]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
KVM: async_pf: Force a nested vmexit if the injected #PF is async_pf
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57
58 #include <trace/events/kvm.h>
59
60 #include <asm/debugreg.h>
61 #include <asm/msr.h>
62 #include <asm/desc.h>
63 #include <asm/mce.h>
64 #include <linux/kernel_stat.h>
65 #include <asm/fpu/internal.h> /* Ugh! */
66 #include <asm/pvclock.h>
67 #include <asm/div64.h>
68 #include <asm/irq_remapping.h>
69
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72
73 #define MAX_IO_MSRS 256
74 #define KVM_MAX_MCE_BANKS 32
75 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
76 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
77
78 #define emul_to_vcpu(ctxt) \
79         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
80
81 /* EFER defaults:
82  * - enable syscall per default because its emulated by KVM
83  * - enable LME and LMA per default on 64 bit KVM
84  */
85 #ifdef CONFIG_X86_64
86 static
87 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
88 #else
89 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
90 #endif
91
92 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
93 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
94
95 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
96                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
97
98 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
99 static void process_nmi(struct kvm_vcpu *vcpu);
100 static void enter_smm(struct kvm_vcpu *vcpu);
101 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
102
103 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
104 EXPORT_SYMBOL_GPL(kvm_x86_ops);
105
106 static bool __read_mostly ignore_msrs = 0;
107 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
108
109 unsigned int min_timer_period_us = 500;
110 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly kvmclock_periodic_sync = true;
113 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
114
115 bool __read_mostly kvm_has_tsc_control;
116 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
117 u32  __read_mostly kvm_max_guest_tsc_khz;
118 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
119 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
120 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
121 u64  __read_mostly kvm_max_tsc_scaling_ratio;
122 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
123 u64 __read_mostly kvm_default_tsc_scaling_ratio;
124 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
125
126 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
127 static u32 __read_mostly tsc_tolerance_ppm = 250;
128 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
129
130 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
131 unsigned int __read_mostly lapic_timer_advance_ns = 0;
132 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
133
134 static bool __read_mostly vector_hashing = true;
135 module_param(vector_hashing, bool, S_IRUGO);
136
137 #define KVM_NR_SHARED_MSRS 16
138
139 struct kvm_shared_msrs_global {
140         int nr;
141         u32 msrs[KVM_NR_SHARED_MSRS];
142 };
143
144 struct kvm_shared_msrs {
145         struct user_return_notifier urn;
146         bool registered;
147         struct kvm_shared_msr_values {
148                 u64 host;
149                 u64 curr;
150         } values[KVM_NR_SHARED_MSRS];
151 };
152
153 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
154 static struct kvm_shared_msrs __percpu *shared_msrs;
155
156 struct kvm_stats_debugfs_item debugfs_entries[] = {
157         { "pf_fixed", VCPU_STAT(pf_fixed) },
158         { "pf_guest", VCPU_STAT(pf_guest) },
159         { "tlb_flush", VCPU_STAT(tlb_flush) },
160         { "invlpg", VCPU_STAT(invlpg) },
161         { "exits", VCPU_STAT(exits) },
162         { "io_exits", VCPU_STAT(io_exits) },
163         { "mmio_exits", VCPU_STAT(mmio_exits) },
164         { "signal_exits", VCPU_STAT(signal_exits) },
165         { "irq_window", VCPU_STAT(irq_window_exits) },
166         { "nmi_window", VCPU_STAT(nmi_window_exits) },
167         { "halt_exits", VCPU_STAT(halt_exits) },
168         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
169         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
170         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
171         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
172         { "hypercalls", VCPU_STAT(hypercalls) },
173         { "request_irq", VCPU_STAT(request_irq_exits) },
174         { "irq_exits", VCPU_STAT(irq_exits) },
175         { "host_state_reload", VCPU_STAT(host_state_reload) },
176         { "efer_reload", VCPU_STAT(efer_reload) },
177         { "fpu_reload", VCPU_STAT(fpu_reload) },
178         { "insn_emulation", VCPU_STAT(insn_emulation) },
179         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
180         { "irq_injections", VCPU_STAT(irq_injections) },
181         { "nmi_injections", VCPU_STAT(nmi_injections) },
182         { "req_event", VCPU_STAT(req_event) },
183         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
184         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
185         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
186         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
187         { "mmu_flooded", VM_STAT(mmu_flooded) },
188         { "mmu_recycled", VM_STAT(mmu_recycled) },
189         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
190         { "mmu_unsync", VM_STAT(mmu_unsync) },
191         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
192         { "largepages", VM_STAT(lpages) },
193         { "max_mmu_page_hash_collisions",
194                 VM_STAT(max_mmu_page_hash_collisions) },
195         { NULL }
196 };
197
198 u64 __read_mostly host_xcr0;
199
200 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
201
202 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
203 {
204         int i;
205         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
206                 vcpu->arch.apf.gfns[i] = ~0;
207 }
208
209 static void kvm_on_user_return(struct user_return_notifier *urn)
210 {
211         unsigned slot;
212         struct kvm_shared_msrs *locals
213                 = container_of(urn, struct kvm_shared_msrs, urn);
214         struct kvm_shared_msr_values *values;
215         unsigned long flags;
216
217         /*
218          * Disabling irqs at this point since the following code could be
219          * interrupted and executed through kvm_arch_hardware_disable()
220          */
221         local_irq_save(flags);
222         if (locals->registered) {
223                 locals->registered = false;
224                 user_return_notifier_unregister(urn);
225         }
226         local_irq_restore(flags);
227         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
228                 values = &locals->values[slot];
229                 if (values->host != values->curr) {
230                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
231                         values->curr = values->host;
232                 }
233         }
234 }
235
236 static void shared_msr_update(unsigned slot, u32 msr)
237 {
238         u64 value;
239         unsigned int cpu = smp_processor_id();
240         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
241
242         /* only read, and nobody should modify it at this time,
243          * so don't need lock */
244         if (slot >= shared_msrs_global.nr) {
245                 printk(KERN_ERR "kvm: invalid MSR slot!");
246                 return;
247         }
248         rdmsrl_safe(msr, &value);
249         smsr->values[slot].host = value;
250         smsr->values[slot].curr = value;
251 }
252
253 void kvm_define_shared_msr(unsigned slot, u32 msr)
254 {
255         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
256         shared_msrs_global.msrs[slot] = msr;
257         if (slot >= shared_msrs_global.nr)
258                 shared_msrs_global.nr = slot + 1;
259 }
260 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
261
262 static void kvm_shared_msr_cpu_online(void)
263 {
264         unsigned i;
265
266         for (i = 0; i < shared_msrs_global.nr; ++i)
267                 shared_msr_update(i, shared_msrs_global.msrs[i]);
268 }
269
270 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
271 {
272         unsigned int cpu = smp_processor_id();
273         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274         int err;
275
276         if (((value ^ smsr->values[slot].curr) & mask) == 0)
277                 return 0;
278         smsr->values[slot].curr = value;
279         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
280         if (err)
281                 return 1;
282
283         if (!smsr->registered) {
284                 smsr->urn.on_user_return = kvm_on_user_return;
285                 user_return_notifier_register(&smsr->urn);
286                 smsr->registered = true;
287         }
288         return 0;
289 }
290 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
291
292 static void drop_user_return_notifiers(void)
293 {
294         unsigned int cpu = smp_processor_id();
295         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
296
297         if (smsr->registered)
298                 kvm_on_user_return(&smsr->urn);
299 }
300
301 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
302 {
303         return vcpu->arch.apic_base;
304 }
305 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
306
307 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
308 {
309         u64 old_state = vcpu->arch.apic_base &
310                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
311         u64 new_state = msr_info->data &
312                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
313         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
314                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
315
316         if (!msr_info->host_initiated &&
317             ((msr_info->data & reserved_bits) != 0 ||
318              new_state == X2APIC_ENABLE ||
319              (new_state == MSR_IA32_APICBASE_ENABLE &&
320               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
321              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
322               old_state == 0)))
323                 return 1;
324
325         kvm_lapic_set_base(vcpu, msr_info->data);
326         return 0;
327 }
328 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
329
330 asmlinkage __visible void kvm_spurious_fault(void)
331 {
332         /* Fault while not rebooting.  We want the trace. */
333         BUG();
334 }
335 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
336
337 #define EXCPT_BENIGN            0
338 #define EXCPT_CONTRIBUTORY      1
339 #define EXCPT_PF                2
340
341 static int exception_class(int vector)
342 {
343         switch (vector) {
344         case PF_VECTOR:
345                 return EXCPT_PF;
346         case DE_VECTOR:
347         case TS_VECTOR:
348         case NP_VECTOR:
349         case SS_VECTOR:
350         case GP_VECTOR:
351                 return EXCPT_CONTRIBUTORY;
352         default:
353                 break;
354         }
355         return EXCPT_BENIGN;
356 }
357
358 #define EXCPT_FAULT             0
359 #define EXCPT_TRAP              1
360 #define EXCPT_ABORT             2
361 #define EXCPT_INTERRUPT         3
362
363 static int exception_type(int vector)
364 {
365         unsigned int mask;
366
367         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
368                 return EXCPT_INTERRUPT;
369
370         mask = 1 << vector;
371
372         /* #DB is trap, as instruction watchpoints are handled elsewhere */
373         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
374                 return EXCPT_TRAP;
375
376         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
377                 return EXCPT_ABORT;
378
379         /* Reserved exceptions will result in fault */
380         return EXCPT_FAULT;
381 }
382
383 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
384                 unsigned nr, bool has_error, u32 error_code,
385                 bool reinject)
386 {
387         u32 prev_nr;
388         int class1, class2;
389
390         kvm_make_request(KVM_REQ_EVENT, vcpu);
391
392         if (!vcpu->arch.exception.pending) {
393         queue:
394                 if (has_error && !is_protmode(vcpu))
395                         has_error = false;
396                 vcpu->arch.exception.pending = true;
397                 vcpu->arch.exception.has_error_code = has_error;
398                 vcpu->arch.exception.nr = nr;
399                 vcpu->arch.exception.error_code = error_code;
400                 vcpu->arch.exception.reinject = reinject;
401                 return;
402         }
403
404         /* to check exception */
405         prev_nr = vcpu->arch.exception.nr;
406         if (prev_nr == DF_VECTOR) {
407                 /* triple fault -> shutdown */
408                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
409                 return;
410         }
411         class1 = exception_class(prev_nr);
412         class2 = exception_class(nr);
413         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
414                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
415                 /* generate double fault per SDM Table 5-5 */
416                 vcpu->arch.exception.pending = true;
417                 vcpu->arch.exception.has_error_code = true;
418                 vcpu->arch.exception.nr = DF_VECTOR;
419                 vcpu->arch.exception.error_code = 0;
420         } else
421                 /* replace previous exception with a new one in a hope
422                    that instruction re-execution will regenerate lost
423                    exception */
424                 goto queue;
425 }
426
427 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
428 {
429         kvm_multiple_exception(vcpu, nr, false, 0, false);
430 }
431 EXPORT_SYMBOL_GPL(kvm_queue_exception);
432
433 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
434 {
435         kvm_multiple_exception(vcpu, nr, false, 0, true);
436 }
437 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
438
439 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
440 {
441         if (err)
442                 kvm_inject_gp(vcpu, 0);
443         else
444                 return kvm_skip_emulated_instruction(vcpu);
445
446         return 1;
447 }
448 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
449
450 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
451 {
452         ++vcpu->stat.pf_guest;
453         vcpu->arch.exception.nested_apf =
454                 is_guest_mode(vcpu) && fault->async_page_fault;
455         if (vcpu->arch.exception.nested_apf)
456                 vcpu->arch.apf.nested_apf_token = fault->address;
457         else
458                 vcpu->arch.cr2 = fault->address;
459         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
460 }
461 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
462
463 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
464 {
465         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
466                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
467         else
468                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
469
470         return fault->nested_page_fault;
471 }
472
473 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
474 {
475         atomic_inc(&vcpu->arch.nmi_queued);
476         kvm_make_request(KVM_REQ_NMI, vcpu);
477 }
478 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
479
480 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
481 {
482         kvm_multiple_exception(vcpu, nr, true, error_code, false);
483 }
484 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
485
486 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
487 {
488         kvm_multiple_exception(vcpu, nr, true, error_code, true);
489 }
490 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
491
492 /*
493  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
494  * a #GP and return false.
495  */
496 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
497 {
498         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
499                 return true;
500         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
501         return false;
502 }
503 EXPORT_SYMBOL_GPL(kvm_require_cpl);
504
505 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
506 {
507         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
508                 return true;
509
510         kvm_queue_exception(vcpu, UD_VECTOR);
511         return false;
512 }
513 EXPORT_SYMBOL_GPL(kvm_require_dr);
514
515 /*
516  * This function will be used to read from the physical memory of the currently
517  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
518  * can read from guest physical or from the guest's guest physical memory.
519  */
520 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
521                             gfn_t ngfn, void *data, int offset, int len,
522                             u32 access)
523 {
524         struct x86_exception exception;
525         gfn_t real_gfn;
526         gpa_t ngpa;
527
528         ngpa     = gfn_to_gpa(ngfn);
529         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
530         if (real_gfn == UNMAPPED_GVA)
531                 return -EFAULT;
532
533         real_gfn = gpa_to_gfn(real_gfn);
534
535         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
536 }
537 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
538
539 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
540                                void *data, int offset, int len, u32 access)
541 {
542         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
543                                        data, offset, len, access);
544 }
545
546 /*
547  * Load the pae pdptrs.  Return true is they are all valid.
548  */
549 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
550 {
551         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
552         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
553         int i;
554         int ret;
555         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
556
557         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
558                                       offset * sizeof(u64), sizeof(pdpte),
559                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
560         if (ret < 0) {
561                 ret = 0;
562                 goto out;
563         }
564         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
565                 if ((pdpte[i] & PT_PRESENT_MASK) &&
566                     (pdpte[i] &
567                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
568                         ret = 0;
569                         goto out;
570                 }
571         }
572         ret = 1;
573
574         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
575         __set_bit(VCPU_EXREG_PDPTR,
576                   (unsigned long *)&vcpu->arch.regs_avail);
577         __set_bit(VCPU_EXREG_PDPTR,
578                   (unsigned long *)&vcpu->arch.regs_dirty);
579 out:
580
581         return ret;
582 }
583 EXPORT_SYMBOL_GPL(load_pdptrs);
584
585 bool pdptrs_changed(struct kvm_vcpu *vcpu)
586 {
587         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
588         bool changed = true;
589         int offset;
590         gfn_t gfn;
591         int r;
592
593         if (is_long_mode(vcpu) || !is_pae(vcpu))
594                 return false;
595
596         if (!test_bit(VCPU_EXREG_PDPTR,
597                       (unsigned long *)&vcpu->arch.regs_avail))
598                 return true;
599
600         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
601         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
602         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
603                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
604         if (r < 0)
605                 goto out;
606         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
607 out:
608
609         return changed;
610 }
611 EXPORT_SYMBOL_GPL(pdptrs_changed);
612
613 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
614 {
615         unsigned long old_cr0 = kvm_read_cr0(vcpu);
616         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
617
618         cr0 |= X86_CR0_ET;
619
620 #ifdef CONFIG_X86_64
621         if (cr0 & 0xffffffff00000000UL)
622                 return 1;
623 #endif
624
625         cr0 &= ~CR0_RESERVED_BITS;
626
627         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
628                 return 1;
629
630         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
631                 return 1;
632
633         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
634 #ifdef CONFIG_X86_64
635                 if ((vcpu->arch.efer & EFER_LME)) {
636                         int cs_db, cs_l;
637
638                         if (!is_pae(vcpu))
639                                 return 1;
640                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
641                         if (cs_l)
642                                 return 1;
643                 } else
644 #endif
645                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
646                                                  kvm_read_cr3(vcpu)))
647                         return 1;
648         }
649
650         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
651                 return 1;
652
653         kvm_x86_ops->set_cr0(vcpu, cr0);
654
655         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
656                 kvm_clear_async_pf_completion_queue(vcpu);
657                 kvm_async_pf_hash_reset(vcpu);
658         }
659
660         if ((cr0 ^ old_cr0) & update_bits)
661                 kvm_mmu_reset_context(vcpu);
662
663         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
664             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
665             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
666                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
667
668         return 0;
669 }
670 EXPORT_SYMBOL_GPL(kvm_set_cr0);
671
672 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
673 {
674         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
675 }
676 EXPORT_SYMBOL_GPL(kvm_lmsw);
677
678 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
679 {
680         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
681                         !vcpu->guest_xcr0_loaded) {
682                 /* kvm_set_xcr() also depends on this */
683                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
684                 vcpu->guest_xcr0_loaded = 1;
685         }
686 }
687
688 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
689 {
690         if (vcpu->guest_xcr0_loaded) {
691                 if (vcpu->arch.xcr0 != host_xcr0)
692                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
693                 vcpu->guest_xcr0_loaded = 0;
694         }
695 }
696
697 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699         u64 xcr0 = xcr;
700         u64 old_xcr0 = vcpu->arch.xcr0;
701         u64 valid_bits;
702
703         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
704         if (index != XCR_XFEATURE_ENABLED_MASK)
705                 return 1;
706         if (!(xcr0 & XFEATURE_MASK_FP))
707                 return 1;
708         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
709                 return 1;
710
711         /*
712          * Do not allow the guest to set bits that we do not support
713          * saving.  However, xcr0 bit 0 is always set, even if the
714          * emulated CPU does not support XSAVE (see fx_init).
715          */
716         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
717         if (xcr0 & ~valid_bits)
718                 return 1;
719
720         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
721             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
722                 return 1;
723
724         if (xcr0 & XFEATURE_MASK_AVX512) {
725                 if (!(xcr0 & XFEATURE_MASK_YMM))
726                         return 1;
727                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
728                         return 1;
729         }
730         vcpu->arch.xcr0 = xcr0;
731
732         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
733                 kvm_update_cpuid(vcpu);
734         return 0;
735 }
736
737 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
738 {
739         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
740             __kvm_set_xcr(vcpu, index, xcr)) {
741                 kvm_inject_gp(vcpu, 0);
742                 return 1;
743         }
744         return 0;
745 }
746 EXPORT_SYMBOL_GPL(kvm_set_xcr);
747
748 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
749 {
750         unsigned long old_cr4 = kvm_read_cr4(vcpu);
751         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
752                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
753
754         if (cr4 & CR4_RESERVED_BITS)
755                 return 1;
756
757         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
758                 return 1;
759
760         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
761                 return 1;
762
763         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
764                 return 1;
765
766         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
767                 return 1;
768
769         if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
770                 return 1;
771
772         if (is_long_mode(vcpu)) {
773                 if (!(cr4 & X86_CR4_PAE))
774                         return 1;
775         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
776                    && ((cr4 ^ old_cr4) & pdptr_bits)
777                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
778                                    kvm_read_cr3(vcpu)))
779                 return 1;
780
781         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
782                 if (!guest_cpuid_has_pcid(vcpu))
783                         return 1;
784
785                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
786                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
787                         return 1;
788         }
789
790         if (kvm_x86_ops->set_cr4(vcpu, cr4))
791                 return 1;
792
793         if (((cr4 ^ old_cr4) & pdptr_bits) ||
794             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
795                 kvm_mmu_reset_context(vcpu);
796
797         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
798                 kvm_update_cpuid(vcpu);
799
800         return 0;
801 }
802 EXPORT_SYMBOL_GPL(kvm_set_cr4);
803
804 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
805 {
806 #ifdef CONFIG_X86_64
807         cr3 &= ~CR3_PCID_INVD;
808 #endif
809
810         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
811                 kvm_mmu_sync_roots(vcpu);
812                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
813                 return 0;
814         }
815
816         if (is_long_mode(vcpu)) {
817                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
818                         return 1;
819         } else if (is_pae(vcpu) && is_paging(vcpu) &&
820                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
821                 return 1;
822
823         vcpu->arch.cr3 = cr3;
824         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
825         kvm_mmu_new_cr3(vcpu);
826         return 0;
827 }
828 EXPORT_SYMBOL_GPL(kvm_set_cr3);
829
830 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
831 {
832         if (cr8 & CR8_RESERVED_BITS)
833                 return 1;
834         if (lapic_in_kernel(vcpu))
835                 kvm_lapic_set_tpr(vcpu, cr8);
836         else
837                 vcpu->arch.cr8 = cr8;
838         return 0;
839 }
840 EXPORT_SYMBOL_GPL(kvm_set_cr8);
841
842 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
843 {
844         if (lapic_in_kernel(vcpu))
845                 return kvm_lapic_get_cr8(vcpu);
846         else
847                 return vcpu->arch.cr8;
848 }
849 EXPORT_SYMBOL_GPL(kvm_get_cr8);
850
851 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
852 {
853         int i;
854
855         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
856                 for (i = 0; i < KVM_NR_DB_REGS; i++)
857                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
858                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
859         }
860 }
861
862 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
863 {
864         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
866 }
867
868 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
869 {
870         unsigned long dr7;
871
872         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
873                 dr7 = vcpu->arch.guest_debug_dr7;
874         else
875                 dr7 = vcpu->arch.dr7;
876         kvm_x86_ops->set_dr7(vcpu, dr7);
877         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
878         if (dr7 & DR7_BP_EN_MASK)
879                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
880 }
881
882 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
883 {
884         u64 fixed = DR6_FIXED_1;
885
886         if (!guest_cpuid_has_rtm(vcpu))
887                 fixed |= DR6_RTM;
888         return fixed;
889 }
890
891 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893         switch (dr) {
894         case 0 ... 3:
895                 vcpu->arch.db[dr] = val;
896                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
897                         vcpu->arch.eff_db[dr] = val;
898                 break;
899         case 4:
900                 /* fall through */
901         case 6:
902                 if (val & 0xffffffff00000000ULL)
903                         return -1; /* #GP */
904                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
905                 kvm_update_dr6(vcpu);
906                 break;
907         case 5:
908                 /* fall through */
909         default: /* 7 */
910                 if (val & 0xffffffff00000000ULL)
911                         return -1; /* #GP */
912                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
913                 kvm_update_dr7(vcpu);
914                 break;
915         }
916
917         return 0;
918 }
919
920 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
921 {
922         if (__kvm_set_dr(vcpu, dr, val)) {
923                 kvm_inject_gp(vcpu, 0);
924                 return 1;
925         }
926         return 0;
927 }
928 EXPORT_SYMBOL_GPL(kvm_set_dr);
929
930 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
931 {
932         switch (dr) {
933         case 0 ... 3:
934                 *val = vcpu->arch.db[dr];
935                 break;
936         case 4:
937                 /* fall through */
938         case 6:
939                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
940                         *val = vcpu->arch.dr6;
941                 else
942                         *val = kvm_x86_ops->get_dr6(vcpu);
943                 break;
944         case 5:
945                 /* fall through */
946         default: /* 7 */
947                 *val = vcpu->arch.dr7;
948                 break;
949         }
950         return 0;
951 }
952 EXPORT_SYMBOL_GPL(kvm_get_dr);
953
954 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
955 {
956         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
957         u64 data;
958         int err;
959
960         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
961         if (err)
962                 return err;
963         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
964         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
965         return err;
966 }
967 EXPORT_SYMBOL_GPL(kvm_rdpmc);
968
969 /*
970  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
971  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
972  *
973  * This list is modified at module load time to reflect the
974  * capabilities of the host cpu. This capabilities test skips MSRs that are
975  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
976  * may depend on host virtualization features rather than host cpu features.
977  */
978
979 static u32 msrs_to_save[] = {
980         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
981         MSR_STAR,
982 #ifdef CONFIG_X86_64
983         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
984 #endif
985         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
986         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
987 };
988
989 static unsigned num_msrs_to_save;
990
991 static u32 emulated_msrs[] = {
992         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
993         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
994         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
995         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
996         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
997         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
998         HV_X64_MSR_RESET,
999         HV_X64_MSR_VP_INDEX,
1000         HV_X64_MSR_VP_RUNTIME,
1001         HV_X64_MSR_SCONTROL,
1002         HV_X64_MSR_STIMER0_CONFIG,
1003         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1004         MSR_KVM_PV_EOI_EN,
1005
1006         MSR_IA32_TSC_ADJUST,
1007         MSR_IA32_TSCDEADLINE,
1008         MSR_IA32_MISC_ENABLE,
1009         MSR_IA32_MCG_STATUS,
1010         MSR_IA32_MCG_CTL,
1011         MSR_IA32_MCG_EXT_CTL,
1012         MSR_IA32_SMBASE,
1013         MSR_PLATFORM_INFO,
1014         MSR_MISC_FEATURES_ENABLES,
1015 };
1016
1017 static unsigned num_emulated_msrs;
1018
1019 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1020 {
1021         if (efer & efer_reserved_bits)
1022                 return false;
1023
1024         if (efer & EFER_FFXSR) {
1025                 struct kvm_cpuid_entry2 *feat;
1026
1027                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1028                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1029                         return false;
1030         }
1031
1032         if (efer & EFER_SVME) {
1033                 struct kvm_cpuid_entry2 *feat;
1034
1035                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1036                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1037                         return false;
1038         }
1039
1040         return true;
1041 }
1042 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1043
1044 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1045 {
1046         u64 old_efer = vcpu->arch.efer;
1047
1048         if (!kvm_valid_efer(vcpu, efer))
1049                 return 1;
1050
1051         if (is_paging(vcpu)
1052             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1053                 return 1;
1054
1055         efer &= ~EFER_LMA;
1056         efer |= vcpu->arch.efer & EFER_LMA;
1057
1058         kvm_x86_ops->set_efer(vcpu, efer);
1059
1060         /* Update reserved bits */
1061         if ((efer ^ old_efer) & EFER_NX)
1062                 kvm_mmu_reset_context(vcpu);
1063
1064         return 0;
1065 }
1066
1067 void kvm_enable_efer_bits(u64 mask)
1068 {
1069        efer_reserved_bits &= ~mask;
1070 }
1071 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1072
1073 /*
1074  * Writes msr value into into the appropriate "register".
1075  * Returns 0 on success, non-0 otherwise.
1076  * Assumes vcpu_load() was already called.
1077  */
1078 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1079 {
1080         switch (msr->index) {
1081         case MSR_FS_BASE:
1082         case MSR_GS_BASE:
1083         case MSR_KERNEL_GS_BASE:
1084         case MSR_CSTAR:
1085         case MSR_LSTAR:
1086                 if (is_noncanonical_address(msr->data))
1087                         return 1;
1088                 break;
1089         case MSR_IA32_SYSENTER_EIP:
1090         case MSR_IA32_SYSENTER_ESP:
1091                 /*
1092                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1093                  * non-canonical address is written on Intel but not on
1094                  * AMD (which ignores the top 32-bits, because it does
1095                  * not implement 64-bit SYSENTER).
1096                  *
1097                  * 64-bit code should hence be able to write a non-canonical
1098                  * value on AMD.  Making the address canonical ensures that
1099                  * vmentry does not fail on Intel after writing a non-canonical
1100                  * value, and that something deterministic happens if the guest
1101                  * invokes 64-bit SYSENTER.
1102                  */
1103                 msr->data = get_canonical(msr->data);
1104         }
1105         return kvm_x86_ops->set_msr(vcpu, msr);
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_set_msr);
1108
1109 /*
1110  * Adapt set_msr() to msr_io()'s calling convention
1111  */
1112 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1113 {
1114         struct msr_data msr;
1115         int r;
1116
1117         msr.index = index;
1118         msr.host_initiated = true;
1119         r = kvm_get_msr(vcpu, &msr);
1120         if (r)
1121                 return r;
1122
1123         *data = msr.data;
1124         return 0;
1125 }
1126
1127 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1128 {
1129         struct msr_data msr;
1130
1131         msr.data = *data;
1132         msr.index = index;
1133         msr.host_initiated = true;
1134         return kvm_set_msr(vcpu, &msr);
1135 }
1136
1137 #ifdef CONFIG_X86_64
1138 struct pvclock_gtod_data {
1139         seqcount_t      seq;
1140
1141         struct { /* extract of a clocksource struct */
1142                 int vclock_mode;
1143                 u64     cycle_last;
1144                 u64     mask;
1145                 u32     mult;
1146                 u32     shift;
1147         } clock;
1148
1149         u64             boot_ns;
1150         u64             nsec_base;
1151         u64             wall_time_sec;
1152 };
1153
1154 static struct pvclock_gtod_data pvclock_gtod_data;
1155
1156 static void update_pvclock_gtod(struct timekeeper *tk)
1157 {
1158         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1159         u64 boot_ns;
1160
1161         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1162
1163         write_seqcount_begin(&vdata->seq);
1164
1165         /* copy pvclock gtod data */
1166         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1167         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1168         vdata->clock.mask               = tk->tkr_mono.mask;
1169         vdata->clock.mult               = tk->tkr_mono.mult;
1170         vdata->clock.shift              = tk->tkr_mono.shift;
1171
1172         vdata->boot_ns                  = boot_ns;
1173         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1174
1175         vdata->wall_time_sec            = tk->xtime_sec;
1176
1177         write_seqcount_end(&vdata->seq);
1178 }
1179 #endif
1180
1181 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1182 {
1183         /*
1184          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1185          * vcpu_enter_guest.  This function is only called from
1186          * the physical CPU that is running vcpu.
1187          */
1188         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1189 }
1190
1191 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1192 {
1193         int version;
1194         int r;
1195         struct pvclock_wall_clock wc;
1196         struct timespec64 boot;
1197
1198         if (!wall_clock)
1199                 return;
1200
1201         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1202         if (r)
1203                 return;
1204
1205         if (version & 1)
1206                 ++version;  /* first time write, random junk */
1207
1208         ++version;
1209
1210         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1211                 return;
1212
1213         /*
1214          * The guest calculates current wall clock time by adding
1215          * system time (updated by kvm_guest_time_update below) to the
1216          * wall clock specified here.  guest system time equals host
1217          * system time for us, thus we must fill in host boot time here.
1218          */
1219         getboottime64(&boot);
1220
1221         if (kvm->arch.kvmclock_offset) {
1222                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1223                 boot = timespec64_sub(boot, ts);
1224         }
1225         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1226         wc.nsec = boot.tv_nsec;
1227         wc.version = version;
1228
1229         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1230
1231         version++;
1232         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1233 }
1234
1235 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1236 {
1237         do_shl32_div32(dividend, divisor);
1238         return dividend;
1239 }
1240
1241 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1242                                s8 *pshift, u32 *pmultiplier)
1243 {
1244         uint64_t scaled64;
1245         int32_t  shift = 0;
1246         uint64_t tps64;
1247         uint32_t tps32;
1248
1249         tps64 = base_hz;
1250         scaled64 = scaled_hz;
1251         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1252                 tps64 >>= 1;
1253                 shift--;
1254         }
1255
1256         tps32 = (uint32_t)tps64;
1257         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1258                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1259                         scaled64 >>= 1;
1260                 else
1261                         tps32 <<= 1;
1262                 shift++;
1263         }
1264
1265         *pshift = shift;
1266         *pmultiplier = div_frac(scaled64, tps32);
1267
1268         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1269                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1270 }
1271
1272 #ifdef CONFIG_X86_64
1273 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1274 #endif
1275
1276 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1277 static unsigned long max_tsc_khz;
1278
1279 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1280 {
1281         u64 v = (u64)khz * (1000000 + ppm);
1282         do_div(v, 1000000);
1283         return v;
1284 }
1285
1286 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1287 {
1288         u64 ratio;
1289
1290         /* Guest TSC same frequency as host TSC? */
1291         if (!scale) {
1292                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1293                 return 0;
1294         }
1295
1296         /* TSC scaling supported? */
1297         if (!kvm_has_tsc_control) {
1298                 if (user_tsc_khz > tsc_khz) {
1299                         vcpu->arch.tsc_catchup = 1;
1300                         vcpu->arch.tsc_always_catchup = 1;
1301                         return 0;
1302                 } else {
1303                         WARN(1, "user requested TSC rate below hardware speed\n");
1304                         return -1;
1305                 }
1306         }
1307
1308         /* TSC scaling required  - calculate ratio */
1309         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1310                                 user_tsc_khz, tsc_khz);
1311
1312         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1313                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1314                           user_tsc_khz);
1315                 return -1;
1316         }
1317
1318         vcpu->arch.tsc_scaling_ratio = ratio;
1319         return 0;
1320 }
1321
1322 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1323 {
1324         u32 thresh_lo, thresh_hi;
1325         int use_scaling = 0;
1326
1327         /* tsc_khz can be zero if TSC calibration fails */
1328         if (user_tsc_khz == 0) {
1329                 /* set tsc_scaling_ratio to a safe value */
1330                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1331                 return -1;
1332         }
1333
1334         /* Compute a scale to convert nanoseconds in TSC cycles */
1335         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1336                            &vcpu->arch.virtual_tsc_shift,
1337                            &vcpu->arch.virtual_tsc_mult);
1338         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1339
1340         /*
1341          * Compute the variation in TSC rate which is acceptable
1342          * within the range of tolerance and decide if the
1343          * rate being applied is within that bounds of the hardware
1344          * rate.  If so, no scaling or compensation need be done.
1345          */
1346         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1347         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1348         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1349                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1350                 use_scaling = 1;
1351         }
1352         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1353 }
1354
1355 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1356 {
1357         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1358                                       vcpu->arch.virtual_tsc_mult,
1359                                       vcpu->arch.virtual_tsc_shift);
1360         tsc += vcpu->arch.this_tsc_write;
1361         return tsc;
1362 }
1363
1364 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1365 {
1366 #ifdef CONFIG_X86_64
1367         bool vcpus_matched;
1368         struct kvm_arch *ka = &vcpu->kvm->arch;
1369         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1370
1371         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1372                          atomic_read(&vcpu->kvm->online_vcpus));
1373
1374         /*
1375          * Once the masterclock is enabled, always perform request in
1376          * order to update it.
1377          *
1378          * In order to enable masterclock, the host clocksource must be TSC
1379          * and the vcpus need to have matched TSCs.  When that happens,
1380          * perform request to enable masterclock.
1381          */
1382         if (ka->use_master_clock ||
1383             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1384                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1385
1386         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1387                             atomic_read(&vcpu->kvm->online_vcpus),
1388                             ka->use_master_clock, gtod->clock.vclock_mode);
1389 #endif
1390 }
1391
1392 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1393 {
1394         u64 curr_offset = vcpu->arch.tsc_offset;
1395         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1396 }
1397
1398 /*
1399  * Multiply tsc by a fixed point number represented by ratio.
1400  *
1401  * The most significant 64-N bits (mult) of ratio represent the
1402  * integral part of the fixed point number; the remaining N bits
1403  * (frac) represent the fractional part, ie. ratio represents a fixed
1404  * point number (mult + frac * 2^(-N)).
1405  *
1406  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1407  */
1408 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1409 {
1410         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1411 }
1412
1413 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1414 {
1415         u64 _tsc = tsc;
1416         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1417
1418         if (ratio != kvm_default_tsc_scaling_ratio)
1419                 _tsc = __scale_tsc(ratio, tsc);
1420
1421         return _tsc;
1422 }
1423 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1424
1425 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1426 {
1427         u64 tsc;
1428
1429         tsc = kvm_scale_tsc(vcpu, rdtsc());
1430
1431         return target_tsc - tsc;
1432 }
1433
1434 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1435 {
1436         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1437 }
1438 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1439
1440 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1441 {
1442         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1443         vcpu->arch.tsc_offset = offset;
1444 }
1445
1446 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1447 {
1448         struct kvm *kvm = vcpu->kvm;
1449         u64 offset, ns, elapsed;
1450         unsigned long flags;
1451         bool matched;
1452         bool already_matched;
1453         u64 data = msr->data;
1454         bool synchronizing = false;
1455
1456         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1457         offset = kvm_compute_tsc_offset(vcpu, data);
1458         ns = ktime_get_boot_ns();
1459         elapsed = ns - kvm->arch.last_tsc_nsec;
1460
1461         if (vcpu->arch.virtual_tsc_khz) {
1462                 if (data == 0 && msr->host_initiated) {
1463                         /*
1464                          * detection of vcpu initialization -- need to sync
1465                          * with other vCPUs. This particularly helps to keep
1466                          * kvm_clock stable after CPU hotplug
1467                          */
1468                         synchronizing = true;
1469                 } else {
1470                         u64 tsc_exp = kvm->arch.last_tsc_write +
1471                                                 nsec_to_cycles(vcpu, elapsed);
1472                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1473                         /*
1474                          * Special case: TSC write with a small delta (1 second)
1475                          * of virtual cycle time against real time is
1476                          * interpreted as an attempt to synchronize the CPU.
1477                          */
1478                         synchronizing = data < tsc_exp + tsc_hz &&
1479                                         data + tsc_hz > tsc_exp;
1480                 }
1481         }
1482
1483         /*
1484          * For a reliable TSC, we can match TSC offsets, and for an unstable
1485          * TSC, we add elapsed time in this computation.  We could let the
1486          * compensation code attempt to catch up if we fall behind, but
1487          * it's better to try to match offsets from the beginning.
1488          */
1489         if (synchronizing &&
1490             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1491                 if (!check_tsc_unstable()) {
1492                         offset = kvm->arch.cur_tsc_offset;
1493                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1494                 } else {
1495                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1496                         data += delta;
1497                         offset = kvm_compute_tsc_offset(vcpu, data);
1498                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1499                 }
1500                 matched = true;
1501                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1502         } else {
1503                 /*
1504                  * We split periods of matched TSC writes into generations.
1505                  * For each generation, we track the original measured
1506                  * nanosecond time, offset, and write, so if TSCs are in
1507                  * sync, we can match exact offset, and if not, we can match
1508                  * exact software computation in compute_guest_tsc()
1509                  *
1510                  * These values are tracked in kvm->arch.cur_xxx variables.
1511                  */
1512                 kvm->arch.cur_tsc_generation++;
1513                 kvm->arch.cur_tsc_nsec = ns;
1514                 kvm->arch.cur_tsc_write = data;
1515                 kvm->arch.cur_tsc_offset = offset;
1516                 matched = false;
1517                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1518                          kvm->arch.cur_tsc_generation, data);
1519         }
1520
1521         /*
1522          * We also track th most recent recorded KHZ, write and time to
1523          * allow the matching interval to be extended at each write.
1524          */
1525         kvm->arch.last_tsc_nsec = ns;
1526         kvm->arch.last_tsc_write = data;
1527         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1528
1529         vcpu->arch.last_guest_tsc = data;
1530
1531         /* Keep track of which generation this VCPU has synchronized to */
1532         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1533         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1534         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1535
1536         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1537                 update_ia32_tsc_adjust_msr(vcpu, offset);
1538         kvm_vcpu_write_tsc_offset(vcpu, offset);
1539         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1540
1541         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1542         if (!matched) {
1543                 kvm->arch.nr_vcpus_matched_tsc = 0;
1544         } else if (!already_matched) {
1545                 kvm->arch.nr_vcpus_matched_tsc++;
1546         }
1547
1548         kvm_track_tsc_matching(vcpu);
1549         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1550 }
1551
1552 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1553
1554 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1555                                            s64 adjustment)
1556 {
1557         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1558 }
1559
1560 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1561 {
1562         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1563                 WARN_ON(adjustment < 0);
1564         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1565         adjust_tsc_offset_guest(vcpu, adjustment);
1566 }
1567
1568 #ifdef CONFIG_X86_64
1569
1570 static u64 read_tsc(void)
1571 {
1572         u64 ret = (u64)rdtsc_ordered();
1573         u64 last = pvclock_gtod_data.clock.cycle_last;
1574
1575         if (likely(ret >= last))
1576                 return ret;
1577
1578         /*
1579          * GCC likes to generate cmov here, but this branch is extremely
1580          * predictable (it's just a function of time and the likely is
1581          * very likely) and there's a data dependence, so force GCC
1582          * to generate a branch instead.  I don't barrier() because
1583          * we don't actually need a barrier, and if this function
1584          * ever gets inlined it will generate worse code.
1585          */
1586         asm volatile ("");
1587         return last;
1588 }
1589
1590 static inline u64 vgettsc(u64 *cycle_now)
1591 {
1592         long v;
1593         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1594
1595         *cycle_now = read_tsc();
1596
1597         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1598         return v * gtod->clock.mult;
1599 }
1600
1601 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1602 {
1603         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1604         unsigned long seq;
1605         int mode;
1606         u64 ns;
1607
1608         do {
1609                 seq = read_seqcount_begin(&gtod->seq);
1610                 mode = gtod->clock.vclock_mode;
1611                 ns = gtod->nsec_base;
1612                 ns += vgettsc(cycle_now);
1613                 ns >>= gtod->clock.shift;
1614                 ns += gtod->boot_ns;
1615         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1616         *t = ns;
1617
1618         return mode;
1619 }
1620
1621 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1622 {
1623         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1624         unsigned long seq;
1625         int mode;
1626         u64 ns;
1627
1628         do {
1629                 seq = read_seqcount_begin(&gtod->seq);
1630                 mode = gtod->clock.vclock_mode;
1631                 ts->tv_sec = gtod->wall_time_sec;
1632                 ns = gtod->nsec_base;
1633                 ns += vgettsc(cycle_now);
1634                 ns >>= gtod->clock.shift;
1635         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1636
1637         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1638         ts->tv_nsec = ns;
1639
1640         return mode;
1641 }
1642
1643 /* returns true if host is using tsc clocksource */
1644 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1645 {
1646         /* checked again under seqlock below */
1647         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1648                 return false;
1649
1650         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1651 }
1652
1653 /* returns true if host is using tsc clocksource */
1654 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1655                                            u64 *cycle_now)
1656 {
1657         /* checked again under seqlock below */
1658         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1659                 return false;
1660
1661         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1662 }
1663 #endif
1664
1665 /*
1666  *
1667  * Assuming a stable TSC across physical CPUS, and a stable TSC
1668  * across virtual CPUs, the following condition is possible.
1669  * Each numbered line represents an event visible to both
1670  * CPUs at the next numbered event.
1671  *
1672  * "timespecX" represents host monotonic time. "tscX" represents
1673  * RDTSC value.
1674  *
1675  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1676  *
1677  * 1.  read timespec0,tsc0
1678  * 2.                                   | timespec1 = timespec0 + N
1679  *                                      | tsc1 = tsc0 + M
1680  * 3. transition to guest               | transition to guest
1681  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1682  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1683  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1684  *
1685  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1686  *
1687  *      - ret0 < ret1
1688  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1689  *              ...
1690  *      - 0 < N - M => M < N
1691  *
1692  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1693  * always the case (the difference between two distinct xtime instances
1694  * might be smaller then the difference between corresponding TSC reads,
1695  * when updating guest vcpus pvclock areas).
1696  *
1697  * To avoid that problem, do not allow visibility of distinct
1698  * system_timestamp/tsc_timestamp values simultaneously: use a master
1699  * copy of host monotonic time values. Update that master copy
1700  * in lockstep.
1701  *
1702  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1703  *
1704  */
1705
1706 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1707 {
1708 #ifdef CONFIG_X86_64
1709         struct kvm_arch *ka = &kvm->arch;
1710         int vclock_mode;
1711         bool host_tsc_clocksource, vcpus_matched;
1712
1713         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1714                         atomic_read(&kvm->online_vcpus));
1715
1716         /*
1717          * If the host uses TSC clock, then passthrough TSC as stable
1718          * to the guest.
1719          */
1720         host_tsc_clocksource = kvm_get_time_and_clockread(
1721                                         &ka->master_kernel_ns,
1722                                         &ka->master_cycle_now);
1723
1724         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1725                                 && !ka->backwards_tsc_observed
1726                                 && !ka->boot_vcpu_runs_old_kvmclock;
1727
1728         if (ka->use_master_clock)
1729                 atomic_set(&kvm_guest_has_master_clock, 1);
1730
1731         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1732         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1733                                         vcpus_matched);
1734 #endif
1735 }
1736
1737 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1738 {
1739         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1740 }
1741
1742 static void kvm_gen_update_masterclock(struct kvm *kvm)
1743 {
1744 #ifdef CONFIG_X86_64
1745         int i;
1746         struct kvm_vcpu *vcpu;
1747         struct kvm_arch *ka = &kvm->arch;
1748
1749         spin_lock(&ka->pvclock_gtod_sync_lock);
1750         kvm_make_mclock_inprogress_request(kvm);
1751         /* no guest entries from this point */
1752         pvclock_update_vm_gtod_copy(kvm);
1753
1754         kvm_for_each_vcpu(i, vcpu, kvm)
1755                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1756
1757         /* guest entries allowed */
1758         kvm_for_each_vcpu(i, vcpu, kvm)
1759                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1760
1761         spin_unlock(&ka->pvclock_gtod_sync_lock);
1762 #endif
1763 }
1764
1765 u64 get_kvmclock_ns(struct kvm *kvm)
1766 {
1767         struct kvm_arch *ka = &kvm->arch;
1768         struct pvclock_vcpu_time_info hv_clock;
1769         u64 ret;
1770
1771         spin_lock(&ka->pvclock_gtod_sync_lock);
1772         if (!ka->use_master_clock) {
1773                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1774                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1775         }
1776
1777         hv_clock.tsc_timestamp = ka->master_cycle_now;
1778         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1779         spin_unlock(&ka->pvclock_gtod_sync_lock);
1780
1781         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1782         get_cpu();
1783
1784         kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1785                            &hv_clock.tsc_shift,
1786                            &hv_clock.tsc_to_system_mul);
1787         ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1788
1789         put_cpu();
1790
1791         return ret;
1792 }
1793
1794 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1795 {
1796         struct kvm_vcpu_arch *vcpu = &v->arch;
1797         struct pvclock_vcpu_time_info guest_hv_clock;
1798
1799         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1800                 &guest_hv_clock, sizeof(guest_hv_clock))))
1801                 return;
1802
1803         /* This VCPU is paused, but it's legal for a guest to read another
1804          * VCPU's kvmclock, so we really have to follow the specification where
1805          * it says that version is odd if data is being modified, and even after
1806          * it is consistent.
1807          *
1808          * Version field updates must be kept separate.  This is because
1809          * kvm_write_guest_cached might use a "rep movs" instruction, and
1810          * writes within a string instruction are weakly ordered.  So there
1811          * are three writes overall.
1812          *
1813          * As a small optimization, only write the version field in the first
1814          * and third write.  The vcpu->pv_time cache is still valid, because the
1815          * version field is the first in the struct.
1816          */
1817         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1818
1819         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1820         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1821                                 &vcpu->hv_clock,
1822                                 sizeof(vcpu->hv_clock.version));
1823
1824         smp_wmb();
1825
1826         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1827         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1828
1829         if (vcpu->pvclock_set_guest_stopped_request) {
1830                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1831                 vcpu->pvclock_set_guest_stopped_request = false;
1832         }
1833
1834         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1835
1836         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1837                                 &vcpu->hv_clock,
1838                                 sizeof(vcpu->hv_clock));
1839
1840         smp_wmb();
1841
1842         vcpu->hv_clock.version++;
1843         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844                                 &vcpu->hv_clock,
1845                                 sizeof(vcpu->hv_clock.version));
1846 }
1847
1848 static int kvm_guest_time_update(struct kvm_vcpu *v)
1849 {
1850         unsigned long flags, tgt_tsc_khz;
1851         struct kvm_vcpu_arch *vcpu = &v->arch;
1852         struct kvm_arch *ka = &v->kvm->arch;
1853         s64 kernel_ns;
1854         u64 tsc_timestamp, host_tsc;
1855         u8 pvclock_flags;
1856         bool use_master_clock;
1857
1858         kernel_ns = 0;
1859         host_tsc = 0;
1860
1861         /*
1862          * If the host uses TSC clock, then passthrough TSC as stable
1863          * to the guest.
1864          */
1865         spin_lock(&ka->pvclock_gtod_sync_lock);
1866         use_master_clock = ka->use_master_clock;
1867         if (use_master_clock) {
1868                 host_tsc = ka->master_cycle_now;
1869                 kernel_ns = ka->master_kernel_ns;
1870         }
1871         spin_unlock(&ka->pvclock_gtod_sync_lock);
1872
1873         /* Keep irq disabled to prevent changes to the clock */
1874         local_irq_save(flags);
1875         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1876         if (unlikely(tgt_tsc_khz == 0)) {
1877                 local_irq_restore(flags);
1878                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1879                 return 1;
1880         }
1881         if (!use_master_clock) {
1882                 host_tsc = rdtsc();
1883                 kernel_ns = ktime_get_boot_ns();
1884         }
1885
1886         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1887
1888         /*
1889          * We may have to catch up the TSC to match elapsed wall clock
1890          * time for two reasons, even if kvmclock is used.
1891          *   1) CPU could have been running below the maximum TSC rate
1892          *   2) Broken TSC compensation resets the base at each VCPU
1893          *      entry to avoid unknown leaps of TSC even when running
1894          *      again on the same CPU.  This may cause apparent elapsed
1895          *      time to disappear, and the guest to stand still or run
1896          *      very slowly.
1897          */
1898         if (vcpu->tsc_catchup) {
1899                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1900                 if (tsc > tsc_timestamp) {
1901                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1902                         tsc_timestamp = tsc;
1903                 }
1904         }
1905
1906         local_irq_restore(flags);
1907
1908         /* With all the info we got, fill in the values */
1909
1910         if (kvm_has_tsc_control)
1911                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1912
1913         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1914                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1915                                    &vcpu->hv_clock.tsc_shift,
1916                                    &vcpu->hv_clock.tsc_to_system_mul);
1917                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1918         }
1919
1920         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1921         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1922         vcpu->last_guest_tsc = tsc_timestamp;
1923
1924         /* If the host uses TSC clocksource, then it is stable */
1925         pvclock_flags = 0;
1926         if (use_master_clock)
1927                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1928
1929         vcpu->hv_clock.flags = pvclock_flags;
1930
1931         if (vcpu->pv_time_enabled)
1932                 kvm_setup_pvclock_page(v);
1933         if (v == kvm_get_vcpu(v->kvm, 0))
1934                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1935         return 0;
1936 }
1937
1938 /*
1939  * kvmclock updates which are isolated to a given vcpu, such as
1940  * vcpu->cpu migration, should not allow system_timestamp from
1941  * the rest of the vcpus to remain static. Otherwise ntp frequency
1942  * correction applies to one vcpu's system_timestamp but not
1943  * the others.
1944  *
1945  * So in those cases, request a kvmclock update for all vcpus.
1946  * We need to rate-limit these requests though, as they can
1947  * considerably slow guests that have a large number of vcpus.
1948  * The time for a remote vcpu to update its kvmclock is bound
1949  * by the delay we use to rate-limit the updates.
1950  */
1951
1952 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1953
1954 static void kvmclock_update_fn(struct work_struct *work)
1955 {
1956         int i;
1957         struct delayed_work *dwork = to_delayed_work(work);
1958         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1959                                            kvmclock_update_work);
1960         struct kvm *kvm = container_of(ka, struct kvm, arch);
1961         struct kvm_vcpu *vcpu;
1962
1963         kvm_for_each_vcpu(i, vcpu, kvm) {
1964                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1965                 kvm_vcpu_kick(vcpu);
1966         }
1967 }
1968
1969 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1970 {
1971         struct kvm *kvm = v->kvm;
1972
1973         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1974         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1975                                         KVMCLOCK_UPDATE_DELAY);
1976 }
1977
1978 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1979
1980 static void kvmclock_sync_fn(struct work_struct *work)
1981 {
1982         struct delayed_work *dwork = to_delayed_work(work);
1983         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1984                                            kvmclock_sync_work);
1985         struct kvm *kvm = container_of(ka, struct kvm, arch);
1986
1987         if (!kvmclock_periodic_sync)
1988                 return;
1989
1990         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1991         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1992                                         KVMCLOCK_SYNC_PERIOD);
1993 }
1994
1995 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1996 {
1997         u64 mcg_cap = vcpu->arch.mcg_cap;
1998         unsigned bank_num = mcg_cap & 0xff;
1999
2000         switch (msr) {
2001         case MSR_IA32_MCG_STATUS:
2002                 vcpu->arch.mcg_status = data;
2003                 break;
2004         case MSR_IA32_MCG_CTL:
2005                 if (!(mcg_cap & MCG_CTL_P))
2006                         return 1;
2007                 if (data != 0 && data != ~(u64)0)
2008                         return -1;
2009                 vcpu->arch.mcg_ctl = data;
2010                 break;
2011         default:
2012                 if (msr >= MSR_IA32_MC0_CTL &&
2013                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2014                         u32 offset = msr - MSR_IA32_MC0_CTL;
2015                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2016                          * some Linux kernels though clear bit 10 in bank 4 to
2017                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2018                          * this to avoid an uncatched #GP in the guest
2019                          */
2020                         if ((offset & 0x3) == 0 &&
2021                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2022                                 return -1;
2023                         vcpu->arch.mce_banks[offset] = data;
2024                         break;
2025                 }
2026                 return 1;
2027         }
2028         return 0;
2029 }
2030
2031 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2032 {
2033         struct kvm *kvm = vcpu->kvm;
2034         int lm = is_long_mode(vcpu);
2035         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2036                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2037         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2038                 : kvm->arch.xen_hvm_config.blob_size_32;
2039         u32 page_num = data & ~PAGE_MASK;
2040         u64 page_addr = data & PAGE_MASK;
2041         u8 *page;
2042         int r;
2043
2044         r = -E2BIG;
2045         if (page_num >= blob_size)
2046                 goto out;
2047         r = -ENOMEM;
2048         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2049         if (IS_ERR(page)) {
2050                 r = PTR_ERR(page);
2051                 goto out;
2052         }
2053         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2054                 goto out_free;
2055         r = 0;
2056 out_free:
2057         kfree(page);
2058 out:
2059         return r;
2060 }
2061
2062 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2063 {
2064         gpa_t gpa = data & ~0x3f;
2065
2066         /* Bits 2:5 are reserved, Should be zero */
2067         if (data & 0x3c)
2068                 return 1;
2069
2070         vcpu->arch.apf.msr_val = data;
2071
2072         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2073                 kvm_clear_async_pf_completion_queue(vcpu);
2074                 kvm_async_pf_hash_reset(vcpu);
2075                 return 0;
2076         }
2077
2078         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2079                                         sizeof(u32)))
2080                 return 1;
2081
2082         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2083         kvm_async_pf_wakeup_all(vcpu);
2084         return 0;
2085 }
2086
2087 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2088 {
2089         vcpu->arch.pv_time_enabled = false;
2090 }
2091
2092 static void record_steal_time(struct kvm_vcpu *vcpu)
2093 {
2094         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2095                 return;
2096
2097         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2098                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2099                 return;
2100
2101         vcpu->arch.st.steal.preempted = 0;
2102
2103         if (vcpu->arch.st.steal.version & 1)
2104                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2105
2106         vcpu->arch.st.steal.version += 1;
2107
2108         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2109                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2110
2111         smp_wmb();
2112
2113         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2114                 vcpu->arch.st.last_steal;
2115         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2116
2117         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2118                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2119
2120         smp_wmb();
2121
2122         vcpu->arch.st.steal.version += 1;
2123
2124         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2125                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2126 }
2127
2128 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2129 {
2130         bool pr = false;
2131         u32 msr = msr_info->index;
2132         u64 data = msr_info->data;
2133
2134         switch (msr) {
2135         case MSR_AMD64_NB_CFG:
2136         case MSR_IA32_UCODE_REV:
2137         case MSR_IA32_UCODE_WRITE:
2138         case MSR_VM_HSAVE_PA:
2139         case MSR_AMD64_PATCH_LOADER:
2140         case MSR_AMD64_BU_CFG2:
2141         case MSR_AMD64_DC_CFG:
2142                 break;
2143
2144         case MSR_EFER:
2145                 return set_efer(vcpu, data);
2146         case MSR_K7_HWCR:
2147                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2148                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2149                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2150                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2151                 if (data != 0) {
2152                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2153                                     data);
2154                         return 1;
2155                 }
2156                 break;
2157         case MSR_FAM10H_MMIO_CONF_BASE:
2158                 if (data != 0) {
2159                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2160                                     "0x%llx\n", data);
2161                         return 1;
2162                 }
2163                 break;
2164         case MSR_IA32_DEBUGCTLMSR:
2165                 if (!data) {
2166                         /* We support the non-activated case already */
2167                         break;
2168                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2169                         /* Values other than LBR and BTF are vendor-specific,
2170                            thus reserved and should throw a #GP */
2171                         return 1;
2172                 }
2173                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2174                             __func__, data);
2175                 break;
2176         case 0x200 ... 0x2ff:
2177                 return kvm_mtrr_set_msr(vcpu, msr, data);
2178         case MSR_IA32_APICBASE:
2179                 return kvm_set_apic_base(vcpu, msr_info);
2180         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2181                 return kvm_x2apic_msr_write(vcpu, msr, data);
2182         case MSR_IA32_TSCDEADLINE:
2183                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2184                 break;
2185         case MSR_IA32_TSC_ADJUST:
2186                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2187                         if (!msr_info->host_initiated) {
2188                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2189                                 adjust_tsc_offset_guest(vcpu, adj);
2190                         }
2191                         vcpu->arch.ia32_tsc_adjust_msr = data;
2192                 }
2193                 break;
2194         case MSR_IA32_MISC_ENABLE:
2195                 vcpu->arch.ia32_misc_enable_msr = data;
2196                 break;
2197         case MSR_IA32_SMBASE:
2198                 if (!msr_info->host_initiated)
2199                         return 1;
2200                 vcpu->arch.smbase = data;
2201                 break;
2202         case MSR_KVM_WALL_CLOCK_NEW:
2203         case MSR_KVM_WALL_CLOCK:
2204                 vcpu->kvm->arch.wall_clock = data;
2205                 kvm_write_wall_clock(vcpu->kvm, data);
2206                 break;
2207         case MSR_KVM_SYSTEM_TIME_NEW:
2208         case MSR_KVM_SYSTEM_TIME: {
2209                 struct kvm_arch *ka = &vcpu->kvm->arch;
2210
2211                 kvmclock_reset(vcpu);
2212
2213                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2214                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2215
2216                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2217                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2218
2219                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2220                 }
2221
2222                 vcpu->arch.time = data;
2223                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2224
2225                 /* we verify if the enable bit is set... */
2226                 if (!(data & 1))
2227                         break;
2228
2229                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2230                      &vcpu->arch.pv_time, data & ~1ULL,
2231                      sizeof(struct pvclock_vcpu_time_info)))
2232                         vcpu->arch.pv_time_enabled = false;
2233                 else
2234                         vcpu->arch.pv_time_enabled = true;
2235
2236                 break;
2237         }
2238         case MSR_KVM_ASYNC_PF_EN:
2239                 if (kvm_pv_enable_async_pf(vcpu, data))
2240                         return 1;
2241                 break;
2242         case MSR_KVM_STEAL_TIME:
2243
2244                 if (unlikely(!sched_info_on()))
2245                         return 1;
2246
2247                 if (data & KVM_STEAL_RESERVED_MASK)
2248                         return 1;
2249
2250                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2251                                                 data & KVM_STEAL_VALID_BITS,
2252                                                 sizeof(struct kvm_steal_time)))
2253                         return 1;
2254
2255                 vcpu->arch.st.msr_val = data;
2256
2257                 if (!(data & KVM_MSR_ENABLED))
2258                         break;
2259
2260                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2261
2262                 break;
2263         case MSR_KVM_PV_EOI_EN:
2264                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2265                         return 1;
2266                 break;
2267
2268         case MSR_IA32_MCG_CTL:
2269         case MSR_IA32_MCG_STATUS:
2270         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2271                 return set_msr_mce(vcpu, msr, data);
2272
2273         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2274         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2275                 pr = true; /* fall through */
2276         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2277         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2278                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2279                         return kvm_pmu_set_msr(vcpu, msr_info);
2280
2281                 if (pr || data != 0)
2282                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2283                                     "0x%x data 0x%llx\n", msr, data);
2284                 break;
2285         case MSR_K7_CLK_CTL:
2286                 /*
2287                  * Ignore all writes to this no longer documented MSR.
2288                  * Writes are only relevant for old K7 processors,
2289                  * all pre-dating SVM, but a recommended workaround from
2290                  * AMD for these chips. It is possible to specify the
2291                  * affected processor models on the command line, hence
2292                  * the need to ignore the workaround.
2293                  */
2294                 break;
2295         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2296         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2297         case HV_X64_MSR_CRASH_CTL:
2298         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2299                 return kvm_hv_set_msr_common(vcpu, msr, data,
2300                                              msr_info->host_initiated);
2301         case MSR_IA32_BBL_CR_CTL3:
2302                 /* Drop writes to this legacy MSR -- see rdmsr
2303                  * counterpart for further detail.
2304                  */
2305                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", msr, data);
2306                 break;
2307         case MSR_AMD64_OSVW_ID_LENGTH:
2308                 if (!guest_cpuid_has_osvw(vcpu))
2309                         return 1;
2310                 vcpu->arch.osvw.length = data;
2311                 break;
2312         case MSR_AMD64_OSVW_STATUS:
2313                 if (!guest_cpuid_has_osvw(vcpu))
2314                         return 1;
2315                 vcpu->arch.osvw.status = data;
2316                 break;
2317         case MSR_PLATFORM_INFO:
2318                 if (!msr_info->host_initiated ||
2319                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2320                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2321                      cpuid_fault_enabled(vcpu)))
2322                         return 1;
2323                 vcpu->arch.msr_platform_info = data;
2324                 break;
2325         case MSR_MISC_FEATURES_ENABLES:
2326                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2327                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2328                      !supports_cpuid_fault(vcpu)))
2329                         return 1;
2330                 vcpu->arch.msr_misc_features_enables = data;
2331                 break;
2332         default:
2333                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2334                         return xen_hvm_config(vcpu, data);
2335                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2336                         return kvm_pmu_set_msr(vcpu, msr_info);
2337                 if (!ignore_msrs) {
2338                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2339                                     msr, data);
2340                         return 1;
2341                 } else {
2342                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2343                                     msr, data);
2344                         break;
2345                 }
2346         }
2347         return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2350
2351
2352 /*
2353  * Reads an msr value (of 'msr_index') into 'pdata'.
2354  * Returns 0 on success, non-0 otherwise.
2355  * Assumes vcpu_load() was already called.
2356  */
2357 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2358 {
2359         return kvm_x86_ops->get_msr(vcpu, msr);
2360 }
2361 EXPORT_SYMBOL_GPL(kvm_get_msr);
2362
2363 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2364 {
2365         u64 data;
2366         u64 mcg_cap = vcpu->arch.mcg_cap;
2367         unsigned bank_num = mcg_cap & 0xff;
2368
2369         switch (msr) {
2370         case MSR_IA32_P5_MC_ADDR:
2371         case MSR_IA32_P5_MC_TYPE:
2372                 data = 0;
2373                 break;
2374         case MSR_IA32_MCG_CAP:
2375                 data = vcpu->arch.mcg_cap;
2376                 break;
2377         case MSR_IA32_MCG_CTL:
2378                 if (!(mcg_cap & MCG_CTL_P))
2379                         return 1;
2380                 data = vcpu->arch.mcg_ctl;
2381                 break;
2382         case MSR_IA32_MCG_STATUS:
2383                 data = vcpu->arch.mcg_status;
2384                 break;
2385         default:
2386                 if (msr >= MSR_IA32_MC0_CTL &&
2387                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2388                         u32 offset = msr - MSR_IA32_MC0_CTL;
2389                         data = vcpu->arch.mce_banks[offset];
2390                         break;
2391                 }
2392                 return 1;
2393         }
2394         *pdata = data;
2395         return 0;
2396 }
2397
2398 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2399 {
2400         switch (msr_info->index) {
2401         case MSR_IA32_PLATFORM_ID:
2402         case MSR_IA32_EBL_CR_POWERON:
2403         case MSR_IA32_DEBUGCTLMSR:
2404         case MSR_IA32_LASTBRANCHFROMIP:
2405         case MSR_IA32_LASTBRANCHTOIP:
2406         case MSR_IA32_LASTINTFROMIP:
2407         case MSR_IA32_LASTINTTOIP:
2408         case MSR_K8_SYSCFG:
2409         case MSR_K8_TSEG_ADDR:
2410         case MSR_K8_TSEG_MASK:
2411         case MSR_K7_HWCR:
2412         case MSR_VM_HSAVE_PA:
2413         case MSR_K8_INT_PENDING_MSG:
2414         case MSR_AMD64_NB_CFG:
2415         case MSR_FAM10H_MMIO_CONF_BASE:
2416         case MSR_AMD64_BU_CFG2:
2417         case MSR_IA32_PERF_CTL:
2418         case MSR_AMD64_DC_CFG:
2419                 msr_info->data = 0;
2420                 break;
2421         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2422         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2423         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2424         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2425                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2426                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2427                 msr_info->data = 0;
2428                 break;
2429         case MSR_IA32_UCODE_REV:
2430                 msr_info->data = 0x100000000ULL;
2431                 break;
2432         case MSR_MTRRcap:
2433         case 0x200 ... 0x2ff:
2434                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2435         case 0xcd: /* fsb frequency */
2436                 msr_info->data = 3;
2437                 break;
2438                 /*
2439                  * MSR_EBC_FREQUENCY_ID
2440                  * Conservative value valid for even the basic CPU models.
2441                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2442                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2443                  * and 266MHz for model 3, or 4. Set Core Clock
2444                  * Frequency to System Bus Frequency Ratio to 1 (bits
2445                  * 31:24) even though these are only valid for CPU
2446                  * models > 2, however guests may end up dividing or
2447                  * multiplying by zero otherwise.
2448                  */
2449         case MSR_EBC_FREQUENCY_ID:
2450                 msr_info->data = 1 << 24;
2451                 break;
2452         case MSR_IA32_APICBASE:
2453                 msr_info->data = kvm_get_apic_base(vcpu);
2454                 break;
2455         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2456                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2457                 break;
2458         case MSR_IA32_TSCDEADLINE:
2459                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2460                 break;
2461         case MSR_IA32_TSC_ADJUST:
2462                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2463                 break;
2464         case MSR_IA32_MISC_ENABLE:
2465                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2466                 break;
2467         case MSR_IA32_SMBASE:
2468                 if (!msr_info->host_initiated)
2469                         return 1;
2470                 msr_info->data = vcpu->arch.smbase;
2471                 break;
2472         case MSR_IA32_PERF_STATUS:
2473                 /* TSC increment by tick */
2474                 msr_info->data = 1000ULL;
2475                 /* CPU multiplier */
2476                 msr_info->data |= (((uint64_t)4ULL) << 40);
2477                 break;
2478         case MSR_EFER:
2479                 msr_info->data = vcpu->arch.efer;
2480                 break;
2481         case MSR_KVM_WALL_CLOCK:
2482         case MSR_KVM_WALL_CLOCK_NEW:
2483                 msr_info->data = vcpu->kvm->arch.wall_clock;
2484                 break;
2485         case MSR_KVM_SYSTEM_TIME:
2486         case MSR_KVM_SYSTEM_TIME_NEW:
2487                 msr_info->data = vcpu->arch.time;
2488                 break;
2489         case MSR_KVM_ASYNC_PF_EN:
2490                 msr_info->data = vcpu->arch.apf.msr_val;
2491                 break;
2492         case MSR_KVM_STEAL_TIME:
2493                 msr_info->data = vcpu->arch.st.msr_val;
2494                 break;
2495         case MSR_KVM_PV_EOI_EN:
2496                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2497                 break;
2498         case MSR_IA32_P5_MC_ADDR:
2499         case MSR_IA32_P5_MC_TYPE:
2500         case MSR_IA32_MCG_CAP:
2501         case MSR_IA32_MCG_CTL:
2502         case MSR_IA32_MCG_STATUS:
2503         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2504                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2505         case MSR_K7_CLK_CTL:
2506                 /*
2507                  * Provide expected ramp-up count for K7. All other
2508                  * are set to zero, indicating minimum divisors for
2509                  * every field.
2510                  *
2511                  * This prevents guest kernels on AMD host with CPU
2512                  * type 6, model 8 and higher from exploding due to
2513                  * the rdmsr failing.
2514                  */
2515                 msr_info->data = 0x20000000;
2516                 break;
2517         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2518         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2519         case HV_X64_MSR_CRASH_CTL:
2520         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2521                 return kvm_hv_get_msr_common(vcpu,
2522                                              msr_info->index, &msr_info->data);
2523                 break;
2524         case MSR_IA32_BBL_CR_CTL3:
2525                 /* This legacy MSR exists but isn't fully documented in current
2526                  * silicon.  It is however accessed by winxp in very narrow
2527                  * scenarios where it sets bit #19, itself documented as
2528                  * a "reserved" bit.  Best effort attempt to source coherent
2529                  * read data here should the balance of the register be
2530                  * interpreted by the guest:
2531                  *
2532                  * L2 cache control register 3: 64GB range, 256KB size,
2533                  * enabled, latency 0x1, configured
2534                  */
2535                 msr_info->data = 0xbe702111;
2536                 break;
2537         case MSR_AMD64_OSVW_ID_LENGTH:
2538                 if (!guest_cpuid_has_osvw(vcpu))
2539                         return 1;
2540                 msr_info->data = vcpu->arch.osvw.length;
2541                 break;
2542         case MSR_AMD64_OSVW_STATUS:
2543                 if (!guest_cpuid_has_osvw(vcpu))
2544                         return 1;
2545                 msr_info->data = vcpu->arch.osvw.status;
2546                 break;
2547         case MSR_PLATFORM_INFO:
2548                 msr_info->data = vcpu->arch.msr_platform_info;
2549                 break;
2550         case MSR_MISC_FEATURES_ENABLES:
2551                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2552                 break;
2553         default:
2554                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2555                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2556                 if (!ignore_msrs) {
2557                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2558                                                msr_info->index);
2559                         return 1;
2560                 } else {
2561                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2562                         msr_info->data = 0;
2563                 }
2564                 break;
2565         }
2566         return 0;
2567 }
2568 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2569
2570 /*
2571  * Read or write a bunch of msrs. All parameters are kernel addresses.
2572  *
2573  * @return number of msrs set successfully.
2574  */
2575 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2576                     struct kvm_msr_entry *entries,
2577                     int (*do_msr)(struct kvm_vcpu *vcpu,
2578                                   unsigned index, u64 *data))
2579 {
2580         int i, idx;
2581
2582         idx = srcu_read_lock(&vcpu->kvm->srcu);
2583         for (i = 0; i < msrs->nmsrs; ++i)
2584                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2585                         break;
2586         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2587
2588         return i;
2589 }
2590
2591 /*
2592  * Read or write a bunch of msrs. Parameters are user addresses.
2593  *
2594  * @return number of msrs set successfully.
2595  */
2596 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2597                   int (*do_msr)(struct kvm_vcpu *vcpu,
2598                                 unsigned index, u64 *data),
2599                   int writeback)
2600 {
2601         struct kvm_msrs msrs;
2602         struct kvm_msr_entry *entries;
2603         int r, n;
2604         unsigned size;
2605
2606         r = -EFAULT;
2607         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2608                 goto out;
2609
2610         r = -E2BIG;
2611         if (msrs.nmsrs >= MAX_IO_MSRS)
2612                 goto out;
2613
2614         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2615         entries = memdup_user(user_msrs->entries, size);
2616         if (IS_ERR(entries)) {
2617                 r = PTR_ERR(entries);
2618                 goto out;
2619         }
2620
2621         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2622         if (r < 0)
2623                 goto out_free;
2624
2625         r = -EFAULT;
2626         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2627                 goto out_free;
2628
2629         r = n;
2630
2631 out_free:
2632         kfree(entries);
2633 out:
2634         return r;
2635 }
2636
2637 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2638 {
2639         int r;
2640
2641         switch (ext) {
2642         case KVM_CAP_IRQCHIP:
2643         case KVM_CAP_HLT:
2644         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2645         case KVM_CAP_SET_TSS_ADDR:
2646         case KVM_CAP_EXT_CPUID:
2647         case KVM_CAP_EXT_EMUL_CPUID:
2648         case KVM_CAP_CLOCKSOURCE:
2649         case KVM_CAP_PIT:
2650         case KVM_CAP_NOP_IO_DELAY:
2651         case KVM_CAP_MP_STATE:
2652         case KVM_CAP_SYNC_MMU:
2653         case KVM_CAP_USER_NMI:
2654         case KVM_CAP_REINJECT_CONTROL:
2655         case KVM_CAP_IRQ_INJECT_STATUS:
2656         case KVM_CAP_IOEVENTFD:
2657         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2658         case KVM_CAP_PIT2:
2659         case KVM_CAP_PIT_STATE2:
2660         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2661         case KVM_CAP_XEN_HVM:
2662         case KVM_CAP_VCPU_EVENTS:
2663         case KVM_CAP_HYPERV:
2664         case KVM_CAP_HYPERV_VAPIC:
2665         case KVM_CAP_HYPERV_SPIN:
2666         case KVM_CAP_HYPERV_SYNIC:
2667         case KVM_CAP_HYPERV_SYNIC2:
2668         case KVM_CAP_PCI_SEGMENT:
2669         case KVM_CAP_DEBUGREGS:
2670         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2671         case KVM_CAP_XSAVE:
2672         case KVM_CAP_ASYNC_PF:
2673         case KVM_CAP_GET_TSC_KHZ:
2674         case KVM_CAP_KVMCLOCK_CTRL:
2675         case KVM_CAP_READONLY_MEM:
2676         case KVM_CAP_HYPERV_TIME:
2677         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2678         case KVM_CAP_TSC_DEADLINE_TIMER:
2679         case KVM_CAP_ENABLE_CAP_VM:
2680         case KVM_CAP_DISABLE_QUIRKS:
2681         case KVM_CAP_SET_BOOT_CPU_ID:
2682         case KVM_CAP_SPLIT_IRQCHIP:
2683         case KVM_CAP_IMMEDIATE_EXIT:
2684                 r = 1;
2685                 break;
2686         case KVM_CAP_ADJUST_CLOCK:
2687                 r = KVM_CLOCK_TSC_STABLE;
2688                 break;
2689         case KVM_CAP_X86_GUEST_MWAIT:
2690                 r = kvm_mwait_in_guest();
2691                 break;
2692         case KVM_CAP_X86_SMM:
2693                 /* SMBASE is usually relocated above 1M on modern chipsets,
2694                  * and SMM handlers might indeed rely on 4G segment limits,
2695                  * so do not report SMM to be available if real mode is
2696                  * emulated via vm86 mode.  Still, do not go to great lengths
2697                  * to avoid userspace's usage of the feature, because it is a
2698                  * fringe case that is not enabled except via specific settings
2699                  * of the module parameters.
2700                  */
2701                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2702                 break;
2703         case KVM_CAP_VAPIC:
2704                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2705                 break;
2706         case KVM_CAP_NR_VCPUS:
2707                 r = KVM_SOFT_MAX_VCPUS;
2708                 break;
2709         case KVM_CAP_MAX_VCPUS:
2710                 r = KVM_MAX_VCPUS;
2711                 break;
2712         case KVM_CAP_NR_MEMSLOTS:
2713                 r = KVM_USER_MEM_SLOTS;
2714                 break;
2715         case KVM_CAP_PV_MMU:    /* obsolete */
2716                 r = 0;
2717                 break;
2718         case KVM_CAP_MCE:
2719                 r = KVM_MAX_MCE_BANKS;
2720                 break;
2721         case KVM_CAP_XCRS:
2722                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2723                 break;
2724         case KVM_CAP_TSC_CONTROL:
2725                 r = kvm_has_tsc_control;
2726                 break;
2727         case KVM_CAP_X2APIC_API:
2728                 r = KVM_X2APIC_API_VALID_FLAGS;
2729                 break;
2730         default:
2731                 r = 0;
2732                 break;
2733         }
2734         return r;
2735
2736 }
2737
2738 long kvm_arch_dev_ioctl(struct file *filp,
2739                         unsigned int ioctl, unsigned long arg)
2740 {
2741         void __user *argp = (void __user *)arg;
2742         long r;
2743
2744         switch (ioctl) {
2745         case KVM_GET_MSR_INDEX_LIST: {
2746                 struct kvm_msr_list __user *user_msr_list = argp;
2747                 struct kvm_msr_list msr_list;
2748                 unsigned n;
2749
2750                 r = -EFAULT;
2751                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2752                         goto out;
2753                 n = msr_list.nmsrs;
2754                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2755                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2756                         goto out;
2757                 r = -E2BIG;
2758                 if (n < msr_list.nmsrs)
2759                         goto out;
2760                 r = -EFAULT;
2761                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2762                                  num_msrs_to_save * sizeof(u32)))
2763                         goto out;
2764                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2765                                  &emulated_msrs,
2766                                  num_emulated_msrs * sizeof(u32)))
2767                         goto out;
2768                 r = 0;
2769                 break;
2770         }
2771         case KVM_GET_SUPPORTED_CPUID:
2772         case KVM_GET_EMULATED_CPUID: {
2773                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2774                 struct kvm_cpuid2 cpuid;
2775
2776                 r = -EFAULT;
2777                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2778                         goto out;
2779
2780                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2781                                             ioctl);
2782                 if (r)
2783                         goto out;
2784
2785                 r = -EFAULT;
2786                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2787                         goto out;
2788                 r = 0;
2789                 break;
2790         }
2791         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2792                 r = -EFAULT;
2793                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2794                                  sizeof(kvm_mce_cap_supported)))
2795                         goto out;
2796                 r = 0;
2797                 break;
2798         }
2799         default:
2800                 r = -EINVAL;
2801         }
2802 out:
2803         return r;
2804 }
2805
2806 static void wbinvd_ipi(void *garbage)
2807 {
2808         wbinvd();
2809 }
2810
2811 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2812 {
2813         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2814 }
2815
2816 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2817 {
2818         /* Address WBINVD may be executed by guest */
2819         if (need_emulate_wbinvd(vcpu)) {
2820                 if (kvm_x86_ops->has_wbinvd_exit())
2821                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2822                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2823                         smp_call_function_single(vcpu->cpu,
2824                                         wbinvd_ipi, NULL, 1);
2825         }
2826
2827         kvm_x86_ops->vcpu_load(vcpu, cpu);
2828
2829         /* Apply any externally detected TSC adjustments (due to suspend) */
2830         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2831                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2832                 vcpu->arch.tsc_offset_adjustment = 0;
2833                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2834         }
2835
2836         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2837                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2838                                 rdtsc() - vcpu->arch.last_host_tsc;
2839                 if (tsc_delta < 0)
2840                         mark_tsc_unstable("KVM discovered backwards TSC");
2841
2842                 if (check_tsc_unstable()) {
2843                         u64 offset = kvm_compute_tsc_offset(vcpu,
2844                                                 vcpu->arch.last_guest_tsc);
2845                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2846                         vcpu->arch.tsc_catchup = 1;
2847                 }
2848
2849                 if (kvm_lapic_hv_timer_in_use(vcpu))
2850                         kvm_lapic_restart_hv_timer(vcpu);
2851
2852                 /*
2853                  * On a host with synchronized TSC, there is no need to update
2854                  * kvmclock on vcpu->cpu migration
2855                  */
2856                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2857                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2858                 if (vcpu->cpu != cpu)
2859                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2860                 vcpu->cpu = cpu;
2861         }
2862
2863         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2864 }
2865
2866 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2867 {
2868         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2869                 return;
2870
2871         vcpu->arch.st.steal.preempted = 1;
2872
2873         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2874                         &vcpu->arch.st.steal.preempted,
2875                         offsetof(struct kvm_steal_time, preempted),
2876                         sizeof(vcpu->arch.st.steal.preempted));
2877 }
2878
2879 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2880 {
2881         int idx;
2882         /*
2883          * Disable page faults because we're in atomic context here.
2884          * kvm_write_guest_offset_cached() would call might_fault()
2885          * that relies on pagefault_disable() to tell if there's a
2886          * bug. NOTE: the write to guest memory may not go through if
2887          * during postcopy live migration or if there's heavy guest
2888          * paging.
2889          */
2890         pagefault_disable();
2891         /*
2892          * kvm_memslots() will be called by
2893          * kvm_write_guest_offset_cached() so take the srcu lock.
2894          */
2895         idx = srcu_read_lock(&vcpu->kvm->srcu);
2896         kvm_steal_time_set_preempted(vcpu);
2897         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2898         pagefault_enable();
2899         kvm_x86_ops->vcpu_put(vcpu);
2900         kvm_put_guest_fpu(vcpu);
2901         vcpu->arch.last_host_tsc = rdtsc();
2902 }
2903
2904 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2905                                     struct kvm_lapic_state *s)
2906 {
2907         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2908                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2909
2910         return kvm_apic_get_state(vcpu, s);
2911 }
2912
2913 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2914                                     struct kvm_lapic_state *s)
2915 {
2916         int r;
2917
2918         r = kvm_apic_set_state(vcpu, s);
2919         if (r)
2920                 return r;
2921         update_cr8_intercept(vcpu);
2922
2923         return 0;
2924 }
2925
2926 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2927 {
2928         return (!lapic_in_kernel(vcpu) ||
2929                 kvm_apic_accept_pic_intr(vcpu));
2930 }
2931
2932 /*
2933  * if userspace requested an interrupt window, check that the
2934  * interrupt window is open.
2935  *
2936  * No need to exit to userspace if we already have an interrupt queued.
2937  */
2938 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2939 {
2940         return kvm_arch_interrupt_allowed(vcpu) &&
2941                 !kvm_cpu_has_interrupt(vcpu) &&
2942                 !kvm_event_needs_reinjection(vcpu) &&
2943                 kvm_cpu_accept_dm_intr(vcpu);
2944 }
2945
2946 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2947                                     struct kvm_interrupt *irq)
2948 {
2949         if (irq->irq >= KVM_NR_INTERRUPTS)
2950                 return -EINVAL;
2951
2952         if (!irqchip_in_kernel(vcpu->kvm)) {
2953                 kvm_queue_interrupt(vcpu, irq->irq, false);
2954                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2955                 return 0;
2956         }
2957
2958         /*
2959          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2960          * fail for in-kernel 8259.
2961          */
2962         if (pic_in_kernel(vcpu->kvm))
2963                 return -ENXIO;
2964
2965         if (vcpu->arch.pending_external_vector != -1)
2966                 return -EEXIST;
2967
2968         vcpu->arch.pending_external_vector = irq->irq;
2969         kvm_make_request(KVM_REQ_EVENT, vcpu);
2970         return 0;
2971 }
2972
2973 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2974 {
2975         kvm_inject_nmi(vcpu);
2976
2977         return 0;
2978 }
2979
2980 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2981 {
2982         kvm_make_request(KVM_REQ_SMI, vcpu);
2983
2984         return 0;
2985 }
2986
2987 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2988                                            struct kvm_tpr_access_ctl *tac)
2989 {
2990         if (tac->flags)
2991                 return -EINVAL;
2992         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2993         return 0;
2994 }
2995
2996 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2997                                         u64 mcg_cap)
2998 {
2999         int r;
3000         unsigned bank_num = mcg_cap & 0xff, bank;
3001
3002         r = -EINVAL;
3003         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3004                 goto out;
3005         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3006                 goto out;
3007         r = 0;
3008         vcpu->arch.mcg_cap = mcg_cap;
3009         /* Init IA32_MCG_CTL to all 1s */
3010         if (mcg_cap & MCG_CTL_P)
3011                 vcpu->arch.mcg_ctl = ~(u64)0;
3012         /* Init IA32_MCi_CTL to all 1s */
3013         for (bank = 0; bank < bank_num; bank++)
3014                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3015
3016         if (kvm_x86_ops->setup_mce)
3017                 kvm_x86_ops->setup_mce(vcpu);
3018 out:
3019         return r;
3020 }
3021
3022 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3023                                       struct kvm_x86_mce *mce)
3024 {
3025         u64 mcg_cap = vcpu->arch.mcg_cap;
3026         unsigned bank_num = mcg_cap & 0xff;
3027         u64 *banks = vcpu->arch.mce_banks;
3028
3029         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3030                 return -EINVAL;
3031         /*
3032          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3033          * reporting is disabled
3034          */
3035         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3036             vcpu->arch.mcg_ctl != ~(u64)0)
3037                 return 0;
3038         banks += 4 * mce->bank;
3039         /*
3040          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3041          * reporting is disabled for the bank
3042          */
3043         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3044                 return 0;
3045         if (mce->status & MCI_STATUS_UC) {
3046                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3047                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3048                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3049                         return 0;
3050                 }
3051                 if (banks[1] & MCI_STATUS_VAL)
3052                         mce->status |= MCI_STATUS_OVER;
3053                 banks[2] = mce->addr;
3054                 banks[3] = mce->misc;
3055                 vcpu->arch.mcg_status = mce->mcg_status;
3056                 banks[1] = mce->status;
3057                 kvm_queue_exception(vcpu, MC_VECTOR);
3058         } else if (!(banks[1] & MCI_STATUS_VAL)
3059                    || !(banks[1] & MCI_STATUS_UC)) {
3060                 if (banks[1] & MCI_STATUS_VAL)
3061                         mce->status |= MCI_STATUS_OVER;
3062                 banks[2] = mce->addr;
3063                 banks[3] = mce->misc;
3064                 banks[1] = mce->status;
3065         } else
3066                 banks[1] |= MCI_STATUS_OVER;
3067         return 0;
3068 }
3069
3070 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3071                                                struct kvm_vcpu_events *events)
3072 {
3073         process_nmi(vcpu);
3074         events->exception.injected =
3075                 vcpu->arch.exception.pending &&
3076                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3077         events->exception.nr = vcpu->arch.exception.nr;
3078         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3079         events->exception.pad = 0;
3080         events->exception.error_code = vcpu->arch.exception.error_code;
3081
3082         events->interrupt.injected =
3083                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3084         events->interrupt.nr = vcpu->arch.interrupt.nr;
3085         events->interrupt.soft = 0;
3086         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3087
3088         events->nmi.injected = vcpu->arch.nmi_injected;
3089         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3090         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3091         events->nmi.pad = 0;
3092
3093         events->sipi_vector = 0; /* never valid when reporting to user space */
3094
3095         events->smi.smm = is_smm(vcpu);
3096         events->smi.pending = vcpu->arch.smi_pending;
3097         events->smi.smm_inside_nmi =
3098                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3099         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3100
3101         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3102                          | KVM_VCPUEVENT_VALID_SHADOW
3103                          | KVM_VCPUEVENT_VALID_SMM);
3104         memset(&events->reserved, 0, sizeof(events->reserved));
3105 }
3106
3107 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3108
3109 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3110                                               struct kvm_vcpu_events *events)
3111 {
3112         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3113                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3114                               | KVM_VCPUEVENT_VALID_SHADOW
3115                               | KVM_VCPUEVENT_VALID_SMM))
3116                 return -EINVAL;
3117
3118         if (events->exception.injected &&
3119             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3120              is_guest_mode(vcpu)))
3121                 return -EINVAL;
3122
3123         /* INITs are latched while in SMM */
3124         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3125             (events->smi.smm || events->smi.pending) &&
3126             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3127                 return -EINVAL;
3128
3129         process_nmi(vcpu);
3130         vcpu->arch.exception.pending = events->exception.injected;
3131         vcpu->arch.exception.nr = events->exception.nr;
3132         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3133         vcpu->arch.exception.error_code = events->exception.error_code;
3134
3135         vcpu->arch.interrupt.pending = events->interrupt.injected;
3136         vcpu->arch.interrupt.nr = events->interrupt.nr;
3137         vcpu->arch.interrupt.soft = events->interrupt.soft;
3138         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3139                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3140                                                   events->interrupt.shadow);
3141
3142         vcpu->arch.nmi_injected = events->nmi.injected;
3143         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3144                 vcpu->arch.nmi_pending = events->nmi.pending;
3145         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3146
3147         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3148             lapic_in_kernel(vcpu))
3149                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3150
3151         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3152                 u32 hflags = vcpu->arch.hflags;
3153                 if (events->smi.smm)
3154                         hflags |= HF_SMM_MASK;
3155                 else
3156                         hflags &= ~HF_SMM_MASK;
3157                 kvm_set_hflags(vcpu, hflags);
3158
3159                 vcpu->arch.smi_pending = events->smi.pending;
3160                 if (events->smi.smm_inside_nmi)
3161                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3162                 else
3163                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3164                 if (lapic_in_kernel(vcpu)) {
3165                         if (events->smi.latched_init)
3166                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3167                         else
3168                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3169                 }
3170         }
3171
3172         kvm_make_request(KVM_REQ_EVENT, vcpu);
3173
3174         return 0;
3175 }
3176
3177 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3178                                              struct kvm_debugregs *dbgregs)
3179 {
3180         unsigned long val;
3181
3182         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3183         kvm_get_dr(vcpu, 6, &val);
3184         dbgregs->dr6 = val;
3185         dbgregs->dr7 = vcpu->arch.dr7;
3186         dbgregs->flags = 0;
3187         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3188 }
3189
3190 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3191                                             struct kvm_debugregs *dbgregs)
3192 {
3193         if (dbgregs->flags)
3194                 return -EINVAL;
3195
3196         if (dbgregs->dr6 & ~0xffffffffull)
3197                 return -EINVAL;
3198         if (dbgregs->dr7 & ~0xffffffffull)
3199                 return -EINVAL;
3200
3201         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3202         kvm_update_dr0123(vcpu);
3203         vcpu->arch.dr6 = dbgregs->dr6;
3204         kvm_update_dr6(vcpu);
3205         vcpu->arch.dr7 = dbgregs->dr7;
3206         kvm_update_dr7(vcpu);
3207
3208         return 0;
3209 }
3210
3211 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3212
3213 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3214 {
3215         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3216         u64 xstate_bv = xsave->header.xfeatures;
3217         u64 valid;
3218
3219         /*
3220          * Copy legacy XSAVE area, to avoid complications with CPUID
3221          * leaves 0 and 1 in the loop below.
3222          */
3223         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3224
3225         /* Set XSTATE_BV */
3226         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3227         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3228
3229         /*
3230          * Copy each region from the possibly compacted offset to the
3231          * non-compacted offset.
3232          */
3233         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3234         while (valid) {
3235                 u64 feature = valid & -valid;
3236                 int index = fls64(feature) - 1;
3237                 void *src = get_xsave_addr(xsave, feature);
3238
3239                 if (src) {
3240                         u32 size, offset, ecx, edx;
3241                         cpuid_count(XSTATE_CPUID, index,
3242                                     &size, &offset, &ecx, &edx);
3243                         memcpy(dest + offset, src, size);
3244                 }
3245
3246                 valid -= feature;
3247         }
3248 }
3249
3250 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3251 {
3252         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3253         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3254         u64 valid;
3255
3256         /*
3257          * Copy legacy XSAVE area, to avoid complications with CPUID
3258          * leaves 0 and 1 in the loop below.
3259          */
3260         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3261
3262         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3263         xsave->header.xfeatures = xstate_bv;
3264         if (boot_cpu_has(X86_FEATURE_XSAVES))
3265                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3266
3267         /*
3268          * Copy each region from the non-compacted offset to the
3269          * possibly compacted offset.
3270          */
3271         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3272         while (valid) {
3273                 u64 feature = valid & -valid;
3274                 int index = fls64(feature) - 1;
3275                 void *dest = get_xsave_addr(xsave, feature);
3276
3277                 if (dest) {
3278                         u32 size, offset, ecx, edx;
3279                         cpuid_count(XSTATE_CPUID, index,
3280                                     &size, &offset, &ecx, &edx);
3281                         memcpy(dest, src + offset, size);
3282                 }
3283
3284                 valid -= feature;
3285         }
3286 }
3287
3288 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3289                                          struct kvm_xsave *guest_xsave)
3290 {
3291         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3292                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3293                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3294         } else {
3295                 memcpy(guest_xsave->region,
3296                         &vcpu->arch.guest_fpu.state.fxsave,
3297                         sizeof(struct fxregs_state));
3298                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3299                         XFEATURE_MASK_FPSSE;
3300         }
3301 }
3302
3303 #define XSAVE_MXCSR_OFFSET 24
3304
3305 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3306                                         struct kvm_xsave *guest_xsave)
3307 {
3308         u64 xstate_bv =
3309                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3310         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3311
3312         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3313                 /*
3314                  * Here we allow setting states that are not present in
3315                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3316                  * with old userspace.
3317                  */
3318                 if (xstate_bv & ~kvm_supported_xcr0() ||
3319                         mxcsr & ~mxcsr_feature_mask)
3320                         return -EINVAL;
3321                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3322         } else {
3323                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3324                         mxcsr & ~mxcsr_feature_mask)
3325                         return -EINVAL;
3326                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3327                         guest_xsave->region, sizeof(struct fxregs_state));
3328         }
3329         return 0;
3330 }
3331
3332 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3333                                         struct kvm_xcrs *guest_xcrs)
3334 {
3335         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3336                 guest_xcrs->nr_xcrs = 0;
3337                 return;
3338         }
3339
3340         guest_xcrs->nr_xcrs = 1;
3341         guest_xcrs->flags = 0;
3342         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3343         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3344 }
3345
3346 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3347                                        struct kvm_xcrs *guest_xcrs)
3348 {
3349         int i, r = 0;
3350
3351         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3352                 return -EINVAL;
3353
3354         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3355                 return -EINVAL;
3356
3357         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3358                 /* Only support XCR0 currently */
3359                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3360                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3361                                 guest_xcrs->xcrs[i].value);
3362                         break;
3363                 }
3364         if (r)
3365                 r = -EINVAL;
3366         return r;
3367 }
3368
3369 /*
3370  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3371  * stopped by the hypervisor.  This function will be called from the host only.
3372  * EINVAL is returned when the host attempts to set the flag for a guest that
3373  * does not support pv clocks.
3374  */
3375 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3376 {
3377         if (!vcpu->arch.pv_time_enabled)
3378                 return -EINVAL;
3379         vcpu->arch.pvclock_set_guest_stopped_request = true;
3380         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3381         return 0;
3382 }
3383
3384 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3385                                      struct kvm_enable_cap *cap)
3386 {
3387         if (cap->flags)
3388                 return -EINVAL;
3389
3390         switch (cap->cap) {
3391         case KVM_CAP_HYPERV_SYNIC2:
3392                 if (cap->args[0])
3393                         return -EINVAL;
3394         case KVM_CAP_HYPERV_SYNIC:
3395                 if (!irqchip_in_kernel(vcpu->kvm))
3396                         return -EINVAL;
3397                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3398                                              KVM_CAP_HYPERV_SYNIC2);
3399         default:
3400                 return -EINVAL;
3401         }
3402 }
3403
3404 long kvm_arch_vcpu_ioctl(struct file *filp,
3405                          unsigned int ioctl, unsigned long arg)
3406 {
3407         struct kvm_vcpu *vcpu = filp->private_data;
3408         void __user *argp = (void __user *)arg;
3409         int r;
3410         union {
3411                 struct kvm_lapic_state *lapic;
3412                 struct kvm_xsave *xsave;
3413                 struct kvm_xcrs *xcrs;
3414                 void *buffer;
3415         } u;
3416
3417         u.buffer = NULL;
3418         switch (ioctl) {
3419         case KVM_GET_LAPIC: {
3420                 r = -EINVAL;
3421                 if (!lapic_in_kernel(vcpu))
3422                         goto out;
3423                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3424
3425                 r = -ENOMEM;
3426                 if (!u.lapic)
3427                         goto out;
3428                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3429                 if (r)
3430                         goto out;
3431                 r = -EFAULT;
3432                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3433                         goto out;
3434                 r = 0;
3435                 break;
3436         }
3437         case KVM_SET_LAPIC: {
3438                 r = -EINVAL;
3439                 if (!lapic_in_kernel(vcpu))
3440                         goto out;
3441                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3442                 if (IS_ERR(u.lapic))
3443                         return PTR_ERR(u.lapic);
3444
3445                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3446                 break;
3447         }
3448         case KVM_INTERRUPT: {
3449                 struct kvm_interrupt irq;
3450
3451                 r = -EFAULT;
3452                 if (copy_from_user(&irq, argp, sizeof irq))
3453                         goto out;
3454                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3455                 break;
3456         }
3457         case KVM_NMI: {
3458                 r = kvm_vcpu_ioctl_nmi(vcpu);
3459                 break;
3460         }
3461         case KVM_SMI: {
3462                 r = kvm_vcpu_ioctl_smi(vcpu);
3463                 break;
3464         }
3465         case KVM_SET_CPUID: {
3466                 struct kvm_cpuid __user *cpuid_arg = argp;
3467                 struct kvm_cpuid cpuid;
3468
3469                 r = -EFAULT;
3470                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3471                         goto out;
3472                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3473                 break;
3474         }
3475         case KVM_SET_CPUID2: {
3476                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3477                 struct kvm_cpuid2 cpuid;
3478
3479                 r = -EFAULT;
3480                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3481                         goto out;
3482                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3483                                               cpuid_arg->entries);
3484                 break;
3485         }
3486         case KVM_GET_CPUID2: {
3487                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3488                 struct kvm_cpuid2 cpuid;
3489
3490                 r = -EFAULT;
3491                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3492                         goto out;
3493                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3494                                               cpuid_arg->entries);
3495                 if (r)
3496                         goto out;
3497                 r = -EFAULT;
3498                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3499                         goto out;
3500                 r = 0;
3501                 break;
3502         }
3503         case KVM_GET_MSRS:
3504                 r = msr_io(vcpu, argp, do_get_msr, 1);
3505                 break;
3506         case KVM_SET_MSRS:
3507                 r = msr_io(vcpu, argp, do_set_msr, 0);
3508                 break;
3509         case KVM_TPR_ACCESS_REPORTING: {
3510                 struct kvm_tpr_access_ctl tac;
3511
3512                 r = -EFAULT;
3513                 if (copy_from_user(&tac, argp, sizeof tac))
3514                         goto out;
3515                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3516                 if (r)
3517                         goto out;
3518                 r = -EFAULT;
3519                 if (copy_to_user(argp, &tac, sizeof tac))
3520                         goto out;
3521                 r = 0;
3522                 break;
3523         };
3524         case KVM_SET_VAPIC_ADDR: {
3525                 struct kvm_vapic_addr va;
3526                 int idx;
3527
3528                 r = -EINVAL;
3529                 if (!lapic_in_kernel(vcpu))
3530                         goto out;
3531                 r = -EFAULT;
3532                 if (copy_from_user(&va, argp, sizeof va))
3533                         goto out;
3534                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3535                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3536                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3537                 break;
3538         }
3539         case KVM_X86_SETUP_MCE: {
3540                 u64 mcg_cap;
3541
3542                 r = -EFAULT;
3543                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3544                         goto out;
3545                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3546                 break;
3547         }
3548         case KVM_X86_SET_MCE: {
3549                 struct kvm_x86_mce mce;
3550
3551                 r = -EFAULT;
3552                 if (copy_from_user(&mce, argp, sizeof mce))
3553                         goto out;
3554                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3555                 break;
3556         }
3557         case KVM_GET_VCPU_EVENTS: {
3558                 struct kvm_vcpu_events events;
3559
3560                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3561
3562                 r = -EFAULT;
3563                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3564                         break;
3565                 r = 0;
3566                 break;
3567         }
3568         case KVM_SET_VCPU_EVENTS: {
3569                 struct kvm_vcpu_events events;
3570
3571                 r = -EFAULT;
3572                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3573                         break;
3574
3575                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3576                 break;
3577         }
3578         case KVM_GET_DEBUGREGS: {
3579                 struct kvm_debugregs dbgregs;
3580
3581                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3582
3583                 r = -EFAULT;
3584                 if (copy_to_user(argp, &dbgregs,
3585                                  sizeof(struct kvm_debugregs)))
3586                         break;
3587                 r = 0;
3588                 break;
3589         }
3590         case KVM_SET_DEBUGREGS: {
3591                 struct kvm_debugregs dbgregs;
3592
3593                 r = -EFAULT;
3594                 if (copy_from_user(&dbgregs, argp,
3595                                    sizeof(struct kvm_debugregs)))
3596                         break;
3597
3598                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3599                 break;
3600         }
3601         case KVM_GET_XSAVE: {
3602                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3603                 r = -ENOMEM;
3604                 if (!u.xsave)
3605                         break;
3606
3607                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3608
3609                 r = -EFAULT;
3610                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3611                         break;
3612                 r = 0;
3613                 break;
3614         }
3615         case KVM_SET_XSAVE: {
3616                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3617                 if (IS_ERR(u.xsave))
3618                         return PTR_ERR(u.xsave);
3619
3620                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3621                 break;
3622         }
3623         case KVM_GET_XCRS: {
3624                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3625                 r = -ENOMEM;
3626                 if (!u.xcrs)
3627                         break;
3628
3629                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3630
3631                 r = -EFAULT;
3632                 if (copy_to_user(argp, u.xcrs,
3633                                  sizeof(struct kvm_xcrs)))
3634                         break;
3635                 r = 0;
3636                 break;
3637         }
3638         case KVM_SET_XCRS: {
3639                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3640                 if (IS_ERR(u.xcrs))
3641                         return PTR_ERR(u.xcrs);
3642
3643                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3644                 break;
3645         }
3646         case KVM_SET_TSC_KHZ: {
3647                 u32 user_tsc_khz;
3648
3649                 r = -EINVAL;
3650                 user_tsc_khz = (u32)arg;
3651
3652                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3653                         goto out;
3654
3655                 if (user_tsc_khz == 0)
3656                         user_tsc_khz = tsc_khz;
3657
3658                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3659                         r = 0;
3660
3661                 goto out;
3662         }
3663         case KVM_GET_TSC_KHZ: {
3664                 r = vcpu->arch.virtual_tsc_khz;
3665                 goto out;
3666         }
3667         case KVM_KVMCLOCK_CTRL: {
3668                 r = kvm_set_guest_paused(vcpu);
3669                 goto out;
3670         }
3671         case KVM_ENABLE_CAP: {
3672                 struct kvm_enable_cap cap;
3673
3674                 r = -EFAULT;
3675                 if (copy_from_user(&cap, argp, sizeof(cap)))
3676                         goto out;
3677                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3678                 break;
3679         }
3680         default:
3681                 r = -EINVAL;
3682         }
3683 out:
3684         kfree(u.buffer);
3685         return r;
3686 }
3687
3688 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3689 {
3690         return VM_FAULT_SIGBUS;
3691 }
3692
3693 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3694 {
3695         int ret;
3696
3697         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3698                 return -EINVAL;
3699         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3700         return ret;
3701 }
3702
3703 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3704                                               u64 ident_addr)
3705 {
3706         kvm->arch.ept_identity_map_addr = ident_addr;
3707         return 0;
3708 }
3709
3710 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3711                                           u32 kvm_nr_mmu_pages)
3712 {
3713         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3714                 return -EINVAL;
3715
3716         mutex_lock(&kvm->slots_lock);
3717
3718         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3719         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3720
3721         mutex_unlock(&kvm->slots_lock);
3722         return 0;
3723 }
3724
3725 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3726 {
3727         return kvm->arch.n_max_mmu_pages;
3728 }
3729
3730 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3731 {
3732         struct kvm_pic *pic = kvm->arch.vpic;
3733         int r;
3734
3735         r = 0;
3736         switch (chip->chip_id) {
3737         case KVM_IRQCHIP_PIC_MASTER:
3738                 memcpy(&chip->chip.pic, &pic->pics[0],
3739                         sizeof(struct kvm_pic_state));
3740                 break;
3741         case KVM_IRQCHIP_PIC_SLAVE:
3742                 memcpy(&chip->chip.pic, &pic->pics[1],
3743                         sizeof(struct kvm_pic_state));
3744                 break;
3745         case KVM_IRQCHIP_IOAPIC:
3746                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3747                 break;
3748         default:
3749                 r = -EINVAL;
3750                 break;
3751         }
3752         return r;
3753 }
3754
3755 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3756 {
3757         struct kvm_pic *pic = kvm->arch.vpic;
3758         int r;
3759
3760         r = 0;
3761         switch (chip->chip_id) {
3762         case KVM_IRQCHIP_PIC_MASTER:
3763                 spin_lock(&pic->lock);
3764                 memcpy(&pic->pics[0], &chip->chip.pic,
3765                         sizeof(struct kvm_pic_state));
3766                 spin_unlock(&pic->lock);
3767                 break;
3768         case KVM_IRQCHIP_PIC_SLAVE:
3769                 spin_lock(&pic->lock);
3770                 memcpy(&pic->pics[1], &chip->chip.pic,
3771                         sizeof(struct kvm_pic_state));
3772                 spin_unlock(&pic->lock);
3773                 break;
3774         case KVM_IRQCHIP_IOAPIC:
3775                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3776                 break;
3777         default:
3778                 r = -EINVAL;
3779                 break;
3780         }
3781         kvm_pic_update_irq(pic);
3782         return r;
3783 }
3784
3785 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3786 {
3787         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3788
3789         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3790
3791         mutex_lock(&kps->lock);
3792         memcpy(ps, &kps->channels, sizeof(*ps));
3793         mutex_unlock(&kps->lock);
3794         return 0;
3795 }
3796
3797 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3798 {
3799         int i;
3800         struct kvm_pit *pit = kvm->arch.vpit;
3801
3802         mutex_lock(&pit->pit_state.lock);
3803         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3804         for (i = 0; i < 3; i++)
3805                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3806         mutex_unlock(&pit->pit_state.lock);
3807         return 0;
3808 }
3809
3810 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3811 {
3812         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3813         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3814                 sizeof(ps->channels));
3815         ps->flags = kvm->arch.vpit->pit_state.flags;
3816         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3817         memset(&ps->reserved, 0, sizeof(ps->reserved));
3818         return 0;
3819 }
3820
3821 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3822 {
3823         int start = 0;
3824         int i;
3825         u32 prev_legacy, cur_legacy;
3826         struct kvm_pit *pit = kvm->arch.vpit;
3827
3828         mutex_lock(&pit->pit_state.lock);
3829         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3830         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3831         if (!prev_legacy && cur_legacy)
3832                 start = 1;
3833         memcpy(&pit->pit_state.channels, &ps->channels,
3834                sizeof(pit->pit_state.channels));
3835         pit->pit_state.flags = ps->flags;
3836         for (i = 0; i < 3; i++)
3837                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3838                                    start && i == 0);
3839         mutex_unlock(&pit->pit_state.lock);
3840         return 0;
3841 }
3842
3843 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3844                                  struct kvm_reinject_control *control)
3845 {
3846         struct kvm_pit *pit = kvm->arch.vpit;
3847
3848         if (!pit)
3849                 return -ENXIO;
3850
3851         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3852          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3853          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3854          */
3855         mutex_lock(&pit->pit_state.lock);
3856         kvm_pit_set_reinject(pit, control->pit_reinject);
3857         mutex_unlock(&pit->pit_state.lock);
3858
3859         return 0;
3860 }
3861
3862 /**
3863  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3864  * @kvm: kvm instance
3865  * @log: slot id and address to which we copy the log
3866  *
3867  * Steps 1-4 below provide general overview of dirty page logging. See
3868  * kvm_get_dirty_log_protect() function description for additional details.
3869  *
3870  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3871  * always flush the TLB (step 4) even if previous step failed  and the dirty
3872  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3873  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3874  * writes will be marked dirty for next log read.
3875  *
3876  *   1. Take a snapshot of the bit and clear it if needed.
3877  *   2. Write protect the corresponding page.
3878  *   3. Copy the snapshot to the userspace.
3879  *   4. Flush TLB's if needed.
3880  */
3881 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3882 {
3883         bool is_dirty = false;
3884         int r;
3885
3886         mutex_lock(&kvm->slots_lock);
3887
3888         /*
3889          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3890          */
3891         if (kvm_x86_ops->flush_log_dirty)
3892                 kvm_x86_ops->flush_log_dirty(kvm);
3893
3894         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3895
3896         /*
3897          * All the TLBs can be flushed out of mmu lock, see the comments in
3898          * kvm_mmu_slot_remove_write_access().
3899          */
3900         lockdep_assert_held(&kvm->slots_lock);
3901         if (is_dirty)
3902                 kvm_flush_remote_tlbs(kvm);
3903
3904         mutex_unlock(&kvm->slots_lock);
3905         return r;
3906 }
3907
3908 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3909                         bool line_status)
3910 {
3911         if (!irqchip_in_kernel(kvm))
3912                 return -ENXIO;
3913
3914         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3915                                         irq_event->irq, irq_event->level,
3916                                         line_status);
3917         return 0;
3918 }
3919
3920 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3921                                    struct kvm_enable_cap *cap)
3922 {
3923         int r;
3924
3925         if (cap->flags)
3926                 return -EINVAL;
3927
3928         switch (cap->cap) {
3929         case KVM_CAP_DISABLE_QUIRKS:
3930                 kvm->arch.disabled_quirks = cap->args[0];
3931                 r = 0;
3932                 break;
3933         case KVM_CAP_SPLIT_IRQCHIP: {
3934                 mutex_lock(&kvm->lock);
3935                 r = -EINVAL;
3936                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3937                         goto split_irqchip_unlock;
3938                 r = -EEXIST;
3939                 if (irqchip_in_kernel(kvm))
3940                         goto split_irqchip_unlock;
3941                 if (kvm->created_vcpus)
3942                         goto split_irqchip_unlock;
3943                 r = kvm_setup_empty_irq_routing(kvm);
3944                 if (r)
3945                         goto split_irqchip_unlock;
3946                 /* Pairs with irqchip_in_kernel. */
3947                 smp_wmb();
3948                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
3949                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3950                 r = 0;
3951 split_irqchip_unlock:
3952                 mutex_unlock(&kvm->lock);
3953                 break;
3954         }
3955         case KVM_CAP_X2APIC_API:
3956                 r = -EINVAL;
3957                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3958                         break;
3959
3960                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3961                         kvm->arch.x2apic_format = true;
3962                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3963                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
3964
3965                 r = 0;
3966                 break;
3967         default:
3968                 r = -EINVAL;
3969                 break;
3970         }
3971         return r;
3972 }
3973
3974 long kvm_arch_vm_ioctl(struct file *filp,
3975                        unsigned int ioctl, unsigned long arg)
3976 {
3977         struct kvm *kvm = filp->private_data;
3978         void __user *argp = (void __user *)arg;
3979         int r = -ENOTTY;
3980         /*
3981          * This union makes it completely explicit to gcc-3.x
3982          * that these two variables' stack usage should be
3983          * combined, not added together.
3984          */
3985         union {
3986                 struct kvm_pit_state ps;
3987                 struct kvm_pit_state2 ps2;
3988                 struct kvm_pit_config pit_config;
3989         } u;
3990
3991         switch (ioctl) {
3992         case KVM_SET_TSS_ADDR:
3993                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3994                 break;
3995         case KVM_SET_IDENTITY_MAP_ADDR: {
3996                 u64 ident_addr;
3997
3998                 r = -EFAULT;
3999                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4000                         goto out;
4001                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4002                 break;
4003         }
4004         case KVM_SET_NR_MMU_PAGES:
4005                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4006                 break;
4007         case KVM_GET_NR_MMU_PAGES:
4008                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4009                 break;
4010         case KVM_CREATE_IRQCHIP: {
4011                 mutex_lock(&kvm->lock);
4012
4013                 r = -EEXIST;
4014                 if (irqchip_in_kernel(kvm))
4015                         goto create_irqchip_unlock;
4016
4017                 r = -EINVAL;
4018                 if (kvm->created_vcpus)
4019                         goto create_irqchip_unlock;
4020
4021                 r = kvm_pic_init(kvm);
4022                 if (r)
4023                         goto create_irqchip_unlock;
4024
4025                 r = kvm_ioapic_init(kvm);
4026                 if (r) {
4027                         kvm_pic_destroy(kvm);
4028                         goto create_irqchip_unlock;
4029                 }
4030
4031                 r = kvm_setup_default_irq_routing(kvm);
4032                 if (r) {
4033                         kvm_ioapic_destroy(kvm);
4034                         kvm_pic_destroy(kvm);
4035                         goto create_irqchip_unlock;
4036                 }
4037                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4038                 smp_wmb();
4039                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4040         create_irqchip_unlock:
4041                 mutex_unlock(&kvm->lock);
4042                 break;
4043         }
4044         case KVM_CREATE_PIT:
4045                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4046                 goto create_pit;
4047         case KVM_CREATE_PIT2:
4048                 r = -EFAULT;
4049                 if (copy_from_user(&u.pit_config, argp,
4050                                    sizeof(struct kvm_pit_config)))
4051                         goto out;
4052         create_pit:
4053                 mutex_lock(&kvm->lock);
4054                 r = -EEXIST;
4055                 if (kvm->arch.vpit)
4056                         goto create_pit_unlock;
4057                 r = -ENOMEM;
4058                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4059                 if (kvm->arch.vpit)
4060                         r = 0;
4061         create_pit_unlock:
4062                 mutex_unlock(&kvm->lock);
4063                 break;
4064         case KVM_GET_IRQCHIP: {
4065                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4066                 struct kvm_irqchip *chip;
4067
4068                 chip = memdup_user(argp, sizeof(*chip));
4069                 if (IS_ERR(chip)) {
4070                         r = PTR_ERR(chip);
4071                         goto out;
4072                 }
4073
4074                 r = -ENXIO;
4075                 if (!irqchip_kernel(kvm))
4076                         goto get_irqchip_out;
4077                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4078                 if (r)
4079                         goto get_irqchip_out;
4080                 r = -EFAULT;
4081                 if (copy_to_user(argp, chip, sizeof *chip))
4082                         goto get_irqchip_out;
4083                 r = 0;
4084         get_irqchip_out:
4085                 kfree(chip);
4086                 break;
4087         }
4088         case KVM_SET_IRQCHIP: {
4089                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4090                 struct kvm_irqchip *chip;
4091
4092                 chip = memdup_user(argp, sizeof(*chip));
4093                 if (IS_ERR(chip)) {
4094                         r = PTR_ERR(chip);
4095                         goto out;
4096                 }
4097
4098                 r = -ENXIO;
4099                 if (!irqchip_kernel(kvm))
4100                         goto set_irqchip_out;
4101                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4102                 if (r)
4103                         goto set_irqchip_out;
4104                 r = 0;
4105         set_irqchip_out:
4106                 kfree(chip);
4107                 break;
4108         }
4109         case KVM_GET_PIT: {
4110                 r = -EFAULT;
4111                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4112                         goto out;
4113                 r = -ENXIO;
4114                 if (!kvm->arch.vpit)
4115                         goto out;
4116                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4117                 if (r)
4118                         goto out;
4119                 r = -EFAULT;
4120                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4121                         goto out;
4122                 r = 0;
4123                 break;
4124         }
4125         case KVM_SET_PIT: {
4126                 r = -EFAULT;
4127                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4128                         goto out;
4129                 r = -ENXIO;
4130                 if (!kvm->arch.vpit)
4131                         goto out;
4132                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4133                 break;
4134         }
4135         case KVM_GET_PIT2: {
4136                 r = -ENXIO;
4137                 if (!kvm->arch.vpit)
4138                         goto out;
4139                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4140                 if (r)
4141                         goto out;
4142                 r = -EFAULT;
4143                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4144                         goto out;
4145                 r = 0;
4146                 break;
4147         }
4148         case KVM_SET_PIT2: {
4149                 r = -EFAULT;
4150                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4151                         goto out;
4152                 r = -ENXIO;
4153                 if (!kvm->arch.vpit)
4154                         goto out;
4155                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4156                 break;
4157         }
4158         case KVM_REINJECT_CONTROL: {
4159                 struct kvm_reinject_control control;
4160                 r =  -EFAULT;
4161                 if (copy_from_user(&control, argp, sizeof(control)))
4162                         goto out;
4163                 r = kvm_vm_ioctl_reinject(kvm, &control);
4164                 break;
4165         }
4166         case KVM_SET_BOOT_CPU_ID:
4167                 r = 0;
4168                 mutex_lock(&kvm->lock);
4169                 if (kvm->created_vcpus)
4170                         r = -EBUSY;
4171                 else
4172                         kvm->arch.bsp_vcpu_id = arg;
4173                 mutex_unlock(&kvm->lock);
4174                 break;
4175         case KVM_XEN_HVM_CONFIG: {
4176                 r = -EFAULT;
4177                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4178                                    sizeof(struct kvm_xen_hvm_config)))
4179                         goto out;
4180                 r = -EINVAL;
4181                 if (kvm->arch.xen_hvm_config.flags)
4182                         goto out;
4183                 r = 0;
4184                 break;
4185         }
4186         case KVM_SET_CLOCK: {
4187                 struct kvm_clock_data user_ns;
4188                 u64 now_ns;
4189
4190                 r = -EFAULT;
4191                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4192                         goto out;
4193
4194                 r = -EINVAL;
4195                 if (user_ns.flags)
4196                         goto out;
4197
4198                 r = 0;
4199                 /*
4200                  * TODO: userspace has to take care of races with VCPU_RUN, so
4201                  * kvm_gen_update_masterclock() can be cut down to locked
4202                  * pvclock_update_vm_gtod_copy().
4203                  */
4204                 kvm_gen_update_masterclock(kvm);
4205                 now_ns = get_kvmclock_ns(kvm);
4206                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4207                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4208                 break;
4209         }
4210         case KVM_GET_CLOCK: {
4211                 struct kvm_clock_data user_ns;
4212                 u64 now_ns;
4213
4214                 now_ns = get_kvmclock_ns(kvm);
4215                 user_ns.clock = now_ns;
4216                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4217                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4218
4219                 r = -EFAULT;
4220                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4221                         goto out;
4222                 r = 0;
4223                 break;
4224         }
4225         case KVM_ENABLE_CAP: {
4226                 struct kvm_enable_cap cap;
4227
4228                 r = -EFAULT;
4229                 if (copy_from_user(&cap, argp, sizeof(cap)))
4230                         goto out;
4231                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4232                 break;
4233         }
4234         default:
4235                 r = -ENOTTY;
4236         }
4237 out:
4238         return r;
4239 }
4240
4241 static void kvm_init_msr_list(void)
4242 {
4243         u32 dummy[2];
4244         unsigned i, j;
4245
4246         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4247                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4248                         continue;
4249
4250                 /*
4251                  * Even MSRs that are valid in the host may not be exposed
4252                  * to the guests in some cases.
4253                  */
4254                 switch (msrs_to_save[i]) {
4255                 case MSR_IA32_BNDCFGS:
4256                         if (!kvm_x86_ops->mpx_supported())
4257                                 continue;
4258                         break;
4259                 case MSR_TSC_AUX:
4260                         if (!kvm_x86_ops->rdtscp_supported())
4261                                 continue;
4262                         break;
4263                 default:
4264                         break;
4265                 }
4266
4267                 if (j < i)
4268                         msrs_to_save[j] = msrs_to_save[i];
4269                 j++;
4270         }
4271         num_msrs_to_save = j;
4272
4273         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4274                 switch (emulated_msrs[i]) {
4275                 case MSR_IA32_SMBASE:
4276                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4277                                 continue;
4278                         break;
4279                 default:
4280                         break;
4281                 }
4282
4283                 if (j < i)
4284                         emulated_msrs[j] = emulated_msrs[i];
4285                 j++;
4286         }
4287         num_emulated_msrs = j;
4288 }
4289
4290 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4291                            const void *v)
4292 {
4293         int handled = 0;
4294         int n;
4295
4296         do {
4297                 n = min(len, 8);
4298                 if (!(lapic_in_kernel(vcpu) &&
4299                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4300                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4301                         break;
4302                 handled += n;
4303                 addr += n;
4304                 len -= n;
4305                 v += n;
4306         } while (len);
4307
4308         return handled;
4309 }
4310
4311 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4312 {
4313         int handled = 0;
4314         int n;
4315
4316         do {
4317                 n = min(len, 8);
4318                 if (!(lapic_in_kernel(vcpu) &&
4319                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4320                                          addr, n, v))
4321                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4322                         break;
4323                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4324                 handled += n;
4325                 addr += n;
4326                 len -= n;
4327                 v += n;
4328         } while (len);
4329
4330         return handled;
4331 }
4332
4333 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4334                         struct kvm_segment *var, int seg)
4335 {
4336         kvm_x86_ops->set_segment(vcpu, var, seg);
4337 }
4338
4339 void kvm_get_segment(struct kvm_vcpu *vcpu,
4340                      struct kvm_segment *var, int seg)
4341 {
4342         kvm_x86_ops->get_segment(vcpu, var, seg);
4343 }
4344
4345 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4346                            struct x86_exception *exception)
4347 {
4348         gpa_t t_gpa;
4349
4350         BUG_ON(!mmu_is_nested(vcpu));
4351
4352         /* NPT walks are always user-walks */
4353         access |= PFERR_USER_MASK;
4354         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4355
4356         return t_gpa;
4357 }
4358
4359 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4360                               struct x86_exception *exception)
4361 {
4362         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4363         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4364 }
4365
4366  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4367                                 struct x86_exception *exception)
4368 {
4369         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4370         access |= PFERR_FETCH_MASK;
4371         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4372 }
4373
4374 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4375                                struct x86_exception *exception)
4376 {
4377         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4378         access |= PFERR_WRITE_MASK;
4379         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4380 }
4381
4382 /* uses this to access any guest's mapped memory without checking CPL */
4383 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4384                                 struct x86_exception *exception)
4385 {
4386         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4387 }
4388
4389 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4390                                       struct kvm_vcpu *vcpu, u32 access,
4391                                       struct x86_exception *exception)
4392 {
4393         void *data = val;
4394         int r = X86EMUL_CONTINUE;
4395
4396         while (bytes) {
4397                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4398                                                             exception);
4399                 unsigned offset = addr & (PAGE_SIZE-1);
4400                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4401                 int ret;
4402
4403                 if (gpa == UNMAPPED_GVA)
4404                         return X86EMUL_PROPAGATE_FAULT;
4405                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4406                                                offset, toread);
4407                 if (ret < 0) {
4408                         r = X86EMUL_IO_NEEDED;
4409                         goto out;
4410                 }
4411
4412                 bytes -= toread;
4413                 data += toread;
4414                 addr += toread;
4415         }
4416 out:
4417         return r;
4418 }
4419
4420 /* used for instruction fetching */
4421 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4422                                 gva_t addr, void *val, unsigned int bytes,
4423                                 struct x86_exception *exception)
4424 {
4425         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4426         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4427         unsigned offset;
4428         int ret;
4429
4430         /* Inline kvm_read_guest_virt_helper for speed.  */
4431         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4432                                                     exception);
4433         if (unlikely(gpa == UNMAPPED_GVA))
4434                 return X86EMUL_PROPAGATE_FAULT;
4435
4436         offset = addr & (PAGE_SIZE-1);
4437         if (WARN_ON(offset + bytes > PAGE_SIZE))
4438                 bytes = (unsigned)PAGE_SIZE - offset;
4439         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4440                                        offset, bytes);
4441         if (unlikely(ret < 0))
4442                 return X86EMUL_IO_NEEDED;
4443
4444         return X86EMUL_CONTINUE;
4445 }
4446
4447 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4448                                gva_t addr, void *val, unsigned int bytes,
4449                                struct x86_exception *exception)
4450 {
4451         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4452         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4453
4454         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4455                                           exception);
4456 }
4457 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4458
4459 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4460                                       gva_t addr, void *val, unsigned int bytes,
4461                                       struct x86_exception *exception)
4462 {
4463         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4464         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4465 }
4466
4467 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4468                 unsigned long addr, void *val, unsigned int bytes)
4469 {
4470         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4471         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4472
4473         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4474 }
4475
4476 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4477                                        gva_t addr, void *val,
4478                                        unsigned int bytes,
4479                                        struct x86_exception *exception)
4480 {
4481         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4482         void *data = val;
4483         int r = X86EMUL_CONTINUE;
4484
4485         while (bytes) {
4486                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4487                                                              PFERR_WRITE_MASK,
4488                                                              exception);
4489                 unsigned offset = addr & (PAGE_SIZE-1);
4490                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4491                 int ret;
4492
4493                 if (gpa == UNMAPPED_GVA)
4494                         return X86EMUL_PROPAGATE_FAULT;
4495                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4496                 if (ret < 0) {
4497                         r = X86EMUL_IO_NEEDED;
4498                         goto out;
4499                 }
4500
4501                 bytes -= towrite;
4502                 data += towrite;
4503                 addr += towrite;
4504         }
4505 out:
4506         return r;
4507 }
4508 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4509
4510 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4511                             gpa_t gpa, bool write)
4512 {
4513         /* For APIC access vmexit */
4514         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4515                 return 1;
4516
4517         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4518                 trace_vcpu_match_mmio(gva, gpa, write, true);
4519                 return 1;
4520         }
4521
4522         return 0;
4523 }
4524
4525 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4526                                 gpa_t *gpa, struct x86_exception *exception,
4527                                 bool write)
4528 {
4529         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4530                 | (write ? PFERR_WRITE_MASK : 0);
4531
4532         /*
4533          * currently PKRU is only applied to ept enabled guest so
4534          * there is no pkey in EPT page table for L1 guest or EPT
4535          * shadow page table for L2 guest.
4536          */
4537         if (vcpu_match_mmio_gva(vcpu, gva)
4538             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4539                                  vcpu->arch.access, 0, access)) {
4540                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4541                                         (gva & (PAGE_SIZE - 1));
4542                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4543                 return 1;
4544         }
4545
4546         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4547
4548         if (*gpa == UNMAPPED_GVA)
4549                 return -1;
4550
4551         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4552 }
4553
4554 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4555                         const void *val, int bytes)
4556 {
4557         int ret;
4558
4559         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4560         if (ret < 0)
4561                 return 0;
4562         kvm_page_track_write(vcpu, gpa, val, bytes);
4563         return 1;
4564 }
4565
4566 struct read_write_emulator_ops {
4567         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4568                                   int bytes);
4569         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4570                                   void *val, int bytes);
4571         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4572                                int bytes, void *val);
4573         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4574                                     void *val, int bytes);
4575         bool write;
4576 };
4577
4578 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4579 {
4580         if (vcpu->mmio_read_completed) {
4581                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4582                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4583                 vcpu->mmio_read_completed = 0;
4584                 return 1;
4585         }
4586
4587         return 0;
4588 }
4589
4590 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4591                         void *val, int bytes)
4592 {
4593         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4594 }
4595
4596 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4597                          void *val, int bytes)
4598 {
4599         return emulator_write_phys(vcpu, gpa, val, bytes);
4600 }
4601
4602 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4603 {
4604         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4605         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4606 }
4607
4608 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4609                           void *val, int bytes)
4610 {
4611         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4612         return X86EMUL_IO_NEEDED;
4613 }
4614
4615 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4616                            void *val, int bytes)
4617 {
4618         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4619
4620         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4621         return X86EMUL_CONTINUE;
4622 }
4623
4624 static const struct read_write_emulator_ops read_emultor = {
4625         .read_write_prepare = read_prepare,
4626         .read_write_emulate = read_emulate,
4627         .read_write_mmio = vcpu_mmio_read,
4628         .read_write_exit_mmio = read_exit_mmio,
4629 };
4630
4631 static const struct read_write_emulator_ops write_emultor = {
4632         .read_write_emulate = write_emulate,
4633         .read_write_mmio = write_mmio,
4634         .read_write_exit_mmio = write_exit_mmio,
4635         .write = true,
4636 };
4637
4638 static int emulator_read_write_onepage(unsigned long addr, void *val,
4639                                        unsigned int bytes,
4640                                        struct x86_exception *exception,
4641                                        struct kvm_vcpu *vcpu,
4642                                        const struct read_write_emulator_ops *ops)
4643 {
4644         gpa_t gpa;
4645         int handled, ret;
4646         bool write = ops->write;
4647         struct kvm_mmio_fragment *frag;
4648         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4649
4650         /*
4651          * If the exit was due to a NPF we may already have a GPA.
4652          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4653          * Note, this cannot be used on string operations since string
4654          * operation using rep will only have the initial GPA from the NPF
4655          * occurred.
4656          */
4657         if (vcpu->arch.gpa_available &&
4658             emulator_can_use_gpa(ctxt) &&
4659             vcpu_is_mmio_gpa(vcpu, addr, exception->address, write) &&
4660             (addr & ~PAGE_MASK) == (exception->address & ~PAGE_MASK)) {
4661                 gpa = exception->address;
4662                 goto mmio;
4663         }
4664
4665         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4666
4667         if (ret < 0)
4668                 return X86EMUL_PROPAGATE_FAULT;
4669
4670         /* For APIC access vmexit */
4671         if (ret)
4672                 goto mmio;
4673
4674         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4675                 return X86EMUL_CONTINUE;
4676
4677 mmio:
4678         /*
4679          * Is this MMIO handled locally?
4680          */
4681         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4682         if (handled == bytes)
4683                 return X86EMUL_CONTINUE;
4684
4685         gpa += handled;
4686         bytes -= handled;
4687         val += handled;
4688
4689         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4690         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4691         frag->gpa = gpa;
4692         frag->data = val;
4693         frag->len = bytes;
4694         return X86EMUL_CONTINUE;
4695 }
4696
4697 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4698                         unsigned long addr,
4699                         void *val, unsigned int bytes,
4700                         struct x86_exception *exception,
4701                         const struct read_write_emulator_ops *ops)
4702 {
4703         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4704         gpa_t gpa;
4705         int rc;
4706
4707         if (ops->read_write_prepare &&
4708                   ops->read_write_prepare(vcpu, val, bytes))
4709                 return X86EMUL_CONTINUE;
4710
4711         vcpu->mmio_nr_fragments = 0;
4712
4713         /* Crossing a page boundary? */
4714         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4715                 int now;
4716
4717                 now = -addr & ~PAGE_MASK;
4718                 rc = emulator_read_write_onepage(addr, val, now, exception,
4719                                                  vcpu, ops);
4720
4721                 if (rc != X86EMUL_CONTINUE)
4722                         return rc;
4723                 addr += now;
4724                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4725                         addr = (u32)addr;
4726                 val += now;
4727                 bytes -= now;
4728         }
4729
4730         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4731                                          vcpu, ops);
4732         if (rc != X86EMUL_CONTINUE)
4733                 return rc;
4734
4735         if (!vcpu->mmio_nr_fragments)
4736                 return rc;
4737
4738         gpa = vcpu->mmio_fragments[0].gpa;
4739
4740         vcpu->mmio_needed = 1;
4741         vcpu->mmio_cur_fragment = 0;
4742
4743         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4744         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4745         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4746         vcpu->run->mmio.phys_addr = gpa;
4747
4748         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4749 }
4750
4751 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4752                                   unsigned long addr,
4753                                   void *val,
4754                                   unsigned int bytes,
4755                                   struct x86_exception *exception)
4756 {
4757         return emulator_read_write(ctxt, addr, val, bytes,
4758                                    exception, &read_emultor);
4759 }
4760
4761 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4762                             unsigned long addr,
4763                             const void *val,
4764                             unsigned int bytes,
4765                             struct x86_exception *exception)
4766 {
4767         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4768                                    exception, &write_emultor);
4769 }
4770
4771 #define CMPXCHG_TYPE(t, ptr, old, new) \
4772         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4773
4774 #ifdef CONFIG_X86_64
4775 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4776 #else
4777 #  define CMPXCHG64(ptr, old, new) \
4778         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4779 #endif
4780
4781 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4782                                      unsigned long addr,
4783                                      const void *old,
4784                                      const void *new,
4785                                      unsigned int bytes,
4786                                      struct x86_exception *exception)
4787 {
4788         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4789         gpa_t gpa;
4790         struct page *page;
4791         char *kaddr;
4792         bool exchanged;
4793
4794         /* guests cmpxchg8b have to be emulated atomically */
4795         if (bytes > 8 || (bytes & (bytes - 1)))
4796                 goto emul_write;
4797
4798         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4799
4800         if (gpa == UNMAPPED_GVA ||
4801             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4802                 goto emul_write;
4803
4804         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4805                 goto emul_write;
4806
4807         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4808         if (is_error_page(page))
4809                 goto emul_write;
4810
4811         kaddr = kmap_atomic(page);
4812         kaddr += offset_in_page(gpa);
4813         switch (bytes) {
4814         case 1:
4815                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4816                 break;
4817         case 2:
4818                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4819                 break;
4820         case 4:
4821                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4822                 break;
4823         case 8:
4824                 exchanged = CMPXCHG64(kaddr, old, new);
4825                 break;
4826         default:
4827                 BUG();
4828         }
4829         kunmap_atomic(kaddr);
4830         kvm_release_page_dirty(page);
4831
4832         if (!exchanged)
4833                 return X86EMUL_CMPXCHG_FAILED;
4834
4835         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4836         kvm_page_track_write(vcpu, gpa, new, bytes);
4837
4838         return X86EMUL_CONTINUE;
4839
4840 emul_write:
4841         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4842
4843         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4844 }
4845
4846 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4847 {
4848         int r = 0, i;
4849
4850         for (i = 0; i < vcpu->arch.pio.count; i++) {
4851                 if (vcpu->arch.pio.in)
4852                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4853                                             vcpu->arch.pio.size, pd);
4854                 else
4855                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4856                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
4857                                              pd);
4858                 if (r)
4859                         break;
4860                 pd += vcpu->arch.pio.size;
4861         }
4862         return r;
4863 }
4864
4865 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4866                                unsigned short port, void *val,
4867                                unsigned int count, bool in)
4868 {
4869         vcpu->arch.pio.port = port;
4870         vcpu->arch.pio.in = in;
4871         vcpu->arch.pio.count  = count;
4872         vcpu->arch.pio.size = size;
4873
4874         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4875                 vcpu->arch.pio.count = 0;
4876                 return 1;
4877         }
4878
4879         vcpu->run->exit_reason = KVM_EXIT_IO;
4880         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4881         vcpu->run->io.size = size;
4882         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4883         vcpu->run->io.count = count;
4884         vcpu->run->io.port = port;
4885
4886         return 0;
4887 }
4888
4889 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4890                                     int size, unsigned short port, void *val,
4891                                     unsigned int count)
4892 {
4893         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4894         int ret;
4895
4896         if (vcpu->arch.pio.count)
4897                 goto data_avail;
4898
4899         memset(vcpu->arch.pio_data, 0, size * count);
4900
4901         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4902         if (ret) {
4903 data_avail:
4904                 memcpy(val, vcpu->arch.pio_data, size * count);
4905                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4906                 vcpu->arch.pio.count = 0;
4907                 return 1;
4908         }
4909
4910         return 0;
4911 }
4912
4913 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4914                                      int size, unsigned short port,
4915                                      const void *val, unsigned int count)
4916 {
4917         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4918
4919         memcpy(vcpu->arch.pio_data, val, size * count);
4920         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4921         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4922 }
4923
4924 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4925 {
4926         return kvm_x86_ops->get_segment_base(vcpu, seg);
4927 }
4928
4929 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4930 {
4931         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4932 }
4933
4934 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4935 {
4936         if (!need_emulate_wbinvd(vcpu))
4937                 return X86EMUL_CONTINUE;
4938
4939         if (kvm_x86_ops->has_wbinvd_exit()) {
4940                 int cpu = get_cpu();
4941
4942                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4943                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4944                                 wbinvd_ipi, NULL, 1);
4945                 put_cpu();
4946                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4947         } else
4948                 wbinvd();
4949         return X86EMUL_CONTINUE;
4950 }
4951
4952 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4953 {
4954         kvm_emulate_wbinvd_noskip(vcpu);
4955         return kvm_skip_emulated_instruction(vcpu);
4956 }
4957 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4958
4959
4960
4961 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4962 {
4963         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4964 }
4965
4966 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4967                            unsigned long *dest)
4968 {
4969         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4970 }
4971
4972 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4973                            unsigned long value)
4974 {
4975
4976         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4977 }
4978
4979 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4980 {
4981         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4982 }
4983
4984 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4985 {
4986         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4987         unsigned long value;
4988
4989         switch (cr) {
4990         case 0:
4991                 value = kvm_read_cr0(vcpu);
4992                 break;
4993         case 2:
4994                 value = vcpu->arch.cr2;
4995                 break;
4996         case 3:
4997                 value = kvm_read_cr3(vcpu);
4998                 break;
4999         case 4:
5000                 value = kvm_read_cr4(vcpu);
5001                 break;
5002         case 8:
5003                 value = kvm_get_cr8(vcpu);
5004                 break;
5005         default:
5006                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5007                 return 0;
5008         }
5009
5010         return value;
5011 }
5012
5013 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5014 {
5015         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5016         int res = 0;
5017
5018         switch (cr) {
5019         case 0:
5020                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5021                 break;
5022         case 2:
5023                 vcpu->arch.cr2 = val;
5024                 break;
5025         case 3:
5026                 res = kvm_set_cr3(vcpu, val);
5027                 break;
5028         case 4:
5029                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5030                 break;
5031         case 8:
5032                 res = kvm_set_cr8(vcpu, val);
5033                 break;
5034         default:
5035                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5036                 res = -1;
5037         }
5038
5039         return res;
5040 }
5041
5042 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5043 {
5044         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5045 }
5046
5047 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5048 {
5049         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5050 }
5051
5052 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5053 {
5054         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5055 }
5056
5057 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5058 {
5059         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5060 }
5061
5062 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5063 {
5064         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5065 }
5066
5067 static unsigned long emulator_get_cached_segment_base(
5068         struct x86_emulate_ctxt *ctxt, int seg)
5069 {
5070         return get_segment_base(emul_to_vcpu(ctxt), seg);
5071 }
5072
5073 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5074                                  struct desc_struct *desc, u32 *base3,
5075                                  int seg)
5076 {
5077         struct kvm_segment var;
5078
5079         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5080         *selector = var.selector;
5081
5082         if (var.unusable) {
5083                 memset(desc, 0, sizeof(*desc));
5084                 if (base3)
5085                         *base3 = 0;
5086                 return false;
5087         }
5088
5089         if (var.g)
5090                 var.limit >>= 12;
5091         set_desc_limit(desc, var.limit);
5092         set_desc_base(desc, (unsigned long)var.base);
5093 #ifdef CONFIG_X86_64
5094         if (base3)
5095                 *base3 = var.base >> 32;
5096 #endif
5097         desc->type = var.type;
5098         desc->s = var.s;
5099         desc->dpl = var.dpl;
5100         desc->p = var.present;
5101         desc->avl = var.avl;
5102         desc->l = var.l;
5103         desc->d = var.db;
5104         desc->g = var.g;
5105
5106         return true;
5107 }
5108
5109 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5110                                  struct desc_struct *desc, u32 base3,
5111                                  int seg)
5112 {
5113         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5114         struct kvm_segment var;
5115
5116         var.selector = selector;
5117         var.base = get_desc_base(desc);
5118 #ifdef CONFIG_X86_64
5119         var.base |= ((u64)base3) << 32;
5120 #endif
5121         var.limit = get_desc_limit(desc);
5122         if (desc->g)
5123                 var.limit = (var.limit << 12) | 0xfff;
5124         var.type = desc->type;
5125         var.dpl = desc->dpl;
5126         var.db = desc->d;
5127         var.s = desc->s;
5128         var.l = desc->l;
5129         var.g = desc->g;
5130         var.avl = desc->avl;
5131         var.present = desc->p;
5132         var.unusable = !var.present;
5133         var.padding = 0;
5134
5135         kvm_set_segment(vcpu, &var, seg);
5136         return;
5137 }
5138
5139 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5140                             u32 msr_index, u64 *pdata)
5141 {
5142         struct msr_data msr;
5143         int r;
5144
5145         msr.index = msr_index;
5146         msr.host_initiated = false;
5147         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5148         if (r)
5149                 return r;
5150
5151         *pdata = msr.data;
5152         return 0;
5153 }
5154
5155 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5156                             u32 msr_index, u64 data)
5157 {
5158         struct msr_data msr;
5159
5160         msr.data = data;
5161         msr.index = msr_index;
5162         msr.host_initiated = false;
5163         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5164 }
5165
5166 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5167 {
5168         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5169
5170         return vcpu->arch.smbase;
5171 }
5172
5173 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5174 {
5175         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5176
5177         vcpu->arch.smbase = smbase;
5178 }
5179
5180 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5181                               u32 pmc)
5182 {
5183         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5184 }
5185
5186 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5187                              u32 pmc, u64 *pdata)
5188 {
5189         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5190 }
5191
5192 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5193 {
5194         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5195 }
5196
5197 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5198 {
5199         preempt_disable();
5200         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5201 }
5202
5203 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5204 {
5205         preempt_enable();
5206 }
5207
5208 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5209                               struct x86_instruction_info *info,
5210                               enum x86_intercept_stage stage)
5211 {
5212         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5213 }
5214
5215 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5216                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5217 {
5218         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5219 }
5220
5221 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5222 {
5223         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5224 }
5225
5226 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5227 {
5228         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5229 }
5230
5231 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5232 {
5233         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5234 }
5235
5236 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5237 {
5238         return emul_to_vcpu(ctxt)->arch.hflags;
5239 }
5240
5241 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5242 {
5243         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5244 }
5245
5246 static const struct x86_emulate_ops emulate_ops = {
5247         .read_gpr            = emulator_read_gpr,
5248         .write_gpr           = emulator_write_gpr,
5249         .read_std            = kvm_read_guest_virt_system,
5250         .write_std           = kvm_write_guest_virt_system,
5251         .read_phys           = kvm_read_guest_phys_system,
5252         .fetch               = kvm_fetch_guest_virt,
5253         .read_emulated       = emulator_read_emulated,
5254         .write_emulated      = emulator_write_emulated,
5255         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5256         .invlpg              = emulator_invlpg,
5257         .pio_in_emulated     = emulator_pio_in_emulated,
5258         .pio_out_emulated    = emulator_pio_out_emulated,
5259         .get_segment         = emulator_get_segment,
5260         .set_segment         = emulator_set_segment,
5261         .get_cached_segment_base = emulator_get_cached_segment_base,
5262         .get_gdt             = emulator_get_gdt,
5263         .get_idt             = emulator_get_idt,
5264         .set_gdt             = emulator_set_gdt,
5265         .set_idt             = emulator_set_idt,
5266         .get_cr              = emulator_get_cr,
5267         .set_cr              = emulator_set_cr,
5268         .cpl                 = emulator_get_cpl,
5269         .get_dr              = emulator_get_dr,
5270         .set_dr              = emulator_set_dr,
5271         .get_smbase          = emulator_get_smbase,
5272         .set_smbase          = emulator_set_smbase,
5273         .set_msr             = emulator_set_msr,
5274         .get_msr             = emulator_get_msr,
5275         .check_pmc           = emulator_check_pmc,
5276         .read_pmc            = emulator_read_pmc,
5277         .halt                = emulator_halt,
5278         .wbinvd              = emulator_wbinvd,
5279         .fix_hypercall       = emulator_fix_hypercall,
5280         .get_fpu             = emulator_get_fpu,
5281         .put_fpu             = emulator_put_fpu,
5282         .intercept           = emulator_intercept,
5283         .get_cpuid           = emulator_get_cpuid,
5284         .set_nmi_mask        = emulator_set_nmi_mask,
5285         .get_hflags          = emulator_get_hflags,
5286         .set_hflags          = emulator_set_hflags,
5287 };
5288
5289 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5290 {
5291         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5292         /*
5293          * an sti; sti; sequence only disable interrupts for the first
5294          * instruction. So, if the last instruction, be it emulated or
5295          * not, left the system with the INT_STI flag enabled, it
5296          * means that the last instruction is an sti. We should not
5297          * leave the flag on in this case. The same goes for mov ss
5298          */
5299         if (int_shadow & mask)
5300                 mask = 0;
5301         if (unlikely(int_shadow || mask)) {
5302                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5303                 if (!mask)
5304                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5305         }
5306 }
5307
5308 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5309 {
5310         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5311         if (ctxt->exception.vector == PF_VECTOR)
5312                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5313
5314         if (ctxt->exception.error_code_valid)
5315                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5316                                       ctxt->exception.error_code);
5317         else
5318                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5319         return false;
5320 }
5321
5322 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5323 {
5324         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5325         int cs_db, cs_l;
5326
5327         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5328
5329         ctxt->eflags = kvm_get_rflags(vcpu);
5330         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5331
5332         ctxt->eip = kvm_rip_read(vcpu);
5333         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5334                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5335                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5336                      cs_db                              ? X86EMUL_MODE_PROT32 :
5337                                                           X86EMUL_MODE_PROT16;
5338         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5339         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5340         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5341
5342         init_decode_cache(ctxt);
5343         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5344 }
5345
5346 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5347 {
5348         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5349         int ret;
5350
5351         init_emulate_ctxt(vcpu);
5352
5353         ctxt->op_bytes = 2;
5354         ctxt->ad_bytes = 2;
5355         ctxt->_eip = ctxt->eip + inc_eip;
5356         ret = emulate_int_real(ctxt, irq);
5357
5358         if (ret != X86EMUL_CONTINUE)
5359                 return EMULATE_FAIL;
5360
5361         ctxt->eip = ctxt->_eip;
5362         kvm_rip_write(vcpu, ctxt->eip);
5363         kvm_set_rflags(vcpu, ctxt->eflags);
5364
5365         if (irq == NMI_VECTOR)
5366                 vcpu->arch.nmi_pending = 0;
5367         else
5368                 vcpu->arch.interrupt.pending = false;
5369
5370         return EMULATE_DONE;
5371 }
5372 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5373
5374 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5375 {
5376         int r = EMULATE_DONE;
5377
5378         ++vcpu->stat.insn_emulation_fail;
5379         trace_kvm_emulate_insn_failed(vcpu);
5380         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5381                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5382                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5383                 vcpu->run->internal.ndata = 0;
5384                 r = EMULATE_FAIL;
5385         }
5386         kvm_queue_exception(vcpu, UD_VECTOR);
5387
5388         return r;
5389 }
5390
5391 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5392                                   bool write_fault_to_shadow_pgtable,
5393                                   int emulation_type)
5394 {
5395         gpa_t gpa = cr2;
5396         kvm_pfn_t pfn;
5397
5398         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5399                 return false;
5400
5401         if (!vcpu->arch.mmu.direct_map) {
5402                 /*
5403                  * Write permission should be allowed since only
5404                  * write access need to be emulated.
5405                  */
5406                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5407
5408                 /*
5409                  * If the mapping is invalid in guest, let cpu retry
5410                  * it to generate fault.
5411                  */
5412                 if (gpa == UNMAPPED_GVA)
5413                         return true;
5414         }
5415
5416         /*
5417          * Do not retry the unhandleable instruction if it faults on the
5418          * readonly host memory, otherwise it will goto a infinite loop:
5419          * retry instruction -> write #PF -> emulation fail -> retry
5420          * instruction -> ...
5421          */
5422         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5423
5424         /*
5425          * If the instruction failed on the error pfn, it can not be fixed,
5426          * report the error to userspace.
5427          */
5428         if (is_error_noslot_pfn(pfn))
5429                 return false;
5430
5431         kvm_release_pfn_clean(pfn);
5432
5433         /* The instructions are well-emulated on direct mmu. */
5434         if (vcpu->arch.mmu.direct_map) {
5435                 unsigned int indirect_shadow_pages;
5436
5437                 spin_lock(&vcpu->kvm->mmu_lock);
5438                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5439                 spin_unlock(&vcpu->kvm->mmu_lock);
5440
5441                 if (indirect_shadow_pages)
5442                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5443
5444                 return true;
5445         }
5446
5447         /*
5448          * if emulation was due to access to shadowed page table
5449          * and it failed try to unshadow page and re-enter the
5450          * guest to let CPU execute the instruction.
5451          */
5452         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5453
5454         /*
5455          * If the access faults on its page table, it can not
5456          * be fixed by unprotecting shadow page and it should
5457          * be reported to userspace.
5458          */
5459         return !write_fault_to_shadow_pgtable;
5460 }
5461
5462 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5463                               unsigned long cr2,  int emulation_type)
5464 {
5465         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5466         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5467
5468         last_retry_eip = vcpu->arch.last_retry_eip;
5469         last_retry_addr = vcpu->arch.last_retry_addr;
5470
5471         /*
5472          * If the emulation is caused by #PF and it is non-page_table
5473          * writing instruction, it means the VM-EXIT is caused by shadow
5474          * page protected, we can zap the shadow page and retry this
5475          * instruction directly.
5476          *
5477          * Note: if the guest uses a non-page-table modifying instruction
5478          * on the PDE that points to the instruction, then we will unmap
5479          * the instruction and go to an infinite loop. So, we cache the
5480          * last retried eip and the last fault address, if we meet the eip
5481          * and the address again, we can break out of the potential infinite
5482          * loop.
5483          */
5484         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5485
5486         if (!(emulation_type & EMULTYPE_RETRY))
5487                 return false;
5488
5489         if (x86_page_table_writing_insn(ctxt))
5490                 return false;
5491
5492         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5493                 return false;
5494
5495         vcpu->arch.last_retry_eip = ctxt->eip;
5496         vcpu->arch.last_retry_addr = cr2;
5497
5498         if (!vcpu->arch.mmu.direct_map)
5499                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5500
5501         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5502
5503         return true;
5504 }
5505
5506 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5507 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5508
5509 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5510 {
5511         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5512                 /* This is a good place to trace that we are exiting SMM.  */
5513                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5514
5515                 /* Process a latched INIT or SMI, if any.  */
5516                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5517         }
5518
5519         kvm_mmu_reset_context(vcpu);
5520 }
5521
5522 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5523 {
5524         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5525
5526         vcpu->arch.hflags = emul_flags;
5527
5528         if (changed & HF_SMM_MASK)
5529                 kvm_smm_changed(vcpu);
5530 }
5531
5532 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5533                                 unsigned long *db)
5534 {
5535         u32 dr6 = 0;
5536         int i;
5537         u32 enable, rwlen;
5538
5539         enable = dr7;
5540         rwlen = dr7 >> 16;
5541         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5542                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5543                         dr6 |= (1 << i);
5544         return dr6;
5545 }
5546
5547 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5548 {
5549         struct kvm_run *kvm_run = vcpu->run;
5550
5551         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5552                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5553                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5554                 kvm_run->debug.arch.exception = DB_VECTOR;
5555                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5556                 *r = EMULATE_USER_EXIT;
5557         } else {
5558                 /*
5559                  * "Certain debug exceptions may clear bit 0-3.  The
5560                  * remaining contents of the DR6 register are never
5561                  * cleared by the processor".
5562                  */
5563                 vcpu->arch.dr6 &= ~15;
5564                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5565                 kvm_queue_exception(vcpu, DB_VECTOR);
5566         }
5567 }
5568
5569 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5570 {
5571         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5572         int r = EMULATE_DONE;
5573
5574         kvm_x86_ops->skip_emulated_instruction(vcpu);
5575
5576         /*
5577          * rflags is the old, "raw" value of the flags.  The new value has
5578          * not been saved yet.
5579          *
5580          * This is correct even for TF set by the guest, because "the
5581          * processor will not generate this exception after the instruction
5582          * that sets the TF flag".
5583          */
5584         if (unlikely(rflags & X86_EFLAGS_TF))
5585                 kvm_vcpu_do_singlestep(vcpu, &r);
5586         return r == EMULATE_DONE;
5587 }
5588 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5589
5590 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5591 {
5592         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5593             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5594                 struct kvm_run *kvm_run = vcpu->run;
5595                 unsigned long eip = kvm_get_linear_rip(vcpu);
5596                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5597                                            vcpu->arch.guest_debug_dr7,
5598                                            vcpu->arch.eff_db);
5599
5600                 if (dr6 != 0) {
5601                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5602                         kvm_run->debug.arch.pc = eip;
5603                         kvm_run->debug.arch.exception = DB_VECTOR;
5604                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5605                         *r = EMULATE_USER_EXIT;
5606                         return true;
5607                 }
5608         }
5609
5610         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5611             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5612                 unsigned long eip = kvm_get_linear_rip(vcpu);
5613                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5614                                            vcpu->arch.dr7,
5615                                            vcpu->arch.db);
5616
5617                 if (dr6 != 0) {
5618                         vcpu->arch.dr6 &= ~15;
5619                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5620                         kvm_queue_exception(vcpu, DB_VECTOR);
5621                         *r = EMULATE_DONE;
5622                         return true;
5623                 }
5624         }
5625
5626         return false;
5627 }
5628
5629 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5630                             unsigned long cr2,
5631                             int emulation_type,
5632                             void *insn,
5633                             int insn_len)
5634 {
5635         int r;
5636         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5637         bool writeback = true;
5638         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5639
5640         /*
5641          * Clear write_fault_to_shadow_pgtable here to ensure it is
5642          * never reused.
5643          */
5644         vcpu->arch.write_fault_to_shadow_pgtable = false;
5645         kvm_clear_exception_queue(vcpu);
5646
5647         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5648                 init_emulate_ctxt(vcpu);
5649
5650                 /*
5651                  * We will reenter on the same instruction since
5652                  * we do not set complete_userspace_io.  This does not
5653                  * handle watchpoints yet, those would be handled in
5654                  * the emulate_ops.
5655                  */
5656                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5657                         return r;
5658
5659                 ctxt->interruptibility = 0;
5660                 ctxt->have_exception = false;
5661                 ctxt->exception.vector = -1;
5662                 ctxt->perm_ok = false;
5663
5664                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5665
5666                 r = x86_decode_insn(ctxt, insn, insn_len);
5667
5668                 trace_kvm_emulate_insn_start(vcpu);
5669                 ++vcpu->stat.insn_emulation;
5670                 if (r != EMULATION_OK)  {
5671                         if (emulation_type & EMULTYPE_TRAP_UD)
5672                                 return EMULATE_FAIL;
5673                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5674                                                 emulation_type))
5675                                 return EMULATE_DONE;
5676                         if (emulation_type & EMULTYPE_SKIP)
5677                                 return EMULATE_FAIL;
5678                         return handle_emulation_failure(vcpu);
5679                 }
5680         }
5681
5682         if (emulation_type & EMULTYPE_SKIP) {
5683                 kvm_rip_write(vcpu, ctxt->_eip);
5684                 if (ctxt->eflags & X86_EFLAGS_RF)
5685                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5686                 return EMULATE_DONE;
5687         }
5688
5689         if (retry_instruction(ctxt, cr2, emulation_type))
5690                 return EMULATE_DONE;
5691
5692         /* this is needed for vmware backdoor interface to work since it
5693            changes registers values  during IO operation */
5694         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5695                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5696                 emulator_invalidate_register_cache(ctxt);
5697         }
5698
5699 restart:
5700         /* Save the faulting GPA (cr2) in the address field */
5701         ctxt->exception.address = cr2;
5702
5703         r = x86_emulate_insn(ctxt);
5704
5705         if (r == EMULATION_INTERCEPTED)
5706                 return EMULATE_DONE;
5707
5708         if (r == EMULATION_FAILED) {
5709                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5710                                         emulation_type))
5711                         return EMULATE_DONE;
5712
5713                 return handle_emulation_failure(vcpu);
5714         }
5715
5716         if (ctxt->have_exception) {
5717                 r = EMULATE_DONE;
5718                 if (inject_emulated_exception(vcpu))
5719                         return r;
5720         } else if (vcpu->arch.pio.count) {
5721                 if (!vcpu->arch.pio.in) {
5722                         /* FIXME: return into emulator if single-stepping.  */
5723                         vcpu->arch.pio.count = 0;
5724                 } else {
5725                         writeback = false;
5726                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5727                 }
5728                 r = EMULATE_USER_EXIT;
5729         } else if (vcpu->mmio_needed) {
5730                 if (!vcpu->mmio_is_write)
5731                         writeback = false;
5732                 r = EMULATE_USER_EXIT;
5733                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5734         } else if (r == EMULATION_RESTART)
5735                 goto restart;
5736         else
5737                 r = EMULATE_DONE;
5738
5739         if (writeback) {
5740                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5741                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5742                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5743                 kvm_rip_write(vcpu, ctxt->eip);
5744                 if (r == EMULATE_DONE &&
5745                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5746                         kvm_vcpu_do_singlestep(vcpu, &r);
5747                 if (!ctxt->have_exception ||
5748                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5749                         __kvm_set_rflags(vcpu, ctxt->eflags);
5750
5751                 /*
5752                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5753                  * do nothing, and it will be requested again as soon as
5754                  * the shadow expires.  But we still need to check here,
5755                  * because POPF has no interrupt shadow.
5756                  */
5757                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5758                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5759         } else
5760                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5761
5762         return r;
5763 }
5764 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5765
5766 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5767 {
5768         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5769         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5770                                             size, port, &val, 1);
5771         /* do not return to emulator after return from userspace */
5772         vcpu->arch.pio.count = 0;
5773         return ret;
5774 }
5775 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5776
5777 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5778 {
5779         unsigned long val;
5780
5781         /* We should only ever be called with arch.pio.count equal to 1 */
5782         BUG_ON(vcpu->arch.pio.count != 1);
5783
5784         /* For size less than 4 we merge, else we zero extend */
5785         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5786                                         : 0;
5787
5788         /*
5789          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5790          * the copy and tracing
5791          */
5792         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5793                                  vcpu->arch.pio.port, &val, 1);
5794         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5795
5796         return 1;
5797 }
5798
5799 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5800 {
5801         unsigned long val;
5802         int ret;
5803
5804         /* For size less than 4 we merge, else we zero extend */
5805         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5806
5807         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5808                                        &val, 1);
5809         if (ret) {
5810                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5811                 return ret;
5812         }
5813
5814         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5815
5816         return 0;
5817 }
5818 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5819
5820 static int kvmclock_cpu_down_prep(unsigned int cpu)
5821 {
5822         __this_cpu_write(cpu_tsc_khz, 0);
5823         return 0;
5824 }
5825
5826 static void tsc_khz_changed(void *data)
5827 {
5828         struct cpufreq_freqs *freq = data;
5829         unsigned long khz = 0;
5830
5831         if (data)
5832                 khz = freq->new;
5833         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5834                 khz = cpufreq_quick_get(raw_smp_processor_id());
5835         if (!khz)
5836                 khz = tsc_khz;
5837         __this_cpu_write(cpu_tsc_khz, khz);
5838 }
5839
5840 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5841                                      void *data)
5842 {
5843         struct cpufreq_freqs *freq = data;
5844         struct kvm *kvm;
5845         struct kvm_vcpu *vcpu;
5846         int i, send_ipi = 0;
5847
5848         /*
5849          * We allow guests to temporarily run on slowing clocks,
5850          * provided we notify them after, or to run on accelerating
5851          * clocks, provided we notify them before.  Thus time never
5852          * goes backwards.
5853          *
5854          * However, we have a problem.  We can't atomically update
5855          * the frequency of a given CPU from this function; it is
5856          * merely a notifier, which can be called from any CPU.
5857          * Changing the TSC frequency at arbitrary points in time
5858          * requires a recomputation of local variables related to
5859          * the TSC for each VCPU.  We must flag these local variables
5860          * to be updated and be sure the update takes place with the
5861          * new frequency before any guests proceed.
5862          *
5863          * Unfortunately, the combination of hotplug CPU and frequency
5864          * change creates an intractable locking scenario; the order
5865          * of when these callouts happen is undefined with respect to
5866          * CPU hotplug, and they can race with each other.  As such,
5867          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5868          * undefined; you can actually have a CPU frequency change take
5869          * place in between the computation of X and the setting of the
5870          * variable.  To protect against this problem, all updates of
5871          * the per_cpu tsc_khz variable are done in an interrupt
5872          * protected IPI, and all callers wishing to update the value
5873          * must wait for a synchronous IPI to complete (which is trivial
5874          * if the caller is on the CPU already).  This establishes the
5875          * necessary total order on variable updates.
5876          *
5877          * Note that because a guest time update may take place
5878          * anytime after the setting of the VCPU's request bit, the
5879          * correct TSC value must be set before the request.  However,
5880          * to ensure the update actually makes it to any guest which
5881          * starts running in hardware virtualization between the set
5882          * and the acquisition of the spinlock, we must also ping the
5883          * CPU after setting the request bit.
5884          *
5885          */
5886
5887         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5888                 return 0;
5889         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5890                 return 0;
5891
5892         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5893
5894         spin_lock(&kvm_lock);
5895         list_for_each_entry(kvm, &vm_list, vm_list) {
5896                 kvm_for_each_vcpu(i, vcpu, kvm) {
5897                         if (vcpu->cpu != freq->cpu)
5898                                 continue;
5899                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5900                         if (vcpu->cpu != smp_processor_id())
5901                                 send_ipi = 1;
5902                 }
5903         }
5904         spin_unlock(&kvm_lock);
5905
5906         if (freq->old < freq->new && send_ipi) {
5907                 /*
5908                  * We upscale the frequency.  Must make the guest
5909                  * doesn't see old kvmclock values while running with
5910                  * the new frequency, otherwise we risk the guest sees
5911                  * time go backwards.
5912                  *
5913                  * In case we update the frequency for another cpu
5914                  * (which might be in guest context) send an interrupt
5915                  * to kick the cpu out of guest context.  Next time
5916                  * guest context is entered kvmclock will be updated,
5917                  * so the guest will not see stale values.
5918                  */
5919                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5920         }
5921         return 0;
5922 }
5923
5924 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5925         .notifier_call  = kvmclock_cpufreq_notifier
5926 };
5927
5928 static int kvmclock_cpu_online(unsigned int cpu)
5929 {
5930         tsc_khz_changed(NULL);
5931         return 0;
5932 }
5933
5934 static void kvm_timer_init(void)
5935 {
5936         max_tsc_khz = tsc_khz;
5937
5938         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5939 #ifdef CONFIG_CPU_FREQ
5940                 struct cpufreq_policy policy;
5941                 int cpu;
5942
5943                 memset(&policy, 0, sizeof(policy));
5944                 cpu = get_cpu();
5945                 cpufreq_get_policy(&policy, cpu);
5946                 if (policy.cpuinfo.max_freq)
5947                         max_tsc_khz = policy.cpuinfo.max_freq;
5948                 put_cpu();
5949 #endif
5950                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5951                                           CPUFREQ_TRANSITION_NOTIFIER);
5952         }
5953         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5954
5955         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
5956                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
5957 }
5958
5959 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5960
5961 int kvm_is_in_guest(void)
5962 {
5963         return __this_cpu_read(current_vcpu) != NULL;
5964 }
5965
5966 static int kvm_is_user_mode(void)
5967 {
5968         int user_mode = 3;
5969
5970         if (__this_cpu_read(current_vcpu))
5971                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5972
5973         return user_mode != 0;
5974 }
5975
5976 static unsigned long kvm_get_guest_ip(void)
5977 {
5978         unsigned long ip = 0;
5979
5980         if (__this_cpu_read(current_vcpu))
5981                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5982
5983         return ip;
5984 }
5985
5986 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5987         .is_in_guest            = kvm_is_in_guest,
5988         .is_user_mode           = kvm_is_user_mode,
5989         .get_guest_ip           = kvm_get_guest_ip,
5990 };
5991
5992 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5993 {
5994         __this_cpu_write(current_vcpu, vcpu);
5995 }
5996 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5997
5998 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5999 {
6000         __this_cpu_write(current_vcpu, NULL);
6001 }
6002 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6003
6004 static void kvm_set_mmio_spte_mask(void)
6005 {
6006         u64 mask;
6007         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6008
6009         /*
6010          * Set the reserved bits and the present bit of an paging-structure
6011          * entry to generate page fault with PFER.RSV = 1.
6012          */
6013          /* Mask the reserved physical address bits. */
6014         mask = rsvd_bits(maxphyaddr, 51);
6015
6016         /* Set the present bit. */
6017         mask |= 1ull;
6018
6019 #ifdef CONFIG_X86_64
6020         /*
6021          * If reserved bit is not supported, clear the present bit to disable
6022          * mmio page fault.
6023          */
6024         if (maxphyaddr == 52)
6025                 mask &= ~1ull;
6026 #endif
6027
6028         kvm_mmu_set_mmio_spte_mask(mask, mask);
6029 }
6030
6031 #ifdef CONFIG_X86_64
6032 static void pvclock_gtod_update_fn(struct work_struct *work)
6033 {
6034         struct kvm *kvm;
6035
6036         struct kvm_vcpu *vcpu;
6037         int i;
6038
6039         spin_lock(&kvm_lock);
6040         list_for_each_entry(kvm, &vm_list, vm_list)
6041                 kvm_for_each_vcpu(i, vcpu, kvm)
6042                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6043         atomic_set(&kvm_guest_has_master_clock, 0);
6044         spin_unlock(&kvm_lock);
6045 }
6046
6047 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6048
6049 /*
6050  * Notification about pvclock gtod data update.
6051  */
6052 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6053                                void *priv)
6054 {
6055         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6056         struct timekeeper *tk = priv;
6057
6058         update_pvclock_gtod(tk);
6059
6060         /* disable master clock if host does not trust, or does not
6061          * use, TSC clocksource
6062          */
6063         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6064             atomic_read(&kvm_guest_has_master_clock) != 0)
6065                 queue_work(system_long_wq, &pvclock_gtod_work);
6066
6067         return 0;
6068 }
6069
6070 static struct notifier_block pvclock_gtod_notifier = {
6071         .notifier_call = pvclock_gtod_notify,
6072 };
6073 #endif
6074
6075 int kvm_arch_init(void *opaque)
6076 {
6077         int r;
6078         struct kvm_x86_ops *ops = opaque;
6079
6080         if (kvm_x86_ops) {
6081                 printk(KERN_ERR "kvm: already loaded the other module\n");
6082                 r = -EEXIST;
6083                 goto out;
6084         }
6085
6086         if (!ops->cpu_has_kvm_support()) {
6087                 printk(KERN_ERR "kvm: no hardware support\n");
6088                 r = -EOPNOTSUPP;
6089                 goto out;
6090         }
6091         if (ops->disabled_by_bios()) {
6092                 printk(KERN_ERR "kvm: disabled by bios\n");
6093                 r = -EOPNOTSUPP;
6094                 goto out;
6095         }
6096
6097         r = -ENOMEM;
6098         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6099         if (!shared_msrs) {
6100                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6101                 goto out;
6102         }
6103
6104         r = kvm_mmu_module_init();
6105         if (r)
6106                 goto out_free_percpu;
6107
6108         kvm_set_mmio_spte_mask();
6109
6110         kvm_x86_ops = ops;
6111
6112         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6113                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6114                         PT_PRESENT_MASK, 0);
6115         kvm_timer_init();
6116
6117         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6118
6119         if (boot_cpu_has(X86_FEATURE_XSAVE))
6120                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6121
6122         kvm_lapic_init();
6123 #ifdef CONFIG_X86_64
6124         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6125 #endif
6126
6127         return 0;
6128
6129 out_free_percpu:
6130         free_percpu(shared_msrs);
6131 out:
6132         return r;
6133 }
6134
6135 void kvm_arch_exit(void)
6136 {
6137         kvm_lapic_exit();
6138         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6139
6140         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6141                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6142                                             CPUFREQ_TRANSITION_NOTIFIER);
6143         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6144 #ifdef CONFIG_X86_64
6145         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6146 #endif
6147         kvm_x86_ops = NULL;
6148         kvm_mmu_module_exit();
6149         free_percpu(shared_msrs);
6150 }
6151
6152 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6153 {
6154         ++vcpu->stat.halt_exits;
6155         if (lapic_in_kernel(vcpu)) {
6156                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6157                 return 1;
6158         } else {
6159                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6160                 return 0;
6161         }
6162 }
6163 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6164
6165 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6166 {
6167         int ret = kvm_skip_emulated_instruction(vcpu);
6168         /*
6169          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6170          * KVM_EXIT_DEBUG here.
6171          */
6172         return kvm_vcpu_halt(vcpu) && ret;
6173 }
6174 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6175
6176 #ifdef CONFIG_X86_64
6177 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6178                                 unsigned long clock_type)
6179 {
6180         struct kvm_clock_pairing clock_pairing;
6181         struct timespec ts;
6182         u64 cycle;
6183         int ret;
6184
6185         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6186                 return -KVM_EOPNOTSUPP;
6187
6188         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6189                 return -KVM_EOPNOTSUPP;
6190
6191         clock_pairing.sec = ts.tv_sec;
6192         clock_pairing.nsec = ts.tv_nsec;
6193         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6194         clock_pairing.flags = 0;
6195
6196         ret = 0;
6197         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6198                             sizeof(struct kvm_clock_pairing)))
6199                 ret = -KVM_EFAULT;
6200
6201         return ret;
6202 }
6203 #endif
6204
6205 /*
6206  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6207  *
6208  * @apicid - apicid of vcpu to be kicked.
6209  */
6210 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6211 {
6212         struct kvm_lapic_irq lapic_irq;
6213
6214         lapic_irq.shorthand = 0;
6215         lapic_irq.dest_mode = 0;
6216         lapic_irq.dest_id = apicid;
6217         lapic_irq.msi_redir_hint = false;
6218
6219         lapic_irq.delivery_mode = APIC_DM_REMRD;
6220         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6221 }
6222
6223 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6224 {
6225         vcpu->arch.apicv_active = false;
6226         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6227 }
6228
6229 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6230 {
6231         unsigned long nr, a0, a1, a2, a3, ret;
6232         int op_64_bit, r;
6233
6234         r = kvm_skip_emulated_instruction(vcpu);
6235
6236         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6237                 return kvm_hv_hypercall(vcpu);
6238
6239         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6240         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6241         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6242         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6243         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6244
6245         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6246
6247         op_64_bit = is_64_bit_mode(vcpu);
6248         if (!op_64_bit) {
6249                 nr &= 0xFFFFFFFF;
6250                 a0 &= 0xFFFFFFFF;
6251                 a1 &= 0xFFFFFFFF;
6252                 a2 &= 0xFFFFFFFF;
6253                 a3 &= 0xFFFFFFFF;
6254         }
6255
6256         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6257                 ret = -KVM_EPERM;
6258                 goto out;
6259         }
6260
6261         switch (nr) {
6262         case KVM_HC_VAPIC_POLL_IRQ:
6263                 ret = 0;
6264                 break;
6265         case KVM_HC_KICK_CPU:
6266                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6267                 ret = 0;
6268                 break;
6269 #ifdef CONFIG_X86_64
6270         case KVM_HC_CLOCK_PAIRING:
6271                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6272                 break;
6273 #endif
6274         default:
6275                 ret = -KVM_ENOSYS;
6276                 break;
6277         }
6278 out:
6279         if (!op_64_bit)
6280                 ret = (u32)ret;
6281         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6282         ++vcpu->stat.hypercalls;
6283         return r;
6284 }
6285 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6286
6287 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6288 {
6289         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6290         char instruction[3];
6291         unsigned long rip = kvm_rip_read(vcpu);
6292
6293         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6294
6295         return emulator_write_emulated(ctxt, rip, instruction, 3,
6296                 &ctxt->exception);
6297 }
6298
6299 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6300 {
6301         return vcpu->run->request_interrupt_window &&
6302                 likely(!pic_in_kernel(vcpu->kvm));
6303 }
6304
6305 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6306 {
6307         struct kvm_run *kvm_run = vcpu->run;
6308
6309         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6310         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6311         kvm_run->cr8 = kvm_get_cr8(vcpu);
6312         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6313         kvm_run->ready_for_interrupt_injection =
6314                 pic_in_kernel(vcpu->kvm) ||
6315                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6316 }
6317
6318 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6319 {
6320         int max_irr, tpr;
6321
6322         if (!kvm_x86_ops->update_cr8_intercept)
6323                 return;
6324
6325         if (!lapic_in_kernel(vcpu))
6326                 return;
6327
6328         if (vcpu->arch.apicv_active)
6329                 return;
6330
6331         if (!vcpu->arch.apic->vapic_addr)
6332                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6333         else
6334                 max_irr = -1;
6335
6336         if (max_irr != -1)
6337                 max_irr >>= 4;
6338
6339         tpr = kvm_lapic_get_cr8(vcpu);
6340
6341         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6342 }
6343
6344 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6345 {
6346         int r;
6347
6348         /* try to reinject previous events if any */
6349         if (vcpu->arch.exception.pending) {
6350                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6351                                         vcpu->arch.exception.has_error_code,
6352                                         vcpu->arch.exception.error_code);
6353
6354                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6355                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6356                                              X86_EFLAGS_RF);
6357
6358                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6359                     (vcpu->arch.dr7 & DR7_GD)) {
6360                         vcpu->arch.dr7 &= ~DR7_GD;
6361                         kvm_update_dr7(vcpu);
6362                 }
6363
6364                 kvm_x86_ops->queue_exception(vcpu);
6365                 return 0;
6366         }
6367
6368         if (vcpu->arch.nmi_injected) {
6369                 kvm_x86_ops->set_nmi(vcpu);
6370                 return 0;
6371         }
6372
6373         if (vcpu->arch.interrupt.pending) {
6374                 kvm_x86_ops->set_irq(vcpu);
6375                 return 0;
6376         }
6377
6378         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6379                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6380                 if (r != 0)
6381                         return r;
6382         }
6383
6384         /* try to inject new event if pending */
6385         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6386                 vcpu->arch.smi_pending = false;
6387                 enter_smm(vcpu);
6388         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6389                 --vcpu->arch.nmi_pending;
6390                 vcpu->arch.nmi_injected = true;
6391                 kvm_x86_ops->set_nmi(vcpu);
6392         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6393                 /*
6394                  * Because interrupts can be injected asynchronously, we are
6395                  * calling check_nested_events again here to avoid a race condition.
6396                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6397                  * proposal and current concerns.  Perhaps we should be setting
6398                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6399                  */
6400                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6401                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6402                         if (r != 0)
6403                                 return r;
6404                 }
6405                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6406                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6407                                             false);
6408                         kvm_x86_ops->set_irq(vcpu);
6409                 }
6410         }
6411
6412         return 0;
6413 }
6414
6415 static void process_nmi(struct kvm_vcpu *vcpu)
6416 {
6417         unsigned limit = 2;
6418
6419         /*
6420          * x86 is limited to one NMI running, and one NMI pending after it.
6421          * If an NMI is already in progress, limit further NMIs to just one.
6422          * Otherwise, allow two (and we'll inject the first one immediately).
6423          */
6424         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6425                 limit = 1;
6426
6427         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6428         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6429         kvm_make_request(KVM_REQ_EVENT, vcpu);
6430 }
6431
6432 #define put_smstate(type, buf, offset, val)                       \
6433         *(type *)((buf) + (offset) - 0x7e00) = val
6434
6435 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6436 {
6437         u32 flags = 0;
6438         flags |= seg->g       << 23;
6439         flags |= seg->db      << 22;
6440         flags |= seg->l       << 21;
6441         flags |= seg->avl     << 20;
6442         flags |= seg->present << 15;
6443         flags |= seg->dpl     << 13;
6444         flags |= seg->s       << 12;
6445         flags |= seg->type    << 8;
6446         return flags;
6447 }
6448
6449 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6450 {
6451         struct kvm_segment seg;
6452         int offset;
6453
6454         kvm_get_segment(vcpu, &seg, n);
6455         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6456
6457         if (n < 3)
6458                 offset = 0x7f84 + n * 12;
6459         else
6460                 offset = 0x7f2c + (n - 3) * 12;
6461
6462         put_smstate(u32, buf, offset + 8, seg.base);
6463         put_smstate(u32, buf, offset + 4, seg.limit);
6464         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6465 }
6466
6467 #ifdef CONFIG_X86_64
6468 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6469 {
6470         struct kvm_segment seg;
6471         int offset;
6472         u16 flags;
6473
6474         kvm_get_segment(vcpu, &seg, n);
6475         offset = 0x7e00 + n * 16;
6476
6477         flags = enter_smm_get_segment_flags(&seg) >> 8;
6478         put_smstate(u16, buf, offset, seg.selector);
6479         put_smstate(u16, buf, offset + 2, flags);
6480         put_smstate(u32, buf, offset + 4, seg.limit);
6481         put_smstate(u64, buf, offset + 8, seg.base);
6482 }
6483 #endif
6484
6485 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6486 {
6487         struct desc_ptr dt;
6488         struct kvm_segment seg;
6489         unsigned long val;
6490         int i;
6491
6492         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6493         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6494         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6495         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6496
6497         for (i = 0; i < 8; i++)
6498                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6499
6500         kvm_get_dr(vcpu, 6, &val);
6501         put_smstate(u32, buf, 0x7fcc, (u32)val);
6502         kvm_get_dr(vcpu, 7, &val);
6503         put_smstate(u32, buf, 0x7fc8, (u32)val);
6504
6505         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6506         put_smstate(u32, buf, 0x7fc4, seg.selector);
6507         put_smstate(u32, buf, 0x7f64, seg.base);
6508         put_smstate(u32, buf, 0x7f60, seg.limit);
6509         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6510
6511         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6512         put_smstate(u32, buf, 0x7fc0, seg.selector);
6513         put_smstate(u32, buf, 0x7f80, seg.base);
6514         put_smstate(u32, buf, 0x7f7c, seg.limit);
6515         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6516
6517         kvm_x86_ops->get_gdt(vcpu, &dt);
6518         put_smstate(u32, buf, 0x7f74, dt.address);
6519         put_smstate(u32, buf, 0x7f70, dt.size);
6520
6521         kvm_x86_ops->get_idt(vcpu, &dt);
6522         put_smstate(u32, buf, 0x7f58, dt.address);
6523         put_smstate(u32, buf, 0x7f54, dt.size);
6524
6525         for (i = 0; i < 6; i++)
6526                 enter_smm_save_seg_32(vcpu, buf, i);
6527
6528         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6529
6530         /* revision id */
6531         put_smstate(u32, buf, 0x7efc, 0x00020000);
6532         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6533 }
6534
6535 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6536 {
6537 #ifdef CONFIG_X86_64
6538         struct desc_ptr dt;
6539         struct kvm_segment seg;
6540         unsigned long val;
6541         int i;
6542
6543         for (i = 0; i < 16; i++)
6544                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6545
6546         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6547         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6548
6549         kvm_get_dr(vcpu, 6, &val);
6550         put_smstate(u64, buf, 0x7f68, val);
6551         kvm_get_dr(vcpu, 7, &val);
6552         put_smstate(u64, buf, 0x7f60, val);
6553
6554         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6555         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6556         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6557
6558         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6559
6560         /* revision id */
6561         put_smstate(u32, buf, 0x7efc, 0x00020064);
6562
6563         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6564
6565         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6566         put_smstate(u16, buf, 0x7e90, seg.selector);
6567         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6568         put_smstate(u32, buf, 0x7e94, seg.limit);
6569         put_smstate(u64, buf, 0x7e98, seg.base);
6570
6571         kvm_x86_ops->get_idt(vcpu, &dt);
6572         put_smstate(u32, buf, 0x7e84, dt.size);
6573         put_smstate(u64, buf, 0x7e88, dt.address);
6574
6575         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6576         put_smstate(u16, buf, 0x7e70, seg.selector);
6577         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6578         put_smstate(u32, buf, 0x7e74, seg.limit);
6579         put_smstate(u64, buf, 0x7e78, seg.base);
6580
6581         kvm_x86_ops->get_gdt(vcpu, &dt);
6582         put_smstate(u32, buf, 0x7e64, dt.size);
6583         put_smstate(u64, buf, 0x7e68, dt.address);
6584
6585         for (i = 0; i < 6; i++)
6586                 enter_smm_save_seg_64(vcpu, buf, i);
6587 #else
6588         WARN_ON_ONCE(1);
6589 #endif
6590 }
6591
6592 static void enter_smm(struct kvm_vcpu *vcpu)
6593 {
6594         struct kvm_segment cs, ds;
6595         struct desc_ptr dt;
6596         char buf[512];
6597         u32 cr0;
6598
6599         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6600         vcpu->arch.hflags |= HF_SMM_MASK;
6601         memset(buf, 0, 512);
6602         if (guest_cpuid_has_longmode(vcpu))
6603                 enter_smm_save_state_64(vcpu, buf);
6604         else
6605                 enter_smm_save_state_32(vcpu, buf);
6606
6607         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6608
6609         if (kvm_x86_ops->get_nmi_mask(vcpu))
6610                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6611         else
6612                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6613
6614         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6615         kvm_rip_write(vcpu, 0x8000);
6616
6617         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6618         kvm_x86_ops->set_cr0(vcpu, cr0);
6619         vcpu->arch.cr0 = cr0;
6620
6621         kvm_x86_ops->set_cr4(vcpu, 0);
6622
6623         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6624         dt.address = dt.size = 0;
6625         kvm_x86_ops->set_idt(vcpu, &dt);
6626
6627         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6628
6629         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6630         cs.base = vcpu->arch.smbase;
6631
6632         ds.selector = 0;
6633         ds.base = 0;
6634
6635         cs.limit    = ds.limit = 0xffffffff;
6636         cs.type     = ds.type = 0x3;
6637         cs.dpl      = ds.dpl = 0;
6638         cs.db       = ds.db = 0;
6639         cs.s        = ds.s = 1;
6640         cs.l        = ds.l = 0;
6641         cs.g        = ds.g = 1;
6642         cs.avl      = ds.avl = 0;
6643         cs.present  = ds.present = 1;
6644         cs.unusable = ds.unusable = 0;
6645         cs.padding  = ds.padding = 0;
6646
6647         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6648         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6649         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6650         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6651         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6652         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6653
6654         if (guest_cpuid_has_longmode(vcpu))
6655                 kvm_x86_ops->set_efer(vcpu, 0);
6656
6657         kvm_update_cpuid(vcpu);
6658         kvm_mmu_reset_context(vcpu);
6659 }
6660
6661 static void process_smi(struct kvm_vcpu *vcpu)
6662 {
6663         vcpu->arch.smi_pending = true;
6664         kvm_make_request(KVM_REQ_EVENT, vcpu);
6665 }
6666
6667 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6668 {
6669         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6670 }
6671
6672 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6673 {
6674         u64 eoi_exit_bitmap[4];
6675
6676         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6677                 return;
6678
6679         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6680
6681         if (irqchip_split(vcpu->kvm))
6682                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6683         else {
6684                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6685                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6686                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6687         }
6688         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6689                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6690         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6691 }
6692
6693 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6694 {
6695         ++vcpu->stat.tlb_flush;
6696         kvm_x86_ops->tlb_flush(vcpu);
6697 }
6698
6699 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6700 {
6701         struct page *page = NULL;
6702
6703         if (!lapic_in_kernel(vcpu))
6704                 return;
6705
6706         if (!kvm_x86_ops->set_apic_access_page_addr)
6707                 return;
6708
6709         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6710         if (is_error_page(page))
6711                 return;
6712         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6713
6714         /*
6715          * Do not pin apic access page in memory, the MMU notifier
6716          * will call us again if it is migrated or swapped out.
6717          */
6718         put_page(page);
6719 }
6720 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6721
6722 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6723                                            unsigned long address)
6724 {
6725         /*
6726          * The physical address of apic access page is stored in the VMCS.
6727          * Update it when it becomes invalid.
6728          */
6729         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6730                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6731 }
6732
6733 /*
6734  * Returns 1 to let vcpu_run() continue the guest execution loop without
6735  * exiting to the userspace.  Otherwise, the value will be returned to the
6736  * userspace.
6737  */
6738 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6739 {
6740         int r;
6741         bool req_int_win =
6742                 dm_request_for_irq_injection(vcpu) &&
6743                 kvm_cpu_accept_dm_intr(vcpu);
6744
6745         bool req_immediate_exit = false;
6746
6747         if (kvm_request_pending(vcpu)) {
6748                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6749                         kvm_mmu_unload(vcpu);
6750                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6751                         __kvm_migrate_timers(vcpu);
6752                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6753                         kvm_gen_update_masterclock(vcpu->kvm);
6754                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6755                         kvm_gen_kvmclock_update(vcpu);
6756                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6757                         r = kvm_guest_time_update(vcpu);
6758                         if (unlikely(r))
6759                                 goto out;
6760                 }
6761                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6762                         kvm_mmu_sync_roots(vcpu);
6763                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6764                         kvm_vcpu_flush_tlb(vcpu);
6765                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6766                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6767                         r = 0;
6768                         goto out;
6769                 }
6770                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6771                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6772                         r = 0;
6773                         goto out;
6774                 }
6775                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6776                         /* Page is swapped out. Do synthetic halt */
6777                         vcpu->arch.apf.halted = true;
6778                         r = 1;
6779                         goto out;
6780                 }
6781                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6782                         record_steal_time(vcpu);
6783                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6784                         process_smi(vcpu);
6785                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6786                         process_nmi(vcpu);
6787                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6788                         kvm_pmu_handle_event(vcpu);
6789                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6790                         kvm_pmu_deliver_pmi(vcpu);
6791                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6792                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6793                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6794                                      vcpu->arch.ioapic_handled_vectors)) {
6795                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6796                                 vcpu->run->eoi.vector =
6797                                                 vcpu->arch.pending_ioapic_eoi;
6798                                 r = 0;
6799                                 goto out;
6800                         }
6801                 }
6802                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6803                         vcpu_scan_ioapic(vcpu);
6804                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6805                         kvm_vcpu_reload_apic_access_page(vcpu);
6806                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6807                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6808                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6809                         r = 0;
6810                         goto out;
6811                 }
6812                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6813                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6814                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6815                         r = 0;
6816                         goto out;
6817                 }
6818                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6819                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6820                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6821                         r = 0;
6822                         goto out;
6823                 }
6824
6825                 /*
6826                  * KVM_REQ_HV_STIMER has to be processed after
6827                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6828                  * depend on the guest clock being up-to-date
6829                  */
6830                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6831                         kvm_hv_process_stimers(vcpu);
6832         }
6833
6834         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6835                 ++vcpu->stat.req_event;
6836                 kvm_apic_accept_events(vcpu);
6837                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6838                         r = 1;
6839                         goto out;
6840                 }
6841
6842                 if (inject_pending_event(vcpu, req_int_win) != 0)
6843                         req_immediate_exit = true;
6844                 else {
6845                         /* Enable NMI/IRQ window open exits if needed.
6846                          *
6847                          * SMIs have two cases: 1) they can be nested, and
6848                          * then there is nothing to do here because RSM will
6849                          * cause a vmexit anyway; 2) or the SMI can be pending
6850                          * because inject_pending_event has completed the
6851                          * injection of an IRQ or NMI from the previous vmexit,
6852                          * and then we request an immediate exit to inject the SMI.
6853                          */
6854                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6855                                 req_immediate_exit = true;
6856                         if (vcpu->arch.nmi_pending)
6857                                 kvm_x86_ops->enable_nmi_window(vcpu);
6858                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6859                                 kvm_x86_ops->enable_irq_window(vcpu);
6860                 }
6861
6862                 if (kvm_lapic_enabled(vcpu)) {
6863                         update_cr8_intercept(vcpu);
6864                         kvm_lapic_sync_to_vapic(vcpu);
6865                 }
6866         }
6867
6868         r = kvm_mmu_reload(vcpu);
6869         if (unlikely(r)) {
6870                 goto cancel_injection;
6871         }
6872
6873         preempt_disable();
6874
6875         kvm_x86_ops->prepare_guest_switch(vcpu);
6876         kvm_load_guest_fpu(vcpu);
6877
6878         /*
6879          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6880          * IPI are then delayed after guest entry, which ensures that they
6881          * result in virtual interrupt delivery.
6882          */
6883         local_irq_disable();
6884         vcpu->mode = IN_GUEST_MODE;
6885
6886         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6887
6888         /*
6889          * 1) We should set ->mode before checking ->requests.  Please see
6890          * the comment in kvm_vcpu_exiting_guest_mode().
6891          *
6892          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6893          * pairs with the memory barrier implicit in pi_test_and_set_on
6894          * (see vmx_deliver_posted_interrupt).
6895          *
6896          * 3) This also orders the write to mode from any reads to the page
6897          * tables done while the VCPU is running.  Please see the comment
6898          * in kvm_flush_remote_tlbs.
6899          */
6900         smp_mb__after_srcu_read_unlock();
6901
6902         /*
6903          * This handles the case where a posted interrupt was
6904          * notified with kvm_vcpu_kick.
6905          */
6906         if (kvm_lapic_enabled(vcpu)) {
6907                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6908                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6909         }
6910
6911         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6912             || need_resched() || signal_pending(current)) {
6913                 vcpu->mode = OUTSIDE_GUEST_MODE;
6914                 smp_wmb();
6915                 local_irq_enable();
6916                 preempt_enable();
6917                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6918                 r = 1;
6919                 goto cancel_injection;
6920         }
6921
6922         kvm_load_guest_xcr0(vcpu);
6923
6924         if (req_immediate_exit) {
6925                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6926                 smp_send_reschedule(vcpu->cpu);
6927         }
6928
6929         trace_kvm_entry(vcpu->vcpu_id);
6930         wait_lapic_expire(vcpu);
6931         guest_enter_irqoff();
6932
6933         if (unlikely(vcpu->arch.switch_db_regs)) {
6934                 set_debugreg(0, 7);
6935                 set_debugreg(vcpu->arch.eff_db[0], 0);
6936                 set_debugreg(vcpu->arch.eff_db[1], 1);
6937                 set_debugreg(vcpu->arch.eff_db[2], 2);
6938                 set_debugreg(vcpu->arch.eff_db[3], 3);
6939                 set_debugreg(vcpu->arch.dr6, 6);
6940                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6941         }
6942
6943         kvm_x86_ops->run(vcpu);
6944
6945         /*
6946          * Do this here before restoring debug registers on the host.  And
6947          * since we do this before handling the vmexit, a DR access vmexit
6948          * can (a) read the correct value of the debug registers, (b) set
6949          * KVM_DEBUGREG_WONT_EXIT again.
6950          */
6951         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6952                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6953                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6954                 kvm_update_dr0123(vcpu);
6955                 kvm_update_dr6(vcpu);
6956                 kvm_update_dr7(vcpu);
6957                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6958         }
6959
6960         /*
6961          * If the guest has used debug registers, at least dr7
6962          * will be disabled while returning to the host.
6963          * If we don't have active breakpoints in the host, we don't
6964          * care about the messed up debug address registers. But if
6965          * we have some of them active, restore the old state.
6966          */
6967         if (hw_breakpoint_active())
6968                 hw_breakpoint_restore();
6969
6970         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6971
6972         vcpu->mode = OUTSIDE_GUEST_MODE;
6973         smp_wmb();
6974
6975         kvm_put_guest_xcr0(vcpu);
6976
6977         kvm_x86_ops->handle_external_intr(vcpu);
6978
6979         ++vcpu->stat.exits;
6980
6981         guest_exit_irqoff();
6982
6983         local_irq_enable();
6984         preempt_enable();
6985
6986         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6987
6988         /*
6989          * Profile KVM exit RIPs:
6990          */
6991         if (unlikely(prof_on == KVM_PROFILING)) {
6992                 unsigned long rip = kvm_rip_read(vcpu);
6993                 profile_hit(KVM_PROFILING, (void *)rip);
6994         }
6995
6996         if (unlikely(vcpu->arch.tsc_always_catchup))
6997                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6998
6999         if (vcpu->arch.apic_attention)
7000                 kvm_lapic_sync_from_vapic(vcpu);
7001
7002         r = kvm_x86_ops->handle_exit(vcpu);
7003         return r;
7004
7005 cancel_injection:
7006         kvm_x86_ops->cancel_injection(vcpu);
7007         if (unlikely(vcpu->arch.apic_attention))
7008                 kvm_lapic_sync_from_vapic(vcpu);
7009 out:
7010         return r;
7011 }
7012
7013 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7014 {
7015         if (!kvm_arch_vcpu_runnable(vcpu) &&
7016             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7017                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7018                 kvm_vcpu_block(vcpu);
7019                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7020
7021                 if (kvm_x86_ops->post_block)
7022                         kvm_x86_ops->post_block(vcpu);
7023
7024                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7025                         return 1;
7026         }
7027
7028         kvm_apic_accept_events(vcpu);
7029         switch(vcpu->arch.mp_state) {
7030         case KVM_MP_STATE_HALTED:
7031                 vcpu->arch.pv.pv_unhalted = false;
7032                 vcpu->arch.mp_state =
7033                         KVM_MP_STATE_RUNNABLE;
7034         case KVM_MP_STATE_RUNNABLE:
7035                 vcpu->arch.apf.halted = false;
7036                 break;
7037         case KVM_MP_STATE_INIT_RECEIVED:
7038                 break;
7039         default:
7040                 return -EINTR;
7041                 break;
7042         }
7043         return 1;
7044 }
7045
7046 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7047 {
7048         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7049                 kvm_x86_ops->check_nested_events(vcpu, false);
7050
7051         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7052                 !vcpu->arch.apf.halted);
7053 }
7054
7055 static int vcpu_run(struct kvm_vcpu *vcpu)
7056 {
7057         int r;
7058         struct kvm *kvm = vcpu->kvm;
7059
7060         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7061
7062         for (;;) {
7063                 if (kvm_vcpu_running(vcpu)) {
7064                         r = vcpu_enter_guest(vcpu);
7065                 } else {
7066                         r = vcpu_block(kvm, vcpu);
7067                 }
7068
7069                 if (r <= 0)
7070                         break;
7071
7072                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7073                 if (kvm_cpu_has_pending_timer(vcpu))
7074                         kvm_inject_pending_timer_irqs(vcpu);
7075
7076                 if (dm_request_for_irq_injection(vcpu) &&
7077                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7078                         r = 0;
7079                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7080                         ++vcpu->stat.request_irq_exits;
7081                         break;
7082                 }
7083
7084                 kvm_check_async_pf_completion(vcpu);
7085
7086                 if (signal_pending(current)) {
7087                         r = -EINTR;
7088                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7089                         ++vcpu->stat.signal_exits;
7090                         break;
7091                 }
7092                 if (need_resched()) {
7093                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7094                         cond_resched();
7095                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7096                 }
7097         }
7098
7099         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7100
7101         return r;
7102 }
7103
7104 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7105 {
7106         int r;
7107         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7108         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7109         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7110         if (r != EMULATE_DONE)
7111                 return 0;
7112         return 1;
7113 }
7114
7115 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7116 {
7117         BUG_ON(!vcpu->arch.pio.count);
7118
7119         return complete_emulated_io(vcpu);
7120 }
7121
7122 /*
7123  * Implements the following, as a state machine:
7124  *
7125  * read:
7126  *   for each fragment
7127  *     for each mmio piece in the fragment
7128  *       write gpa, len
7129  *       exit
7130  *       copy data
7131  *   execute insn
7132  *
7133  * write:
7134  *   for each fragment
7135  *     for each mmio piece in the fragment
7136  *       write gpa, len
7137  *       copy data
7138  *       exit
7139  */
7140 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7141 {
7142         struct kvm_run *run = vcpu->run;
7143         struct kvm_mmio_fragment *frag;
7144         unsigned len;
7145
7146         BUG_ON(!vcpu->mmio_needed);
7147
7148         /* Complete previous fragment */
7149         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7150         len = min(8u, frag->len);
7151         if (!vcpu->mmio_is_write)
7152                 memcpy(frag->data, run->mmio.data, len);
7153
7154         if (frag->len <= 8) {
7155                 /* Switch to the next fragment. */
7156                 frag++;
7157                 vcpu->mmio_cur_fragment++;
7158         } else {
7159                 /* Go forward to the next mmio piece. */
7160                 frag->data += len;
7161                 frag->gpa += len;
7162                 frag->len -= len;
7163         }
7164
7165         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7166                 vcpu->mmio_needed = 0;
7167
7168                 /* FIXME: return into emulator if single-stepping.  */
7169                 if (vcpu->mmio_is_write)
7170                         return 1;
7171                 vcpu->mmio_read_completed = 1;
7172                 return complete_emulated_io(vcpu);
7173         }
7174
7175         run->exit_reason = KVM_EXIT_MMIO;
7176         run->mmio.phys_addr = frag->gpa;
7177         if (vcpu->mmio_is_write)
7178                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7179         run->mmio.len = min(8u, frag->len);
7180         run->mmio.is_write = vcpu->mmio_is_write;
7181         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7182         return 0;
7183 }
7184
7185
7186 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7187 {
7188         struct fpu *fpu = &current->thread.fpu;
7189         int r;
7190         sigset_t sigsaved;
7191
7192         fpu__activate_curr(fpu);
7193
7194         if (vcpu->sigset_active)
7195                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
7196
7197         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7198                 kvm_vcpu_block(vcpu);
7199                 kvm_apic_accept_events(vcpu);
7200                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7201                 r = -EAGAIN;
7202                 goto out;
7203         }
7204
7205         /* re-sync apic's tpr */
7206         if (!lapic_in_kernel(vcpu)) {
7207                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7208                         r = -EINVAL;
7209                         goto out;
7210                 }
7211         }
7212
7213         if (unlikely(vcpu->arch.complete_userspace_io)) {
7214                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7215                 vcpu->arch.complete_userspace_io = NULL;
7216                 r = cui(vcpu);
7217                 if (r <= 0)
7218                         goto out;
7219         } else
7220                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7221
7222         if (kvm_run->immediate_exit)
7223                 r = -EINTR;
7224         else
7225                 r = vcpu_run(vcpu);
7226
7227 out:
7228         post_kvm_run_save(vcpu);
7229         if (vcpu->sigset_active)
7230                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
7231
7232         return r;
7233 }
7234
7235 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7236 {
7237         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7238                 /*
7239                  * We are here if userspace calls get_regs() in the middle of
7240                  * instruction emulation. Registers state needs to be copied
7241                  * back from emulation context to vcpu. Userspace shouldn't do
7242                  * that usually, but some bad designed PV devices (vmware
7243                  * backdoor interface) need this to work
7244                  */
7245                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7246                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7247         }
7248         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7249         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7250         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7251         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7252         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7253         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7254         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7255         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7256 #ifdef CONFIG_X86_64
7257         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7258         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7259         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7260         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7261         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7262         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7263         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7264         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7265 #endif
7266
7267         regs->rip = kvm_rip_read(vcpu);
7268         regs->rflags = kvm_get_rflags(vcpu);
7269
7270         return 0;
7271 }
7272
7273 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7274 {
7275         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7276         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7277
7278         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7279         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7280         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7281         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7282         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7283         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7284         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7285         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7286 #ifdef CONFIG_X86_64
7287         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7288         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7289         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7290         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7291         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7292         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7293         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7294         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7295 #endif
7296
7297         kvm_rip_write(vcpu, regs->rip);
7298         kvm_set_rflags(vcpu, regs->rflags);
7299
7300         vcpu->arch.exception.pending = false;
7301
7302         kvm_make_request(KVM_REQ_EVENT, vcpu);
7303
7304         return 0;
7305 }
7306
7307 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7308 {
7309         struct kvm_segment cs;
7310
7311         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7312         *db = cs.db;
7313         *l = cs.l;
7314 }
7315 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7316
7317 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7318                                   struct kvm_sregs *sregs)
7319 {
7320         struct desc_ptr dt;
7321
7322         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7323         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7324         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7325         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7326         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7327         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7328
7329         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7330         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7331
7332         kvm_x86_ops->get_idt(vcpu, &dt);
7333         sregs->idt.limit = dt.size;
7334         sregs->idt.base = dt.address;
7335         kvm_x86_ops->get_gdt(vcpu, &dt);
7336         sregs->gdt.limit = dt.size;
7337         sregs->gdt.base = dt.address;
7338
7339         sregs->cr0 = kvm_read_cr0(vcpu);
7340         sregs->cr2 = vcpu->arch.cr2;
7341         sregs->cr3 = kvm_read_cr3(vcpu);
7342         sregs->cr4 = kvm_read_cr4(vcpu);
7343         sregs->cr8 = kvm_get_cr8(vcpu);
7344         sregs->efer = vcpu->arch.efer;
7345         sregs->apic_base = kvm_get_apic_base(vcpu);
7346
7347         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7348
7349         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7350                 set_bit(vcpu->arch.interrupt.nr,
7351                         (unsigned long *)sregs->interrupt_bitmap);
7352
7353         return 0;
7354 }
7355
7356 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7357                                     struct kvm_mp_state *mp_state)
7358 {
7359         kvm_apic_accept_events(vcpu);
7360         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7361                                         vcpu->arch.pv.pv_unhalted)
7362                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7363         else
7364                 mp_state->mp_state = vcpu->arch.mp_state;
7365
7366         return 0;
7367 }
7368
7369 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7370                                     struct kvm_mp_state *mp_state)
7371 {
7372         if (!lapic_in_kernel(vcpu) &&
7373             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7374                 return -EINVAL;
7375
7376         /* INITs are latched while in SMM */
7377         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7378             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7379              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7380                 return -EINVAL;
7381
7382         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7383                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7384                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7385         } else
7386                 vcpu->arch.mp_state = mp_state->mp_state;
7387         kvm_make_request(KVM_REQ_EVENT, vcpu);
7388         return 0;
7389 }
7390
7391 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7392                     int reason, bool has_error_code, u32 error_code)
7393 {
7394         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7395         int ret;
7396
7397         init_emulate_ctxt(vcpu);
7398
7399         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7400                                    has_error_code, error_code);
7401
7402         if (ret)
7403                 return EMULATE_FAIL;
7404
7405         kvm_rip_write(vcpu, ctxt->eip);
7406         kvm_set_rflags(vcpu, ctxt->eflags);
7407         kvm_make_request(KVM_REQ_EVENT, vcpu);
7408         return EMULATE_DONE;
7409 }
7410 EXPORT_SYMBOL_GPL(kvm_task_switch);
7411
7412 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7413                                   struct kvm_sregs *sregs)
7414 {
7415         struct msr_data apic_base_msr;
7416         int mmu_reset_needed = 0;
7417         int pending_vec, max_bits, idx;
7418         struct desc_ptr dt;
7419
7420         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7421                 return -EINVAL;
7422
7423         dt.size = sregs->idt.limit;
7424         dt.address = sregs->idt.base;
7425         kvm_x86_ops->set_idt(vcpu, &dt);
7426         dt.size = sregs->gdt.limit;
7427         dt.address = sregs->gdt.base;
7428         kvm_x86_ops->set_gdt(vcpu, &dt);
7429
7430         vcpu->arch.cr2 = sregs->cr2;
7431         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7432         vcpu->arch.cr3 = sregs->cr3;
7433         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7434
7435         kvm_set_cr8(vcpu, sregs->cr8);
7436
7437         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7438         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7439         apic_base_msr.data = sregs->apic_base;
7440         apic_base_msr.host_initiated = true;
7441         kvm_set_apic_base(vcpu, &apic_base_msr);
7442
7443         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7444         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7445         vcpu->arch.cr0 = sregs->cr0;
7446
7447         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7448         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7449         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7450                 kvm_update_cpuid(vcpu);
7451
7452         idx = srcu_read_lock(&vcpu->kvm->srcu);
7453         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7454                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7455                 mmu_reset_needed = 1;
7456         }
7457         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7458
7459         if (mmu_reset_needed)
7460                 kvm_mmu_reset_context(vcpu);
7461
7462         max_bits = KVM_NR_INTERRUPTS;
7463         pending_vec = find_first_bit(
7464                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7465         if (pending_vec < max_bits) {
7466                 kvm_queue_interrupt(vcpu, pending_vec, false);
7467                 pr_debug("Set back pending irq %d\n", pending_vec);
7468         }
7469
7470         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7471         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7472         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7473         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7474         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7475         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7476
7477         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7478         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7479
7480         update_cr8_intercept(vcpu);
7481
7482         /* Older userspace won't unhalt the vcpu on reset. */
7483         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7484             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7485             !is_protmode(vcpu))
7486                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7487
7488         kvm_make_request(KVM_REQ_EVENT, vcpu);
7489
7490         return 0;
7491 }
7492
7493 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7494                                         struct kvm_guest_debug *dbg)
7495 {
7496         unsigned long rflags;
7497         int i, r;
7498
7499         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7500                 r = -EBUSY;
7501                 if (vcpu->arch.exception.pending)
7502                         goto out;
7503                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7504                         kvm_queue_exception(vcpu, DB_VECTOR);
7505                 else
7506                         kvm_queue_exception(vcpu, BP_VECTOR);
7507         }
7508
7509         /*
7510          * Read rflags as long as potentially injected trace flags are still
7511          * filtered out.
7512          */
7513         rflags = kvm_get_rflags(vcpu);
7514
7515         vcpu->guest_debug = dbg->control;
7516         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7517                 vcpu->guest_debug = 0;
7518
7519         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7520                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7521                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7522                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7523         } else {
7524                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7525                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7526         }
7527         kvm_update_dr7(vcpu);
7528
7529         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7530                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7531                         get_segment_base(vcpu, VCPU_SREG_CS);
7532
7533         /*
7534          * Trigger an rflags update that will inject or remove the trace
7535          * flags.
7536          */
7537         kvm_set_rflags(vcpu, rflags);
7538
7539         kvm_x86_ops->update_bp_intercept(vcpu);
7540
7541         r = 0;
7542
7543 out:
7544
7545         return r;
7546 }
7547
7548 /*
7549  * Translate a guest virtual address to a guest physical address.
7550  */
7551 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7552                                     struct kvm_translation *tr)
7553 {
7554         unsigned long vaddr = tr->linear_address;
7555         gpa_t gpa;
7556         int idx;
7557
7558         idx = srcu_read_lock(&vcpu->kvm->srcu);
7559         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7560         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7561         tr->physical_address = gpa;
7562         tr->valid = gpa != UNMAPPED_GVA;
7563         tr->writeable = 1;
7564         tr->usermode = 0;
7565
7566         return 0;
7567 }
7568
7569 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7570 {
7571         struct fxregs_state *fxsave =
7572                         &vcpu->arch.guest_fpu.state.fxsave;
7573
7574         memcpy(fpu->fpr, fxsave->st_space, 128);
7575         fpu->fcw = fxsave->cwd;
7576         fpu->fsw = fxsave->swd;
7577         fpu->ftwx = fxsave->twd;
7578         fpu->last_opcode = fxsave->fop;
7579         fpu->last_ip = fxsave->rip;
7580         fpu->last_dp = fxsave->rdp;
7581         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7582
7583         return 0;
7584 }
7585
7586 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7587 {
7588         struct fxregs_state *fxsave =
7589                         &vcpu->arch.guest_fpu.state.fxsave;
7590
7591         memcpy(fxsave->st_space, fpu->fpr, 128);
7592         fxsave->cwd = fpu->fcw;
7593         fxsave->swd = fpu->fsw;
7594         fxsave->twd = fpu->ftwx;
7595         fxsave->fop = fpu->last_opcode;
7596         fxsave->rip = fpu->last_ip;
7597         fxsave->rdp = fpu->last_dp;
7598         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7599
7600         return 0;
7601 }
7602
7603 static void fx_init(struct kvm_vcpu *vcpu)
7604 {
7605         fpstate_init(&vcpu->arch.guest_fpu.state);
7606         if (boot_cpu_has(X86_FEATURE_XSAVES))
7607                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7608                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7609
7610         /*
7611          * Ensure guest xcr0 is valid for loading
7612          */
7613         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7614
7615         vcpu->arch.cr0 |= X86_CR0_ET;
7616 }
7617
7618 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7619 {
7620         if (vcpu->guest_fpu_loaded)
7621                 return;
7622
7623         /*
7624          * Restore all possible states in the guest,
7625          * and assume host would use all available bits.
7626          * Guest xcr0 would be loaded later.
7627          */
7628         vcpu->guest_fpu_loaded = 1;
7629         __kernel_fpu_begin();
7630         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7631         trace_kvm_fpu(1);
7632 }
7633
7634 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7635 {
7636         if (!vcpu->guest_fpu_loaded)
7637                 return;
7638
7639         vcpu->guest_fpu_loaded = 0;
7640         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7641         __kernel_fpu_end();
7642         ++vcpu->stat.fpu_reload;
7643         trace_kvm_fpu(0);
7644 }
7645
7646 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7647 {
7648         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7649
7650         kvmclock_reset(vcpu);
7651
7652         kvm_x86_ops->vcpu_free(vcpu);
7653         free_cpumask_var(wbinvd_dirty_mask);
7654 }
7655
7656 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7657                                                 unsigned int id)
7658 {
7659         struct kvm_vcpu *vcpu;
7660
7661         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7662                 printk_once(KERN_WARNING
7663                 "kvm: SMP vm created on host with unstable TSC; "
7664                 "guest TSC will not be reliable\n");
7665
7666         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7667
7668         return vcpu;
7669 }
7670
7671 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7672 {
7673         int r;
7674
7675         kvm_vcpu_mtrr_init(vcpu);
7676         r = vcpu_load(vcpu);
7677         if (r)
7678                 return r;
7679         kvm_vcpu_reset(vcpu, false);
7680         kvm_mmu_setup(vcpu);
7681         vcpu_put(vcpu);
7682         return r;
7683 }
7684
7685 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7686 {
7687         struct msr_data msr;
7688         struct kvm *kvm = vcpu->kvm;
7689
7690         if (vcpu_load(vcpu))
7691                 return;
7692         msr.data = 0x0;
7693         msr.index = MSR_IA32_TSC;
7694         msr.host_initiated = true;
7695         kvm_write_tsc(vcpu, &msr);
7696         vcpu_put(vcpu);
7697
7698         if (!kvmclock_periodic_sync)
7699                 return;
7700
7701         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7702                                         KVMCLOCK_SYNC_PERIOD);
7703 }
7704
7705 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7706 {
7707         int r;
7708         vcpu->arch.apf.msr_val = 0;
7709
7710         r = vcpu_load(vcpu);
7711         BUG_ON(r);
7712         kvm_mmu_unload(vcpu);
7713         vcpu_put(vcpu);
7714
7715         kvm_x86_ops->vcpu_free(vcpu);
7716 }
7717
7718 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7719 {
7720         vcpu->arch.hflags = 0;
7721
7722         vcpu->arch.smi_pending = 0;
7723         atomic_set(&vcpu->arch.nmi_queued, 0);
7724         vcpu->arch.nmi_pending = 0;
7725         vcpu->arch.nmi_injected = false;
7726         kvm_clear_interrupt_queue(vcpu);
7727         kvm_clear_exception_queue(vcpu);
7728
7729         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7730         kvm_update_dr0123(vcpu);
7731         vcpu->arch.dr6 = DR6_INIT;
7732         kvm_update_dr6(vcpu);
7733         vcpu->arch.dr7 = DR7_FIXED_1;
7734         kvm_update_dr7(vcpu);
7735
7736         vcpu->arch.cr2 = 0;
7737
7738         kvm_make_request(KVM_REQ_EVENT, vcpu);
7739         vcpu->arch.apf.msr_val = 0;
7740         vcpu->arch.st.msr_val = 0;
7741
7742         kvmclock_reset(vcpu);
7743
7744         kvm_clear_async_pf_completion_queue(vcpu);
7745         kvm_async_pf_hash_reset(vcpu);
7746         vcpu->arch.apf.halted = false;
7747
7748         if (!init_event) {
7749                 kvm_pmu_reset(vcpu);
7750                 vcpu->arch.smbase = 0x30000;
7751
7752                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7753                 vcpu->arch.msr_misc_features_enables = 0;
7754         }
7755
7756         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7757         vcpu->arch.regs_avail = ~0;
7758         vcpu->arch.regs_dirty = ~0;
7759
7760         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7761 }
7762
7763 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7764 {
7765         struct kvm_segment cs;
7766
7767         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7768         cs.selector = vector << 8;
7769         cs.base = vector << 12;
7770         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7771         kvm_rip_write(vcpu, 0);
7772 }
7773
7774 int kvm_arch_hardware_enable(void)
7775 {
7776         struct kvm *kvm;
7777         struct kvm_vcpu *vcpu;
7778         int i;
7779         int ret;
7780         u64 local_tsc;
7781         u64 max_tsc = 0;
7782         bool stable, backwards_tsc = false;
7783
7784         kvm_shared_msr_cpu_online();
7785         ret = kvm_x86_ops->hardware_enable();
7786         if (ret != 0)
7787                 return ret;
7788
7789         local_tsc = rdtsc();
7790         stable = !check_tsc_unstable();
7791         list_for_each_entry(kvm, &vm_list, vm_list) {
7792                 kvm_for_each_vcpu(i, vcpu, kvm) {
7793                         if (!stable && vcpu->cpu == smp_processor_id())
7794                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7795                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7796                                 backwards_tsc = true;
7797                                 if (vcpu->arch.last_host_tsc > max_tsc)
7798                                         max_tsc = vcpu->arch.last_host_tsc;
7799                         }
7800                 }
7801         }
7802
7803         /*
7804          * Sometimes, even reliable TSCs go backwards.  This happens on
7805          * platforms that reset TSC during suspend or hibernate actions, but
7806          * maintain synchronization.  We must compensate.  Fortunately, we can
7807          * detect that condition here, which happens early in CPU bringup,
7808          * before any KVM threads can be running.  Unfortunately, we can't
7809          * bring the TSCs fully up to date with real time, as we aren't yet far
7810          * enough into CPU bringup that we know how much real time has actually
7811          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7812          * variables that haven't been updated yet.
7813          *
7814          * So we simply find the maximum observed TSC above, then record the
7815          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7816          * the adjustment will be applied.  Note that we accumulate
7817          * adjustments, in case multiple suspend cycles happen before some VCPU
7818          * gets a chance to run again.  In the event that no KVM threads get a
7819          * chance to run, we will miss the entire elapsed period, as we'll have
7820          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7821          * loose cycle time.  This isn't too big a deal, since the loss will be
7822          * uniform across all VCPUs (not to mention the scenario is extremely
7823          * unlikely). It is possible that a second hibernate recovery happens
7824          * much faster than a first, causing the observed TSC here to be
7825          * smaller; this would require additional padding adjustment, which is
7826          * why we set last_host_tsc to the local tsc observed here.
7827          *
7828          * N.B. - this code below runs only on platforms with reliable TSC,
7829          * as that is the only way backwards_tsc is set above.  Also note
7830          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7831          * have the same delta_cyc adjustment applied if backwards_tsc
7832          * is detected.  Note further, this adjustment is only done once,
7833          * as we reset last_host_tsc on all VCPUs to stop this from being
7834          * called multiple times (one for each physical CPU bringup).
7835          *
7836          * Platforms with unreliable TSCs don't have to deal with this, they
7837          * will be compensated by the logic in vcpu_load, which sets the TSC to
7838          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7839          * guarantee that they stay in perfect synchronization.
7840          */
7841         if (backwards_tsc) {
7842                 u64 delta_cyc = max_tsc - local_tsc;
7843                 list_for_each_entry(kvm, &vm_list, vm_list) {
7844                         kvm->arch.backwards_tsc_observed = true;
7845                         kvm_for_each_vcpu(i, vcpu, kvm) {
7846                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7847                                 vcpu->arch.last_host_tsc = local_tsc;
7848                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7849                         }
7850
7851                         /*
7852                          * We have to disable TSC offset matching.. if you were
7853                          * booting a VM while issuing an S4 host suspend....
7854                          * you may have some problem.  Solving this issue is
7855                          * left as an exercise to the reader.
7856                          */
7857                         kvm->arch.last_tsc_nsec = 0;
7858                         kvm->arch.last_tsc_write = 0;
7859                 }
7860
7861         }
7862         return 0;
7863 }
7864
7865 void kvm_arch_hardware_disable(void)
7866 {
7867         kvm_x86_ops->hardware_disable();
7868         drop_user_return_notifiers();
7869 }
7870
7871 int kvm_arch_hardware_setup(void)
7872 {
7873         int r;
7874
7875         r = kvm_x86_ops->hardware_setup();
7876         if (r != 0)
7877                 return r;
7878
7879         if (kvm_has_tsc_control) {
7880                 /*
7881                  * Make sure the user can only configure tsc_khz values that
7882                  * fit into a signed integer.
7883                  * A min value is not calculated needed because it will always
7884                  * be 1 on all machines.
7885                  */
7886                 u64 max = min(0x7fffffffULL,
7887                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7888                 kvm_max_guest_tsc_khz = max;
7889
7890                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7891         }
7892
7893         kvm_init_msr_list();
7894         return 0;
7895 }
7896
7897 void kvm_arch_hardware_unsetup(void)
7898 {
7899         kvm_x86_ops->hardware_unsetup();
7900 }
7901
7902 void kvm_arch_check_processor_compat(void *rtn)
7903 {
7904         kvm_x86_ops->check_processor_compatibility(rtn);
7905 }
7906
7907 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7908 {
7909         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7910 }
7911 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7912
7913 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7914 {
7915         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7916 }
7917
7918 struct static_key kvm_no_apic_vcpu __read_mostly;
7919 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7920
7921 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7922 {
7923         struct page *page;
7924         struct kvm *kvm;
7925         int r;
7926
7927         BUG_ON(vcpu->kvm == NULL);
7928         kvm = vcpu->kvm;
7929
7930         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7931         vcpu->arch.pv.pv_unhalted = false;
7932         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7933         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7934                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7935         else
7936                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7937
7938         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7939         if (!page) {
7940                 r = -ENOMEM;
7941                 goto fail;
7942         }
7943         vcpu->arch.pio_data = page_address(page);
7944
7945         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7946
7947         r = kvm_mmu_create(vcpu);
7948         if (r < 0)
7949                 goto fail_free_pio_data;
7950
7951         if (irqchip_in_kernel(kvm)) {
7952                 r = kvm_create_lapic(vcpu);
7953                 if (r < 0)
7954                         goto fail_mmu_destroy;
7955         } else
7956                 static_key_slow_inc(&kvm_no_apic_vcpu);
7957
7958         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7959                                        GFP_KERNEL);
7960         if (!vcpu->arch.mce_banks) {
7961                 r = -ENOMEM;
7962                 goto fail_free_lapic;
7963         }
7964         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7965
7966         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7967                 r = -ENOMEM;
7968                 goto fail_free_mce_banks;
7969         }
7970
7971         fx_init(vcpu);
7972
7973         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7974         vcpu->arch.pv_time_enabled = false;
7975
7976         vcpu->arch.guest_supported_xcr0 = 0;
7977         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7978
7979         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7980
7981         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7982
7983         kvm_async_pf_hash_reset(vcpu);
7984         kvm_pmu_init(vcpu);
7985
7986         vcpu->arch.pending_external_vector = -1;
7987
7988         kvm_hv_vcpu_init(vcpu);
7989
7990         return 0;
7991
7992 fail_free_mce_banks:
7993         kfree(vcpu->arch.mce_banks);
7994 fail_free_lapic:
7995         kvm_free_lapic(vcpu);
7996 fail_mmu_destroy:
7997         kvm_mmu_destroy(vcpu);
7998 fail_free_pio_data:
7999         free_page((unsigned long)vcpu->arch.pio_data);
8000 fail:
8001         return r;
8002 }
8003
8004 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8005 {
8006         int idx;
8007
8008         kvm_hv_vcpu_uninit(vcpu);
8009         kvm_pmu_destroy(vcpu);
8010         kfree(vcpu->arch.mce_banks);
8011         kvm_free_lapic(vcpu);
8012         idx = srcu_read_lock(&vcpu->kvm->srcu);
8013         kvm_mmu_destroy(vcpu);
8014         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8015         free_page((unsigned long)vcpu->arch.pio_data);
8016         if (!lapic_in_kernel(vcpu))
8017                 static_key_slow_dec(&kvm_no_apic_vcpu);
8018 }
8019
8020 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8021 {
8022         kvm_x86_ops->sched_in(vcpu, cpu);
8023 }
8024
8025 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8026 {
8027         if (type)
8028                 return -EINVAL;
8029
8030         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8031         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8032         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8033         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8034         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8035
8036         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8037         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8038         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8039         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8040                 &kvm->arch.irq_sources_bitmap);
8041
8042         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8043         mutex_init(&kvm->arch.apic_map_lock);
8044         mutex_init(&kvm->arch.hyperv.hv_lock);
8045         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8046
8047         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8048         pvclock_update_vm_gtod_copy(kvm);
8049
8050         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8051         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8052
8053         kvm_page_track_init(kvm);
8054         kvm_mmu_init_vm(kvm);
8055
8056         if (kvm_x86_ops->vm_init)
8057                 return kvm_x86_ops->vm_init(kvm);
8058
8059         return 0;
8060 }
8061
8062 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8063 {
8064         int r;
8065         r = vcpu_load(vcpu);
8066         BUG_ON(r);
8067         kvm_mmu_unload(vcpu);
8068         vcpu_put(vcpu);
8069 }
8070
8071 static void kvm_free_vcpus(struct kvm *kvm)
8072 {
8073         unsigned int i;
8074         struct kvm_vcpu *vcpu;
8075
8076         /*
8077          * Unpin any mmu pages first.
8078          */
8079         kvm_for_each_vcpu(i, vcpu, kvm) {
8080                 kvm_clear_async_pf_completion_queue(vcpu);
8081                 kvm_unload_vcpu_mmu(vcpu);
8082         }
8083         kvm_for_each_vcpu(i, vcpu, kvm)
8084                 kvm_arch_vcpu_free(vcpu);
8085
8086         mutex_lock(&kvm->lock);
8087         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8088                 kvm->vcpus[i] = NULL;
8089
8090         atomic_set(&kvm->online_vcpus, 0);
8091         mutex_unlock(&kvm->lock);
8092 }
8093
8094 void kvm_arch_sync_events(struct kvm *kvm)
8095 {
8096         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8097         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8098         kvm_free_pit(kvm);
8099 }
8100
8101 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8102 {
8103         int i, r;
8104         unsigned long hva;
8105         struct kvm_memslots *slots = kvm_memslots(kvm);
8106         struct kvm_memory_slot *slot, old;
8107
8108         /* Called with kvm->slots_lock held.  */
8109         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8110                 return -EINVAL;
8111
8112         slot = id_to_memslot(slots, id);
8113         if (size) {
8114                 if (slot->npages)
8115                         return -EEXIST;
8116
8117                 /*
8118                  * MAP_SHARED to prevent internal slot pages from being moved
8119                  * by fork()/COW.
8120                  */
8121                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8122                               MAP_SHARED | MAP_ANONYMOUS, 0);
8123                 if (IS_ERR((void *)hva))
8124                         return PTR_ERR((void *)hva);
8125         } else {
8126                 if (!slot->npages)
8127                         return 0;
8128
8129                 hva = 0;
8130         }
8131
8132         old = *slot;
8133         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8134                 struct kvm_userspace_memory_region m;
8135
8136                 m.slot = id | (i << 16);
8137                 m.flags = 0;
8138                 m.guest_phys_addr = gpa;
8139                 m.userspace_addr = hva;
8140                 m.memory_size = size;
8141                 r = __kvm_set_memory_region(kvm, &m);
8142                 if (r < 0)
8143                         return r;
8144         }
8145
8146         if (!size) {
8147                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8148                 WARN_ON(r < 0);
8149         }
8150
8151         return 0;
8152 }
8153 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8154
8155 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8156 {
8157         int r;
8158
8159         mutex_lock(&kvm->slots_lock);
8160         r = __x86_set_memory_region(kvm, id, gpa, size);
8161         mutex_unlock(&kvm->slots_lock);
8162
8163         return r;
8164 }
8165 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8166
8167 void kvm_arch_destroy_vm(struct kvm *kvm)
8168 {
8169         if (current->mm == kvm->mm) {
8170                 /*
8171                  * Free memory regions allocated on behalf of userspace,
8172                  * unless the the memory map has changed due to process exit
8173                  * or fd copying.
8174                  */
8175                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8176                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8177                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8178         }
8179         if (kvm_x86_ops->vm_destroy)
8180                 kvm_x86_ops->vm_destroy(kvm);
8181         kvm_pic_destroy(kvm);
8182         kvm_ioapic_destroy(kvm);
8183         kvm_free_vcpus(kvm);
8184         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8185         kvm_mmu_uninit_vm(kvm);
8186         kvm_page_track_cleanup(kvm);
8187 }
8188
8189 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8190                            struct kvm_memory_slot *dont)
8191 {
8192         int i;
8193
8194         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8195                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8196                         kvfree(free->arch.rmap[i]);
8197                         free->arch.rmap[i] = NULL;
8198                 }
8199                 if (i == 0)
8200                         continue;
8201
8202                 if (!dont || free->arch.lpage_info[i - 1] !=
8203                              dont->arch.lpage_info[i - 1]) {
8204                         kvfree(free->arch.lpage_info[i - 1]);
8205                         free->arch.lpage_info[i - 1] = NULL;
8206                 }
8207         }
8208
8209         kvm_page_track_free_memslot(free, dont);
8210 }
8211
8212 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8213                             unsigned long npages)
8214 {
8215         int i;
8216
8217         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8218                 struct kvm_lpage_info *linfo;
8219                 unsigned long ugfn;
8220                 int lpages;
8221                 int level = i + 1;
8222
8223                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8224                                       slot->base_gfn, level) + 1;
8225
8226                 slot->arch.rmap[i] =
8227                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8228                 if (!slot->arch.rmap[i])
8229                         goto out_free;
8230                 if (i == 0)
8231                         continue;
8232
8233                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8234                 if (!linfo)
8235                         goto out_free;
8236
8237                 slot->arch.lpage_info[i - 1] = linfo;
8238
8239                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8240                         linfo[0].disallow_lpage = 1;
8241                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8242                         linfo[lpages - 1].disallow_lpage = 1;
8243                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8244                 /*
8245                  * If the gfn and userspace address are not aligned wrt each
8246                  * other, or if explicitly asked to, disable large page
8247                  * support for this slot
8248                  */
8249                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8250                     !kvm_largepages_enabled()) {
8251                         unsigned long j;
8252
8253                         for (j = 0; j < lpages; ++j)
8254                                 linfo[j].disallow_lpage = 1;
8255                 }
8256         }
8257
8258         if (kvm_page_track_create_memslot(slot, npages))
8259                 goto out_free;
8260
8261         return 0;
8262
8263 out_free:
8264         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8265                 kvfree(slot->arch.rmap[i]);
8266                 slot->arch.rmap[i] = NULL;
8267                 if (i == 0)
8268                         continue;
8269
8270                 kvfree(slot->arch.lpage_info[i - 1]);
8271                 slot->arch.lpage_info[i - 1] = NULL;
8272         }
8273         return -ENOMEM;
8274 }
8275
8276 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8277 {
8278         /*
8279          * memslots->generation has been incremented.
8280          * mmio generation may have reached its maximum value.
8281          */
8282         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8283 }
8284
8285 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8286                                 struct kvm_memory_slot *memslot,
8287                                 const struct kvm_userspace_memory_region *mem,
8288                                 enum kvm_mr_change change)
8289 {
8290         return 0;
8291 }
8292
8293 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8294                                      struct kvm_memory_slot *new)
8295 {
8296         /* Still write protect RO slot */
8297         if (new->flags & KVM_MEM_READONLY) {
8298                 kvm_mmu_slot_remove_write_access(kvm, new);
8299                 return;
8300         }
8301
8302         /*
8303          * Call kvm_x86_ops dirty logging hooks when they are valid.
8304          *
8305          * kvm_x86_ops->slot_disable_log_dirty is called when:
8306          *
8307          *  - KVM_MR_CREATE with dirty logging is disabled
8308          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8309          *
8310          * The reason is, in case of PML, we need to set D-bit for any slots
8311          * with dirty logging disabled in order to eliminate unnecessary GPA
8312          * logging in PML buffer (and potential PML buffer full VMEXT). This
8313          * guarantees leaving PML enabled during guest's lifetime won't have
8314          * any additonal overhead from PML when guest is running with dirty
8315          * logging disabled for memory slots.
8316          *
8317          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8318          * to dirty logging mode.
8319          *
8320          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8321          *
8322          * In case of write protect:
8323          *
8324          * Write protect all pages for dirty logging.
8325          *
8326          * All the sptes including the large sptes which point to this
8327          * slot are set to readonly. We can not create any new large
8328          * spte on this slot until the end of the logging.
8329          *
8330          * See the comments in fast_page_fault().
8331          */
8332         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8333                 if (kvm_x86_ops->slot_enable_log_dirty)
8334                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8335                 else
8336                         kvm_mmu_slot_remove_write_access(kvm, new);
8337         } else {
8338                 if (kvm_x86_ops->slot_disable_log_dirty)
8339                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8340         }
8341 }
8342
8343 void kvm_arch_commit_memory_region(struct kvm *kvm,
8344                                 const struct kvm_userspace_memory_region *mem,
8345                                 const struct kvm_memory_slot *old,
8346                                 const struct kvm_memory_slot *new,
8347                                 enum kvm_mr_change change)
8348 {
8349         int nr_mmu_pages = 0;
8350
8351         if (!kvm->arch.n_requested_mmu_pages)
8352                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8353
8354         if (nr_mmu_pages)
8355                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8356
8357         /*
8358          * Dirty logging tracks sptes in 4k granularity, meaning that large
8359          * sptes have to be split.  If live migration is successful, the guest
8360          * in the source machine will be destroyed and large sptes will be
8361          * created in the destination. However, if the guest continues to run
8362          * in the source machine (for example if live migration fails), small
8363          * sptes will remain around and cause bad performance.
8364          *
8365          * Scan sptes if dirty logging has been stopped, dropping those
8366          * which can be collapsed into a single large-page spte.  Later
8367          * page faults will create the large-page sptes.
8368          */
8369         if ((change != KVM_MR_DELETE) &&
8370                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8371                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8372                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8373
8374         /*
8375          * Set up write protection and/or dirty logging for the new slot.
8376          *
8377          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8378          * been zapped so no dirty logging staff is needed for old slot. For
8379          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8380          * new and it's also covered when dealing with the new slot.
8381          *
8382          * FIXME: const-ify all uses of struct kvm_memory_slot.
8383          */
8384         if (change != KVM_MR_DELETE)
8385                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8386 }
8387
8388 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8389 {
8390         kvm_mmu_invalidate_zap_all_pages(kvm);
8391 }
8392
8393 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8394                                    struct kvm_memory_slot *slot)
8395 {
8396         kvm_page_track_flush_slot(kvm, slot);
8397 }
8398
8399 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8400 {
8401         if (!list_empty_careful(&vcpu->async_pf.done))
8402                 return true;
8403
8404         if (kvm_apic_has_events(vcpu))
8405                 return true;
8406
8407         if (vcpu->arch.pv.pv_unhalted)
8408                 return true;
8409
8410         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8411             (vcpu->arch.nmi_pending &&
8412              kvm_x86_ops->nmi_allowed(vcpu)))
8413                 return true;
8414
8415         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8416             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8417                 return true;
8418
8419         if (kvm_arch_interrupt_allowed(vcpu) &&
8420             kvm_cpu_has_interrupt(vcpu))
8421                 return true;
8422
8423         if (kvm_hv_has_stimer_pending(vcpu))
8424                 return true;
8425
8426         return false;
8427 }
8428
8429 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8430 {
8431         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8432 }
8433
8434 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8435 {
8436         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8437 }
8438
8439 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8440 {
8441         return kvm_x86_ops->interrupt_allowed(vcpu);
8442 }
8443
8444 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8445 {
8446         if (is_64_bit_mode(vcpu))
8447                 return kvm_rip_read(vcpu);
8448         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8449                      kvm_rip_read(vcpu));
8450 }
8451 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8452
8453 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8454 {
8455         return kvm_get_linear_rip(vcpu) == linear_rip;
8456 }
8457 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8458
8459 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8460 {
8461         unsigned long rflags;
8462
8463         rflags = kvm_x86_ops->get_rflags(vcpu);
8464         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8465                 rflags &= ~X86_EFLAGS_TF;
8466         return rflags;
8467 }
8468 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8469
8470 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8471 {
8472         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8473             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8474                 rflags |= X86_EFLAGS_TF;
8475         kvm_x86_ops->set_rflags(vcpu, rflags);
8476 }
8477
8478 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8479 {
8480         __kvm_set_rflags(vcpu, rflags);
8481         kvm_make_request(KVM_REQ_EVENT, vcpu);
8482 }
8483 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8484
8485 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8486 {
8487         int r;
8488
8489         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8490               work->wakeup_all)
8491                 return;
8492
8493         r = kvm_mmu_reload(vcpu);
8494         if (unlikely(r))
8495                 return;
8496
8497         if (!vcpu->arch.mmu.direct_map &&
8498               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8499                 return;
8500
8501         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8502 }
8503
8504 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8505 {
8506         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8507 }
8508
8509 static inline u32 kvm_async_pf_next_probe(u32 key)
8510 {
8511         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8512 }
8513
8514 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8515 {
8516         u32 key = kvm_async_pf_hash_fn(gfn);
8517
8518         while (vcpu->arch.apf.gfns[key] != ~0)
8519                 key = kvm_async_pf_next_probe(key);
8520
8521         vcpu->arch.apf.gfns[key] = gfn;
8522 }
8523
8524 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8525 {
8526         int i;
8527         u32 key = kvm_async_pf_hash_fn(gfn);
8528
8529         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8530                      (vcpu->arch.apf.gfns[key] != gfn &&
8531                       vcpu->arch.apf.gfns[key] != ~0); i++)
8532                 key = kvm_async_pf_next_probe(key);
8533
8534         return key;
8535 }
8536
8537 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8538 {
8539         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8540 }
8541
8542 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8543 {
8544         u32 i, j, k;
8545
8546         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8547         while (true) {
8548                 vcpu->arch.apf.gfns[i] = ~0;
8549                 do {
8550                         j = kvm_async_pf_next_probe(j);
8551                         if (vcpu->arch.apf.gfns[j] == ~0)
8552                                 return;
8553                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8554                         /*
8555                          * k lies cyclically in ]i,j]
8556                          * |    i.k.j |
8557                          * |....j i.k.| or  |.k..j i...|
8558                          */
8559                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8560                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8561                 i = j;
8562         }
8563 }
8564
8565 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8566 {
8567
8568         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8569                                       sizeof(val));
8570 }
8571
8572 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8573                                      struct kvm_async_pf *work)
8574 {
8575         struct x86_exception fault;
8576
8577         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8578         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8579
8580         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8581             (vcpu->arch.apf.send_user_only &&
8582              kvm_x86_ops->get_cpl(vcpu) == 0))
8583                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8584         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8585                 fault.vector = PF_VECTOR;
8586                 fault.error_code_valid = true;
8587                 fault.error_code = 0;
8588                 fault.nested_page_fault = false;
8589                 fault.address = work->arch.token;
8590                 fault.async_page_fault = true;
8591                 kvm_inject_page_fault(vcpu, &fault);
8592         }
8593 }
8594
8595 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8596                                  struct kvm_async_pf *work)
8597 {
8598         struct x86_exception fault;
8599
8600         if (work->wakeup_all)
8601                 work->arch.token = ~0; /* broadcast wakeup */
8602         else
8603                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8604         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8605
8606         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8607             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8608                 fault.vector = PF_VECTOR;
8609                 fault.error_code_valid = true;
8610                 fault.error_code = 0;
8611                 fault.nested_page_fault = false;
8612                 fault.address = work->arch.token;
8613                 fault.async_page_fault = true;
8614                 kvm_inject_page_fault(vcpu, &fault);
8615         }
8616         vcpu->arch.apf.halted = false;
8617         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8618 }
8619
8620 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8621 {
8622         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8623                 return true;
8624         else
8625                 return kvm_can_do_async_pf(vcpu);
8626 }
8627
8628 void kvm_arch_start_assignment(struct kvm *kvm)
8629 {
8630         atomic_inc(&kvm->arch.assigned_device_count);
8631 }
8632 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8633
8634 void kvm_arch_end_assignment(struct kvm *kvm)
8635 {
8636         atomic_dec(&kvm->arch.assigned_device_count);
8637 }
8638 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8639
8640 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8641 {
8642         return atomic_read(&kvm->arch.assigned_device_count);
8643 }
8644 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8645
8646 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8647 {
8648         atomic_inc(&kvm->arch.noncoherent_dma_count);
8649 }
8650 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8651
8652 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8653 {
8654         atomic_dec(&kvm->arch.noncoherent_dma_count);
8655 }
8656 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8657
8658 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8659 {
8660         return atomic_read(&kvm->arch.noncoherent_dma_count);
8661 }
8662 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8663
8664 bool kvm_arch_has_irq_bypass(void)
8665 {
8666         return kvm_x86_ops->update_pi_irte != NULL;
8667 }
8668
8669 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8670                                       struct irq_bypass_producer *prod)
8671 {
8672         struct kvm_kernel_irqfd *irqfd =
8673                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8674
8675         irqfd->producer = prod;
8676
8677         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8678                                            prod->irq, irqfd->gsi, 1);
8679 }
8680
8681 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8682                                       struct irq_bypass_producer *prod)
8683 {
8684         int ret;
8685         struct kvm_kernel_irqfd *irqfd =
8686                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8687
8688         WARN_ON(irqfd->producer != prod);
8689         irqfd->producer = NULL;
8690
8691         /*
8692          * When producer of consumer is unregistered, we change back to
8693          * remapped mode, so we can re-use the current implementation
8694          * when the irq is masked/disabled or the consumer side (KVM
8695          * int this case doesn't want to receive the interrupts.
8696         */
8697         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8698         if (ret)
8699                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8700                        " fails: %d\n", irqfd->consumer.token, ret);
8701 }
8702
8703 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8704                                    uint32_t guest_irq, bool set)
8705 {
8706         if (!kvm_x86_ops->update_pi_irte)
8707                 return -EINVAL;
8708
8709         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8710 }
8711
8712 bool kvm_vector_hashing_enabled(void)
8713 {
8714         return vector_hashing;
8715 }
8716 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8717
8718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8733 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8734 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8735 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8736 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);