5941         } else
5942                 wbinvd();
5943         return X86EMUL_CONTINUE;
5944 }
5945
5946 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5947 {
5948         kvm_emulate_wbinvd_noskip(vcpu);
5949         return kvm_skip_emulated_instruction(vcpu);
5950 }
5951 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5952
5953
5954
5955 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5956 {
5957         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5958 }
5959
5960 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5961                            unsigned long *dest)
5962 {
5963         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5964 }
5965
5966 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5967                            unsigned long value)
5968 {
5969
5970         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5971 }
5972
5973 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5974 {
5975         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5976 }
5977
5978 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5979 {
5980         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5981         unsigned long value;
5982
5983         switch (cr) {
5984         case 0:
5985                 value = kvm_read_cr0(vcpu);
5986                 break;
5987         case 2:
5988                 value = vcpu->arch.cr2;
5989                 break;
5990         case 3:
5991                 value = kvm_read_cr3(vcpu);
5992                 break;
5993         case 4:
5994                 value = kvm_read_cr4(vcpu);
5995                 break;
5996         case 8:
5997                 value = kvm_get_cr8(vcpu);
5998                 break;
5999         default:
6000                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6001                 return 0;
6002         }
6003
6004         return value;
6005 }
6006
6007 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6008 {
6009         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6010         int res = 0;
6011
6012         switch (cr) {
6013         case 0:
6014                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6015                 break;
6016         case 2:
6017                 vcpu->arch.cr2 = val;
6018                 break;
6019         case 3:
6020                 res = kvm_set_cr3(vcpu, val);
6021                 break;
6022         case 4:
6023                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6024                 break;
6025         case 8:
6026                 res = kvm_set_cr8(vcpu, val);
6027                 break;
6028         default:
6029                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6030                 res = -1;
6031         }
6032
6033         return res;
6034 }
6035
6036 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6037 {
6038         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6039 }
6040
6041 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6042 {
6043         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6044 }
6045
6046 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6047 {
6048         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6049 }
6050
6051 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6052 {
6053         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6054 }
6055
6056 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6057 {
6058         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6059 }
6060
6061 static unsigned long emulator_get_cached_segment_base(
6062         struct x86_emulate_ctxt *ctxt, int seg)
6063 {
6064         return get_segment_base(emul_to_vcpu(ctxt), seg);
6065 }
6066
6067 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6068                                  struct desc_struct *desc, u32 *base3,
6069                                  int seg)
6070 {
6071         struct kvm_segment var;
6072
6073         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6074         *selector = var.selector;
6075
6076         if (var.unusable) {
6077                 memset(desc, 0, sizeof(*desc));
6078                 if (base3)
6079                         *base3 = 0;
6080                 return false;
6081         }
6082
6083         if (var.g)
6084                 var.limit >>= 12;
6085         set_desc_limit(desc, var.limit);
6086         set_desc_base(desc, (unsigned long)var.base);
6087 #ifdef CONFIG_X86_64
6088         if (base3)
6089                 *base3 = var.base >> 32;
6090 #endif
6091         desc->type = var.type;
6092         desc->s = var.s;
6093         desc->dpl = var.dpl;
6094         desc->p = var.present;
6095         desc->avl = var.avl;
6096         desc->l = var.l;
6097         desc->d = var.db;
6098         desc->g = var.g;
6099
6100         return true;
6101 }
6102
6103 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6104                                  struct desc_struct *desc, u32 base3,
6105                                  int seg)
6106 {
6107         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6108         struct kvm_segment var;
6109
6110         var.selector = selector;
6111         var.base = get_desc_base(desc);
6112 #ifdef CONFIG_X86_64
6113         var.base |= ((u64)base3) << 32;
6114 #endif
6115         var.limit = get_desc_limit(desc);
6116         if (desc->g)
6117                 var.limit = (var.limit << 12) | 0xfff;
6118         var.type = desc->type;
6119         var.dpl = desc->dpl;
6120         var.db = desc->d;
6121         var.s = desc->s;
6122         var.l = desc->l;
6123         var.g = desc->g;
6124         var.avl = desc->avl;
6125         var.present = desc->p;
6126         var.unusable = !var.present;
6127         var.padding = 0;
6128
6129         kvm_set_segment(vcpu, &var, seg);
6130         return;
6131 }
6132
6133 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6134                             u32 msr_index, u64 *pdata)
6135 {
6136         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6137 }
6138
6139 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6140                             u32 msr_index, u64 data)
6141 {
6142         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6143 }
6144
6145 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6146 {
6147         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6148
6149         return vcpu->arch.smbase;
6150 }
6151
6152 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6153 {
6154         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6155
6156         vcpu->arch.smbase = smbase;
6157 }
6158
6159 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6160                               u32 pmc)
6161 {
6162         return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6163 }
6164
6165 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6166                              u32 pmc, u64 *pdata)
6167 {
6168         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6169 }
6170
6171 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6172 {
6173         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6174 }
6175
6176 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6177                               struct x86_instruction_info *info,
6178                               enum x86_intercept_stage stage)
6179 {
6180         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6181 }
6182
6183 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6184                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6185 {
6186         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6187 }
6188
6189 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6190 {
6191         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6192 }
6193
6194 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6195 {
6196         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6197 }
6198
6199 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6200 {
6201         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6202 }
6203
6204 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6205 {
6206         return emul_to_vcpu(ctxt)->arch.hflags;
6207 }
6208
6209 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6210 {
6211         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6212 }
6213
6214 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6215                                   const char *smstate)
6216 {
6217         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6218 }
6219
6220 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6221 {
6222         kvm_smm_changed(emul_to_vcpu(ctxt));
6223 }
6224
6225 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6226 {
6227         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6228 }
6229
6230 static const struct x86_emulate_ops emulate_ops = {
6231         .read_gpr            = emulator_read_gpr,
6232         .write_gpr           = emulator_write_gpr,
6233         .read_std            = emulator_read_std,
6234         .write_std           = emulator_write_std,
6235         .read_phys           = kvm_read_guest_phys_system,
6236         .fetch               = kvm_fetch_guest_virt,
6237         .read_emulated       = emulator_read_emulated,
6238         .write_emulated      = emulator_write_emulated,
6239         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6240         .invlpg              = emulator_invlpg,
6241         .pio_in_emulated     = emulator_pio_in_emulated,
6242         .pio_out_emulated    = emulator_pio_out_emulated,
6243         .get_segment         = emulator_get_segment,
6244         .set_segment         = emulator_set_segment,
6245         .get_cached_segment_base = emulator_get_cached_segment_base,
6246         .get_gdt             = emulator_get_gdt,
6247         .get_idt             = emulator_get_idt,
6248         .set_gdt             = emulator_set_gdt,
6249         .set_idt             = emulator_set_idt,
6250         .get_cr              = emulator_get_cr,
6251         .set_cr              = emulator_set_cr,
6252         .cpl                 = emulator_get_cpl,
6253         .get_dr              = emulator_get_dr,
6254         .set_dr              = emulator_set_dr,
6255         .get_smbase          = emulator_get_smbase,
6256         .set_smbase          = emulator_set_smbase,
6257         .set_msr             = emulator_set_msr,
6258         .get_msr             = emulator_get_msr,
6259         .check_pmc           = emulator_check_pmc,
6260         .read_pmc            = emulator_read_pmc,
6261         .halt                = emulator_halt,
6262         .wbinvd              = emulator_wbinvd,
6263         .fix_hypercall       = emulator_fix_hypercall,
6264         .intercept           = emulator_intercept,
6265         .get_cpuid           = emulator_get_cpuid,
6266         .set_nmi_mask        = emulator_set_nmi_mask,
6267         .get_hflags          = emulator_get_hflags,
6268         .set_hflags          = emulator_set_hflags,
6269         .pre_leave_smm       = emulator_pre_leave_smm,
6270         .post_leave_smm      = emulator_post_leave_smm,
6271         .set_xcr             = emulator_set_xcr,
6272 };
6273
6274 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6275 {
6276         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6277         /*
6278          * an sti; sti; sequence only disable interrupts for the first
6279          * instruction. So, if the last instruction, be it emulated or
6280          * not, left the system with the INT_STI flag enabled, it
6281          * means that the last instruction is an sti. We should not
6282          * leave the flag on in this case. The same goes for mov ss
6283          */
6284         if (int_shadow & mask)
6285                 mask = 0;
6286         if (unlikely(int_shadow || mask)) {
6287                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6288                 if (!mask)
6289                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6290         }
6291 }
6292
6293 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6294 {
6295         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6296         if (ctxt->exception.vector == PF_VECTOR)
6297                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6298
6299         if (ctxt->exception.error_code_valid)
6300                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6301                                       ctxt->exception.error_code);
6302         else
6303                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6304         return false;
6305 }
6306
6307 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6308 {
6309         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6310         int cs_db, cs_l;
6311
6312         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6313
6314         ctxt->eflags = kvm_get_rflags(vcpu);
6315         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6316
6317         ctxt->eip = kvm_rip_read(vcpu);
6318         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6319                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6320                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6321                      cs_db                              ? X86EMUL_MODE_PROT32 :
6322                                                           X86EMUL_MODE_PROT16;
6323         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6324         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6325         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6326
6327         init_decode_cache(ctxt);
6328         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6329 }
6330
6331 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6332 {
6333         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6334         int ret;
6335
6336         init_emulate_ctxt(vcpu);
6337
6338         ctxt->op_bytes = 2;
6339         ctxt->ad_bytes = 2;
6340         ctxt->_eip = ctxt->eip + inc_eip;
6341         ret = emulate_int_real(ctxt, irq);
6342
6343         if (ret != X86EMUL_CONTINUE) {
6344                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6345         } else {
6346                 ctxt->eip = ctxt->_eip;
6347                 kvm_rip_write(vcpu, ctxt->eip);
6348                 kvm_set_rflags(vcpu, ctxt->eflags);
6349         }
6350 }
6351 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6352
6353 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6354 {
6355         ++vcpu->stat.insn_emulation_fail;
6356         trace_kvm_emulate_insn_failed(vcpu);
6357
6358         if (emulation_type & EMULTYPE_VMWARE_GP) {
6359                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6360                 return 1;
6361         }
6362
6363         if (emulation_type & EMULTYPE_SKIP) {
6364                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6365                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6366                 vcpu->run->internal.ndata = 0;
6367                 return 0;
6368         }
6369
6370         kvm_queue_exception(vcpu, UD_VECTOR);
6371
6372         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6373                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6374                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6375                 vcpu->run->internal.ndata = 0;
6376                 return 0;
6377         }
6378
6379         return 1;
6380 }
6381
6382 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6383                                   bool write_fault_to_shadow_pgtable,
6384                                   int emulation_type)
6385 {
6386         gpa_t gpa = cr2;
6387         kvm_pfn_t pfn;
6388
6389         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6390                 return false;
6391
6392         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6393                 return false;
6394
6395         if (!vcpu->arch.mmu->direct_map) {
6396                 /*
6397                  * Write permission should be allowed since only
6398                  * write access need to be emulated.
6399                  */
6400                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6401
6402                 /*
6403                  * If the mapping is invalid in guest, let cpu retry
6404                  * it to generate fault.
6405                  */
6406                 if (gpa == UNMAPPED_GVA)
6407                         return true;
6408         }
6409
6410         /*
6411          * Do not retry the unhandleable instruction if it faults on the
6412          * readonly host memory, otherwise it will goto a infinite loop:
6413          * retry instruction -> write #PF -> emulation fail -> retry
6414          * instruction -> ...
6415          */
6416         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6417
6418         /*
6419          * If the instruction failed on the error pfn, it can not be fixed,
6420          * report the error to userspace.
6421          */
6422         if (is_error_noslot_pfn(pfn))
6423                 return false;
6424
6425         kvm_release_pfn_clean(pfn);
6426
6427         /* The instructions are well-emulated on direct mmu. */
6428         if (vcpu->arch.mmu->direct_map) {
6429                 unsigned int indirect_shadow_pages;
6430
6431                 spin_lock(&vcpu->kvm->mmu_lock);
6432                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6433                 spin_unlock(&vcpu->kvm->mmu_lock);
6434
6435                 if (indirect_shadow_pages)
6436                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6437
6438                 return true;
6439         }
6440
6441         /*
6442          * if emulation was due to access to shadowed page table
6443          * and it failed try to unshadow page and re-enter the
6444          * guest to let CPU execute the instruction.
6445          */
6446         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6447
6448         /*
6449          * If the access faults on its page table, it can not
6450          * be fixed by unprotecting shadow page and it should
6451          * be reported to userspace.
6452          */
6453         return !write_fault_to_shadow_pgtable;
6454 }
6455
6456 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6457                               unsigned long cr2,  int emulation_type)
6458 {
6459         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6460         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6461
6462         last_retry_eip = vcpu->arch.last_retry_eip;
6463         last_retry_addr = vcpu->arch.last_retry_addr;
6464
6465         /*
6466          * If the emulation is caused by #PF and it is non-page_table
6467          * writing instruction, it means the VM-EXIT is caused by shadow
6468          * page protected, we can zap the shadow page and retry this
6469          * instruction directly.
6470          *
6471          * Note: if the guest uses a non-page-table modifying instruction
6472          * on the PDE that points to the instruction, then we will unmap
6473          * the instruction and go to an infinite loop. So, we cache the
6474          * last retried eip and the last fault address, if we meet the eip
6475          * and the address again, we can break out of the potential infinite
6476          * loop.
6477          */
6478         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6479
6480         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6481                 return false;
6482
6483         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6484                 return false;
6485
6486         if (x86_page_table_writing_insn(ctxt))
6487                 return false;
6488
6489         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6490                 return false;
6491
6492         vcpu->arch.last_retry_eip = ctxt->eip;
6493         vcpu->arch.last_retry_addr = cr2;
6494
6495         if (!vcpu->arch.mmu->direct_map)
6496                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6497
6498         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6499
6500         return true;
6501 }
6502
6503 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6504 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6505
6506 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6507 {
6508         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6509                 /* This is a good place to trace that we are exiting SMM.  */
6510                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6511
6512                 /* Process a latched INIT or SMI, if any.  */
6513                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6514         }
6515
6516         kvm_mmu_reset_context(vcpu);
6517 }
6518
6519 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6520                                 unsigned long *db)
6521 {
6522         u32 dr6 = 0;
6523         int i;
6524         u32 enable, rwlen;
6525
6526         enable = dr7;
6527         rwlen = dr7 >> 16;
6528         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6529                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6530                         dr6 |= (1 << i);
6531         return dr6;
6532 }
6533
6534 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6535 {
6536         struct kvm_run *kvm_run = vcpu->run;
6537
6538         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6539                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6540                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6541                 kvm_run->debug.arch.exception = DB_VECTOR;
6542                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6543                 return 0;
6544         }
6545         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6546         return 1;
6547 }
6548
6549 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6550 {
6551         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6552         int r;
6553
6554         r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6555         if (unlikely(!r))
6556                 return 0;
6557
6558         /*
6559          * rflags is the old, "raw" value of the flags.  The new value has
6560          * not been saved yet.
6561          *
6562          * This is correct even for TF set by the guest, because "the
6563          * processor will not generate this exception after the instruction
6564          * that sets the TF flag".
6565          */
6566         if (unlikely(rflags & X86_EFLAGS_TF))
6567                 r = kvm_vcpu_do_singlestep(vcpu);
6568         return r;
6569 }
6570 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6571
6572 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6573 {
6574         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6575             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6576                 struct kvm_run *kvm_run = vcpu->run;
6577                 unsigned long eip = kvm_get_linear_rip(vcpu);
6578                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6579                                            vcpu->arch.guest_debug_dr7,
6580                                            vcpu->arch.eff_db);
6581
6582                 if (dr6 != 0) {
6583                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6584                         kvm_run->debug.arch.pc = eip;
6585                         kvm_run->debug.arch.exception = DB_VECTOR;
6586                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6587                         *r = 0;
6588                         return true;
6589                 }
6590         }
6591
6592         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6593             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6594                 unsigned long eip = kvm_get_linear_rip(vcpu);
6595                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6596                                            vcpu->arch.dr7,
6597                                            vcpu->arch.db);
6598
6599                 if (dr6 != 0) {
6600                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6601                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6602                         kvm_queue_exception(vcpu, DB_VECTOR);
6603                         *r = 1;
6604                         return true;
6605                 }
6606         }
6607
6608         return false;
6609 }
6610
6611 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6612 {
6613         switch (ctxt->opcode_len) {
6614         case 1:
6615                 switch (ctxt->b) {
6616                 case 0xe4:      /* IN */
6617                 case 0xe5:
6618                 case 0xec:
6619                 case 0xed:
6620                 case 0xe6:      /* OUT */
6621                 case 0xe7:
6622                 case 0xee:
6623                 case 0xef:
6624                 case 0x6c:      /* INS */
6625                 case 0x6d:
6626                 case 0x6e:      /* OUTS */
6627                 case 0x6f:
6628                         return true;
6629                 }
6630                 break;
6631         case 2:
6632                 switch (ctxt->b) {
6633                 case 0x33:      /* RDPMC */
6634                         return true;
6635                 }
6636                 break;
6637         }
6638
6639         return false;
6640 }
6641
6642 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6643                             unsigned long cr2,
6644                             int emulation_type,
6645                             void *insn,
6646                             int insn_len)
6647 {
6648         int r;
6649         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6650         bool writeback = true;
6651         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6652
6653         vcpu->arch.l1tf_flush_l1d = true;
6654
6655         /*
6656          * Clear write_fault_to_shadow_pgtable here to ensure it is
6657          * never reused.
6658          */
6659         vcpu->arch.write_fault_to_shadow_pgtable = false;
6660         kvm_clear_exception_queue(vcpu);
6661
6662         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6663                 init_emulate_ctxt(vcpu);
6664
6665                 /*
6666                  * We will reenter on the same instruction since
6667                  * we do not set complete_userspace_io.  This does not
6668                  * handle watchpoints yet, those would be handled in
6669                  * the emulate_ops.
6670                  */
6671                 if (!(emulation_type & EMULTYPE_SKIP) &&
6672                     kvm_vcpu_check_breakpoint(vcpu, &r))
6673                         return r;
6674
6675                 ctxt->interruptibility = 0;
6676                 ctxt->have_exception = false;
6677                 ctxt->exception.vector = -1;
6678                 ctxt->perm_ok = false;
6679
6680                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6681
6682                 r = x86_decode_insn(ctxt, insn, insn_len);
6683
6684                 trace_kvm_emulate_insn_start(vcpu);
6685                 ++vcpu->stat.insn_emulation;
6686                 if (r != EMULATION_OK)  {
6687                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
6688                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6689                                 kvm_queue_exception(vcpu, UD_VECTOR);
6690                                 return 1;
6691                         }
6692                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6693                                                 emulation_type))
6694                                 return 1;
6695                         if (ctxt->have_exception) {
6696                                 /*
6697                                  * #UD should result in just EMULATION_FAILED, and trap-like
6698                                  * exception should not be encountered during decode.
6699                                  */
6700                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6701                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6702                                 inject_emulated_exception(vcpu);
6703                                 return 1;
6704                         }
6705                         return handle_emulation_failure(vcpu, emulation_type);
6706                 }
6707         }
6708
6709         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6710             !is_vmware_backdoor_opcode(ctxt)) {
6711                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6712                 return 1;
6713         }
6714
6715         /*
6716          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6717          * for kvm_skip_emulated_instruction().  The caller is responsible for
6718          * updating interruptibility state and injecting single-step #DBs.
6719          */
6720         if (emulation_type & EMULTYPE_SKIP) {
6721                 kvm_rip_write(vcpu, ctxt->_eip);
6722                 if (ctxt->eflags & X86_EFLAGS_RF)
6723                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6724                 return 1;
6725         }
6726
6727         if (retry_instruction(ctxt, cr2, emulation_type))
6728                 return 1;
6729
6730         /* this is needed for vmware backdoor interface to work since it
6731            changes registers values  during IO operation */
6732         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6733                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6734                 emulator_invalidate_register_cache(ctxt);
6735         }
6736
6737 restart:
6738         /* Save the faulting GPA (cr2) in the address field */
6739         ctxt->exception.address = cr2;
6740
6741         r = x86_emulate_insn(ctxt);
6742
6743         if (r == EMULATION_INTERCEPTED)
6744                 return 1;
6745
6746         if (r == EMULATION_FAILED) {
6747                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6748                                         emulation_type))
6749                         return 1;
6750
6751                 return handle_emulation_failure(vcpu, emulation_type);
6752         }
6753
6754         if (ctxt->have_exception) {
6755                 r = 1;
6756                 if (inject_emulated_exception(vcpu))
6757                         return r;
6758         } else if (vcpu->arch.pio.count) {
6759                 if (!vcpu->arch.pio.in) {
6760                         /* FIXME: return into emulator if single-stepping.  */
6761                         vcpu->arch.pio.count = 0;
6762                 } else {
6763                         writeback = false;
6764                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6765                 }
6766                 r = 0;
6767         } else if (vcpu->mmio_needed) {
6768                 ++vcpu->stat.mmio_exits;
6769
6770                 if (!vcpu->mmio_is_write)
6771                         writeback = false;
6772                 r = 0;
6773                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6774         } else if (r == EMULATION_RESTART)
6775                 goto restart;
6776         else
6777                 r = 1;
6778
6779         if (writeback) {
6780                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6781                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6782                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6783                 if (!ctxt->have_exception ||
6784                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6785                         kvm_rip_write(vcpu, ctxt->eip);
6786                         if (r && ctxt->tf)
6787                                 r = kvm_vcpu_do_singlestep(vcpu);
6788                         __kvm_set_rflags(vcpu, ctxt->eflags);
6789                 }
6790
6791                 /*
6792                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6793                  * do nothing, and it will be requested again as soon as
6794                  * the shadow expires.  But we still need to check here,
6795                  * because POPF has no interrupt shadow.
6796                  */
6797                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6798                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6799         } else
6800                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6801
6802         return r;
6803 }
6804
6805 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6806 {
6807         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6808 }
6809 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6810
6811 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6812                                         void *insn, int insn_len)
6813 {
6814         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6815 }
6816 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6817
6818 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6819 {
6820         vcpu->arch.pio.count = 0;
6821         return 1;
6822 }
6823
6824 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6825 {
6826         vcpu->arch.pio.count = 0;
6827
6828         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6829                 return 1;
6830
6831         return kvm_skip_emulated_instruction(vcpu);
6832 }
6833
6834 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6835                             unsigned short port)
6836 {
6837         unsigned long val = kvm_rax_read(vcpu);
6838         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6839                                             size, port, &val, 1);
6840         if (ret)
6841                 return ret;
6842
6843         /*
6844          * Workaround userspace that relies on old KVM behavior of %rip being
6845          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6846          */
6847         if (port == 0x7e &&
6848             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6849                 vcpu->arch.complete_userspace_io =
6850                         complete_fast_pio_out_port_0x7e;
6851                 kvm_skip_emulated_instruction(vcpu);
6852         } else {
6853                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6854                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6855         }
6856         return 0;
6857 }
6858
6859 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6860 {
6861         unsigned long val;
6862
6863         /* We should only ever be called with arch.pio.count equal to 1 */
6864         BUG_ON(vcpu->arch.pio.count != 1);
6865
6866         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6867                 vcpu->arch.pio.count = 0;
6868                 return 1;
6869         }
6870
6871         /* For size less than 4 we merge, else we zero extend */
6872         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6873
6874         /*
6875          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6876          * the copy and tracing
6877          */
6878         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6879                                  vcpu->arch.pio.port, &val, 1);
6880         kvm_rax_write(vcpu, val);
6881
6882         return kvm_skip_emulated_instruction(vcpu);
6883 }
6884
6885 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6886                            unsigned short port)
6887 {
6888         unsigned long val;
6889         int ret;
6890
6891         /* For size less than 4 we merge, else we zero extend */
6892         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6893
6894         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6895                                        &val, 1);
6896         if (ret) {
6897                 kvm_rax_write(vcpu, val);
6898                 return ret;
6899         }
6900
6901         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6902         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6903
6904         return 0;
6905 }
6906
6907 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6908 {
6909         int ret;
6910
6911         if (in)
6912                 ret = kvm_fast_pio_in(vcpu, size, port);
6913         else
6914                 ret = kvm_fast_pio_out(vcpu, size, port);
6915         return ret && kvm_skip_emulated_instruction(vcpu);
6916 }
6917 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6918
6919 static int kvmclock_cpu_down_prep(unsigned int cpu)
6920 {
6921         __this_cpu_write(cpu_tsc_khz, 0);
6922         return 0;
6923 }
6924
6925 static void tsc_khz_changed(void *data)
6926 {
6927         struct cpufreq_freqs *freq = data;
6928         unsigned long khz = 0;
6929
6930         if (data)
6931                 khz = freq->new;
6932         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6933                 khz = cpufreq_quick_get(raw_smp_processor_id());
6934         if (!khz)
6935                 khz = tsc_khz;
6936         __this_cpu_write(cpu_tsc_khz, khz);
6937 }
6938
6939 #ifdef CONFIG_X86_64
6940 static void kvm_hyperv_tsc_notifier(void)
6941 {
6942         struct kvm *kvm;
6943         struct kvm_vcpu *vcpu;
6944         int cpu;
6945
6946         mutex_lock(&kvm_lock);
6947         list_for_each_entry(kvm, &vm_list, vm_list)
6948                 kvm_make_mclock_inprogress_request(kvm);
6949
6950         hyperv_stop_tsc_emulation();
6951
6952         /* TSC frequency always matches when on Hyper-V */
6953         for_each_present_cpu(cpu)
6954                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6955         kvm_max_guest_tsc_khz = tsc_khz;
6956
6957         list_for_each_entry(kvm, &vm_list, vm_list) {
6958                 struct kvm_arch *ka = &kvm->arch;
6959
6960                 spin_lock(&ka->pvclock_gtod_sync_lock);
6961
6962                 pvclock_update_vm_gtod_copy(kvm);
6963
6964                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6965                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6966
6967                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6968                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6969
6970                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6971         }
6972         mutex_unlock(&kvm_lock);
6973 }
6974 #endif
6975
6976 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6977 {
6978         struct kvm *kvm;
6979         struct kvm_vcpu *vcpu;
6980         int i, send_ipi = 0;
6981
6982         /*
6983          * We allow guests to temporarily run on slowing clocks,
6984          * provided we notify them after, or to run on accelerating
6985          * clocks, provided we notify them before.  Thus time never
6986          * goes backwards.
6987          *
6988          * However, we have a problem.  We can't atomically update
6989          * the frequency of a given CPU from this function; it is
6990          * merely a notifier, which can be called from any CPU.
6991          * Changing the TSC frequency at arbitrary points in time
6992          * requires a recomputation of local variables related to
6993          * the TSC for each VCPU.  We must flag these local variables
6994          * to be updated and be sure the update takes place with the
6995          * new frequency before any guests proceed.
6996          *
6997          * Unfortunately, the combination of hotplug CPU and frequency
6998          * change creates an intractable locking scenario; the order
6999          * of when these callouts happen is undefined with respect to
7000          * CPU hotplug, and they can race with each other.  As such,
7001          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7002          * undefined; you can actually have a CPU frequency change take
7003          * place in between the computation of X and the setting of the
7004          * variable.  To protect against this problem, all updates of
7005          * the per_cpu tsc_khz variable are done in an interrupt
7006          * protected IPI, and all callers wishing to update the value
7007          * must wait for a synchronous IPI to complete (which is trivial
7008          * if the caller is on the CPU already).  This establishes the
7009          * necessary total order on variable updates.
7010          *
7011          * Note that because a guest time update may take place
7012          * anytime after the setting of the VCPU's request bit, the
7013          * correct TSC value must be set before the request.  However,
7014          * to ensure the update actually makes it to any guest which
7015          * starts running in hardware virtualization between the set
7016          * and the acquisition of the spinlock, we must also ping the
7017          * CPU after setting the request bit.
7018          *
7019          */
7020
7021         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7022
7023         mutex_lock(&kvm_lock);
7024         list_for_each_entry(kvm, &vm_list, vm_list) {
7025                 kvm_for_each_vcpu(i, vcpu, kvm) {
7026                         if (vcpu->cpu != cpu)
7027                                 continue;
7028                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7029                         if (vcpu->cpu != raw_smp_processor_id())
7030                                 send_ipi = 1;
7031                 }
7032         }
7033         mutex_unlock(&kvm_lock);
7034
7035         if (freq->old < freq->new && send_ipi) {
7036                 /*
7037                  * We upscale the frequency.  Must make the guest
7038                  * doesn't see old kvmclock values while running with
7039                  * the new frequency, otherwise we risk the guest sees
7040                  * time go backwards.
7041                  *
7042                  * In case we update the frequency for another cpu
7043                  * (which might be in guest context) send an interrupt
7044                  * to kick the cpu out of guest context.  Next time
7045                  * guest context is entered kvmclock will be updated,
7046                  * so the guest will not see stale values.
7047                  */
7048                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7049         }
7050 }
7051
7052 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7053                                      void *data)
7054 {
7055         struct cpufreq_freqs *freq = data;
7056         int cpu;
7057
7058         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7059                 return 0;
7060         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7061                 return 0;
7062
7063         for_each_cpu(cpu, freq->policy->cpus)
7064                 __kvmclock_cpufreq_notifier(freq, cpu);
7065
7066         return 0;
7067 }
7068
7069 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7070         .notifier_call  = kvmclock_cpufreq_notifier
7071 };
7072
7073 static int kvmclock_cpu_online(unsigned int cpu)
7074 {
7075         tsc_khz_changed(NULL);
7076         return 0;
7077 }
7078
7079 static void kvm_timer_init(void)
7080 {
7081         max_tsc_khz = tsc_khz;
7082
7083         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7084 #ifdef CONFIG_CPU_FREQ
7085                 struct cpufreq_policy policy;
7086                 int cpu;
7087
7088                 memset(&policy, 0, sizeof(policy));
7089                 cpu = get_cpu();
7090                 cpufreq_get_policy(&policy, cpu);
7091                 if (policy.cpuinfo.max_freq)
7092                         max_tsc_khz = policy.cpuinfo.max_freq;
7093                 put_cpu();
7094 #endif
7095                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7096                                           CPUFREQ_TRANSITION_NOTIFIER);
7097         }
7098
7099         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7100                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
7101 }
7102
7103 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7104 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7105
7106 int kvm_is_in_guest(void)
7107 {
7108         return __this_cpu_read(current_vcpu) != NULL;
7109 }
7110
7111 static int kvm_is_user_mode(void)
7112 {
7113         int user_mode = 3;
7114
7115         if (__this_cpu_read(current_vcpu))
7116                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7117
7118         return user_mode != 0;
7119 }
7120
7121 static unsigned long kvm_get_guest_ip(void)
7122 {
7123         unsigned long ip = 0;
7124
7125         if (__this_cpu_read(current_vcpu))
7126                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7127
7128         return ip;
7129 }
7130
7131 static void kvm_handle_intel_pt_intr(void)
7132 {
7133         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7134
7135         kvm_make_request(KVM_REQ_PMI, vcpu);
7136         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7137                         (unsigned long *)&vcpu->arch.pmu.global_status);
7138 }
7139
7140 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7141         .is_in_guest            = kvm_is_in_guest,
7142         .is_user_mode           = kvm_is_user_mode,
7143         .get_guest_ip           = kvm_get_guest_ip,
7144         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
7145 };
7146
7147 #ifdef CONFIG_X86_64
7148 static void pvclock_gtod_update_fn(struct work_struct *work)
7149 {
7150         struct kvm *kvm;
7151
7152         struct kvm_vcpu *vcpu;
7153         int i;
7154
7155         mutex_lock(&kvm_lock);
7156         list_for_each_entry(kvm, &vm_list, vm_list)
7157                 kvm_for_each_vcpu(i, vcpu, kvm)
7158                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7159         atomic_set(&kvm_guest_has_master_clock, 0);
7160         mutex_unlock(&kvm_lock);
7161 }
7162
7163 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7164
7165 /*
7166  * Notification about pvclock gtod data update.
7167  */
7168 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7169                                void *priv)
7170 {
7171         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7172         struct timekeeper *tk = priv;
7173
7174         update_pvclock_gtod(tk);
7175
7176         /* disable master clock if host does not trust, or does not
7177          * use, TSC based clocksource.
7178          */
7179         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7180             atomic_read(&kvm_guest_has_master_clock) != 0)
7181                 queue_work(system_long_wq, &pvclock_gtod_work);
7182
7183         return 0;
7184 }
7185
7186 static struct notifier_block pvclock_gtod_notifier = {
7187         .notifier_call = pvclock_gtod_notify,
7188 };
7189 #endif
7190
7191 int kvm_arch_init(void *opaque)
7192 {
7193         int r;
7194         struct kvm_x86_ops *ops = opaque;
7195
7196         if (kvm_x86_ops) {
7197                 printk(KERN_ERR "kvm: already loaded the other module\n");
7198                 r = -EEXIST;
7199                 goto out;
7200         }
7201
7202         if (!ops->cpu_has_kvm_support()) {
7203                 printk(KERN_ERR "kvm: no hardware support\n");
7204                 r = -EOPNOTSUPP;
7205                 goto out;
7206         }
7207         if (ops->disabled_by_bios()) {
7208                 printk(KERN_ERR "kvm: disabled by bios\n");
7209                 r = -EOPNOTSUPP;
7210                 goto out;
7211         }
7212
7213         /*
7214          * KVM explicitly assumes that the guest has an FPU and
7215          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7216          * vCPU's FPU state as a fxregs_state struct.
7217          */
7218         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7219                 printk(KERN_ERR "kvm: inadequate fpu\n");
7220                 r = -EOPNOTSUPP;
7221                 goto out;
7222         }
7223
7224         r = -ENOMEM;
7225         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7226                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7227                                           NULL);
7228         if (!x86_fpu_cache) {
7229                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7230                 goto out;
7231         }
7232
7233         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7234         if (!shared_msrs) {
7235                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7236                 goto out_free_x86_fpu_cache;
7237         }
7238
7239         r = kvm_mmu_module_init();
7240         if (r)
7241                 goto out_free_percpu;
7242
7243         kvm_x86_ops = ops;
7244
7245         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7246                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7247                         PT_PRESENT_MASK, 0, sme_me_mask);
7248         kvm_timer_init();
7249
7250         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7251
7252         if (boot_cpu_has(X86_FEATURE_XSAVE))
7253                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7254
7255         kvm_lapic_init();
7256         if (pi_inject_timer == -1)
7257                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7258 #ifdef CONFIG_X86_64
7259         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7260
7261         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7262                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7263 #endif
7264
7265         return 0;
7266
7267 out_free_percpu:
7268         free_percpu(shared_msrs);
7269 out_free_x86_fpu_cache:
7270         kmem_cache_destroy(x86_fpu_cache);
7271 out:
7272         return r;
7273 }
7274
7275 void kvm_arch_exit(void)
7276 {
7277 #ifdef CONFIG_X86_64
7278         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7279                 clear_hv_tscchange_cb();
7280 #endif
7281         kvm_lapic_exit();
7282         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7283
7284         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7285                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7286                                             CPUFREQ_TRANSITION_NOTIFIER);
7287         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7288 #ifdef CONFIG_X86_64
7289         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7290 #endif
7291         kvm_x86_ops = NULL;
7292         kvm_mmu_module_exit();
7293         free_percpu(shared_msrs);
7294         kmem_cache_destroy(x86_fpu_cache);
7295 }
7296
7297 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7298 {
7299         ++vcpu->stat.halt_exits;
7300         if (lapic_in_kernel(vcpu)) {
7301                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7302                 return 1;
7303         } else {
7304                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7305                 return 0;
7306         }
7307 }
7308 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7309
7310 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7311 {
7312         int ret = kvm_skip_emulated_instruction(vcpu);
7313         /*
7314          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7315          * KVM_EXIT_DEBUG here.
7316          */
7317         return kvm_vcpu_halt(vcpu) && ret;
7318 }
7319 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7320
7321 #ifdef CONFIG_X86_64
7322 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7323                                 unsigned long clock_type)
7324 {
7325         struct kvm_clock_pairing clock_pairing;
7326         struct timespec64 ts;
7327         u64 cycle;
7328         int ret;
7329
7330         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7331                 return -KVM_EOPNOTSUPP;
7332
7333         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7334                 return -KVM_EOPNOTSUPP;
7335
7336         clock_pairing.sec = ts.tv_sec;
7337         clock_pairing.nsec = ts.tv_nsec;
7338         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7339         clock_pairing.flags = 0;
7340         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7341
7342         ret = 0;
7343         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7344                             sizeof(struct kvm_clock_pairing)))
7345                 ret = -KVM_EFAULT;
7346
7347         return ret;
7348 }
7349 #endif
7350
7351 /*
7352  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7353  *
7354  * @apicid - apicid of vcpu to be kicked.
7355  */
7356 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7357 {
7358         struct kvm_lapic_irq lapic_irq;
7359
7360         lapic_irq.shorthand = 0;
7361         lapic_irq.dest_mode = 0;
7362         lapic_irq.level = 0;
7363         lapic_irq.dest_id = apicid;
7364         lapic_irq.msi_redir_hint = false;
7365
7366         lapic_irq.delivery_mode = APIC_DM_REMRD;
7367         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7368 }
7369
7370 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7371 {
7372         if (!lapic_in_kernel(vcpu)) {
7373                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7374                 return;
7375         }
7376         if (!vcpu->arch.apicv_active)
7377                 return;
7378
7379         vcpu->arch.apicv_active = false;
7380         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7381 }
7382
7383 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7384 {
7385         struct kvm_vcpu *target = NULL;
7386         struct kvm_apic_map *map;
7387
7388         rcu_read_lock();
7389         map = rcu_dereference(kvm->arch.apic_map);
7390
7391         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7392                 target = map->phys_map[dest_id]->vcpu;
7393
7394         rcu_read_unlock();
7395
7396         if (target && READ_ONCE(target->ready))
7397                 kvm_vcpu_yield_to(target);
7398 }
7399
7400 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7401 {
7402         unsigned long nr, a0, a1, a2, a3, ret;
7403         int op_64_bit;
7404
7405         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7406                 return kvm_hv_hypercall(vcpu);
7407
7408         nr = kvm_rax_read(vcpu);
7409         a0 = kvm_rbx_read(vcpu);
7410         a1 = kvm_rcx_read(vcpu);
7411         a2 = kvm_rdx_read(vcpu);
7412         a3 = kvm_rsi_read(vcpu);
7413
7414         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7415
7416         op_64_bit = is_64_bit_mode(vcpu);
7417         if (!op_64_bit) {
7418                 nr &= 0xFFFFFFFF;
7419                 a0 &= 0xFFFFFFFF;
7420                 a1 &= 0xFFFFFFFF;
7421                 a2 &= 0xFFFFFFFF;
7422                 a3 &= 0xFFFFFFFF;
7423         }
7424
7425         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7426                 ret = -KVM_EPERM;
7427                 goto out;
7428         }
7429
7430         switch (nr) {
7431         case KVM_HC_VAPIC_POLL_IRQ:
7432                 ret = 0;
7433                 break;
7434         case KVM_HC_KICK_CPU:
7435                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7436                 kvm_sched_yield(vcpu->kvm, a1);
7437                 ret = 0;
7438                 break;
7439 #ifdef CONFIG_X86_64
7440         case KVM_HC_CLOCK_PAIRING:
7441                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7442                 break;
7443 #endif
7444         case KVM_HC_SEND_IPI:
7445                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7446                 break;
7447         case KVM_HC_SCHED_YIELD:
7448                 kvm_sched_yield(vcpu->kvm, a0);
7449                 ret = 0;
7450                 break;
7451         default:
7452                 ret = -KVM_ENOSYS;
7453                 break;
7454         }
7455 out:
7456         if (!op_64_bit)
7457                 ret = (u32)ret;
7458         kvm_rax_write(vcpu, ret);
7459
7460         ++vcpu->stat.hypercalls;
7461         return kvm_skip_emulated_instruction(vcpu);
7462 }
7463 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7464
7465 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7466 {
7467         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7468         char instruction[3];
7469         unsigned long rip = kvm_rip_read(vcpu);
7470
7471         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7472
7473         return emulator_write_emulated(ctxt, rip, instruction, 3,
7474                 &ctxt->exception);
7475 }
7476
7477 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7478 {
7479         return vcpu->run->request_interrupt_window &&
7480                 likely(!pic_in_kernel(vcpu->kvm));
7481 }
7482
7483 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7484 {
7485         struct kvm_run *kvm_run = vcpu->run;
7486
7487         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7488         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7489         kvm_run->cr8 = kvm_get_cr8(vcpu);
7490         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7491         kvm_run->ready_for_interrupt_injection =
7492                 pic_in_kernel(vcpu->kvm) ||
7493                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7494 }
7495
7496 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7497 {
7498         int max_irr, tpr;
7499
7500         if (!kvm_x86_ops->update_cr8_intercept)
7501                 return;
7502
7503         if (!lapic_in_kernel(vcpu))
7504                 return;
7505
7506         if (vcpu->arch.apicv_active)
7507                 return;
7508
7509         if (!vcpu->arch.apic->vapic_addr)
7510                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7511         else
7512                 max_irr = -1;
7513
7514         if (max_irr != -1)
7515                 max_irr >>= 4;
7516
7517         tpr = kvm_lapic_get_cr8(vcpu);
7518
7519         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7520 }
7521
7522 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7523 {
7524         int r;
7525
7526         /* try to reinject previous events if any */
7527
7528         if (vcpu->arch.exception.injected)
7529                 kvm_x86_ops->queue_exception(vcpu);
7530         /*
7531          * Do not inject an NMI or interrupt if there is a pending
7532          * exception.  Exceptions and interrupts are recognized at
7533          * instruction boundaries, i.e. the start of an instruction.
7534          * Trap-like exceptions, e.g. #DB, have higher priority than
7535          * NMIs and interrupts, i.e. traps are recognized before an
7536          * NMI/interrupt that's pending on the same instruction.
7537          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7538          * priority, but are only generated (pended) during instruction
7539          * execution, i.e. a pending fault-like exception means the
7540          * fault occurred on the *previous* instruction and must be
7541          * serviced prior to recognizing any new events in order to
7542          * fully complete the previous instruction.
7543          */
7544         else if (!vcpu->arch.exception.pending) {
7545                 if (vcpu->arch.nmi_injected)
7546                         kvm_x86_ops->set_nmi(vcpu);
7547                 else if (vcpu->arch.interrupt.injected)
7548                         kvm_x86_ops->set_irq(vcpu);
7549         }
7550
7551         /*
7552          * Call check_nested_events() even if we reinjected a previous event
7553          * in order for caller to determine if it should require immediate-exit
7554          * from L2 to L1 due to pending L1 events which require exit
7555          * from L2 to L1.
7556          */
7557         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7558                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7559                 if (r != 0)
7560                         return r;
7561         }
7562
7563         /* try to inject new event if pending */
7564         if (vcpu->arch.exception.pending) {
7565                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7566                                         vcpu->arch.exception.has_error_code,
7567                                         vcpu->arch.exception.error_code);
7568
7569                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7570                 vcpu->arch.exception.pending = false;
7571                 vcpu->arch.exception.injected = true;
7572
7573                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7574                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7575                                              X86_EFLAGS_RF);
7576
7577                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7578                         /*
7579                          * This code assumes that nSVM doesn't use
7580                          * check_nested_events(). If it does, the
7581                          * DR6/DR7 changes should happen before L1
7582                          * gets a #VMEXIT for an intercepted #DB in
7583                          * L2.  (Under VMX, on the other hand, the
7584                          * DR6/DR7 changes should not happen in the
7585                          * event of a VM-exit to L1 for an intercepted
7586                          * #DB in L2.)
7587                          */
7588                         kvm_deliver_exception_payload(vcpu);
7589                         if (vcpu->arch.dr7 & DR7_GD) {
7590                                 vcpu->arch.dr7 &= ~DR7_GD;
7591                                 kvm_update_dr7(vcpu);
7592                         }
7593                 }
7594
7595                 kvm_x86_ops->queue_exception(vcpu);
7596         }
7597
7598         /* Don't consider new event if we re-injected an event */
7599         if (kvm_event_needs_reinjection(vcpu))
7600                 return 0;
7601
7602         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7603             kvm_x86_ops->smi_allowed(vcpu)) {
7604                 vcpu->arch.smi_pending = false;
7605                 ++vcpu->arch.smi_count;
7606                 enter_smm(vcpu);
7607         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7608                 --vcpu->arch.nmi_pending;
7609                 vcpu->arch.nmi_injected = true;
7610                 kvm_x86_ops->set_nmi(vcpu);
7611         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7612                 /*
7613                  * Because interrupts can be injected asynchronously, we are
7614                  * calling check_nested_events again here to avoid a race condition.
7615                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7616                  * proposal and current concerns.  Perhaps we should be setting
7617                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7618                  */
7619                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7620                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7621                         if (r != 0)
7622                                 return r;
7623                 }
7624                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7625                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7626                                             false);
7627                         kvm_x86_ops->set_irq(vcpu);
7628                 }
7629         }
7630
7631         return 0;
7632 }
7633
7634 static void process_nmi(struct kvm_vcpu *vcpu)
7635 {
7636         unsigned limit = 2;
7637
7638         /*
7639          * x86 is limited to one NMI running, and one NMI pending after it.
7640          * If an NMI is already in progress, limit further NMIs to just one.
7641          * Otherwise, allow two (and we'll inject the first one immediately).
7642          */
7643         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7644                 limit = 1;
7645
7646         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7647         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7648         kvm_make_request(KVM_REQ_EVENT, vcpu);
7649 }
7650
7651 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7652 {
7653         u32 flags = 0;
7654         flags |= seg->g       << 23;
7655         flags |= seg->db      << 22;
7656         flags |= seg->l       << 21;
7657         flags |= seg->avl     << 20;
7658         flags |= seg->present << 15;
7659         flags |= seg->dpl     << 13;
7660         flags |= seg->s       << 12;
7661         flags |= seg->type    << 8;
7662         return flags;
7663 }
7664
7665 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7666 {
7667         struct kvm_segment seg;
7668         int offset;
7669
7670         kvm_get_segment(vcpu, &seg, n);
7671         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7672
7673         if (n < 3)
7674                 offset = 0x7f84 + n * 12;
7675         else
7676                 offset = 0x7f2c + (n - 3) * 12;
7677
7678         put_smstate(u32, buf, offset + 8, seg.base);
7679         put_smstate(u32, buf, offset + 4, seg.limit);
7680         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7681 }
7682
7683 #ifdef CONFIG_X86_64
7684 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7685 {
7686         struct kvm_segment seg;
7687         int offset;
7688         u16 flags;
7689
7690         kvm_get_segment(vcpu, &seg, n);
7691         offset = 0x7e00 + n * 16;
7692
7693         flags = enter_smm_get_segment_flags(&seg) >> 8;
7694         put_smstate(u16, buf, offset, seg.selector);
7695         put_smstate(u16, buf, offset + 2, flags);
7696         put_smstate(u32, buf, offset + 4, seg.limit);
7697         put_smstate(u64, buf, offset + 8, seg.base);
7698 }
7699 #endif
7700
7701 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7702 {
7703         struct desc_ptr dt;
7704         struct kvm_segment seg;
7705         unsigned long val;
7706         int i;
7707
7708         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7709         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7710         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7711         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7712
7713         for (i = 0; i < 8; i++)
7714                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7715
7716         kvm_get_dr(vcpu, 6, &val);
7717         put_smstate(u32, buf, 0x7fcc, (u32)val);
7718         kvm_get_dr(vcpu, 7, &val);
7719         put_smstate(u32, buf, 0x7fc8, (u32)val);
7720
7721         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7722         put_smstate(u32, buf, 0x7fc4, seg.selector);
7723         put_smstate(u32, buf, 0x7f64, seg.base);
7724         put_smstate(u32, buf, 0x7f60, seg.limit);
7725         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7726
7727         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7728         put_smstate(u32, buf, 0x7fc0, seg.selector);
7729         put_smstate(u32, buf, 0x7f80, seg.base);
7730         put_smstate(u32, buf, 0x7f7c, seg.limit);
7731         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7732
7733         kvm_x86_ops->get_gdt(vcpu, &dt);
7734         put_smstate(u32, buf, 0x7f74, dt.address);
7735         put_smstate(u32, buf, 0x7f70, dt.size);
7736
7737         kvm_x86_ops->get_idt(vcpu, &dt);
7738         put_smstate(u32, buf, 0x7f58, dt.address);
7739         put_smstate(u32, buf, 0x7f54, dt.size);
7740
7741         for (i = 0; i < 6; i++)
7742                 enter_smm_save_seg_32(vcpu, buf, i);
7743
7744         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7745
7746         /* revision id */
7747         put_smstate(u32, buf, 0x7efc, 0x00020000);
7748         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7749 }
7750
7751 #ifdef CONFIG_X86_64
7752 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7753 {
7754         struct desc_ptr dt;
7755         struct kvm_segment seg;
7756         unsigned long val;
7757         int i;
7758
7759         for (i = 0; i < 16; i++)
7760                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7761
7762         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7763         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7764
7765         kvm_get_dr(vcpu, 6, &val);
7766         put_smstate(u64, buf, 0x7f68, val);
7767         kvm_get_dr(vcpu, 7, &val);
7768         put_smstate(u64, buf, 0x7f60, val);
7769
7770         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7771         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7772         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7773
7774         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7775
7776         /* revision id */
7777         put_smstate(u32, buf, 0x7efc, 0x00020064);
7778
7779         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7780
7781         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7782         put_smstate(u16, buf, 0x7e90, seg.selector);
7783         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7784         put_smstate(u32, buf, 0x7e94, seg.limit);
7785         put_smstate(u64, buf, 0x7e98, seg.base);
7786
7787         kvm_x86_ops->get_idt(vcpu, &dt);
7788         put_smstate(u32, buf, 0x7e84, dt.size);
7789         put_smstate(u64, buf, 0x7e88, dt.address);
7790
7791         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7792         put_smstate(u16, buf, 0x7e70, seg.selector);
7793         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7794         put_smstate(u32, buf, 0x7e74, seg.limit);
7795         put_smstate(u64, buf, 0x7e78, seg.base);
7796
7797         kvm_x86_ops->get_gdt(vcpu, &dt);
7798         put_smstate(u32, buf, 0x7e64, dt.size);
7799         put_smstate(u64, buf, 0x7e68, dt.address);
7800
7801         for (i = 0; i < 6; i++)
7802                 enter_smm_save_seg_64(vcpu, buf, i);
7803 }
7804 #endif
7805
7806 static void enter_smm(struct kvm_vcpu *vcpu)
7807 {
7808         struct kvm_segment cs, ds;
7809         struct desc_ptr dt;
7810         char buf[512];
7811         u32 cr0;
7812
7813         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7814         memset(buf, 0, 512);
7815 #ifdef CONFIG_X86_64
7816         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7817                 enter_smm_save_state_64(vcpu, buf);
7818         else
7819 #endif
7820                 enter_smm_save_state_32(vcpu, buf);
7821
7822         /*
7823          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7824          * vCPU state (e.g. leave guest mode) after we've saved the state into
7825          * the SMM state-save area.
7826          */
7827         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7828
7829         vcpu->arch.hflags |= HF_SMM_MASK;
7830         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7831
7832         if (kvm_x86_ops->get_nmi_mask(vcpu))
7833                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7834         else
7835                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7836
7837         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7838         kvm_rip_write(vcpu, 0x8000);
7839
7840         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7841         kvm_x86_ops->set_cr0(vcpu, cr0);
7842         vcpu->arch.cr0 = cr0;
7843
7844         kvm_x86_ops->set_cr4(vcpu, 0);
7845
7846         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7847         dt.address = dt.size = 0;
7848         kvm_x86_ops->set_idt(vcpu, &dt);
7849
7850         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7851
7852         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7853         cs.base = vcpu->arch.smbase;
7854
7855         ds.selector = 0;
7856         ds.base = 0;
7857
7858         cs.limit    = ds.limit = 0xffffffff;
7859         cs.type     = ds.type = 0x3;
7860         cs.dpl      = ds.dpl = 0;
7861         cs.db       = ds.db = 0;
7862         cs.s        = ds.s = 1;
7863         cs.l        = ds.l = 0;
7864         cs.g        = ds.g = 1;
7865         cs.avl      = ds.avl = 0;
7866         cs.present  = ds.present = 1;
7867         cs.unusable = ds.unusable = 0;
7868         cs.padding  = ds.padding = 0;
7869
7870         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7871         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7872         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7873         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7874         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7875         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7876
7877 #ifdef CONFIG_X86_64
7878         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7879                 kvm_x86_ops->set_efer(vcpu, 0);
7880 #endif
7881
7882         kvm_update_cpuid(vcpu);
7883         kvm_mmu_reset_context(vcpu);
7884 }
7885
7886 static void process_smi(struct kvm_vcpu *vcpu)
7887 {
7888         vcpu->arch.smi_pending = true;
7889         kvm_make_request(KVM_REQ_EVENT, vcpu);
7890 }
7891
7892 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
7893                                        unsigned long *vcpu_bitmap)
7894 {
7895         cpumask_var_t cpus;
7896
7897         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
7898
7899         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
7900                                     vcpu_bitmap, cpus);
7901
7902         free_cpumask_var(cpus);
7903 }
7904
7905 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7906 {
7907         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7908 }
7909
7910 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7911 {
7912         if (!kvm_apic_present(vcpu))
7913                 return;
7914
7915         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7916
7917         if (irqchip_split(vcpu->kvm))
7918                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7919         else {
7920                 if (vcpu->arch.apicv_active)
7921                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7922                 if (ioapic_in_kernel(vcpu->kvm))
7923                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7924         }
7925
7926         if (is_guest_mode(vcpu))
7927                 vcpu->arch.load_eoi_exitmap_pending = true;
7928         else
7929                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7930 }
7931
7932 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7933 {
7934         u64 eoi_exit_bitmap[4];
7935
7936         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7937                 return;
7938
7939         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7940                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7941         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7942 }
7943
7944 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7945                 unsigned long start, unsigned long end,
7946                 bool blockable)
7947 {
7948         unsigned long apic_address;
7949
7950         /*
7951          * The physical address of apic access page is stored in the VMCS.
7952          * Update it when it becomes invalid.
7953          */
7954         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7955         if (start <= apic_address && apic_address < end)
7956                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7957
7958         return 0;
7959 }
7960
7961 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7962 {
7963         struct page *page = NULL;
7964
7965         if (!lapic_in_kernel(vcpu))
7966                 return;
7967
7968         if (!kvm_x86_ops->set_apic_access_page_addr)
7969                 return;
7970
7971         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7972         if (is_error_page(page))
7973                 return;
7974         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7975
7976         /*
7977          * Do not pin apic access page in memory, the MMU notifier
7978          * will call us again if it is migrated or swapped out.
7979          */
7980         put_page(page);
7981 }
7982
7983 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7984 {
7985         smp_send_reschedule(vcpu->cpu);
7986 }
7987 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7988
7989 /*
7990  * Returns 1 to let vcpu_run() continue the guest execution loop without
7991  * exiting to the userspace.  Otherwise, the value will be returned to the
7992  * userspace.
7993  */
7994 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7995 {
7996         int r;
7997         bool req_int_win =
7998                 dm_request_for_irq_injection(vcpu) &&
7999                 kvm_cpu_accept_dm_intr(vcpu);
8000
8001         bool req_immediate_exit = false;
8002
8003         if (kvm_request_pending(vcpu)) {
8004                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8005                         if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
8006                                 r = 0;
8007                                 goto out;
8008                         }
8009                 }
8010                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8011                         kvm_mmu_unload(vcpu);
8012                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8013                         __kvm_migrate_timers(vcpu);
8014                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8015                         kvm_gen_update_masterclock(vcpu->kvm);
8016                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8017                         kvm_gen_kvmclock_update(vcpu);
8018                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8019                         r = kvm_guest_time_update(vcpu);
8020                         if (unlikely(r))
8021                                 goto out;
8022                 }
8023                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8024                         kvm_mmu_sync_roots(vcpu);
8025                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
8026                         kvm_mmu_load_cr3(vcpu);
8027                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8028                         kvm_vcpu_flush_tlb(vcpu, true);
8029                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8030                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8031                         r = 0;
8032                         goto out;
8033                 }
8034                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8035                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8036                         vcpu->mmio_needed = 0;
8037                         r = 0;
8038                         goto out;
8039                 }
8040                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8041                         /* Page is swapped out. Do synthetic halt */
8042                         vcpu->arch.apf.halted = true;
8043                         r = 1;
8044                         goto out;
8045                 }
8046                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8047                         record_steal_time(vcpu);
8048                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8049                         process_smi(vcpu);
8050                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8051                         process_nmi(vcpu);
8052                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8053                         kvm_pmu_handle_event(vcpu);
8054                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8055                         kvm_pmu_deliver_pmi(vcpu);
8056                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8057                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8058                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
8059                                      vcpu->arch.ioapic_handled_vectors)) {
8060                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8061                                 vcpu->run->eoi.vector =
8062                                                 vcpu->arch.pending_ioapic_eoi;
8063                                 r = 0;
8064                                 goto out;
8065                         }
8066                 }
8067                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8068                         vcpu_scan_ioapic(vcpu);
8069                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8070                         vcpu_load_eoi_exitmap(vcpu);
8071                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8072                         kvm_vcpu_reload_apic_access_page(vcpu);
8073                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8074                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8075                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8076                         r = 0;
8077                         goto out;
8078                 }
8079                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8080                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8081                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8082                         r = 0;
8083                         goto out;
8084                 }
8085                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8086                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8087                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8088                         r = 0;
8089                         goto out;
8090                 }
8091
8092                 /*
8093                  * KVM_REQ_HV_STIMER has to be processed after
8094                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8095                  * depend on the guest clock being up-to-date
8096                  */
8097                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8098                         kvm_hv_process_stimers(vcpu);
8099         }
8100
8101         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8102                 ++vcpu->stat.req_event;
8103                 kvm_apic_accept_events(vcpu);
8104                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8105                         r = 1;
8106                         goto out;
8107                 }
8108
8109                 if (inject_pending_event(vcpu, req_int_win) != 0)
8110                         req_immediate_exit = true;
8111                 else {
8112                         /* Enable SMI/NMI/IRQ window open exits if needed.
8113                          *
8114                          * SMIs have three cases:
8115                          * 1) They can be nested, and then there is nothing to
8116                          *    do here because RSM will cause a vmexit anyway.
8117                          * 2) There is an ISA-specific reason why SMI cannot be
8118                          *    injected, and the moment when this changes can be
8119                          *    intercepted.
8120                          * 3) Or the SMI can be pending because
8121                          *    inject_pending_event has completed the injection
8122                          *    of an IRQ or NMI from the previous vmexit, and
8123                          *    then we request an immediate exit to inject the
8124                          *    SMI.
8125                          */
8126                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
8127                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
8128                                         req_immediate_exit = true;
8129                         if (vcpu->arch.nmi_pending)
8130                                 kvm_x86_ops->enable_nmi_window(vcpu);
8131                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8132                                 kvm_x86_ops->enable_irq_window(vcpu);
8133                         WARN_ON(vcpu->arch.exception.pending);
8134                 }
8135
8136                 if (kvm_lapic_enabled(vcpu)) {
8137                         update_cr8_intercept(vcpu);
8138                         kvm_lapic_sync_to_vapic(vcpu);
8139                 }
8140         }
8141
8142         r = kvm_mmu_reload(vcpu);
8143         if (unlikely(r)) {
8144                 goto cancel_injection;
8145         }
8146
8147         preempt_disable();
8148
8149         kvm_x86_ops->prepare_guest_switch(vcpu);
8150
8151         /*
8152          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
8153          * IPI are then delayed after guest entry, which ensures that they
8154          * result in virtual interrupt delivery.
8155          */
8156         local_irq_disable();
8157         vcpu->mode = IN_GUEST_MODE;
8158
8159         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8160
8161         /*
8162          * 1) We should set ->mode before checking ->requests.  Please see
8163          * the comment in kvm_vcpu_exiting_guest_mode().
8164          *
8165          * 2) For APICv, we should set ->mode before checking PID.ON. This
8166          * pairs with the memory barrier implicit in pi_test_and_set_on
8167          * (see vmx_deliver_posted_interrupt).
8168          *
8169          * 3) This also orders the write to mode from any reads to the page
8170          * tables done while the VCPU is running.  Please see the comment
8171          * in kvm_flush_remote_tlbs.
8172          */
8173         smp_mb__after_srcu_read_unlock();
8174
8175         /*
8176          * This handles the case where a posted interrupt was
8177          * notified with kvm_vcpu_kick.
8178          */
8179         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8180                 kvm_x86_ops->sync_pir_to_irr(vcpu);
8181
8182         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8183             || need_resched() || signal_pending(current)) {
8184                 vcpu->mode = OUTSIDE_GUEST_MODE;
8185                 smp_wmb();
8186                 local_irq_enable();
8187                 preempt_enable();
8188                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8189                 r = 1;
8190                 goto cancel_injection;
8191         }
8192
8193         if (req_immediate_exit) {
8194                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8195                 kvm_x86_ops->request_immediate_exit(vcpu);
8196         }
8197
8198         trace_kvm_entry(vcpu->vcpu_id);
8199         guest_enter_irqoff();
8200
8201         /* The preempt notifier should have taken care of the FPU already.  */
8202         WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8203
8204         if (unlikely(vcpu->arch.switch_db_regs)) {
8205                 set_debugreg(0, 7);
8206                 set_debugreg(vcpu->arch.eff_db[0], 0);
8207                 set_debugreg(vcpu->arch.eff_db[1], 1);
8208                 set_debugreg(vcpu->arch.eff_db[2], 2);
8209                 set_debugreg(vcpu->arch.eff_db[3], 3);
8210                 set_debugreg(vcpu->arch.dr6, 6);
8211                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8212         }
8213
8214         kvm_x86_ops->run(vcpu);
8215
8216         /*
8217          * Do this here before restoring debug registers on the host.  And
8218          * since we do this before handling the vmexit, a DR access vmexit
8219          * can (a) read the correct value of the debug registers, (b) set
8220          * KVM_DEBUGREG_WONT_EXIT again.
8221          */
8222         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8223                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8224                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8225                 kvm_update_dr0123(vcpu);
8226                 kvm_update_dr6(vcpu);
8227                 kvm_update_dr7(vcpu);
8228                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8229         }
8230
8231         /*
8232          * If the guest has used debug registers, at least dr7
8233          * will be disabled while returning to the host.
8234          * If we don't have active breakpoints in the host, we don't
8235          * care about the messed up debug address registers. But if
8236          * we have some of them active, restore the old state.
8237          */
8238         if (hw_breakpoint_active())
8239                 hw_breakpoint_restore();
8240
8241         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8242
8243         vcpu->mode = OUTSIDE_GUEST_MODE;
8244         smp_wmb();
8245
8246         kvm_x86_ops->handle_exit_irqoff(vcpu);
8247
8248         /*
8249          * Consume any pending interrupts, including the possible source of
8250          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8251          * An instruction is required after local_irq_enable() to fully unblock
8252          * interrupts on processors that implement an interrupt shadow, the
8253          * stat.exits increment will do nicely.
8254          */
8255         kvm_before_interrupt(vcpu);
8256         local_irq_enable();
8257         ++vcpu->stat.exits;
8258         local_irq_disable();
8259         kvm_after_interrupt(vcpu);
8260
8261         guest_exit_irqoff();
8262         if (lapic_in_kernel(vcpu)) {
8263                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8264                 if (delta != S64_MIN) {
8265                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8266                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8267                 }
8268         }
8269
8270         local_irq_enable();
8271         preempt_enable();
8272
8273         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8274
8275         /*
8276          * Profile KVM exit RIPs:
8277          */
8278         if (unlikely(prof_on == KVM_PROFILING)) {
8279                 unsigned long rip = kvm_rip_read(vcpu);
8280                 profile_hit(KVM_PROFILING, (void *)rip);
8281         }
8282
8283         if (unlikely(vcpu->arch.tsc_always_catchup))
8284                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8285
8286         if (vcpu->arch.apic_attention)
8287                 kvm_lapic_sync_from_vapic(vcpu);
8288
8289         vcpu->arch.gpa_available = false;
8290         r = kvm_x86_ops->handle_exit(vcpu);
8291         return r;
8292
8293 cancel_injection:
8294         kvm_x86_ops->cancel_injection(vcpu);
8295         if (unlikely(vcpu->arch.apic_attention))
8296                 kvm_lapic_sync_from_vapic(vcpu);
8297 out:
8298         return r;
8299 }
8300
8301 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8302 {
8303         if (!kvm_arch_vcpu_runnable(vcpu) &&
8304             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8305                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8306                 kvm_vcpu_block(vcpu);
8307                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8308
8309                 if (kvm_x86_ops->post_block)
8310                         kvm_x86_ops->post_block(vcpu);
8311
8312                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8313                         return 1;
8314         }
8315
8316         kvm_apic_accept_events(vcpu);
8317         switch(vcpu->arch.mp_state) {
8318         case KVM_MP_STATE_HALTED:
8319                 vcpu->arch.pv.pv_unhalted = false;
8320                 vcpu->arch.mp_state =
8321                         KVM_MP_STATE_RUNNABLE;
8322                 /* fall through */
8323         case KVM_MP_STATE_RUNNABLE:
8324                 vcpu->arch.apf.halted = false;
8325                 break;
8326         case KVM_MP_STATE_INIT_RECEIVED:
8327                 break;
8328         default:
8329                 return -EINTR;
8330                 break;
8331         }
8332         return 1;
8333 }
8334
8335 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8336 {
8337         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8338                 kvm_x86_ops->check_nested_events(vcpu, false);
8339
8340         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8341                 !vcpu->arch.apf.halted);
8342 }
8343
8344 static int vcpu_run(struct kvm_vcpu *vcpu)
8345 {
8346         int r;
8347         struct kvm *kvm = vcpu->kvm;
8348
8349         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8350         vcpu->arch.l1tf_flush_l1d = true;
8351
8352         for (;;) {
8353                 if (kvm_vcpu_running(vcpu)) {
8354                         r = vcpu_enter_guest(vcpu);
8355                 } else {
8356                         r = vcpu_block(kvm, vcpu);
8357                 }
8358
8359                 if (r <= 0)
8360                         break;
8361
8362                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8363                 if (kvm_cpu_has_pending_timer(vcpu))
8364                         kvm_inject_pending_timer_irqs(vcpu);
8365
8366                 if (dm_request_for_irq_injection(vcpu) &&
8367                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8368                         r = 0;
8369                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8370                         ++vcpu->stat.request_irq_exits;
8371                         break;
8372                 }
8373
8374                 kvm_check_async_pf_completion(vcpu);
8375
8376                 if (signal_pending(current)) {
8377                         r = -EINTR;
8378                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8379                         ++vcpu->stat.signal_exits;
8380                         break;
8381                 }
8382                 if (need_resched()) {
8383                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8384                         cond_resched();
8385                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8386                 }
8387         }
8388
8389         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8390
8391         return r;
8392 }
8393
8394 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8395 {
8396         int r;
8397
8398         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8399         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8400         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8401         return r;
8402 }
8403
8404 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8405 {
8406         BUG_ON(!vcpu->arch.pio.count);
8407
8408         return complete_emulated_io(vcpu);
8409 }
8410
8411 /*
8412  * Implements the following, as a state machine:
8413  *
8414  * read:
8415  *   for each fragment
8416  *     for each mmio piece in the fragment
8417  *       write gpa, len
8418  *       exit
8419  *       copy data
8420  *   execute insn
8421  *
8422  * write:
8423  *   for each fragment
8424  *     for each mmio piece in the fragment
8425  *       write gpa, len
8426  *       copy data
8427  *       exit
8428  */
8429 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8430 {
8431         struct kvm_run *run = vcpu->run;
8432         struct kvm_mmio_fragment *frag;
8433         unsigned len;
8434
8435         BUG_ON(!vcpu->mmio_needed);
8436
8437         /* Complete previous fragment */
8438         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8439         len = min(8u, frag->len);
8440         if (!vcpu->mmio_is_write)
8441                 memcpy(frag->data, run->mmio.data, len);
8442
8443         if (frag->len <= 8) {
8444                 /* Switch to the next fragment. */
8445                 frag++;
8446                 vcpu->mmio_cur_fragment++;
8447         } else {
8448                 /* Go forward to the next mmio piece. */
8449                 frag->data += len;
8450                 frag->gpa += len;
8451                 frag->len -= len;
8452         }
8453
8454         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8455                 vcpu->mmio_needed = 0;
8456
8457                 /* FIXME: return into emulator if single-stepping.  */
8458                 if (vcpu->mmio_is_write)
8459                         return 1;
8460                 vcpu->mmio_read_completed = 1;
8461                 return complete_emulated_io(vcpu);
8462         }
8463
8464         run->exit_reason = KVM_EXIT_MMIO;
8465         run->mmio.phys_addr = frag->gpa;
8466         if (vcpu->mmio_is_write)
8467                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8468         run->mmio.len = min(8u, frag->len);
8469         run->mmio.is_write = vcpu->mmio_is_write;
8470         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8471         return 0;
8472 }
8473
8474 /* Swap (qemu) user FPU context for the guest FPU context. */
8475 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8476 {
8477         fpregs_lock();
8478
8479         copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8480         /* PKRU is separately restored in kvm_x86_ops->run.  */
8481         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8482                                 ~XFEATURE_MASK_PKRU);
8483
8484         fpregs_mark_activate();
8485         fpregs_unlock();
8486
8487         trace_kvm_fpu(1);
8488 }
8489
8490 /* When vcpu_run ends, restore user space FPU context. */
8491 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8492 {
8493         fpregs_lock();
8494
8495         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8496         copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8497
8498         fpregs_mark_activate();
8499         fpregs_unlock();
8500
8501         ++vcpu->stat.fpu_reload;
8502         trace_kvm_fpu(0);
8503 }
8504
8505 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8506 {
8507         int r;
8508
8509         vcpu_load(vcpu);
8510         kvm_sigset_activate(vcpu);
8511         kvm_load_guest_fpu(vcpu);
8512
8513         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8514                 if (kvm_run->immediate_exit) {
8515                         r = -EINTR;
8516                         goto out;
8517                 }
8518                 kvm_vcpu_block(vcpu);
8519                 kvm_apic_accept_events(vcpu);
8520                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8521                 r = -EAGAIN;
8522                 if (signal_pending(current)) {
8523                         r = -EINTR;
8524                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8525                         ++vcpu->stat.signal_exits;
8526                 }
8527                 goto out;
8528         }
8529
8530         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8531                 r = -EINVAL;
8532                 goto out;
8533         }
8534
8535         if (vcpu->run->kvm_dirty_regs) {
8536                 r = sync_regs(vcpu);
8537                 if (r != 0)
8538                         goto out;
8539         }
8540
8541         /* re-sync apic's tpr */
8542         if (!lapic_in_kernel(vcpu)) {
8543                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8544                         r = -EINVAL;
8545                         goto out;
8546                 }
8547         }
8548
8549         if (unlikely(vcpu->arch.complete_userspace_io)) {
8550                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8551                 vcpu->arch.complete_userspace_io = NULL;
8552                 r = cui(vcpu);
8553                 if (r <= 0)
8554                         goto out;
8555         } else
8556                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8557
8558         if (kvm_run->immediate_exit)
8559                 r = -EINTR;
8560         else
8561                 r = vcpu_run(vcpu);
8562
8563 out:
8564         kvm_put_guest_fpu(vcpu);
8565         if (vcpu->run->kvm_valid_regs)
8566                 store_regs(vcpu);
8567         post_kvm_run_save(vcpu);
8568         kvm_sigset_deactivate(vcpu);
8569
8570         vcpu_put(vcpu);
8571         return r;
8572 }
8573
8574 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8575 {
8576         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8577                 /*
8578                  * We are here if userspace calls get_regs() in the middle of
8579                  * instruction emulation. Registers state needs to be copied
8580                  * back from emulation context to vcpu. Userspace shouldn't do
8581                  * that usually, but some bad designed PV devices (vmware
8582                  * backdoor interface) need this to work
8583                  */
8584                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8585                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8586         }
8587         regs->rax = kvm_rax_read(vcpu);
8588         regs->rbx = kvm_rbx_read(vcpu);
8589         regs->rcx = kvm_rcx_read(vcpu);
8590         regs->rdx = kvm_rdx_read(vcpu);
8591         regs->rsi = kvm_rsi_read(vcpu);
8592         regs->rdi = kvm_rdi_read(vcpu);
8593         regs->rsp = kvm_rsp_read(vcpu);
8594         regs->rbp = kvm_rbp_read(vcpu);
8595 #ifdef CONFIG_X86_64
8596         regs->r8 = kvm_r8_read(vcpu);
8597         regs->r9 = kvm_r9_read(vcpu);
8598         regs->r10 = kvm_r10_read(vcpu);
8599         regs->r11 = kvm_r11_read(vcpu);
8600         regs->r12 = kvm_r12_read(vcpu);
8601         regs->r13 = kvm_r13_read(vcpu);
8602         regs->r14 = kvm_r14_read(vcpu);
8603         regs->r15 = kvm_r15_read(vcpu);
8604 #endif
8605
8606         regs->rip = kvm_rip_read(vcpu);
8607         regs->rflags = kvm_get_rflags(vcpu);
8608 }
8609
8610 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8611 {
8612         vcpu_load(vcpu);
8613         __get_regs(vcpu, regs);
8614         vcpu_put(vcpu);
8615         return 0;
8616 }
8617
8618 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8619 {
8620         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8621         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8622
8623         kvm_rax_write(vcpu, regs->rax);
8624         kvm_rbx_write(vcpu, regs->rbx);
8625         kvm_rcx_write(vcpu, regs->rcx);
8626         kvm_rdx_write(vcpu, regs->rdx);
8627         kvm_rsi_write(vcpu, regs->rsi);
8628         kvm_rdi_write(vcpu, regs->rdi);
8629         kvm_rsp_write(vcpu, regs->rsp);
8630         kvm_rbp_write(vcpu, regs->rbp);
8631 #ifdef CONFIG_X86_64
8632         kvm_r8_write(vcpu, regs->r8);
8633         kvm_r9_write(vcpu, regs->r9);
8634         kvm_r10_write(vcpu, regs->r10);
8635         kvm_r11_write(vcpu, regs->r11);
8636         kvm_r12_write(vcpu, regs->r12);
8637         kvm_r13_write(vcpu, regs->r13);
8638         kvm_r14_write(vcpu, regs->r14);
8639         kvm_r15_write(vcpu, regs->r15);
8640 #endif
8641
8642         kvm_rip_write(vcpu, regs->rip);
8643         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8644
8645         vcpu->arch.exception.pending = false;
8646
8647         kvm_make_request(KVM_REQ_EVENT, vcpu);
8648 }
8649
8650 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8651 {
8652         vcpu_load(vcpu);
8653         __set_regs(vcpu, regs);
8654         vcpu_put(vcpu);
8655         return 0;
8656 }
8657
8658 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8659 {
8660         struct kvm_segment cs;
8661
8662         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8663         *db = cs.db;
8664         *l = cs.l;
8665 }
8666 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8667
8668 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8669 {
8670         struct desc_ptr dt;
8671
8672         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8673         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8674         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8675         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8676         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8677         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8678
8679         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8680         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8681
8682         kvm_x86_ops->get_idt(vcpu, &dt);
8683         sregs->idt.limit = dt.size;
8684         sregs->idt.base = dt.address;
8685         kvm_x86_ops->get_gdt(vcpu, &dt);
8686         sregs->gdt.limit = dt.size;
8687         sregs->gdt.base = dt.address;
8688
8689         sregs->cr0 = kvm_read_cr0(vcpu);
8690         sregs->cr2 = vcpu->arch.cr2;
8691         sregs->cr3 = kvm_read_cr3(vcpu);
8692         sregs->cr4 = kvm_read_cr4(vcpu);
8693         sregs->cr8 = kvm_get_cr8(vcpu);
8694         sregs->efer = vcpu->arch.efer;
8695         sregs->apic_base = kvm_get_apic_base(vcpu);
8696
8697         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8698
8699         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8700                 set_bit(vcpu->arch.interrupt.nr,
8701                         (unsigned long *)sregs->interrupt_bitmap);
8702 }
8703
8704 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8705                                   struct kvm_sregs *sregs)
8706 {
8707         vcpu_load(vcpu);
8708         __get_sregs(vcpu, sregs);
8709         vcpu_put(vcpu);
8710         return 0;
8711 }
8712
8713 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8714                                     struct kvm_mp_state *mp_state)
8715 {
8716         vcpu_load(vcpu);
8717
8718         kvm_apic_accept_events(vcpu);
8719         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8720                                         vcpu->arch.pv.pv_unhalted)
8721                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8722         else
8723                 mp_state->mp_state = vcpu->arch.mp_state;
8724
8725         vcpu_put(vcpu);
8726         return 0;
8727 }
8728
8729 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8730                                     struct kvm_mp_state *mp_state)
8731 {
8732         int ret = -EINVAL;
8733
8734         vcpu_load(vcpu);
8735
8736         if (!lapic_in_kernel(vcpu) &&
8737             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8738                 goto out;
8739
8740         /*
8741          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8742          * INIT state; latched init should be reported using
8743          * KVM_SET_VCPU_EVENTS, so reject it here.
8744          */
8745         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8746             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8747              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8748                 goto out;
8749
8750         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8751                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8752                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8753         } else
8754                 vcpu->arch.mp_state = mp_state->mp_state;
8755         kvm_make_request(KVM_REQ_EVENT, vcpu);
8756
8757         ret = 0;
8758 out:
8759         vcpu_put(vcpu);
8760         return ret;
8761 }
8762
8763 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8764                     int reason, bool has_error_code, u32 error_code)
8765 {
8766         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8767         int ret;
8768
8769         init_emulate_ctxt(vcpu);
8770
8771         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8772                                    has_error_code, error_code);
8773         if (ret) {
8774                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8775                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8776                 vcpu->run->internal.ndata = 0;
8777                 return 0;
8778         }
8779
8780         kvm_rip_write(vcpu, ctxt->eip);
8781         kvm_set_rflags(vcpu, ctxt->eflags);
8782         kvm_make_request(KVM_REQ_EVENT, vcpu);
8783         return 1;
8784 }
8785 EXPORT_SYMBOL_GPL(kvm_task_switch);
8786
8787 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8788 {
8789         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8790                 /*
8791                  * When EFER.LME and CR0.PG are set, the processor is in
8792                  * 64-bit mode (though maybe in a 32-bit code segment).
8793                  * CR4.PAE and EFER.LMA must be set.
8794                  */
8795                 if (!(sregs->cr4 & X86_CR4_PAE)
8796                     || !(sregs->efer & EFER_LMA))
8797                         return -EINVAL;
8798         } else {
8799                 /*
8800                  * Not in 64-bit mode: EFER.LMA is clear and the code
8801                  * segment cannot be 64-bit.
8802                  */
8803                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8804                         return -EINVAL;
8805         }
8806
8807         return kvm_valid_cr4(vcpu, sregs->cr4);
8808 }
8809
8810 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8811 {
8812         struct msr_data apic_base_msr;
8813         int mmu_reset_needed = 0;
8814         int cpuid_update_needed = 0;
8815         int pending_vec, max_bits, idx;
8816         struct desc_ptr dt;
8817         int ret = -EINVAL;
8818
8819         if (kvm_valid_sregs(vcpu, sregs))
8820                 goto out;
8821
8822         apic_base_msr.data = sregs->apic_base;
8823         apic_base_msr.host_initiated = true;
8824         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8825                 goto out;
8826
8827         dt.size = sregs->idt.limit;
8828         dt.address = sregs->idt.base;
8829         kvm_x86_ops->set_idt(vcpu, &dt);
8830         dt.size = sregs->gdt.limit;
8831         dt.address = sregs->gdt.base;
8832         kvm_x86_ops->set_gdt(vcpu, &dt);
8833
8834         vcpu->arch.cr2 = sregs->cr2;
8835         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8836         vcpu->arch.cr3 = sregs->cr3;
8837         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
8838
8839         kvm_set_cr8(vcpu, sregs->cr8);
8840
8841         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8842         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8843
8844         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8845         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8846         vcpu->arch.cr0 = sregs->cr0;
8847
8848         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8849         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8850                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8851         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8852         if (cpuid_update_needed)
8853                 kvm_update_cpuid(vcpu);
8854
8855         idx = srcu_read_lock(&vcpu->kvm->srcu);
8856         if (is_pae_paging(vcpu)) {
8857                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8858                 mmu_reset_needed = 1;
8859         }
8860         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8861
8862         if (mmu_reset_needed)
8863                 kvm_mmu_reset_context(vcpu);
8864
8865         max_bits = KVM_NR_INTERRUPTS;
8866         pending_vec = find_first_bit(
8867                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8868         if (pending_vec < max_bits) {
8869                 kvm_queue_interrupt(vcpu, pending_vec, false);
8870                 pr_debug("Set back pending irq %d\n", pending_vec);
8871         }
8872
8873         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8874         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8875         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8876         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8877         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8878         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8879
8880         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8881         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8882
8883         update_cr8_intercept(vcpu);
8884
8885         /* Older userspace won't unhalt the vcpu on reset. */
8886         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8887             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8888             !is_protmode(vcpu))
8889                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8890
8891         kvm_make_request(KVM_REQ_EVENT, vcpu);
8892
8893         ret = 0;
8894 out:
8895         return ret;
8896 }
8897
8898 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8899                                   struct kvm_sregs *sregs)
8900 {
8901         int ret;
8902
8903         vcpu_load(vcpu);
8904         ret = __set_sregs(vcpu, sregs);
8905         vcpu_put(vcpu);
8906         return ret;
8907 }
8908
8909 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8910                                         struct kvm_guest_debug *dbg)
8911 {
8912         unsigned long rflags;
8913         int i, r;
8914
8915         vcpu_load(vcpu);
8916
8917         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8918                 r = -EBUSY;
8919                 if (vcpu->arch.exception.pending)
8920                         goto out;
8921                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8922                         kvm_queue_exception(vcpu, DB_VECTOR);
8923                 else
8924                         kvm_queue_exception(vcpu, BP_VECTOR);
8925         }
8926
8927         /*
8928          * Read rflags as long as potentially injected trace flags are still
8929          * filtered out.
8930          */
8931         rflags = kvm_get_rflags(vcpu);
8932
8933         vcpu->guest_debug = dbg->control;
8934         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8935                 vcpu->guest_debug = 0;
8936
8937         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8938                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8939                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8940                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8941         } else {
8942                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8943                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8944         }
8945         kvm_update_dr7(vcpu);
8946
8947         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8948                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8949                         get_segment_base(vcpu, VCPU_SREG_CS);
8950
8951         /*
8952          * Trigger an rflags update that will inject or remove the trace
8953          * flags.
8954          */
8955         kvm_set_rflags(vcpu, rflags);
8956
8957         kvm_x86_ops->update_bp_intercept(vcpu);
8958
8959         r = 0;
8960
8961 out:
8962         vcpu_put(vcpu);
8963         return r;
8964 }
8965
8966 /*
8967  * Translate a guest virtual address to a guest physical address.
8968  */
8969 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8970                                     struct kvm_translation *tr)
8971 {
8972         unsigned long vaddr = tr->linear_address;
8973         gpa_t gpa;
8974         int idx;
8975
8976         vcpu_load(vcpu);
8977
8978         idx = srcu_read_lock(&vcpu->kvm->srcu);
8979         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8980         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8981         tr->physical_address = gpa;
8982         tr->valid = gpa != UNMAPPED_GVA;
8983         tr->writeable = 1;
8984         tr->usermode = 0;
8985
8986         vcpu_put(vcpu);
8987         return 0;
8988 }
8989
8990 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8991 {
8992         struct fxregs_state *fxsave;
8993
8994         vcpu_load(vcpu);
8995
8996         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8997         memcpy(fpu->fpr, fxsave->st_space, 128);
8998         fpu->fcw = fxsave->cwd;
8999         fpu->fsw = fxsave->swd;
9000         fpu->ftwx = fxsave->twd;
9001         fpu->last_opcode = fxsave->fop;
9002         fpu->last_ip = fxsave->rip;
9003         fpu->last_dp = fxsave->rdp;
9004         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9005
9006         vcpu_put(vcpu);
9007         return 0;
9008 }
9009
9010 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9011 {
9012         struct fxregs_state *fxsave;
9013
9014         vcpu_load(vcpu);
9015
9016         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9017
9018         memcpy(fxsave->st_space, fpu->fpr, 128);
9019         fxsave->cwd = fpu->fcw;
9020         fxsave->swd = fpu->fsw;
9021         fxsave->twd = fpu->ftwx;
9022         fxsave->fop = fpu->last_opcode;
9023         fxsave->rip = fpu->last_ip;
9024         fxsave->rdp = fpu->last_dp;
9025         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9026
9027         vcpu_put(vcpu);
9028         return 0;
9029 }
9030
9031 static void store_regs(struct kvm_vcpu *vcpu)
9032 {
9033         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9034
9035         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9036                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9037
9038         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9039                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9040
9041         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9042                 kvm_vcpu_ioctl_x86_get_vcpu_events(
9043                                 vcpu, &vcpu->run->s.regs.events);
9044 }
9045
9046 static int sync_regs(struct kvm_vcpu *vcpu)
9047 {
9048         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9049                 return -EINVAL;
9050
9051         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9052                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9053                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9054         }
9055         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9056                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9057                         return -EINVAL;
9058                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9059         }
9060         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9061                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9062                                 vcpu, &vcpu->run->s.regs.events))
9063                         return -EINVAL;
9064                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9065         }
9066
9067         return 0;
9068 }
9069
9070 static void fx_init(struct kvm_vcpu *vcpu)
9071 {
9072         fpstate_init(&vcpu->arch.guest_fpu->state);
9073         if (boot_cpu_has(X86_FEATURE_XSAVES))
9074                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9075                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
9076
9077         /*
9078          * Ensure guest xcr0 is valid for loading
9079          */
9080         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9081
9082         vcpu->arch.cr0 |= X86_CR0_ET;
9083 }
9084
9085 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
9086 {
9087         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
9088
9089         kvmclock_reset(vcpu);
9090
9091         kvm_x86_ops->vcpu_free(vcpu);
9092         free_cpumask_var(wbinvd_dirty_mask);
9093 }
9094
9095 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
9096                                                 unsigned int id)
9097 {
9098         struct kvm_vcpu *vcpu;
9099
9100         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9101                 printk_once(KERN_WARNING
9102                 "kvm: SMP vm created on host with unstable TSC; "
9103                 "guest TSC will not be reliable\n");
9104
9105         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
9106
9107         return vcpu;
9108 }
9109
9110 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
9111 {
9112         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9113         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9114         kvm_vcpu_mtrr_init(vcpu);
9115         vcpu_load(vcpu);
9116         kvm_vcpu_reset(vcpu, false);
9117         kvm_init_mmu(vcpu, false);
9118         vcpu_put(vcpu);
9119         return 0;
9120 }
9121
9122 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9123 {
9124         struct msr_data msr;
9125         struct kvm *kvm = vcpu->kvm;
9126
9127         kvm_hv_vcpu_postcreate(vcpu);
9128
9129         if (mutex_lock_killable(&vcpu->mutex))
9130                 return;
9131         vcpu_load(vcpu);
9132         msr.data = 0x0;
9133         msr.index = MSR_IA32_TSC;
9134         msr.host_initiated = true;
9135         kvm_write_tsc(vcpu, &msr);
9136         vcpu_put(vcpu);
9137
9138         /* poll control enabled by default */
9139         vcpu->arch.msr_kvm_poll_control = 1;
9140
9141         mutex_unlock(&vcpu->mutex);
9142
9143         if (!kvmclock_periodic_sync)
9144                 return;
9145
9146         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9147                                         KVMCLOCK_SYNC_PERIOD);
9148 }
9149
9150 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9151 {
9152         vcpu->arch.apf.msr_val = 0;
9153
9154         vcpu_load(vcpu);
9155         kvm_mmu_unload(vcpu);
9156         vcpu_put(vcpu);
9157
9158         kvm_x86_ops->vcpu_free(vcpu);
9159 }
9160
9161 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9162 {
9163         kvm_lapic_reset(vcpu, init_event);
9164
9165         vcpu->arch.hflags = 0;
9166
9167         vcpu->arch.smi_pending = 0;
9168         vcpu->arch.smi_count = 0;
9169         atomic_set(&vcpu->arch.nmi_queued, 0);
9170         vcpu->arch.nmi_pending = 0;
9171         vcpu->arch.nmi_injected = false;
9172         kvm_clear_interrupt_queue(vcpu);
9173         kvm_clear_exception_queue(vcpu);
9174         vcpu->arch.exception.pending = false;
9175
9176         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9177         kvm_update_dr0123(vcpu);
9178         vcpu->arch.dr6 = DR6_INIT;
9179         kvm_update_dr6(vcpu);
9180         vcpu->arch.dr7 = DR7_FIXED_1;
9181         kvm_update_dr7(vcpu);
9182
9183         vcpu->arch.cr2 = 0;
9184
9185         kvm_make_request(KVM_REQ_EVENT, vcpu);
9186         vcpu->arch.apf.msr_val = 0;
9187         vcpu->arch.st.msr_val = 0;
9188
9189         kvmclock_reset(vcpu);
9190
9191         kvm_clear_async_pf_completion_queue(vcpu);
9192         kvm_async_pf_hash_reset(vcpu);
9193         vcpu->arch.apf.halted = false;
9194
9195         if (kvm_mpx_supported()) {
9196                 void *mpx_state_buffer;
9197
9198                 /*
9199                  * To avoid have the INIT path from kvm_apic_has_events() that be
9200                  * called with loaded FPU and does not let userspace fix the state.
9201                  */
9202                 if (init_event)
9203                         kvm_put_guest_fpu(vcpu);
9204                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9205                                         XFEATURE_BNDREGS);
9206                 if (mpx_state_buffer)
9207                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9208                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9209                                         XFEATURE_BNDCSR);
9210                 if (mpx_state_buffer)
9211                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9212                 if (init_event)
9213                         kvm_load_guest_fpu(vcpu);
9214         }
9215
9216         if (!init_event) {
9217                 kvm_pmu_reset(vcpu);
9218                 vcpu->arch.smbase = 0x30000;
9219
9220                 vcpu->arch.msr_misc_features_enables = 0;
9221
9222                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9223         }
9224
9225         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9226         vcpu->arch.regs_avail = ~0;
9227         vcpu->arch.regs_dirty = ~0;
9228
9229         vcpu->arch.ia32_xss = 0;
9230
9231         kvm_x86_ops->vcpu_reset(vcpu, init_event);
9232 }
9233
9234 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9235 {
9236         struct kvm_segment cs;
9237
9238         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9239         cs.selector = vector << 8;
9240         cs.base = vector << 12;
9241         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9242         kvm_rip_write(vcpu, 0);
9243 }
9244
9245 int kvm_arch_hardware_enable(void)
9246 {
9247         struct kvm *kvm;
9248         struct kvm_vcpu *vcpu;
9249         int i;
9250         int ret;
9251         u64 local_tsc;
9252         u64 max_tsc = 0;
9253         bool stable, backwards_tsc = false;
9254
9255         kvm_shared_msr_cpu_online();
9256         ret = kvm_x86_ops->hardware_enable();
9257         if (ret != 0)
9258                 return ret;
9259
9260         local_tsc = rdtsc();
9261         stable = !kvm_check_tsc_unstable();
9262         list_for_each_entry(kvm, &vm_list, vm_list) {
9263                 kvm_for_each_vcpu(i, vcpu, kvm) {
9264                         if (!stable && vcpu->cpu == smp_processor_id())
9265                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9266                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9267                                 backwards_tsc = true;
9268                                 if (vcpu->arch.last_host_tsc > max_tsc)
9269                                         max_tsc = vcpu->arch.last_host_tsc;
9270                         }
9271                 }
9272         }
9273
9274         /*
9275          * Sometimes, even reliable TSCs go backwards.  This happens on
9276          * platforms that reset TSC during suspend or hibernate actions, but
9277          * maintain synchronization.  We must compensate.  Fortunately, we can
9278          * detect that condition here, which happens early in CPU bringup,
9279          * before any KVM threads can be running.  Unfortunately, we can't
9280          * bring the TSCs fully up to date with real time, as we aren't yet far
9281          * enough into CPU bringup that we know how much real time has actually
9282          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9283          * variables that haven't been updated yet.
9284          *
9285          * So we simply find the maximum observed TSC above, then record the
9286          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9287          * the adjustment will be applied.  Note that we accumulate
9288          * adjustments, in case multiple suspend cycles happen before some VCPU
9289          * gets a chance to run again.  In the event that no KVM threads get a
9290          * chance to run, we will miss the entire elapsed period, as we'll have
9291          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9292          * loose cycle time.  This isn't too big a deal, since the loss will be
9293          * uniform across all VCPUs (not to mention the scenario is extremely
9294          * unlikely). It is possible that a second hibernate recovery happens
9295          * much faster than a first, causing the observed TSC here to be
9296          * smaller; this would require additional padding adjustment, which is
9297          * why we set last_host_tsc to the local tsc observed here.
9298          *
9299          * N.B. - this code below runs only on platforms with reliable TSC,
9300          * as that is the only way backwards_tsc is set above.  Also note
9301          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9302          * have the same delta_cyc adjustment applied if backwards_tsc
9303          * is detected.  Note further, this adjustment is only done once,
9304          * as we reset last_host_tsc on all VCPUs to stop this from being
9305          * called multiple times (one for each physical CPU bringup).
9306          *
9307          * Platforms with unreliable TSCs don't have to deal with this, they
9308          * will be compensated by the logic in vcpu_load, which sets the TSC to
9309          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9310          * guarantee that they stay in perfect synchronization.
9311          */
9312         if (backwards_tsc) {
9313                 u64 delta_cyc = max_tsc - local_tsc;
9314                 list_for_each_entry(kvm, &vm_list, vm_list) {
9315                         kvm->arch.backwards_tsc_observed = true;
9316                         kvm_for_each_vcpu(i, vcpu, kvm) {
9317                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9318                                 vcpu->arch.last_host_tsc = local_tsc;
9319                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9320                         }
9321
9322                         /*
9323                          * We have to disable TSC offset matching.. if you were
9324                          * booting a VM while issuing an S4 host suspend....
9325                          * you may have some problem.  Solving this issue is
9326                          * left as an exercise to the reader.
9327                          */
9328                         kvm->arch.last_tsc_nsec = 0;
9329                         kvm->arch.last_tsc_write = 0;
9330                 }
9331
9332         }
9333         return 0;
9334 }
9335
9336 void kvm_arch_hardware_disable(void)
9337 {
9338         kvm_x86_ops->hardware_disable();
9339         drop_user_return_notifiers();
9340 }
9341
9342 int kvm_arch_hardware_setup(void)
9343 {
9344         int r;
9345
9346         r = kvm_x86_ops->hardware_setup();
9347         if (r != 0)
9348                 return r;
9349
9350         if (kvm_has_tsc_control) {
9351                 /*
9352                  * Make sure the user can only configure tsc_khz values that
9353                  * fit into a signed integer.
9354                  * A min value is not calculated because it will always
9355                  * be 1 on all machines.
9356                  */
9357                 u64 max = min(0x7fffffffULL,
9358                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9359                 kvm_max_guest_tsc_khz = max;
9360
9361                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9362         }
9363
9364         if (boot_cpu_has(X86_FEATURE_XSAVES))
9365                 rdmsrl(MSR_IA32_XSS, host_xss);
9366
9367         kvm_init_msr_list();
9368         return 0;
9369 }
9370
9371 void kvm_arch_hardware_unsetup(void)
9372 {
9373         kvm_x86_ops->hardware_unsetup();
9374 }
9375
9376 int kvm_arch_check_processor_compat(void)
9377 {
9378         return kvm_x86_ops->check_processor_compatibility();
9379 }
9380
9381 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9382 {
9383         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9384 }
9385 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9386
9387 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9388 {
9389         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9390 }
9391
9392 struct static_key kvm_no_apic_vcpu __read_mostly;
9393 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9394
9395 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9396 {
9397         struct page *page;
9398         int r;
9399
9400         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9401         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9402                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9403         else
9404                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9405
9406         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9407         if (!page) {
9408                 r = -ENOMEM;
9409                 goto fail;
9410         }
9411         vcpu->arch.pio_data = page_address(page);
9412
9413         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9414
9415         r = kvm_mmu_create(vcpu);
9416         if (r < 0)
9417                 goto fail_free_pio_data;
9418
9419         if (irqchip_in_kernel(vcpu->kvm)) {
9420                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu->kvm);
9421                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9422                 if (r < 0)
9423                         goto fail_mmu_destroy;
9424         } else
9425                 static_key_slow_inc(&kvm_no_apic_vcpu);
9426
9427         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9428                                        GFP_KERNEL_ACCOUNT);
9429         if (!vcpu->arch.mce_banks) {
9430                 r = -ENOMEM;
9431                 goto fail_free_lapic;
9432         }
9433         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9434
9435         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9436                                 GFP_KERNEL_ACCOUNT)) {
9437                 r = -ENOMEM;
9438                 goto fail_free_mce_banks;
9439         }
9440
9441         fx_init(vcpu);
9442
9443         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9444
9445         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9446
9447         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9448
9449         kvm_async_pf_hash_reset(vcpu);
9450         kvm_pmu_init(vcpu);
9451
9452         vcpu->arch.pending_external_vector = -1;
9453         vcpu->arch.preempted_in_kernel = false;
9454
9455         kvm_hv_vcpu_init(vcpu);
9456
9457         return 0;
9458
9459 fail_free_mce_banks:
9460         kfree(vcpu->arch.mce_banks);
9461 fail_free_lapic:
9462         kvm_free_lapic(vcpu);
9463 fail_mmu_destroy:
9464         kvm_mmu_destroy(vcpu);
9465 fail_free_pio_data:
9466         free_page((unsigned long)vcpu->arch.pio_data);
9467 fail:
9468         return r;
9469 }
9470
9471 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9472 {
9473         int idx;
9474
9475         kvm_hv_vcpu_uninit(vcpu);
9476         kvm_pmu_destroy(vcpu);
9477         kfree(vcpu->arch.mce_banks);
9478         kvm_free_lapic(vcpu);
9479         idx = srcu_read_lock(&vcpu->kvm->srcu);
9480         kvm_mmu_destroy(vcpu);
9481         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9482         free_page((unsigned long)vcpu->arch.pio_data);
9483         if (!lapic_in_kernel(vcpu))
9484                 static_key_slow_dec(&kvm_no_apic_vcpu);
9485 }
9486
9487 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9488 {
9489         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9490
9491         vcpu->arch.l1tf_flush_l1d = true;
9492         if (pmu->version && unlikely(pmu->event_count)) {
9493                 pmu->need_cleanup = true;
9494                 kvm_make_request(KVM_REQ_PMU, vcpu);
9495         }
9496         kvm_x86_ops->sched_in(vcpu, cpu);
9497 }
9498
9499 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9500 {
9501         if (type)
9502                 return -EINVAL;
9503
9504         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9505         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9506         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9507         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9508         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9509         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9510
9511         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9512         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9513         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9514         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9515                 &kvm->arch.irq_sources_bitmap);
9516
9517         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9518         mutex_init(&kvm->arch.apic_map_lock);
9519         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9520
9521         kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9522         pvclock_update_vm_gtod_copy(kvm);
9523
9524         kvm->arch.guest_can_read_msr_platform_info = true;
9525
9526         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9527         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9528
9529         kvm_hv_init_vm(kvm);
9530         kvm_page_track_init(kvm);
9531         kvm_mmu_init_vm(kvm);
9532
9533         return kvm_x86_ops->vm_init(kvm);
9534 }
9535
9536 int kvm_arch_post_init_vm(struct kvm *kvm)
9537 {
9538         return kvm_mmu_post_init_vm(kvm);
9539 }
9540
9541 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9542 {
9543         vcpu_load(vcpu);
9544         kvm_mmu_unload(vcpu);
9545         vcpu_put(vcpu);
9546 }
9547
9548 static void kvm_free_vcpus(struct kvm *kvm)
9549 {
9550         unsigned int i;
9551         struct kvm_vcpu *vcpu;
9552
9553         /*
9554          * Unpin any mmu pages first.
9555          */
9556         kvm_for_each_vcpu(i, vcpu, kvm) {
9557                 kvm_clear_async_pf_completion_queue(vcpu);
9558                 kvm_unload_vcpu_mmu(vcpu);
9559         }
9560         kvm_for_each_vcpu(i, vcpu, kvm)
9561                 kvm_arch_vcpu_free(vcpu);
9562
9563         mutex_lock(&kvm->lock);
9564         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9565                 kvm->vcpus[i] = NULL;
9566
9567         atomic_set(&kvm->online_vcpus, 0);
9568         mutex_unlock(&kvm->lock);
9569 }
9570
9571 void kvm_arch_sync_events(struct kvm *kvm)
9572 {
9573         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9574         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9575         kvm_free_pit(kvm);
9576 }
9577
9578 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9579 {
9580         int i, r;
9581         unsigned long hva;
9582         struct kvm_memslots *slots = kvm_memslots(kvm);
9583         struct kvm_memory_slot *slot, old;
9584
9585         /* Called with kvm->slots_lock held.  */
9586         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9587                 return -EINVAL;
9588
9589         slot = id_to_memslot(slots, id);
9590         if (size) {
9591                 if (slot->npages)
9592                         return -EEXIST;
9593
9594                 /*
9595                  * MAP_SHARED to prevent internal slot pages from being moved
9596                  * by fork()/COW.
9597                  */
9598                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9599                               MAP_SHARED | MAP_ANONYMOUS, 0);
9600                 if (IS_ERR((void *)hva))
9601                         return PTR_ERR((void *)hva);
9602         } else {
9603                 if (!slot->npages)
9604                         return 0;
9605
9606                 hva = 0;
9607         }
9608
9609         old = *slot;
9610         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9611                 struct kvm_userspace_memory_region m;
9612
9613                 m.slot = id | (i << 16);
9614                 m.flags = 0;
9615                 m.guest_phys_addr = gpa;
9616                 m.userspace_addr = hva;
9617                 m.memory_size = size;
9618                 r = __kvm_set_memory_region(kvm, &m);
9619                 if (r < 0)
9620                         return r;
9621         }
9622
9623         if (!size)
9624                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9625
9626         return 0;
9627 }
9628 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9629
9630 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9631 {
9632         int r;
9633
9634         mutex_lock(&kvm->slots_lock);
9635         r = __x86_set_memory_region(kvm, id, gpa, size);
9636         mutex_unlock(&kvm->slots_lock);
9637
9638         return r;
9639 }
9640 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9641
9642 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9643 {
9644         kvm_mmu_pre_destroy_vm(kvm);
9645 }
9646
9647 void kvm_arch_destroy_vm(struct kvm *kvm)
9648 {
9649         if (current->mm == kvm->mm) {
9650                 /*
9651                  * Free memory regions allocated on behalf of userspace,
9652                  * unless the the memory map has changed due to process exit
9653                  * or fd copying.
9654                  */
9655                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9656                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9657                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9658         }
9659         if (kvm_x86_ops->vm_destroy)
9660                 kvm_x86_ops->vm_destroy(kvm);
9661         kvm_pic_destroy(kvm);
9662         kvm_ioapic_destroy(kvm);
9663         kvm_free_vcpus(kvm);
9664         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9665         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9666         kvm_mmu_uninit_vm(kvm);
9667         kvm_page_track_cleanup(kvm);
9668         kvm_hv_destroy_vm(kvm);
9669 }
9670
9671 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9672                            struct kvm_memory_slot *dont)
9673 {
9674         int i;
9675
9676         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9677                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9678                         kvfree(free->arch.rmap[i]);
9679                         free->arch.rmap[i] = NULL;
9680                 }
9681                 if (i == 0)
9682                         continue;
9683
9684                 if (!dont || free->arch.lpage_info[i - 1] !=
9685                              dont->arch.lpage_info[i - 1]) {
9686                         kvfree(free->arch.lpage_info[i - 1]);
9687                         free->arch.lpage_info[i - 1] = NULL;
9688                 }
9689         }
9690
9691         kvm_page_track_free_memslot(free, dont);
9692 }
9693
9694 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9695                             unsigned long npages)
9696 {
9697         int i;
9698
9699         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9700                 struct kvm_lpage_info *linfo;
9701                 unsigned long ugfn;
9702                 int lpages;
9703                 int level = i + 1;
9704
9705                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9706                                       slot->base_gfn, level) + 1;
9707
9708                 slot->arch.rmap[i] =
9709                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9710                                  GFP_KERNEL_ACCOUNT);
9711                 if (!slot->arch.rmap[i])
9712                         goto out_free;
9713                 if (i == 0)
9714                         continue;
9715
9716                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9717                 if (!linfo)
9718                         goto out_free;
9719
9720                 slot->arch.lpage_info[i - 1] = linfo;
9721
9722                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9723                         linfo[0].disallow_lpage = 1;
9724                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9725                         linfo[lpages - 1].disallow_lpage = 1;
9726                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9727                 /*
9728                  * If the gfn and userspace address are not aligned wrt each
9729                  * other, or if explicitly asked to, disable large page
9730                  * support for this slot
9731                  */
9732                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9733                     !kvm_largepages_enabled()) {
9734                         unsigned long j;
9735
9736                         for (j = 0; j < lpages; ++j)
9737                                 linfo[j].disallow_lpage = 1;
9738                 }
9739         }
9740
9741         if (kvm_page_track_create_memslot(slot, npages))
9742                 goto out_free;
9743
9744         return 0;
9745
9746 out_free:
9747         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9748                 kvfree(slot->arch.rmap[i]);
9749                 slot->arch.rmap[i] = NULL;
9750                 if (i == 0)
9751                         continue;
9752
9753                 kvfree(slot->arch.lpage_info[i - 1]);
9754                 slot->arch.lpage_info[i - 1] = NULL;
9755         }
9756         return -ENOMEM;
9757 }
9758
9759 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9760 {
9761         /*
9762          * memslots->generation has been incremented.
9763          * mmio generation may have reached its maximum value.
9764          */
9765         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9766 }
9767
9768 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9769                                 struct kvm_memory_slot *memslot,
9770                                 const struct kvm_userspace_memory_region *mem,
9771                                 enum kvm_mr_change change)
9772 {
9773         return 0;
9774 }
9775
9776 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9777                                      struct kvm_memory_slot *new)
9778 {
9779         /* Still write protect RO slot */
9780         if (new->flags & KVM_MEM_READONLY) {
9781                 kvm_mmu_slot_remove_write_access(kvm, new);
9782                 return;
9783         }
9784
9785         /*
9786          * Call kvm_x86_ops dirty logging hooks when they are valid.
9787          *
9788          * kvm_x86_ops->slot_disable_log_dirty is called when:
9789          *
9790          *  - KVM_MR_CREATE with dirty logging is disabled
9791          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9792          *
9793          * The reason is, in case of PML, we need to set D-bit for any slots
9794          * with dirty logging disabled in order to eliminate unnecessary GPA
9795          * logging in PML buffer (and potential PML buffer full VMEXT). This
9796          * guarantees leaving PML enabled during guest's lifetime won't have
9797          * any additional overhead from PML when guest is running with dirty
9798          * logging disabled for memory slots.
9799          *
9800          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9801          * to dirty logging mode.
9802          *
9803          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9804          *
9805          * In case of write protect:
9806          *
9807          * Write protect all pages for dirty logging.
9808          *
9809          * All the sptes including the large sptes which point to this
9810          * slot are set to readonly. We can not create any new large
9811          * spte on this slot until the end of the logging.
9812          *
9813          * See the comments in fast_page_fault().
9814          */
9815         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9816                 if (kvm_x86_ops->slot_enable_log_dirty)
9817                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9818                 else
9819                         kvm_mmu_slot_remove_write_access(kvm, new);
9820         } else {
9821                 if (kvm_x86_ops->slot_disable_log_dirty)
9822                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9823         }
9824 }
9825
9826 void kvm_arch_commit_memory_region(struct kvm *kvm,
9827                                 const struct kvm_userspace_memory_region *mem,
9828                                 const struct kvm_memory_slot *old,
9829                                 const struct kvm_memory_slot *new,
9830                                 enum kvm_mr_change change)
9831 {
9832         if (!kvm->arch.n_requested_mmu_pages)
9833                 kvm_mmu_change_mmu_pages(kvm,
9834                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9835
9836         /*
9837          * Dirty logging tracks sptes in 4k granularity, meaning that large
9838          * sptes have to be split.  If live migration is successful, the guest
9839          * in the source machine will be destroyed and large sptes will be
9840          * created in the destination. However, if the guest continues to run
9841          * in the source machine (for example if live migration fails), small
9842          * sptes will remain around and cause bad performance.
9843          *
9844          * Scan sptes if dirty logging has been stopped, dropping those
9845          * which can be collapsed into a single large-page spte.  Later
9846          * page faults will create the large-page sptes.
9847          *
9848          * There is no need to do this in any of the following cases:
9849          * CREATE:      No dirty mappings will already exist.
9850          * MOVE/DELETE: The old mappings will already have been cleaned up by
9851          *              kvm_arch_flush_shadow_memslot()
9852          */
9853         if (change == KVM_MR_FLAGS_ONLY &&
9854                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9855                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9856                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9857
9858         /*
9859          * Set up write protection and/or dirty logging for the new slot.
9860          *
9861          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9862          * been zapped so no dirty logging staff is needed for old slot. For
9863          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9864          * new and it's also covered when dealing with the new slot.
9865          *
9866          * FIXME: const-ify all uses of struct kvm_memory_slot.
9867          */
9868         if (change != KVM_MR_DELETE)
9869                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9870 }
9871
9872 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9873 {
9874         kvm_mmu_zap_all(kvm);
9875 }
9876
9877 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9878                                    struct kvm_memory_slot *slot)
9879 {
9880         kvm_page_track_flush_slot(kvm, slot);
9881 }
9882
9883 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9884 {
9885         return (is_guest_mode(vcpu) &&
9886                         kvm_x86_ops->guest_apic_has_interrupt &&
9887                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9888 }
9889
9890 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9891 {
9892         if (!list_empty_careful(&vcpu->async_pf.done))
9893                 return true;
9894
9895         if (kvm_apic_has_events(vcpu))
9896                 return true;
9897
9898         if (vcpu->arch.pv.pv_unhalted)
9899                 return true;
9900
9901         if (vcpu->arch.exception.pending)
9902                 return true;
9903
9904         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9905             (vcpu->arch.nmi_pending &&
9906              kvm_x86_ops->nmi_allowed(vcpu)))
9907                 return true;
9908
9909         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9910             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9911                 return true;
9912
9913         if (kvm_arch_interrupt_allowed(vcpu) &&
9914             (kvm_cpu_has_interrupt(vcpu) ||
9915             kvm_guest_apic_has_interrupt(vcpu)))
9916                 return true;
9917
9918         if (kvm_hv_has_stimer_pending(vcpu))
9919                 return true;
9920
9921         return false;
9922 }
9923
9924 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9925 {
9926         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9927 }
9928
9929 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9930 {
9931         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9932                 return true;
9933
9934         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9935                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
9936                  kvm_test_request(KVM_REQ_EVENT, vcpu))
9937                 return true;
9938
9939         if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9940                 return true;
9941
9942         return false;
9943 }
9944
9945 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9946 {
9947         return vcpu->arch.preempted_in_kernel;
9948 }
9949
9950 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9951 {
9952         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9953 }
9954
9955 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9956 {
9957         return kvm_x86_ops->interrupt_allowed(vcpu);
9958 }
9959
9960 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9961 {
9962         if (is_64_bit_mode(vcpu))
9963                 return kvm_rip_read(vcpu);
9964         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9965                      kvm_rip_read(vcpu));
9966 }
9967 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9968
9969 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9970 {
9971         return kvm_get_linear_rip(vcpu) == linear_rip;
9972 }
9973 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9974
9975 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9976 {
9977         unsigned long rflags;
9978
9979         rflags = kvm_x86_ops->get_rflags(vcpu);
9980         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9981                 rflags &= ~X86_EFLAGS_TF;
9982         return rflags;
9983 }
9984 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9985
9986 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9987 {
9988         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9989             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9990                 rflags |= X86_EFLAGS_TF;
9991         kvm_x86_ops->set_rflags(vcpu, rflags);
9992 }
9993
9994 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9995 {
9996         __kvm_set_rflags(vcpu, rflags);
9997         kvm_make_request(KVM_REQ_EVENT, vcpu);
9998 }
9999 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10000
10001 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10002 {
10003         int r;
10004
10005         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10006               work->wakeup_all)
10007                 return;
10008
10009         r = kvm_mmu_reload(vcpu);
10010         if (unlikely(r))
10011                 return;
10012
10013         if (!vcpu->arch.mmu->direct_map &&
10014               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
10015                 return;
10016
10017         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
10018 }
10019
10020 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10021 {
10022         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10023 }
10024
10025 static inline u32 kvm_async_pf_next_probe(u32 key)
10026 {
10027         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10028 }
10029
10030 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10031 {
10032         u32 key = kvm_async_pf_hash_fn(gfn);
10033
10034         while (vcpu->arch.apf.gfns[key] != ~0)
10035                 key = kvm_async_pf_next_probe(key);
10036
10037         vcpu->arch.apf.gfns[key] = gfn;
10038 }
10039
10040 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10041 {
10042         int i;
10043         u32 key = kvm_async_pf_hash_fn(gfn);
10044
10045         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10046                      (vcpu->arch.apf.gfns[key] != gfn &&
10047                       vcpu->arch.apf.gfns[key] != ~0); i++)
10048                 key = kvm_async_pf_next_probe(key);
10049
10050         return key;
10051 }
10052
10053 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10054 {
10055         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10056 }
10057
10058 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10059 {
10060         u32 i, j, k;
10061
10062         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10063         while (true) {
10064                 vcpu->arch.apf.gfns[i] = ~0;
10065                 do {
10066                         j = kvm_async_pf_next_probe(j);
10067                         if (vcpu->arch.apf.gfns[j] == ~0)
10068                                 return;
10069                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10070                         /*
10071                          * k lies cyclically in ]i,j]
10072                          * |    i.k.j |
10073                          * |....j i.k.| or  |.k..j i...|
10074                          */
10075                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10076                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10077                 i = j;
10078         }
10079 }
10080
10081 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10082 {
10083
10084         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10085                                       sizeof(val));
10086 }
10087
10088 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10089 {
10090
10091         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10092                                       sizeof(u32));
10093 }
10094
10095 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10096 {
10097         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10098                 return false;
10099
10100         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10101             (vcpu->arch.apf.send_user_only &&
10102              kvm_x86_ops->get_cpl(vcpu) == 0))
10103                 return false;
10104
10105         return true;
10106 }
10107
10108 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10109 {
10110         if (unlikely(!lapic_in_kernel(vcpu) ||
10111                      kvm_event_needs_reinjection(vcpu) ||
10112                      vcpu->arch.exception.pending))
10113                 return false;
10114
10115         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10116                 return false;
10117
10118         /*
10119          * If interrupts are off we cannot even use an artificial
10120          * halt state.
10121          */
10122         return kvm_x86_ops->interrupt_allowed(vcpu);
10123 }
10124
10125 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10126                                      struct kvm_async_pf *work)
10127 {
10128         struct x86_exception fault;
10129
10130         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
10131         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10132
10133         if (kvm_can_deliver_async_pf(vcpu) &&
10134             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10135                 fault.vector = PF_VECTOR;
10136                 fault.error_code_valid = true;
10137                 fault.error_code = 0;
10138                 fault.nested_page_fault = false;
10139                 fault.address = work->arch.token;
10140                 fault.async_page_fault = true;
10141                 kvm_inject_page_fault(vcpu, &fault);
10142         } else {
10143                 /*
10144                  * It is not possible to deliver a paravirtualized asynchronous
10145                  * page fault, but putting the guest in an artificial halt state
10146                  * can be beneficial nevertheless: if an interrupt arrives, we
10147                  * can deliver it timely and perhaps the guest will schedule
10148                  * another process.  When the instruction that triggered a page
10149                  * fault is retried, hopefully the page will be ready in the host.
10150                  */
10151                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10152         }
10153 }
10154
10155 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10156                                  struct kvm_async_pf *work)
10157 {
10158         struct x86_exception fault;
10159         u32 val;
10160
10161         if (work->wakeup_all)
10162                 work->arch.token = ~0; /* broadcast wakeup */
10163         else
10164                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10165         trace_kvm_async_pf_ready(work->arch.token, work->gva);
10166
10167         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10168             !apf_get_user(vcpu, &val)) {
10169                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10170                     vcpu->arch.exception.pending &&
10171                     vcpu->arch.exception.nr == PF_VECTOR &&
10172                     !apf_put_user(vcpu, 0)) {
10173                         vcpu->arch.exception.injected = false;
10174                         vcpu->arch.exception.pending = false;
10175                         vcpu->arch.exception.nr = 0;
10176                         vcpu->arch.exception.has_error_code = false;
10177                         vcpu->arch.exception.error_code = 0;
10178                         vcpu->arch.exception.has_payload = false;
10179                         vcpu->arch.exception.payload = 0;
10180                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10181                         fault.vector = PF_VECTOR;
10182                         fault.error_code_valid = true;
10183                         fault.error_code = 0;
10184                         fault.nested_page_fault = false;
10185                         fault.address = work->arch.token;
10186                         fault.async_page_fault = true;
10187                         kvm_inject_page_fault(vcpu, &fault);
10188                 }
10189         }
10190         vcpu->arch.apf.halted = false;
10191         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10192 }
10193
10194 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10195 {
10196         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10197                 return true;
10198         else
10199                 return kvm_can_do_async_pf(vcpu);
10200 }
10201
10202 void kvm_arch_start_assignment(struct kvm *kvm)
10203 {
10204         atomic_inc(&kvm->arch.assigned_device_count);
10205 }
10206 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10207
10208 void kvm_arch_end_assignment(struct kvm *kvm)
10209 {
10210         atomic_dec(&kvm->arch.assigned_device_count);
10211 }
10212 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10213
10214 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10215 {
10216         return atomic_read(&kvm->arch.assigned_device_count);
10217 }
10218 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10219
10220 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10221 {
10222         atomic_inc(&kvm->arch.noncoherent_dma_count);
10223 }
10224 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10225
10226 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10227 {
10228         atomic_dec(&kvm->arch.noncoherent_dma_count);
10229 }
10230 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10231
10232 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10233 {
10234         return atomic_read(&kvm->arch.noncoherent_dma_count);
10235 }
10236 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10237
10238 bool kvm_arch_has_irq_bypass(void)
10239 {
10240         return true;
10241 }
10242
10243 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10244                                       struct irq_bypass_producer *prod)
10245 {
10246         struct kvm_kernel_irqfd *irqfd =
10247                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10248
10249         irqfd->producer = prod;
10250
10251         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10252                                            prod->irq, irqfd->gsi, 1);
10253 }
10254
10255 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10256                                       struct irq_bypass_producer *prod)
10257 {
10258         int ret;
10259         struct kvm_kernel_irqfd *irqfd =
10260                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10261
10262         WARN_ON(irqfd->producer != prod);
10263         irqfd->producer = NULL;
10264
10265         /*
10266          * When producer of consumer is unregistered, we change back to
10267          * remapped mode, so we can re-use the current implementation
10268          * when the irq is masked/disabled or the consumer side (KVM
10269          * int this case doesn't want to receive the interrupts.
10270         */
10271         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10272         if (ret)
10273                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10274                        " fails: %d\n", irqfd->consumer.token, ret);
10275 }
10276
10277 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10278                                    uint32_t guest_irq, bool set)
10279 {
10280         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10281 }
10282
10283 bool kvm_vector_hashing_enabled(void)
10284 {
10285         return vector_hashing;
10286 }
10287 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10288
10289 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10290 {
10291         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10292 }
10293 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10294
10295
10296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10308 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10309 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10310 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10311 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10312 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10313 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10314 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10315 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);