]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
Merge branches 'pm-core', 'pm-qos', 'pm-domains' and 'pm-opp'
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68
69 #define CREATE_TRACE_POINTS
70 #include "trace.h"
71
72 #define MAX_IO_MSRS 256
73 #define KVM_MAX_MCE_BANKS 32
74 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
75 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
76
77 #define emul_to_vcpu(ctxt) \
78         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79
80 /* EFER defaults:
81  * - enable syscall per default because its emulated by KVM
82  * - enable LME and LMA per default on 64 bit KVM
83  */
84 #ifdef CONFIG_X86_64
85 static
86 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
87 #else
88 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
89 #endif
90
91 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
92 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
93
94 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
95                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
96
97 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
98 static void process_nmi(struct kvm_vcpu *vcpu);
99 static void enter_smm(struct kvm_vcpu *vcpu);
100 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
101
102 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
103 EXPORT_SYMBOL_GPL(kvm_x86_ops);
104
105 static bool __read_mostly ignore_msrs = 0;
106 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
107
108 unsigned int min_timer_period_us = 500;
109 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
110
111 static bool __read_mostly kvmclock_periodic_sync = true;
112 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
113
114 bool __read_mostly kvm_has_tsc_control;
115 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
116 u32  __read_mostly kvm_max_guest_tsc_khz;
117 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
118 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
119 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
120 u64  __read_mostly kvm_max_tsc_scaling_ratio;
121 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
122 u64 __read_mostly kvm_default_tsc_scaling_ratio;
123 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
124
125 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
126 static u32 __read_mostly tsc_tolerance_ppm = 250;
127 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
128
129 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
130 unsigned int __read_mostly lapic_timer_advance_ns = 0;
131 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
132
133 static bool __read_mostly vector_hashing = true;
134 module_param(vector_hashing, bool, S_IRUGO);
135
136 static bool __read_mostly backwards_tsc_observed = false;
137
138 #define KVM_NR_SHARED_MSRS 16
139
140 struct kvm_shared_msrs_global {
141         int nr;
142         u32 msrs[KVM_NR_SHARED_MSRS];
143 };
144
145 struct kvm_shared_msrs {
146         struct user_return_notifier urn;
147         bool registered;
148         struct kvm_shared_msr_values {
149                 u64 host;
150                 u64 curr;
151         } values[KVM_NR_SHARED_MSRS];
152 };
153
154 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
155 static struct kvm_shared_msrs __percpu *shared_msrs;
156
157 struct kvm_stats_debugfs_item debugfs_entries[] = {
158         { "pf_fixed", VCPU_STAT(pf_fixed) },
159         { "pf_guest", VCPU_STAT(pf_guest) },
160         { "tlb_flush", VCPU_STAT(tlb_flush) },
161         { "invlpg", VCPU_STAT(invlpg) },
162         { "exits", VCPU_STAT(exits) },
163         { "io_exits", VCPU_STAT(io_exits) },
164         { "mmio_exits", VCPU_STAT(mmio_exits) },
165         { "signal_exits", VCPU_STAT(signal_exits) },
166         { "irq_window", VCPU_STAT(irq_window_exits) },
167         { "nmi_window", VCPU_STAT(nmi_window_exits) },
168         { "halt_exits", VCPU_STAT(halt_exits) },
169         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
170         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
171         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
172         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
173         { "hypercalls", VCPU_STAT(hypercalls) },
174         { "request_irq", VCPU_STAT(request_irq_exits) },
175         { "irq_exits", VCPU_STAT(irq_exits) },
176         { "host_state_reload", VCPU_STAT(host_state_reload) },
177         { "efer_reload", VCPU_STAT(efer_reload) },
178         { "fpu_reload", VCPU_STAT(fpu_reload) },
179         { "insn_emulation", VCPU_STAT(insn_emulation) },
180         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
181         { "irq_injections", VCPU_STAT(irq_injections) },
182         { "nmi_injections", VCPU_STAT(nmi_injections) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { NULL }
194 };
195
196 u64 __read_mostly host_xcr0;
197
198 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
199
200 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
201 {
202         int i;
203         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
204                 vcpu->arch.apf.gfns[i] = ~0;
205 }
206
207 static void kvm_on_user_return(struct user_return_notifier *urn)
208 {
209         unsigned slot;
210         struct kvm_shared_msrs *locals
211                 = container_of(urn, struct kvm_shared_msrs, urn);
212         struct kvm_shared_msr_values *values;
213         unsigned long flags;
214
215         /*
216          * Disabling irqs at this point since the following code could be
217          * interrupted and executed through kvm_arch_hardware_disable()
218          */
219         local_irq_save(flags);
220         if (locals->registered) {
221                 locals->registered = false;
222                 user_return_notifier_unregister(urn);
223         }
224         local_irq_restore(flags);
225         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
226                 values = &locals->values[slot];
227                 if (values->host != values->curr) {
228                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
229                         values->curr = values->host;
230                 }
231         }
232 }
233
234 static void shared_msr_update(unsigned slot, u32 msr)
235 {
236         u64 value;
237         unsigned int cpu = smp_processor_id();
238         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
239
240         /* only read, and nobody should modify it at this time,
241          * so don't need lock */
242         if (slot >= shared_msrs_global.nr) {
243                 printk(KERN_ERR "kvm: invalid MSR slot!");
244                 return;
245         }
246         rdmsrl_safe(msr, &value);
247         smsr->values[slot].host = value;
248         smsr->values[slot].curr = value;
249 }
250
251 void kvm_define_shared_msr(unsigned slot, u32 msr)
252 {
253         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
254         shared_msrs_global.msrs[slot] = msr;
255         if (slot >= shared_msrs_global.nr)
256                 shared_msrs_global.nr = slot + 1;
257 }
258 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
259
260 static void kvm_shared_msr_cpu_online(void)
261 {
262         unsigned i;
263
264         for (i = 0; i < shared_msrs_global.nr; ++i)
265                 shared_msr_update(i, shared_msrs_global.msrs[i]);
266 }
267
268 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
269 {
270         unsigned int cpu = smp_processor_id();
271         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
272         int err;
273
274         if (((value ^ smsr->values[slot].curr) & mask) == 0)
275                 return 0;
276         smsr->values[slot].curr = value;
277         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
278         if (err)
279                 return 1;
280
281         if (!smsr->registered) {
282                 smsr->urn.on_user_return = kvm_on_user_return;
283                 user_return_notifier_register(&smsr->urn);
284                 smsr->registered = true;
285         }
286         return 0;
287 }
288 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
289
290 static void drop_user_return_notifiers(void)
291 {
292         unsigned int cpu = smp_processor_id();
293         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
294
295         if (smsr->registered)
296                 kvm_on_user_return(&smsr->urn);
297 }
298
299 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.apic_base;
302 }
303 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
304
305 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
306 {
307         u64 old_state = vcpu->arch.apic_base &
308                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
309         u64 new_state = msr_info->data &
310                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
312                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
313
314         if (!msr_info->host_initiated &&
315             ((msr_info->data & reserved_bits) != 0 ||
316              new_state == X2APIC_ENABLE ||
317              (new_state == MSR_IA32_APICBASE_ENABLE &&
318               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
319              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
320               old_state == 0)))
321                 return 1;
322
323         kvm_lapic_set_base(vcpu, msr_info->data);
324         return 0;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
327
328 asmlinkage __visible void kvm_spurious_fault(void)
329 {
330         /* Fault while not rebooting.  We want the trace. */
331         BUG();
332 }
333 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
334
335 #define EXCPT_BENIGN            0
336 #define EXCPT_CONTRIBUTORY      1
337 #define EXCPT_PF                2
338
339 static int exception_class(int vector)
340 {
341         switch (vector) {
342         case PF_VECTOR:
343                 return EXCPT_PF;
344         case DE_VECTOR:
345         case TS_VECTOR:
346         case NP_VECTOR:
347         case SS_VECTOR:
348         case GP_VECTOR:
349                 return EXCPT_CONTRIBUTORY;
350         default:
351                 break;
352         }
353         return EXCPT_BENIGN;
354 }
355
356 #define EXCPT_FAULT             0
357 #define EXCPT_TRAP              1
358 #define EXCPT_ABORT             2
359 #define EXCPT_INTERRUPT         3
360
361 static int exception_type(int vector)
362 {
363         unsigned int mask;
364
365         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
366                 return EXCPT_INTERRUPT;
367
368         mask = 1 << vector;
369
370         /* #DB is trap, as instruction watchpoints are handled elsewhere */
371         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
372                 return EXCPT_TRAP;
373
374         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
375                 return EXCPT_ABORT;
376
377         /* Reserved exceptions will result in fault */
378         return EXCPT_FAULT;
379 }
380
381 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
382                 unsigned nr, bool has_error, u32 error_code,
383                 bool reinject)
384 {
385         u32 prev_nr;
386         int class1, class2;
387
388         kvm_make_request(KVM_REQ_EVENT, vcpu);
389
390         if (!vcpu->arch.exception.pending) {
391         queue:
392                 if (has_error && !is_protmode(vcpu))
393                         has_error = false;
394                 vcpu->arch.exception.pending = true;
395                 vcpu->arch.exception.has_error_code = has_error;
396                 vcpu->arch.exception.nr = nr;
397                 vcpu->arch.exception.error_code = error_code;
398                 vcpu->arch.exception.reinject = reinject;
399                 return;
400         }
401
402         /* to check exception */
403         prev_nr = vcpu->arch.exception.nr;
404         if (prev_nr == DF_VECTOR) {
405                 /* triple fault -> shutdown */
406                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
407                 return;
408         }
409         class1 = exception_class(prev_nr);
410         class2 = exception_class(nr);
411         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
412                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
413                 /* generate double fault per SDM Table 5-5 */
414                 vcpu->arch.exception.pending = true;
415                 vcpu->arch.exception.has_error_code = true;
416                 vcpu->arch.exception.nr = DF_VECTOR;
417                 vcpu->arch.exception.error_code = 0;
418         } else
419                 /* replace previous exception with a new one in a hope
420                    that instruction re-execution will regenerate lost
421                    exception */
422                 goto queue;
423 }
424
425 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
426 {
427         kvm_multiple_exception(vcpu, nr, false, 0, false);
428 }
429 EXPORT_SYMBOL_GPL(kvm_queue_exception);
430
431 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
432 {
433         kvm_multiple_exception(vcpu, nr, false, 0, true);
434 }
435 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
436
437 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
438 {
439         if (err)
440                 kvm_inject_gp(vcpu, 0);
441         else
442                 return kvm_skip_emulated_instruction(vcpu);
443
444         return 1;
445 }
446 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
447
448 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
449 {
450         ++vcpu->stat.pf_guest;
451         vcpu->arch.cr2 = fault->address;
452         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
453 }
454 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
455
456 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
457 {
458         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
459                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
460         else
461                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
462
463         return fault->nested_page_fault;
464 }
465
466 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
467 {
468         atomic_inc(&vcpu->arch.nmi_queued);
469         kvm_make_request(KVM_REQ_NMI, vcpu);
470 }
471 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
472
473 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
474 {
475         kvm_multiple_exception(vcpu, nr, true, error_code, false);
476 }
477 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
478
479 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
480 {
481         kvm_multiple_exception(vcpu, nr, true, error_code, true);
482 }
483 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
484
485 /*
486  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
487  * a #GP and return false.
488  */
489 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
490 {
491         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
492                 return true;
493         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
494         return false;
495 }
496 EXPORT_SYMBOL_GPL(kvm_require_cpl);
497
498 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
499 {
500         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
501                 return true;
502
503         kvm_queue_exception(vcpu, UD_VECTOR);
504         return false;
505 }
506 EXPORT_SYMBOL_GPL(kvm_require_dr);
507
508 /*
509  * This function will be used to read from the physical memory of the currently
510  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
511  * can read from guest physical or from the guest's guest physical memory.
512  */
513 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
514                             gfn_t ngfn, void *data, int offset, int len,
515                             u32 access)
516 {
517         struct x86_exception exception;
518         gfn_t real_gfn;
519         gpa_t ngpa;
520
521         ngpa     = gfn_to_gpa(ngfn);
522         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
523         if (real_gfn == UNMAPPED_GVA)
524                 return -EFAULT;
525
526         real_gfn = gpa_to_gfn(real_gfn);
527
528         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
529 }
530 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
531
532 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
533                                void *data, int offset, int len, u32 access)
534 {
535         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
536                                        data, offset, len, access);
537 }
538
539 /*
540  * Load the pae pdptrs.  Return true is they are all valid.
541  */
542 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
543 {
544         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
545         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
546         int i;
547         int ret;
548         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
549
550         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
551                                       offset * sizeof(u64), sizeof(pdpte),
552                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
553         if (ret < 0) {
554                 ret = 0;
555                 goto out;
556         }
557         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
558                 if ((pdpte[i] & PT_PRESENT_MASK) &&
559                     (pdpte[i] &
560                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
561                         ret = 0;
562                         goto out;
563                 }
564         }
565         ret = 1;
566
567         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
568         __set_bit(VCPU_EXREG_PDPTR,
569                   (unsigned long *)&vcpu->arch.regs_avail);
570         __set_bit(VCPU_EXREG_PDPTR,
571                   (unsigned long *)&vcpu->arch.regs_dirty);
572 out:
573
574         return ret;
575 }
576 EXPORT_SYMBOL_GPL(load_pdptrs);
577
578 bool pdptrs_changed(struct kvm_vcpu *vcpu)
579 {
580         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
581         bool changed = true;
582         int offset;
583         gfn_t gfn;
584         int r;
585
586         if (is_long_mode(vcpu) || !is_pae(vcpu))
587                 return false;
588
589         if (!test_bit(VCPU_EXREG_PDPTR,
590                       (unsigned long *)&vcpu->arch.regs_avail))
591                 return true;
592
593         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
594         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
595         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
596                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
597         if (r < 0)
598                 goto out;
599         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
600 out:
601
602         return changed;
603 }
604 EXPORT_SYMBOL_GPL(pdptrs_changed);
605
606 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
607 {
608         unsigned long old_cr0 = kvm_read_cr0(vcpu);
609         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
610
611         cr0 |= X86_CR0_ET;
612
613 #ifdef CONFIG_X86_64
614         if (cr0 & 0xffffffff00000000UL)
615                 return 1;
616 #endif
617
618         cr0 &= ~CR0_RESERVED_BITS;
619
620         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
621                 return 1;
622
623         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
624                 return 1;
625
626         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
627 #ifdef CONFIG_X86_64
628                 if ((vcpu->arch.efer & EFER_LME)) {
629                         int cs_db, cs_l;
630
631                         if (!is_pae(vcpu))
632                                 return 1;
633                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
634                         if (cs_l)
635                                 return 1;
636                 } else
637 #endif
638                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
639                                                  kvm_read_cr3(vcpu)))
640                         return 1;
641         }
642
643         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
644                 return 1;
645
646         kvm_x86_ops->set_cr0(vcpu, cr0);
647
648         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
649                 kvm_clear_async_pf_completion_queue(vcpu);
650                 kvm_async_pf_hash_reset(vcpu);
651         }
652
653         if ((cr0 ^ old_cr0) & update_bits)
654                 kvm_mmu_reset_context(vcpu);
655
656         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
657             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
658             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
659                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
660
661         return 0;
662 }
663 EXPORT_SYMBOL_GPL(kvm_set_cr0);
664
665 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
666 {
667         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
668 }
669 EXPORT_SYMBOL_GPL(kvm_lmsw);
670
671 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
672 {
673         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
674                         !vcpu->guest_xcr0_loaded) {
675                 /* kvm_set_xcr() also depends on this */
676                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
677                 vcpu->guest_xcr0_loaded = 1;
678         }
679 }
680
681 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
682 {
683         if (vcpu->guest_xcr0_loaded) {
684                 if (vcpu->arch.xcr0 != host_xcr0)
685                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
686                 vcpu->guest_xcr0_loaded = 0;
687         }
688 }
689
690 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
691 {
692         u64 xcr0 = xcr;
693         u64 old_xcr0 = vcpu->arch.xcr0;
694         u64 valid_bits;
695
696         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
697         if (index != XCR_XFEATURE_ENABLED_MASK)
698                 return 1;
699         if (!(xcr0 & XFEATURE_MASK_FP))
700                 return 1;
701         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
702                 return 1;
703
704         /*
705          * Do not allow the guest to set bits that we do not support
706          * saving.  However, xcr0 bit 0 is always set, even if the
707          * emulated CPU does not support XSAVE (see fx_init).
708          */
709         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
710         if (xcr0 & ~valid_bits)
711                 return 1;
712
713         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
714             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
715                 return 1;
716
717         if (xcr0 & XFEATURE_MASK_AVX512) {
718                 if (!(xcr0 & XFEATURE_MASK_YMM))
719                         return 1;
720                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
721                         return 1;
722         }
723         vcpu->arch.xcr0 = xcr0;
724
725         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
726                 kvm_update_cpuid(vcpu);
727         return 0;
728 }
729
730 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
731 {
732         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
733             __kvm_set_xcr(vcpu, index, xcr)) {
734                 kvm_inject_gp(vcpu, 0);
735                 return 1;
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL_GPL(kvm_set_xcr);
740
741 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
742 {
743         unsigned long old_cr4 = kvm_read_cr4(vcpu);
744         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
745                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
746
747         if (cr4 & CR4_RESERVED_BITS)
748                 return 1;
749
750         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
751                 return 1;
752
753         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
754                 return 1;
755
756         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
757                 return 1;
758
759         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
760                 return 1;
761
762         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
763                 return 1;
764
765         if (is_long_mode(vcpu)) {
766                 if (!(cr4 & X86_CR4_PAE))
767                         return 1;
768         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
769                    && ((cr4 ^ old_cr4) & pdptr_bits)
770                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
771                                    kvm_read_cr3(vcpu)))
772                 return 1;
773
774         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
775                 if (!guest_cpuid_has_pcid(vcpu))
776                         return 1;
777
778                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
779                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
780                         return 1;
781         }
782
783         if (kvm_x86_ops->set_cr4(vcpu, cr4))
784                 return 1;
785
786         if (((cr4 ^ old_cr4) & pdptr_bits) ||
787             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
788                 kvm_mmu_reset_context(vcpu);
789
790         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
791                 kvm_update_cpuid(vcpu);
792
793         return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr4);
796
797 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
798 {
799 #ifdef CONFIG_X86_64
800         cr3 &= ~CR3_PCID_INVD;
801 #endif
802
803         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
804                 kvm_mmu_sync_roots(vcpu);
805                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
806                 return 0;
807         }
808
809         if (is_long_mode(vcpu)) {
810                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
811                         return 1;
812         } else if (is_pae(vcpu) && is_paging(vcpu) &&
813                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
814                 return 1;
815
816         vcpu->arch.cr3 = cr3;
817         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
818         kvm_mmu_new_cr3(vcpu);
819         return 0;
820 }
821 EXPORT_SYMBOL_GPL(kvm_set_cr3);
822
823 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
824 {
825         if (cr8 & CR8_RESERVED_BITS)
826                 return 1;
827         if (lapic_in_kernel(vcpu))
828                 kvm_lapic_set_tpr(vcpu, cr8);
829         else
830                 vcpu->arch.cr8 = cr8;
831         return 0;
832 }
833 EXPORT_SYMBOL_GPL(kvm_set_cr8);
834
835 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
836 {
837         if (lapic_in_kernel(vcpu))
838                 return kvm_lapic_get_cr8(vcpu);
839         else
840                 return vcpu->arch.cr8;
841 }
842 EXPORT_SYMBOL_GPL(kvm_get_cr8);
843
844 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
845 {
846         int i;
847
848         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
849                 for (i = 0; i < KVM_NR_DB_REGS; i++)
850                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
851                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
852         }
853 }
854
855 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
856 {
857         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
858                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
859 }
860
861 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
862 {
863         unsigned long dr7;
864
865         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
866                 dr7 = vcpu->arch.guest_debug_dr7;
867         else
868                 dr7 = vcpu->arch.dr7;
869         kvm_x86_ops->set_dr7(vcpu, dr7);
870         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
871         if (dr7 & DR7_BP_EN_MASK)
872                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
873 }
874
875 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
876 {
877         u64 fixed = DR6_FIXED_1;
878
879         if (!guest_cpuid_has_rtm(vcpu))
880                 fixed |= DR6_RTM;
881         return fixed;
882 }
883
884 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
885 {
886         switch (dr) {
887         case 0 ... 3:
888                 vcpu->arch.db[dr] = val;
889                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890                         vcpu->arch.eff_db[dr] = val;
891                 break;
892         case 4:
893                 /* fall through */
894         case 6:
895                 if (val & 0xffffffff00000000ULL)
896                         return -1; /* #GP */
897                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
898                 kvm_update_dr6(vcpu);
899                 break;
900         case 5:
901                 /* fall through */
902         default: /* 7 */
903                 if (val & 0xffffffff00000000ULL)
904                         return -1; /* #GP */
905                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
906                 kvm_update_dr7(vcpu);
907                 break;
908         }
909
910         return 0;
911 }
912
913 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
914 {
915         if (__kvm_set_dr(vcpu, dr, val)) {
916                 kvm_inject_gp(vcpu, 0);
917                 return 1;
918         }
919         return 0;
920 }
921 EXPORT_SYMBOL_GPL(kvm_set_dr);
922
923 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
924 {
925         switch (dr) {
926         case 0 ... 3:
927                 *val = vcpu->arch.db[dr];
928                 break;
929         case 4:
930                 /* fall through */
931         case 6:
932                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
933                         *val = vcpu->arch.dr6;
934                 else
935                         *val = kvm_x86_ops->get_dr6(vcpu);
936                 break;
937         case 5:
938                 /* fall through */
939         default: /* 7 */
940                 *val = vcpu->arch.dr7;
941                 break;
942         }
943         return 0;
944 }
945 EXPORT_SYMBOL_GPL(kvm_get_dr);
946
947 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
948 {
949         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
950         u64 data;
951         int err;
952
953         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
954         if (err)
955                 return err;
956         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
957         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
958         return err;
959 }
960 EXPORT_SYMBOL_GPL(kvm_rdpmc);
961
962 /*
963  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
964  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
965  *
966  * This list is modified at module load time to reflect the
967  * capabilities of the host cpu. This capabilities test skips MSRs that are
968  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
969  * may depend on host virtualization features rather than host cpu features.
970  */
971
972 static u32 msrs_to_save[] = {
973         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
974         MSR_STAR,
975 #ifdef CONFIG_X86_64
976         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
977 #endif
978         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
979         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
980 };
981
982 static unsigned num_msrs_to_save;
983
984 static u32 emulated_msrs[] = {
985         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
986         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
987         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
988         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
989         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
990         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
991         HV_X64_MSR_RESET,
992         HV_X64_MSR_VP_INDEX,
993         HV_X64_MSR_VP_RUNTIME,
994         HV_X64_MSR_SCONTROL,
995         HV_X64_MSR_STIMER0_CONFIG,
996         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
997         MSR_KVM_PV_EOI_EN,
998
999         MSR_IA32_TSC_ADJUST,
1000         MSR_IA32_TSCDEADLINE,
1001         MSR_IA32_MISC_ENABLE,
1002         MSR_IA32_MCG_STATUS,
1003         MSR_IA32_MCG_CTL,
1004         MSR_IA32_MCG_EXT_CTL,
1005         MSR_IA32_SMBASE,
1006 };
1007
1008 static unsigned num_emulated_msrs;
1009
1010 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1011 {
1012         if (efer & efer_reserved_bits)
1013                 return false;
1014
1015         if (efer & EFER_FFXSR) {
1016                 struct kvm_cpuid_entry2 *feat;
1017
1018                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1019                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1020                         return false;
1021         }
1022
1023         if (efer & EFER_SVME) {
1024                 struct kvm_cpuid_entry2 *feat;
1025
1026                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1027                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1028                         return false;
1029         }
1030
1031         return true;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1034
1035 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1036 {
1037         u64 old_efer = vcpu->arch.efer;
1038
1039         if (!kvm_valid_efer(vcpu, efer))
1040                 return 1;
1041
1042         if (is_paging(vcpu)
1043             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1044                 return 1;
1045
1046         efer &= ~EFER_LMA;
1047         efer |= vcpu->arch.efer & EFER_LMA;
1048
1049         kvm_x86_ops->set_efer(vcpu, efer);
1050
1051         /* Update reserved bits */
1052         if ((efer ^ old_efer) & EFER_NX)
1053                 kvm_mmu_reset_context(vcpu);
1054
1055         return 0;
1056 }
1057
1058 void kvm_enable_efer_bits(u64 mask)
1059 {
1060        efer_reserved_bits &= ~mask;
1061 }
1062 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1063
1064 /*
1065  * Writes msr value into into the appropriate "register".
1066  * Returns 0 on success, non-0 otherwise.
1067  * Assumes vcpu_load() was already called.
1068  */
1069 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1070 {
1071         switch (msr->index) {
1072         case MSR_FS_BASE:
1073         case MSR_GS_BASE:
1074         case MSR_KERNEL_GS_BASE:
1075         case MSR_CSTAR:
1076         case MSR_LSTAR:
1077                 if (is_noncanonical_address(msr->data))
1078                         return 1;
1079                 break;
1080         case MSR_IA32_SYSENTER_EIP:
1081         case MSR_IA32_SYSENTER_ESP:
1082                 /*
1083                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1084                  * non-canonical address is written on Intel but not on
1085                  * AMD (which ignores the top 32-bits, because it does
1086                  * not implement 64-bit SYSENTER).
1087                  *
1088                  * 64-bit code should hence be able to write a non-canonical
1089                  * value on AMD.  Making the address canonical ensures that
1090                  * vmentry does not fail on Intel after writing a non-canonical
1091                  * value, and that something deterministic happens if the guest
1092                  * invokes 64-bit SYSENTER.
1093                  */
1094                 msr->data = get_canonical(msr->data);
1095         }
1096         return kvm_x86_ops->set_msr(vcpu, msr);
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_set_msr);
1099
1100 /*
1101  * Adapt set_msr() to msr_io()'s calling convention
1102  */
1103 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1104 {
1105         struct msr_data msr;
1106         int r;
1107
1108         msr.index = index;
1109         msr.host_initiated = true;
1110         r = kvm_get_msr(vcpu, &msr);
1111         if (r)
1112                 return r;
1113
1114         *data = msr.data;
1115         return 0;
1116 }
1117
1118 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1119 {
1120         struct msr_data msr;
1121
1122         msr.data = *data;
1123         msr.index = index;
1124         msr.host_initiated = true;
1125         return kvm_set_msr(vcpu, &msr);
1126 }
1127
1128 #ifdef CONFIG_X86_64
1129 struct pvclock_gtod_data {
1130         seqcount_t      seq;
1131
1132         struct { /* extract of a clocksource struct */
1133                 int vclock_mode;
1134                 u64     cycle_last;
1135                 u64     mask;
1136                 u32     mult;
1137                 u32     shift;
1138         } clock;
1139
1140         u64             boot_ns;
1141         u64             nsec_base;
1142 };
1143
1144 static struct pvclock_gtod_data pvclock_gtod_data;
1145
1146 static void update_pvclock_gtod(struct timekeeper *tk)
1147 {
1148         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1149         u64 boot_ns;
1150
1151         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1152
1153         write_seqcount_begin(&vdata->seq);
1154
1155         /* copy pvclock gtod data */
1156         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1157         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1158         vdata->clock.mask               = tk->tkr_mono.mask;
1159         vdata->clock.mult               = tk->tkr_mono.mult;
1160         vdata->clock.shift              = tk->tkr_mono.shift;
1161
1162         vdata->boot_ns                  = boot_ns;
1163         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1164
1165         write_seqcount_end(&vdata->seq);
1166 }
1167 #endif
1168
1169 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1170 {
1171         /*
1172          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1173          * vcpu_enter_guest.  This function is only called from
1174          * the physical CPU that is running vcpu.
1175          */
1176         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1177 }
1178
1179 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1180 {
1181         int version;
1182         int r;
1183         struct pvclock_wall_clock wc;
1184         struct timespec64 boot;
1185
1186         if (!wall_clock)
1187                 return;
1188
1189         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1190         if (r)
1191                 return;
1192
1193         if (version & 1)
1194                 ++version;  /* first time write, random junk */
1195
1196         ++version;
1197
1198         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1199                 return;
1200
1201         /*
1202          * The guest calculates current wall clock time by adding
1203          * system time (updated by kvm_guest_time_update below) to the
1204          * wall clock specified here.  guest system time equals host
1205          * system time for us, thus we must fill in host boot time here.
1206          */
1207         getboottime64(&boot);
1208
1209         if (kvm->arch.kvmclock_offset) {
1210                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1211                 boot = timespec64_sub(boot, ts);
1212         }
1213         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1214         wc.nsec = boot.tv_nsec;
1215         wc.version = version;
1216
1217         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1218
1219         version++;
1220         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1221 }
1222
1223 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1224 {
1225         do_shl32_div32(dividend, divisor);
1226         return dividend;
1227 }
1228
1229 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1230                                s8 *pshift, u32 *pmultiplier)
1231 {
1232         uint64_t scaled64;
1233         int32_t  shift = 0;
1234         uint64_t tps64;
1235         uint32_t tps32;
1236
1237         tps64 = base_hz;
1238         scaled64 = scaled_hz;
1239         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1240                 tps64 >>= 1;
1241                 shift--;
1242         }
1243
1244         tps32 = (uint32_t)tps64;
1245         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1246                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1247                         scaled64 >>= 1;
1248                 else
1249                         tps32 <<= 1;
1250                 shift++;
1251         }
1252
1253         *pshift = shift;
1254         *pmultiplier = div_frac(scaled64, tps32);
1255
1256         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1257                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1258 }
1259
1260 #ifdef CONFIG_X86_64
1261 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1262 #endif
1263
1264 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1265 static unsigned long max_tsc_khz;
1266
1267 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1268 {
1269         u64 v = (u64)khz * (1000000 + ppm);
1270         do_div(v, 1000000);
1271         return v;
1272 }
1273
1274 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1275 {
1276         u64 ratio;
1277
1278         /* Guest TSC same frequency as host TSC? */
1279         if (!scale) {
1280                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1281                 return 0;
1282         }
1283
1284         /* TSC scaling supported? */
1285         if (!kvm_has_tsc_control) {
1286                 if (user_tsc_khz > tsc_khz) {
1287                         vcpu->arch.tsc_catchup = 1;
1288                         vcpu->arch.tsc_always_catchup = 1;
1289                         return 0;
1290                 } else {
1291                         WARN(1, "user requested TSC rate below hardware speed\n");
1292                         return -1;
1293                 }
1294         }
1295
1296         /* TSC scaling required  - calculate ratio */
1297         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1298                                 user_tsc_khz, tsc_khz);
1299
1300         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1301                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1302                           user_tsc_khz);
1303                 return -1;
1304         }
1305
1306         vcpu->arch.tsc_scaling_ratio = ratio;
1307         return 0;
1308 }
1309
1310 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1311 {
1312         u32 thresh_lo, thresh_hi;
1313         int use_scaling = 0;
1314
1315         /* tsc_khz can be zero if TSC calibration fails */
1316         if (user_tsc_khz == 0) {
1317                 /* set tsc_scaling_ratio to a safe value */
1318                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1319                 return -1;
1320         }
1321
1322         /* Compute a scale to convert nanoseconds in TSC cycles */
1323         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1324                            &vcpu->arch.virtual_tsc_shift,
1325                            &vcpu->arch.virtual_tsc_mult);
1326         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1327
1328         /*
1329          * Compute the variation in TSC rate which is acceptable
1330          * within the range of tolerance and decide if the
1331          * rate being applied is within that bounds of the hardware
1332          * rate.  If so, no scaling or compensation need be done.
1333          */
1334         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1335         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1336         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1337                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1338                 use_scaling = 1;
1339         }
1340         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1341 }
1342
1343 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1344 {
1345         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1346                                       vcpu->arch.virtual_tsc_mult,
1347                                       vcpu->arch.virtual_tsc_shift);
1348         tsc += vcpu->arch.this_tsc_write;
1349         return tsc;
1350 }
1351
1352 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1353 {
1354 #ifdef CONFIG_X86_64
1355         bool vcpus_matched;
1356         struct kvm_arch *ka = &vcpu->kvm->arch;
1357         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1358
1359         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1360                          atomic_read(&vcpu->kvm->online_vcpus));
1361
1362         /*
1363          * Once the masterclock is enabled, always perform request in
1364          * order to update it.
1365          *
1366          * In order to enable masterclock, the host clocksource must be TSC
1367          * and the vcpus need to have matched TSCs.  When that happens,
1368          * perform request to enable masterclock.
1369          */
1370         if (ka->use_master_clock ||
1371             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1372                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1373
1374         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1375                             atomic_read(&vcpu->kvm->online_vcpus),
1376                             ka->use_master_clock, gtod->clock.vclock_mode);
1377 #endif
1378 }
1379
1380 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1381 {
1382         u64 curr_offset = vcpu->arch.tsc_offset;
1383         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1384 }
1385
1386 /*
1387  * Multiply tsc by a fixed point number represented by ratio.
1388  *
1389  * The most significant 64-N bits (mult) of ratio represent the
1390  * integral part of the fixed point number; the remaining N bits
1391  * (frac) represent the fractional part, ie. ratio represents a fixed
1392  * point number (mult + frac * 2^(-N)).
1393  *
1394  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1395  */
1396 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1397 {
1398         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1399 }
1400
1401 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1402 {
1403         u64 _tsc = tsc;
1404         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1405
1406         if (ratio != kvm_default_tsc_scaling_ratio)
1407                 _tsc = __scale_tsc(ratio, tsc);
1408
1409         return _tsc;
1410 }
1411 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1412
1413 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1414 {
1415         u64 tsc;
1416
1417         tsc = kvm_scale_tsc(vcpu, rdtsc());
1418
1419         return target_tsc - tsc;
1420 }
1421
1422 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1423 {
1424         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1425 }
1426 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1427
1428 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1429 {
1430         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1431         vcpu->arch.tsc_offset = offset;
1432 }
1433
1434 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1435 {
1436         struct kvm *kvm = vcpu->kvm;
1437         u64 offset, ns, elapsed;
1438         unsigned long flags;
1439         s64 usdiff;
1440         bool matched;
1441         bool already_matched;
1442         u64 data = msr->data;
1443
1444         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1445         offset = kvm_compute_tsc_offset(vcpu, data);
1446         ns = ktime_get_boot_ns();
1447         elapsed = ns - kvm->arch.last_tsc_nsec;
1448
1449         if (vcpu->arch.virtual_tsc_khz) {
1450                 int faulted = 0;
1451
1452                 /* n.b - signed multiplication and division required */
1453                 usdiff = data - kvm->arch.last_tsc_write;
1454 #ifdef CONFIG_X86_64
1455                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1456 #else
1457                 /* do_div() only does unsigned */
1458                 asm("1: idivl %[divisor]\n"
1459                     "2: xor %%edx, %%edx\n"
1460                     "   movl $0, %[faulted]\n"
1461                     "3:\n"
1462                     ".section .fixup,\"ax\"\n"
1463                     "4: movl $1, %[faulted]\n"
1464                     "   jmp  3b\n"
1465                     ".previous\n"
1466
1467                 _ASM_EXTABLE(1b, 4b)
1468
1469                 : "=A"(usdiff), [faulted] "=r" (faulted)
1470                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1471
1472 #endif
1473                 do_div(elapsed, 1000);
1474                 usdiff -= elapsed;
1475                 if (usdiff < 0)
1476                         usdiff = -usdiff;
1477
1478                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1479                 if (faulted)
1480                         usdiff = USEC_PER_SEC;
1481         } else
1482                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1483
1484         /*
1485          * Special case: TSC write with a small delta (1 second) of virtual
1486          * cycle time against real time is interpreted as an attempt to
1487          * synchronize the CPU.
1488          *
1489          * For a reliable TSC, we can match TSC offsets, and for an unstable
1490          * TSC, we add elapsed time in this computation.  We could let the
1491          * compensation code attempt to catch up if we fall behind, but
1492          * it's better to try to match offsets from the beginning.
1493          */
1494         if (usdiff < USEC_PER_SEC &&
1495             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1496                 if (!check_tsc_unstable()) {
1497                         offset = kvm->arch.cur_tsc_offset;
1498                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1499                 } else {
1500                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1501                         data += delta;
1502                         offset = kvm_compute_tsc_offset(vcpu, data);
1503                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1504                 }
1505                 matched = true;
1506                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1507         } else {
1508                 /*
1509                  * We split periods of matched TSC writes into generations.
1510                  * For each generation, we track the original measured
1511                  * nanosecond time, offset, and write, so if TSCs are in
1512                  * sync, we can match exact offset, and if not, we can match
1513                  * exact software computation in compute_guest_tsc()
1514                  *
1515                  * These values are tracked in kvm->arch.cur_xxx variables.
1516                  */
1517                 kvm->arch.cur_tsc_generation++;
1518                 kvm->arch.cur_tsc_nsec = ns;
1519                 kvm->arch.cur_tsc_write = data;
1520                 kvm->arch.cur_tsc_offset = offset;
1521                 matched = false;
1522                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1523                          kvm->arch.cur_tsc_generation, data);
1524         }
1525
1526         /*
1527          * We also track th most recent recorded KHZ, write and time to
1528          * allow the matching interval to be extended at each write.
1529          */
1530         kvm->arch.last_tsc_nsec = ns;
1531         kvm->arch.last_tsc_write = data;
1532         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1533
1534         vcpu->arch.last_guest_tsc = data;
1535
1536         /* Keep track of which generation this VCPU has synchronized to */
1537         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1538         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1539         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1540
1541         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1542                 update_ia32_tsc_adjust_msr(vcpu, offset);
1543         kvm_vcpu_write_tsc_offset(vcpu, offset);
1544         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1545
1546         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1547         if (!matched) {
1548                 kvm->arch.nr_vcpus_matched_tsc = 0;
1549         } else if (!already_matched) {
1550                 kvm->arch.nr_vcpus_matched_tsc++;
1551         }
1552
1553         kvm_track_tsc_matching(vcpu);
1554         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1555 }
1556
1557 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1558
1559 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1560                                            s64 adjustment)
1561 {
1562         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1563 }
1564
1565 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1566 {
1567         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1568                 WARN_ON(adjustment < 0);
1569         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1570         adjust_tsc_offset_guest(vcpu, adjustment);
1571 }
1572
1573 #ifdef CONFIG_X86_64
1574
1575 static u64 read_tsc(void)
1576 {
1577         u64 ret = (u64)rdtsc_ordered();
1578         u64 last = pvclock_gtod_data.clock.cycle_last;
1579
1580         if (likely(ret >= last))
1581                 return ret;
1582
1583         /*
1584          * GCC likes to generate cmov here, but this branch is extremely
1585          * predictable (it's just a function of time and the likely is
1586          * very likely) and there's a data dependence, so force GCC
1587          * to generate a branch instead.  I don't barrier() because
1588          * we don't actually need a barrier, and if this function
1589          * ever gets inlined it will generate worse code.
1590          */
1591         asm volatile ("");
1592         return last;
1593 }
1594
1595 static inline u64 vgettsc(u64 *cycle_now)
1596 {
1597         long v;
1598         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1599
1600         *cycle_now = read_tsc();
1601
1602         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1603         return v * gtod->clock.mult;
1604 }
1605
1606 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1607 {
1608         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1609         unsigned long seq;
1610         int mode;
1611         u64 ns;
1612
1613         do {
1614                 seq = read_seqcount_begin(&gtod->seq);
1615                 mode = gtod->clock.vclock_mode;
1616                 ns = gtod->nsec_base;
1617                 ns += vgettsc(cycle_now);
1618                 ns >>= gtod->clock.shift;
1619                 ns += gtod->boot_ns;
1620         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1621         *t = ns;
1622
1623         return mode;
1624 }
1625
1626 /* returns true if host is using tsc clocksource */
1627 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1628 {
1629         /* checked again under seqlock below */
1630         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1631                 return false;
1632
1633         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1634 }
1635 #endif
1636
1637 /*
1638  *
1639  * Assuming a stable TSC across physical CPUS, and a stable TSC
1640  * across virtual CPUs, the following condition is possible.
1641  * Each numbered line represents an event visible to both
1642  * CPUs at the next numbered event.
1643  *
1644  * "timespecX" represents host monotonic time. "tscX" represents
1645  * RDTSC value.
1646  *
1647  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1648  *
1649  * 1.  read timespec0,tsc0
1650  * 2.                                   | timespec1 = timespec0 + N
1651  *                                      | tsc1 = tsc0 + M
1652  * 3. transition to guest               | transition to guest
1653  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1654  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1655  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1656  *
1657  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1658  *
1659  *      - ret0 < ret1
1660  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1661  *              ...
1662  *      - 0 < N - M => M < N
1663  *
1664  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1665  * always the case (the difference between two distinct xtime instances
1666  * might be smaller then the difference between corresponding TSC reads,
1667  * when updating guest vcpus pvclock areas).
1668  *
1669  * To avoid that problem, do not allow visibility of distinct
1670  * system_timestamp/tsc_timestamp values simultaneously: use a master
1671  * copy of host monotonic time values. Update that master copy
1672  * in lockstep.
1673  *
1674  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1675  *
1676  */
1677
1678 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1679 {
1680 #ifdef CONFIG_X86_64
1681         struct kvm_arch *ka = &kvm->arch;
1682         int vclock_mode;
1683         bool host_tsc_clocksource, vcpus_matched;
1684
1685         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1686                         atomic_read(&kvm->online_vcpus));
1687
1688         /*
1689          * If the host uses TSC clock, then passthrough TSC as stable
1690          * to the guest.
1691          */
1692         host_tsc_clocksource = kvm_get_time_and_clockread(
1693                                         &ka->master_kernel_ns,
1694                                         &ka->master_cycle_now);
1695
1696         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1697                                 && !backwards_tsc_observed
1698                                 && !ka->boot_vcpu_runs_old_kvmclock;
1699
1700         if (ka->use_master_clock)
1701                 atomic_set(&kvm_guest_has_master_clock, 1);
1702
1703         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1704         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1705                                         vcpus_matched);
1706 #endif
1707 }
1708
1709 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1710 {
1711         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1712 }
1713
1714 static void kvm_gen_update_masterclock(struct kvm *kvm)
1715 {
1716 #ifdef CONFIG_X86_64
1717         int i;
1718         struct kvm_vcpu *vcpu;
1719         struct kvm_arch *ka = &kvm->arch;
1720
1721         spin_lock(&ka->pvclock_gtod_sync_lock);
1722         kvm_make_mclock_inprogress_request(kvm);
1723         /* no guest entries from this point */
1724         pvclock_update_vm_gtod_copy(kvm);
1725
1726         kvm_for_each_vcpu(i, vcpu, kvm)
1727                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1728
1729         /* guest entries allowed */
1730         kvm_for_each_vcpu(i, vcpu, kvm)
1731                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1732
1733         spin_unlock(&ka->pvclock_gtod_sync_lock);
1734 #endif
1735 }
1736
1737 static u64 __get_kvmclock_ns(struct kvm *kvm)
1738 {
1739         struct kvm_arch *ka = &kvm->arch;
1740         struct pvclock_vcpu_time_info hv_clock;
1741
1742         spin_lock(&ka->pvclock_gtod_sync_lock);
1743         if (!ka->use_master_clock) {
1744                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1745                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1746         }
1747
1748         hv_clock.tsc_timestamp = ka->master_cycle_now;
1749         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1750         spin_unlock(&ka->pvclock_gtod_sync_lock);
1751
1752         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1753                            &hv_clock.tsc_shift,
1754                            &hv_clock.tsc_to_system_mul);
1755         return __pvclock_read_cycles(&hv_clock, rdtsc());
1756 }
1757
1758 u64 get_kvmclock_ns(struct kvm *kvm)
1759 {
1760         unsigned long flags;
1761         s64 ns;
1762
1763         local_irq_save(flags);
1764         ns = __get_kvmclock_ns(kvm);
1765         local_irq_restore(flags);
1766
1767         return ns;
1768 }
1769
1770 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1771 {
1772         struct kvm_vcpu_arch *vcpu = &v->arch;
1773         struct pvclock_vcpu_time_info guest_hv_clock;
1774
1775         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1776                 &guest_hv_clock, sizeof(guest_hv_clock))))
1777                 return;
1778
1779         /* This VCPU is paused, but it's legal for a guest to read another
1780          * VCPU's kvmclock, so we really have to follow the specification where
1781          * it says that version is odd if data is being modified, and even after
1782          * it is consistent.
1783          *
1784          * Version field updates must be kept separate.  This is because
1785          * kvm_write_guest_cached might use a "rep movs" instruction, and
1786          * writes within a string instruction are weakly ordered.  So there
1787          * are three writes overall.
1788          *
1789          * As a small optimization, only write the version field in the first
1790          * and third write.  The vcpu->pv_time cache is still valid, because the
1791          * version field is the first in the struct.
1792          */
1793         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1794
1795         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1796         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1797                                 &vcpu->hv_clock,
1798                                 sizeof(vcpu->hv_clock.version));
1799
1800         smp_wmb();
1801
1802         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1803         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1804
1805         if (vcpu->pvclock_set_guest_stopped_request) {
1806                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1807                 vcpu->pvclock_set_guest_stopped_request = false;
1808         }
1809
1810         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1811
1812         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1813                                 &vcpu->hv_clock,
1814                                 sizeof(vcpu->hv_clock));
1815
1816         smp_wmb();
1817
1818         vcpu->hv_clock.version++;
1819         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1820                                 &vcpu->hv_clock,
1821                                 sizeof(vcpu->hv_clock.version));
1822 }
1823
1824 static int kvm_guest_time_update(struct kvm_vcpu *v)
1825 {
1826         unsigned long flags, tgt_tsc_khz;
1827         struct kvm_vcpu_arch *vcpu = &v->arch;
1828         struct kvm_arch *ka = &v->kvm->arch;
1829         s64 kernel_ns;
1830         u64 tsc_timestamp, host_tsc;
1831         u8 pvclock_flags;
1832         bool use_master_clock;
1833
1834         kernel_ns = 0;
1835         host_tsc = 0;
1836
1837         /*
1838          * If the host uses TSC clock, then passthrough TSC as stable
1839          * to the guest.
1840          */
1841         spin_lock(&ka->pvclock_gtod_sync_lock);
1842         use_master_clock = ka->use_master_clock;
1843         if (use_master_clock) {
1844                 host_tsc = ka->master_cycle_now;
1845                 kernel_ns = ka->master_kernel_ns;
1846         }
1847         spin_unlock(&ka->pvclock_gtod_sync_lock);
1848
1849         /* Keep irq disabled to prevent changes to the clock */
1850         local_irq_save(flags);
1851         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1852         if (unlikely(tgt_tsc_khz == 0)) {
1853                 local_irq_restore(flags);
1854                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1855                 return 1;
1856         }
1857         if (!use_master_clock) {
1858                 host_tsc = rdtsc();
1859                 kernel_ns = ktime_get_boot_ns();
1860         }
1861
1862         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1863
1864         /*
1865          * We may have to catch up the TSC to match elapsed wall clock
1866          * time for two reasons, even if kvmclock is used.
1867          *   1) CPU could have been running below the maximum TSC rate
1868          *   2) Broken TSC compensation resets the base at each VCPU
1869          *      entry to avoid unknown leaps of TSC even when running
1870          *      again on the same CPU.  This may cause apparent elapsed
1871          *      time to disappear, and the guest to stand still or run
1872          *      very slowly.
1873          */
1874         if (vcpu->tsc_catchup) {
1875                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1876                 if (tsc > tsc_timestamp) {
1877                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1878                         tsc_timestamp = tsc;
1879                 }
1880         }
1881
1882         local_irq_restore(flags);
1883
1884         /* With all the info we got, fill in the values */
1885
1886         if (kvm_has_tsc_control)
1887                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1888
1889         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1890                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1891                                    &vcpu->hv_clock.tsc_shift,
1892                                    &vcpu->hv_clock.tsc_to_system_mul);
1893                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1894         }
1895
1896         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1897         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1898         vcpu->last_guest_tsc = tsc_timestamp;
1899
1900         /* If the host uses TSC clocksource, then it is stable */
1901         pvclock_flags = 0;
1902         if (use_master_clock)
1903                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1904
1905         vcpu->hv_clock.flags = pvclock_flags;
1906
1907         if (vcpu->pv_time_enabled)
1908                 kvm_setup_pvclock_page(v);
1909         if (v == kvm_get_vcpu(v->kvm, 0))
1910                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1911         return 0;
1912 }
1913
1914 /*
1915  * kvmclock updates which are isolated to a given vcpu, such as
1916  * vcpu->cpu migration, should not allow system_timestamp from
1917  * the rest of the vcpus to remain static. Otherwise ntp frequency
1918  * correction applies to one vcpu's system_timestamp but not
1919  * the others.
1920  *
1921  * So in those cases, request a kvmclock update for all vcpus.
1922  * We need to rate-limit these requests though, as they can
1923  * considerably slow guests that have a large number of vcpus.
1924  * The time for a remote vcpu to update its kvmclock is bound
1925  * by the delay we use to rate-limit the updates.
1926  */
1927
1928 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1929
1930 static void kvmclock_update_fn(struct work_struct *work)
1931 {
1932         int i;
1933         struct delayed_work *dwork = to_delayed_work(work);
1934         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1935                                            kvmclock_update_work);
1936         struct kvm *kvm = container_of(ka, struct kvm, arch);
1937         struct kvm_vcpu *vcpu;
1938
1939         kvm_for_each_vcpu(i, vcpu, kvm) {
1940                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1941                 kvm_vcpu_kick(vcpu);
1942         }
1943 }
1944
1945 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1946 {
1947         struct kvm *kvm = v->kvm;
1948
1949         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1950         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1951                                         KVMCLOCK_UPDATE_DELAY);
1952 }
1953
1954 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1955
1956 static void kvmclock_sync_fn(struct work_struct *work)
1957 {
1958         struct delayed_work *dwork = to_delayed_work(work);
1959         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1960                                            kvmclock_sync_work);
1961         struct kvm *kvm = container_of(ka, struct kvm, arch);
1962
1963         if (!kvmclock_periodic_sync)
1964                 return;
1965
1966         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1967         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1968                                         KVMCLOCK_SYNC_PERIOD);
1969 }
1970
1971 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1972 {
1973         u64 mcg_cap = vcpu->arch.mcg_cap;
1974         unsigned bank_num = mcg_cap & 0xff;
1975
1976         switch (msr) {
1977         case MSR_IA32_MCG_STATUS:
1978                 vcpu->arch.mcg_status = data;
1979                 break;
1980         case MSR_IA32_MCG_CTL:
1981                 if (!(mcg_cap & MCG_CTL_P))
1982                         return 1;
1983                 if (data != 0 && data != ~(u64)0)
1984                         return -1;
1985                 vcpu->arch.mcg_ctl = data;
1986                 break;
1987         default:
1988                 if (msr >= MSR_IA32_MC0_CTL &&
1989                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1990                         u32 offset = msr - MSR_IA32_MC0_CTL;
1991                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1992                          * some Linux kernels though clear bit 10 in bank 4 to
1993                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1994                          * this to avoid an uncatched #GP in the guest
1995                          */
1996                         if ((offset & 0x3) == 0 &&
1997                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1998                                 return -1;
1999                         vcpu->arch.mce_banks[offset] = data;
2000                         break;
2001                 }
2002                 return 1;
2003         }
2004         return 0;
2005 }
2006
2007 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2008 {
2009         struct kvm *kvm = vcpu->kvm;
2010         int lm = is_long_mode(vcpu);
2011         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2012                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2013         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2014                 : kvm->arch.xen_hvm_config.blob_size_32;
2015         u32 page_num = data & ~PAGE_MASK;
2016         u64 page_addr = data & PAGE_MASK;
2017         u8 *page;
2018         int r;
2019
2020         r = -E2BIG;
2021         if (page_num >= blob_size)
2022                 goto out;
2023         r = -ENOMEM;
2024         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2025         if (IS_ERR(page)) {
2026                 r = PTR_ERR(page);
2027                 goto out;
2028         }
2029         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2030                 goto out_free;
2031         r = 0;
2032 out_free:
2033         kfree(page);
2034 out:
2035         return r;
2036 }
2037
2038 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2039 {
2040         gpa_t gpa = data & ~0x3f;
2041
2042         /* Bits 2:5 are reserved, Should be zero */
2043         if (data & 0x3c)
2044                 return 1;
2045
2046         vcpu->arch.apf.msr_val = data;
2047
2048         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2049                 kvm_clear_async_pf_completion_queue(vcpu);
2050                 kvm_async_pf_hash_reset(vcpu);
2051                 return 0;
2052         }
2053
2054         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2055                                         sizeof(u32)))
2056                 return 1;
2057
2058         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2059         kvm_async_pf_wakeup_all(vcpu);
2060         return 0;
2061 }
2062
2063 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2064 {
2065         vcpu->arch.pv_time_enabled = false;
2066 }
2067
2068 static void record_steal_time(struct kvm_vcpu *vcpu)
2069 {
2070         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2071                 return;
2072
2073         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2074                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2075                 return;
2076
2077         vcpu->arch.st.steal.preempted = 0;
2078
2079         if (vcpu->arch.st.steal.version & 1)
2080                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2081
2082         vcpu->arch.st.steal.version += 1;
2083
2084         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2085                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2086
2087         smp_wmb();
2088
2089         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2090                 vcpu->arch.st.last_steal;
2091         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2092
2093         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2094                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2095
2096         smp_wmb();
2097
2098         vcpu->arch.st.steal.version += 1;
2099
2100         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2101                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2102 }
2103
2104 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2105 {
2106         bool pr = false;
2107         u32 msr = msr_info->index;
2108         u64 data = msr_info->data;
2109
2110         switch (msr) {
2111         case MSR_AMD64_NB_CFG:
2112         case MSR_IA32_UCODE_REV:
2113         case MSR_IA32_UCODE_WRITE:
2114         case MSR_VM_HSAVE_PA:
2115         case MSR_AMD64_PATCH_LOADER:
2116         case MSR_AMD64_BU_CFG2:
2117                 break;
2118
2119         case MSR_EFER:
2120                 return set_efer(vcpu, data);
2121         case MSR_K7_HWCR:
2122                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2123                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2124                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2125                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2126                 if (data != 0) {
2127                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2128                                     data);
2129                         return 1;
2130                 }
2131                 break;
2132         case MSR_FAM10H_MMIO_CONF_BASE:
2133                 if (data != 0) {
2134                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2135                                     "0x%llx\n", data);
2136                         return 1;
2137                 }
2138                 break;
2139         case MSR_IA32_DEBUGCTLMSR:
2140                 if (!data) {
2141                         /* We support the non-activated case already */
2142                         break;
2143                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2144                         /* Values other than LBR and BTF are vendor-specific,
2145                            thus reserved and should throw a #GP */
2146                         return 1;
2147                 }
2148                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2149                             __func__, data);
2150                 break;
2151         case 0x200 ... 0x2ff:
2152                 return kvm_mtrr_set_msr(vcpu, msr, data);
2153         case MSR_IA32_APICBASE:
2154                 return kvm_set_apic_base(vcpu, msr_info);
2155         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2156                 return kvm_x2apic_msr_write(vcpu, msr, data);
2157         case MSR_IA32_TSCDEADLINE:
2158                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2159                 break;
2160         case MSR_IA32_TSC_ADJUST:
2161                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2162                         if (!msr_info->host_initiated) {
2163                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2164                                 adjust_tsc_offset_guest(vcpu, adj);
2165                         }
2166                         vcpu->arch.ia32_tsc_adjust_msr = data;
2167                 }
2168                 break;
2169         case MSR_IA32_MISC_ENABLE:
2170                 vcpu->arch.ia32_misc_enable_msr = data;
2171                 break;
2172         case MSR_IA32_SMBASE:
2173                 if (!msr_info->host_initiated)
2174                         return 1;
2175                 vcpu->arch.smbase = data;
2176                 break;
2177         case MSR_KVM_WALL_CLOCK_NEW:
2178         case MSR_KVM_WALL_CLOCK:
2179                 vcpu->kvm->arch.wall_clock = data;
2180                 kvm_write_wall_clock(vcpu->kvm, data);
2181                 break;
2182         case MSR_KVM_SYSTEM_TIME_NEW:
2183         case MSR_KVM_SYSTEM_TIME: {
2184                 struct kvm_arch *ka = &vcpu->kvm->arch;
2185
2186                 kvmclock_reset(vcpu);
2187
2188                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2189                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2190
2191                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2192                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2193                                         &vcpu->requests);
2194
2195                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2196                 }
2197
2198                 vcpu->arch.time = data;
2199                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2200
2201                 /* we verify if the enable bit is set... */
2202                 if (!(data & 1))
2203                         break;
2204
2205                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2206                      &vcpu->arch.pv_time, data & ~1ULL,
2207                      sizeof(struct pvclock_vcpu_time_info)))
2208                         vcpu->arch.pv_time_enabled = false;
2209                 else
2210                         vcpu->arch.pv_time_enabled = true;
2211
2212                 break;
2213         }
2214         case MSR_KVM_ASYNC_PF_EN:
2215                 if (kvm_pv_enable_async_pf(vcpu, data))
2216                         return 1;
2217                 break;
2218         case MSR_KVM_STEAL_TIME:
2219
2220                 if (unlikely(!sched_info_on()))
2221                         return 1;
2222
2223                 if (data & KVM_STEAL_RESERVED_MASK)
2224                         return 1;
2225
2226                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2227                                                 data & KVM_STEAL_VALID_BITS,
2228                                                 sizeof(struct kvm_steal_time)))
2229                         return 1;
2230
2231                 vcpu->arch.st.msr_val = data;
2232
2233                 if (!(data & KVM_MSR_ENABLED))
2234                         break;
2235
2236                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2237
2238                 break;
2239         case MSR_KVM_PV_EOI_EN:
2240                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2241                         return 1;
2242                 break;
2243
2244         case MSR_IA32_MCG_CTL:
2245         case MSR_IA32_MCG_STATUS:
2246         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2247                 return set_msr_mce(vcpu, msr, data);
2248
2249         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2250         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2251                 pr = true; /* fall through */
2252         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2253         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2254                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2255                         return kvm_pmu_set_msr(vcpu, msr_info);
2256
2257                 if (pr || data != 0)
2258                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2259                                     "0x%x data 0x%llx\n", msr, data);
2260                 break;
2261         case MSR_K7_CLK_CTL:
2262                 /*
2263                  * Ignore all writes to this no longer documented MSR.
2264                  * Writes are only relevant for old K7 processors,
2265                  * all pre-dating SVM, but a recommended workaround from
2266                  * AMD for these chips. It is possible to specify the
2267                  * affected processor models on the command line, hence
2268                  * the need to ignore the workaround.
2269                  */
2270                 break;
2271         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2272         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2273         case HV_X64_MSR_CRASH_CTL:
2274         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2275                 return kvm_hv_set_msr_common(vcpu, msr, data,
2276                                              msr_info->host_initiated);
2277         case MSR_IA32_BBL_CR_CTL3:
2278                 /* Drop writes to this legacy MSR -- see rdmsr
2279                  * counterpart for further detail.
2280                  */
2281                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2282                 break;
2283         case MSR_AMD64_OSVW_ID_LENGTH:
2284                 if (!guest_cpuid_has_osvw(vcpu))
2285                         return 1;
2286                 vcpu->arch.osvw.length = data;
2287                 break;
2288         case MSR_AMD64_OSVW_STATUS:
2289                 if (!guest_cpuid_has_osvw(vcpu))
2290                         return 1;
2291                 vcpu->arch.osvw.status = data;
2292                 break;
2293         default:
2294                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2295                         return xen_hvm_config(vcpu, data);
2296                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2297                         return kvm_pmu_set_msr(vcpu, msr_info);
2298                 if (!ignore_msrs) {
2299                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2300                                     msr, data);
2301                         return 1;
2302                 } else {
2303                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2304                                     msr, data);
2305                         break;
2306                 }
2307         }
2308         return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2311
2312
2313 /*
2314  * Reads an msr value (of 'msr_index') into 'pdata'.
2315  * Returns 0 on success, non-0 otherwise.
2316  * Assumes vcpu_load() was already called.
2317  */
2318 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2319 {
2320         return kvm_x86_ops->get_msr(vcpu, msr);
2321 }
2322 EXPORT_SYMBOL_GPL(kvm_get_msr);
2323
2324 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2325 {
2326         u64 data;
2327         u64 mcg_cap = vcpu->arch.mcg_cap;
2328         unsigned bank_num = mcg_cap & 0xff;
2329
2330         switch (msr) {
2331         case MSR_IA32_P5_MC_ADDR:
2332         case MSR_IA32_P5_MC_TYPE:
2333                 data = 0;
2334                 break;
2335         case MSR_IA32_MCG_CAP:
2336                 data = vcpu->arch.mcg_cap;
2337                 break;
2338         case MSR_IA32_MCG_CTL:
2339                 if (!(mcg_cap & MCG_CTL_P))
2340                         return 1;
2341                 data = vcpu->arch.mcg_ctl;
2342                 break;
2343         case MSR_IA32_MCG_STATUS:
2344                 data = vcpu->arch.mcg_status;
2345                 break;
2346         default:
2347                 if (msr >= MSR_IA32_MC0_CTL &&
2348                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2349                         u32 offset = msr - MSR_IA32_MC0_CTL;
2350                         data = vcpu->arch.mce_banks[offset];
2351                         break;
2352                 }
2353                 return 1;
2354         }
2355         *pdata = data;
2356         return 0;
2357 }
2358
2359 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2360 {
2361         switch (msr_info->index) {
2362         case MSR_IA32_PLATFORM_ID:
2363         case MSR_IA32_EBL_CR_POWERON:
2364         case MSR_IA32_DEBUGCTLMSR:
2365         case MSR_IA32_LASTBRANCHFROMIP:
2366         case MSR_IA32_LASTBRANCHTOIP:
2367         case MSR_IA32_LASTINTFROMIP:
2368         case MSR_IA32_LASTINTTOIP:
2369         case MSR_K8_SYSCFG:
2370         case MSR_K8_TSEG_ADDR:
2371         case MSR_K8_TSEG_MASK:
2372         case MSR_K7_HWCR:
2373         case MSR_VM_HSAVE_PA:
2374         case MSR_K8_INT_PENDING_MSG:
2375         case MSR_AMD64_NB_CFG:
2376         case MSR_FAM10H_MMIO_CONF_BASE:
2377         case MSR_AMD64_BU_CFG2:
2378         case MSR_IA32_PERF_CTL:
2379                 msr_info->data = 0;
2380                 break;
2381         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2382         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2383         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2384         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2385                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2386                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2387                 msr_info->data = 0;
2388                 break;
2389         case MSR_IA32_UCODE_REV:
2390                 msr_info->data = 0x100000000ULL;
2391                 break;
2392         case MSR_MTRRcap:
2393         case 0x200 ... 0x2ff:
2394                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2395         case 0xcd: /* fsb frequency */
2396                 msr_info->data = 3;
2397                 break;
2398                 /*
2399                  * MSR_EBC_FREQUENCY_ID
2400                  * Conservative value valid for even the basic CPU models.
2401                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2402                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2403                  * and 266MHz for model 3, or 4. Set Core Clock
2404                  * Frequency to System Bus Frequency Ratio to 1 (bits
2405                  * 31:24) even though these are only valid for CPU
2406                  * models > 2, however guests may end up dividing or
2407                  * multiplying by zero otherwise.
2408                  */
2409         case MSR_EBC_FREQUENCY_ID:
2410                 msr_info->data = 1 << 24;
2411                 break;
2412         case MSR_IA32_APICBASE:
2413                 msr_info->data = kvm_get_apic_base(vcpu);
2414                 break;
2415         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2416                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2417                 break;
2418         case MSR_IA32_TSCDEADLINE:
2419                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2420                 break;
2421         case MSR_IA32_TSC_ADJUST:
2422                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2423                 break;
2424         case MSR_IA32_MISC_ENABLE:
2425                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2426                 break;
2427         case MSR_IA32_SMBASE:
2428                 if (!msr_info->host_initiated)
2429                         return 1;
2430                 msr_info->data = vcpu->arch.smbase;
2431                 break;
2432         case MSR_IA32_PERF_STATUS:
2433                 /* TSC increment by tick */
2434                 msr_info->data = 1000ULL;
2435                 /* CPU multiplier */
2436                 msr_info->data |= (((uint64_t)4ULL) << 40);
2437                 break;
2438         case MSR_EFER:
2439                 msr_info->data = vcpu->arch.efer;
2440                 break;
2441         case MSR_KVM_WALL_CLOCK:
2442         case MSR_KVM_WALL_CLOCK_NEW:
2443                 msr_info->data = vcpu->kvm->arch.wall_clock;
2444                 break;
2445         case MSR_KVM_SYSTEM_TIME:
2446         case MSR_KVM_SYSTEM_TIME_NEW:
2447                 msr_info->data = vcpu->arch.time;
2448                 break;
2449         case MSR_KVM_ASYNC_PF_EN:
2450                 msr_info->data = vcpu->arch.apf.msr_val;
2451                 break;
2452         case MSR_KVM_STEAL_TIME:
2453                 msr_info->data = vcpu->arch.st.msr_val;
2454                 break;
2455         case MSR_KVM_PV_EOI_EN:
2456                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2457                 break;
2458         case MSR_IA32_P5_MC_ADDR:
2459         case MSR_IA32_P5_MC_TYPE:
2460         case MSR_IA32_MCG_CAP:
2461         case MSR_IA32_MCG_CTL:
2462         case MSR_IA32_MCG_STATUS:
2463         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2464                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2465         case MSR_K7_CLK_CTL:
2466                 /*
2467                  * Provide expected ramp-up count for K7. All other
2468                  * are set to zero, indicating minimum divisors for
2469                  * every field.
2470                  *
2471                  * This prevents guest kernels on AMD host with CPU
2472                  * type 6, model 8 and higher from exploding due to
2473                  * the rdmsr failing.
2474                  */
2475                 msr_info->data = 0x20000000;
2476                 break;
2477         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2478         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2479         case HV_X64_MSR_CRASH_CTL:
2480         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2481                 return kvm_hv_get_msr_common(vcpu,
2482                                              msr_info->index, &msr_info->data);
2483                 break;
2484         case MSR_IA32_BBL_CR_CTL3:
2485                 /* This legacy MSR exists but isn't fully documented in current
2486                  * silicon.  It is however accessed by winxp in very narrow
2487                  * scenarios where it sets bit #19, itself documented as
2488                  * a "reserved" bit.  Best effort attempt to source coherent
2489                  * read data here should the balance of the register be
2490                  * interpreted by the guest:
2491                  *
2492                  * L2 cache control register 3: 64GB range, 256KB size,
2493                  * enabled, latency 0x1, configured
2494                  */
2495                 msr_info->data = 0xbe702111;
2496                 break;
2497         case MSR_AMD64_OSVW_ID_LENGTH:
2498                 if (!guest_cpuid_has_osvw(vcpu))
2499                         return 1;
2500                 msr_info->data = vcpu->arch.osvw.length;
2501                 break;
2502         case MSR_AMD64_OSVW_STATUS:
2503                 if (!guest_cpuid_has_osvw(vcpu))
2504                         return 1;
2505                 msr_info->data = vcpu->arch.osvw.status;
2506                 break;
2507         default:
2508                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2509                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2510                 if (!ignore_msrs) {
2511                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2512                                                msr_info->index);
2513                         return 1;
2514                 } else {
2515                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2516                         msr_info->data = 0;
2517                 }
2518                 break;
2519         }
2520         return 0;
2521 }
2522 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2523
2524 /*
2525  * Read or write a bunch of msrs. All parameters are kernel addresses.
2526  *
2527  * @return number of msrs set successfully.
2528  */
2529 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2530                     struct kvm_msr_entry *entries,
2531                     int (*do_msr)(struct kvm_vcpu *vcpu,
2532                                   unsigned index, u64 *data))
2533 {
2534         int i, idx;
2535
2536         idx = srcu_read_lock(&vcpu->kvm->srcu);
2537         for (i = 0; i < msrs->nmsrs; ++i)
2538                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2539                         break;
2540         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2541
2542         return i;
2543 }
2544
2545 /*
2546  * Read or write a bunch of msrs. Parameters are user addresses.
2547  *
2548  * @return number of msrs set successfully.
2549  */
2550 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2551                   int (*do_msr)(struct kvm_vcpu *vcpu,
2552                                 unsigned index, u64 *data),
2553                   int writeback)
2554 {
2555         struct kvm_msrs msrs;
2556         struct kvm_msr_entry *entries;
2557         int r, n;
2558         unsigned size;
2559
2560         r = -EFAULT;
2561         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2562                 goto out;
2563
2564         r = -E2BIG;
2565         if (msrs.nmsrs >= MAX_IO_MSRS)
2566                 goto out;
2567
2568         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2569         entries = memdup_user(user_msrs->entries, size);
2570         if (IS_ERR(entries)) {
2571                 r = PTR_ERR(entries);
2572                 goto out;
2573         }
2574
2575         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2576         if (r < 0)
2577                 goto out_free;
2578
2579         r = -EFAULT;
2580         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2581                 goto out_free;
2582
2583         r = n;
2584
2585 out_free:
2586         kfree(entries);
2587 out:
2588         return r;
2589 }
2590
2591 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2592 {
2593         int r;
2594
2595         switch (ext) {
2596         case KVM_CAP_IRQCHIP:
2597         case KVM_CAP_HLT:
2598         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2599         case KVM_CAP_SET_TSS_ADDR:
2600         case KVM_CAP_EXT_CPUID:
2601         case KVM_CAP_EXT_EMUL_CPUID:
2602         case KVM_CAP_CLOCKSOURCE:
2603         case KVM_CAP_PIT:
2604         case KVM_CAP_NOP_IO_DELAY:
2605         case KVM_CAP_MP_STATE:
2606         case KVM_CAP_SYNC_MMU:
2607         case KVM_CAP_USER_NMI:
2608         case KVM_CAP_REINJECT_CONTROL:
2609         case KVM_CAP_IRQ_INJECT_STATUS:
2610         case KVM_CAP_IOEVENTFD:
2611         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2612         case KVM_CAP_PIT2:
2613         case KVM_CAP_PIT_STATE2:
2614         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2615         case KVM_CAP_XEN_HVM:
2616         case KVM_CAP_VCPU_EVENTS:
2617         case KVM_CAP_HYPERV:
2618         case KVM_CAP_HYPERV_VAPIC:
2619         case KVM_CAP_HYPERV_SPIN:
2620         case KVM_CAP_HYPERV_SYNIC:
2621         case KVM_CAP_PCI_SEGMENT:
2622         case KVM_CAP_DEBUGREGS:
2623         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2624         case KVM_CAP_XSAVE:
2625         case KVM_CAP_ASYNC_PF:
2626         case KVM_CAP_GET_TSC_KHZ:
2627         case KVM_CAP_KVMCLOCK_CTRL:
2628         case KVM_CAP_READONLY_MEM:
2629         case KVM_CAP_HYPERV_TIME:
2630         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2631         case KVM_CAP_TSC_DEADLINE_TIMER:
2632         case KVM_CAP_ENABLE_CAP_VM:
2633         case KVM_CAP_DISABLE_QUIRKS:
2634         case KVM_CAP_SET_BOOT_CPU_ID:
2635         case KVM_CAP_SPLIT_IRQCHIP:
2636 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2637         case KVM_CAP_ASSIGN_DEV_IRQ:
2638         case KVM_CAP_PCI_2_3:
2639 #endif
2640                 r = 1;
2641                 break;
2642         case KVM_CAP_ADJUST_CLOCK:
2643                 r = KVM_CLOCK_TSC_STABLE;
2644                 break;
2645         case KVM_CAP_X86_SMM:
2646                 /* SMBASE is usually relocated above 1M on modern chipsets,
2647                  * and SMM handlers might indeed rely on 4G segment limits,
2648                  * so do not report SMM to be available if real mode is
2649                  * emulated via vm86 mode.  Still, do not go to great lengths
2650                  * to avoid userspace's usage of the feature, because it is a
2651                  * fringe case that is not enabled except via specific settings
2652                  * of the module parameters.
2653                  */
2654                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2655                 break;
2656         case KVM_CAP_COALESCED_MMIO:
2657                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2658                 break;
2659         case KVM_CAP_VAPIC:
2660                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2661                 break;
2662         case KVM_CAP_NR_VCPUS:
2663                 r = KVM_SOFT_MAX_VCPUS;
2664                 break;
2665         case KVM_CAP_MAX_VCPUS:
2666                 r = KVM_MAX_VCPUS;
2667                 break;
2668         case KVM_CAP_NR_MEMSLOTS:
2669                 r = KVM_USER_MEM_SLOTS;
2670                 break;
2671         case KVM_CAP_PV_MMU:    /* obsolete */
2672                 r = 0;
2673                 break;
2674 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2675         case KVM_CAP_IOMMU:
2676                 r = iommu_present(&pci_bus_type);
2677                 break;
2678 #endif
2679         case KVM_CAP_MCE:
2680                 r = KVM_MAX_MCE_BANKS;
2681                 break;
2682         case KVM_CAP_XCRS:
2683                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2684                 break;
2685         case KVM_CAP_TSC_CONTROL:
2686                 r = kvm_has_tsc_control;
2687                 break;
2688         case KVM_CAP_X2APIC_API:
2689                 r = KVM_X2APIC_API_VALID_FLAGS;
2690                 break;
2691         default:
2692                 r = 0;
2693                 break;
2694         }
2695         return r;
2696
2697 }
2698
2699 long kvm_arch_dev_ioctl(struct file *filp,
2700                         unsigned int ioctl, unsigned long arg)
2701 {
2702         void __user *argp = (void __user *)arg;
2703         long r;
2704
2705         switch (ioctl) {
2706         case KVM_GET_MSR_INDEX_LIST: {
2707                 struct kvm_msr_list __user *user_msr_list = argp;
2708                 struct kvm_msr_list msr_list;
2709                 unsigned n;
2710
2711                 r = -EFAULT;
2712                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2713                         goto out;
2714                 n = msr_list.nmsrs;
2715                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2716                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2717                         goto out;
2718                 r = -E2BIG;
2719                 if (n < msr_list.nmsrs)
2720                         goto out;
2721                 r = -EFAULT;
2722                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2723                                  num_msrs_to_save * sizeof(u32)))
2724                         goto out;
2725                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2726                                  &emulated_msrs,
2727                                  num_emulated_msrs * sizeof(u32)))
2728                         goto out;
2729                 r = 0;
2730                 break;
2731         }
2732         case KVM_GET_SUPPORTED_CPUID:
2733         case KVM_GET_EMULATED_CPUID: {
2734                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2735                 struct kvm_cpuid2 cpuid;
2736
2737                 r = -EFAULT;
2738                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2739                         goto out;
2740
2741                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2742                                             ioctl);
2743                 if (r)
2744                         goto out;
2745
2746                 r = -EFAULT;
2747                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2748                         goto out;
2749                 r = 0;
2750                 break;
2751         }
2752         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2753                 r = -EFAULT;
2754                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2755                                  sizeof(kvm_mce_cap_supported)))
2756                         goto out;
2757                 r = 0;
2758                 break;
2759         }
2760         default:
2761                 r = -EINVAL;
2762         }
2763 out:
2764         return r;
2765 }
2766
2767 static void wbinvd_ipi(void *garbage)
2768 {
2769         wbinvd();
2770 }
2771
2772 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2773 {
2774         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2775 }
2776
2777 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2778 {
2779         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2780 }
2781
2782 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2783 {
2784         /* Address WBINVD may be executed by guest */
2785         if (need_emulate_wbinvd(vcpu)) {
2786                 if (kvm_x86_ops->has_wbinvd_exit())
2787                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2788                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2789                         smp_call_function_single(vcpu->cpu,
2790                                         wbinvd_ipi, NULL, 1);
2791         }
2792
2793         kvm_x86_ops->vcpu_load(vcpu, cpu);
2794
2795         /* Apply any externally detected TSC adjustments (due to suspend) */
2796         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2797                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2798                 vcpu->arch.tsc_offset_adjustment = 0;
2799                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2800         }
2801
2802         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2803                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2804                                 rdtsc() - vcpu->arch.last_host_tsc;
2805                 if (tsc_delta < 0)
2806                         mark_tsc_unstable("KVM discovered backwards TSC");
2807
2808                 if (check_tsc_unstable()) {
2809                         u64 offset = kvm_compute_tsc_offset(vcpu,
2810                                                 vcpu->arch.last_guest_tsc);
2811                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2812                         vcpu->arch.tsc_catchup = 1;
2813                 }
2814                 if (kvm_lapic_hv_timer_in_use(vcpu) &&
2815                                 kvm_x86_ops->set_hv_timer(vcpu,
2816                                         kvm_get_lapic_target_expiration_tsc(vcpu)))
2817                         kvm_lapic_switch_to_sw_timer(vcpu);
2818                 /*
2819                  * On a host with synchronized TSC, there is no need to update
2820                  * kvmclock on vcpu->cpu migration
2821                  */
2822                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2823                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2824                 if (vcpu->cpu != cpu)
2825                         kvm_migrate_timers(vcpu);
2826                 vcpu->cpu = cpu;
2827         }
2828
2829         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2830 }
2831
2832 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2833 {
2834         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2835                 return;
2836
2837         vcpu->arch.st.steal.preempted = 1;
2838
2839         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2840                         &vcpu->arch.st.steal.preempted,
2841                         offsetof(struct kvm_steal_time, preempted),
2842                         sizeof(vcpu->arch.st.steal.preempted));
2843 }
2844
2845 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2846 {
2847         int idx;
2848         /*
2849          * Disable page faults because we're in atomic context here.
2850          * kvm_write_guest_offset_cached() would call might_fault()
2851          * that relies on pagefault_disable() to tell if there's a
2852          * bug. NOTE: the write to guest memory may not go through if
2853          * during postcopy live migration or if there's heavy guest
2854          * paging.
2855          */
2856         pagefault_disable();
2857         /*
2858          * kvm_memslots() will be called by
2859          * kvm_write_guest_offset_cached() so take the srcu lock.
2860          */
2861         idx = srcu_read_lock(&vcpu->kvm->srcu);
2862         kvm_steal_time_set_preempted(vcpu);
2863         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2864         pagefault_enable();
2865         kvm_x86_ops->vcpu_put(vcpu);
2866         kvm_put_guest_fpu(vcpu);
2867         vcpu->arch.last_host_tsc = rdtsc();
2868 }
2869
2870 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2871                                     struct kvm_lapic_state *s)
2872 {
2873         if (vcpu->arch.apicv_active)
2874                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2875
2876         return kvm_apic_get_state(vcpu, s);
2877 }
2878
2879 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2880                                     struct kvm_lapic_state *s)
2881 {
2882         int r;
2883
2884         r = kvm_apic_set_state(vcpu, s);
2885         if (r)
2886                 return r;
2887         update_cr8_intercept(vcpu);
2888
2889         return 0;
2890 }
2891
2892 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2893 {
2894         return (!lapic_in_kernel(vcpu) ||
2895                 kvm_apic_accept_pic_intr(vcpu));
2896 }
2897
2898 /*
2899  * if userspace requested an interrupt window, check that the
2900  * interrupt window is open.
2901  *
2902  * No need to exit to userspace if we already have an interrupt queued.
2903  */
2904 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2905 {
2906         return kvm_arch_interrupt_allowed(vcpu) &&
2907                 !kvm_cpu_has_interrupt(vcpu) &&
2908                 !kvm_event_needs_reinjection(vcpu) &&
2909                 kvm_cpu_accept_dm_intr(vcpu);
2910 }
2911
2912 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2913                                     struct kvm_interrupt *irq)
2914 {
2915         if (irq->irq >= KVM_NR_INTERRUPTS)
2916                 return -EINVAL;
2917
2918         if (!irqchip_in_kernel(vcpu->kvm)) {
2919                 kvm_queue_interrupt(vcpu, irq->irq, false);
2920                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2921                 return 0;
2922         }
2923
2924         /*
2925          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2926          * fail for in-kernel 8259.
2927          */
2928         if (pic_in_kernel(vcpu->kvm))
2929                 return -ENXIO;
2930
2931         if (vcpu->arch.pending_external_vector != -1)
2932                 return -EEXIST;
2933
2934         vcpu->arch.pending_external_vector = irq->irq;
2935         kvm_make_request(KVM_REQ_EVENT, vcpu);
2936         return 0;
2937 }
2938
2939 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2940 {
2941         kvm_inject_nmi(vcpu);
2942
2943         return 0;
2944 }
2945
2946 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2947 {
2948         kvm_make_request(KVM_REQ_SMI, vcpu);
2949
2950         return 0;
2951 }
2952
2953 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2954                                            struct kvm_tpr_access_ctl *tac)
2955 {
2956         if (tac->flags)
2957                 return -EINVAL;
2958         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2959         return 0;
2960 }
2961
2962 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2963                                         u64 mcg_cap)
2964 {
2965         int r;
2966         unsigned bank_num = mcg_cap & 0xff, bank;
2967
2968         r = -EINVAL;
2969         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2970                 goto out;
2971         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2972                 goto out;
2973         r = 0;
2974         vcpu->arch.mcg_cap = mcg_cap;
2975         /* Init IA32_MCG_CTL to all 1s */
2976         if (mcg_cap & MCG_CTL_P)
2977                 vcpu->arch.mcg_ctl = ~(u64)0;
2978         /* Init IA32_MCi_CTL to all 1s */
2979         for (bank = 0; bank < bank_num; bank++)
2980                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2981
2982         if (kvm_x86_ops->setup_mce)
2983                 kvm_x86_ops->setup_mce(vcpu);
2984 out:
2985         return r;
2986 }
2987
2988 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2989                                       struct kvm_x86_mce *mce)
2990 {
2991         u64 mcg_cap = vcpu->arch.mcg_cap;
2992         unsigned bank_num = mcg_cap & 0xff;
2993         u64 *banks = vcpu->arch.mce_banks;
2994
2995         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2996                 return -EINVAL;
2997         /*
2998          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2999          * reporting is disabled
3000          */
3001         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3002             vcpu->arch.mcg_ctl != ~(u64)0)
3003                 return 0;
3004         banks += 4 * mce->bank;
3005         /*
3006          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3007          * reporting is disabled for the bank
3008          */
3009         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3010                 return 0;
3011         if (mce->status & MCI_STATUS_UC) {
3012                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3013                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3014                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3015                         return 0;
3016                 }
3017                 if (banks[1] & MCI_STATUS_VAL)
3018                         mce->status |= MCI_STATUS_OVER;
3019                 banks[2] = mce->addr;
3020                 banks[3] = mce->misc;
3021                 vcpu->arch.mcg_status = mce->mcg_status;
3022                 banks[1] = mce->status;
3023                 kvm_queue_exception(vcpu, MC_VECTOR);
3024         } else if (!(banks[1] & MCI_STATUS_VAL)
3025                    || !(banks[1] & MCI_STATUS_UC)) {
3026                 if (banks[1] & MCI_STATUS_VAL)
3027                         mce->status |= MCI_STATUS_OVER;
3028                 banks[2] = mce->addr;
3029                 banks[3] = mce->misc;
3030                 banks[1] = mce->status;
3031         } else
3032                 banks[1] |= MCI_STATUS_OVER;
3033         return 0;
3034 }
3035
3036 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3037                                                struct kvm_vcpu_events *events)
3038 {
3039         process_nmi(vcpu);
3040         events->exception.injected =
3041                 vcpu->arch.exception.pending &&
3042                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3043         events->exception.nr = vcpu->arch.exception.nr;
3044         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3045         events->exception.pad = 0;
3046         events->exception.error_code = vcpu->arch.exception.error_code;
3047
3048         events->interrupt.injected =
3049                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3050         events->interrupt.nr = vcpu->arch.interrupt.nr;
3051         events->interrupt.soft = 0;
3052         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3053
3054         events->nmi.injected = vcpu->arch.nmi_injected;
3055         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3056         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3057         events->nmi.pad = 0;
3058
3059         events->sipi_vector = 0; /* never valid when reporting to user space */
3060
3061         events->smi.smm = is_smm(vcpu);
3062         events->smi.pending = vcpu->arch.smi_pending;
3063         events->smi.smm_inside_nmi =
3064                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3065         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3066
3067         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3068                          | KVM_VCPUEVENT_VALID_SHADOW
3069                          | KVM_VCPUEVENT_VALID_SMM);
3070         memset(&events->reserved, 0, sizeof(events->reserved));
3071 }
3072
3073 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3074
3075 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3076                                               struct kvm_vcpu_events *events)
3077 {
3078         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3079                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3080                               | KVM_VCPUEVENT_VALID_SHADOW
3081                               | KVM_VCPUEVENT_VALID_SMM))
3082                 return -EINVAL;
3083
3084         if (events->exception.injected &&
3085             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3086                 return -EINVAL;
3087
3088         process_nmi(vcpu);
3089         vcpu->arch.exception.pending = events->exception.injected;
3090         vcpu->arch.exception.nr = events->exception.nr;
3091         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3092         vcpu->arch.exception.error_code = events->exception.error_code;
3093
3094         vcpu->arch.interrupt.pending = events->interrupt.injected;
3095         vcpu->arch.interrupt.nr = events->interrupt.nr;
3096         vcpu->arch.interrupt.soft = events->interrupt.soft;
3097         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3098                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3099                                                   events->interrupt.shadow);
3100
3101         vcpu->arch.nmi_injected = events->nmi.injected;
3102         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3103                 vcpu->arch.nmi_pending = events->nmi.pending;
3104         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3105
3106         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3107             lapic_in_kernel(vcpu))
3108                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3109
3110         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3111                 u32 hflags = vcpu->arch.hflags;
3112                 if (events->smi.smm)
3113                         hflags |= HF_SMM_MASK;
3114                 else
3115                         hflags &= ~HF_SMM_MASK;
3116                 kvm_set_hflags(vcpu, hflags);
3117
3118                 vcpu->arch.smi_pending = events->smi.pending;
3119                 if (events->smi.smm_inside_nmi)
3120                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3121                 else
3122                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3123                 if (lapic_in_kernel(vcpu)) {
3124                         if (events->smi.latched_init)
3125                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3126                         else
3127                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3128                 }
3129         }
3130
3131         kvm_make_request(KVM_REQ_EVENT, vcpu);
3132
3133         return 0;
3134 }
3135
3136 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3137                                              struct kvm_debugregs *dbgregs)
3138 {
3139         unsigned long val;
3140
3141         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3142         kvm_get_dr(vcpu, 6, &val);
3143         dbgregs->dr6 = val;
3144         dbgregs->dr7 = vcpu->arch.dr7;
3145         dbgregs->flags = 0;
3146         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3147 }
3148
3149 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3150                                             struct kvm_debugregs *dbgregs)
3151 {
3152         if (dbgregs->flags)
3153                 return -EINVAL;
3154
3155         if (dbgregs->dr6 & ~0xffffffffull)
3156                 return -EINVAL;
3157         if (dbgregs->dr7 & ~0xffffffffull)
3158                 return -EINVAL;
3159
3160         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3161         kvm_update_dr0123(vcpu);
3162         vcpu->arch.dr6 = dbgregs->dr6;
3163         kvm_update_dr6(vcpu);
3164         vcpu->arch.dr7 = dbgregs->dr7;
3165         kvm_update_dr7(vcpu);
3166
3167         return 0;
3168 }
3169
3170 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3171
3172 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3173 {
3174         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3175         u64 xstate_bv = xsave->header.xfeatures;
3176         u64 valid;
3177
3178         /*
3179          * Copy legacy XSAVE area, to avoid complications with CPUID
3180          * leaves 0 and 1 in the loop below.
3181          */
3182         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3183
3184         /* Set XSTATE_BV */
3185         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3186         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3187
3188         /*
3189          * Copy each region from the possibly compacted offset to the
3190          * non-compacted offset.
3191          */
3192         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3193         while (valid) {
3194                 u64 feature = valid & -valid;
3195                 int index = fls64(feature) - 1;
3196                 void *src = get_xsave_addr(xsave, feature);
3197
3198                 if (src) {
3199                         u32 size, offset, ecx, edx;
3200                         cpuid_count(XSTATE_CPUID, index,
3201                                     &size, &offset, &ecx, &edx);
3202                         memcpy(dest + offset, src, size);
3203                 }
3204
3205                 valid -= feature;
3206         }
3207 }
3208
3209 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3210 {
3211         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3212         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3213         u64 valid;
3214
3215         /*
3216          * Copy legacy XSAVE area, to avoid complications with CPUID
3217          * leaves 0 and 1 in the loop below.
3218          */
3219         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3220
3221         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3222         xsave->header.xfeatures = xstate_bv;
3223         if (boot_cpu_has(X86_FEATURE_XSAVES))
3224                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3225
3226         /*
3227          * Copy each region from the non-compacted offset to the
3228          * possibly compacted offset.
3229          */
3230         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3231         while (valid) {
3232                 u64 feature = valid & -valid;
3233                 int index = fls64(feature) - 1;
3234                 void *dest = get_xsave_addr(xsave, feature);
3235
3236                 if (dest) {
3237                         u32 size, offset, ecx, edx;
3238                         cpuid_count(XSTATE_CPUID, index,
3239                                     &size, &offset, &ecx, &edx);
3240                         memcpy(dest, src + offset, size);
3241                 }
3242
3243                 valid -= feature;
3244         }
3245 }
3246
3247 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3248                                          struct kvm_xsave *guest_xsave)
3249 {
3250         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3251                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3252                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3253         } else {
3254                 memcpy(guest_xsave->region,
3255                         &vcpu->arch.guest_fpu.state.fxsave,
3256                         sizeof(struct fxregs_state));
3257                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3258                         XFEATURE_MASK_FPSSE;
3259         }
3260 }
3261
3262 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3263                                         struct kvm_xsave *guest_xsave)
3264 {
3265         u64 xstate_bv =
3266                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3267
3268         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3269                 /*
3270                  * Here we allow setting states that are not present in
3271                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3272                  * with old userspace.
3273                  */
3274                 if (xstate_bv & ~kvm_supported_xcr0())
3275                         return -EINVAL;
3276                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3277         } else {
3278                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3279                         return -EINVAL;
3280                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3281                         guest_xsave->region, sizeof(struct fxregs_state));
3282         }
3283         return 0;
3284 }
3285
3286 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3287                                         struct kvm_xcrs *guest_xcrs)
3288 {
3289         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3290                 guest_xcrs->nr_xcrs = 0;
3291                 return;
3292         }
3293
3294         guest_xcrs->nr_xcrs = 1;
3295         guest_xcrs->flags = 0;
3296         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3297         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3298 }
3299
3300 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3301                                        struct kvm_xcrs *guest_xcrs)
3302 {
3303         int i, r = 0;
3304
3305         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3306                 return -EINVAL;
3307
3308         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3309                 return -EINVAL;
3310
3311         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3312                 /* Only support XCR0 currently */
3313                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3314                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3315                                 guest_xcrs->xcrs[i].value);
3316                         break;
3317                 }
3318         if (r)
3319                 r = -EINVAL;
3320         return r;
3321 }
3322
3323 /*
3324  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3325  * stopped by the hypervisor.  This function will be called from the host only.
3326  * EINVAL is returned when the host attempts to set the flag for a guest that
3327  * does not support pv clocks.
3328  */
3329 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3330 {
3331         if (!vcpu->arch.pv_time_enabled)
3332                 return -EINVAL;
3333         vcpu->arch.pvclock_set_guest_stopped_request = true;
3334         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3335         return 0;
3336 }
3337
3338 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3339                                      struct kvm_enable_cap *cap)
3340 {
3341         if (cap->flags)
3342                 return -EINVAL;
3343
3344         switch (cap->cap) {
3345         case KVM_CAP_HYPERV_SYNIC:
3346                 if (!irqchip_in_kernel(vcpu->kvm))
3347                         return -EINVAL;
3348                 return kvm_hv_activate_synic(vcpu);
3349         default:
3350                 return -EINVAL;
3351         }
3352 }
3353
3354 long kvm_arch_vcpu_ioctl(struct file *filp,
3355                          unsigned int ioctl, unsigned long arg)
3356 {
3357         struct kvm_vcpu *vcpu = filp->private_data;
3358         void __user *argp = (void __user *)arg;
3359         int r;
3360         union {
3361                 struct kvm_lapic_state *lapic;
3362                 struct kvm_xsave *xsave;
3363                 struct kvm_xcrs *xcrs;
3364                 void *buffer;
3365         } u;
3366
3367         u.buffer = NULL;
3368         switch (ioctl) {
3369         case KVM_GET_LAPIC: {
3370                 r = -EINVAL;
3371                 if (!lapic_in_kernel(vcpu))
3372                         goto out;
3373                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3374
3375                 r = -ENOMEM;
3376                 if (!u.lapic)
3377                         goto out;
3378                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3379                 if (r)
3380                         goto out;
3381                 r = -EFAULT;
3382                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3383                         goto out;
3384                 r = 0;
3385                 break;
3386         }
3387         case KVM_SET_LAPIC: {
3388                 r = -EINVAL;
3389                 if (!lapic_in_kernel(vcpu))
3390                         goto out;
3391                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3392                 if (IS_ERR(u.lapic))
3393                         return PTR_ERR(u.lapic);
3394
3395                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3396                 break;
3397         }
3398         case KVM_INTERRUPT: {
3399                 struct kvm_interrupt irq;
3400
3401                 r = -EFAULT;
3402                 if (copy_from_user(&irq, argp, sizeof irq))
3403                         goto out;
3404                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3405                 break;
3406         }
3407         case KVM_NMI: {
3408                 r = kvm_vcpu_ioctl_nmi(vcpu);
3409                 break;
3410         }
3411         case KVM_SMI: {
3412                 r = kvm_vcpu_ioctl_smi(vcpu);
3413                 break;
3414         }
3415         case KVM_SET_CPUID: {
3416                 struct kvm_cpuid __user *cpuid_arg = argp;
3417                 struct kvm_cpuid cpuid;
3418
3419                 r = -EFAULT;
3420                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3421                         goto out;
3422                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3423                 break;
3424         }
3425         case KVM_SET_CPUID2: {
3426                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3427                 struct kvm_cpuid2 cpuid;
3428
3429                 r = -EFAULT;
3430                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3431                         goto out;
3432                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3433                                               cpuid_arg->entries);
3434                 break;
3435         }
3436         case KVM_GET_CPUID2: {
3437                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3438                 struct kvm_cpuid2 cpuid;
3439
3440                 r = -EFAULT;
3441                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3442                         goto out;
3443                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3444                                               cpuid_arg->entries);
3445                 if (r)
3446                         goto out;
3447                 r = -EFAULT;
3448                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3449                         goto out;
3450                 r = 0;
3451                 break;
3452         }
3453         case KVM_GET_MSRS:
3454                 r = msr_io(vcpu, argp, do_get_msr, 1);
3455                 break;
3456         case KVM_SET_MSRS:
3457                 r = msr_io(vcpu, argp, do_set_msr, 0);
3458                 break;
3459         case KVM_TPR_ACCESS_REPORTING: {
3460                 struct kvm_tpr_access_ctl tac;
3461
3462                 r = -EFAULT;
3463                 if (copy_from_user(&tac, argp, sizeof tac))
3464                         goto out;
3465                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3466                 if (r)
3467                         goto out;
3468                 r = -EFAULT;
3469                 if (copy_to_user(argp, &tac, sizeof tac))
3470                         goto out;
3471                 r = 0;
3472                 break;
3473         };
3474         case KVM_SET_VAPIC_ADDR: {
3475                 struct kvm_vapic_addr va;
3476                 int idx;
3477
3478                 r = -EINVAL;
3479                 if (!lapic_in_kernel(vcpu))
3480                         goto out;
3481                 r = -EFAULT;
3482                 if (copy_from_user(&va, argp, sizeof va))
3483                         goto out;
3484                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3485                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3486                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3487                 break;
3488         }
3489         case KVM_X86_SETUP_MCE: {
3490                 u64 mcg_cap;
3491
3492                 r = -EFAULT;
3493                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3494                         goto out;
3495                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3496                 break;
3497         }
3498         case KVM_X86_SET_MCE: {
3499                 struct kvm_x86_mce mce;
3500
3501                 r = -EFAULT;
3502                 if (copy_from_user(&mce, argp, sizeof mce))
3503                         goto out;
3504                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3505                 break;
3506         }
3507         case KVM_GET_VCPU_EVENTS: {
3508                 struct kvm_vcpu_events events;
3509
3510                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3511
3512                 r = -EFAULT;
3513                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3514                         break;
3515                 r = 0;
3516                 break;
3517         }
3518         case KVM_SET_VCPU_EVENTS: {
3519                 struct kvm_vcpu_events events;
3520
3521                 r = -EFAULT;
3522                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3523                         break;
3524
3525                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3526                 break;
3527         }
3528         case KVM_GET_DEBUGREGS: {
3529                 struct kvm_debugregs dbgregs;
3530
3531                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3532
3533                 r = -EFAULT;
3534                 if (copy_to_user(argp, &dbgregs,
3535                                  sizeof(struct kvm_debugregs)))
3536                         break;
3537                 r = 0;
3538                 break;
3539         }
3540         case KVM_SET_DEBUGREGS: {
3541                 struct kvm_debugregs dbgregs;
3542
3543                 r = -EFAULT;
3544                 if (copy_from_user(&dbgregs, argp,
3545                                    sizeof(struct kvm_debugregs)))
3546                         break;
3547
3548                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3549                 break;
3550         }
3551         case KVM_GET_XSAVE: {
3552                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3553                 r = -ENOMEM;
3554                 if (!u.xsave)
3555                         break;
3556
3557                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3558
3559                 r = -EFAULT;
3560                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3561                         break;
3562                 r = 0;
3563                 break;
3564         }
3565         case KVM_SET_XSAVE: {
3566                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3567                 if (IS_ERR(u.xsave))
3568                         return PTR_ERR(u.xsave);
3569
3570                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3571                 break;
3572         }
3573         case KVM_GET_XCRS: {
3574                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3575                 r = -ENOMEM;
3576                 if (!u.xcrs)
3577                         break;
3578
3579                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3580
3581                 r = -EFAULT;
3582                 if (copy_to_user(argp, u.xcrs,
3583                                  sizeof(struct kvm_xcrs)))
3584                         break;
3585                 r = 0;
3586                 break;
3587         }
3588         case KVM_SET_XCRS: {
3589                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3590                 if (IS_ERR(u.xcrs))
3591                         return PTR_ERR(u.xcrs);
3592
3593                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3594                 break;
3595         }
3596         case KVM_SET_TSC_KHZ: {
3597                 u32 user_tsc_khz;
3598
3599                 r = -EINVAL;
3600                 user_tsc_khz = (u32)arg;
3601
3602                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3603                         goto out;
3604
3605                 if (user_tsc_khz == 0)
3606                         user_tsc_khz = tsc_khz;
3607
3608                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3609                         r = 0;
3610
3611                 goto out;
3612         }
3613         case KVM_GET_TSC_KHZ: {
3614                 r = vcpu->arch.virtual_tsc_khz;
3615                 goto out;
3616         }
3617         case KVM_KVMCLOCK_CTRL: {
3618                 r = kvm_set_guest_paused(vcpu);
3619                 goto out;
3620         }
3621         case KVM_ENABLE_CAP: {
3622                 struct kvm_enable_cap cap;
3623
3624                 r = -EFAULT;
3625                 if (copy_from_user(&cap, argp, sizeof(cap)))
3626                         goto out;
3627                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3628                 break;
3629         }
3630         default:
3631                 r = -EINVAL;
3632         }
3633 out:
3634         kfree(u.buffer);
3635         return r;
3636 }
3637
3638 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3639 {
3640         return VM_FAULT_SIGBUS;
3641 }
3642
3643 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3644 {
3645         int ret;
3646
3647         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3648                 return -EINVAL;
3649         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3650         return ret;
3651 }
3652
3653 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3654                                               u64 ident_addr)
3655 {
3656         kvm->arch.ept_identity_map_addr = ident_addr;
3657         return 0;
3658 }
3659
3660 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3661                                           u32 kvm_nr_mmu_pages)
3662 {
3663         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3664                 return -EINVAL;
3665
3666         mutex_lock(&kvm->slots_lock);
3667
3668         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3669         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3670
3671         mutex_unlock(&kvm->slots_lock);
3672         return 0;
3673 }
3674
3675 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3676 {
3677         return kvm->arch.n_max_mmu_pages;
3678 }
3679
3680 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3681 {
3682         int r;
3683
3684         r = 0;
3685         switch (chip->chip_id) {
3686         case KVM_IRQCHIP_PIC_MASTER:
3687                 memcpy(&chip->chip.pic,
3688                         &pic_irqchip(kvm)->pics[0],
3689                         sizeof(struct kvm_pic_state));
3690                 break;
3691         case KVM_IRQCHIP_PIC_SLAVE:
3692                 memcpy(&chip->chip.pic,
3693                         &pic_irqchip(kvm)->pics[1],
3694                         sizeof(struct kvm_pic_state));
3695                 break;
3696         case KVM_IRQCHIP_IOAPIC:
3697                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3698                 break;
3699         default:
3700                 r = -EINVAL;
3701                 break;
3702         }
3703         return r;
3704 }
3705
3706 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3707 {
3708         int r;
3709
3710         r = 0;
3711         switch (chip->chip_id) {
3712         case KVM_IRQCHIP_PIC_MASTER:
3713                 spin_lock(&pic_irqchip(kvm)->lock);
3714                 memcpy(&pic_irqchip(kvm)->pics[0],
3715                         &chip->chip.pic,
3716                         sizeof(struct kvm_pic_state));
3717                 spin_unlock(&pic_irqchip(kvm)->lock);
3718                 break;
3719         case KVM_IRQCHIP_PIC_SLAVE:
3720                 spin_lock(&pic_irqchip(kvm)->lock);
3721                 memcpy(&pic_irqchip(kvm)->pics[1],
3722                         &chip->chip.pic,
3723                         sizeof(struct kvm_pic_state));
3724                 spin_unlock(&pic_irqchip(kvm)->lock);
3725                 break;
3726         case KVM_IRQCHIP_IOAPIC:
3727                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3728                 break;
3729         default:
3730                 r = -EINVAL;
3731                 break;
3732         }
3733         kvm_pic_update_irq(pic_irqchip(kvm));
3734         return r;
3735 }
3736
3737 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3738 {
3739         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3740
3741         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3742
3743         mutex_lock(&kps->lock);
3744         memcpy(ps, &kps->channels, sizeof(*ps));
3745         mutex_unlock(&kps->lock);
3746         return 0;
3747 }
3748
3749 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3750 {
3751         int i;
3752         struct kvm_pit *pit = kvm->arch.vpit;
3753
3754         mutex_lock(&pit->pit_state.lock);
3755         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3756         for (i = 0; i < 3; i++)
3757                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3758         mutex_unlock(&pit->pit_state.lock);
3759         return 0;
3760 }
3761
3762 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3763 {
3764         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3765         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3766                 sizeof(ps->channels));
3767         ps->flags = kvm->arch.vpit->pit_state.flags;
3768         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3769         memset(&ps->reserved, 0, sizeof(ps->reserved));
3770         return 0;
3771 }
3772
3773 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3774 {
3775         int start = 0;
3776         int i;
3777         u32 prev_legacy, cur_legacy;
3778         struct kvm_pit *pit = kvm->arch.vpit;
3779
3780         mutex_lock(&pit->pit_state.lock);
3781         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3782         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3783         if (!prev_legacy && cur_legacy)
3784                 start = 1;
3785         memcpy(&pit->pit_state.channels, &ps->channels,
3786                sizeof(pit->pit_state.channels));
3787         pit->pit_state.flags = ps->flags;
3788         for (i = 0; i < 3; i++)
3789                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3790                                    start && i == 0);
3791         mutex_unlock(&pit->pit_state.lock);
3792         return 0;
3793 }
3794
3795 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3796                                  struct kvm_reinject_control *control)
3797 {
3798         struct kvm_pit *pit = kvm->arch.vpit;
3799
3800         if (!pit)
3801                 return -ENXIO;
3802
3803         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3804          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3805          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3806          */
3807         mutex_lock(&pit->pit_state.lock);
3808         kvm_pit_set_reinject(pit, control->pit_reinject);
3809         mutex_unlock(&pit->pit_state.lock);
3810
3811         return 0;
3812 }
3813
3814 /**
3815  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3816  * @kvm: kvm instance
3817  * @log: slot id and address to which we copy the log
3818  *
3819  * Steps 1-4 below provide general overview of dirty page logging. See
3820  * kvm_get_dirty_log_protect() function description for additional details.
3821  *
3822  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3823  * always flush the TLB (step 4) even if previous step failed  and the dirty
3824  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3825  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3826  * writes will be marked dirty for next log read.
3827  *
3828  *   1. Take a snapshot of the bit and clear it if needed.
3829  *   2. Write protect the corresponding page.
3830  *   3. Copy the snapshot to the userspace.
3831  *   4. Flush TLB's if needed.
3832  */
3833 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3834 {
3835         bool is_dirty = false;
3836         int r;
3837
3838         mutex_lock(&kvm->slots_lock);
3839
3840         /*
3841          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3842          */
3843         if (kvm_x86_ops->flush_log_dirty)
3844                 kvm_x86_ops->flush_log_dirty(kvm);
3845
3846         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3847
3848         /*
3849          * All the TLBs can be flushed out of mmu lock, see the comments in
3850          * kvm_mmu_slot_remove_write_access().
3851          */
3852         lockdep_assert_held(&kvm->slots_lock);
3853         if (is_dirty)
3854                 kvm_flush_remote_tlbs(kvm);
3855
3856         mutex_unlock(&kvm->slots_lock);
3857         return r;
3858 }
3859
3860 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3861                         bool line_status)
3862 {
3863         if (!irqchip_in_kernel(kvm))
3864                 return -ENXIO;
3865
3866         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3867                                         irq_event->irq, irq_event->level,
3868                                         line_status);
3869         return 0;
3870 }
3871
3872 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3873                                    struct kvm_enable_cap *cap)
3874 {
3875         int r;
3876
3877         if (cap->flags)
3878                 return -EINVAL;
3879
3880         switch (cap->cap) {
3881         case KVM_CAP_DISABLE_QUIRKS:
3882                 kvm->arch.disabled_quirks = cap->args[0];
3883                 r = 0;
3884                 break;
3885         case KVM_CAP_SPLIT_IRQCHIP: {
3886                 mutex_lock(&kvm->lock);
3887                 r = -EINVAL;
3888                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3889                         goto split_irqchip_unlock;
3890                 r = -EEXIST;
3891                 if (irqchip_in_kernel(kvm))
3892                         goto split_irqchip_unlock;
3893                 if (kvm->created_vcpus)
3894                         goto split_irqchip_unlock;
3895                 r = kvm_setup_empty_irq_routing(kvm);
3896                 if (r)
3897                         goto split_irqchip_unlock;
3898                 /* Pairs with irqchip_in_kernel. */
3899                 smp_wmb();
3900                 kvm->arch.irqchip_split = true;
3901                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3902                 r = 0;
3903 split_irqchip_unlock:
3904                 mutex_unlock(&kvm->lock);
3905                 break;
3906         }
3907         case KVM_CAP_X2APIC_API:
3908                 r = -EINVAL;
3909                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3910                         break;
3911
3912                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3913                         kvm->arch.x2apic_format = true;
3914                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3915                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3916
3917                 r = 0;
3918                 break;
3919         default:
3920                 r = -EINVAL;
3921                 break;
3922         }
3923         return r;
3924 }
3925
3926 long kvm_arch_vm_ioctl(struct file *filp,
3927                        unsigned int ioctl, unsigned long arg)
3928 {
3929         struct kvm *kvm = filp->private_data;
3930         void __user *argp = (void __user *)arg;
3931         int r = -ENOTTY;
3932         /*
3933          * This union makes it completely explicit to gcc-3.x
3934          * that these two variables' stack usage should be
3935          * combined, not added together.
3936          */
3937         union {
3938                 struct kvm_pit_state ps;
3939                 struct kvm_pit_state2 ps2;
3940                 struct kvm_pit_config pit_config;
3941         } u;
3942
3943         switch (ioctl) {
3944         case KVM_SET_TSS_ADDR:
3945                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3946                 break;
3947         case KVM_SET_IDENTITY_MAP_ADDR: {
3948                 u64 ident_addr;
3949
3950                 r = -EFAULT;
3951                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3952                         goto out;
3953                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3954                 break;
3955         }
3956         case KVM_SET_NR_MMU_PAGES:
3957                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3958                 break;
3959         case KVM_GET_NR_MMU_PAGES:
3960                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3961                 break;
3962         case KVM_CREATE_IRQCHIP: {
3963                 struct kvm_pic *vpic;
3964
3965                 mutex_lock(&kvm->lock);
3966                 r = -EEXIST;
3967                 if (kvm->arch.vpic)
3968                         goto create_irqchip_unlock;
3969                 r = -EINVAL;
3970                 if (kvm->created_vcpus)
3971                         goto create_irqchip_unlock;
3972                 r = -ENOMEM;
3973                 vpic = kvm_create_pic(kvm);
3974                 if (vpic) {
3975                         r = kvm_ioapic_init(kvm);
3976                         if (r) {
3977                                 mutex_lock(&kvm->slots_lock);
3978                                 kvm_destroy_pic(vpic);
3979                                 mutex_unlock(&kvm->slots_lock);
3980                                 goto create_irqchip_unlock;
3981                         }
3982                 } else
3983                         goto create_irqchip_unlock;
3984                 r = kvm_setup_default_irq_routing(kvm);
3985                 if (r) {
3986                         mutex_lock(&kvm->slots_lock);
3987                         mutex_lock(&kvm->irq_lock);
3988                         kvm_ioapic_destroy(kvm);
3989                         kvm_destroy_pic(vpic);
3990                         mutex_unlock(&kvm->irq_lock);
3991                         mutex_unlock(&kvm->slots_lock);
3992                         goto create_irqchip_unlock;
3993                 }
3994                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3995                 smp_wmb();
3996                 kvm->arch.vpic = vpic;
3997         create_irqchip_unlock:
3998                 mutex_unlock(&kvm->lock);
3999                 break;
4000         }
4001         case KVM_CREATE_PIT:
4002                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4003                 goto create_pit;
4004         case KVM_CREATE_PIT2:
4005                 r = -EFAULT;
4006                 if (copy_from_user(&u.pit_config, argp,
4007                                    sizeof(struct kvm_pit_config)))
4008                         goto out;
4009         create_pit:
4010                 mutex_lock(&kvm->lock);
4011                 r = -EEXIST;
4012                 if (kvm->arch.vpit)
4013                         goto create_pit_unlock;
4014                 r = -ENOMEM;
4015                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4016                 if (kvm->arch.vpit)
4017                         r = 0;
4018         create_pit_unlock:
4019                 mutex_unlock(&kvm->lock);
4020                 break;
4021         case KVM_GET_IRQCHIP: {
4022                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4023                 struct kvm_irqchip *chip;
4024
4025                 chip = memdup_user(argp, sizeof(*chip));
4026                 if (IS_ERR(chip)) {
4027                         r = PTR_ERR(chip);
4028                         goto out;
4029                 }
4030
4031                 r = -ENXIO;
4032                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4033                         goto get_irqchip_out;
4034                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4035                 if (r)
4036                         goto get_irqchip_out;
4037                 r = -EFAULT;
4038                 if (copy_to_user(argp, chip, sizeof *chip))
4039                         goto get_irqchip_out;
4040                 r = 0;
4041         get_irqchip_out:
4042                 kfree(chip);
4043                 break;
4044         }
4045         case KVM_SET_IRQCHIP: {
4046                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4047                 struct kvm_irqchip *chip;
4048
4049                 chip = memdup_user(argp, sizeof(*chip));
4050                 if (IS_ERR(chip)) {
4051                         r = PTR_ERR(chip);
4052                         goto out;
4053                 }
4054
4055                 r = -ENXIO;
4056                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
4057                         goto set_irqchip_out;
4058                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4059                 if (r)
4060                         goto set_irqchip_out;
4061                 r = 0;
4062         set_irqchip_out:
4063                 kfree(chip);
4064                 break;
4065         }
4066         case KVM_GET_PIT: {
4067                 r = -EFAULT;
4068                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4069                         goto out;
4070                 r = -ENXIO;
4071                 if (!kvm->arch.vpit)
4072                         goto out;
4073                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4074                 if (r)
4075                         goto out;
4076                 r = -EFAULT;
4077                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4078                         goto out;
4079                 r = 0;
4080                 break;
4081         }
4082         case KVM_SET_PIT: {
4083                 r = -EFAULT;
4084                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4085                         goto out;
4086                 r = -ENXIO;
4087                 if (!kvm->arch.vpit)
4088                         goto out;
4089                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4090                 break;
4091         }
4092         case KVM_GET_PIT2: {
4093                 r = -ENXIO;
4094                 if (!kvm->arch.vpit)
4095                         goto out;
4096                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4097                 if (r)
4098                         goto out;
4099                 r = -EFAULT;
4100                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4101                         goto out;
4102                 r = 0;
4103                 break;
4104         }
4105         case KVM_SET_PIT2: {
4106                 r = -EFAULT;
4107                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4108                         goto out;
4109                 r = -ENXIO;
4110                 if (!kvm->arch.vpit)
4111                         goto out;
4112                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4113                 break;
4114         }
4115         case KVM_REINJECT_CONTROL: {
4116                 struct kvm_reinject_control control;
4117                 r =  -EFAULT;
4118                 if (copy_from_user(&control, argp, sizeof(control)))
4119                         goto out;
4120                 r = kvm_vm_ioctl_reinject(kvm, &control);
4121                 break;
4122         }
4123         case KVM_SET_BOOT_CPU_ID:
4124                 r = 0;
4125                 mutex_lock(&kvm->lock);
4126                 if (kvm->created_vcpus)
4127                         r = -EBUSY;
4128                 else
4129                         kvm->arch.bsp_vcpu_id = arg;
4130                 mutex_unlock(&kvm->lock);
4131                 break;
4132         case KVM_XEN_HVM_CONFIG: {
4133                 r = -EFAULT;
4134                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4135                                    sizeof(struct kvm_xen_hvm_config)))
4136                         goto out;
4137                 r = -EINVAL;
4138                 if (kvm->arch.xen_hvm_config.flags)
4139                         goto out;
4140                 r = 0;
4141                 break;
4142         }
4143         case KVM_SET_CLOCK: {
4144                 struct kvm_clock_data user_ns;
4145                 u64 now_ns;
4146
4147                 r = -EFAULT;
4148                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4149                         goto out;
4150
4151                 r = -EINVAL;
4152                 if (user_ns.flags)
4153                         goto out;
4154
4155                 r = 0;
4156                 local_irq_disable();
4157                 now_ns = __get_kvmclock_ns(kvm);
4158                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4159                 local_irq_enable();
4160                 kvm_gen_update_masterclock(kvm);
4161                 break;
4162         }
4163         case KVM_GET_CLOCK: {
4164                 struct kvm_clock_data user_ns;
4165                 u64 now_ns;
4166
4167                 local_irq_disable();
4168                 now_ns = __get_kvmclock_ns(kvm);
4169                 user_ns.clock = now_ns;
4170                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4171                 local_irq_enable();
4172                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4173
4174                 r = -EFAULT;
4175                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4176                         goto out;
4177                 r = 0;
4178                 break;
4179         }
4180         case KVM_ENABLE_CAP: {
4181                 struct kvm_enable_cap cap;
4182
4183                 r = -EFAULT;
4184                 if (copy_from_user(&cap, argp, sizeof(cap)))
4185                         goto out;
4186                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4187                 break;
4188         }
4189         default:
4190                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4191         }
4192 out:
4193         return r;
4194 }
4195
4196 static void kvm_init_msr_list(void)
4197 {
4198         u32 dummy[2];
4199         unsigned i, j;
4200
4201         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4202                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4203                         continue;
4204
4205                 /*
4206                  * Even MSRs that are valid in the host may not be exposed
4207                  * to the guests in some cases.
4208                  */
4209                 switch (msrs_to_save[i]) {
4210                 case MSR_IA32_BNDCFGS:
4211                         if (!kvm_x86_ops->mpx_supported())
4212                                 continue;
4213                         break;
4214                 case MSR_TSC_AUX:
4215                         if (!kvm_x86_ops->rdtscp_supported())
4216                                 continue;
4217                         break;
4218                 default:
4219                         break;
4220                 }
4221
4222                 if (j < i)
4223                         msrs_to_save[j] = msrs_to_save[i];
4224                 j++;
4225         }
4226         num_msrs_to_save = j;
4227
4228         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4229                 switch (emulated_msrs[i]) {
4230                 case MSR_IA32_SMBASE:
4231                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4232                                 continue;
4233                         break;
4234                 default:
4235                         break;
4236                 }
4237
4238                 if (j < i)
4239                         emulated_msrs[j] = emulated_msrs[i];
4240                 j++;
4241         }
4242         num_emulated_msrs = j;
4243 }
4244
4245 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4246                            const void *v)
4247 {
4248         int handled = 0;
4249         int n;
4250
4251         do {
4252                 n = min(len, 8);
4253                 if (!(lapic_in_kernel(vcpu) &&
4254                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4255                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4256                         break;
4257                 handled += n;
4258                 addr += n;
4259                 len -= n;
4260                 v += n;
4261         } while (len);
4262
4263         return handled;
4264 }
4265
4266 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4267 {
4268         int handled = 0;
4269         int n;
4270
4271         do {
4272                 n = min(len, 8);
4273                 if (!(lapic_in_kernel(vcpu) &&
4274                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4275                                          addr, n, v))
4276                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4277                         break;
4278                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4279                 handled += n;
4280                 addr += n;
4281                 len -= n;
4282                 v += n;
4283         } while (len);
4284
4285         return handled;
4286 }
4287
4288 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4289                         struct kvm_segment *var, int seg)
4290 {
4291         kvm_x86_ops->set_segment(vcpu, var, seg);
4292 }
4293
4294 void kvm_get_segment(struct kvm_vcpu *vcpu,
4295                      struct kvm_segment *var, int seg)
4296 {
4297         kvm_x86_ops->get_segment(vcpu, var, seg);
4298 }
4299
4300 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4301                            struct x86_exception *exception)
4302 {
4303         gpa_t t_gpa;
4304
4305         BUG_ON(!mmu_is_nested(vcpu));
4306
4307         /* NPT walks are always user-walks */
4308         access |= PFERR_USER_MASK;
4309         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4310
4311         return t_gpa;
4312 }
4313
4314 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4315                               struct x86_exception *exception)
4316 {
4317         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4318         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4319 }
4320
4321  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4322                                 struct x86_exception *exception)
4323 {
4324         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4325         access |= PFERR_FETCH_MASK;
4326         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4327 }
4328
4329 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4330                                struct x86_exception *exception)
4331 {
4332         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4333         access |= PFERR_WRITE_MASK;
4334         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4335 }
4336
4337 /* uses this to access any guest's mapped memory without checking CPL */
4338 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4339                                 struct x86_exception *exception)
4340 {
4341         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4342 }
4343
4344 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4345                                       struct kvm_vcpu *vcpu, u32 access,
4346                                       struct x86_exception *exception)
4347 {
4348         void *data = val;
4349         int r = X86EMUL_CONTINUE;
4350
4351         while (bytes) {
4352                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4353                                                             exception);
4354                 unsigned offset = addr & (PAGE_SIZE-1);
4355                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4356                 int ret;
4357
4358                 if (gpa == UNMAPPED_GVA)
4359                         return X86EMUL_PROPAGATE_FAULT;
4360                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4361                                                offset, toread);
4362                 if (ret < 0) {
4363                         r = X86EMUL_IO_NEEDED;
4364                         goto out;
4365                 }
4366
4367                 bytes -= toread;
4368                 data += toread;
4369                 addr += toread;
4370         }
4371 out:
4372         return r;
4373 }
4374
4375 /* used for instruction fetching */
4376 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4377                                 gva_t addr, void *val, unsigned int bytes,
4378                                 struct x86_exception *exception)
4379 {
4380         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4381         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4382         unsigned offset;
4383         int ret;
4384
4385         /* Inline kvm_read_guest_virt_helper for speed.  */
4386         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4387                                                     exception);
4388         if (unlikely(gpa == UNMAPPED_GVA))
4389                 return X86EMUL_PROPAGATE_FAULT;
4390
4391         offset = addr & (PAGE_SIZE-1);
4392         if (WARN_ON(offset + bytes > PAGE_SIZE))
4393                 bytes = (unsigned)PAGE_SIZE - offset;
4394         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4395                                        offset, bytes);
4396         if (unlikely(ret < 0))
4397                 return X86EMUL_IO_NEEDED;
4398
4399         return X86EMUL_CONTINUE;
4400 }
4401
4402 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4403                                gva_t addr, void *val, unsigned int bytes,
4404                                struct x86_exception *exception)
4405 {
4406         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4407         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4408
4409         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4410                                           exception);
4411 }
4412 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4413
4414 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4415                                       gva_t addr, void *val, unsigned int bytes,
4416                                       struct x86_exception *exception)
4417 {
4418         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4419         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4420 }
4421
4422 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4423                 unsigned long addr, void *val, unsigned int bytes)
4424 {
4425         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4426         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4427
4428         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4429 }
4430
4431 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4432                                        gva_t addr, void *val,
4433                                        unsigned int bytes,
4434                                        struct x86_exception *exception)
4435 {
4436         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4437         void *data = val;
4438         int r = X86EMUL_CONTINUE;
4439
4440         while (bytes) {
4441                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4442                                                              PFERR_WRITE_MASK,
4443                                                              exception);
4444                 unsigned offset = addr & (PAGE_SIZE-1);
4445                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4446                 int ret;
4447
4448                 if (gpa == UNMAPPED_GVA)
4449                         return X86EMUL_PROPAGATE_FAULT;
4450                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4451                 if (ret < 0) {
4452                         r = X86EMUL_IO_NEEDED;
4453                         goto out;
4454                 }
4455
4456                 bytes -= towrite;
4457                 data += towrite;
4458                 addr += towrite;
4459         }
4460 out:
4461         return r;
4462 }
4463 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4464
4465 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4466                                 gpa_t *gpa, struct x86_exception *exception,
4467                                 bool write)
4468 {
4469         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4470                 | (write ? PFERR_WRITE_MASK : 0);
4471
4472         /*
4473          * currently PKRU is only applied to ept enabled guest so
4474          * there is no pkey in EPT page table for L1 guest or EPT
4475          * shadow page table for L2 guest.
4476          */
4477         if (vcpu_match_mmio_gva(vcpu, gva)
4478             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4479                                  vcpu->arch.access, 0, access)) {
4480                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4481                                         (gva & (PAGE_SIZE - 1));
4482                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4483                 return 1;
4484         }
4485
4486         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4487
4488         if (*gpa == UNMAPPED_GVA)
4489                 return -1;
4490
4491         /* For APIC access vmexit */
4492         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4493                 return 1;
4494
4495         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4496                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4497                 return 1;
4498         }
4499
4500         return 0;
4501 }
4502
4503 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4504                         const void *val, int bytes)
4505 {
4506         int ret;
4507
4508         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4509         if (ret < 0)
4510                 return 0;
4511         kvm_page_track_write(vcpu, gpa, val, bytes);
4512         return 1;
4513 }
4514
4515 struct read_write_emulator_ops {
4516         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4517                                   int bytes);
4518         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4519                                   void *val, int bytes);
4520         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4521                                int bytes, void *val);
4522         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4523                                     void *val, int bytes);
4524         bool write;
4525 };
4526
4527 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4528 {
4529         if (vcpu->mmio_read_completed) {
4530                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4531                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4532                 vcpu->mmio_read_completed = 0;
4533                 return 1;
4534         }
4535
4536         return 0;
4537 }
4538
4539 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4540                         void *val, int bytes)
4541 {
4542         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4543 }
4544
4545 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4546                          void *val, int bytes)
4547 {
4548         return emulator_write_phys(vcpu, gpa, val, bytes);
4549 }
4550
4551 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4552 {
4553         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4554         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4555 }
4556
4557 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4558                           void *val, int bytes)
4559 {
4560         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4561         return X86EMUL_IO_NEEDED;
4562 }
4563
4564 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4565                            void *val, int bytes)
4566 {
4567         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4568
4569         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4570         return X86EMUL_CONTINUE;
4571 }
4572
4573 static const struct read_write_emulator_ops read_emultor = {
4574         .read_write_prepare = read_prepare,
4575         .read_write_emulate = read_emulate,
4576         .read_write_mmio = vcpu_mmio_read,
4577         .read_write_exit_mmio = read_exit_mmio,
4578 };
4579
4580 static const struct read_write_emulator_ops write_emultor = {
4581         .read_write_emulate = write_emulate,
4582         .read_write_mmio = write_mmio,
4583         .read_write_exit_mmio = write_exit_mmio,
4584         .write = true,
4585 };
4586
4587 static int emulator_read_write_onepage(unsigned long addr, void *val,
4588                                        unsigned int bytes,
4589                                        struct x86_exception *exception,
4590                                        struct kvm_vcpu *vcpu,
4591                                        const struct read_write_emulator_ops *ops)
4592 {
4593         gpa_t gpa;
4594         int handled, ret;
4595         bool write = ops->write;
4596         struct kvm_mmio_fragment *frag;
4597
4598         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4599
4600         if (ret < 0)
4601                 return X86EMUL_PROPAGATE_FAULT;
4602
4603         /* For APIC access vmexit */
4604         if (ret)
4605                 goto mmio;
4606
4607         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4608                 return X86EMUL_CONTINUE;
4609
4610 mmio:
4611         /*
4612          * Is this MMIO handled locally?
4613          */
4614         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4615         if (handled == bytes)
4616                 return X86EMUL_CONTINUE;
4617
4618         gpa += handled;
4619         bytes -= handled;
4620         val += handled;
4621
4622         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4623         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4624         frag->gpa = gpa;
4625         frag->data = val;
4626         frag->len = bytes;
4627         return X86EMUL_CONTINUE;
4628 }
4629
4630 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4631                         unsigned long addr,
4632                         void *val, unsigned int bytes,
4633                         struct x86_exception *exception,
4634                         const struct read_write_emulator_ops *ops)
4635 {
4636         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4637         gpa_t gpa;
4638         int rc;
4639
4640         if (ops->read_write_prepare &&
4641                   ops->read_write_prepare(vcpu, val, bytes))
4642                 return X86EMUL_CONTINUE;
4643
4644         vcpu->mmio_nr_fragments = 0;
4645
4646         /* Crossing a page boundary? */
4647         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4648                 int now;
4649
4650                 now = -addr & ~PAGE_MASK;
4651                 rc = emulator_read_write_onepage(addr, val, now, exception,
4652                                                  vcpu, ops);
4653
4654                 if (rc != X86EMUL_CONTINUE)
4655                         return rc;
4656                 addr += now;
4657                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4658                         addr = (u32)addr;
4659                 val += now;
4660                 bytes -= now;
4661         }
4662
4663         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4664                                          vcpu, ops);
4665         if (rc != X86EMUL_CONTINUE)
4666                 return rc;
4667
4668         if (!vcpu->mmio_nr_fragments)
4669                 return rc;
4670
4671         gpa = vcpu->mmio_fragments[0].gpa;
4672
4673         vcpu->mmio_needed = 1;
4674         vcpu->mmio_cur_fragment = 0;
4675
4676         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4677         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4678         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4679         vcpu->run->mmio.phys_addr = gpa;
4680
4681         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4682 }
4683
4684 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4685                                   unsigned long addr,
4686                                   void *val,
4687                                   unsigned int bytes,
4688                                   struct x86_exception *exception)
4689 {
4690         return emulator_read_write(ctxt, addr, val, bytes,
4691                                    exception, &read_emultor);
4692 }
4693
4694 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4695                             unsigned long addr,
4696                             const void *val,
4697                             unsigned int bytes,
4698                             struct x86_exception *exception)
4699 {
4700         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4701                                    exception, &write_emultor);
4702 }
4703
4704 #define CMPXCHG_TYPE(t, ptr, old, new) \
4705         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4706
4707 #ifdef CONFIG_X86_64
4708 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4709 #else
4710 #  define CMPXCHG64(ptr, old, new) \
4711         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4712 #endif
4713
4714 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4715                                      unsigned long addr,
4716                                      const void *old,
4717                                      const void *new,
4718                                      unsigned int bytes,
4719                                      struct x86_exception *exception)
4720 {
4721         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4722         gpa_t gpa;
4723         struct page *page;
4724         char *kaddr;
4725         bool exchanged;
4726
4727         /* guests cmpxchg8b have to be emulated atomically */
4728         if (bytes > 8 || (bytes & (bytes - 1)))
4729                 goto emul_write;
4730
4731         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4732
4733         if (gpa == UNMAPPED_GVA ||
4734             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4735                 goto emul_write;
4736
4737         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4738                 goto emul_write;
4739
4740         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4741         if (is_error_page(page))
4742                 goto emul_write;
4743
4744         kaddr = kmap_atomic(page);
4745         kaddr += offset_in_page(gpa);
4746         switch (bytes) {
4747         case 1:
4748                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4749                 break;
4750         case 2:
4751                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4752                 break;
4753         case 4:
4754                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4755                 break;
4756         case 8:
4757                 exchanged = CMPXCHG64(kaddr, old, new);
4758                 break;
4759         default:
4760                 BUG();
4761         }
4762         kunmap_atomic(kaddr);
4763         kvm_release_page_dirty(page);
4764
4765         if (!exchanged)
4766                 return X86EMUL_CMPXCHG_FAILED;
4767
4768         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4769         kvm_page_track_write(vcpu, gpa, new, bytes);
4770
4771         return X86EMUL_CONTINUE;
4772
4773 emul_write:
4774         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4775
4776         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4777 }
4778
4779 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4780 {
4781         /* TODO: String I/O for in kernel device */
4782         int r;
4783
4784         if (vcpu->arch.pio.in)
4785                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4786                                     vcpu->arch.pio.size, pd);
4787         else
4788                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4789                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4790                                      pd);
4791         return r;
4792 }
4793
4794 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4795                                unsigned short port, void *val,
4796                                unsigned int count, bool in)
4797 {
4798         vcpu->arch.pio.port = port;
4799         vcpu->arch.pio.in = in;
4800         vcpu->arch.pio.count  = count;
4801         vcpu->arch.pio.size = size;
4802
4803         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4804                 vcpu->arch.pio.count = 0;
4805                 return 1;
4806         }
4807
4808         vcpu->run->exit_reason = KVM_EXIT_IO;
4809         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4810         vcpu->run->io.size = size;
4811         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4812         vcpu->run->io.count = count;
4813         vcpu->run->io.port = port;
4814
4815         return 0;
4816 }
4817
4818 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4819                                     int size, unsigned short port, void *val,
4820                                     unsigned int count)
4821 {
4822         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4823         int ret;
4824
4825         if (vcpu->arch.pio.count)
4826                 goto data_avail;
4827
4828         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4829         if (ret) {
4830 data_avail:
4831                 memcpy(val, vcpu->arch.pio_data, size * count);
4832                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4833                 vcpu->arch.pio.count = 0;
4834                 return 1;
4835         }
4836
4837         return 0;
4838 }
4839
4840 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4841                                      int size, unsigned short port,
4842                                      const void *val, unsigned int count)
4843 {
4844         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4845
4846         memcpy(vcpu->arch.pio_data, val, size * count);
4847         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4848         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4849 }
4850
4851 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4852 {
4853         return kvm_x86_ops->get_segment_base(vcpu, seg);
4854 }
4855
4856 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4857 {
4858         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4859 }
4860
4861 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4862 {
4863         if (!need_emulate_wbinvd(vcpu))
4864                 return X86EMUL_CONTINUE;
4865
4866         if (kvm_x86_ops->has_wbinvd_exit()) {
4867                 int cpu = get_cpu();
4868
4869                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4870                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4871                                 wbinvd_ipi, NULL, 1);
4872                 put_cpu();
4873                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4874         } else
4875                 wbinvd();
4876         return X86EMUL_CONTINUE;
4877 }
4878
4879 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4880 {
4881         kvm_emulate_wbinvd_noskip(vcpu);
4882         return kvm_skip_emulated_instruction(vcpu);
4883 }
4884 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4885
4886
4887
4888 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4889 {
4890         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4891 }
4892
4893 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4894                            unsigned long *dest)
4895 {
4896         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4897 }
4898
4899 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4900                            unsigned long value)
4901 {
4902
4903         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4904 }
4905
4906 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4907 {
4908         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4909 }
4910
4911 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4912 {
4913         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4914         unsigned long value;
4915
4916         switch (cr) {
4917         case 0:
4918                 value = kvm_read_cr0(vcpu);
4919                 break;
4920         case 2:
4921                 value = vcpu->arch.cr2;
4922                 break;
4923         case 3:
4924                 value = kvm_read_cr3(vcpu);
4925                 break;
4926         case 4:
4927                 value = kvm_read_cr4(vcpu);
4928                 break;
4929         case 8:
4930                 value = kvm_get_cr8(vcpu);
4931                 break;
4932         default:
4933                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4934                 return 0;
4935         }
4936
4937         return value;
4938 }
4939
4940 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4941 {
4942         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4943         int res = 0;
4944
4945         switch (cr) {
4946         case 0:
4947                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4948                 break;
4949         case 2:
4950                 vcpu->arch.cr2 = val;
4951                 break;
4952         case 3:
4953                 res = kvm_set_cr3(vcpu, val);
4954                 break;
4955         case 4:
4956                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4957                 break;
4958         case 8:
4959                 res = kvm_set_cr8(vcpu, val);
4960                 break;
4961         default:
4962                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4963                 res = -1;
4964         }
4965
4966         return res;
4967 }
4968
4969 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4970 {
4971         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4972 }
4973
4974 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4975 {
4976         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4977 }
4978
4979 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4980 {
4981         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4982 }
4983
4984 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4985 {
4986         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4987 }
4988
4989 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4990 {
4991         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4992 }
4993
4994 static unsigned long emulator_get_cached_segment_base(
4995         struct x86_emulate_ctxt *ctxt, int seg)
4996 {
4997         return get_segment_base(emul_to_vcpu(ctxt), seg);
4998 }
4999
5000 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5001                                  struct desc_struct *desc, u32 *base3,
5002                                  int seg)
5003 {
5004         struct kvm_segment var;
5005
5006         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5007         *selector = var.selector;
5008
5009         if (var.unusable) {
5010                 memset(desc, 0, sizeof(*desc));
5011                 return false;
5012         }
5013
5014         if (var.g)
5015                 var.limit >>= 12;
5016         set_desc_limit(desc, var.limit);
5017         set_desc_base(desc, (unsigned long)var.base);
5018 #ifdef CONFIG_X86_64
5019         if (base3)
5020                 *base3 = var.base >> 32;
5021 #endif
5022         desc->type = var.type;
5023         desc->s = var.s;
5024         desc->dpl = var.dpl;
5025         desc->p = var.present;
5026         desc->avl = var.avl;
5027         desc->l = var.l;
5028         desc->d = var.db;
5029         desc->g = var.g;
5030
5031         return true;
5032 }
5033
5034 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5035                                  struct desc_struct *desc, u32 base3,
5036                                  int seg)
5037 {
5038         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5039         struct kvm_segment var;
5040
5041         var.selector = selector;
5042         var.base = get_desc_base(desc);
5043 #ifdef CONFIG_X86_64
5044         var.base |= ((u64)base3) << 32;
5045 #endif
5046         var.limit = get_desc_limit(desc);
5047         if (desc->g)
5048                 var.limit = (var.limit << 12) | 0xfff;
5049         var.type = desc->type;
5050         var.dpl = desc->dpl;
5051         var.db = desc->d;
5052         var.s = desc->s;
5053         var.l = desc->l;
5054         var.g = desc->g;
5055         var.avl = desc->avl;
5056         var.present = desc->p;
5057         var.unusable = !var.present;
5058         var.padding = 0;
5059
5060         kvm_set_segment(vcpu, &var, seg);
5061         return;
5062 }
5063
5064 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5065                             u32 msr_index, u64 *pdata)
5066 {
5067         struct msr_data msr;
5068         int r;
5069
5070         msr.index = msr_index;
5071         msr.host_initiated = false;
5072         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5073         if (r)
5074                 return r;
5075
5076         *pdata = msr.data;
5077         return 0;
5078 }
5079
5080 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5081                             u32 msr_index, u64 data)
5082 {
5083         struct msr_data msr;
5084
5085         msr.data = data;
5086         msr.index = msr_index;
5087         msr.host_initiated = false;
5088         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5089 }
5090
5091 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5092 {
5093         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5094
5095         return vcpu->arch.smbase;
5096 }
5097
5098 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5099 {
5100         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5101
5102         vcpu->arch.smbase = smbase;
5103 }
5104
5105 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5106                               u32 pmc)
5107 {
5108         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5109 }
5110
5111 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5112                              u32 pmc, u64 *pdata)
5113 {
5114         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5115 }
5116
5117 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5118 {
5119         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5120 }
5121
5122 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5123 {
5124         preempt_disable();
5125         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5126 }
5127
5128 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5129 {
5130         preempt_enable();
5131 }
5132
5133 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5134                               struct x86_instruction_info *info,
5135                               enum x86_intercept_stage stage)
5136 {
5137         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5138 }
5139
5140 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5141                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5142 {
5143         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5144 }
5145
5146 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5147 {
5148         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5149 }
5150
5151 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5152 {
5153         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5154 }
5155
5156 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5157 {
5158         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5159 }
5160
5161 static const struct x86_emulate_ops emulate_ops = {
5162         .read_gpr            = emulator_read_gpr,
5163         .write_gpr           = emulator_write_gpr,
5164         .read_std            = kvm_read_guest_virt_system,
5165         .write_std           = kvm_write_guest_virt_system,
5166         .read_phys           = kvm_read_guest_phys_system,
5167         .fetch               = kvm_fetch_guest_virt,
5168         .read_emulated       = emulator_read_emulated,
5169         .write_emulated      = emulator_write_emulated,
5170         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5171         .invlpg              = emulator_invlpg,
5172         .pio_in_emulated     = emulator_pio_in_emulated,
5173         .pio_out_emulated    = emulator_pio_out_emulated,
5174         .get_segment         = emulator_get_segment,
5175         .set_segment         = emulator_set_segment,
5176         .get_cached_segment_base = emulator_get_cached_segment_base,
5177         .get_gdt             = emulator_get_gdt,
5178         .get_idt             = emulator_get_idt,
5179         .set_gdt             = emulator_set_gdt,
5180         .set_idt             = emulator_set_idt,
5181         .get_cr              = emulator_get_cr,
5182         .set_cr              = emulator_set_cr,
5183         .cpl                 = emulator_get_cpl,
5184         .get_dr              = emulator_get_dr,
5185         .set_dr              = emulator_set_dr,
5186         .get_smbase          = emulator_get_smbase,
5187         .set_smbase          = emulator_set_smbase,
5188         .set_msr             = emulator_set_msr,
5189         .get_msr             = emulator_get_msr,
5190         .check_pmc           = emulator_check_pmc,
5191         .read_pmc            = emulator_read_pmc,
5192         .halt                = emulator_halt,
5193         .wbinvd              = emulator_wbinvd,
5194         .fix_hypercall       = emulator_fix_hypercall,
5195         .get_fpu             = emulator_get_fpu,
5196         .put_fpu             = emulator_put_fpu,
5197         .intercept           = emulator_intercept,
5198         .get_cpuid           = emulator_get_cpuid,
5199         .set_nmi_mask        = emulator_set_nmi_mask,
5200 };
5201
5202 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5203 {
5204         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5205         /*
5206          * an sti; sti; sequence only disable interrupts for the first
5207          * instruction. So, if the last instruction, be it emulated or
5208          * not, left the system with the INT_STI flag enabled, it
5209          * means that the last instruction is an sti. We should not
5210          * leave the flag on in this case. The same goes for mov ss
5211          */
5212         if (int_shadow & mask)
5213                 mask = 0;
5214         if (unlikely(int_shadow || mask)) {
5215                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5216                 if (!mask)
5217                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5218         }
5219 }
5220
5221 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5222 {
5223         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5224         if (ctxt->exception.vector == PF_VECTOR)
5225                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5226
5227         if (ctxt->exception.error_code_valid)
5228                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5229                                       ctxt->exception.error_code);
5230         else
5231                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5232         return false;
5233 }
5234
5235 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5236 {
5237         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5238         int cs_db, cs_l;
5239
5240         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5241
5242         ctxt->eflags = kvm_get_rflags(vcpu);
5243         ctxt->eip = kvm_rip_read(vcpu);
5244         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5245                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5246                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5247                      cs_db                              ? X86EMUL_MODE_PROT32 :
5248                                                           X86EMUL_MODE_PROT16;
5249         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5250         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5251         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5252         ctxt->emul_flags = vcpu->arch.hflags;
5253
5254         init_decode_cache(ctxt);
5255         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5256 }
5257
5258 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5259 {
5260         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5261         int ret;
5262
5263         init_emulate_ctxt(vcpu);
5264
5265         ctxt->op_bytes = 2;
5266         ctxt->ad_bytes = 2;
5267         ctxt->_eip = ctxt->eip + inc_eip;
5268         ret = emulate_int_real(ctxt, irq);
5269
5270         if (ret != X86EMUL_CONTINUE)
5271                 return EMULATE_FAIL;
5272
5273         ctxt->eip = ctxt->_eip;
5274         kvm_rip_write(vcpu, ctxt->eip);
5275         kvm_set_rflags(vcpu, ctxt->eflags);
5276
5277         if (irq == NMI_VECTOR)
5278                 vcpu->arch.nmi_pending = 0;
5279         else
5280                 vcpu->arch.interrupt.pending = false;
5281
5282         return EMULATE_DONE;
5283 }
5284 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5285
5286 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5287 {
5288         int r = EMULATE_DONE;
5289
5290         ++vcpu->stat.insn_emulation_fail;
5291         trace_kvm_emulate_insn_failed(vcpu);
5292         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5293                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5294                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5295                 vcpu->run->internal.ndata = 0;
5296                 r = EMULATE_FAIL;
5297         }
5298         kvm_queue_exception(vcpu, UD_VECTOR);
5299
5300         return r;
5301 }
5302
5303 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5304                                   bool write_fault_to_shadow_pgtable,
5305                                   int emulation_type)
5306 {
5307         gpa_t gpa = cr2;
5308         kvm_pfn_t pfn;
5309
5310         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5311                 return false;
5312
5313         if (!vcpu->arch.mmu.direct_map) {
5314                 /*
5315                  * Write permission should be allowed since only
5316                  * write access need to be emulated.
5317                  */
5318                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5319
5320                 /*
5321                  * If the mapping is invalid in guest, let cpu retry
5322                  * it to generate fault.
5323                  */
5324                 if (gpa == UNMAPPED_GVA)
5325                         return true;
5326         }
5327
5328         /*
5329          * Do not retry the unhandleable instruction if it faults on the
5330          * readonly host memory, otherwise it will goto a infinite loop:
5331          * retry instruction -> write #PF -> emulation fail -> retry
5332          * instruction -> ...
5333          */
5334         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5335
5336         /*
5337          * If the instruction failed on the error pfn, it can not be fixed,
5338          * report the error to userspace.
5339          */
5340         if (is_error_noslot_pfn(pfn))
5341                 return false;
5342
5343         kvm_release_pfn_clean(pfn);
5344
5345         /* The instructions are well-emulated on direct mmu. */
5346         if (vcpu->arch.mmu.direct_map) {
5347                 unsigned int indirect_shadow_pages;
5348
5349                 spin_lock(&vcpu->kvm->mmu_lock);
5350                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5351                 spin_unlock(&vcpu->kvm->mmu_lock);
5352
5353                 if (indirect_shadow_pages)
5354                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5355
5356                 return true;
5357         }
5358
5359         /*
5360          * if emulation was due to access to shadowed page table
5361          * and it failed try to unshadow page and re-enter the
5362          * guest to let CPU execute the instruction.
5363          */
5364         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5365
5366         /*
5367          * If the access faults on its page table, it can not
5368          * be fixed by unprotecting shadow page and it should
5369          * be reported to userspace.
5370          */
5371         return !write_fault_to_shadow_pgtable;
5372 }
5373
5374 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5375                               unsigned long cr2,  int emulation_type)
5376 {
5377         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5378         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5379
5380         last_retry_eip = vcpu->arch.last_retry_eip;
5381         last_retry_addr = vcpu->arch.last_retry_addr;
5382
5383         /*
5384          * If the emulation is caused by #PF and it is non-page_table
5385          * writing instruction, it means the VM-EXIT is caused by shadow
5386          * page protected, we can zap the shadow page and retry this
5387          * instruction directly.
5388          *
5389          * Note: if the guest uses a non-page-table modifying instruction
5390          * on the PDE that points to the instruction, then we will unmap
5391          * the instruction and go to an infinite loop. So, we cache the
5392          * last retried eip and the last fault address, if we meet the eip
5393          * and the address again, we can break out of the potential infinite
5394          * loop.
5395          */
5396         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5397
5398         if (!(emulation_type & EMULTYPE_RETRY))
5399                 return false;
5400
5401         if (x86_page_table_writing_insn(ctxt))
5402                 return false;
5403
5404         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5405                 return false;
5406
5407         vcpu->arch.last_retry_eip = ctxt->eip;
5408         vcpu->arch.last_retry_addr = cr2;
5409
5410         if (!vcpu->arch.mmu.direct_map)
5411                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5412
5413         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5414
5415         return true;
5416 }
5417
5418 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5419 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5420
5421 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5422 {
5423         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5424                 /* This is a good place to trace that we are exiting SMM.  */
5425                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5426
5427                 /* Process a latched INIT or SMI, if any.  */
5428                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5429         }
5430
5431         kvm_mmu_reset_context(vcpu);
5432 }
5433
5434 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5435 {
5436         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5437
5438         vcpu->arch.hflags = emul_flags;
5439
5440         if (changed & HF_SMM_MASK)
5441                 kvm_smm_changed(vcpu);
5442 }
5443
5444 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5445                                 unsigned long *db)
5446 {
5447         u32 dr6 = 0;
5448         int i;
5449         u32 enable, rwlen;
5450
5451         enable = dr7;
5452         rwlen = dr7 >> 16;
5453         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5454                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5455                         dr6 |= (1 << i);
5456         return dr6;
5457 }
5458
5459 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5460 {
5461         struct kvm_run *kvm_run = vcpu->run;
5462
5463         /*
5464          * rflags is the old, "raw" value of the flags.  The new value has
5465          * not been saved yet.
5466          *
5467          * This is correct even for TF set by the guest, because "the
5468          * processor will not generate this exception after the instruction
5469          * that sets the TF flag".
5470          */
5471         if (unlikely(rflags & X86_EFLAGS_TF)) {
5472                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5473                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5474                                                   DR6_RTM;
5475                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5476                         kvm_run->debug.arch.exception = DB_VECTOR;
5477                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5478                         *r = EMULATE_USER_EXIT;
5479                 } else {
5480                         /*
5481                          * "Certain debug exceptions may clear bit 0-3.  The
5482                          * remaining contents of the DR6 register are never
5483                          * cleared by the processor".
5484                          */
5485                         vcpu->arch.dr6 &= ~15;
5486                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5487                         kvm_queue_exception(vcpu, DB_VECTOR);
5488                 }
5489         }
5490 }
5491
5492 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5493 {
5494         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5495         int r = EMULATE_DONE;
5496
5497         kvm_x86_ops->skip_emulated_instruction(vcpu);
5498         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5499         return r == EMULATE_DONE;
5500 }
5501 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5502
5503 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5504 {
5505         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5506             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5507                 struct kvm_run *kvm_run = vcpu->run;
5508                 unsigned long eip = kvm_get_linear_rip(vcpu);
5509                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5510                                            vcpu->arch.guest_debug_dr7,
5511                                            vcpu->arch.eff_db);
5512
5513                 if (dr6 != 0) {
5514                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5515                         kvm_run->debug.arch.pc = eip;
5516                         kvm_run->debug.arch.exception = DB_VECTOR;
5517                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5518                         *r = EMULATE_USER_EXIT;
5519                         return true;
5520                 }
5521         }
5522
5523         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5524             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5525                 unsigned long eip = kvm_get_linear_rip(vcpu);
5526                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5527                                            vcpu->arch.dr7,
5528                                            vcpu->arch.db);
5529
5530                 if (dr6 != 0) {
5531                         vcpu->arch.dr6 &= ~15;
5532                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5533                         kvm_queue_exception(vcpu, DB_VECTOR);
5534                         *r = EMULATE_DONE;
5535                         return true;
5536                 }
5537         }
5538
5539         return false;
5540 }
5541
5542 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5543                             unsigned long cr2,
5544                             int emulation_type,
5545                             void *insn,
5546                             int insn_len)
5547 {
5548         int r;
5549         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5550         bool writeback = true;
5551         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5552
5553         /*
5554          * Clear write_fault_to_shadow_pgtable here to ensure it is
5555          * never reused.
5556          */
5557         vcpu->arch.write_fault_to_shadow_pgtable = false;
5558         kvm_clear_exception_queue(vcpu);
5559
5560         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5561                 init_emulate_ctxt(vcpu);
5562
5563                 /*
5564                  * We will reenter on the same instruction since
5565                  * we do not set complete_userspace_io.  This does not
5566                  * handle watchpoints yet, those would be handled in
5567                  * the emulate_ops.
5568                  */
5569                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5570                         return r;
5571
5572                 ctxt->interruptibility = 0;
5573                 ctxt->have_exception = false;
5574                 ctxt->exception.vector = -1;
5575                 ctxt->perm_ok = false;
5576
5577                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5578
5579                 r = x86_decode_insn(ctxt, insn, insn_len);
5580
5581                 trace_kvm_emulate_insn_start(vcpu);
5582                 ++vcpu->stat.insn_emulation;
5583                 if (r != EMULATION_OK)  {
5584                         if (emulation_type & EMULTYPE_TRAP_UD)
5585                                 return EMULATE_FAIL;
5586                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5587                                                 emulation_type))
5588                                 return EMULATE_DONE;
5589                         if (emulation_type & EMULTYPE_SKIP)
5590                                 return EMULATE_FAIL;
5591                         return handle_emulation_failure(vcpu);
5592                 }
5593         }
5594
5595         if (emulation_type & EMULTYPE_SKIP) {
5596                 kvm_rip_write(vcpu, ctxt->_eip);
5597                 if (ctxt->eflags & X86_EFLAGS_RF)
5598                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5599                 return EMULATE_DONE;
5600         }
5601
5602         if (retry_instruction(ctxt, cr2, emulation_type))
5603                 return EMULATE_DONE;
5604
5605         /* this is needed for vmware backdoor interface to work since it
5606            changes registers values  during IO operation */
5607         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5608                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5609                 emulator_invalidate_register_cache(ctxt);
5610         }
5611
5612 restart:
5613         r = x86_emulate_insn(ctxt);
5614
5615         if (r == EMULATION_INTERCEPTED)
5616                 return EMULATE_DONE;
5617
5618         if (r == EMULATION_FAILED) {
5619                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5620                                         emulation_type))
5621                         return EMULATE_DONE;
5622
5623                 return handle_emulation_failure(vcpu);
5624         }
5625
5626         if (ctxt->have_exception) {
5627                 r = EMULATE_DONE;
5628                 if (inject_emulated_exception(vcpu))
5629                         return r;
5630         } else if (vcpu->arch.pio.count) {
5631                 if (!vcpu->arch.pio.in) {
5632                         /* FIXME: return into emulator if single-stepping.  */
5633                         vcpu->arch.pio.count = 0;
5634                 } else {
5635                         writeback = false;
5636                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5637                 }
5638                 r = EMULATE_USER_EXIT;
5639         } else if (vcpu->mmio_needed) {
5640                 if (!vcpu->mmio_is_write)
5641                         writeback = false;
5642                 r = EMULATE_USER_EXIT;
5643                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5644         } else if (r == EMULATION_RESTART)
5645                 goto restart;
5646         else
5647                 r = EMULATE_DONE;
5648
5649         if (writeback) {
5650                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5651                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5652                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5653                 if (vcpu->arch.hflags != ctxt->emul_flags)
5654                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5655                 kvm_rip_write(vcpu, ctxt->eip);
5656                 if (r == EMULATE_DONE)
5657                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5658                 if (!ctxt->have_exception ||
5659                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5660                         __kvm_set_rflags(vcpu, ctxt->eflags);
5661
5662                 /*
5663                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5664                  * do nothing, and it will be requested again as soon as
5665                  * the shadow expires.  But we still need to check here,
5666                  * because POPF has no interrupt shadow.
5667                  */
5668                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5669                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5670         } else
5671                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5672
5673         return r;
5674 }
5675 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5676
5677 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5678 {
5679         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5680         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5681                                             size, port, &val, 1);
5682         /* do not return to emulator after return from userspace */
5683         vcpu->arch.pio.count = 0;
5684         return ret;
5685 }
5686 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5687
5688 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5689 {
5690         unsigned long val;
5691
5692         /* We should only ever be called with arch.pio.count equal to 1 */
5693         BUG_ON(vcpu->arch.pio.count != 1);
5694
5695         /* For size less than 4 we merge, else we zero extend */
5696         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5697                                         : 0;
5698
5699         /*
5700          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5701          * the copy and tracing
5702          */
5703         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5704                                  vcpu->arch.pio.port, &val, 1);
5705         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5706
5707         return 1;
5708 }
5709
5710 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5711 {
5712         unsigned long val;
5713         int ret;
5714
5715         /* For size less than 4 we merge, else we zero extend */
5716         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5717
5718         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5719                                        &val, 1);
5720         if (ret) {
5721                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5722                 return ret;
5723         }
5724
5725         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5726
5727         return 0;
5728 }
5729 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5730
5731 static int kvmclock_cpu_down_prep(unsigned int cpu)
5732 {
5733         __this_cpu_write(cpu_tsc_khz, 0);
5734         return 0;
5735 }
5736
5737 static void tsc_khz_changed(void *data)
5738 {
5739         struct cpufreq_freqs *freq = data;
5740         unsigned long khz = 0;
5741
5742         if (data)
5743                 khz = freq->new;
5744         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5745                 khz = cpufreq_quick_get(raw_smp_processor_id());
5746         if (!khz)
5747                 khz = tsc_khz;
5748         __this_cpu_write(cpu_tsc_khz, khz);
5749 }
5750
5751 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5752                                      void *data)
5753 {
5754         struct cpufreq_freqs *freq = data;
5755         struct kvm *kvm;
5756         struct kvm_vcpu *vcpu;
5757         int i, send_ipi = 0;
5758
5759         /*
5760          * We allow guests to temporarily run on slowing clocks,
5761          * provided we notify them after, or to run on accelerating
5762          * clocks, provided we notify them before.  Thus time never
5763          * goes backwards.
5764          *
5765          * However, we have a problem.  We can't atomically update
5766          * the frequency of a given CPU from this function; it is
5767          * merely a notifier, which can be called from any CPU.
5768          * Changing the TSC frequency at arbitrary points in time
5769          * requires a recomputation of local variables related to
5770          * the TSC for each VCPU.  We must flag these local variables
5771          * to be updated and be sure the update takes place with the
5772          * new frequency before any guests proceed.
5773          *
5774          * Unfortunately, the combination of hotplug CPU and frequency
5775          * change creates an intractable locking scenario; the order
5776          * of when these callouts happen is undefined with respect to
5777          * CPU hotplug, and they can race with each other.  As such,
5778          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5779          * undefined; you can actually have a CPU frequency change take
5780          * place in between the computation of X and the setting of the
5781          * variable.  To protect against this problem, all updates of
5782          * the per_cpu tsc_khz variable are done in an interrupt
5783          * protected IPI, and all callers wishing to update the value
5784          * must wait for a synchronous IPI to complete (which is trivial
5785          * if the caller is on the CPU already).  This establishes the
5786          * necessary total order on variable updates.
5787          *
5788          * Note that because a guest time update may take place
5789          * anytime after the setting of the VCPU's request bit, the
5790          * correct TSC value must be set before the request.  However,
5791          * to ensure the update actually makes it to any guest which
5792          * starts running in hardware virtualization between the set
5793          * and the acquisition of the spinlock, we must also ping the
5794          * CPU after setting the request bit.
5795          *
5796          */
5797
5798         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5799                 return 0;
5800         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5801                 return 0;
5802
5803         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5804
5805         spin_lock(&kvm_lock);
5806         list_for_each_entry(kvm, &vm_list, vm_list) {
5807                 kvm_for_each_vcpu(i, vcpu, kvm) {
5808                         if (vcpu->cpu != freq->cpu)
5809                                 continue;
5810                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5811                         if (vcpu->cpu != smp_processor_id())
5812                                 send_ipi = 1;
5813                 }
5814         }
5815         spin_unlock(&kvm_lock);
5816
5817         if (freq->old < freq->new && send_ipi) {
5818                 /*
5819                  * We upscale the frequency.  Must make the guest
5820                  * doesn't see old kvmclock values while running with
5821                  * the new frequency, otherwise we risk the guest sees
5822                  * time go backwards.
5823                  *
5824                  * In case we update the frequency for another cpu
5825                  * (which might be in guest context) send an interrupt
5826                  * to kick the cpu out of guest context.  Next time
5827                  * guest context is entered kvmclock will be updated,
5828                  * so the guest will not see stale values.
5829                  */
5830                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5831         }
5832         return 0;
5833 }
5834
5835 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5836         .notifier_call  = kvmclock_cpufreq_notifier
5837 };
5838
5839 static int kvmclock_cpu_online(unsigned int cpu)
5840 {
5841         tsc_khz_changed(NULL);
5842         return 0;
5843 }
5844
5845 static void kvm_timer_init(void)
5846 {
5847         max_tsc_khz = tsc_khz;
5848
5849         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5850 #ifdef CONFIG_CPU_FREQ
5851                 struct cpufreq_policy policy;
5852                 int cpu;
5853
5854                 memset(&policy, 0, sizeof(policy));
5855                 cpu = get_cpu();
5856                 cpufreq_get_policy(&policy, cpu);
5857                 if (policy.cpuinfo.max_freq)
5858                         max_tsc_khz = policy.cpuinfo.max_freq;
5859                 put_cpu();
5860 #endif
5861                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5862                                           CPUFREQ_TRANSITION_NOTIFIER);
5863         }
5864         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5865
5866         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5867                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5868 }
5869
5870 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5871
5872 int kvm_is_in_guest(void)
5873 {
5874         return __this_cpu_read(current_vcpu) != NULL;
5875 }
5876
5877 static int kvm_is_user_mode(void)
5878 {
5879         int user_mode = 3;
5880
5881         if (__this_cpu_read(current_vcpu))
5882                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5883
5884         return user_mode != 0;
5885 }
5886
5887 static unsigned long kvm_get_guest_ip(void)
5888 {
5889         unsigned long ip = 0;
5890
5891         if (__this_cpu_read(current_vcpu))
5892                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5893
5894         return ip;
5895 }
5896
5897 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5898         .is_in_guest            = kvm_is_in_guest,
5899         .is_user_mode           = kvm_is_user_mode,
5900         .get_guest_ip           = kvm_get_guest_ip,
5901 };
5902
5903 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5904 {
5905         __this_cpu_write(current_vcpu, vcpu);
5906 }
5907 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5908
5909 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5910 {
5911         __this_cpu_write(current_vcpu, NULL);
5912 }
5913 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5914
5915 static void kvm_set_mmio_spte_mask(void)
5916 {
5917         u64 mask;
5918         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5919
5920         /*
5921          * Set the reserved bits and the present bit of an paging-structure
5922          * entry to generate page fault with PFER.RSV = 1.
5923          */
5924          /* Mask the reserved physical address bits. */
5925         mask = rsvd_bits(maxphyaddr, 51);
5926
5927         /* Bit 62 is always reserved for 32bit host. */
5928         mask |= 0x3ull << 62;
5929
5930         /* Set the present bit. */
5931         mask |= 1ull;
5932
5933 #ifdef CONFIG_X86_64
5934         /*
5935          * If reserved bit is not supported, clear the present bit to disable
5936          * mmio page fault.
5937          */
5938         if (maxphyaddr == 52)
5939                 mask &= ~1ull;
5940 #endif
5941
5942         kvm_mmu_set_mmio_spte_mask(mask);
5943 }
5944
5945 #ifdef CONFIG_X86_64
5946 static void pvclock_gtod_update_fn(struct work_struct *work)
5947 {
5948         struct kvm *kvm;
5949
5950         struct kvm_vcpu *vcpu;
5951         int i;
5952
5953         spin_lock(&kvm_lock);
5954         list_for_each_entry(kvm, &vm_list, vm_list)
5955                 kvm_for_each_vcpu(i, vcpu, kvm)
5956                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5957         atomic_set(&kvm_guest_has_master_clock, 0);
5958         spin_unlock(&kvm_lock);
5959 }
5960
5961 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5962
5963 /*
5964  * Notification about pvclock gtod data update.
5965  */
5966 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5967                                void *priv)
5968 {
5969         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5970         struct timekeeper *tk = priv;
5971
5972         update_pvclock_gtod(tk);
5973
5974         /* disable master clock if host does not trust, or does not
5975          * use, TSC clocksource
5976          */
5977         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5978             atomic_read(&kvm_guest_has_master_clock) != 0)
5979                 queue_work(system_long_wq, &pvclock_gtod_work);
5980
5981         return 0;
5982 }
5983
5984 static struct notifier_block pvclock_gtod_notifier = {
5985         .notifier_call = pvclock_gtod_notify,
5986 };
5987 #endif
5988
5989 int kvm_arch_init(void *opaque)
5990 {
5991         int r;
5992         struct kvm_x86_ops *ops = opaque;
5993
5994         if (kvm_x86_ops) {
5995                 printk(KERN_ERR "kvm: already loaded the other module\n");
5996                 r = -EEXIST;
5997                 goto out;
5998         }
5999
6000         if (!ops->cpu_has_kvm_support()) {
6001                 printk(KERN_ERR "kvm: no hardware support\n");
6002                 r = -EOPNOTSUPP;
6003                 goto out;
6004         }
6005         if (ops->disabled_by_bios()) {
6006                 printk(KERN_ERR "kvm: disabled by bios\n");
6007                 r = -EOPNOTSUPP;
6008                 goto out;
6009         }
6010
6011         r = -ENOMEM;
6012         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6013         if (!shared_msrs) {
6014                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6015                 goto out;
6016         }
6017
6018         r = kvm_mmu_module_init();
6019         if (r)
6020                 goto out_free_percpu;
6021
6022         kvm_set_mmio_spte_mask();
6023
6024         kvm_x86_ops = ops;
6025
6026         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6027                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6028                         PT_PRESENT_MASK);
6029         kvm_timer_init();
6030
6031         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6032
6033         if (boot_cpu_has(X86_FEATURE_XSAVE))
6034                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6035
6036         kvm_lapic_init();
6037 #ifdef CONFIG_X86_64
6038         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6039 #endif
6040
6041         return 0;
6042
6043 out_free_percpu:
6044         free_percpu(shared_msrs);
6045 out:
6046         return r;
6047 }
6048
6049 void kvm_arch_exit(void)
6050 {
6051         kvm_lapic_exit();
6052         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6053
6054         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6055                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6056                                             CPUFREQ_TRANSITION_NOTIFIER);
6057         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6058 #ifdef CONFIG_X86_64
6059         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6060 #endif
6061         kvm_x86_ops = NULL;
6062         kvm_mmu_module_exit();
6063         free_percpu(shared_msrs);
6064 }
6065
6066 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6067 {
6068         ++vcpu->stat.halt_exits;
6069         if (lapic_in_kernel(vcpu)) {
6070                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6071                 return 1;
6072         } else {
6073                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6074                 return 0;
6075         }
6076 }
6077 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6078
6079 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6080 {
6081         int ret = kvm_skip_emulated_instruction(vcpu);
6082         /*
6083          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6084          * KVM_EXIT_DEBUG here.
6085          */
6086         return kvm_vcpu_halt(vcpu) && ret;
6087 }
6088 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6089
6090 /*
6091  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6092  *
6093  * @apicid - apicid of vcpu to be kicked.
6094  */
6095 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6096 {
6097         struct kvm_lapic_irq lapic_irq;
6098
6099         lapic_irq.shorthand = 0;
6100         lapic_irq.dest_mode = 0;
6101         lapic_irq.dest_id = apicid;
6102         lapic_irq.msi_redir_hint = false;
6103
6104         lapic_irq.delivery_mode = APIC_DM_REMRD;
6105         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6106 }
6107
6108 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6109 {
6110         vcpu->arch.apicv_active = false;
6111         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6112 }
6113
6114 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6115 {
6116         unsigned long nr, a0, a1, a2, a3, ret;
6117         int op_64_bit, r;
6118
6119         r = kvm_skip_emulated_instruction(vcpu);
6120
6121         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6122                 return kvm_hv_hypercall(vcpu);
6123
6124         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6125         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6126         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6127         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6128         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6129
6130         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6131
6132         op_64_bit = is_64_bit_mode(vcpu);
6133         if (!op_64_bit) {
6134                 nr &= 0xFFFFFFFF;
6135                 a0 &= 0xFFFFFFFF;
6136                 a1 &= 0xFFFFFFFF;
6137                 a2 &= 0xFFFFFFFF;
6138                 a3 &= 0xFFFFFFFF;
6139         }
6140
6141         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6142                 ret = -KVM_EPERM;
6143                 goto out;
6144         }
6145
6146         switch (nr) {
6147         case KVM_HC_VAPIC_POLL_IRQ:
6148                 ret = 0;
6149                 break;
6150         case KVM_HC_KICK_CPU:
6151                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6152                 ret = 0;
6153                 break;
6154         default:
6155                 ret = -KVM_ENOSYS;
6156                 break;
6157         }
6158 out:
6159         if (!op_64_bit)
6160                 ret = (u32)ret;
6161         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6162         ++vcpu->stat.hypercalls;
6163         return r;
6164 }
6165 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6166
6167 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6168 {
6169         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6170         char instruction[3];
6171         unsigned long rip = kvm_rip_read(vcpu);
6172
6173         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6174
6175         return emulator_write_emulated(ctxt, rip, instruction, 3,
6176                 &ctxt->exception);
6177 }
6178
6179 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6180 {
6181         return vcpu->run->request_interrupt_window &&
6182                 likely(!pic_in_kernel(vcpu->kvm));
6183 }
6184
6185 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6186 {
6187         struct kvm_run *kvm_run = vcpu->run;
6188
6189         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6190         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6191         kvm_run->cr8 = kvm_get_cr8(vcpu);
6192         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6193         kvm_run->ready_for_interrupt_injection =
6194                 pic_in_kernel(vcpu->kvm) ||
6195                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6196 }
6197
6198 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6199 {
6200         int max_irr, tpr;
6201
6202         if (!kvm_x86_ops->update_cr8_intercept)
6203                 return;
6204
6205         if (!lapic_in_kernel(vcpu))
6206                 return;
6207
6208         if (vcpu->arch.apicv_active)
6209                 return;
6210
6211         if (!vcpu->arch.apic->vapic_addr)
6212                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6213         else
6214                 max_irr = -1;
6215
6216         if (max_irr != -1)
6217                 max_irr >>= 4;
6218
6219         tpr = kvm_lapic_get_cr8(vcpu);
6220
6221         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6222 }
6223
6224 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6225 {
6226         int r;
6227
6228         /* try to reinject previous events if any */
6229         if (vcpu->arch.exception.pending) {
6230                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6231                                         vcpu->arch.exception.has_error_code,
6232                                         vcpu->arch.exception.error_code);
6233
6234                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6235                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6236                                              X86_EFLAGS_RF);
6237
6238                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6239                     (vcpu->arch.dr7 & DR7_GD)) {
6240                         vcpu->arch.dr7 &= ~DR7_GD;
6241                         kvm_update_dr7(vcpu);
6242                 }
6243
6244                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6245                                           vcpu->arch.exception.has_error_code,
6246                                           vcpu->arch.exception.error_code,
6247                                           vcpu->arch.exception.reinject);
6248                 return 0;
6249         }
6250
6251         if (vcpu->arch.nmi_injected) {
6252                 kvm_x86_ops->set_nmi(vcpu);
6253                 return 0;
6254         }
6255
6256         if (vcpu->arch.interrupt.pending) {
6257                 kvm_x86_ops->set_irq(vcpu);
6258                 return 0;
6259         }
6260
6261         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6262                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6263                 if (r != 0)
6264                         return r;
6265         }
6266
6267         /* try to inject new event if pending */
6268         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6269                 vcpu->arch.smi_pending = false;
6270                 enter_smm(vcpu);
6271         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6272                 --vcpu->arch.nmi_pending;
6273                 vcpu->arch.nmi_injected = true;
6274                 kvm_x86_ops->set_nmi(vcpu);
6275         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6276                 /*
6277                  * Because interrupts can be injected asynchronously, we are
6278                  * calling check_nested_events again here to avoid a race condition.
6279                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6280                  * proposal and current concerns.  Perhaps we should be setting
6281                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6282                  */
6283                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6284                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6285                         if (r != 0)
6286                                 return r;
6287                 }
6288                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6289                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6290                                             false);
6291                         kvm_x86_ops->set_irq(vcpu);
6292                 }
6293         }
6294
6295         return 0;
6296 }
6297
6298 static void process_nmi(struct kvm_vcpu *vcpu)
6299 {
6300         unsigned limit = 2;
6301
6302         /*
6303          * x86 is limited to one NMI running, and one NMI pending after it.
6304          * If an NMI is already in progress, limit further NMIs to just one.
6305          * Otherwise, allow two (and we'll inject the first one immediately).
6306          */
6307         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6308                 limit = 1;
6309
6310         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6311         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6312         kvm_make_request(KVM_REQ_EVENT, vcpu);
6313 }
6314
6315 #define put_smstate(type, buf, offset, val)                       \
6316         *(type *)((buf) + (offset) - 0x7e00) = val
6317
6318 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6319 {
6320         u32 flags = 0;
6321         flags |= seg->g       << 23;
6322         flags |= seg->db      << 22;
6323         flags |= seg->l       << 21;
6324         flags |= seg->avl     << 20;
6325         flags |= seg->present << 15;
6326         flags |= seg->dpl     << 13;
6327         flags |= seg->s       << 12;
6328         flags |= seg->type    << 8;
6329         return flags;
6330 }
6331
6332 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6333 {
6334         struct kvm_segment seg;
6335         int offset;
6336
6337         kvm_get_segment(vcpu, &seg, n);
6338         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6339
6340         if (n < 3)
6341                 offset = 0x7f84 + n * 12;
6342         else
6343                 offset = 0x7f2c + (n - 3) * 12;
6344
6345         put_smstate(u32, buf, offset + 8, seg.base);
6346         put_smstate(u32, buf, offset + 4, seg.limit);
6347         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6348 }
6349
6350 #ifdef CONFIG_X86_64
6351 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6352 {
6353         struct kvm_segment seg;
6354         int offset;
6355         u16 flags;
6356
6357         kvm_get_segment(vcpu, &seg, n);
6358         offset = 0x7e00 + n * 16;
6359
6360         flags = enter_smm_get_segment_flags(&seg) >> 8;
6361         put_smstate(u16, buf, offset, seg.selector);
6362         put_smstate(u16, buf, offset + 2, flags);
6363         put_smstate(u32, buf, offset + 4, seg.limit);
6364         put_smstate(u64, buf, offset + 8, seg.base);
6365 }
6366 #endif
6367
6368 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6369 {
6370         struct desc_ptr dt;
6371         struct kvm_segment seg;
6372         unsigned long val;
6373         int i;
6374
6375         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6376         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6377         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6378         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6379
6380         for (i = 0; i < 8; i++)
6381                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6382
6383         kvm_get_dr(vcpu, 6, &val);
6384         put_smstate(u32, buf, 0x7fcc, (u32)val);
6385         kvm_get_dr(vcpu, 7, &val);
6386         put_smstate(u32, buf, 0x7fc8, (u32)val);
6387
6388         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6389         put_smstate(u32, buf, 0x7fc4, seg.selector);
6390         put_smstate(u32, buf, 0x7f64, seg.base);
6391         put_smstate(u32, buf, 0x7f60, seg.limit);
6392         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6393
6394         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6395         put_smstate(u32, buf, 0x7fc0, seg.selector);
6396         put_smstate(u32, buf, 0x7f80, seg.base);
6397         put_smstate(u32, buf, 0x7f7c, seg.limit);
6398         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6399
6400         kvm_x86_ops->get_gdt(vcpu, &dt);
6401         put_smstate(u32, buf, 0x7f74, dt.address);
6402         put_smstate(u32, buf, 0x7f70, dt.size);
6403
6404         kvm_x86_ops->get_idt(vcpu, &dt);
6405         put_smstate(u32, buf, 0x7f58, dt.address);
6406         put_smstate(u32, buf, 0x7f54, dt.size);
6407
6408         for (i = 0; i < 6; i++)
6409                 enter_smm_save_seg_32(vcpu, buf, i);
6410
6411         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6412
6413         /* revision id */
6414         put_smstate(u32, buf, 0x7efc, 0x00020000);
6415         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6416 }
6417
6418 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6419 {
6420 #ifdef CONFIG_X86_64
6421         struct desc_ptr dt;
6422         struct kvm_segment seg;
6423         unsigned long val;
6424         int i;
6425
6426         for (i = 0; i < 16; i++)
6427                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6428
6429         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6430         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6431
6432         kvm_get_dr(vcpu, 6, &val);
6433         put_smstate(u64, buf, 0x7f68, val);
6434         kvm_get_dr(vcpu, 7, &val);
6435         put_smstate(u64, buf, 0x7f60, val);
6436
6437         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6438         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6439         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6440
6441         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6442
6443         /* revision id */
6444         put_smstate(u32, buf, 0x7efc, 0x00020064);
6445
6446         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6447
6448         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6449         put_smstate(u16, buf, 0x7e90, seg.selector);
6450         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6451         put_smstate(u32, buf, 0x7e94, seg.limit);
6452         put_smstate(u64, buf, 0x7e98, seg.base);
6453
6454         kvm_x86_ops->get_idt(vcpu, &dt);
6455         put_smstate(u32, buf, 0x7e84, dt.size);
6456         put_smstate(u64, buf, 0x7e88, dt.address);
6457
6458         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6459         put_smstate(u16, buf, 0x7e70, seg.selector);
6460         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6461         put_smstate(u32, buf, 0x7e74, seg.limit);
6462         put_smstate(u64, buf, 0x7e78, seg.base);
6463
6464         kvm_x86_ops->get_gdt(vcpu, &dt);
6465         put_smstate(u32, buf, 0x7e64, dt.size);
6466         put_smstate(u64, buf, 0x7e68, dt.address);
6467
6468         for (i = 0; i < 6; i++)
6469                 enter_smm_save_seg_64(vcpu, buf, i);
6470 #else
6471         WARN_ON_ONCE(1);
6472 #endif
6473 }
6474
6475 static void enter_smm(struct kvm_vcpu *vcpu)
6476 {
6477         struct kvm_segment cs, ds;
6478         struct desc_ptr dt;
6479         char buf[512];
6480         u32 cr0;
6481
6482         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6483         vcpu->arch.hflags |= HF_SMM_MASK;
6484         memset(buf, 0, 512);
6485         if (guest_cpuid_has_longmode(vcpu))
6486                 enter_smm_save_state_64(vcpu, buf);
6487         else
6488                 enter_smm_save_state_32(vcpu, buf);
6489
6490         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6491
6492         if (kvm_x86_ops->get_nmi_mask(vcpu))
6493                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6494         else
6495                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6496
6497         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6498         kvm_rip_write(vcpu, 0x8000);
6499
6500         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6501         kvm_x86_ops->set_cr0(vcpu, cr0);
6502         vcpu->arch.cr0 = cr0;
6503
6504         kvm_x86_ops->set_cr4(vcpu, 0);
6505
6506         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6507         dt.address = dt.size = 0;
6508         kvm_x86_ops->set_idt(vcpu, &dt);
6509
6510         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6511
6512         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6513         cs.base = vcpu->arch.smbase;
6514
6515         ds.selector = 0;
6516         ds.base = 0;
6517
6518         cs.limit    = ds.limit = 0xffffffff;
6519         cs.type     = ds.type = 0x3;
6520         cs.dpl      = ds.dpl = 0;
6521         cs.db       = ds.db = 0;
6522         cs.s        = ds.s = 1;
6523         cs.l        = ds.l = 0;
6524         cs.g        = ds.g = 1;
6525         cs.avl      = ds.avl = 0;
6526         cs.present  = ds.present = 1;
6527         cs.unusable = ds.unusable = 0;
6528         cs.padding  = ds.padding = 0;
6529
6530         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6531         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6532         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6533         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6534         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6535         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6536
6537         if (guest_cpuid_has_longmode(vcpu))
6538                 kvm_x86_ops->set_efer(vcpu, 0);
6539
6540         kvm_update_cpuid(vcpu);
6541         kvm_mmu_reset_context(vcpu);
6542 }
6543
6544 static void process_smi(struct kvm_vcpu *vcpu)
6545 {
6546         vcpu->arch.smi_pending = true;
6547         kvm_make_request(KVM_REQ_EVENT, vcpu);
6548 }
6549
6550 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6551 {
6552         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6553 }
6554
6555 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6556 {
6557         u64 eoi_exit_bitmap[4];
6558
6559         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6560                 return;
6561
6562         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6563
6564         if (irqchip_split(vcpu->kvm))
6565                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6566         else {
6567                 if (vcpu->arch.apicv_active)
6568                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6569                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6570         }
6571         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6572                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6573         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6574 }
6575
6576 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6577 {
6578         ++vcpu->stat.tlb_flush;
6579         kvm_x86_ops->tlb_flush(vcpu);
6580 }
6581
6582 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6583 {
6584         struct page *page = NULL;
6585
6586         if (!lapic_in_kernel(vcpu))
6587                 return;
6588
6589         if (!kvm_x86_ops->set_apic_access_page_addr)
6590                 return;
6591
6592         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6593         if (is_error_page(page))
6594                 return;
6595         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6596
6597         /*
6598          * Do not pin apic access page in memory, the MMU notifier
6599          * will call us again if it is migrated or swapped out.
6600          */
6601         put_page(page);
6602 }
6603 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6604
6605 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6606                                            unsigned long address)
6607 {
6608         /*
6609          * The physical address of apic access page is stored in the VMCS.
6610          * Update it when it becomes invalid.
6611          */
6612         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6613                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6614 }
6615
6616 /*
6617  * Returns 1 to let vcpu_run() continue the guest execution loop without
6618  * exiting to the userspace.  Otherwise, the value will be returned to the
6619  * userspace.
6620  */
6621 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6622 {
6623         int r;
6624         bool req_int_win =
6625                 dm_request_for_irq_injection(vcpu) &&
6626                 kvm_cpu_accept_dm_intr(vcpu);
6627
6628         bool req_immediate_exit = false;
6629
6630         if (vcpu->requests) {
6631                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6632                         kvm_mmu_unload(vcpu);
6633                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6634                         __kvm_migrate_timers(vcpu);
6635                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6636                         kvm_gen_update_masterclock(vcpu->kvm);
6637                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6638                         kvm_gen_kvmclock_update(vcpu);
6639                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6640                         r = kvm_guest_time_update(vcpu);
6641                         if (unlikely(r))
6642                                 goto out;
6643                 }
6644                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6645                         kvm_mmu_sync_roots(vcpu);
6646                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6647                         kvm_vcpu_flush_tlb(vcpu);
6648                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6649                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6650                         r = 0;
6651                         goto out;
6652                 }
6653                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6654                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6655                         r = 0;
6656                         goto out;
6657                 }
6658                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6659                         vcpu->fpu_active = 0;
6660                         kvm_x86_ops->fpu_deactivate(vcpu);
6661                 }
6662                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6663                         /* Page is swapped out. Do synthetic halt */
6664                         vcpu->arch.apf.halted = true;
6665                         r = 1;
6666                         goto out;
6667                 }
6668                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6669                         record_steal_time(vcpu);
6670                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6671                         process_smi(vcpu);
6672                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6673                         process_nmi(vcpu);
6674                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6675                         kvm_pmu_handle_event(vcpu);
6676                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6677                         kvm_pmu_deliver_pmi(vcpu);
6678                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6679                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6680                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6681                                      vcpu->arch.ioapic_handled_vectors)) {
6682                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6683                                 vcpu->run->eoi.vector =
6684                                                 vcpu->arch.pending_ioapic_eoi;
6685                                 r = 0;
6686                                 goto out;
6687                         }
6688                 }
6689                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6690                         vcpu_scan_ioapic(vcpu);
6691                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6692                         kvm_vcpu_reload_apic_access_page(vcpu);
6693                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6694                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6695                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6696                         r = 0;
6697                         goto out;
6698                 }
6699                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6700                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6701                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6702                         r = 0;
6703                         goto out;
6704                 }
6705                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6706                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6707                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6708                         r = 0;
6709                         goto out;
6710                 }
6711
6712                 /*
6713                  * KVM_REQ_HV_STIMER has to be processed after
6714                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6715                  * depend on the guest clock being up-to-date
6716                  */
6717                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6718                         kvm_hv_process_stimers(vcpu);
6719         }
6720
6721         /*
6722          * KVM_REQ_EVENT is not set when posted interrupts are set by
6723          * VT-d hardware, so we have to update RVI unconditionally.
6724          */
6725         if (kvm_lapic_enabled(vcpu)) {
6726                 /*
6727                  * Update architecture specific hints for APIC
6728                  * virtual interrupt delivery.
6729                  */
6730                 if (vcpu->arch.apicv_active)
6731                         kvm_x86_ops->hwapic_irr_update(vcpu,
6732                                 kvm_lapic_find_highest_irr(vcpu));
6733         }
6734
6735         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6736                 kvm_apic_accept_events(vcpu);
6737                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6738                         r = 1;
6739                         goto out;
6740                 }
6741
6742                 if (inject_pending_event(vcpu, req_int_win) != 0)
6743                         req_immediate_exit = true;
6744                 else {
6745                         /* Enable NMI/IRQ window open exits if needed.
6746                          *
6747                          * SMIs have two cases: 1) they can be nested, and
6748                          * then there is nothing to do here because RSM will
6749                          * cause a vmexit anyway; 2) or the SMI can be pending
6750                          * because inject_pending_event has completed the
6751                          * injection of an IRQ or NMI from the previous vmexit,
6752                          * and then we request an immediate exit to inject the SMI.
6753                          */
6754                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6755                                 req_immediate_exit = true;
6756                         if (vcpu->arch.nmi_pending)
6757                                 kvm_x86_ops->enable_nmi_window(vcpu);
6758                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6759                                 kvm_x86_ops->enable_irq_window(vcpu);
6760                 }
6761
6762                 if (kvm_lapic_enabled(vcpu)) {
6763                         update_cr8_intercept(vcpu);
6764                         kvm_lapic_sync_to_vapic(vcpu);
6765                 }
6766         }
6767
6768         r = kvm_mmu_reload(vcpu);
6769         if (unlikely(r)) {
6770                 goto cancel_injection;
6771         }
6772
6773         preempt_disable();
6774
6775         kvm_x86_ops->prepare_guest_switch(vcpu);
6776         if (vcpu->fpu_active)
6777                 kvm_load_guest_fpu(vcpu);
6778         vcpu->mode = IN_GUEST_MODE;
6779
6780         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6781
6782         /*
6783          * We should set ->mode before check ->requests,
6784          * Please see the comment in kvm_make_all_cpus_request.
6785          * This also orders the write to mode from any reads
6786          * to the page tables done while the VCPU is running.
6787          * Please see the comment in kvm_flush_remote_tlbs.
6788          */
6789         smp_mb__after_srcu_read_unlock();
6790
6791         local_irq_disable();
6792
6793         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6794             || need_resched() || signal_pending(current)) {
6795                 vcpu->mode = OUTSIDE_GUEST_MODE;
6796                 smp_wmb();
6797                 local_irq_enable();
6798                 preempt_enable();
6799                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6800                 r = 1;
6801                 goto cancel_injection;
6802         }
6803
6804         kvm_load_guest_xcr0(vcpu);
6805
6806         if (req_immediate_exit) {
6807                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6808                 smp_send_reschedule(vcpu->cpu);
6809         }
6810
6811         trace_kvm_entry(vcpu->vcpu_id);
6812         wait_lapic_expire(vcpu);
6813         guest_enter_irqoff();
6814
6815         if (unlikely(vcpu->arch.switch_db_regs)) {
6816                 set_debugreg(0, 7);
6817                 set_debugreg(vcpu->arch.eff_db[0], 0);
6818                 set_debugreg(vcpu->arch.eff_db[1], 1);
6819                 set_debugreg(vcpu->arch.eff_db[2], 2);
6820                 set_debugreg(vcpu->arch.eff_db[3], 3);
6821                 set_debugreg(vcpu->arch.dr6, 6);
6822                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6823         }
6824
6825         kvm_x86_ops->run(vcpu);
6826
6827         /*
6828          * Do this here before restoring debug registers on the host.  And
6829          * since we do this before handling the vmexit, a DR access vmexit
6830          * can (a) read the correct value of the debug registers, (b) set
6831          * KVM_DEBUGREG_WONT_EXIT again.
6832          */
6833         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6834                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6835                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6836                 kvm_update_dr0123(vcpu);
6837                 kvm_update_dr6(vcpu);
6838                 kvm_update_dr7(vcpu);
6839                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6840         }
6841
6842         /*
6843          * If the guest has used debug registers, at least dr7
6844          * will be disabled while returning to the host.
6845          * If we don't have active breakpoints in the host, we don't
6846          * care about the messed up debug address registers. But if
6847          * we have some of them active, restore the old state.
6848          */
6849         if (hw_breakpoint_active())
6850                 hw_breakpoint_restore();
6851
6852         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6853
6854         vcpu->mode = OUTSIDE_GUEST_MODE;
6855         smp_wmb();
6856
6857         kvm_put_guest_xcr0(vcpu);
6858
6859         kvm_x86_ops->handle_external_intr(vcpu);
6860
6861         ++vcpu->stat.exits;
6862
6863         guest_exit_irqoff();
6864
6865         local_irq_enable();
6866         preempt_enable();
6867
6868         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6869
6870         /*
6871          * Profile KVM exit RIPs:
6872          */
6873         if (unlikely(prof_on == KVM_PROFILING)) {
6874                 unsigned long rip = kvm_rip_read(vcpu);
6875                 profile_hit(KVM_PROFILING, (void *)rip);
6876         }
6877
6878         if (unlikely(vcpu->arch.tsc_always_catchup))
6879                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6880
6881         if (vcpu->arch.apic_attention)
6882                 kvm_lapic_sync_from_vapic(vcpu);
6883
6884         r = kvm_x86_ops->handle_exit(vcpu);
6885         return r;
6886
6887 cancel_injection:
6888         kvm_x86_ops->cancel_injection(vcpu);
6889         if (unlikely(vcpu->arch.apic_attention))
6890                 kvm_lapic_sync_from_vapic(vcpu);
6891 out:
6892         return r;
6893 }
6894
6895 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6896 {
6897         if (!kvm_arch_vcpu_runnable(vcpu) &&
6898             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6899                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6900                 kvm_vcpu_block(vcpu);
6901                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6902
6903                 if (kvm_x86_ops->post_block)
6904                         kvm_x86_ops->post_block(vcpu);
6905
6906                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6907                         return 1;
6908         }
6909
6910         kvm_apic_accept_events(vcpu);
6911         switch(vcpu->arch.mp_state) {
6912         case KVM_MP_STATE_HALTED:
6913                 vcpu->arch.pv.pv_unhalted = false;
6914                 vcpu->arch.mp_state =
6915                         KVM_MP_STATE_RUNNABLE;
6916         case KVM_MP_STATE_RUNNABLE:
6917                 vcpu->arch.apf.halted = false;
6918                 break;
6919         case KVM_MP_STATE_INIT_RECEIVED:
6920                 break;
6921         default:
6922                 return -EINTR;
6923                 break;
6924         }
6925         return 1;
6926 }
6927
6928 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6929 {
6930         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6931                 !vcpu->arch.apf.halted);
6932 }
6933
6934 static int vcpu_run(struct kvm_vcpu *vcpu)
6935 {
6936         int r;
6937         struct kvm *kvm = vcpu->kvm;
6938
6939         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6940
6941         for (;;) {
6942                 if (kvm_vcpu_running(vcpu)) {
6943                         r = vcpu_enter_guest(vcpu);
6944                 } else {
6945                         r = vcpu_block(kvm, vcpu);
6946                 }
6947
6948                 if (r <= 0)
6949                         break;
6950
6951                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6952                 if (kvm_cpu_has_pending_timer(vcpu))
6953                         kvm_inject_pending_timer_irqs(vcpu);
6954
6955                 if (dm_request_for_irq_injection(vcpu) &&
6956                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6957                         r = 0;
6958                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6959                         ++vcpu->stat.request_irq_exits;
6960                         break;
6961                 }
6962
6963                 kvm_check_async_pf_completion(vcpu);
6964
6965                 if (signal_pending(current)) {
6966                         r = -EINTR;
6967                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6968                         ++vcpu->stat.signal_exits;
6969                         break;
6970                 }
6971                 if (need_resched()) {
6972                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6973                         cond_resched();
6974                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6975                 }
6976         }
6977
6978         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6979
6980         return r;
6981 }
6982
6983 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6984 {
6985         int r;
6986         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6987         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6988         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6989         if (r != EMULATE_DONE)
6990                 return 0;
6991         return 1;
6992 }
6993
6994 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6995 {
6996         BUG_ON(!vcpu->arch.pio.count);
6997
6998         return complete_emulated_io(vcpu);
6999 }
7000
7001 /*
7002  * Implements the following, as a state machine:
7003  *
7004  * read:
7005  *   for each fragment
7006  *     for each mmio piece in the fragment
7007  *       write gpa, len
7008  *       exit
7009  *       copy data
7010  *   execute insn
7011  *
7012  * write:
7013  *   for each fragment
7014  *     for each mmio piece in the fragment
7015  *       write gpa, len
7016  *       copy data
7017  *       exit
7018  */
7019 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7020 {
7021         struct kvm_run *run = vcpu->run;
7022         struct kvm_mmio_fragment *frag;
7023         unsigned len;
7024
7025         BUG_ON(!vcpu->mmio_needed);
7026
7027         /* Complete previous fragment */
7028         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7029         len = min(8u, frag->len);
7030         if (!vcpu->mmio_is_write)
7031                 memcpy(frag->data, run->mmio.data, len);
7032
7033         if (frag->len <= 8) {
7034                 /* Switch to the next fragment. */
7035                 frag++;
7036                 vcpu->mmio_cur_fragment++;
7037         } else {
7038                 /* Go forward to the next mmio piece. */
7039                 frag->data += len;
7040                 frag->gpa += len;
7041                 frag->len -= len;
7042         }
7043
7044         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7045                 vcpu->mmio_needed = 0;
7046
7047                 /* FIXME: return into emulator if single-stepping.  */
7048                 if (vcpu->mmio_is_write)
7049                         return 1;
7050                 vcpu->mmio_read_completed = 1;
7051                 return complete_emulated_io(vcpu);
7052         }
7053
7054         run->exit_reason = KVM_EXIT_MMIO;
7055         run->mmio.phys_addr = frag->gpa;
7056         if (vcpu->mmio_is_write)
7057                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7058         run->mmio.len = min(8u, frag->len);
7059         run->mmio.is_write = vcpu->mmio_is_write;
7060         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7061         return 0;
7062 }
7063
7064
7065 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7066 {
7067         struct fpu *fpu = &current->thread.fpu;
7068         int r;
7069         sigset_t sigsaved;
7070
7071         fpu__activate_curr(fpu);
7072
7073         if (vcpu->sigset_active)
7074                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7075
7076         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7077                 kvm_vcpu_block(vcpu);
7078                 kvm_apic_accept_events(vcpu);
7079                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
7080                 r = -EAGAIN;
7081                 goto out;
7082         }
7083
7084         /* re-sync apic's tpr */
7085         if (!lapic_in_kernel(vcpu)) {
7086                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7087                         r = -EINVAL;
7088                         goto out;
7089                 }
7090         }
7091
7092         if (unlikely(vcpu->arch.complete_userspace_io)) {
7093                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7094                 vcpu->arch.complete_userspace_io = NULL;
7095                 r = cui(vcpu);
7096                 if (r <= 0)
7097                         goto out;
7098         } else
7099                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7100
7101         r = vcpu_run(vcpu);
7102
7103 out:
7104         post_kvm_run_save(vcpu);
7105         if (vcpu->sigset_active)
7106                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7107
7108         return r;
7109 }
7110
7111 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7112 {
7113         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7114                 /*
7115                  * We are here if userspace calls get_regs() in the middle of
7116                  * instruction emulation. Registers state needs to be copied
7117                  * back from emulation context to vcpu. Userspace shouldn't do
7118                  * that usually, but some bad designed PV devices (vmware
7119                  * backdoor interface) need this to work
7120                  */
7121                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7122                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7123         }
7124         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7125         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7126         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7127         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7128         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7129         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7130         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7131         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7132 #ifdef CONFIG_X86_64
7133         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7134         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7135         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7136         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7137         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7138         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7139         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7140         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7141 #endif
7142
7143         regs->rip = kvm_rip_read(vcpu);
7144         regs->rflags = kvm_get_rflags(vcpu);
7145
7146         return 0;
7147 }
7148
7149 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7150 {
7151         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7152         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7153
7154         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7155         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7156         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7157         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7158         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7159         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7160         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7161         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7162 #ifdef CONFIG_X86_64
7163         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7164         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7165         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7166         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7167         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7168         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7169         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7170         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7171 #endif
7172
7173         kvm_rip_write(vcpu, regs->rip);
7174         kvm_set_rflags(vcpu, regs->rflags);
7175
7176         vcpu->arch.exception.pending = false;
7177
7178         kvm_make_request(KVM_REQ_EVENT, vcpu);
7179
7180         return 0;
7181 }
7182
7183 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7184 {
7185         struct kvm_segment cs;
7186
7187         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7188         *db = cs.db;
7189         *l = cs.l;
7190 }
7191 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7192
7193 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7194                                   struct kvm_sregs *sregs)
7195 {
7196         struct desc_ptr dt;
7197
7198         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7199         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7200         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7201         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7202         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7203         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7204
7205         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7206         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7207
7208         kvm_x86_ops->get_idt(vcpu, &dt);
7209         sregs->idt.limit = dt.size;
7210         sregs->idt.base = dt.address;
7211         kvm_x86_ops->get_gdt(vcpu, &dt);
7212         sregs->gdt.limit = dt.size;
7213         sregs->gdt.base = dt.address;
7214
7215         sregs->cr0 = kvm_read_cr0(vcpu);
7216         sregs->cr2 = vcpu->arch.cr2;
7217         sregs->cr3 = kvm_read_cr3(vcpu);
7218         sregs->cr4 = kvm_read_cr4(vcpu);
7219         sregs->cr8 = kvm_get_cr8(vcpu);
7220         sregs->efer = vcpu->arch.efer;
7221         sregs->apic_base = kvm_get_apic_base(vcpu);
7222
7223         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7224
7225         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7226                 set_bit(vcpu->arch.interrupt.nr,
7227                         (unsigned long *)sregs->interrupt_bitmap);
7228
7229         return 0;
7230 }
7231
7232 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7233                                     struct kvm_mp_state *mp_state)
7234 {
7235         kvm_apic_accept_events(vcpu);
7236         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7237                                         vcpu->arch.pv.pv_unhalted)
7238                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7239         else
7240                 mp_state->mp_state = vcpu->arch.mp_state;
7241
7242         return 0;
7243 }
7244
7245 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7246                                     struct kvm_mp_state *mp_state)
7247 {
7248         if (!lapic_in_kernel(vcpu) &&
7249             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7250                 return -EINVAL;
7251
7252         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7253                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7254                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7255         } else
7256                 vcpu->arch.mp_state = mp_state->mp_state;
7257         kvm_make_request(KVM_REQ_EVENT, vcpu);
7258         return 0;
7259 }
7260
7261 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7262                     int reason, bool has_error_code, u32 error_code)
7263 {
7264         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7265         int ret;
7266
7267         init_emulate_ctxt(vcpu);
7268
7269         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7270                                    has_error_code, error_code);
7271
7272         if (ret)
7273                 return EMULATE_FAIL;
7274
7275         kvm_rip_write(vcpu, ctxt->eip);
7276         kvm_set_rflags(vcpu, ctxt->eflags);
7277         kvm_make_request(KVM_REQ_EVENT, vcpu);
7278         return EMULATE_DONE;
7279 }
7280 EXPORT_SYMBOL_GPL(kvm_task_switch);
7281
7282 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7283                                   struct kvm_sregs *sregs)
7284 {
7285         struct msr_data apic_base_msr;
7286         int mmu_reset_needed = 0;
7287         int pending_vec, max_bits, idx;
7288         struct desc_ptr dt;
7289
7290         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7291                 return -EINVAL;
7292
7293         dt.size = sregs->idt.limit;
7294         dt.address = sregs->idt.base;
7295         kvm_x86_ops->set_idt(vcpu, &dt);
7296         dt.size = sregs->gdt.limit;
7297         dt.address = sregs->gdt.base;
7298         kvm_x86_ops->set_gdt(vcpu, &dt);
7299
7300         vcpu->arch.cr2 = sregs->cr2;
7301         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7302         vcpu->arch.cr3 = sregs->cr3;
7303         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7304
7305         kvm_set_cr8(vcpu, sregs->cr8);
7306
7307         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7308         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7309         apic_base_msr.data = sregs->apic_base;
7310         apic_base_msr.host_initiated = true;
7311         kvm_set_apic_base(vcpu, &apic_base_msr);
7312
7313         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7314         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7315         vcpu->arch.cr0 = sregs->cr0;
7316
7317         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7318         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7319         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7320                 kvm_update_cpuid(vcpu);
7321
7322         idx = srcu_read_lock(&vcpu->kvm->srcu);
7323         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7324                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7325                 mmu_reset_needed = 1;
7326         }
7327         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7328
7329         if (mmu_reset_needed)
7330                 kvm_mmu_reset_context(vcpu);
7331
7332         max_bits = KVM_NR_INTERRUPTS;
7333         pending_vec = find_first_bit(
7334                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7335         if (pending_vec < max_bits) {
7336                 kvm_queue_interrupt(vcpu, pending_vec, false);
7337                 pr_debug("Set back pending irq %d\n", pending_vec);
7338         }
7339
7340         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7341         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7342         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7343         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7344         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7345         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7346
7347         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7348         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7349
7350         update_cr8_intercept(vcpu);
7351
7352         /* Older userspace won't unhalt the vcpu on reset. */
7353         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7354             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7355             !is_protmode(vcpu))
7356                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7357
7358         kvm_make_request(KVM_REQ_EVENT, vcpu);
7359
7360         return 0;
7361 }
7362
7363 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7364                                         struct kvm_guest_debug *dbg)
7365 {
7366         unsigned long rflags;
7367         int i, r;
7368
7369         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7370                 r = -EBUSY;
7371                 if (vcpu->arch.exception.pending)
7372                         goto out;
7373                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7374                         kvm_queue_exception(vcpu, DB_VECTOR);
7375                 else
7376                         kvm_queue_exception(vcpu, BP_VECTOR);
7377         }
7378
7379         /*
7380          * Read rflags as long as potentially injected trace flags are still
7381          * filtered out.
7382          */
7383         rflags = kvm_get_rflags(vcpu);
7384
7385         vcpu->guest_debug = dbg->control;
7386         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7387                 vcpu->guest_debug = 0;
7388
7389         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7390                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7391                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7392                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7393         } else {
7394                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7395                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7396         }
7397         kvm_update_dr7(vcpu);
7398
7399         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7400                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7401                         get_segment_base(vcpu, VCPU_SREG_CS);
7402
7403         /*
7404          * Trigger an rflags update that will inject or remove the trace
7405          * flags.
7406          */
7407         kvm_set_rflags(vcpu, rflags);
7408
7409         kvm_x86_ops->update_bp_intercept(vcpu);
7410
7411         r = 0;
7412
7413 out:
7414
7415         return r;
7416 }
7417
7418 /*
7419  * Translate a guest virtual address to a guest physical address.
7420  */
7421 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7422                                     struct kvm_translation *tr)
7423 {
7424         unsigned long vaddr = tr->linear_address;
7425         gpa_t gpa;
7426         int idx;
7427
7428         idx = srcu_read_lock(&vcpu->kvm->srcu);
7429         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7430         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7431         tr->physical_address = gpa;
7432         tr->valid = gpa != UNMAPPED_GVA;
7433         tr->writeable = 1;
7434         tr->usermode = 0;
7435
7436         return 0;
7437 }
7438
7439 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7440 {
7441         struct fxregs_state *fxsave =
7442                         &vcpu->arch.guest_fpu.state.fxsave;
7443
7444         memcpy(fpu->fpr, fxsave->st_space, 128);
7445         fpu->fcw = fxsave->cwd;
7446         fpu->fsw = fxsave->swd;
7447         fpu->ftwx = fxsave->twd;
7448         fpu->last_opcode = fxsave->fop;
7449         fpu->last_ip = fxsave->rip;
7450         fpu->last_dp = fxsave->rdp;
7451         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7452
7453         return 0;
7454 }
7455
7456 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7457 {
7458         struct fxregs_state *fxsave =
7459                         &vcpu->arch.guest_fpu.state.fxsave;
7460
7461         memcpy(fxsave->st_space, fpu->fpr, 128);
7462         fxsave->cwd = fpu->fcw;
7463         fxsave->swd = fpu->fsw;
7464         fxsave->twd = fpu->ftwx;
7465         fxsave->fop = fpu->last_opcode;
7466         fxsave->rip = fpu->last_ip;
7467         fxsave->rdp = fpu->last_dp;
7468         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7469
7470         return 0;
7471 }
7472
7473 static void fx_init(struct kvm_vcpu *vcpu)
7474 {
7475         fpstate_init(&vcpu->arch.guest_fpu.state);
7476         if (boot_cpu_has(X86_FEATURE_XSAVES))
7477                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7478                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7479
7480         /*
7481          * Ensure guest xcr0 is valid for loading
7482          */
7483         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7484
7485         vcpu->arch.cr0 |= X86_CR0_ET;
7486 }
7487
7488 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7489 {
7490         if (vcpu->guest_fpu_loaded)
7491                 return;
7492
7493         /*
7494          * Restore all possible states in the guest,
7495          * and assume host would use all available bits.
7496          * Guest xcr0 would be loaded later.
7497          */
7498         vcpu->guest_fpu_loaded = 1;
7499         __kernel_fpu_begin();
7500         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7501         trace_kvm_fpu(1);
7502 }
7503
7504 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7505 {
7506         if (!vcpu->guest_fpu_loaded)
7507                 return;
7508
7509         vcpu->guest_fpu_loaded = 0;
7510         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7511         __kernel_fpu_end();
7512         ++vcpu->stat.fpu_reload;
7513         trace_kvm_fpu(0);
7514 }
7515
7516 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7517 {
7518         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7519
7520         kvmclock_reset(vcpu);
7521
7522         kvm_x86_ops->vcpu_free(vcpu);
7523         free_cpumask_var(wbinvd_dirty_mask);
7524 }
7525
7526 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7527                                                 unsigned int id)
7528 {
7529         struct kvm_vcpu *vcpu;
7530
7531         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7532                 printk_once(KERN_WARNING
7533                 "kvm: SMP vm created on host with unstable TSC; "
7534                 "guest TSC will not be reliable\n");
7535
7536         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7537
7538         return vcpu;
7539 }
7540
7541 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7542 {
7543         int r;
7544
7545         kvm_vcpu_mtrr_init(vcpu);
7546         r = vcpu_load(vcpu);
7547         if (r)
7548                 return r;
7549         kvm_vcpu_reset(vcpu, false);
7550         kvm_mmu_setup(vcpu);
7551         vcpu_put(vcpu);
7552         return r;
7553 }
7554
7555 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7556 {
7557         struct msr_data msr;
7558         struct kvm *kvm = vcpu->kvm;
7559
7560         if (vcpu_load(vcpu))
7561                 return;
7562         msr.data = 0x0;
7563         msr.index = MSR_IA32_TSC;
7564         msr.host_initiated = true;
7565         kvm_write_tsc(vcpu, &msr);
7566         vcpu_put(vcpu);
7567
7568         if (!kvmclock_periodic_sync)
7569                 return;
7570
7571         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7572                                         KVMCLOCK_SYNC_PERIOD);
7573 }
7574
7575 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7576 {
7577         int r;
7578         vcpu->arch.apf.msr_val = 0;
7579
7580         r = vcpu_load(vcpu);
7581         BUG_ON(r);
7582         kvm_mmu_unload(vcpu);
7583         vcpu_put(vcpu);
7584
7585         kvm_x86_ops->vcpu_free(vcpu);
7586 }
7587
7588 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7589 {
7590         vcpu->arch.hflags = 0;
7591
7592         vcpu->arch.smi_pending = 0;
7593         atomic_set(&vcpu->arch.nmi_queued, 0);
7594         vcpu->arch.nmi_pending = 0;
7595         vcpu->arch.nmi_injected = false;
7596         kvm_clear_interrupt_queue(vcpu);
7597         kvm_clear_exception_queue(vcpu);
7598
7599         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7600         kvm_update_dr0123(vcpu);
7601         vcpu->arch.dr6 = DR6_INIT;
7602         kvm_update_dr6(vcpu);
7603         vcpu->arch.dr7 = DR7_FIXED_1;
7604         kvm_update_dr7(vcpu);
7605
7606         vcpu->arch.cr2 = 0;
7607
7608         kvm_make_request(KVM_REQ_EVENT, vcpu);
7609         vcpu->arch.apf.msr_val = 0;
7610         vcpu->arch.st.msr_val = 0;
7611
7612         kvmclock_reset(vcpu);
7613
7614         kvm_clear_async_pf_completion_queue(vcpu);
7615         kvm_async_pf_hash_reset(vcpu);
7616         vcpu->arch.apf.halted = false;
7617
7618         if (!init_event) {
7619                 kvm_pmu_reset(vcpu);
7620                 vcpu->arch.smbase = 0x30000;
7621         }
7622
7623         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7624         vcpu->arch.regs_avail = ~0;
7625         vcpu->arch.regs_dirty = ~0;
7626
7627         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7628 }
7629
7630 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7631 {
7632         struct kvm_segment cs;
7633
7634         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7635         cs.selector = vector << 8;
7636         cs.base = vector << 12;
7637         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7638         kvm_rip_write(vcpu, 0);
7639 }
7640
7641 int kvm_arch_hardware_enable(void)
7642 {
7643         struct kvm *kvm;
7644         struct kvm_vcpu *vcpu;
7645         int i;
7646         int ret;
7647         u64 local_tsc;
7648         u64 max_tsc = 0;
7649         bool stable, backwards_tsc = false;
7650
7651         kvm_shared_msr_cpu_online();
7652         ret = kvm_x86_ops->hardware_enable();
7653         if (ret != 0)
7654                 return ret;
7655
7656         local_tsc = rdtsc();
7657         stable = !check_tsc_unstable();
7658         list_for_each_entry(kvm, &vm_list, vm_list) {
7659                 kvm_for_each_vcpu(i, vcpu, kvm) {
7660                         if (!stable && vcpu->cpu == smp_processor_id())
7661                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7662                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7663                                 backwards_tsc = true;
7664                                 if (vcpu->arch.last_host_tsc > max_tsc)
7665                                         max_tsc = vcpu->arch.last_host_tsc;
7666                         }
7667                 }
7668         }
7669
7670         /*
7671          * Sometimes, even reliable TSCs go backwards.  This happens on
7672          * platforms that reset TSC during suspend or hibernate actions, but
7673          * maintain synchronization.  We must compensate.  Fortunately, we can
7674          * detect that condition here, which happens early in CPU bringup,
7675          * before any KVM threads can be running.  Unfortunately, we can't
7676          * bring the TSCs fully up to date with real time, as we aren't yet far
7677          * enough into CPU bringup that we know how much real time has actually
7678          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7679          * variables that haven't been updated yet.
7680          *
7681          * So we simply find the maximum observed TSC above, then record the
7682          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7683          * the adjustment will be applied.  Note that we accumulate
7684          * adjustments, in case multiple suspend cycles happen before some VCPU
7685          * gets a chance to run again.  In the event that no KVM threads get a
7686          * chance to run, we will miss the entire elapsed period, as we'll have
7687          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7688          * loose cycle time.  This isn't too big a deal, since the loss will be
7689          * uniform across all VCPUs (not to mention the scenario is extremely
7690          * unlikely). It is possible that a second hibernate recovery happens
7691          * much faster than a first, causing the observed TSC here to be
7692          * smaller; this would require additional padding adjustment, which is
7693          * why we set last_host_tsc to the local tsc observed here.
7694          *
7695          * N.B. - this code below runs only on platforms with reliable TSC,
7696          * as that is the only way backwards_tsc is set above.  Also note
7697          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7698          * have the same delta_cyc adjustment applied if backwards_tsc
7699          * is detected.  Note further, this adjustment is only done once,
7700          * as we reset last_host_tsc on all VCPUs to stop this from being
7701          * called multiple times (one for each physical CPU bringup).
7702          *
7703          * Platforms with unreliable TSCs don't have to deal with this, they
7704          * will be compensated by the logic in vcpu_load, which sets the TSC to
7705          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7706          * guarantee that they stay in perfect synchronization.
7707          */
7708         if (backwards_tsc) {
7709                 u64 delta_cyc = max_tsc - local_tsc;
7710                 backwards_tsc_observed = true;
7711                 list_for_each_entry(kvm, &vm_list, vm_list) {
7712                         kvm_for_each_vcpu(i, vcpu, kvm) {
7713                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7714                                 vcpu->arch.last_host_tsc = local_tsc;
7715                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7716                         }
7717
7718                         /*
7719                          * We have to disable TSC offset matching.. if you were
7720                          * booting a VM while issuing an S4 host suspend....
7721                          * you may have some problem.  Solving this issue is
7722                          * left as an exercise to the reader.
7723                          */
7724                         kvm->arch.last_tsc_nsec = 0;
7725                         kvm->arch.last_tsc_write = 0;
7726                 }
7727
7728         }
7729         return 0;
7730 }
7731
7732 void kvm_arch_hardware_disable(void)
7733 {
7734         kvm_x86_ops->hardware_disable();
7735         drop_user_return_notifiers();
7736 }
7737
7738 int kvm_arch_hardware_setup(void)
7739 {
7740         int r;
7741
7742         r = kvm_x86_ops->hardware_setup();
7743         if (r != 0)
7744                 return r;
7745
7746         if (kvm_has_tsc_control) {
7747                 /*
7748                  * Make sure the user can only configure tsc_khz values that
7749                  * fit into a signed integer.
7750                  * A min value is not calculated needed because it will always
7751                  * be 1 on all machines.
7752                  */
7753                 u64 max = min(0x7fffffffULL,
7754                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7755                 kvm_max_guest_tsc_khz = max;
7756
7757                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7758         }
7759
7760         kvm_init_msr_list();
7761         return 0;
7762 }
7763
7764 void kvm_arch_hardware_unsetup(void)
7765 {
7766         kvm_x86_ops->hardware_unsetup();
7767 }
7768
7769 void kvm_arch_check_processor_compat(void *rtn)
7770 {
7771         kvm_x86_ops->check_processor_compatibility(rtn);
7772 }
7773
7774 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7775 {
7776         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7777 }
7778 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7779
7780 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7781 {
7782         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7783 }
7784
7785 struct static_key kvm_no_apic_vcpu __read_mostly;
7786 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7787
7788 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7789 {
7790         struct page *page;
7791         struct kvm *kvm;
7792         int r;
7793
7794         BUG_ON(vcpu->kvm == NULL);
7795         kvm = vcpu->kvm;
7796
7797         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7798         vcpu->arch.pv.pv_unhalted = false;
7799         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7800         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7801                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7802         else
7803                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7804
7805         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7806         if (!page) {
7807                 r = -ENOMEM;
7808                 goto fail;
7809         }
7810         vcpu->arch.pio_data = page_address(page);
7811
7812         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7813
7814         r = kvm_mmu_create(vcpu);
7815         if (r < 0)
7816                 goto fail_free_pio_data;
7817
7818         if (irqchip_in_kernel(kvm)) {
7819                 r = kvm_create_lapic(vcpu);
7820                 if (r < 0)
7821                         goto fail_mmu_destroy;
7822         } else
7823                 static_key_slow_inc(&kvm_no_apic_vcpu);
7824
7825         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7826                                        GFP_KERNEL);
7827         if (!vcpu->arch.mce_banks) {
7828                 r = -ENOMEM;
7829                 goto fail_free_lapic;
7830         }
7831         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7832
7833         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7834                 r = -ENOMEM;
7835                 goto fail_free_mce_banks;
7836         }
7837
7838         fx_init(vcpu);
7839
7840         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7841         vcpu->arch.pv_time_enabled = false;
7842
7843         vcpu->arch.guest_supported_xcr0 = 0;
7844         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7845
7846         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7847
7848         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7849
7850         kvm_async_pf_hash_reset(vcpu);
7851         kvm_pmu_init(vcpu);
7852
7853         vcpu->arch.pending_external_vector = -1;
7854
7855         kvm_hv_vcpu_init(vcpu);
7856
7857         return 0;
7858
7859 fail_free_mce_banks:
7860         kfree(vcpu->arch.mce_banks);
7861 fail_free_lapic:
7862         kvm_free_lapic(vcpu);
7863 fail_mmu_destroy:
7864         kvm_mmu_destroy(vcpu);
7865 fail_free_pio_data:
7866         free_page((unsigned long)vcpu->arch.pio_data);
7867 fail:
7868         return r;
7869 }
7870
7871 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7872 {
7873         int idx;
7874
7875         kvm_hv_vcpu_uninit(vcpu);
7876         kvm_pmu_destroy(vcpu);
7877         kfree(vcpu->arch.mce_banks);
7878         kvm_free_lapic(vcpu);
7879         idx = srcu_read_lock(&vcpu->kvm->srcu);
7880         kvm_mmu_destroy(vcpu);
7881         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7882         free_page((unsigned long)vcpu->arch.pio_data);
7883         if (!lapic_in_kernel(vcpu))
7884                 static_key_slow_dec(&kvm_no_apic_vcpu);
7885 }
7886
7887 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7888 {
7889         kvm_x86_ops->sched_in(vcpu, cpu);
7890 }
7891
7892 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7893 {
7894         if (type)
7895                 return -EINVAL;
7896
7897         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7898         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7899         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7900         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7901         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7902
7903         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7904         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7905         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7906         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7907                 &kvm->arch.irq_sources_bitmap);
7908
7909         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7910         mutex_init(&kvm->arch.apic_map_lock);
7911         mutex_init(&kvm->arch.hyperv.hv_lock);
7912         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7913
7914         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
7915         pvclock_update_vm_gtod_copy(kvm);
7916
7917         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7918         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7919
7920         kvm_page_track_init(kvm);
7921         kvm_mmu_init_vm(kvm);
7922
7923         if (kvm_x86_ops->vm_init)
7924                 return kvm_x86_ops->vm_init(kvm);
7925
7926         return 0;
7927 }
7928
7929 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7930 {
7931         int r;
7932         r = vcpu_load(vcpu);
7933         BUG_ON(r);
7934         kvm_mmu_unload(vcpu);
7935         vcpu_put(vcpu);
7936 }
7937
7938 static void kvm_free_vcpus(struct kvm *kvm)
7939 {
7940         unsigned int i;
7941         struct kvm_vcpu *vcpu;
7942
7943         /*
7944          * Unpin any mmu pages first.
7945          */
7946         kvm_for_each_vcpu(i, vcpu, kvm) {
7947                 kvm_clear_async_pf_completion_queue(vcpu);
7948                 kvm_unload_vcpu_mmu(vcpu);
7949         }
7950         kvm_for_each_vcpu(i, vcpu, kvm)
7951                 kvm_arch_vcpu_free(vcpu);
7952
7953         mutex_lock(&kvm->lock);
7954         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7955                 kvm->vcpus[i] = NULL;
7956
7957         atomic_set(&kvm->online_vcpus, 0);
7958         mutex_unlock(&kvm->lock);
7959 }
7960
7961 void kvm_arch_sync_events(struct kvm *kvm)
7962 {
7963         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7964         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7965         kvm_free_all_assigned_devices(kvm);
7966         kvm_free_pit(kvm);
7967 }
7968
7969 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7970 {
7971         int i, r;
7972         unsigned long hva;
7973         struct kvm_memslots *slots = kvm_memslots(kvm);
7974         struct kvm_memory_slot *slot, old;
7975
7976         /* Called with kvm->slots_lock held.  */
7977         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7978                 return -EINVAL;
7979
7980         slot = id_to_memslot(slots, id);
7981         if (size) {
7982                 if (slot->npages)
7983                         return -EEXIST;
7984
7985                 /*
7986                  * MAP_SHARED to prevent internal slot pages from being moved
7987                  * by fork()/COW.
7988                  */
7989                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7990                               MAP_SHARED | MAP_ANONYMOUS, 0);
7991                 if (IS_ERR((void *)hva))
7992                         return PTR_ERR((void *)hva);
7993         } else {
7994                 if (!slot->npages)
7995                         return 0;
7996
7997                 hva = 0;
7998         }
7999
8000         old = *slot;
8001         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8002                 struct kvm_userspace_memory_region m;
8003
8004                 m.slot = id | (i << 16);
8005                 m.flags = 0;
8006                 m.guest_phys_addr = gpa;
8007                 m.userspace_addr = hva;
8008                 m.memory_size = size;
8009                 r = __kvm_set_memory_region(kvm, &m);
8010                 if (r < 0)
8011                         return r;
8012         }
8013
8014         if (!size) {
8015                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8016                 WARN_ON(r < 0);
8017         }
8018
8019         return 0;
8020 }
8021 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8022
8023 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8024 {
8025         int r;
8026
8027         mutex_lock(&kvm->slots_lock);
8028         r = __x86_set_memory_region(kvm, id, gpa, size);
8029         mutex_unlock(&kvm->slots_lock);
8030
8031         return r;
8032 }
8033 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8034
8035 void kvm_arch_destroy_vm(struct kvm *kvm)
8036 {
8037         if (current->mm == kvm->mm) {
8038                 /*
8039                  * Free memory regions allocated on behalf of userspace,
8040                  * unless the the memory map has changed due to process exit
8041                  * or fd copying.
8042                  */
8043                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8044                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8045                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8046         }
8047         if (kvm_x86_ops->vm_destroy)
8048                 kvm_x86_ops->vm_destroy(kvm);
8049         kvm_iommu_unmap_guest(kvm);
8050         kfree(kvm->arch.vpic);
8051         kfree(kvm->arch.vioapic);
8052         kvm_free_vcpus(kvm);
8053         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8054         kvm_mmu_uninit_vm(kvm);
8055 }
8056
8057 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8058                            struct kvm_memory_slot *dont)
8059 {
8060         int i;
8061
8062         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8063                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8064                         kvfree(free->arch.rmap[i]);
8065                         free->arch.rmap[i] = NULL;
8066                 }
8067                 if (i == 0)
8068                         continue;
8069
8070                 if (!dont || free->arch.lpage_info[i - 1] !=
8071                              dont->arch.lpage_info[i - 1]) {
8072                         kvfree(free->arch.lpage_info[i - 1]);
8073                         free->arch.lpage_info[i - 1] = NULL;
8074                 }
8075         }
8076
8077         kvm_page_track_free_memslot(free, dont);
8078 }
8079
8080 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8081                             unsigned long npages)
8082 {
8083         int i;
8084
8085         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8086                 struct kvm_lpage_info *linfo;
8087                 unsigned long ugfn;
8088                 int lpages;
8089                 int level = i + 1;
8090
8091                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8092                                       slot->base_gfn, level) + 1;
8093
8094                 slot->arch.rmap[i] =
8095                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
8096                 if (!slot->arch.rmap[i])
8097                         goto out_free;
8098                 if (i == 0)
8099                         continue;
8100
8101                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
8102                 if (!linfo)
8103                         goto out_free;
8104
8105                 slot->arch.lpage_info[i - 1] = linfo;
8106
8107                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8108                         linfo[0].disallow_lpage = 1;
8109                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8110                         linfo[lpages - 1].disallow_lpage = 1;
8111                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8112                 /*
8113                  * If the gfn and userspace address are not aligned wrt each
8114                  * other, or if explicitly asked to, disable large page
8115                  * support for this slot
8116                  */
8117                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8118                     !kvm_largepages_enabled()) {
8119                         unsigned long j;
8120
8121                         for (j = 0; j < lpages; ++j)
8122                                 linfo[j].disallow_lpage = 1;
8123                 }
8124         }
8125
8126         if (kvm_page_track_create_memslot(slot, npages))
8127                 goto out_free;
8128
8129         return 0;
8130
8131 out_free:
8132         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8133                 kvfree(slot->arch.rmap[i]);
8134                 slot->arch.rmap[i] = NULL;
8135                 if (i == 0)
8136                         continue;
8137
8138                 kvfree(slot->arch.lpage_info[i - 1]);
8139                 slot->arch.lpage_info[i - 1] = NULL;
8140         }
8141         return -ENOMEM;
8142 }
8143
8144 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8145 {
8146         /*
8147          * memslots->generation has been incremented.
8148          * mmio generation may have reached its maximum value.
8149          */
8150         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8151 }
8152
8153 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8154                                 struct kvm_memory_slot *memslot,
8155                                 const struct kvm_userspace_memory_region *mem,
8156                                 enum kvm_mr_change change)
8157 {
8158         return 0;
8159 }
8160
8161 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8162                                      struct kvm_memory_slot *new)
8163 {
8164         /* Still write protect RO slot */
8165         if (new->flags & KVM_MEM_READONLY) {
8166                 kvm_mmu_slot_remove_write_access(kvm, new);
8167                 return;
8168         }
8169
8170         /*
8171          * Call kvm_x86_ops dirty logging hooks when they are valid.
8172          *
8173          * kvm_x86_ops->slot_disable_log_dirty is called when:
8174          *
8175          *  - KVM_MR_CREATE with dirty logging is disabled
8176          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8177          *
8178          * The reason is, in case of PML, we need to set D-bit for any slots
8179          * with dirty logging disabled in order to eliminate unnecessary GPA
8180          * logging in PML buffer (and potential PML buffer full VMEXT). This
8181          * guarantees leaving PML enabled during guest's lifetime won't have
8182          * any additonal overhead from PML when guest is running with dirty
8183          * logging disabled for memory slots.
8184          *
8185          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8186          * to dirty logging mode.
8187          *
8188          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8189          *
8190          * In case of write protect:
8191          *
8192          * Write protect all pages for dirty logging.
8193          *
8194          * All the sptes including the large sptes which point to this
8195          * slot are set to readonly. We can not create any new large
8196          * spte on this slot until the end of the logging.
8197          *
8198          * See the comments in fast_page_fault().
8199          */
8200         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8201                 if (kvm_x86_ops->slot_enable_log_dirty)
8202                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8203                 else
8204                         kvm_mmu_slot_remove_write_access(kvm, new);
8205         } else {
8206                 if (kvm_x86_ops->slot_disable_log_dirty)
8207                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8208         }
8209 }
8210
8211 void kvm_arch_commit_memory_region(struct kvm *kvm,
8212                                 const struct kvm_userspace_memory_region *mem,
8213                                 const struct kvm_memory_slot *old,
8214                                 const struct kvm_memory_slot *new,
8215                                 enum kvm_mr_change change)
8216 {
8217         int nr_mmu_pages = 0;
8218
8219         if (!kvm->arch.n_requested_mmu_pages)
8220                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8221
8222         if (nr_mmu_pages)
8223                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8224
8225         /*
8226          * Dirty logging tracks sptes in 4k granularity, meaning that large
8227          * sptes have to be split.  If live migration is successful, the guest
8228          * in the source machine will be destroyed and large sptes will be
8229          * created in the destination. However, if the guest continues to run
8230          * in the source machine (for example if live migration fails), small
8231          * sptes will remain around and cause bad performance.
8232          *
8233          * Scan sptes if dirty logging has been stopped, dropping those
8234          * which can be collapsed into a single large-page spte.  Later
8235          * page faults will create the large-page sptes.
8236          */
8237         if ((change != KVM_MR_DELETE) &&
8238                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8239                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8240                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8241
8242         /*
8243          * Set up write protection and/or dirty logging for the new slot.
8244          *
8245          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8246          * been zapped so no dirty logging staff is needed for old slot. For
8247          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8248          * new and it's also covered when dealing with the new slot.
8249          *
8250          * FIXME: const-ify all uses of struct kvm_memory_slot.
8251          */
8252         if (change != KVM_MR_DELETE)
8253                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8254 }
8255
8256 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8257 {
8258         kvm_mmu_invalidate_zap_all_pages(kvm);
8259 }
8260
8261 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8262                                    struct kvm_memory_slot *slot)
8263 {
8264         kvm_page_track_flush_slot(kvm, slot);
8265 }
8266
8267 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8268 {
8269         if (!list_empty_careful(&vcpu->async_pf.done))
8270                 return true;
8271
8272         if (kvm_apic_has_events(vcpu))
8273                 return true;
8274
8275         if (vcpu->arch.pv.pv_unhalted)
8276                 return true;
8277
8278         if (atomic_read(&vcpu->arch.nmi_queued))
8279                 return true;
8280
8281         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8282                 return true;
8283
8284         if (kvm_arch_interrupt_allowed(vcpu) &&
8285             kvm_cpu_has_interrupt(vcpu))
8286                 return true;
8287
8288         if (kvm_hv_has_stimer_pending(vcpu))
8289                 return true;
8290
8291         return false;
8292 }
8293
8294 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8295 {
8296         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8297                 kvm_x86_ops->check_nested_events(vcpu, false);
8298
8299         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8300 }
8301
8302 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8303 {
8304         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8305 }
8306
8307 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8308 {
8309         return kvm_x86_ops->interrupt_allowed(vcpu);
8310 }
8311
8312 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8313 {
8314         if (is_64_bit_mode(vcpu))
8315                 return kvm_rip_read(vcpu);
8316         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8317                      kvm_rip_read(vcpu));
8318 }
8319 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8320
8321 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8322 {
8323         return kvm_get_linear_rip(vcpu) == linear_rip;
8324 }
8325 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8326
8327 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8328 {
8329         unsigned long rflags;
8330
8331         rflags = kvm_x86_ops->get_rflags(vcpu);
8332         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8333                 rflags &= ~X86_EFLAGS_TF;
8334         return rflags;
8335 }
8336 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8337
8338 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8339 {
8340         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8341             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8342                 rflags |= X86_EFLAGS_TF;
8343         kvm_x86_ops->set_rflags(vcpu, rflags);
8344 }
8345
8346 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8347 {
8348         __kvm_set_rflags(vcpu, rflags);
8349         kvm_make_request(KVM_REQ_EVENT, vcpu);
8350 }
8351 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8352
8353 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8354 {
8355         int r;
8356
8357         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8358               work->wakeup_all)
8359                 return;
8360
8361         r = kvm_mmu_reload(vcpu);
8362         if (unlikely(r))
8363                 return;
8364
8365         if (!vcpu->arch.mmu.direct_map &&
8366               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8367                 return;
8368
8369         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8370 }
8371
8372 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8373 {
8374         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8375 }
8376
8377 static inline u32 kvm_async_pf_next_probe(u32 key)
8378 {
8379         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8380 }
8381
8382 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8383 {
8384         u32 key = kvm_async_pf_hash_fn(gfn);
8385
8386         while (vcpu->arch.apf.gfns[key] != ~0)
8387                 key = kvm_async_pf_next_probe(key);
8388
8389         vcpu->arch.apf.gfns[key] = gfn;
8390 }
8391
8392 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8393 {
8394         int i;
8395         u32 key = kvm_async_pf_hash_fn(gfn);
8396
8397         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8398                      (vcpu->arch.apf.gfns[key] != gfn &&
8399                       vcpu->arch.apf.gfns[key] != ~0); i++)
8400                 key = kvm_async_pf_next_probe(key);
8401
8402         return key;
8403 }
8404
8405 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8406 {
8407         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8408 }
8409
8410 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8411 {
8412         u32 i, j, k;
8413
8414         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8415         while (true) {
8416                 vcpu->arch.apf.gfns[i] = ~0;
8417                 do {
8418                         j = kvm_async_pf_next_probe(j);
8419                         if (vcpu->arch.apf.gfns[j] == ~0)
8420                                 return;
8421                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8422                         /*
8423                          * k lies cyclically in ]i,j]
8424                          * |    i.k.j |
8425                          * |....j i.k.| or  |.k..j i...|
8426                          */
8427                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8428                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8429                 i = j;
8430         }
8431 }
8432
8433 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8434 {
8435
8436         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8437                                       sizeof(val));
8438 }
8439
8440 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8441                                      struct kvm_async_pf *work)
8442 {
8443         struct x86_exception fault;
8444
8445         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8446         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8447
8448         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8449             (vcpu->arch.apf.send_user_only &&
8450              kvm_x86_ops->get_cpl(vcpu) == 0))
8451                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8452         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8453                 fault.vector = PF_VECTOR;
8454                 fault.error_code_valid = true;
8455                 fault.error_code = 0;
8456                 fault.nested_page_fault = false;
8457                 fault.address = work->arch.token;
8458                 kvm_inject_page_fault(vcpu, &fault);
8459         }
8460 }
8461
8462 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8463                                  struct kvm_async_pf *work)
8464 {
8465         struct x86_exception fault;
8466
8467         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8468         if (work->wakeup_all)
8469                 work->arch.token = ~0; /* broadcast wakeup */
8470         else
8471                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8472
8473         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8474             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8475                 fault.vector = PF_VECTOR;
8476                 fault.error_code_valid = true;
8477                 fault.error_code = 0;
8478                 fault.nested_page_fault = false;
8479                 fault.address = work->arch.token;
8480                 kvm_inject_page_fault(vcpu, &fault);
8481         }
8482         vcpu->arch.apf.halted = false;
8483         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8484 }
8485
8486 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8487 {
8488         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8489                 return true;
8490         else
8491                 return !kvm_event_needs_reinjection(vcpu) &&
8492                         kvm_x86_ops->interrupt_allowed(vcpu);
8493 }
8494
8495 void kvm_arch_start_assignment(struct kvm *kvm)
8496 {
8497         atomic_inc(&kvm->arch.assigned_device_count);
8498 }
8499 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8500
8501 void kvm_arch_end_assignment(struct kvm *kvm)
8502 {
8503         atomic_dec(&kvm->arch.assigned_device_count);
8504 }
8505 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8506
8507 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8508 {
8509         return atomic_read(&kvm->arch.assigned_device_count);
8510 }
8511 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8512
8513 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8514 {
8515         atomic_inc(&kvm->arch.noncoherent_dma_count);
8516 }
8517 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8518
8519 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8520 {
8521         atomic_dec(&kvm->arch.noncoherent_dma_count);
8522 }
8523 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8524
8525 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8526 {
8527         return atomic_read(&kvm->arch.noncoherent_dma_count);
8528 }
8529 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8530
8531 bool kvm_arch_has_irq_bypass(void)
8532 {
8533         return kvm_x86_ops->update_pi_irte != NULL;
8534 }
8535
8536 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8537                                       struct irq_bypass_producer *prod)
8538 {
8539         struct kvm_kernel_irqfd *irqfd =
8540                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8541
8542         irqfd->producer = prod;
8543
8544         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8545                                            prod->irq, irqfd->gsi, 1);
8546 }
8547
8548 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8549                                       struct irq_bypass_producer *prod)
8550 {
8551         int ret;
8552         struct kvm_kernel_irqfd *irqfd =
8553                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8554
8555         WARN_ON(irqfd->producer != prod);
8556         irqfd->producer = NULL;
8557
8558         /*
8559          * When producer of consumer is unregistered, we change back to
8560          * remapped mode, so we can re-use the current implementation
8561          * when the irq is masked/disabled or the consumer side (KVM
8562          * int this case doesn't want to receive the interrupts.
8563         */
8564         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8565         if (ret)
8566                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8567                        " fails: %d\n", irqfd->consumer.token, ret);
8568 }
8569
8570 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8571                                    uint32_t guest_irq, bool set)
8572 {
8573         if (!kvm_x86_ops->update_pi_irte)
8574                 return -EINVAL;
8575
8576         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8577 }
8578
8579 bool kvm_vector_hashing_enabled(void)
8580 {
8581         return vector_hashing;
8582 }
8583 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8584
8585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8599 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8600 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8601 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8602 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8603 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);