]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'pwm/for-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 0;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152
153 #define KVM_NR_SHARED_MSRS 16
154
155 struct kvm_shared_msrs_global {
156         int nr;
157         u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159
160 struct kvm_shared_msrs {
161         struct user_return_notifier urn;
162         bool registered;
163         struct kvm_shared_msr_values {
164                 u64 host;
165                 u64 curr;
166         } values[KVM_NR_SHARED_MSRS];
167 };
168
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173         { "pf_fixed", VCPU_STAT(pf_fixed) },
174         { "pf_guest", VCPU_STAT(pf_guest) },
175         { "tlb_flush", VCPU_STAT(tlb_flush) },
176         { "invlpg", VCPU_STAT(invlpg) },
177         { "exits", VCPU_STAT(exits) },
178         { "io_exits", VCPU_STAT(io_exits) },
179         { "mmio_exits", VCPU_STAT(mmio_exits) },
180         { "signal_exits", VCPU_STAT(signal_exits) },
181         { "irq_window", VCPU_STAT(irq_window_exits) },
182         { "nmi_window", VCPU_STAT(nmi_window_exits) },
183         { "halt_exits", VCPU_STAT(halt_exits) },
184         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188         { "hypercalls", VCPU_STAT(hypercalls) },
189         { "request_irq", VCPU_STAT(request_irq_exits) },
190         { "irq_exits", VCPU_STAT(irq_exits) },
191         { "host_state_reload", VCPU_STAT(host_state_reload) },
192         { "fpu_reload", VCPU_STAT(fpu_reload) },
193         { "insn_emulation", VCPU_STAT(insn_emulation) },
194         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195         { "irq_injections", VCPU_STAT(irq_injections) },
196         { "nmi_injections", VCPU_STAT(nmi_injections) },
197         { "req_event", VCPU_STAT(req_event) },
198         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
199         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
200         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
201         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
202         { "mmu_flooded", VM_STAT(mmu_flooded) },
203         { "mmu_recycled", VM_STAT(mmu_recycled) },
204         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
205         { "mmu_unsync", VM_STAT(mmu_unsync) },
206         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
207         { "largepages", VM_STAT(lpages) },
208         { "max_mmu_page_hash_collisions",
209                 VM_STAT(max_mmu_page_hash_collisions) },
210         { NULL }
211 };
212
213 u64 __read_mostly host_xcr0;
214
215 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
216
217 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
218 {
219         int i;
220         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
221                 vcpu->arch.apf.gfns[i] = ~0;
222 }
223
224 static void kvm_on_user_return(struct user_return_notifier *urn)
225 {
226         unsigned slot;
227         struct kvm_shared_msrs *locals
228                 = container_of(urn, struct kvm_shared_msrs, urn);
229         struct kvm_shared_msr_values *values;
230         unsigned long flags;
231
232         /*
233          * Disabling irqs at this point since the following code could be
234          * interrupted and executed through kvm_arch_hardware_disable()
235          */
236         local_irq_save(flags);
237         if (locals->registered) {
238                 locals->registered = false;
239                 user_return_notifier_unregister(urn);
240         }
241         local_irq_restore(flags);
242         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
243                 values = &locals->values[slot];
244                 if (values->host != values->curr) {
245                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
246                         values->curr = values->host;
247                 }
248         }
249 }
250
251 static void shared_msr_update(unsigned slot, u32 msr)
252 {
253         u64 value;
254         unsigned int cpu = smp_processor_id();
255         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
256
257         /* only read, and nobody should modify it at this time,
258          * so don't need lock */
259         if (slot >= shared_msrs_global.nr) {
260                 printk(KERN_ERR "kvm: invalid MSR slot!");
261                 return;
262         }
263         rdmsrl_safe(msr, &value);
264         smsr->values[slot].host = value;
265         smsr->values[slot].curr = value;
266 }
267
268 void kvm_define_shared_msr(unsigned slot, u32 msr)
269 {
270         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
271         shared_msrs_global.msrs[slot] = msr;
272         if (slot >= shared_msrs_global.nr)
273                 shared_msrs_global.nr = slot + 1;
274 }
275 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
276
277 static void kvm_shared_msr_cpu_online(void)
278 {
279         unsigned i;
280
281         for (i = 0; i < shared_msrs_global.nr; ++i)
282                 shared_msr_update(i, shared_msrs_global.msrs[i]);
283 }
284
285 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
286 {
287         unsigned int cpu = smp_processor_id();
288         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
289         int err;
290
291         if (((value ^ smsr->values[slot].curr) & mask) == 0)
292                 return 0;
293         smsr->values[slot].curr = value;
294         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
295         if (err)
296                 return 1;
297
298         if (!smsr->registered) {
299                 smsr->urn.on_user_return = kvm_on_user_return;
300                 user_return_notifier_register(&smsr->urn);
301                 smsr->registered = true;
302         }
303         return 0;
304 }
305 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
306
307 static void drop_user_return_notifiers(void)
308 {
309         unsigned int cpu = smp_processor_id();
310         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
311
312         if (smsr->registered)
313                 kvm_on_user_return(&smsr->urn);
314 }
315
316 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
317 {
318         return vcpu->arch.apic_base;
319 }
320 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
321
322 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
323 {
324         return kvm_apic_mode(kvm_get_apic_base(vcpu));
325 }
326 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
327
328 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
329 {
330         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
331         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
332         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
333                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
334
335         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
336                 return 1;
337         if (!msr_info->host_initiated) {
338                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
339                         return 1;
340                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
341                         return 1;
342         }
343
344         kvm_lapic_set_base(vcpu, msr_info->data);
345         return 0;
346 }
347 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
348
349 asmlinkage __visible void kvm_spurious_fault(void)
350 {
351         /* Fault while not rebooting.  We want the trace. */
352         BUG();
353 }
354 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
355
356 #define EXCPT_BENIGN            0
357 #define EXCPT_CONTRIBUTORY      1
358 #define EXCPT_PF                2
359
360 static int exception_class(int vector)
361 {
362         switch (vector) {
363         case PF_VECTOR:
364                 return EXCPT_PF;
365         case DE_VECTOR:
366         case TS_VECTOR:
367         case NP_VECTOR:
368         case SS_VECTOR:
369         case GP_VECTOR:
370                 return EXCPT_CONTRIBUTORY;
371         default:
372                 break;
373         }
374         return EXCPT_BENIGN;
375 }
376
377 #define EXCPT_FAULT             0
378 #define EXCPT_TRAP              1
379 #define EXCPT_ABORT             2
380 #define EXCPT_INTERRUPT         3
381
382 static int exception_type(int vector)
383 {
384         unsigned int mask;
385
386         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
387                 return EXCPT_INTERRUPT;
388
389         mask = 1 << vector;
390
391         /* #DB is trap, as instruction watchpoints are handled elsewhere */
392         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
393                 return EXCPT_TRAP;
394
395         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
396                 return EXCPT_ABORT;
397
398         /* Reserved exceptions will result in fault */
399         return EXCPT_FAULT;
400 }
401
402 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
403                 unsigned nr, bool has_error, u32 error_code,
404                 bool reinject)
405 {
406         u32 prev_nr;
407         int class1, class2;
408
409         kvm_make_request(KVM_REQ_EVENT, vcpu);
410
411         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
412         queue:
413                 if (has_error && !is_protmode(vcpu))
414                         has_error = false;
415                 if (reinject) {
416                         /*
417                          * On vmentry, vcpu->arch.exception.pending is only
418                          * true if an event injection was blocked by
419                          * nested_run_pending.  In that case, however,
420                          * vcpu_enter_guest requests an immediate exit,
421                          * and the guest shouldn't proceed far enough to
422                          * need reinjection.
423                          */
424                         WARN_ON_ONCE(vcpu->arch.exception.pending);
425                         vcpu->arch.exception.injected = true;
426                 } else {
427                         vcpu->arch.exception.pending = true;
428                         vcpu->arch.exception.injected = false;
429                 }
430                 vcpu->arch.exception.has_error_code = has_error;
431                 vcpu->arch.exception.nr = nr;
432                 vcpu->arch.exception.error_code = error_code;
433                 return;
434         }
435
436         /* to check exception */
437         prev_nr = vcpu->arch.exception.nr;
438         if (prev_nr == DF_VECTOR) {
439                 /* triple fault -> shutdown */
440                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
441                 return;
442         }
443         class1 = exception_class(prev_nr);
444         class2 = exception_class(nr);
445         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
446                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
447                 /*
448                  * Generate double fault per SDM Table 5-5.  Set
449                  * exception.pending = true so that the double fault
450                  * can trigger a nested vmexit.
451                  */
452                 vcpu->arch.exception.pending = true;
453                 vcpu->arch.exception.injected = false;
454                 vcpu->arch.exception.has_error_code = true;
455                 vcpu->arch.exception.nr = DF_VECTOR;
456                 vcpu->arch.exception.error_code = 0;
457         } else
458                 /* replace previous exception with a new one in a hope
459                    that instruction re-execution will regenerate lost
460                    exception */
461                 goto queue;
462 }
463
464 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
465 {
466         kvm_multiple_exception(vcpu, nr, false, 0, false);
467 }
468 EXPORT_SYMBOL_GPL(kvm_queue_exception);
469
470 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
471 {
472         kvm_multiple_exception(vcpu, nr, false, 0, true);
473 }
474 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
475
476 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
477 {
478         if (err)
479                 kvm_inject_gp(vcpu, 0);
480         else
481                 return kvm_skip_emulated_instruction(vcpu);
482
483         return 1;
484 }
485 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
486
487 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
488 {
489         ++vcpu->stat.pf_guest;
490         vcpu->arch.exception.nested_apf =
491                 is_guest_mode(vcpu) && fault->async_page_fault;
492         if (vcpu->arch.exception.nested_apf)
493                 vcpu->arch.apf.nested_apf_token = fault->address;
494         else
495                 vcpu->arch.cr2 = fault->address;
496         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
497 }
498 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
499
500 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
501 {
502         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
503                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
504         else
505                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
506
507         return fault->nested_page_fault;
508 }
509
510 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
511 {
512         atomic_inc(&vcpu->arch.nmi_queued);
513         kvm_make_request(KVM_REQ_NMI, vcpu);
514 }
515 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
516
517 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
518 {
519         kvm_multiple_exception(vcpu, nr, true, error_code, false);
520 }
521 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
522
523 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
524 {
525         kvm_multiple_exception(vcpu, nr, true, error_code, true);
526 }
527 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
528
529 /*
530  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
531  * a #GP and return false.
532  */
533 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
534 {
535         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
536                 return true;
537         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
538         return false;
539 }
540 EXPORT_SYMBOL_GPL(kvm_require_cpl);
541
542 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
543 {
544         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
545                 return true;
546
547         kvm_queue_exception(vcpu, UD_VECTOR);
548         return false;
549 }
550 EXPORT_SYMBOL_GPL(kvm_require_dr);
551
552 /*
553  * This function will be used to read from the physical memory of the currently
554  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
555  * can read from guest physical or from the guest's guest physical memory.
556  */
557 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
558                             gfn_t ngfn, void *data, int offset, int len,
559                             u32 access)
560 {
561         struct x86_exception exception;
562         gfn_t real_gfn;
563         gpa_t ngpa;
564
565         ngpa     = gfn_to_gpa(ngfn);
566         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
567         if (real_gfn == UNMAPPED_GVA)
568                 return -EFAULT;
569
570         real_gfn = gpa_to_gfn(real_gfn);
571
572         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
573 }
574 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
575
576 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
577                                void *data, int offset, int len, u32 access)
578 {
579         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
580                                        data, offset, len, access);
581 }
582
583 /*
584  * Load the pae pdptrs.  Return true is they are all valid.
585  */
586 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
587 {
588         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
589         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
590         int i;
591         int ret;
592         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
593
594         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
595                                       offset * sizeof(u64), sizeof(pdpte),
596                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
597         if (ret < 0) {
598                 ret = 0;
599                 goto out;
600         }
601         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
602                 if ((pdpte[i] & PT_PRESENT_MASK) &&
603                     (pdpte[i] &
604                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
605                         ret = 0;
606                         goto out;
607                 }
608         }
609         ret = 1;
610
611         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
612         __set_bit(VCPU_EXREG_PDPTR,
613                   (unsigned long *)&vcpu->arch.regs_avail);
614         __set_bit(VCPU_EXREG_PDPTR,
615                   (unsigned long *)&vcpu->arch.regs_dirty);
616 out:
617
618         return ret;
619 }
620 EXPORT_SYMBOL_GPL(load_pdptrs);
621
622 bool pdptrs_changed(struct kvm_vcpu *vcpu)
623 {
624         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
625         bool changed = true;
626         int offset;
627         gfn_t gfn;
628         int r;
629
630         if (is_long_mode(vcpu) || !is_pae(vcpu))
631                 return false;
632
633         if (!test_bit(VCPU_EXREG_PDPTR,
634                       (unsigned long *)&vcpu->arch.regs_avail))
635                 return true;
636
637         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
638         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
639         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
640                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
641         if (r < 0)
642                 goto out;
643         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
644 out:
645
646         return changed;
647 }
648 EXPORT_SYMBOL_GPL(pdptrs_changed);
649
650 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
651 {
652         unsigned long old_cr0 = kvm_read_cr0(vcpu);
653         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
654
655         cr0 |= X86_CR0_ET;
656
657 #ifdef CONFIG_X86_64
658         if (cr0 & 0xffffffff00000000UL)
659                 return 1;
660 #endif
661
662         cr0 &= ~CR0_RESERVED_BITS;
663
664         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
665                 return 1;
666
667         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
668                 return 1;
669
670         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
671 #ifdef CONFIG_X86_64
672                 if ((vcpu->arch.efer & EFER_LME)) {
673                         int cs_db, cs_l;
674
675                         if (!is_pae(vcpu))
676                                 return 1;
677                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
678                         if (cs_l)
679                                 return 1;
680                 } else
681 #endif
682                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
683                                                  kvm_read_cr3(vcpu)))
684                         return 1;
685         }
686
687         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
688                 return 1;
689
690         kvm_x86_ops->set_cr0(vcpu, cr0);
691
692         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
693                 kvm_clear_async_pf_completion_queue(vcpu);
694                 kvm_async_pf_hash_reset(vcpu);
695         }
696
697         if ((cr0 ^ old_cr0) & update_bits)
698                 kvm_mmu_reset_context(vcpu);
699
700         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
701             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
702             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
703                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
704
705         return 0;
706 }
707 EXPORT_SYMBOL_GPL(kvm_set_cr0);
708
709 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
710 {
711         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
712 }
713 EXPORT_SYMBOL_GPL(kvm_lmsw);
714
715 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
716 {
717         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
718                         !vcpu->guest_xcr0_loaded) {
719                 /* kvm_set_xcr() also depends on this */
720                 if (vcpu->arch.xcr0 != host_xcr0)
721                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
722                 vcpu->guest_xcr0_loaded = 1;
723         }
724 }
725
726 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
727 {
728         if (vcpu->guest_xcr0_loaded) {
729                 if (vcpu->arch.xcr0 != host_xcr0)
730                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
731                 vcpu->guest_xcr0_loaded = 0;
732         }
733 }
734
735 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
736 {
737         u64 xcr0 = xcr;
738         u64 old_xcr0 = vcpu->arch.xcr0;
739         u64 valid_bits;
740
741         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
742         if (index != XCR_XFEATURE_ENABLED_MASK)
743                 return 1;
744         if (!(xcr0 & XFEATURE_MASK_FP))
745                 return 1;
746         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
747                 return 1;
748
749         /*
750          * Do not allow the guest to set bits that we do not support
751          * saving.  However, xcr0 bit 0 is always set, even if the
752          * emulated CPU does not support XSAVE (see fx_init).
753          */
754         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
755         if (xcr0 & ~valid_bits)
756                 return 1;
757
758         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
759             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
760                 return 1;
761
762         if (xcr0 & XFEATURE_MASK_AVX512) {
763                 if (!(xcr0 & XFEATURE_MASK_YMM))
764                         return 1;
765                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
766                         return 1;
767         }
768         vcpu->arch.xcr0 = xcr0;
769
770         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
771                 kvm_update_cpuid(vcpu);
772         return 0;
773 }
774
775 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
776 {
777         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
778             __kvm_set_xcr(vcpu, index, xcr)) {
779                 kvm_inject_gp(vcpu, 0);
780                 return 1;
781         }
782         return 0;
783 }
784 EXPORT_SYMBOL_GPL(kvm_set_xcr);
785
786 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
787 {
788         unsigned long old_cr4 = kvm_read_cr4(vcpu);
789         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
790                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
791
792         if (cr4 & CR4_RESERVED_BITS)
793                 return 1;
794
795         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
796                 return 1;
797
798         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
799                 return 1;
800
801         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
802                 return 1;
803
804         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
805                 return 1;
806
807         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
808                 return 1;
809
810         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
811                 return 1;
812
813         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
814                 return 1;
815
816         if (is_long_mode(vcpu)) {
817                 if (!(cr4 & X86_CR4_PAE))
818                         return 1;
819         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
820                    && ((cr4 ^ old_cr4) & pdptr_bits)
821                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
822                                    kvm_read_cr3(vcpu)))
823                 return 1;
824
825         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
826                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
827                         return 1;
828
829                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
830                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
831                         return 1;
832         }
833
834         if (kvm_x86_ops->set_cr4(vcpu, cr4))
835                 return 1;
836
837         if (((cr4 ^ old_cr4) & pdptr_bits) ||
838             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
839                 kvm_mmu_reset_context(vcpu);
840
841         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
842                 kvm_update_cpuid(vcpu);
843
844         return 0;
845 }
846 EXPORT_SYMBOL_GPL(kvm_set_cr4);
847
848 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
849 {
850 #ifdef CONFIG_X86_64
851         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
852
853         if (pcid_enabled)
854                 cr3 &= ~CR3_PCID_INVD;
855 #endif
856
857         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
858                 kvm_mmu_sync_roots(vcpu);
859                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
860                 return 0;
861         }
862
863         if (is_long_mode(vcpu) &&
864             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
865                 return 1;
866         else if (is_pae(vcpu) && is_paging(vcpu) &&
867                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
868                 return 1;
869
870         vcpu->arch.cr3 = cr3;
871         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
872         kvm_mmu_new_cr3(vcpu);
873         return 0;
874 }
875 EXPORT_SYMBOL_GPL(kvm_set_cr3);
876
877 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
878 {
879         if (cr8 & CR8_RESERVED_BITS)
880                 return 1;
881         if (lapic_in_kernel(vcpu))
882                 kvm_lapic_set_tpr(vcpu, cr8);
883         else
884                 vcpu->arch.cr8 = cr8;
885         return 0;
886 }
887 EXPORT_SYMBOL_GPL(kvm_set_cr8);
888
889 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
890 {
891         if (lapic_in_kernel(vcpu))
892                 return kvm_lapic_get_cr8(vcpu);
893         else
894                 return vcpu->arch.cr8;
895 }
896 EXPORT_SYMBOL_GPL(kvm_get_cr8);
897
898 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
899 {
900         int i;
901
902         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
903                 for (i = 0; i < KVM_NR_DB_REGS; i++)
904                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
905                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
906         }
907 }
908
909 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
910 {
911         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
912                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
913 }
914
915 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
916 {
917         unsigned long dr7;
918
919         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
920                 dr7 = vcpu->arch.guest_debug_dr7;
921         else
922                 dr7 = vcpu->arch.dr7;
923         kvm_x86_ops->set_dr7(vcpu, dr7);
924         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
925         if (dr7 & DR7_BP_EN_MASK)
926                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
927 }
928
929 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
930 {
931         u64 fixed = DR6_FIXED_1;
932
933         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
934                 fixed |= DR6_RTM;
935         return fixed;
936 }
937
938 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
939 {
940         switch (dr) {
941         case 0 ... 3:
942                 vcpu->arch.db[dr] = val;
943                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
944                         vcpu->arch.eff_db[dr] = val;
945                 break;
946         case 4:
947                 /* fall through */
948         case 6:
949                 if (val & 0xffffffff00000000ULL)
950                         return -1; /* #GP */
951                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
952                 kvm_update_dr6(vcpu);
953                 break;
954         case 5:
955                 /* fall through */
956         default: /* 7 */
957                 if (val & 0xffffffff00000000ULL)
958                         return -1; /* #GP */
959                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
960                 kvm_update_dr7(vcpu);
961                 break;
962         }
963
964         return 0;
965 }
966
967 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
968 {
969         if (__kvm_set_dr(vcpu, dr, val)) {
970                 kvm_inject_gp(vcpu, 0);
971                 return 1;
972         }
973         return 0;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_dr);
976
977 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
978 {
979         switch (dr) {
980         case 0 ... 3:
981                 *val = vcpu->arch.db[dr];
982                 break;
983         case 4:
984                 /* fall through */
985         case 6:
986                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
987                         *val = vcpu->arch.dr6;
988                 else
989                         *val = kvm_x86_ops->get_dr6(vcpu);
990                 break;
991         case 5:
992                 /* fall through */
993         default: /* 7 */
994                 *val = vcpu->arch.dr7;
995                 break;
996         }
997         return 0;
998 }
999 EXPORT_SYMBOL_GPL(kvm_get_dr);
1000
1001 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1002 {
1003         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1004         u64 data;
1005         int err;
1006
1007         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1008         if (err)
1009                 return err;
1010         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1011         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1012         return err;
1013 }
1014 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1015
1016 /*
1017  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1018  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1019  *
1020  * This list is modified at module load time to reflect the
1021  * capabilities of the host cpu. This capabilities test skips MSRs that are
1022  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1023  * may depend on host virtualization features rather than host cpu features.
1024  */
1025
1026 static u32 msrs_to_save[] = {
1027         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1028         MSR_STAR,
1029 #ifdef CONFIG_X86_64
1030         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1031 #endif
1032         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1033         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1034         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1035 };
1036
1037 static unsigned num_msrs_to_save;
1038
1039 static u32 emulated_msrs[] = {
1040         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1041         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1042         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1043         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1044         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1045         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1046         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1047         HV_X64_MSR_RESET,
1048         HV_X64_MSR_VP_INDEX,
1049         HV_X64_MSR_VP_RUNTIME,
1050         HV_X64_MSR_SCONTROL,
1051         HV_X64_MSR_STIMER0_CONFIG,
1052         HV_X64_MSR_VP_ASSIST_PAGE,
1053         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1054         HV_X64_MSR_TSC_EMULATION_STATUS,
1055
1056         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1057         MSR_KVM_PV_EOI_EN,
1058
1059         MSR_IA32_TSC_ADJUST,
1060         MSR_IA32_TSCDEADLINE,
1061         MSR_IA32_MISC_ENABLE,
1062         MSR_IA32_MCG_STATUS,
1063         MSR_IA32_MCG_CTL,
1064         MSR_IA32_MCG_EXT_CTL,
1065         MSR_IA32_SMBASE,
1066         MSR_SMI_COUNT,
1067         MSR_PLATFORM_INFO,
1068         MSR_MISC_FEATURES_ENABLES,
1069         MSR_AMD64_VIRT_SPEC_CTRL,
1070 };
1071
1072 static unsigned num_emulated_msrs;
1073
1074 /*
1075  * List of msr numbers which are used to expose MSR-based features that
1076  * can be used by a hypervisor to validate requested CPU features.
1077  */
1078 static u32 msr_based_features[] = {
1079         MSR_IA32_VMX_BASIC,
1080         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1081         MSR_IA32_VMX_PINBASED_CTLS,
1082         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1083         MSR_IA32_VMX_PROCBASED_CTLS,
1084         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1085         MSR_IA32_VMX_EXIT_CTLS,
1086         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1087         MSR_IA32_VMX_ENTRY_CTLS,
1088         MSR_IA32_VMX_MISC,
1089         MSR_IA32_VMX_CR0_FIXED0,
1090         MSR_IA32_VMX_CR0_FIXED1,
1091         MSR_IA32_VMX_CR4_FIXED0,
1092         MSR_IA32_VMX_CR4_FIXED1,
1093         MSR_IA32_VMX_VMCS_ENUM,
1094         MSR_IA32_VMX_PROCBASED_CTLS2,
1095         MSR_IA32_VMX_EPT_VPID_CAP,
1096         MSR_IA32_VMX_VMFUNC,
1097
1098         MSR_F10H_DECFG,
1099         MSR_IA32_UCODE_REV,
1100 };
1101
1102 static unsigned int num_msr_based_features;
1103
1104 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1105 {
1106         switch (msr->index) {
1107         case MSR_IA32_UCODE_REV:
1108                 rdmsrl(msr->index, msr->data);
1109                 break;
1110         default:
1111                 if (kvm_x86_ops->get_msr_feature(msr))
1112                         return 1;
1113         }
1114         return 0;
1115 }
1116
1117 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1118 {
1119         struct kvm_msr_entry msr;
1120         int r;
1121
1122         msr.index = index;
1123         r = kvm_get_msr_feature(&msr);
1124         if (r)
1125                 return r;
1126
1127         *data = msr.data;
1128
1129         return 0;
1130 }
1131
1132 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1133 {
1134         if (efer & efer_reserved_bits)
1135                 return false;
1136
1137         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1138                         return false;
1139
1140         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1141                         return false;
1142
1143         return true;
1144 }
1145 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1146
1147 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1148 {
1149         u64 old_efer = vcpu->arch.efer;
1150
1151         if (!kvm_valid_efer(vcpu, efer))
1152                 return 1;
1153
1154         if (is_paging(vcpu)
1155             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1156                 return 1;
1157
1158         efer &= ~EFER_LMA;
1159         efer |= vcpu->arch.efer & EFER_LMA;
1160
1161         kvm_x86_ops->set_efer(vcpu, efer);
1162
1163         /* Update reserved bits */
1164         if ((efer ^ old_efer) & EFER_NX)
1165                 kvm_mmu_reset_context(vcpu);
1166
1167         return 0;
1168 }
1169
1170 void kvm_enable_efer_bits(u64 mask)
1171 {
1172        efer_reserved_bits &= ~mask;
1173 }
1174 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1175
1176 /*
1177  * Writes msr value into into the appropriate "register".
1178  * Returns 0 on success, non-0 otherwise.
1179  * Assumes vcpu_load() was already called.
1180  */
1181 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1182 {
1183         switch (msr->index) {
1184         case MSR_FS_BASE:
1185         case MSR_GS_BASE:
1186         case MSR_KERNEL_GS_BASE:
1187         case MSR_CSTAR:
1188         case MSR_LSTAR:
1189                 if (is_noncanonical_address(msr->data, vcpu))
1190                         return 1;
1191                 break;
1192         case MSR_IA32_SYSENTER_EIP:
1193         case MSR_IA32_SYSENTER_ESP:
1194                 /*
1195                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1196                  * non-canonical address is written on Intel but not on
1197                  * AMD (which ignores the top 32-bits, because it does
1198                  * not implement 64-bit SYSENTER).
1199                  *
1200                  * 64-bit code should hence be able to write a non-canonical
1201                  * value on AMD.  Making the address canonical ensures that
1202                  * vmentry does not fail on Intel after writing a non-canonical
1203                  * value, and that something deterministic happens if the guest
1204                  * invokes 64-bit SYSENTER.
1205                  */
1206                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1207         }
1208         return kvm_x86_ops->set_msr(vcpu, msr);
1209 }
1210 EXPORT_SYMBOL_GPL(kvm_set_msr);
1211
1212 /*
1213  * Adapt set_msr() to msr_io()'s calling convention
1214  */
1215 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1216 {
1217         struct msr_data msr;
1218         int r;
1219
1220         msr.index = index;
1221         msr.host_initiated = true;
1222         r = kvm_get_msr(vcpu, &msr);
1223         if (r)
1224                 return r;
1225
1226         *data = msr.data;
1227         return 0;
1228 }
1229
1230 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1231 {
1232         struct msr_data msr;
1233
1234         msr.data = *data;
1235         msr.index = index;
1236         msr.host_initiated = true;
1237         return kvm_set_msr(vcpu, &msr);
1238 }
1239
1240 #ifdef CONFIG_X86_64
1241 struct pvclock_gtod_data {
1242         seqcount_t      seq;
1243
1244         struct { /* extract of a clocksource struct */
1245                 int vclock_mode;
1246                 u64     cycle_last;
1247                 u64     mask;
1248                 u32     mult;
1249                 u32     shift;
1250         } clock;
1251
1252         u64             boot_ns;
1253         u64             nsec_base;
1254         u64             wall_time_sec;
1255 };
1256
1257 static struct pvclock_gtod_data pvclock_gtod_data;
1258
1259 static void update_pvclock_gtod(struct timekeeper *tk)
1260 {
1261         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1262         u64 boot_ns;
1263
1264         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1265
1266         write_seqcount_begin(&vdata->seq);
1267
1268         /* copy pvclock gtod data */
1269         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1270         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1271         vdata->clock.mask               = tk->tkr_mono.mask;
1272         vdata->clock.mult               = tk->tkr_mono.mult;
1273         vdata->clock.shift              = tk->tkr_mono.shift;
1274
1275         vdata->boot_ns                  = boot_ns;
1276         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1277
1278         vdata->wall_time_sec            = tk->xtime_sec;
1279
1280         write_seqcount_end(&vdata->seq);
1281 }
1282 #endif
1283
1284 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1285 {
1286         /*
1287          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1288          * vcpu_enter_guest.  This function is only called from
1289          * the physical CPU that is running vcpu.
1290          */
1291         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1292 }
1293
1294 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1295 {
1296         int version;
1297         int r;
1298         struct pvclock_wall_clock wc;
1299         struct timespec64 boot;
1300
1301         if (!wall_clock)
1302                 return;
1303
1304         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1305         if (r)
1306                 return;
1307
1308         if (version & 1)
1309                 ++version;  /* first time write, random junk */
1310
1311         ++version;
1312
1313         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1314                 return;
1315
1316         /*
1317          * The guest calculates current wall clock time by adding
1318          * system time (updated by kvm_guest_time_update below) to the
1319          * wall clock specified here.  guest system time equals host
1320          * system time for us, thus we must fill in host boot time here.
1321          */
1322         getboottime64(&boot);
1323
1324         if (kvm->arch.kvmclock_offset) {
1325                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1326                 boot = timespec64_sub(boot, ts);
1327         }
1328         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1329         wc.nsec = boot.tv_nsec;
1330         wc.version = version;
1331
1332         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1333
1334         version++;
1335         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1336 }
1337
1338 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1339 {
1340         do_shl32_div32(dividend, divisor);
1341         return dividend;
1342 }
1343
1344 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1345                                s8 *pshift, u32 *pmultiplier)
1346 {
1347         uint64_t scaled64;
1348         int32_t  shift = 0;
1349         uint64_t tps64;
1350         uint32_t tps32;
1351
1352         tps64 = base_hz;
1353         scaled64 = scaled_hz;
1354         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1355                 tps64 >>= 1;
1356                 shift--;
1357         }
1358
1359         tps32 = (uint32_t)tps64;
1360         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1361                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1362                         scaled64 >>= 1;
1363                 else
1364                         tps32 <<= 1;
1365                 shift++;
1366         }
1367
1368         *pshift = shift;
1369         *pmultiplier = div_frac(scaled64, tps32);
1370
1371         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1372                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1373 }
1374
1375 #ifdef CONFIG_X86_64
1376 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1377 #endif
1378
1379 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1380 static unsigned long max_tsc_khz;
1381
1382 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1383 {
1384         u64 v = (u64)khz * (1000000 + ppm);
1385         do_div(v, 1000000);
1386         return v;
1387 }
1388
1389 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1390 {
1391         u64 ratio;
1392
1393         /* Guest TSC same frequency as host TSC? */
1394         if (!scale) {
1395                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1396                 return 0;
1397         }
1398
1399         /* TSC scaling supported? */
1400         if (!kvm_has_tsc_control) {
1401                 if (user_tsc_khz > tsc_khz) {
1402                         vcpu->arch.tsc_catchup = 1;
1403                         vcpu->arch.tsc_always_catchup = 1;
1404                         return 0;
1405                 } else {
1406                         WARN(1, "user requested TSC rate below hardware speed\n");
1407                         return -1;
1408                 }
1409         }
1410
1411         /* TSC scaling required  - calculate ratio */
1412         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1413                                 user_tsc_khz, tsc_khz);
1414
1415         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1416                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1417                           user_tsc_khz);
1418                 return -1;
1419         }
1420
1421         vcpu->arch.tsc_scaling_ratio = ratio;
1422         return 0;
1423 }
1424
1425 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1426 {
1427         u32 thresh_lo, thresh_hi;
1428         int use_scaling = 0;
1429
1430         /* tsc_khz can be zero if TSC calibration fails */
1431         if (user_tsc_khz == 0) {
1432                 /* set tsc_scaling_ratio to a safe value */
1433                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1434                 return -1;
1435         }
1436
1437         /* Compute a scale to convert nanoseconds in TSC cycles */
1438         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1439                            &vcpu->arch.virtual_tsc_shift,
1440                            &vcpu->arch.virtual_tsc_mult);
1441         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1442
1443         /*
1444          * Compute the variation in TSC rate which is acceptable
1445          * within the range of tolerance and decide if the
1446          * rate being applied is within that bounds of the hardware
1447          * rate.  If so, no scaling or compensation need be done.
1448          */
1449         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1450         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1451         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1452                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1453                 use_scaling = 1;
1454         }
1455         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1456 }
1457
1458 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1459 {
1460         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1461                                       vcpu->arch.virtual_tsc_mult,
1462                                       vcpu->arch.virtual_tsc_shift);
1463         tsc += vcpu->arch.this_tsc_write;
1464         return tsc;
1465 }
1466
1467 static inline int gtod_is_based_on_tsc(int mode)
1468 {
1469         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1470 }
1471
1472 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1473 {
1474 #ifdef CONFIG_X86_64
1475         bool vcpus_matched;
1476         struct kvm_arch *ka = &vcpu->kvm->arch;
1477         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1478
1479         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1480                          atomic_read(&vcpu->kvm->online_vcpus));
1481
1482         /*
1483          * Once the masterclock is enabled, always perform request in
1484          * order to update it.
1485          *
1486          * In order to enable masterclock, the host clocksource must be TSC
1487          * and the vcpus need to have matched TSCs.  When that happens,
1488          * perform request to enable masterclock.
1489          */
1490         if (ka->use_master_clock ||
1491             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1492                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1493
1494         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1495                             atomic_read(&vcpu->kvm->online_vcpus),
1496                             ka->use_master_clock, gtod->clock.vclock_mode);
1497 #endif
1498 }
1499
1500 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1501 {
1502         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1503         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1504 }
1505
1506 /*
1507  * Multiply tsc by a fixed point number represented by ratio.
1508  *
1509  * The most significant 64-N bits (mult) of ratio represent the
1510  * integral part of the fixed point number; the remaining N bits
1511  * (frac) represent the fractional part, ie. ratio represents a fixed
1512  * point number (mult + frac * 2^(-N)).
1513  *
1514  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1515  */
1516 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1517 {
1518         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1519 }
1520
1521 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1522 {
1523         u64 _tsc = tsc;
1524         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1525
1526         if (ratio != kvm_default_tsc_scaling_ratio)
1527                 _tsc = __scale_tsc(ratio, tsc);
1528
1529         return _tsc;
1530 }
1531 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1532
1533 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1534 {
1535         u64 tsc;
1536
1537         tsc = kvm_scale_tsc(vcpu, rdtsc());
1538
1539         return target_tsc - tsc;
1540 }
1541
1542 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1543 {
1544         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1545
1546         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1547 }
1548 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1549
1550 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1551 {
1552         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1553         vcpu->arch.tsc_offset = offset;
1554 }
1555
1556 static inline bool kvm_check_tsc_unstable(void)
1557 {
1558 #ifdef CONFIG_X86_64
1559         /*
1560          * TSC is marked unstable when we're running on Hyper-V,
1561          * 'TSC page' clocksource is good.
1562          */
1563         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1564                 return false;
1565 #endif
1566         return check_tsc_unstable();
1567 }
1568
1569 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1570 {
1571         struct kvm *kvm = vcpu->kvm;
1572         u64 offset, ns, elapsed;
1573         unsigned long flags;
1574         bool matched;
1575         bool already_matched;
1576         u64 data = msr->data;
1577         bool synchronizing = false;
1578
1579         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1580         offset = kvm_compute_tsc_offset(vcpu, data);
1581         ns = ktime_get_boot_ns();
1582         elapsed = ns - kvm->arch.last_tsc_nsec;
1583
1584         if (vcpu->arch.virtual_tsc_khz) {
1585                 if (data == 0 && msr->host_initiated) {
1586                         /*
1587                          * detection of vcpu initialization -- need to sync
1588                          * with other vCPUs. This particularly helps to keep
1589                          * kvm_clock stable after CPU hotplug
1590                          */
1591                         synchronizing = true;
1592                 } else {
1593                         u64 tsc_exp = kvm->arch.last_tsc_write +
1594                                                 nsec_to_cycles(vcpu, elapsed);
1595                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1596                         /*
1597                          * Special case: TSC write with a small delta (1 second)
1598                          * of virtual cycle time against real time is
1599                          * interpreted as an attempt to synchronize the CPU.
1600                          */
1601                         synchronizing = data < tsc_exp + tsc_hz &&
1602                                         data + tsc_hz > tsc_exp;
1603                 }
1604         }
1605
1606         /*
1607          * For a reliable TSC, we can match TSC offsets, and for an unstable
1608          * TSC, we add elapsed time in this computation.  We could let the
1609          * compensation code attempt to catch up if we fall behind, but
1610          * it's better to try to match offsets from the beginning.
1611          */
1612         if (synchronizing &&
1613             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1614                 if (!kvm_check_tsc_unstable()) {
1615                         offset = kvm->arch.cur_tsc_offset;
1616                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1617                 } else {
1618                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1619                         data += delta;
1620                         offset = kvm_compute_tsc_offset(vcpu, data);
1621                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1622                 }
1623                 matched = true;
1624                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1625         } else {
1626                 /*
1627                  * We split periods of matched TSC writes into generations.
1628                  * For each generation, we track the original measured
1629                  * nanosecond time, offset, and write, so if TSCs are in
1630                  * sync, we can match exact offset, and if not, we can match
1631                  * exact software computation in compute_guest_tsc()
1632                  *
1633                  * These values are tracked in kvm->arch.cur_xxx variables.
1634                  */
1635                 kvm->arch.cur_tsc_generation++;
1636                 kvm->arch.cur_tsc_nsec = ns;
1637                 kvm->arch.cur_tsc_write = data;
1638                 kvm->arch.cur_tsc_offset = offset;
1639                 matched = false;
1640                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1641                          kvm->arch.cur_tsc_generation, data);
1642         }
1643
1644         /*
1645          * We also track th most recent recorded KHZ, write and time to
1646          * allow the matching interval to be extended at each write.
1647          */
1648         kvm->arch.last_tsc_nsec = ns;
1649         kvm->arch.last_tsc_write = data;
1650         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1651
1652         vcpu->arch.last_guest_tsc = data;
1653
1654         /* Keep track of which generation this VCPU has synchronized to */
1655         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1656         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1657         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1658
1659         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1660                 update_ia32_tsc_adjust_msr(vcpu, offset);
1661
1662         kvm_vcpu_write_tsc_offset(vcpu, offset);
1663         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1664
1665         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1666         if (!matched) {
1667                 kvm->arch.nr_vcpus_matched_tsc = 0;
1668         } else if (!already_matched) {
1669                 kvm->arch.nr_vcpus_matched_tsc++;
1670         }
1671
1672         kvm_track_tsc_matching(vcpu);
1673         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1674 }
1675
1676 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1677
1678 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1679                                            s64 adjustment)
1680 {
1681         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1682 }
1683
1684 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1685 {
1686         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1687                 WARN_ON(adjustment < 0);
1688         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1689         adjust_tsc_offset_guest(vcpu, adjustment);
1690 }
1691
1692 #ifdef CONFIG_X86_64
1693
1694 static u64 read_tsc(void)
1695 {
1696         u64 ret = (u64)rdtsc_ordered();
1697         u64 last = pvclock_gtod_data.clock.cycle_last;
1698
1699         if (likely(ret >= last))
1700                 return ret;
1701
1702         /*
1703          * GCC likes to generate cmov here, but this branch is extremely
1704          * predictable (it's just a function of time and the likely is
1705          * very likely) and there's a data dependence, so force GCC
1706          * to generate a branch instead.  I don't barrier() because
1707          * we don't actually need a barrier, and if this function
1708          * ever gets inlined it will generate worse code.
1709          */
1710         asm volatile ("");
1711         return last;
1712 }
1713
1714 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1715 {
1716         long v;
1717         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1718         u64 tsc_pg_val;
1719
1720         switch (gtod->clock.vclock_mode) {
1721         case VCLOCK_HVCLOCK:
1722                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1723                                                   tsc_timestamp);
1724                 if (tsc_pg_val != U64_MAX) {
1725                         /* TSC page valid */
1726                         *mode = VCLOCK_HVCLOCK;
1727                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1728                                 gtod->clock.mask;
1729                 } else {
1730                         /* TSC page invalid */
1731                         *mode = VCLOCK_NONE;
1732                 }
1733                 break;
1734         case VCLOCK_TSC:
1735                 *mode = VCLOCK_TSC;
1736                 *tsc_timestamp = read_tsc();
1737                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1738                         gtod->clock.mask;
1739                 break;
1740         default:
1741                 *mode = VCLOCK_NONE;
1742         }
1743
1744         if (*mode == VCLOCK_NONE)
1745                 *tsc_timestamp = v = 0;
1746
1747         return v * gtod->clock.mult;
1748 }
1749
1750 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1751 {
1752         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1753         unsigned long seq;
1754         int mode;
1755         u64 ns;
1756
1757         do {
1758                 seq = read_seqcount_begin(&gtod->seq);
1759                 ns = gtod->nsec_base;
1760                 ns += vgettsc(tsc_timestamp, &mode);
1761                 ns >>= gtod->clock.shift;
1762                 ns += gtod->boot_ns;
1763         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1764         *t = ns;
1765
1766         return mode;
1767 }
1768
1769 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1770 {
1771         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1772         unsigned long seq;
1773         int mode;
1774         u64 ns;
1775
1776         do {
1777                 seq = read_seqcount_begin(&gtod->seq);
1778                 ts->tv_sec = gtod->wall_time_sec;
1779                 ns = gtod->nsec_base;
1780                 ns += vgettsc(tsc_timestamp, &mode);
1781                 ns >>= gtod->clock.shift;
1782         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1783
1784         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1785         ts->tv_nsec = ns;
1786
1787         return mode;
1788 }
1789
1790 /* returns true if host is using TSC based clocksource */
1791 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1792 {
1793         /* checked again under seqlock below */
1794         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1795                 return false;
1796
1797         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1798                                                       tsc_timestamp));
1799 }
1800
1801 /* returns true if host is using TSC based clocksource */
1802 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1803                                            u64 *tsc_timestamp)
1804 {
1805         /* checked again under seqlock below */
1806         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1807                 return false;
1808
1809         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1810 }
1811 #endif
1812
1813 /*
1814  *
1815  * Assuming a stable TSC across physical CPUS, and a stable TSC
1816  * across virtual CPUs, the following condition is possible.
1817  * Each numbered line represents an event visible to both
1818  * CPUs at the next numbered event.
1819  *
1820  * "timespecX" represents host monotonic time. "tscX" represents
1821  * RDTSC value.
1822  *
1823  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1824  *
1825  * 1.  read timespec0,tsc0
1826  * 2.                                   | timespec1 = timespec0 + N
1827  *                                      | tsc1 = tsc0 + M
1828  * 3. transition to guest               | transition to guest
1829  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1830  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1831  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1832  *
1833  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1834  *
1835  *      - ret0 < ret1
1836  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1837  *              ...
1838  *      - 0 < N - M => M < N
1839  *
1840  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1841  * always the case (the difference between two distinct xtime instances
1842  * might be smaller then the difference between corresponding TSC reads,
1843  * when updating guest vcpus pvclock areas).
1844  *
1845  * To avoid that problem, do not allow visibility of distinct
1846  * system_timestamp/tsc_timestamp values simultaneously: use a master
1847  * copy of host monotonic time values. Update that master copy
1848  * in lockstep.
1849  *
1850  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1851  *
1852  */
1853
1854 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1855 {
1856 #ifdef CONFIG_X86_64
1857         struct kvm_arch *ka = &kvm->arch;
1858         int vclock_mode;
1859         bool host_tsc_clocksource, vcpus_matched;
1860
1861         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1862                         atomic_read(&kvm->online_vcpus));
1863
1864         /*
1865          * If the host uses TSC clock, then passthrough TSC as stable
1866          * to the guest.
1867          */
1868         host_tsc_clocksource = kvm_get_time_and_clockread(
1869                                         &ka->master_kernel_ns,
1870                                         &ka->master_cycle_now);
1871
1872         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1873                                 && !ka->backwards_tsc_observed
1874                                 && !ka->boot_vcpu_runs_old_kvmclock;
1875
1876         if (ka->use_master_clock)
1877                 atomic_set(&kvm_guest_has_master_clock, 1);
1878
1879         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1880         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1881                                         vcpus_matched);
1882 #endif
1883 }
1884
1885 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1886 {
1887         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1888 }
1889
1890 static void kvm_gen_update_masterclock(struct kvm *kvm)
1891 {
1892 #ifdef CONFIG_X86_64
1893         int i;
1894         struct kvm_vcpu *vcpu;
1895         struct kvm_arch *ka = &kvm->arch;
1896
1897         spin_lock(&ka->pvclock_gtod_sync_lock);
1898         kvm_make_mclock_inprogress_request(kvm);
1899         /* no guest entries from this point */
1900         pvclock_update_vm_gtod_copy(kvm);
1901
1902         kvm_for_each_vcpu(i, vcpu, kvm)
1903                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1904
1905         /* guest entries allowed */
1906         kvm_for_each_vcpu(i, vcpu, kvm)
1907                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1908
1909         spin_unlock(&ka->pvclock_gtod_sync_lock);
1910 #endif
1911 }
1912
1913 u64 get_kvmclock_ns(struct kvm *kvm)
1914 {
1915         struct kvm_arch *ka = &kvm->arch;
1916         struct pvclock_vcpu_time_info hv_clock;
1917         u64 ret;
1918
1919         spin_lock(&ka->pvclock_gtod_sync_lock);
1920         if (!ka->use_master_clock) {
1921                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1922                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1923         }
1924
1925         hv_clock.tsc_timestamp = ka->master_cycle_now;
1926         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1927         spin_unlock(&ka->pvclock_gtod_sync_lock);
1928
1929         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1930         get_cpu();
1931
1932         if (__this_cpu_read(cpu_tsc_khz)) {
1933                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1934                                    &hv_clock.tsc_shift,
1935                                    &hv_clock.tsc_to_system_mul);
1936                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1937         } else
1938                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1939
1940         put_cpu();
1941
1942         return ret;
1943 }
1944
1945 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1946 {
1947         struct kvm_vcpu_arch *vcpu = &v->arch;
1948         struct pvclock_vcpu_time_info guest_hv_clock;
1949
1950         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1951                 &guest_hv_clock, sizeof(guest_hv_clock))))
1952                 return;
1953
1954         /* This VCPU is paused, but it's legal for a guest to read another
1955          * VCPU's kvmclock, so we really have to follow the specification where
1956          * it says that version is odd if data is being modified, and even after
1957          * it is consistent.
1958          *
1959          * Version field updates must be kept separate.  This is because
1960          * kvm_write_guest_cached might use a "rep movs" instruction, and
1961          * writes within a string instruction are weakly ordered.  So there
1962          * are three writes overall.
1963          *
1964          * As a small optimization, only write the version field in the first
1965          * and third write.  The vcpu->pv_time cache is still valid, because the
1966          * version field is the first in the struct.
1967          */
1968         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1969
1970         if (guest_hv_clock.version & 1)
1971                 ++guest_hv_clock.version;  /* first time write, random junk */
1972
1973         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1974         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1975                                 &vcpu->hv_clock,
1976                                 sizeof(vcpu->hv_clock.version));
1977
1978         smp_wmb();
1979
1980         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1981         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1982
1983         if (vcpu->pvclock_set_guest_stopped_request) {
1984                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1985                 vcpu->pvclock_set_guest_stopped_request = false;
1986         }
1987
1988         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1989
1990         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1991                                 &vcpu->hv_clock,
1992                                 sizeof(vcpu->hv_clock));
1993
1994         smp_wmb();
1995
1996         vcpu->hv_clock.version++;
1997         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1998                                 &vcpu->hv_clock,
1999                                 sizeof(vcpu->hv_clock.version));
2000 }
2001
2002 static int kvm_guest_time_update(struct kvm_vcpu *v)
2003 {
2004         unsigned long flags, tgt_tsc_khz;
2005         struct kvm_vcpu_arch *vcpu = &v->arch;
2006         struct kvm_arch *ka = &v->kvm->arch;
2007         s64 kernel_ns;
2008         u64 tsc_timestamp, host_tsc;
2009         u8 pvclock_flags;
2010         bool use_master_clock;
2011
2012         kernel_ns = 0;
2013         host_tsc = 0;
2014
2015         /*
2016          * If the host uses TSC clock, then passthrough TSC as stable
2017          * to the guest.
2018          */
2019         spin_lock(&ka->pvclock_gtod_sync_lock);
2020         use_master_clock = ka->use_master_clock;
2021         if (use_master_clock) {
2022                 host_tsc = ka->master_cycle_now;
2023                 kernel_ns = ka->master_kernel_ns;
2024         }
2025         spin_unlock(&ka->pvclock_gtod_sync_lock);
2026
2027         /* Keep irq disabled to prevent changes to the clock */
2028         local_irq_save(flags);
2029         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2030         if (unlikely(tgt_tsc_khz == 0)) {
2031                 local_irq_restore(flags);
2032                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2033                 return 1;
2034         }
2035         if (!use_master_clock) {
2036                 host_tsc = rdtsc();
2037                 kernel_ns = ktime_get_boot_ns();
2038         }
2039
2040         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2041
2042         /*
2043          * We may have to catch up the TSC to match elapsed wall clock
2044          * time for two reasons, even if kvmclock is used.
2045          *   1) CPU could have been running below the maximum TSC rate
2046          *   2) Broken TSC compensation resets the base at each VCPU
2047          *      entry to avoid unknown leaps of TSC even when running
2048          *      again on the same CPU.  This may cause apparent elapsed
2049          *      time to disappear, and the guest to stand still or run
2050          *      very slowly.
2051          */
2052         if (vcpu->tsc_catchup) {
2053                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2054                 if (tsc > tsc_timestamp) {
2055                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2056                         tsc_timestamp = tsc;
2057                 }
2058         }
2059
2060         local_irq_restore(flags);
2061
2062         /* With all the info we got, fill in the values */
2063
2064         if (kvm_has_tsc_control)
2065                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2066
2067         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2068                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2069                                    &vcpu->hv_clock.tsc_shift,
2070                                    &vcpu->hv_clock.tsc_to_system_mul);
2071                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2072         }
2073
2074         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2075         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2076         vcpu->last_guest_tsc = tsc_timestamp;
2077
2078         /* If the host uses TSC clocksource, then it is stable */
2079         pvclock_flags = 0;
2080         if (use_master_clock)
2081                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2082
2083         vcpu->hv_clock.flags = pvclock_flags;
2084
2085         if (vcpu->pv_time_enabled)
2086                 kvm_setup_pvclock_page(v);
2087         if (v == kvm_get_vcpu(v->kvm, 0))
2088                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2089         return 0;
2090 }
2091
2092 /*
2093  * kvmclock updates which are isolated to a given vcpu, such as
2094  * vcpu->cpu migration, should not allow system_timestamp from
2095  * the rest of the vcpus to remain static. Otherwise ntp frequency
2096  * correction applies to one vcpu's system_timestamp but not
2097  * the others.
2098  *
2099  * So in those cases, request a kvmclock update for all vcpus.
2100  * We need to rate-limit these requests though, as they can
2101  * considerably slow guests that have a large number of vcpus.
2102  * The time for a remote vcpu to update its kvmclock is bound
2103  * by the delay we use to rate-limit the updates.
2104  */
2105
2106 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2107
2108 static void kvmclock_update_fn(struct work_struct *work)
2109 {
2110         int i;
2111         struct delayed_work *dwork = to_delayed_work(work);
2112         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2113                                            kvmclock_update_work);
2114         struct kvm *kvm = container_of(ka, struct kvm, arch);
2115         struct kvm_vcpu *vcpu;
2116
2117         kvm_for_each_vcpu(i, vcpu, kvm) {
2118                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2119                 kvm_vcpu_kick(vcpu);
2120         }
2121 }
2122
2123 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2124 {
2125         struct kvm *kvm = v->kvm;
2126
2127         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2128         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2129                                         KVMCLOCK_UPDATE_DELAY);
2130 }
2131
2132 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2133
2134 static void kvmclock_sync_fn(struct work_struct *work)
2135 {
2136         struct delayed_work *dwork = to_delayed_work(work);
2137         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2138                                            kvmclock_sync_work);
2139         struct kvm *kvm = container_of(ka, struct kvm, arch);
2140
2141         if (!kvmclock_periodic_sync)
2142                 return;
2143
2144         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2145         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2146                                         KVMCLOCK_SYNC_PERIOD);
2147 }
2148
2149 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2150 {
2151         u64 mcg_cap = vcpu->arch.mcg_cap;
2152         unsigned bank_num = mcg_cap & 0xff;
2153         u32 msr = msr_info->index;
2154         u64 data = msr_info->data;
2155
2156         switch (msr) {
2157         case MSR_IA32_MCG_STATUS:
2158                 vcpu->arch.mcg_status = data;
2159                 break;
2160         case MSR_IA32_MCG_CTL:
2161                 if (!(mcg_cap & MCG_CTL_P))
2162                         return 1;
2163                 if (data != 0 && data != ~(u64)0)
2164                         return -1;
2165                 vcpu->arch.mcg_ctl = data;
2166                 break;
2167         default:
2168                 if (msr >= MSR_IA32_MC0_CTL &&
2169                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2170                         u32 offset = msr - MSR_IA32_MC0_CTL;
2171                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2172                          * some Linux kernels though clear bit 10 in bank 4 to
2173                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2174                          * this to avoid an uncatched #GP in the guest
2175                          */
2176                         if ((offset & 0x3) == 0 &&
2177                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2178                                 return -1;
2179                         if (!msr_info->host_initiated &&
2180                                 (offset & 0x3) == 1 && data != 0)
2181                                 return -1;
2182                         vcpu->arch.mce_banks[offset] = data;
2183                         break;
2184                 }
2185                 return 1;
2186         }
2187         return 0;
2188 }
2189
2190 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2191 {
2192         struct kvm *kvm = vcpu->kvm;
2193         int lm = is_long_mode(vcpu);
2194         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2195                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2196         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2197                 : kvm->arch.xen_hvm_config.blob_size_32;
2198         u32 page_num = data & ~PAGE_MASK;
2199         u64 page_addr = data & PAGE_MASK;
2200         u8 *page;
2201         int r;
2202
2203         r = -E2BIG;
2204         if (page_num >= blob_size)
2205                 goto out;
2206         r = -ENOMEM;
2207         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2208         if (IS_ERR(page)) {
2209                 r = PTR_ERR(page);
2210                 goto out;
2211         }
2212         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2213                 goto out_free;
2214         r = 0;
2215 out_free:
2216         kfree(page);
2217 out:
2218         return r;
2219 }
2220
2221 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2222 {
2223         gpa_t gpa = data & ~0x3f;
2224
2225         /* Bits 3:5 are reserved, Should be zero */
2226         if (data & 0x38)
2227                 return 1;
2228
2229         vcpu->arch.apf.msr_val = data;
2230
2231         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2232                 kvm_clear_async_pf_completion_queue(vcpu);
2233                 kvm_async_pf_hash_reset(vcpu);
2234                 return 0;
2235         }
2236
2237         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2238                                         sizeof(u32)))
2239                 return 1;
2240
2241         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2242         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2243         kvm_async_pf_wakeup_all(vcpu);
2244         return 0;
2245 }
2246
2247 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2248 {
2249         vcpu->arch.pv_time_enabled = false;
2250 }
2251
2252 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2253 {
2254         ++vcpu->stat.tlb_flush;
2255         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2256 }
2257
2258 static void record_steal_time(struct kvm_vcpu *vcpu)
2259 {
2260         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2261                 return;
2262
2263         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2264                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2265                 return;
2266
2267         /*
2268          * Doing a TLB flush here, on the guest's behalf, can avoid
2269          * expensive IPIs.
2270          */
2271         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2272                 kvm_vcpu_flush_tlb(vcpu, false);
2273
2274         if (vcpu->arch.st.steal.version & 1)
2275                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2276
2277         vcpu->arch.st.steal.version += 1;
2278
2279         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2280                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2281
2282         smp_wmb();
2283
2284         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2285                 vcpu->arch.st.last_steal;
2286         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2287
2288         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2289                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2290
2291         smp_wmb();
2292
2293         vcpu->arch.st.steal.version += 1;
2294
2295         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2296                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2297 }
2298
2299 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2300 {
2301         bool pr = false;
2302         u32 msr = msr_info->index;
2303         u64 data = msr_info->data;
2304
2305         switch (msr) {
2306         case MSR_AMD64_NB_CFG:
2307         case MSR_IA32_UCODE_WRITE:
2308         case MSR_VM_HSAVE_PA:
2309         case MSR_AMD64_PATCH_LOADER:
2310         case MSR_AMD64_BU_CFG2:
2311         case MSR_AMD64_DC_CFG:
2312                 break;
2313
2314         case MSR_IA32_UCODE_REV:
2315                 if (msr_info->host_initiated)
2316                         vcpu->arch.microcode_version = data;
2317                 break;
2318         case MSR_EFER:
2319                 return set_efer(vcpu, data);
2320         case MSR_K7_HWCR:
2321                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2322                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2323                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2324                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2325                 if (data != 0) {
2326                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2327                                     data);
2328                         return 1;
2329                 }
2330                 break;
2331         case MSR_FAM10H_MMIO_CONF_BASE:
2332                 if (data != 0) {
2333                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2334                                     "0x%llx\n", data);
2335                         return 1;
2336                 }
2337                 break;
2338         case MSR_IA32_DEBUGCTLMSR:
2339                 if (!data) {
2340                         /* We support the non-activated case already */
2341                         break;
2342                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2343                         /* Values other than LBR and BTF are vendor-specific,
2344                            thus reserved and should throw a #GP */
2345                         return 1;
2346                 }
2347                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2348                             __func__, data);
2349                 break;
2350         case 0x200 ... 0x2ff:
2351                 return kvm_mtrr_set_msr(vcpu, msr, data);
2352         case MSR_IA32_APICBASE:
2353                 return kvm_set_apic_base(vcpu, msr_info);
2354         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2355                 return kvm_x2apic_msr_write(vcpu, msr, data);
2356         case MSR_IA32_TSCDEADLINE:
2357                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2358                 break;
2359         case MSR_IA32_TSC_ADJUST:
2360                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2361                         if (!msr_info->host_initiated) {
2362                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2363                                 adjust_tsc_offset_guest(vcpu, adj);
2364                         }
2365                         vcpu->arch.ia32_tsc_adjust_msr = data;
2366                 }
2367                 break;
2368         case MSR_IA32_MISC_ENABLE:
2369                 vcpu->arch.ia32_misc_enable_msr = data;
2370                 break;
2371         case MSR_IA32_SMBASE:
2372                 if (!msr_info->host_initiated)
2373                         return 1;
2374                 vcpu->arch.smbase = data;
2375                 break;
2376         case MSR_IA32_TSC:
2377                 kvm_write_tsc(vcpu, msr_info);
2378                 break;
2379         case MSR_SMI_COUNT:
2380                 if (!msr_info->host_initiated)
2381                         return 1;
2382                 vcpu->arch.smi_count = data;
2383                 break;
2384         case MSR_KVM_WALL_CLOCK_NEW:
2385         case MSR_KVM_WALL_CLOCK:
2386                 vcpu->kvm->arch.wall_clock = data;
2387                 kvm_write_wall_clock(vcpu->kvm, data);
2388                 break;
2389         case MSR_KVM_SYSTEM_TIME_NEW:
2390         case MSR_KVM_SYSTEM_TIME: {
2391                 struct kvm_arch *ka = &vcpu->kvm->arch;
2392
2393                 kvmclock_reset(vcpu);
2394
2395                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2396                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2397
2398                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2399                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2400
2401                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2402                 }
2403
2404                 vcpu->arch.time = data;
2405                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2406
2407                 /* we verify if the enable bit is set... */
2408                 if (!(data & 1))
2409                         break;
2410
2411                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2412                      &vcpu->arch.pv_time, data & ~1ULL,
2413                      sizeof(struct pvclock_vcpu_time_info)))
2414                         vcpu->arch.pv_time_enabled = false;
2415                 else
2416                         vcpu->arch.pv_time_enabled = true;
2417
2418                 break;
2419         }
2420         case MSR_KVM_ASYNC_PF_EN:
2421                 if (kvm_pv_enable_async_pf(vcpu, data))
2422                         return 1;
2423                 break;
2424         case MSR_KVM_STEAL_TIME:
2425
2426                 if (unlikely(!sched_info_on()))
2427                         return 1;
2428
2429                 if (data & KVM_STEAL_RESERVED_MASK)
2430                         return 1;
2431
2432                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2433                                                 data & KVM_STEAL_VALID_BITS,
2434                                                 sizeof(struct kvm_steal_time)))
2435                         return 1;
2436
2437                 vcpu->arch.st.msr_val = data;
2438
2439                 if (!(data & KVM_MSR_ENABLED))
2440                         break;
2441
2442                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2443
2444                 break;
2445         case MSR_KVM_PV_EOI_EN:
2446                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2447                         return 1;
2448                 break;
2449
2450         case MSR_IA32_MCG_CTL:
2451         case MSR_IA32_MCG_STATUS:
2452         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2453                 return set_msr_mce(vcpu, msr_info);
2454
2455         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2456         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2457                 pr = true; /* fall through */
2458         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2459         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2460                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2461                         return kvm_pmu_set_msr(vcpu, msr_info);
2462
2463                 if (pr || data != 0)
2464                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2465                                     "0x%x data 0x%llx\n", msr, data);
2466                 break;
2467         case MSR_K7_CLK_CTL:
2468                 /*
2469                  * Ignore all writes to this no longer documented MSR.
2470                  * Writes are only relevant for old K7 processors,
2471                  * all pre-dating SVM, but a recommended workaround from
2472                  * AMD for these chips. It is possible to specify the
2473                  * affected processor models on the command line, hence
2474                  * the need to ignore the workaround.
2475                  */
2476                 break;
2477         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2478         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2479         case HV_X64_MSR_CRASH_CTL:
2480         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2481         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2482         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2483         case HV_X64_MSR_TSC_EMULATION_STATUS:
2484                 return kvm_hv_set_msr_common(vcpu, msr, data,
2485                                              msr_info->host_initiated);
2486         case MSR_IA32_BBL_CR_CTL3:
2487                 /* Drop writes to this legacy MSR -- see rdmsr
2488                  * counterpart for further detail.
2489                  */
2490                 if (report_ignored_msrs)
2491                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2492                                 msr, data);
2493                 break;
2494         case MSR_AMD64_OSVW_ID_LENGTH:
2495                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2496                         return 1;
2497                 vcpu->arch.osvw.length = data;
2498                 break;
2499         case MSR_AMD64_OSVW_STATUS:
2500                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2501                         return 1;
2502                 vcpu->arch.osvw.status = data;
2503                 break;
2504         case MSR_PLATFORM_INFO:
2505                 if (!msr_info->host_initiated ||
2506                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2507                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2508                      cpuid_fault_enabled(vcpu)))
2509                         return 1;
2510                 vcpu->arch.msr_platform_info = data;
2511                 break;
2512         case MSR_MISC_FEATURES_ENABLES:
2513                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2514                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2515                      !supports_cpuid_fault(vcpu)))
2516                         return 1;
2517                 vcpu->arch.msr_misc_features_enables = data;
2518                 break;
2519         default:
2520                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2521                         return xen_hvm_config(vcpu, data);
2522                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2523                         return kvm_pmu_set_msr(vcpu, msr_info);
2524                 if (!ignore_msrs) {
2525                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2526                                     msr, data);
2527                         return 1;
2528                 } else {
2529                         if (report_ignored_msrs)
2530                                 vcpu_unimpl(vcpu,
2531                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2532                                         msr, data);
2533                         break;
2534                 }
2535         }
2536         return 0;
2537 }
2538 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2539
2540
2541 /*
2542  * Reads an msr value (of 'msr_index') into 'pdata'.
2543  * Returns 0 on success, non-0 otherwise.
2544  * Assumes vcpu_load() was already called.
2545  */
2546 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2547 {
2548         return kvm_x86_ops->get_msr(vcpu, msr);
2549 }
2550 EXPORT_SYMBOL_GPL(kvm_get_msr);
2551
2552 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2553 {
2554         u64 data;
2555         u64 mcg_cap = vcpu->arch.mcg_cap;
2556         unsigned bank_num = mcg_cap & 0xff;
2557
2558         switch (msr) {
2559         case MSR_IA32_P5_MC_ADDR:
2560         case MSR_IA32_P5_MC_TYPE:
2561                 data = 0;
2562                 break;
2563         case MSR_IA32_MCG_CAP:
2564                 data = vcpu->arch.mcg_cap;
2565                 break;
2566         case MSR_IA32_MCG_CTL:
2567                 if (!(mcg_cap & MCG_CTL_P))
2568                         return 1;
2569                 data = vcpu->arch.mcg_ctl;
2570                 break;
2571         case MSR_IA32_MCG_STATUS:
2572                 data = vcpu->arch.mcg_status;
2573                 break;
2574         default:
2575                 if (msr >= MSR_IA32_MC0_CTL &&
2576                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2577                         u32 offset = msr - MSR_IA32_MC0_CTL;
2578                         data = vcpu->arch.mce_banks[offset];
2579                         break;
2580                 }
2581                 return 1;
2582         }
2583         *pdata = data;
2584         return 0;
2585 }
2586
2587 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2588 {
2589         switch (msr_info->index) {
2590         case MSR_IA32_PLATFORM_ID:
2591         case MSR_IA32_EBL_CR_POWERON:
2592         case MSR_IA32_DEBUGCTLMSR:
2593         case MSR_IA32_LASTBRANCHFROMIP:
2594         case MSR_IA32_LASTBRANCHTOIP:
2595         case MSR_IA32_LASTINTFROMIP:
2596         case MSR_IA32_LASTINTTOIP:
2597         case MSR_K8_SYSCFG:
2598         case MSR_K8_TSEG_ADDR:
2599         case MSR_K8_TSEG_MASK:
2600         case MSR_K7_HWCR:
2601         case MSR_VM_HSAVE_PA:
2602         case MSR_K8_INT_PENDING_MSG:
2603         case MSR_AMD64_NB_CFG:
2604         case MSR_FAM10H_MMIO_CONF_BASE:
2605         case MSR_AMD64_BU_CFG2:
2606         case MSR_IA32_PERF_CTL:
2607         case MSR_AMD64_DC_CFG:
2608                 msr_info->data = 0;
2609                 break;
2610         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2611         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2612         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2613         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2614         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2615                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2616                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2617                 msr_info->data = 0;
2618                 break;
2619         case MSR_IA32_UCODE_REV:
2620                 msr_info->data = vcpu->arch.microcode_version;
2621                 break;
2622         case MSR_IA32_TSC:
2623                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2624                 break;
2625         case MSR_MTRRcap:
2626         case 0x200 ... 0x2ff:
2627                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2628         case 0xcd: /* fsb frequency */
2629                 msr_info->data = 3;
2630                 break;
2631                 /*
2632                  * MSR_EBC_FREQUENCY_ID
2633                  * Conservative value valid for even the basic CPU models.
2634                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2635                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2636                  * and 266MHz for model 3, or 4. Set Core Clock
2637                  * Frequency to System Bus Frequency Ratio to 1 (bits
2638                  * 31:24) even though these are only valid for CPU
2639                  * models > 2, however guests may end up dividing or
2640                  * multiplying by zero otherwise.
2641                  */
2642         case MSR_EBC_FREQUENCY_ID:
2643                 msr_info->data = 1 << 24;
2644                 break;
2645         case MSR_IA32_APICBASE:
2646                 msr_info->data = kvm_get_apic_base(vcpu);
2647                 break;
2648         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2649                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2650                 break;
2651         case MSR_IA32_TSCDEADLINE:
2652                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2653                 break;
2654         case MSR_IA32_TSC_ADJUST:
2655                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2656                 break;
2657         case MSR_IA32_MISC_ENABLE:
2658                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2659                 break;
2660         case MSR_IA32_SMBASE:
2661                 if (!msr_info->host_initiated)
2662                         return 1;
2663                 msr_info->data = vcpu->arch.smbase;
2664                 break;
2665         case MSR_SMI_COUNT:
2666                 msr_info->data = vcpu->arch.smi_count;
2667                 break;
2668         case MSR_IA32_PERF_STATUS:
2669                 /* TSC increment by tick */
2670                 msr_info->data = 1000ULL;
2671                 /* CPU multiplier */
2672                 msr_info->data |= (((uint64_t)4ULL) << 40);
2673                 break;
2674         case MSR_EFER:
2675                 msr_info->data = vcpu->arch.efer;
2676                 break;
2677         case MSR_KVM_WALL_CLOCK:
2678         case MSR_KVM_WALL_CLOCK_NEW:
2679                 msr_info->data = vcpu->kvm->arch.wall_clock;
2680                 break;
2681         case MSR_KVM_SYSTEM_TIME:
2682         case MSR_KVM_SYSTEM_TIME_NEW:
2683                 msr_info->data = vcpu->arch.time;
2684                 break;
2685         case MSR_KVM_ASYNC_PF_EN:
2686                 msr_info->data = vcpu->arch.apf.msr_val;
2687                 break;
2688         case MSR_KVM_STEAL_TIME:
2689                 msr_info->data = vcpu->arch.st.msr_val;
2690                 break;
2691         case MSR_KVM_PV_EOI_EN:
2692                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2693                 break;
2694         case MSR_IA32_P5_MC_ADDR:
2695         case MSR_IA32_P5_MC_TYPE:
2696         case MSR_IA32_MCG_CAP:
2697         case MSR_IA32_MCG_CTL:
2698         case MSR_IA32_MCG_STATUS:
2699         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2700                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2701         case MSR_K7_CLK_CTL:
2702                 /*
2703                  * Provide expected ramp-up count for K7. All other
2704                  * are set to zero, indicating minimum divisors for
2705                  * every field.
2706                  *
2707                  * This prevents guest kernels on AMD host with CPU
2708                  * type 6, model 8 and higher from exploding due to
2709                  * the rdmsr failing.
2710                  */
2711                 msr_info->data = 0x20000000;
2712                 break;
2713         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2714         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2715         case HV_X64_MSR_CRASH_CTL:
2716         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2717         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2718         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2719         case HV_X64_MSR_TSC_EMULATION_STATUS:
2720                 return kvm_hv_get_msr_common(vcpu,
2721                                              msr_info->index, &msr_info->data);
2722                 break;
2723         case MSR_IA32_BBL_CR_CTL3:
2724                 /* This legacy MSR exists but isn't fully documented in current
2725                  * silicon.  It is however accessed by winxp in very narrow
2726                  * scenarios where it sets bit #19, itself documented as
2727                  * a "reserved" bit.  Best effort attempt to source coherent
2728                  * read data here should the balance of the register be
2729                  * interpreted by the guest:
2730                  *
2731                  * L2 cache control register 3: 64GB range, 256KB size,
2732                  * enabled, latency 0x1, configured
2733                  */
2734                 msr_info->data = 0xbe702111;
2735                 break;
2736         case MSR_AMD64_OSVW_ID_LENGTH:
2737                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2738                         return 1;
2739                 msr_info->data = vcpu->arch.osvw.length;
2740                 break;
2741         case MSR_AMD64_OSVW_STATUS:
2742                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2743                         return 1;
2744                 msr_info->data = vcpu->arch.osvw.status;
2745                 break;
2746         case MSR_PLATFORM_INFO:
2747                 msr_info->data = vcpu->arch.msr_platform_info;
2748                 break;
2749         case MSR_MISC_FEATURES_ENABLES:
2750                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2751                 break;
2752         default:
2753                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2754                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2755                 if (!ignore_msrs) {
2756                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2757                                                msr_info->index);
2758                         return 1;
2759                 } else {
2760                         if (report_ignored_msrs)
2761                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2762                                         msr_info->index);
2763                         msr_info->data = 0;
2764                 }
2765                 break;
2766         }
2767         return 0;
2768 }
2769 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2770
2771 /*
2772  * Read or write a bunch of msrs. All parameters are kernel addresses.
2773  *
2774  * @return number of msrs set successfully.
2775  */
2776 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2777                     struct kvm_msr_entry *entries,
2778                     int (*do_msr)(struct kvm_vcpu *vcpu,
2779                                   unsigned index, u64 *data))
2780 {
2781         int i;
2782
2783         for (i = 0; i < msrs->nmsrs; ++i)
2784                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2785                         break;
2786
2787         return i;
2788 }
2789
2790 /*
2791  * Read or write a bunch of msrs. Parameters are user addresses.
2792  *
2793  * @return number of msrs set successfully.
2794  */
2795 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2796                   int (*do_msr)(struct kvm_vcpu *vcpu,
2797                                 unsigned index, u64 *data),
2798                   int writeback)
2799 {
2800         struct kvm_msrs msrs;
2801         struct kvm_msr_entry *entries;
2802         int r, n;
2803         unsigned size;
2804
2805         r = -EFAULT;
2806         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2807                 goto out;
2808
2809         r = -E2BIG;
2810         if (msrs.nmsrs >= MAX_IO_MSRS)
2811                 goto out;
2812
2813         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2814         entries = memdup_user(user_msrs->entries, size);
2815         if (IS_ERR(entries)) {
2816                 r = PTR_ERR(entries);
2817                 goto out;
2818         }
2819
2820         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2821         if (r < 0)
2822                 goto out_free;
2823
2824         r = -EFAULT;
2825         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2826                 goto out_free;
2827
2828         r = n;
2829
2830 out_free:
2831         kfree(entries);
2832 out:
2833         return r;
2834 }
2835
2836 static inline bool kvm_can_mwait_in_guest(void)
2837 {
2838         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2839                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2840                 boot_cpu_has(X86_FEATURE_ARAT);
2841 }
2842
2843 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2844 {
2845         int r = 0;
2846
2847         switch (ext) {
2848         case KVM_CAP_IRQCHIP:
2849         case KVM_CAP_HLT:
2850         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2851         case KVM_CAP_SET_TSS_ADDR:
2852         case KVM_CAP_EXT_CPUID:
2853         case KVM_CAP_EXT_EMUL_CPUID:
2854         case KVM_CAP_CLOCKSOURCE:
2855         case KVM_CAP_PIT:
2856         case KVM_CAP_NOP_IO_DELAY:
2857         case KVM_CAP_MP_STATE:
2858         case KVM_CAP_SYNC_MMU:
2859         case KVM_CAP_USER_NMI:
2860         case KVM_CAP_REINJECT_CONTROL:
2861         case KVM_CAP_IRQ_INJECT_STATUS:
2862         case KVM_CAP_IOEVENTFD:
2863         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2864         case KVM_CAP_PIT2:
2865         case KVM_CAP_PIT_STATE2:
2866         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2867         case KVM_CAP_XEN_HVM:
2868         case KVM_CAP_VCPU_EVENTS:
2869         case KVM_CAP_HYPERV:
2870         case KVM_CAP_HYPERV_VAPIC:
2871         case KVM_CAP_HYPERV_SPIN:
2872         case KVM_CAP_HYPERV_SYNIC:
2873         case KVM_CAP_HYPERV_SYNIC2:
2874         case KVM_CAP_HYPERV_VP_INDEX:
2875         case KVM_CAP_HYPERV_EVENTFD:
2876         case KVM_CAP_HYPERV_TLBFLUSH:
2877         case KVM_CAP_PCI_SEGMENT:
2878         case KVM_CAP_DEBUGREGS:
2879         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2880         case KVM_CAP_XSAVE:
2881         case KVM_CAP_ASYNC_PF:
2882         case KVM_CAP_GET_TSC_KHZ:
2883         case KVM_CAP_KVMCLOCK_CTRL:
2884         case KVM_CAP_READONLY_MEM:
2885         case KVM_CAP_HYPERV_TIME:
2886         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2887         case KVM_CAP_TSC_DEADLINE_TIMER:
2888         case KVM_CAP_ENABLE_CAP_VM:
2889         case KVM_CAP_DISABLE_QUIRKS:
2890         case KVM_CAP_SET_BOOT_CPU_ID:
2891         case KVM_CAP_SPLIT_IRQCHIP:
2892         case KVM_CAP_IMMEDIATE_EXIT:
2893         case KVM_CAP_GET_MSR_FEATURES:
2894                 r = 1;
2895                 break;
2896         case KVM_CAP_SYNC_REGS:
2897                 r = KVM_SYNC_X86_VALID_FIELDS;
2898                 break;
2899         case KVM_CAP_ADJUST_CLOCK:
2900                 r = KVM_CLOCK_TSC_STABLE;
2901                 break;
2902         case KVM_CAP_X86_DISABLE_EXITS:
2903                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
2904                 if(kvm_can_mwait_in_guest())
2905                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
2906                 break;
2907         case KVM_CAP_X86_SMM:
2908                 /* SMBASE is usually relocated above 1M on modern chipsets,
2909                  * and SMM handlers might indeed rely on 4G segment limits,
2910                  * so do not report SMM to be available if real mode is
2911                  * emulated via vm86 mode.  Still, do not go to great lengths
2912                  * to avoid userspace's usage of the feature, because it is a
2913                  * fringe case that is not enabled except via specific settings
2914                  * of the module parameters.
2915                  */
2916                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
2917                 break;
2918         case KVM_CAP_VAPIC:
2919                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2920                 break;
2921         case KVM_CAP_NR_VCPUS:
2922                 r = KVM_SOFT_MAX_VCPUS;
2923                 break;
2924         case KVM_CAP_MAX_VCPUS:
2925                 r = KVM_MAX_VCPUS;
2926                 break;
2927         case KVM_CAP_NR_MEMSLOTS:
2928                 r = KVM_USER_MEM_SLOTS;
2929                 break;
2930         case KVM_CAP_PV_MMU:    /* obsolete */
2931                 r = 0;
2932                 break;
2933         case KVM_CAP_MCE:
2934                 r = KVM_MAX_MCE_BANKS;
2935                 break;
2936         case KVM_CAP_XCRS:
2937                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2938                 break;
2939         case KVM_CAP_TSC_CONTROL:
2940                 r = kvm_has_tsc_control;
2941                 break;
2942         case KVM_CAP_X2APIC_API:
2943                 r = KVM_X2APIC_API_VALID_FLAGS;
2944                 break;
2945         default:
2946                 break;
2947         }
2948         return r;
2949
2950 }
2951
2952 long kvm_arch_dev_ioctl(struct file *filp,
2953                         unsigned int ioctl, unsigned long arg)
2954 {
2955         void __user *argp = (void __user *)arg;
2956         long r;
2957
2958         switch (ioctl) {
2959         case KVM_GET_MSR_INDEX_LIST: {
2960                 struct kvm_msr_list __user *user_msr_list = argp;
2961                 struct kvm_msr_list msr_list;
2962                 unsigned n;
2963
2964                 r = -EFAULT;
2965                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2966                         goto out;
2967                 n = msr_list.nmsrs;
2968                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2969                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2970                         goto out;
2971                 r = -E2BIG;
2972                 if (n < msr_list.nmsrs)
2973                         goto out;
2974                 r = -EFAULT;
2975                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2976                                  num_msrs_to_save * sizeof(u32)))
2977                         goto out;
2978                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2979                                  &emulated_msrs,
2980                                  num_emulated_msrs * sizeof(u32)))
2981                         goto out;
2982                 r = 0;
2983                 break;
2984         }
2985         case KVM_GET_SUPPORTED_CPUID:
2986         case KVM_GET_EMULATED_CPUID: {
2987                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2988                 struct kvm_cpuid2 cpuid;
2989
2990                 r = -EFAULT;
2991                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2992                         goto out;
2993
2994                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2995                                             ioctl);
2996                 if (r)
2997                         goto out;
2998
2999                 r = -EFAULT;
3000                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3001                         goto out;
3002                 r = 0;
3003                 break;
3004         }
3005         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3006                 r = -EFAULT;
3007                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3008                                  sizeof(kvm_mce_cap_supported)))
3009                         goto out;
3010                 r = 0;
3011                 break;
3012         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3013                 struct kvm_msr_list __user *user_msr_list = argp;
3014                 struct kvm_msr_list msr_list;
3015                 unsigned int n;
3016
3017                 r = -EFAULT;
3018                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3019                         goto out;
3020                 n = msr_list.nmsrs;
3021                 msr_list.nmsrs = num_msr_based_features;
3022                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3023                         goto out;
3024                 r = -E2BIG;
3025                 if (n < msr_list.nmsrs)
3026                         goto out;
3027                 r = -EFAULT;
3028                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3029                                  num_msr_based_features * sizeof(u32)))
3030                         goto out;
3031                 r = 0;
3032                 break;
3033         }
3034         case KVM_GET_MSRS:
3035                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3036                 break;
3037         }
3038         default:
3039                 r = -EINVAL;
3040         }
3041 out:
3042         return r;
3043 }
3044
3045 static void wbinvd_ipi(void *garbage)
3046 {
3047         wbinvd();
3048 }
3049
3050 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3051 {
3052         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3053 }
3054
3055 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3056 {
3057         /* Address WBINVD may be executed by guest */
3058         if (need_emulate_wbinvd(vcpu)) {
3059                 if (kvm_x86_ops->has_wbinvd_exit())
3060                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3061                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3062                         smp_call_function_single(vcpu->cpu,
3063                                         wbinvd_ipi, NULL, 1);
3064         }
3065
3066         kvm_x86_ops->vcpu_load(vcpu, cpu);
3067
3068         /* Apply any externally detected TSC adjustments (due to suspend) */
3069         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3070                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3071                 vcpu->arch.tsc_offset_adjustment = 0;
3072                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3073         }
3074
3075         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3076                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3077                                 rdtsc() - vcpu->arch.last_host_tsc;
3078                 if (tsc_delta < 0)
3079                         mark_tsc_unstable("KVM discovered backwards TSC");
3080
3081                 if (kvm_check_tsc_unstable()) {
3082                         u64 offset = kvm_compute_tsc_offset(vcpu,
3083                                                 vcpu->arch.last_guest_tsc);
3084                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3085                         vcpu->arch.tsc_catchup = 1;
3086                 }
3087
3088                 if (kvm_lapic_hv_timer_in_use(vcpu))
3089                         kvm_lapic_restart_hv_timer(vcpu);
3090
3091                 /*
3092                  * On a host with synchronized TSC, there is no need to update
3093                  * kvmclock on vcpu->cpu migration
3094                  */
3095                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3096                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3097                 if (vcpu->cpu != cpu)
3098                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3099                 vcpu->cpu = cpu;
3100         }
3101
3102         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3103 }
3104
3105 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3106 {
3107         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3108                 return;
3109
3110         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3111
3112         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3113                         &vcpu->arch.st.steal.preempted,
3114                         offsetof(struct kvm_steal_time, preempted),
3115                         sizeof(vcpu->arch.st.steal.preempted));
3116 }
3117
3118 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3119 {
3120         int idx;
3121
3122         if (vcpu->preempted)
3123                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3124
3125         /*
3126          * Disable page faults because we're in atomic context here.
3127          * kvm_write_guest_offset_cached() would call might_fault()
3128          * that relies on pagefault_disable() to tell if there's a
3129          * bug. NOTE: the write to guest memory may not go through if
3130          * during postcopy live migration or if there's heavy guest
3131          * paging.
3132          */
3133         pagefault_disable();
3134         /*
3135          * kvm_memslots() will be called by
3136          * kvm_write_guest_offset_cached() so take the srcu lock.
3137          */
3138         idx = srcu_read_lock(&vcpu->kvm->srcu);
3139         kvm_steal_time_set_preempted(vcpu);
3140         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3141         pagefault_enable();
3142         kvm_x86_ops->vcpu_put(vcpu);
3143         vcpu->arch.last_host_tsc = rdtsc();
3144         /*
3145          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3146          * on every vmexit, but if not, we might have a stale dr6 from the
3147          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3148          */
3149         set_debugreg(0, 6);
3150 }
3151
3152 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3153                                     struct kvm_lapic_state *s)
3154 {
3155         if (vcpu->arch.apicv_active)
3156                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3157
3158         return kvm_apic_get_state(vcpu, s);
3159 }
3160
3161 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3162                                     struct kvm_lapic_state *s)
3163 {
3164         int r;
3165
3166         r = kvm_apic_set_state(vcpu, s);
3167         if (r)
3168                 return r;
3169         update_cr8_intercept(vcpu);
3170
3171         return 0;
3172 }
3173
3174 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3175 {
3176         return (!lapic_in_kernel(vcpu) ||
3177                 kvm_apic_accept_pic_intr(vcpu));
3178 }
3179
3180 /*
3181  * if userspace requested an interrupt window, check that the
3182  * interrupt window is open.
3183  *
3184  * No need to exit to userspace if we already have an interrupt queued.
3185  */
3186 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3187 {
3188         return kvm_arch_interrupt_allowed(vcpu) &&
3189                 !kvm_cpu_has_interrupt(vcpu) &&
3190                 !kvm_event_needs_reinjection(vcpu) &&
3191                 kvm_cpu_accept_dm_intr(vcpu);
3192 }
3193
3194 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3195                                     struct kvm_interrupt *irq)
3196 {
3197         if (irq->irq >= KVM_NR_INTERRUPTS)
3198                 return -EINVAL;
3199
3200         if (!irqchip_in_kernel(vcpu->kvm)) {
3201                 kvm_queue_interrupt(vcpu, irq->irq, false);
3202                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3203                 return 0;
3204         }
3205
3206         /*
3207          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3208          * fail for in-kernel 8259.
3209          */
3210         if (pic_in_kernel(vcpu->kvm))
3211                 return -ENXIO;
3212
3213         if (vcpu->arch.pending_external_vector != -1)
3214                 return -EEXIST;
3215
3216         vcpu->arch.pending_external_vector = irq->irq;
3217         kvm_make_request(KVM_REQ_EVENT, vcpu);
3218         return 0;
3219 }
3220
3221 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3222 {
3223         kvm_inject_nmi(vcpu);
3224
3225         return 0;
3226 }
3227
3228 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3229 {
3230         kvm_make_request(KVM_REQ_SMI, vcpu);
3231
3232         return 0;
3233 }
3234
3235 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3236                                            struct kvm_tpr_access_ctl *tac)
3237 {
3238         if (tac->flags)
3239                 return -EINVAL;
3240         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3241         return 0;
3242 }
3243
3244 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3245                                         u64 mcg_cap)
3246 {
3247         int r;
3248         unsigned bank_num = mcg_cap & 0xff, bank;
3249
3250         r = -EINVAL;
3251         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3252                 goto out;
3253         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3254                 goto out;
3255         r = 0;
3256         vcpu->arch.mcg_cap = mcg_cap;
3257         /* Init IA32_MCG_CTL to all 1s */
3258         if (mcg_cap & MCG_CTL_P)
3259                 vcpu->arch.mcg_ctl = ~(u64)0;
3260         /* Init IA32_MCi_CTL to all 1s */
3261         for (bank = 0; bank < bank_num; bank++)
3262                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3263
3264         if (kvm_x86_ops->setup_mce)
3265                 kvm_x86_ops->setup_mce(vcpu);
3266 out:
3267         return r;
3268 }
3269
3270 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3271                                       struct kvm_x86_mce *mce)
3272 {
3273         u64 mcg_cap = vcpu->arch.mcg_cap;
3274         unsigned bank_num = mcg_cap & 0xff;
3275         u64 *banks = vcpu->arch.mce_banks;
3276
3277         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3278                 return -EINVAL;
3279         /*
3280          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3281          * reporting is disabled
3282          */
3283         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3284             vcpu->arch.mcg_ctl != ~(u64)0)
3285                 return 0;
3286         banks += 4 * mce->bank;
3287         /*
3288          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3289          * reporting is disabled for the bank
3290          */
3291         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3292                 return 0;
3293         if (mce->status & MCI_STATUS_UC) {
3294                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3295                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3296                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3297                         return 0;
3298                 }
3299                 if (banks[1] & MCI_STATUS_VAL)
3300                         mce->status |= MCI_STATUS_OVER;
3301                 banks[2] = mce->addr;
3302                 banks[3] = mce->misc;
3303                 vcpu->arch.mcg_status = mce->mcg_status;
3304                 banks[1] = mce->status;
3305                 kvm_queue_exception(vcpu, MC_VECTOR);
3306         } else if (!(banks[1] & MCI_STATUS_VAL)
3307                    || !(banks[1] & MCI_STATUS_UC)) {
3308                 if (banks[1] & MCI_STATUS_VAL)
3309                         mce->status |= MCI_STATUS_OVER;
3310                 banks[2] = mce->addr;
3311                 banks[3] = mce->misc;
3312                 banks[1] = mce->status;
3313         } else
3314                 banks[1] |= MCI_STATUS_OVER;
3315         return 0;
3316 }
3317
3318 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3319                                                struct kvm_vcpu_events *events)
3320 {
3321         process_nmi(vcpu);
3322         /*
3323          * FIXME: pass injected and pending separately.  This is only
3324          * needed for nested virtualization, whose state cannot be
3325          * migrated yet.  For now we can combine them.
3326          */
3327         events->exception.injected =
3328                 (vcpu->arch.exception.pending ||
3329                  vcpu->arch.exception.injected) &&
3330                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3331         events->exception.nr = vcpu->arch.exception.nr;
3332         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3333         events->exception.pad = 0;
3334         events->exception.error_code = vcpu->arch.exception.error_code;
3335
3336         events->interrupt.injected =
3337                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3338         events->interrupt.nr = vcpu->arch.interrupt.nr;
3339         events->interrupt.soft = 0;
3340         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3341
3342         events->nmi.injected = vcpu->arch.nmi_injected;
3343         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3344         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3345         events->nmi.pad = 0;
3346
3347         events->sipi_vector = 0; /* never valid when reporting to user space */
3348
3349         events->smi.smm = is_smm(vcpu);
3350         events->smi.pending = vcpu->arch.smi_pending;
3351         events->smi.smm_inside_nmi =
3352                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3353         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3354
3355         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3356                          | KVM_VCPUEVENT_VALID_SHADOW
3357                          | KVM_VCPUEVENT_VALID_SMM);
3358         memset(&events->reserved, 0, sizeof(events->reserved));
3359 }
3360
3361 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3362
3363 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3364                                               struct kvm_vcpu_events *events)
3365 {
3366         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3367                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3368                               | KVM_VCPUEVENT_VALID_SHADOW
3369                               | KVM_VCPUEVENT_VALID_SMM))
3370                 return -EINVAL;
3371
3372         if (events->exception.injected &&
3373             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3374              is_guest_mode(vcpu)))
3375                 return -EINVAL;
3376
3377         /* INITs are latched while in SMM */
3378         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3379             (events->smi.smm || events->smi.pending) &&
3380             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3381                 return -EINVAL;
3382
3383         process_nmi(vcpu);
3384         vcpu->arch.exception.injected = false;
3385         vcpu->arch.exception.pending = events->exception.injected;
3386         vcpu->arch.exception.nr = events->exception.nr;
3387         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3388         vcpu->arch.exception.error_code = events->exception.error_code;
3389
3390         vcpu->arch.interrupt.injected = events->interrupt.injected;
3391         vcpu->arch.interrupt.nr = events->interrupt.nr;
3392         vcpu->arch.interrupt.soft = events->interrupt.soft;
3393         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3394                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3395                                                   events->interrupt.shadow);
3396
3397         vcpu->arch.nmi_injected = events->nmi.injected;
3398         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3399                 vcpu->arch.nmi_pending = events->nmi.pending;
3400         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3401
3402         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3403             lapic_in_kernel(vcpu))
3404                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3405
3406         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3407                 u32 hflags = vcpu->arch.hflags;
3408                 if (events->smi.smm)
3409                         hflags |= HF_SMM_MASK;
3410                 else
3411                         hflags &= ~HF_SMM_MASK;
3412                 kvm_set_hflags(vcpu, hflags);
3413
3414                 vcpu->arch.smi_pending = events->smi.pending;
3415
3416                 if (events->smi.smm) {
3417                         if (events->smi.smm_inside_nmi)
3418                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3419                         else
3420                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3421                         if (lapic_in_kernel(vcpu)) {
3422                                 if (events->smi.latched_init)
3423                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3424                                 else
3425                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3426                         }
3427                 }
3428         }
3429
3430         kvm_make_request(KVM_REQ_EVENT, vcpu);
3431
3432         return 0;
3433 }
3434
3435 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3436                                              struct kvm_debugregs *dbgregs)
3437 {
3438         unsigned long val;
3439
3440         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3441         kvm_get_dr(vcpu, 6, &val);
3442         dbgregs->dr6 = val;
3443         dbgregs->dr7 = vcpu->arch.dr7;
3444         dbgregs->flags = 0;
3445         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3446 }
3447
3448 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3449                                             struct kvm_debugregs *dbgregs)
3450 {
3451         if (dbgregs->flags)
3452                 return -EINVAL;
3453
3454         if (dbgregs->dr6 & ~0xffffffffull)
3455                 return -EINVAL;
3456         if (dbgregs->dr7 & ~0xffffffffull)
3457                 return -EINVAL;
3458
3459         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3460         kvm_update_dr0123(vcpu);
3461         vcpu->arch.dr6 = dbgregs->dr6;
3462         kvm_update_dr6(vcpu);
3463         vcpu->arch.dr7 = dbgregs->dr7;
3464         kvm_update_dr7(vcpu);
3465
3466         return 0;
3467 }
3468
3469 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3470
3471 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3472 {
3473         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3474         u64 xstate_bv = xsave->header.xfeatures;
3475         u64 valid;
3476
3477         /*
3478          * Copy legacy XSAVE area, to avoid complications with CPUID
3479          * leaves 0 and 1 in the loop below.
3480          */
3481         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3482
3483         /* Set XSTATE_BV */
3484         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3485         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3486
3487         /*
3488          * Copy each region from the possibly compacted offset to the
3489          * non-compacted offset.
3490          */
3491         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3492         while (valid) {
3493                 u64 feature = valid & -valid;
3494                 int index = fls64(feature) - 1;
3495                 void *src = get_xsave_addr(xsave, feature);
3496
3497                 if (src) {
3498                         u32 size, offset, ecx, edx;
3499                         cpuid_count(XSTATE_CPUID, index,
3500                                     &size, &offset, &ecx, &edx);
3501                         if (feature == XFEATURE_MASK_PKRU)
3502                                 memcpy(dest + offset, &vcpu->arch.pkru,
3503                                        sizeof(vcpu->arch.pkru));
3504                         else
3505                                 memcpy(dest + offset, src, size);
3506
3507                 }
3508
3509                 valid -= feature;
3510         }
3511 }
3512
3513 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3514 {
3515         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3516         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3517         u64 valid;
3518
3519         /*
3520          * Copy legacy XSAVE area, to avoid complications with CPUID
3521          * leaves 0 and 1 in the loop below.
3522          */
3523         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3524
3525         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3526         xsave->header.xfeatures = xstate_bv;
3527         if (boot_cpu_has(X86_FEATURE_XSAVES))
3528                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3529
3530         /*
3531          * Copy each region from the non-compacted offset to the
3532          * possibly compacted offset.
3533          */
3534         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3535         while (valid) {
3536                 u64 feature = valid & -valid;
3537                 int index = fls64(feature) - 1;
3538                 void *dest = get_xsave_addr(xsave, feature);
3539
3540                 if (dest) {
3541                         u32 size, offset, ecx, edx;
3542                         cpuid_count(XSTATE_CPUID, index,
3543                                     &size, &offset, &ecx, &edx);
3544                         if (feature == XFEATURE_MASK_PKRU)
3545                                 memcpy(&vcpu->arch.pkru, src + offset,
3546                                        sizeof(vcpu->arch.pkru));
3547                         else
3548                                 memcpy(dest, src + offset, size);
3549                 }
3550
3551                 valid -= feature;
3552         }
3553 }
3554
3555 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3556                                          struct kvm_xsave *guest_xsave)
3557 {
3558         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3559                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3560                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3561         } else {
3562                 memcpy(guest_xsave->region,
3563                         &vcpu->arch.guest_fpu.state.fxsave,
3564                         sizeof(struct fxregs_state));
3565                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3566                         XFEATURE_MASK_FPSSE;
3567         }
3568 }
3569
3570 #define XSAVE_MXCSR_OFFSET 24
3571
3572 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3573                                         struct kvm_xsave *guest_xsave)
3574 {
3575         u64 xstate_bv =
3576                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3577         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3578
3579         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3580                 /*
3581                  * Here we allow setting states that are not present in
3582                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3583                  * with old userspace.
3584                  */
3585                 if (xstate_bv & ~kvm_supported_xcr0() ||
3586                         mxcsr & ~mxcsr_feature_mask)
3587                         return -EINVAL;
3588                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3589         } else {
3590                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3591                         mxcsr & ~mxcsr_feature_mask)
3592                         return -EINVAL;
3593                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3594                         guest_xsave->region, sizeof(struct fxregs_state));
3595         }
3596         return 0;
3597 }
3598
3599 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3600                                         struct kvm_xcrs *guest_xcrs)
3601 {
3602         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3603                 guest_xcrs->nr_xcrs = 0;
3604                 return;
3605         }
3606
3607         guest_xcrs->nr_xcrs = 1;
3608         guest_xcrs->flags = 0;
3609         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3610         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3611 }
3612
3613 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3614                                        struct kvm_xcrs *guest_xcrs)
3615 {
3616         int i, r = 0;
3617
3618         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3619                 return -EINVAL;
3620
3621         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3622                 return -EINVAL;
3623
3624         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3625                 /* Only support XCR0 currently */
3626                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3627                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3628                                 guest_xcrs->xcrs[i].value);
3629                         break;
3630                 }
3631         if (r)
3632                 r = -EINVAL;
3633         return r;
3634 }
3635
3636 /*
3637  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3638  * stopped by the hypervisor.  This function will be called from the host only.
3639  * EINVAL is returned when the host attempts to set the flag for a guest that
3640  * does not support pv clocks.
3641  */
3642 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3643 {
3644         if (!vcpu->arch.pv_time_enabled)
3645                 return -EINVAL;
3646         vcpu->arch.pvclock_set_guest_stopped_request = true;
3647         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3648         return 0;
3649 }
3650
3651 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3652                                      struct kvm_enable_cap *cap)
3653 {
3654         if (cap->flags)
3655                 return -EINVAL;
3656
3657         switch (cap->cap) {
3658         case KVM_CAP_HYPERV_SYNIC2:
3659                 if (cap->args[0])
3660                         return -EINVAL;
3661         case KVM_CAP_HYPERV_SYNIC:
3662                 if (!irqchip_in_kernel(vcpu->kvm))
3663                         return -EINVAL;
3664                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3665                                              KVM_CAP_HYPERV_SYNIC2);
3666         default:
3667                 return -EINVAL;
3668         }
3669 }
3670
3671 long kvm_arch_vcpu_ioctl(struct file *filp,
3672                          unsigned int ioctl, unsigned long arg)
3673 {
3674         struct kvm_vcpu *vcpu = filp->private_data;
3675         void __user *argp = (void __user *)arg;
3676         int r;
3677         union {
3678                 struct kvm_lapic_state *lapic;
3679                 struct kvm_xsave *xsave;
3680                 struct kvm_xcrs *xcrs;
3681                 void *buffer;
3682         } u;
3683
3684         vcpu_load(vcpu);
3685
3686         u.buffer = NULL;
3687         switch (ioctl) {
3688         case KVM_GET_LAPIC: {
3689                 r = -EINVAL;
3690                 if (!lapic_in_kernel(vcpu))
3691                         goto out;
3692                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3693
3694                 r = -ENOMEM;
3695                 if (!u.lapic)
3696                         goto out;
3697                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3698                 if (r)
3699                         goto out;
3700                 r = -EFAULT;
3701                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3702                         goto out;
3703                 r = 0;
3704                 break;
3705         }
3706         case KVM_SET_LAPIC: {
3707                 r = -EINVAL;
3708                 if (!lapic_in_kernel(vcpu))
3709                         goto out;
3710                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3711                 if (IS_ERR(u.lapic)) {
3712                         r = PTR_ERR(u.lapic);
3713                         goto out_nofree;
3714                 }
3715
3716                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3717                 break;
3718         }
3719         case KVM_INTERRUPT: {
3720                 struct kvm_interrupt irq;
3721
3722                 r = -EFAULT;
3723                 if (copy_from_user(&irq, argp, sizeof irq))
3724                         goto out;
3725                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3726                 break;
3727         }
3728         case KVM_NMI: {
3729                 r = kvm_vcpu_ioctl_nmi(vcpu);
3730                 break;
3731         }
3732         case KVM_SMI: {
3733                 r = kvm_vcpu_ioctl_smi(vcpu);
3734                 break;
3735         }
3736         case KVM_SET_CPUID: {
3737                 struct kvm_cpuid __user *cpuid_arg = argp;
3738                 struct kvm_cpuid cpuid;
3739
3740                 r = -EFAULT;
3741                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3742                         goto out;
3743                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3744                 break;
3745         }
3746         case KVM_SET_CPUID2: {
3747                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3748                 struct kvm_cpuid2 cpuid;
3749
3750                 r = -EFAULT;
3751                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3752                         goto out;
3753                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3754                                               cpuid_arg->entries);
3755                 break;
3756         }
3757         case KVM_GET_CPUID2: {
3758                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3759                 struct kvm_cpuid2 cpuid;
3760
3761                 r = -EFAULT;
3762                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3763                         goto out;
3764                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3765                                               cpuid_arg->entries);
3766                 if (r)
3767                         goto out;
3768                 r = -EFAULT;
3769                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3770                         goto out;
3771                 r = 0;
3772                 break;
3773         }
3774         case KVM_GET_MSRS: {
3775                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3776                 r = msr_io(vcpu, argp, do_get_msr, 1);
3777                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3778                 break;
3779         }
3780         case KVM_SET_MSRS: {
3781                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3782                 r = msr_io(vcpu, argp, do_set_msr, 0);
3783                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3784                 break;
3785         }
3786         case KVM_TPR_ACCESS_REPORTING: {
3787                 struct kvm_tpr_access_ctl tac;
3788
3789                 r = -EFAULT;
3790                 if (copy_from_user(&tac, argp, sizeof tac))
3791                         goto out;
3792                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3793                 if (r)
3794                         goto out;
3795                 r = -EFAULT;
3796                 if (copy_to_user(argp, &tac, sizeof tac))
3797                         goto out;
3798                 r = 0;
3799                 break;
3800         };
3801         case KVM_SET_VAPIC_ADDR: {
3802                 struct kvm_vapic_addr va;
3803                 int idx;
3804
3805                 r = -EINVAL;
3806                 if (!lapic_in_kernel(vcpu))
3807                         goto out;
3808                 r = -EFAULT;
3809                 if (copy_from_user(&va, argp, sizeof va))
3810                         goto out;
3811                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3812                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3813                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3814                 break;
3815         }
3816         case KVM_X86_SETUP_MCE: {
3817                 u64 mcg_cap;
3818
3819                 r = -EFAULT;
3820                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3821                         goto out;
3822                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3823                 break;
3824         }
3825         case KVM_X86_SET_MCE: {
3826                 struct kvm_x86_mce mce;
3827
3828                 r = -EFAULT;
3829                 if (copy_from_user(&mce, argp, sizeof mce))
3830                         goto out;
3831                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3832                 break;
3833         }
3834         case KVM_GET_VCPU_EVENTS: {
3835                 struct kvm_vcpu_events events;
3836
3837                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3838
3839                 r = -EFAULT;
3840                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3841                         break;
3842                 r = 0;
3843                 break;
3844         }
3845         case KVM_SET_VCPU_EVENTS: {
3846                 struct kvm_vcpu_events events;
3847
3848                 r = -EFAULT;
3849                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3850                         break;
3851
3852                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3853                 break;
3854         }
3855         case KVM_GET_DEBUGREGS: {
3856                 struct kvm_debugregs dbgregs;
3857
3858                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3859
3860                 r = -EFAULT;
3861                 if (copy_to_user(argp, &dbgregs,
3862                                  sizeof(struct kvm_debugregs)))
3863                         break;
3864                 r = 0;
3865                 break;
3866         }
3867         case KVM_SET_DEBUGREGS: {
3868                 struct kvm_debugregs dbgregs;
3869
3870                 r = -EFAULT;
3871                 if (copy_from_user(&dbgregs, argp,
3872                                    sizeof(struct kvm_debugregs)))
3873                         break;
3874
3875                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3876                 break;
3877         }
3878         case KVM_GET_XSAVE: {
3879                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3880                 r = -ENOMEM;
3881                 if (!u.xsave)
3882                         break;
3883
3884                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3885
3886                 r = -EFAULT;
3887                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3888                         break;
3889                 r = 0;
3890                 break;
3891         }
3892         case KVM_SET_XSAVE: {
3893                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3894                 if (IS_ERR(u.xsave)) {
3895                         r = PTR_ERR(u.xsave);
3896                         goto out_nofree;
3897                 }
3898
3899                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3900                 break;
3901         }
3902         case KVM_GET_XCRS: {
3903                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3904                 r = -ENOMEM;
3905                 if (!u.xcrs)
3906                         break;
3907
3908                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3909
3910                 r = -EFAULT;
3911                 if (copy_to_user(argp, u.xcrs,
3912                                  sizeof(struct kvm_xcrs)))
3913                         break;
3914                 r = 0;
3915                 break;
3916         }
3917         case KVM_SET_XCRS: {
3918                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3919                 if (IS_ERR(u.xcrs)) {
3920                         r = PTR_ERR(u.xcrs);
3921                         goto out_nofree;
3922                 }
3923
3924                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3925                 break;
3926         }
3927         case KVM_SET_TSC_KHZ: {
3928                 u32 user_tsc_khz;
3929
3930                 r = -EINVAL;
3931                 user_tsc_khz = (u32)arg;
3932
3933                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3934                         goto out;
3935
3936                 if (user_tsc_khz == 0)
3937                         user_tsc_khz = tsc_khz;
3938
3939                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3940                         r = 0;
3941
3942                 goto out;
3943         }
3944         case KVM_GET_TSC_KHZ: {
3945                 r = vcpu->arch.virtual_tsc_khz;
3946                 goto out;
3947         }
3948         case KVM_KVMCLOCK_CTRL: {
3949                 r = kvm_set_guest_paused(vcpu);
3950                 goto out;
3951         }
3952         case KVM_ENABLE_CAP: {
3953                 struct kvm_enable_cap cap;
3954
3955                 r = -EFAULT;
3956                 if (copy_from_user(&cap, argp, sizeof(cap)))
3957                         goto out;
3958                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3959                 break;
3960         }
3961         default:
3962                 r = -EINVAL;
3963         }
3964 out:
3965         kfree(u.buffer);
3966 out_nofree:
3967         vcpu_put(vcpu);
3968         return r;
3969 }
3970
3971 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3972 {
3973         return VM_FAULT_SIGBUS;
3974 }
3975
3976 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3977 {
3978         int ret;
3979
3980         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3981                 return -EINVAL;
3982         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3983         return ret;
3984 }
3985
3986 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3987                                               u64 ident_addr)
3988 {
3989         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
3990 }
3991
3992 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3993                                           u32 kvm_nr_mmu_pages)
3994 {
3995         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3996                 return -EINVAL;
3997
3998         mutex_lock(&kvm->slots_lock);
3999
4000         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4001         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4002
4003         mutex_unlock(&kvm->slots_lock);
4004         return 0;
4005 }
4006
4007 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4008 {
4009         return kvm->arch.n_max_mmu_pages;
4010 }
4011
4012 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4013 {
4014         struct kvm_pic *pic = kvm->arch.vpic;
4015         int r;
4016
4017         r = 0;
4018         switch (chip->chip_id) {
4019         case KVM_IRQCHIP_PIC_MASTER:
4020                 memcpy(&chip->chip.pic, &pic->pics[0],
4021                         sizeof(struct kvm_pic_state));
4022                 break;
4023         case KVM_IRQCHIP_PIC_SLAVE:
4024                 memcpy(&chip->chip.pic, &pic->pics[1],
4025                         sizeof(struct kvm_pic_state));
4026                 break;
4027         case KVM_IRQCHIP_IOAPIC:
4028                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4029                 break;
4030         default:
4031                 r = -EINVAL;
4032                 break;
4033         }
4034         return r;
4035 }
4036
4037 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4038 {
4039         struct kvm_pic *pic = kvm->arch.vpic;
4040         int r;
4041
4042         r = 0;
4043         switch (chip->chip_id) {
4044         case KVM_IRQCHIP_PIC_MASTER:
4045                 spin_lock(&pic->lock);
4046                 memcpy(&pic->pics[0], &chip->chip.pic,
4047                         sizeof(struct kvm_pic_state));
4048                 spin_unlock(&pic->lock);
4049                 break;
4050         case KVM_IRQCHIP_PIC_SLAVE:
4051                 spin_lock(&pic->lock);
4052                 memcpy(&pic->pics[1], &chip->chip.pic,
4053                         sizeof(struct kvm_pic_state));
4054                 spin_unlock(&pic->lock);
4055                 break;
4056         case KVM_IRQCHIP_IOAPIC:
4057                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4058                 break;
4059         default:
4060                 r = -EINVAL;
4061                 break;
4062         }
4063         kvm_pic_update_irq(pic);
4064         return r;
4065 }
4066
4067 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4068 {
4069         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4070
4071         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4072
4073         mutex_lock(&kps->lock);
4074         memcpy(ps, &kps->channels, sizeof(*ps));
4075         mutex_unlock(&kps->lock);
4076         return 0;
4077 }
4078
4079 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4080 {
4081         int i;
4082         struct kvm_pit *pit = kvm->arch.vpit;
4083
4084         mutex_lock(&pit->pit_state.lock);
4085         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4086         for (i = 0; i < 3; i++)
4087                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4088         mutex_unlock(&pit->pit_state.lock);
4089         return 0;
4090 }
4091
4092 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4093 {
4094         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4095         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4096                 sizeof(ps->channels));
4097         ps->flags = kvm->arch.vpit->pit_state.flags;
4098         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4099         memset(&ps->reserved, 0, sizeof(ps->reserved));
4100         return 0;
4101 }
4102
4103 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4104 {
4105         int start = 0;
4106         int i;
4107         u32 prev_legacy, cur_legacy;
4108         struct kvm_pit *pit = kvm->arch.vpit;
4109
4110         mutex_lock(&pit->pit_state.lock);
4111         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4112         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4113         if (!prev_legacy && cur_legacy)
4114                 start = 1;
4115         memcpy(&pit->pit_state.channels, &ps->channels,
4116                sizeof(pit->pit_state.channels));
4117         pit->pit_state.flags = ps->flags;
4118         for (i = 0; i < 3; i++)
4119                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4120                                    start && i == 0);
4121         mutex_unlock(&pit->pit_state.lock);
4122         return 0;
4123 }
4124
4125 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4126                                  struct kvm_reinject_control *control)
4127 {
4128         struct kvm_pit *pit = kvm->arch.vpit;
4129
4130         if (!pit)
4131                 return -ENXIO;
4132
4133         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4134          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4135          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4136          */
4137         mutex_lock(&pit->pit_state.lock);
4138         kvm_pit_set_reinject(pit, control->pit_reinject);
4139         mutex_unlock(&pit->pit_state.lock);
4140
4141         return 0;
4142 }
4143
4144 /**
4145  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4146  * @kvm: kvm instance
4147  * @log: slot id and address to which we copy the log
4148  *
4149  * Steps 1-4 below provide general overview of dirty page logging. See
4150  * kvm_get_dirty_log_protect() function description for additional details.
4151  *
4152  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4153  * always flush the TLB (step 4) even if previous step failed  and the dirty
4154  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4155  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4156  * writes will be marked dirty for next log read.
4157  *
4158  *   1. Take a snapshot of the bit and clear it if needed.
4159  *   2. Write protect the corresponding page.
4160  *   3. Copy the snapshot to the userspace.
4161  *   4. Flush TLB's if needed.
4162  */
4163 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4164 {
4165         bool is_dirty = false;
4166         int r;
4167
4168         mutex_lock(&kvm->slots_lock);
4169
4170         /*
4171          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4172          */
4173         if (kvm_x86_ops->flush_log_dirty)
4174                 kvm_x86_ops->flush_log_dirty(kvm);
4175
4176         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4177
4178         /*
4179          * All the TLBs can be flushed out of mmu lock, see the comments in
4180          * kvm_mmu_slot_remove_write_access().
4181          */
4182         lockdep_assert_held(&kvm->slots_lock);
4183         if (is_dirty)
4184                 kvm_flush_remote_tlbs(kvm);
4185
4186         mutex_unlock(&kvm->slots_lock);
4187         return r;
4188 }
4189
4190 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4191                         bool line_status)
4192 {
4193         if (!irqchip_in_kernel(kvm))
4194                 return -ENXIO;
4195
4196         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4197                                         irq_event->irq, irq_event->level,
4198                                         line_status);
4199         return 0;
4200 }
4201
4202 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4203                                    struct kvm_enable_cap *cap)
4204 {
4205         int r;
4206
4207         if (cap->flags)
4208                 return -EINVAL;
4209
4210         switch (cap->cap) {
4211         case KVM_CAP_DISABLE_QUIRKS:
4212                 kvm->arch.disabled_quirks = cap->args[0];
4213                 r = 0;
4214                 break;
4215         case KVM_CAP_SPLIT_IRQCHIP: {
4216                 mutex_lock(&kvm->lock);
4217                 r = -EINVAL;
4218                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4219                         goto split_irqchip_unlock;
4220                 r = -EEXIST;
4221                 if (irqchip_in_kernel(kvm))
4222                         goto split_irqchip_unlock;
4223                 if (kvm->created_vcpus)
4224                         goto split_irqchip_unlock;
4225                 r = kvm_setup_empty_irq_routing(kvm);
4226                 if (r)
4227                         goto split_irqchip_unlock;
4228                 /* Pairs with irqchip_in_kernel. */
4229                 smp_wmb();
4230                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4231                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4232                 r = 0;
4233 split_irqchip_unlock:
4234                 mutex_unlock(&kvm->lock);
4235                 break;
4236         }
4237         case KVM_CAP_X2APIC_API:
4238                 r = -EINVAL;
4239                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4240                         break;
4241
4242                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4243                         kvm->arch.x2apic_format = true;
4244                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4245                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4246
4247                 r = 0;
4248                 break;
4249         case KVM_CAP_X86_DISABLE_EXITS:
4250                 r = -EINVAL;
4251                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4252                         break;
4253
4254                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4255                         kvm_can_mwait_in_guest())
4256                         kvm->arch.mwait_in_guest = true;
4257                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4258                         kvm->arch.hlt_in_guest = true;
4259                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4260                         kvm->arch.pause_in_guest = true;
4261                 r = 0;
4262                 break;
4263         default:
4264                 r = -EINVAL;
4265                 break;
4266         }
4267         return r;
4268 }
4269
4270 long kvm_arch_vm_ioctl(struct file *filp,
4271                        unsigned int ioctl, unsigned long arg)
4272 {
4273         struct kvm *kvm = filp->private_data;
4274         void __user *argp = (void __user *)arg;
4275         int r = -ENOTTY;
4276         /*
4277          * This union makes it completely explicit to gcc-3.x
4278          * that these two variables' stack usage should be
4279          * combined, not added together.
4280          */
4281         union {
4282                 struct kvm_pit_state ps;
4283                 struct kvm_pit_state2 ps2;
4284                 struct kvm_pit_config pit_config;
4285         } u;
4286
4287         switch (ioctl) {
4288         case KVM_SET_TSS_ADDR:
4289                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4290                 break;
4291         case KVM_SET_IDENTITY_MAP_ADDR: {
4292                 u64 ident_addr;
4293
4294                 mutex_lock(&kvm->lock);
4295                 r = -EINVAL;
4296                 if (kvm->created_vcpus)
4297                         goto set_identity_unlock;
4298                 r = -EFAULT;
4299                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4300                         goto set_identity_unlock;
4301                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4302 set_identity_unlock:
4303                 mutex_unlock(&kvm->lock);
4304                 break;
4305         }
4306         case KVM_SET_NR_MMU_PAGES:
4307                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4308                 break;
4309         case KVM_GET_NR_MMU_PAGES:
4310                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4311                 break;
4312         case KVM_CREATE_IRQCHIP: {
4313                 mutex_lock(&kvm->lock);
4314
4315                 r = -EEXIST;
4316                 if (irqchip_in_kernel(kvm))
4317                         goto create_irqchip_unlock;
4318
4319                 r = -EINVAL;
4320                 if (kvm->created_vcpus)
4321                         goto create_irqchip_unlock;
4322
4323                 r = kvm_pic_init(kvm);
4324                 if (r)
4325                         goto create_irqchip_unlock;
4326
4327                 r = kvm_ioapic_init(kvm);
4328                 if (r) {
4329                         kvm_pic_destroy(kvm);
4330                         goto create_irqchip_unlock;
4331                 }
4332
4333                 r = kvm_setup_default_irq_routing(kvm);
4334                 if (r) {
4335                         kvm_ioapic_destroy(kvm);
4336                         kvm_pic_destroy(kvm);
4337                         goto create_irqchip_unlock;
4338                 }
4339                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4340                 smp_wmb();
4341                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4342         create_irqchip_unlock:
4343                 mutex_unlock(&kvm->lock);
4344                 break;
4345         }
4346         case KVM_CREATE_PIT:
4347                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4348                 goto create_pit;
4349         case KVM_CREATE_PIT2:
4350                 r = -EFAULT;
4351                 if (copy_from_user(&u.pit_config, argp,
4352                                    sizeof(struct kvm_pit_config)))
4353                         goto out;
4354         create_pit:
4355                 mutex_lock(&kvm->lock);
4356                 r = -EEXIST;
4357                 if (kvm->arch.vpit)
4358                         goto create_pit_unlock;
4359                 r = -ENOMEM;
4360                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4361                 if (kvm->arch.vpit)
4362                         r = 0;
4363         create_pit_unlock:
4364                 mutex_unlock(&kvm->lock);
4365                 break;
4366         case KVM_GET_IRQCHIP: {
4367                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4368                 struct kvm_irqchip *chip;
4369
4370                 chip = memdup_user(argp, sizeof(*chip));
4371                 if (IS_ERR(chip)) {
4372                         r = PTR_ERR(chip);
4373                         goto out;
4374                 }
4375
4376                 r = -ENXIO;
4377                 if (!irqchip_kernel(kvm))
4378                         goto get_irqchip_out;
4379                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4380                 if (r)
4381                         goto get_irqchip_out;
4382                 r = -EFAULT;
4383                 if (copy_to_user(argp, chip, sizeof *chip))
4384                         goto get_irqchip_out;
4385                 r = 0;
4386         get_irqchip_out:
4387                 kfree(chip);
4388                 break;
4389         }
4390         case KVM_SET_IRQCHIP: {
4391                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4392                 struct kvm_irqchip *chip;
4393
4394                 chip = memdup_user(argp, sizeof(*chip));
4395                 if (IS_ERR(chip)) {
4396                         r = PTR_ERR(chip);
4397                         goto out;
4398                 }
4399
4400                 r = -ENXIO;
4401                 if (!irqchip_kernel(kvm))
4402                         goto set_irqchip_out;
4403                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4404                 if (r)
4405                         goto set_irqchip_out;
4406                 r = 0;
4407         set_irqchip_out:
4408                 kfree(chip);
4409                 break;
4410         }
4411         case KVM_GET_PIT: {
4412                 r = -EFAULT;
4413                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4414                         goto out;
4415                 r = -ENXIO;
4416                 if (!kvm->arch.vpit)
4417                         goto out;
4418                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4419                 if (r)
4420                         goto out;
4421                 r = -EFAULT;
4422                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4423                         goto out;
4424                 r = 0;
4425                 break;
4426         }
4427         case KVM_SET_PIT: {
4428                 r = -EFAULT;
4429                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4430                         goto out;
4431                 r = -ENXIO;
4432                 if (!kvm->arch.vpit)
4433                         goto out;
4434                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4435                 break;
4436         }
4437         case KVM_GET_PIT2: {
4438                 r = -ENXIO;
4439                 if (!kvm->arch.vpit)
4440                         goto out;
4441                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4442                 if (r)
4443                         goto out;
4444                 r = -EFAULT;
4445                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4446                         goto out;
4447                 r = 0;
4448                 break;
4449         }
4450         case KVM_SET_PIT2: {
4451                 r = -EFAULT;
4452                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4453                         goto out;
4454                 r = -ENXIO;
4455                 if (!kvm->arch.vpit)
4456                         goto out;
4457                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4458                 break;
4459         }
4460         case KVM_REINJECT_CONTROL: {
4461                 struct kvm_reinject_control control;
4462                 r =  -EFAULT;
4463                 if (copy_from_user(&control, argp, sizeof(control)))
4464                         goto out;
4465                 r = kvm_vm_ioctl_reinject(kvm, &control);
4466                 break;
4467         }
4468         case KVM_SET_BOOT_CPU_ID:
4469                 r = 0;
4470                 mutex_lock(&kvm->lock);
4471                 if (kvm->created_vcpus)
4472                         r = -EBUSY;
4473                 else
4474                         kvm->arch.bsp_vcpu_id = arg;
4475                 mutex_unlock(&kvm->lock);
4476                 break;
4477         case KVM_XEN_HVM_CONFIG: {
4478                 struct kvm_xen_hvm_config xhc;
4479                 r = -EFAULT;
4480                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4481                         goto out;
4482                 r = -EINVAL;
4483                 if (xhc.flags)
4484                         goto out;
4485                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4486                 r = 0;
4487                 break;
4488         }
4489         case KVM_SET_CLOCK: {
4490                 struct kvm_clock_data user_ns;
4491                 u64 now_ns;
4492
4493                 r = -EFAULT;
4494                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4495                         goto out;
4496
4497                 r = -EINVAL;
4498                 if (user_ns.flags)
4499                         goto out;
4500
4501                 r = 0;
4502                 /*
4503                  * TODO: userspace has to take care of races with VCPU_RUN, so
4504                  * kvm_gen_update_masterclock() can be cut down to locked
4505                  * pvclock_update_vm_gtod_copy().
4506                  */
4507                 kvm_gen_update_masterclock(kvm);
4508                 now_ns = get_kvmclock_ns(kvm);
4509                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4510                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4511                 break;
4512         }
4513         case KVM_GET_CLOCK: {
4514                 struct kvm_clock_data user_ns;
4515                 u64 now_ns;
4516
4517                 now_ns = get_kvmclock_ns(kvm);
4518                 user_ns.clock = now_ns;
4519                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4520                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4521
4522                 r = -EFAULT;
4523                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4524                         goto out;
4525                 r = 0;
4526                 break;
4527         }
4528         case KVM_ENABLE_CAP: {
4529                 struct kvm_enable_cap cap;
4530
4531                 r = -EFAULT;
4532                 if (copy_from_user(&cap, argp, sizeof(cap)))
4533                         goto out;
4534                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4535                 break;
4536         }
4537         case KVM_MEMORY_ENCRYPT_OP: {
4538                 r = -ENOTTY;
4539                 if (kvm_x86_ops->mem_enc_op)
4540                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4541                 break;
4542         }
4543         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4544                 struct kvm_enc_region region;
4545
4546                 r = -EFAULT;
4547                 if (copy_from_user(&region, argp, sizeof(region)))
4548                         goto out;
4549
4550                 r = -ENOTTY;
4551                 if (kvm_x86_ops->mem_enc_reg_region)
4552                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4553                 break;
4554         }
4555         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4556                 struct kvm_enc_region region;
4557
4558                 r = -EFAULT;
4559                 if (copy_from_user(&region, argp, sizeof(region)))
4560                         goto out;
4561
4562                 r = -ENOTTY;
4563                 if (kvm_x86_ops->mem_enc_unreg_region)
4564                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4565                 break;
4566         }
4567         case KVM_HYPERV_EVENTFD: {
4568                 struct kvm_hyperv_eventfd hvevfd;
4569
4570                 r = -EFAULT;
4571                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4572                         goto out;
4573                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4574                 break;
4575         }
4576         default:
4577                 r = -ENOTTY;
4578         }
4579 out:
4580         return r;
4581 }
4582
4583 static void kvm_init_msr_list(void)
4584 {
4585         u32 dummy[2];
4586         unsigned i, j;
4587
4588         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4589                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4590                         continue;
4591
4592                 /*
4593                  * Even MSRs that are valid in the host may not be exposed
4594                  * to the guests in some cases.
4595                  */
4596                 switch (msrs_to_save[i]) {
4597                 case MSR_IA32_BNDCFGS:
4598                         if (!kvm_x86_ops->mpx_supported())
4599                                 continue;
4600                         break;
4601                 case MSR_TSC_AUX:
4602                         if (!kvm_x86_ops->rdtscp_supported())
4603                                 continue;
4604                         break;
4605                 default:
4606                         break;
4607                 }
4608
4609                 if (j < i)
4610                         msrs_to_save[j] = msrs_to_save[i];
4611                 j++;
4612         }
4613         num_msrs_to_save = j;
4614
4615         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4616                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4617                         continue;
4618
4619                 if (j < i)
4620                         emulated_msrs[j] = emulated_msrs[i];
4621                 j++;
4622         }
4623         num_emulated_msrs = j;
4624
4625         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4626                 struct kvm_msr_entry msr;
4627
4628                 msr.index = msr_based_features[i];
4629                 if (kvm_get_msr_feature(&msr))
4630                         continue;
4631
4632                 if (j < i)
4633                         msr_based_features[j] = msr_based_features[i];
4634                 j++;
4635         }
4636         num_msr_based_features = j;
4637 }
4638
4639 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4640                            const void *v)
4641 {
4642         int handled = 0;
4643         int n;
4644
4645         do {
4646                 n = min(len, 8);
4647                 if (!(lapic_in_kernel(vcpu) &&
4648                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4649                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4650                         break;
4651                 handled += n;
4652                 addr += n;
4653                 len -= n;
4654                 v += n;
4655         } while (len);
4656
4657         return handled;
4658 }
4659
4660 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4661 {
4662         int handled = 0;
4663         int n;
4664
4665         do {
4666                 n = min(len, 8);
4667                 if (!(lapic_in_kernel(vcpu) &&
4668                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4669                                          addr, n, v))
4670                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4671                         break;
4672                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4673                 handled += n;
4674                 addr += n;
4675                 len -= n;
4676                 v += n;
4677         } while (len);
4678
4679         return handled;
4680 }
4681
4682 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4683                         struct kvm_segment *var, int seg)
4684 {
4685         kvm_x86_ops->set_segment(vcpu, var, seg);
4686 }
4687
4688 void kvm_get_segment(struct kvm_vcpu *vcpu,
4689                      struct kvm_segment *var, int seg)
4690 {
4691         kvm_x86_ops->get_segment(vcpu, var, seg);
4692 }
4693
4694 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4695                            struct x86_exception *exception)
4696 {
4697         gpa_t t_gpa;
4698
4699         BUG_ON(!mmu_is_nested(vcpu));
4700
4701         /* NPT walks are always user-walks */
4702         access |= PFERR_USER_MASK;
4703         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4704
4705         return t_gpa;
4706 }
4707
4708 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4709                               struct x86_exception *exception)
4710 {
4711         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4712         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4713 }
4714
4715  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4716                                 struct x86_exception *exception)
4717 {
4718         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4719         access |= PFERR_FETCH_MASK;
4720         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4721 }
4722
4723 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4724                                struct x86_exception *exception)
4725 {
4726         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4727         access |= PFERR_WRITE_MASK;
4728         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4729 }
4730
4731 /* uses this to access any guest's mapped memory without checking CPL */
4732 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4733                                 struct x86_exception *exception)
4734 {
4735         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4736 }
4737
4738 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4739                                       struct kvm_vcpu *vcpu, u32 access,
4740                                       struct x86_exception *exception)
4741 {
4742         void *data = val;
4743         int r = X86EMUL_CONTINUE;
4744
4745         while (bytes) {
4746                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4747                                                             exception);
4748                 unsigned offset = addr & (PAGE_SIZE-1);
4749                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4750                 int ret;
4751
4752                 if (gpa == UNMAPPED_GVA)
4753                         return X86EMUL_PROPAGATE_FAULT;
4754                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4755                                                offset, toread);
4756                 if (ret < 0) {
4757                         r = X86EMUL_IO_NEEDED;
4758                         goto out;
4759                 }
4760
4761                 bytes -= toread;
4762                 data += toread;
4763                 addr += toread;
4764         }
4765 out:
4766         return r;
4767 }
4768
4769 /* used for instruction fetching */
4770 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4771                                 gva_t addr, void *val, unsigned int bytes,
4772                                 struct x86_exception *exception)
4773 {
4774         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4775         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4776         unsigned offset;
4777         int ret;
4778
4779         /* Inline kvm_read_guest_virt_helper for speed.  */
4780         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4781                                                     exception);
4782         if (unlikely(gpa == UNMAPPED_GVA))
4783                 return X86EMUL_PROPAGATE_FAULT;
4784
4785         offset = addr & (PAGE_SIZE-1);
4786         if (WARN_ON(offset + bytes > PAGE_SIZE))
4787                 bytes = (unsigned)PAGE_SIZE - offset;
4788         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4789                                        offset, bytes);
4790         if (unlikely(ret < 0))
4791                 return X86EMUL_IO_NEEDED;
4792
4793         return X86EMUL_CONTINUE;
4794 }
4795
4796 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
4797                                gva_t addr, void *val, unsigned int bytes,
4798                                struct x86_exception *exception)
4799 {
4800         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4801
4802         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4803                                           exception);
4804 }
4805 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4806
4807 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
4808                              gva_t addr, void *val, unsigned int bytes,
4809                              struct x86_exception *exception, bool system)
4810 {
4811         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4812         u32 access = 0;
4813
4814         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4815                 access |= PFERR_USER_MASK;
4816
4817         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
4818 }
4819
4820 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4821                 unsigned long addr, void *val, unsigned int bytes)
4822 {
4823         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4824         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4825
4826         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4827 }
4828
4829 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4830                                       struct kvm_vcpu *vcpu, u32 access,
4831                                       struct x86_exception *exception)
4832 {
4833         void *data = val;
4834         int r = X86EMUL_CONTINUE;
4835
4836         while (bytes) {
4837                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4838                                                              access,
4839                                                              exception);
4840                 unsigned offset = addr & (PAGE_SIZE-1);
4841                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4842                 int ret;
4843
4844                 if (gpa == UNMAPPED_GVA)
4845                         return X86EMUL_PROPAGATE_FAULT;
4846                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4847                 if (ret < 0) {
4848                         r = X86EMUL_IO_NEEDED;
4849                         goto out;
4850                 }
4851
4852                 bytes -= towrite;
4853                 data += towrite;
4854                 addr += towrite;
4855         }
4856 out:
4857         return r;
4858 }
4859
4860 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
4861                               unsigned int bytes, struct x86_exception *exception,
4862                               bool system)
4863 {
4864         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4865         u32 access = PFERR_WRITE_MASK;
4866
4867         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
4868                 access |= PFERR_USER_MASK;
4869
4870         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4871                                            access, exception);
4872 }
4873
4874 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
4875                                 unsigned int bytes, struct x86_exception *exception)
4876 {
4877         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
4878                                            PFERR_WRITE_MASK, exception);
4879 }
4880 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4881
4882 int handle_ud(struct kvm_vcpu *vcpu)
4883 {
4884         int emul_type = EMULTYPE_TRAP_UD;
4885         enum emulation_result er;
4886         char sig[5]; /* ud2; .ascii "kvm" */
4887         struct x86_exception e;
4888
4889         if (force_emulation_prefix &&
4890             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
4891                                 sig, sizeof(sig), &e) == 0 &&
4892             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
4893                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
4894                 emul_type = 0;
4895         }
4896
4897         er = emulate_instruction(vcpu, emul_type);
4898         if (er == EMULATE_USER_EXIT)
4899                 return 0;
4900         if (er != EMULATE_DONE)
4901                 kvm_queue_exception(vcpu, UD_VECTOR);
4902         return 1;
4903 }
4904 EXPORT_SYMBOL_GPL(handle_ud);
4905
4906 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4907                             gpa_t gpa, bool write)
4908 {
4909         /* For APIC access vmexit */
4910         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4911                 return 1;
4912
4913         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4914                 trace_vcpu_match_mmio(gva, gpa, write, true);
4915                 return 1;
4916         }
4917
4918         return 0;
4919 }
4920
4921 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4922                                 gpa_t *gpa, struct x86_exception *exception,
4923                                 bool write)
4924 {
4925         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4926                 | (write ? PFERR_WRITE_MASK : 0);
4927
4928         /*
4929          * currently PKRU is only applied to ept enabled guest so
4930          * there is no pkey in EPT page table for L1 guest or EPT
4931          * shadow page table for L2 guest.
4932          */
4933         if (vcpu_match_mmio_gva(vcpu, gva)
4934             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4935                                  vcpu->arch.access, 0, access)) {
4936                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4937                                         (gva & (PAGE_SIZE - 1));
4938                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4939                 return 1;
4940         }
4941
4942         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4943
4944         if (*gpa == UNMAPPED_GVA)
4945                 return -1;
4946
4947         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4948 }
4949
4950 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4951                         const void *val, int bytes)
4952 {
4953         int ret;
4954
4955         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4956         if (ret < 0)
4957                 return 0;
4958         kvm_page_track_write(vcpu, gpa, val, bytes);
4959         return 1;
4960 }
4961
4962 struct read_write_emulator_ops {
4963         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4964                                   int bytes);
4965         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4966                                   void *val, int bytes);
4967         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4968                                int bytes, void *val);
4969         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4970                                     void *val, int bytes);
4971         bool write;
4972 };
4973
4974 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4975 {
4976         if (vcpu->mmio_read_completed) {
4977                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4978                                vcpu->mmio_fragments[0].gpa, val);
4979                 vcpu->mmio_read_completed = 0;
4980                 return 1;
4981         }
4982
4983         return 0;
4984 }
4985
4986 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4987                         void *val, int bytes)
4988 {
4989         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4990 }
4991
4992 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4993                          void *val, int bytes)
4994 {
4995         return emulator_write_phys(vcpu, gpa, val, bytes);
4996 }
4997
4998 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4999 {
5000         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5001         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5002 }
5003
5004 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5005                           void *val, int bytes)
5006 {
5007         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5008         return X86EMUL_IO_NEEDED;
5009 }
5010
5011 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5012                            void *val, int bytes)
5013 {
5014         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5015
5016         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5017         return X86EMUL_CONTINUE;
5018 }
5019
5020 static const struct read_write_emulator_ops read_emultor = {
5021         .read_write_prepare = read_prepare,
5022         .read_write_emulate = read_emulate,
5023         .read_write_mmio = vcpu_mmio_read,
5024         .read_write_exit_mmio = read_exit_mmio,
5025 };
5026
5027 static const struct read_write_emulator_ops write_emultor = {
5028         .read_write_emulate = write_emulate,
5029         .read_write_mmio = write_mmio,
5030         .read_write_exit_mmio = write_exit_mmio,
5031         .write = true,
5032 };
5033
5034 static int emulator_read_write_onepage(unsigned long addr, void *val,
5035                                        unsigned int bytes,
5036                                        struct x86_exception *exception,
5037                                        struct kvm_vcpu *vcpu,
5038                                        const struct read_write_emulator_ops *ops)
5039 {
5040         gpa_t gpa;
5041         int handled, ret;
5042         bool write = ops->write;
5043         struct kvm_mmio_fragment *frag;
5044         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5045
5046         /*
5047          * If the exit was due to a NPF we may already have a GPA.
5048          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5049          * Note, this cannot be used on string operations since string
5050          * operation using rep will only have the initial GPA from the NPF
5051          * occurred.
5052          */
5053         if (vcpu->arch.gpa_available &&
5054             emulator_can_use_gpa(ctxt) &&
5055             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5056                 gpa = vcpu->arch.gpa_val;
5057                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5058         } else {
5059                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5060                 if (ret < 0)
5061                         return X86EMUL_PROPAGATE_FAULT;
5062         }
5063
5064         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5065                 return X86EMUL_CONTINUE;
5066
5067         /*
5068          * Is this MMIO handled locally?
5069          */
5070         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5071         if (handled == bytes)
5072                 return X86EMUL_CONTINUE;
5073
5074         gpa += handled;
5075         bytes -= handled;
5076         val += handled;
5077
5078         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5079         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5080         frag->gpa = gpa;
5081         frag->data = val;
5082         frag->len = bytes;
5083         return X86EMUL_CONTINUE;
5084 }
5085
5086 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5087                         unsigned long addr,
5088                         void *val, unsigned int bytes,
5089                         struct x86_exception *exception,
5090                         const struct read_write_emulator_ops *ops)
5091 {
5092         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5093         gpa_t gpa;
5094         int rc;
5095
5096         if (ops->read_write_prepare &&
5097                   ops->read_write_prepare(vcpu, val, bytes))
5098                 return X86EMUL_CONTINUE;
5099
5100         vcpu->mmio_nr_fragments = 0;
5101
5102         /* Crossing a page boundary? */
5103         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5104                 int now;
5105
5106                 now = -addr & ~PAGE_MASK;
5107                 rc = emulator_read_write_onepage(addr, val, now, exception,
5108                                                  vcpu, ops);
5109
5110                 if (rc != X86EMUL_CONTINUE)
5111                         return rc;
5112                 addr += now;
5113                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5114                         addr = (u32)addr;
5115                 val += now;
5116                 bytes -= now;
5117         }
5118
5119         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5120                                          vcpu, ops);
5121         if (rc != X86EMUL_CONTINUE)
5122                 return rc;
5123
5124         if (!vcpu->mmio_nr_fragments)
5125                 return rc;
5126
5127         gpa = vcpu->mmio_fragments[0].gpa;
5128
5129         vcpu->mmio_needed = 1;
5130         vcpu->mmio_cur_fragment = 0;
5131
5132         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5133         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5134         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5135         vcpu->run->mmio.phys_addr = gpa;
5136
5137         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5138 }
5139
5140 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5141                                   unsigned long addr,
5142                                   void *val,
5143                                   unsigned int bytes,
5144                                   struct x86_exception *exception)
5145 {
5146         return emulator_read_write(ctxt, addr, val, bytes,
5147                                    exception, &read_emultor);
5148 }
5149
5150 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5151                             unsigned long addr,
5152                             const void *val,
5153                             unsigned int bytes,
5154                             struct x86_exception *exception)
5155 {
5156         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5157                                    exception, &write_emultor);
5158 }
5159
5160 #define CMPXCHG_TYPE(t, ptr, old, new) \
5161         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5162
5163 #ifdef CONFIG_X86_64
5164 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5165 #else
5166 #  define CMPXCHG64(ptr, old, new) \
5167         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5168 #endif
5169
5170 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5171                                      unsigned long addr,
5172                                      const void *old,
5173                                      const void *new,
5174                                      unsigned int bytes,
5175                                      struct x86_exception *exception)
5176 {
5177         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5178         gpa_t gpa;
5179         struct page *page;
5180         char *kaddr;
5181         bool exchanged;
5182
5183         /* guests cmpxchg8b have to be emulated atomically */
5184         if (bytes > 8 || (bytes & (bytes - 1)))
5185                 goto emul_write;
5186
5187         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5188
5189         if (gpa == UNMAPPED_GVA ||
5190             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5191                 goto emul_write;
5192
5193         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5194                 goto emul_write;
5195
5196         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5197         if (is_error_page(page))
5198                 goto emul_write;
5199
5200         kaddr = kmap_atomic(page);
5201         kaddr += offset_in_page(gpa);
5202         switch (bytes) {
5203         case 1:
5204                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5205                 break;
5206         case 2:
5207                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5208                 break;
5209         case 4:
5210                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5211                 break;
5212         case 8:
5213                 exchanged = CMPXCHG64(kaddr, old, new);
5214                 break;
5215         default:
5216                 BUG();
5217         }
5218         kunmap_atomic(kaddr);
5219         kvm_release_page_dirty(page);
5220
5221         if (!exchanged)
5222                 return X86EMUL_CMPXCHG_FAILED;
5223
5224         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5225         kvm_page_track_write(vcpu, gpa, new, bytes);
5226
5227         return X86EMUL_CONTINUE;
5228
5229 emul_write:
5230         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5231
5232         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5233 }
5234
5235 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5236 {
5237         int r = 0, i;
5238
5239         for (i = 0; i < vcpu->arch.pio.count; i++) {
5240                 if (vcpu->arch.pio.in)
5241                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5242                                             vcpu->arch.pio.size, pd);
5243                 else
5244                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5245                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5246                                              pd);
5247                 if (r)
5248                         break;
5249                 pd += vcpu->arch.pio.size;
5250         }
5251         return r;
5252 }
5253
5254 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5255                                unsigned short port, void *val,
5256                                unsigned int count, bool in)
5257 {
5258         vcpu->arch.pio.port = port;
5259         vcpu->arch.pio.in = in;
5260         vcpu->arch.pio.count  = count;
5261         vcpu->arch.pio.size = size;
5262
5263         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5264                 vcpu->arch.pio.count = 0;
5265                 return 1;
5266         }
5267
5268         vcpu->run->exit_reason = KVM_EXIT_IO;
5269         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5270         vcpu->run->io.size = size;
5271         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5272         vcpu->run->io.count = count;
5273         vcpu->run->io.port = port;
5274
5275         return 0;
5276 }
5277
5278 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5279                                     int size, unsigned short port, void *val,
5280                                     unsigned int count)
5281 {
5282         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5283         int ret;
5284
5285         if (vcpu->arch.pio.count)
5286                 goto data_avail;
5287
5288         memset(vcpu->arch.pio_data, 0, size * count);
5289
5290         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5291         if (ret) {
5292 data_avail:
5293                 memcpy(val, vcpu->arch.pio_data, size * count);
5294                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5295                 vcpu->arch.pio.count = 0;
5296                 return 1;
5297         }
5298
5299         return 0;
5300 }
5301
5302 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5303                                      int size, unsigned short port,
5304                                      const void *val, unsigned int count)
5305 {
5306         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5307
5308         memcpy(vcpu->arch.pio_data, val, size * count);
5309         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5310         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5311 }
5312
5313 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5314 {
5315         return kvm_x86_ops->get_segment_base(vcpu, seg);
5316 }
5317
5318 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5319 {
5320         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5321 }
5322
5323 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5324 {
5325         if (!need_emulate_wbinvd(vcpu))
5326                 return X86EMUL_CONTINUE;
5327
5328         if (kvm_x86_ops->has_wbinvd_exit()) {
5329                 int cpu = get_cpu();
5330
5331                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5332                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5333                                 wbinvd_ipi, NULL, 1);
5334                 put_cpu();
5335                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5336         } else
5337                 wbinvd();
5338         return X86EMUL_CONTINUE;
5339 }
5340
5341 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5342 {
5343         kvm_emulate_wbinvd_noskip(vcpu);
5344         return kvm_skip_emulated_instruction(vcpu);
5345 }
5346 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5347
5348
5349
5350 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5351 {
5352         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5353 }
5354
5355 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5356                            unsigned long *dest)
5357 {
5358         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5359 }
5360
5361 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5362                            unsigned long value)
5363 {
5364
5365         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5366 }
5367
5368 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5369 {
5370         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5371 }
5372
5373 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5374 {
5375         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5376         unsigned long value;
5377
5378         switch (cr) {
5379         case 0:
5380                 value = kvm_read_cr0(vcpu);
5381                 break;
5382         case 2:
5383                 value = vcpu->arch.cr2;
5384                 break;
5385         case 3:
5386                 value = kvm_read_cr3(vcpu);
5387                 break;
5388         case 4:
5389                 value = kvm_read_cr4(vcpu);
5390                 break;
5391         case 8:
5392                 value = kvm_get_cr8(vcpu);
5393                 break;
5394         default:
5395                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5396                 return 0;
5397         }
5398
5399         return value;
5400 }
5401
5402 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5403 {
5404         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5405         int res = 0;
5406
5407         switch (cr) {
5408         case 0:
5409                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5410                 break;
5411         case 2:
5412                 vcpu->arch.cr2 = val;
5413                 break;
5414         case 3:
5415                 res = kvm_set_cr3(vcpu, val);
5416                 break;
5417         case 4:
5418                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5419                 break;
5420         case 8:
5421                 res = kvm_set_cr8(vcpu, val);
5422                 break;
5423         default:
5424                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5425                 res = -1;
5426         }
5427
5428         return res;
5429 }
5430
5431 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5432 {
5433         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5434 }
5435
5436 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5437 {
5438         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5439 }
5440
5441 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5442 {
5443         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5444 }
5445
5446 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5447 {
5448         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5449 }
5450
5451 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5452 {
5453         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5454 }
5455
5456 static unsigned long emulator_get_cached_segment_base(
5457         struct x86_emulate_ctxt *ctxt, int seg)
5458 {
5459         return get_segment_base(emul_to_vcpu(ctxt), seg);
5460 }
5461
5462 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5463                                  struct desc_struct *desc, u32 *base3,
5464                                  int seg)
5465 {
5466         struct kvm_segment var;
5467
5468         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5469         *selector = var.selector;
5470
5471         if (var.unusable) {
5472                 memset(desc, 0, sizeof(*desc));
5473                 if (base3)
5474                         *base3 = 0;
5475                 return false;
5476         }
5477
5478         if (var.g)
5479                 var.limit >>= 12;
5480         set_desc_limit(desc, var.limit);
5481         set_desc_base(desc, (unsigned long)var.base);
5482 #ifdef CONFIG_X86_64
5483         if (base3)
5484                 *base3 = var.base >> 32;
5485 #endif
5486         desc->type = var.type;
5487         desc->s = var.s;
5488         desc->dpl = var.dpl;
5489         desc->p = var.present;
5490         desc->avl = var.avl;
5491         desc->l = var.l;
5492         desc->d = var.db;
5493         desc->g = var.g;
5494
5495         return true;
5496 }
5497
5498 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5499                                  struct desc_struct *desc, u32 base3,
5500                                  int seg)
5501 {
5502         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5503         struct kvm_segment var;
5504
5505         var.selector = selector;
5506         var.base = get_desc_base(desc);
5507 #ifdef CONFIG_X86_64
5508         var.base |= ((u64)base3) << 32;
5509 #endif
5510         var.limit = get_desc_limit(desc);
5511         if (desc->g)
5512                 var.limit = (var.limit << 12) | 0xfff;
5513         var.type = desc->type;
5514         var.dpl = desc->dpl;
5515         var.db = desc->d;
5516         var.s = desc->s;
5517         var.l = desc->l;
5518         var.g = desc->g;
5519         var.avl = desc->avl;
5520         var.present = desc->p;
5521         var.unusable = !var.present;
5522         var.padding = 0;
5523
5524         kvm_set_segment(vcpu, &var, seg);
5525         return;
5526 }
5527
5528 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5529                             u32 msr_index, u64 *pdata)
5530 {
5531         struct msr_data msr;
5532         int r;
5533
5534         msr.index = msr_index;
5535         msr.host_initiated = false;
5536         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5537         if (r)
5538                 return r;
5539
5540         *pdata = msr.data;
5541         return 0;
5542 }
5543
5544 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5545                             u32 msr_index, u64 data)
5546 {
5547         struct msr_data msr;
5548
5549         msr.data = data;
5550         msr.index = msr_index;
5551         msr.host_initiated = false;
5552         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5553 }
5554
5555 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5556 {
5557         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5558
5559         return vcpu->arch.smbase;
5560 }
5561
5562 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5563 {
5564         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5565
5566         vcpu->arch.smbase = smbase;
5567 }
5568
5569 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5570                               u32 pmc)
5571 {
5572         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5573 }
5574
5575 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5576                              u32 pmc, u64 *pdata)
5577 {
5578         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5579 }
5580
5581 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5582 {
5583         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5584 }
5585
5586 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5587                               struct x86_instruction_info *info,
5588                               enum x86_intercept_stage stage)
5589 {
5590         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5591 }
5592
5593 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5594                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5595 {
5596         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5597 }
5598
5599 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5600 {
5601         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5602 }
5603
5604 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5605 {
5606         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5607 }
5608
5609 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5610 {
5611         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5612 }
5613
5614 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5615 {
5616         return emul_to_vcpu(ctxt)->arch.hflags;
5617 }
5618
5619 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5620 {
5621         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5622 }
5623
5624 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5625 {
5626         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5627 }
5628
5629 static const struct x86_emulate_ops emulate_ops = {
5630         .read_gpr            = emulator_read_gpr,
5631         .write_gpr           = emulator_write_gpr,
5632         .read_std            = emulator_read_std,
5633         .write_std           = emulator_write_std,
5634         .read_phys           = kvm_read_guest_phys_system,
5635         .fetch               = kvm_fetch_guest_virt,
5636         .read_emulated       = emulator_read_emulated,
5637         .write_emulated      = emulator_write_emulated,
5638         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5639         .invlpg              = emulator_invlpg,
5640         .pio_in_emulated     = emulator_pio_in_emulated,
5641         .pio_out_emulated    = emulator_pio_out_emulated,
5642         .get_segment         = emulator_get_segment,
5643         .set_segment         = emulator_set_segment,
5644         .get_cached_segment_base = emulator_get_cached_segment_base,
5645         .get_gdt             = emulator_get_gdt,
5646         .get_idt             = emulator_get_idt,
5647         .set_gdt             = emulator_set_gdt,
5648         .set_idt             = emulator_set_idt,
5649         .get_cr              = emulator_get_cr,
5650         .set_cr              = emulator_set_cr,
5651         .cpl                 = emulator_get_cpl,
5652         .get_dr              = emulator_get_dr,
5653         .set_dr              = emulator_set_dr,
5654         .get_smbase          = emulator_get_smbase,
5655         .set_smbase          = emulator_set_smbase,
5656         .set_msr             = emulator_set_msr,
5657         .get_msr             = emulator_get_msr,
5658         .check_pmc           = emulator_check_pmc,
5659         .read_pmc            = emulator_read_pmc,
5660         .halt                = emulator_halt,
5661         .wbinvd              = emulator_wbinvd,
5662         .fix_hypercall       = emulator_fix_hypercall,
5663         .intercept           = emulator_intercept,
5664         .get_cpuid           = emulator_get_cpuid,
5665         .set_nmi_mask        = emulator_set_nmi_mask,
5666         .get_hflags          = emulator_get_hflags,
5667         .set_hflags          = emulator_set_hflags,
5668         .pre_leave_smm       = emulator_pre_leave_smm,
5669 };
5670
5671 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5672 {
5673         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5674         /*
5675          * an sti; sti; sequence only disable interrupts for the first
5676          * instruction. So, if the last instruction, be it emulated or
5677          * not, left the system with the INT_STI flag enabled, it
5678          * means that the last instruction is an sti. We should not
5679          * leave the flag on in this case. The same goes for mov ss
5680          */
5681         if (int_shadow & mask)
5682                 mask = 0;
5683         if (unlikely(int_shadow || mask)) {
5684                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5685                 if (!mask)
5686                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5687         }
5688 }
5689
5690 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5691 {
5692         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5693         if (ctxt->exception.vector == PF_VECTOR)
5694                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5695
5696         if (ctxt->exception.error_code_valid)
5697                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5698                                       ctxt->exception.error_code);
5699         else
5700                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5701         return false;
5702 }
5703
5704 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5705 {
5706         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5707         int cs_db, cs_l;
5708
5709         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5710
5711         ctxt->eflags = kvm_get_rflags(vcpu);
5712         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5713
5714         ctxt->eip = kvm_rip_read(vcpu);
5715         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5716                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5717                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5718                      cs_db                              ? X86EMUL_MODE_PROT32 :
5719                                                           X86EMUL_MODE_PROT16;
5720         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5721         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5722         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5723
5724         init_decode_cache(ctxt);
5725         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5726 }
5727
5728 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5729 {
5730         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5731         int ret;
5732
5733         init_emulate_ctxt(vcpu);
5734
5735         ctxt->op_bytes = 2;
5736         ctxt->ad_bytes = 2;
5737         ctxt->_eip = ctxt->eip + inc_eip;
5738         ret = emulate_int_real(ctxt, irq);
5739
5740         if (ret != X86EMUL_CONTINUE)
5741                 return EMULATE_FAIL;
5742
5743         ctxt->eip = ctxt->_eip;
5744         kvm_rip_write(vcpu, ctxt->eip);
5745         kvm_set_rflags(vcpu, ctxt->eflags);
5746
5747         return EMULATE_DONE;
5748 }
5749 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5750
5751 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5752 {
5753         int r = EMULATE_DONE;
5754
5755         ++vcpu->stat.insn_emulation_fail;
5756         trace_kvm_emulate_insn_failed(vcpu);
5757
5758         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5759                 return EMULATE_FAIL;
5760
5761         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5762                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5763                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5764                 vcpu->run->internal.ndata = 0;
5765                 r = EMULATE_USER_EXIT;
5766         }
5767
5768         kvm_queue_exception(vcpu, UD_VECTOR);
5769
5770         return r;
5771 }
5772
5773 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5774                                   bool write_fault_to_shadow_pgtable,
5775                                   int emulation_type)
5776 {
5777         gpa_t gpa = cr2;
5778         kvm_pfn_t pfn;
5779
5780         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5781                 return false;
5782
5783         if (!vcpu->arch.mmu.direct_map) {
5784                 /*
5785                  * Write permission should be allowed since only
5786                  * write access need to be emulated.
5787                  */
5788                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5789
5790                 /*
5791                  * If the mapping is invalid in guest, let cpu retry
5792                  * it to generate fault.
5793                  */
5794                 if (gpa == UNMAPPED_GVA)
5795                         return true;
5796         }
5797
5798         /*
5799          * Do not retry the unhandleable instruction if it faults on the
5800          * readonly host memory, otherwise it will goto a infinite loop:
5801          * retry instruction -> write #PF -> emulation fail -> retry
5802          * instruction -> ...
5803          */
5804         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5805
5806         /*
5807          * If the instruction failed on the error pfn, it can not be fixed,
5808          * report the error to userspace.
5809          */
5810         if (is_error_noslot_pfn(pfn))
5811                 return false;
5812
5813         kvm_release_pfn_clean(pfn);
5814
5815         /* The instructions are well-emulated on direct mmu. */
5816         if (vcpu->arch.mmu.direct_map) {
5817                 unsigned int indirect_shadow_pages;
5818
5819                 spin_lock(&vcpu->kvm->mmu_lock);
5820                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5821                 spin_unlock(&vcpu->kvm->mmu_lock);
5822
5823                 if (indirect_shadow_pages)
5824                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5825
5826                 return true;
5827         }
5828
5829         /*
5830          * if emulation was due to access to shadowed page table
5831          * and it failed try to unshadow page and re-enter the
5832          * guest to let CPU execute the instruction.
5833          */
5834         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5835
5836         /*
5837          * If the access faults on its page table, it can not
5838          * be fixed by unprotecting shadow page and it should
5839          * be reported to userspace.
5840          */
5841         return !write_fault_to_shadow_pgtable;
5842 }
5843
5844 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5845                               unsigned long cr2,  int emulation_type)
5846 {
5847         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5848         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5849
5850         last_retry_eip = vcpu->arch.last_retry_eip;
5851         last_retry_addr = vcpu->arch.last_retry_addr;
5852
5853         /*
5854          * If the emulation is caused by #PF and it is non-page_table
5855          * writing instruction, it means the VM-EXIT is caused by shadow
5856          * page protected, we can zap the shadow page and retry this
5857          * instruction directly.
5858          *
5859          * Note: if the guest uses a non-page-table modifying instruction
5860          * on the PDE that points to the instruction, then we will unmap
5861          * the instruction and go to an infinite loop. So, we cache the
5862          * last retried eip and the last fault address, if we meet the eip
5863          * and the address again, we can break out of the potential infinite
5864          * loop.
5865          */
5866         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5867
5868         if (!(emulation_type & EMULTYPE_RETRY))
5869                 return false;
5870
5871         if (x86_page_table_writing_insn(ctxt))
5872                 return false;
5873
5874         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5875                 return false;
5876
5877         vcpu->arch.last_retry_eip = ctxt->eip;
5878         vcpu->arch.last_retry_addr = cr2;
5879
5880         if (!vcpu->arch.mmu.direct_map)
5881                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5882
5883         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5884
5885         return true;
5886 }
5887
5888 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5889 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5890
5891 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5892 {
5893         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5894                 /* This is a good place to trace that we are exiting SMM.  */
5895                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5896
5897                 /* Process a latched INIT or SMI, if any.  */
5898                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5899         }
5900
5901         kvm_mmu_reset_context(vcpu);
5902 }
5903
5904 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5905 {
5906         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5907
5908         vcpu->arch.hflags = emul_flags;
5909
5910         if (changed & HF_SMM_MASK)
5911                 kvm_smm_changed(vcpu);
5912 }
5913
5914 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5915                                 unsigned long *db)
5916 {
5917         u32 dr6 = 0;
5918         int i;
5919         u32 enable, rwlen;
5920
5921         enable = dr7;
5922         rwlen = dr7 >> 16;
5923         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5924                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5925                         dr6 |= (1 << i);
5926         return dr6;
5927 }
5928
5929 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5930 {
5931         struct kvm_run *kvm_run = vcpu->run;
5932
5933         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5934                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5935                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5936                 kvm_run->debug.arch.exception = DB_VECTOR;
5937                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5938                 *r = EMULATE_USER_EXIT;
5939         } else {
5940                 /*
5941                  * "Certain debug exceptions may clear bit 0-3.  The
5942                  * remaining contents of the DR6 register are never
5943                  * cleared by the processor".
5944                  */
5945                 vcpu->arch.dr6 &= ~15;
5946                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5947                 kvm_queue_exception(vcpu, DB_VECTOR);
5948         }
5949 }
5950
5951 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5952 {
5953         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5954         int r = EMULATE_DONE;
5955
5956         kvm_x86_ops->skip_emulated_instruction(vcpu);
5957
5958         /*
5959          * rflags is the old, "raw" value of the flags.  The new value has
5960          * not been saved yet.
5961          *
5962          * This is correct even for TF set by the guest, because "the
5963          * processor will not generate this exception after the instruction
5964          * that sets the TF flag".
5965          */
5966         if (unlikely(rflags & X86_EFLAGS_TF))
5967                 kvm_vcpu_do_singlestep(vcpu, &r);
5968         return r == EMULATE_DONE;
5969 }
5970 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5971
5972 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5973 {
5974         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5975             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5976                 struct kvm_run *kvm_run = vcpu->run;
5977                 unsigned long eip = kvm_get_linear_rip(vcpu);
5978                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5979                                            vcpu->arch.guest_debug_dr7,
5980                                            vcpu->arch.eff_db);
5981
5982                 if (dr6 != 0) {
5983                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5984                         kvm_run->debug.arch.pc = eip;
5985                         kvm_run->debug.arch.exception = DB_VECTOR;
5986                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5987                         *r = EMULATE_USER_EXIT;
5988                         return true;
5989                 }
5990         }
5991
5992         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5993             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5994                 unsigned long eip = kvm_get_linear_rip(vcpu);
5995                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5996                                            vcpu->arch.dr7,
5997                                            vcpu->arch.db);
5998
5999                 if (dr6 != 0) {
6000                         vcpu->arch.dr6 &= ~15;
6001                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6002                         kvm_queue_exception(vcpu, DB_VECTOR);
6003                         *r = EMULATE_DONE;
6004                         return true;
6005                 }
6006         }
6007
6008         return false;
6009 }
6010
6011 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6012 {
6013         switch (ctxt->opcode_len) {
6014         case 1:
6015                 switch (ctxt->b) {
6016                 case 0xe4:      /* IN */
6017                 case 0xe5:
6018                 case 0xec:
6019                 case 0xed:
6020                 case 0xe6:      /* OUT */
6021                 case 0xe7:
6022                 case 0xee:
6023                 case 0xef:
6024                 case 0x6c:      /* INS */
6025                 case 0x6d:
6026                 case 0x6e:      /* OUTS */
6027                 case 0x6f:
6028                         return true;
6029                 }
6030                 break;
6031         case 2:
6032                 switch (ctxt->b) {
6033                 case 0x33:      /* RDPMC */
6034                         return true;
6035                 }
6036                 break;
6037         }
6038
6039         return false;
6040 }
6041
6042 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6043                             unsigned long cr2,
6044                             int emulation_type,
6045                             void *insn,
6046                             int insn_len)
6047 {
6048         int r;
6049         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6050         bool writeback = true;
6051         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6052
6053         /*
6054          * Clear write_fault_to_shadow_pgtable here to ensure it is
6055          * never reused.
6056          */
6057         vcpu->arch.write_fault_to_shadow_pgtable = false;
6058         kvm_clear_exception_queue(vcpu);
6059
6060         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6061                 init_emulate_ctxt(vcpu);
6062
6063                 /*
6064                  * We will reenter on the same instruction since
6065                  * we do not set complete_userspace_io.  This does not
6066                  * handle watchpoints yet, those would be handled in
6067                  * the emulate_ops.
6068                  */
6069                 if (!(emulation_type & EMULTYPE_SKIP) &&
6070                     kvm_vcpu_check_breakpoint(vcpu, &r))
6071                         return r;
6072
6073                 ctxt->interruptibility = 0;
6074                 ctxt->have_exception = false;
6075                 ctxt->exception.vector = -1;
6076                 ctxt->perm_ok = false;
6077
6078                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6079
6080                 r = x86_decode_insn(ctxt, insn, insn_len);
6081
6082                 trace_kvm_emulate_insn_start(vcpu);
6083                 ++vcpu->stat.insn_emulation;
6084                 if (r != EMULATION_OK)  {
6085                         if (emulation_type & EMULTYPE_TRAP_UD)
6086                                 return EMULATE_FAIL;
6087                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6088                                                 emulation_type))
6089                                 return EMULATE_DONE;
6090                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6091                                 return EMULATE_DONE;
6092                         if (emulation_type & EMULTYPE_SKIP)
6093                                 return EMULATE_FAIL;
6094                         return handle_emulation_failure(vcpu, emulation_type);
6095                 }
6096         }
6097
6098         if ((emulation_type & EMULTYPE_VMWARE) &&
6099             !is_vmware_backdoor_opcode(ctxt))
6100                 return EMULATE_FAIL;
6101
6102         if (emulation_type & EMULTYPE_SKIP) {
6103                 kvm_rip_write(vcpu, ctxt->_eip);
6104                 if (ctxt->eflags & X86_EFLAGS_RF)
6105                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6106                 return EMULATE_DONE;
6107         }
6108
6109         if (retry_instruction(ctxt, cr2, emulation_type))
6110                 return EMULATE_DONE;
6111
6112         /* this is needed for vmware backdoor interface to work since it
6113            changes registers values  during IO operation */
6114         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6115                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6116                 emulator_invalidate_register_cache(ctxt);
6117         }
6118
6119 restart:
6120         /* Save the faulting GPA (cr2) in the address field */
6121         ctxt->exception.address = cr2;
6122
6123         r = x86_emulate_insn(ctxt);
6124
6125         if (r == EMULATION_INTERCEPTED)
6126                 return EMULATE_DONE;
6127
6128         if (r == EMULATION_FAILED) {
6129                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6130                                         emulation_type))
6131                         return EMULATE_DONE;
6132
6133                 return handle_emulation_failure(vcpu, emulation_type);
6134         }
6135
6136         if (ctxt->have_exception) {
6137                 r = EMULATE_DONE;
6138                 if (inject_emulated_exception(vcpu))
6139                         return r;
6140         } else if (vcpu->arch.pio.count) {
6141                 if (!vcpu->arch.pio.in) {
6142                         /* FIXME: return into emulator if single-stepping.  */
6143                         vcpu->arch.pio.count = 0;
6144                 } else {
6145                         writeback = false;
6146                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6147                 }
6148                 r = EMULATE_USER_EXIT;
6149         } else if (vcpu->mmio_needed) {
6150                 if (!vcpu->mmio_is_write)
6151                         writeback = false;
6152                 r = EMULATE_USER_EXIT;
6153                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6154         } else if (r == EMULATION_RESTART)
6155                 goto restart;
6156         else
6157                 r = EMULATE_DONE;
6158
6159         if (writeback) {
6160                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6161                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6162                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6163                 kvm_rip_write(vcpu, ctxt->eip);
6164                 if (r == EMULATE_DONE &&
6165                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6166                         kvm_vcpu_do_singlestep(vcpu, &r);
6167                 if (!ctxt->have_exception ||
6168                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6169                         __kvm_set_rflags(vcpu, ctxt->eflags);
6170
6171                 /*
6172                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6173                  * do nothing, and it will be requested again as soon as
6174                  * the shadow expires.  But we still need to check here,
6175                  * because POPF has no interrupt shadow.
6176                  */
6177                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6178                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6179         } else
6180                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6181
6182         return r;
6183 }
6184 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
6185
6186 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6187                             unsigned short port)
6188 {
6189         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6190         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6191                                             size, port, &val, 1);
6192         /* do not return to emulator after return from userspace */
6193         vcpu->arch.pio.count = 0;
6194         return ret;
6195 }
6196
6197 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6198 {
6199         unsigned long val;
6200
6201         /* We should only ever be called with arch.pio.count equal to 1 */
6202         BUG_ON(vcpu->arch.pio.count != 1);
6203
6204         /* For size less than 4 we merge, else we zero extend */
6205         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6206                                         : 0;
6207
6208         /*
6209          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6210          * the copy and tracing
6211          */
6212         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6213                                  vcpu->arch.pio.port, &val, 1);
6214         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6215
6216         return 1;
6217 }
6218
6219 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6220                            unsigned short port)
6221 {
6222         unsigned long val;
6223         int ret;
6224
6225         /* For size less than 4 we merge, else we zero extend */
6226         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6227
6228         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6229                                        &val, 1);
6230         if (ret) {
6231                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6232                 return ret;
6233         }
6234
6235         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6236
6237         return 0;
6238 }
6239
6240 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6241 {
6242         int ret = kvm_skip_emulated_instruction(vcpu);
6243
6244         /*
6245          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6246          * KVM_EXIT_DEBUG here.
6247          */
6248         if (in)
6249                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6250         else
6251                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6252 }
6253 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6254
6255 static int kvmclock_cpu_down_prep(unsigned int cpu)
6256 {
6257         __this_cpu_write(cpu_tsc_khz, 0);
6258         return 0;
6259 }
6260
6261 static void tsc_khz_changed(void *data)
6262 {
6263         struct cpufreq_freqs *freq = data;
6264         unsigned long khz = 0;
6265
6266         if (data)
6267                 khz = freq->new;
6268         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6269                 khz = cpufreq_quick_get(raw_smp_processor_id());
6270         if (!khz)
6271                 khz = tsc_khz;
6272         __this_cpu_write(cpu_tsc_khz, khz);
6273 }
6274
6275 #ifdef CONFIG_X86_64
6276 static void kvm_hyperv_tsc_notifier(void)
6277 {
6278         struct kvm *kvm;
6279         struct kvm_vcpu *vcpu;
6280         int cpu;
6281
6282         spin_lock(&kvm_lock);
6283         list_for_each_entry(kvm, &vm_list, vm_list)
6284                 kvm_make_mclock_inprogress_request(kvm);
6285
6286         hyperv_stop_tsc_emulation();
6287
6288         /* TSC frequency always matches when on Hyper-V */
6289         for_each_present_cpu(cpu)
6290                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6291         kvm_max_guest_tsc_khz = tsc_khz;
6292
6293         list_for_each_entry(kvm, &vm_list, vm_list) {
6294                 struct kvm_arch *ka = &kvm->arch;
6295
6296                 spin_lock(&ka->pvclock_gtod_sync_lock);
6297
6298                 pvclock_update_vm_gtod_copy(kvm);
6299
6300                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6301                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6302
6303                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6304                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6305
6306                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6307         }
6308         spin_unlock(&kvm_lock);
6309 }
6310 #endif
6311
6312 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6313                                      void *data)
6314 {
6315         struct cpufreq_freqs *freq = data;
6316         struct kvm *kvm;
6317         struct kvm_vcpu *vcpu;
6318         int i, send_ipi = 0;
6319
6320         /*
6321          * We allow guests to temporarily run on slowing clocks,
6322          * provided we notify them after, or to run on accelerating
6323          * clocks, provided we notify them before.  Thus time never
6324          * goes backwards.
6325          *
6326          * However, we have a problem.  We can't atomically update
6327          * the frequency of a given CPU from this function; it is
6328          * merely a notifier, which can be called from any CPU.
6329          * Changing the TSC frequency at arbitrary points in time
6330          * requires a recomputation of local variables related to
6331          * the TSC for each VCPU.  We must flag these local variables
6332          * to be updated and be sure the update takes place with the
6333          * new frequency before any guests proceed.
6334          *
6335          * Unfortunately, the combination of hotplug CPU and frequency
6336          * change creates an intractable locking scenario; the order
6337          * of when these callouts happen is undefined with respect to
6338          * CPU hotplug, and they can race with each other.  As such,
6339          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6340          * undefined; you can actually have a CPU frequency change take
6341          * place in between the computation of X and the setting of the
6342          * variable.  To protect against this problem, all updates of
6343          * the per_cpu tsc_khz variable are done in an interrupt
6344          * protected IPI, and all callers wishing to update the value
6345          * must wait for a synchronous IPI to complete (which is trivial
6346          * if the caller is on the CPU already).  This establishes the
6347          * necessary total order on variable updates.
6348          *
6349          * Note that because a guest time update may take place
6350          * anytime after the setting of the VCPU's request bit, the
6351          * correct TSC value must be set before the request.  However,
6352          * to ensure the update actually makes it to any guest which
6353          * starts running in hardware virtualization between the set
6354          * and the acquisition of the spinlock, we must also ping the
6355          * CPU after setting the request bit.
6356          *
6357          */
6358
6359         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6360                 return 0;
6361         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6362                 return 0;
6363
6364         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6365
6366         spin_lock(&kvm_lock);
6367         list_for_each_entry(kvm, &vm_list, vm_list) {
6368                 kvm_for_each_vcpu(i, vcpu, kvm) {
6369                         if (vcpu->cpu != freq->cpu)
6370                                 continue;
6371                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6372                         if (vcpu->cpu != smp_processor_id())
6373                                 send_ipi = 1;
6374                 }
6375         }
6376         spin_unlock(&kvm_lock);
6377
6378         if (freq->old < freq->new && send_ipi) {
6379                 /*
6380                  * We upscale the frequency.  Must make the guest
6381                  * doesn't see old kvmclock values while running with
6382                  * the new frequency, otherwise we risk the guest sees
6383                  * time go backwards.
6384                  *
6385                  * In case we update the frequency for another cpu
6386                  * (which might be in guest context) send an interrupt
6387                  * to kick the cpu out of guest context.  Next time
6388                  * guest context is entered kvmclock will be updated,
6389                  * so the guest will not see stale values.
6390                  */
6391                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6392         }
6393         return 0;
6394 }
6395
6396 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6397         .notifier_call  = kvmclock_cpufreq_notifier
6398 };
6399
6400 static int kvmclock_cpu_online(unsigned int cpu)
6401 {
6402         tsc_khz_changed(NULL);
6403         return 0;
6404 }
6405
6406 static void kvm_timer_init(void)
6407 {
6408         max_tsc_khz = tsc_khz;
6409
6410         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6411 #ifdef CONFIG_CPU_FREQ
6412                 struct cpufreq_policy policy;
6413                 int cpu;
6414
6415                 memset(&policy, 0, sizeof(policy));
6416                 cpu = get_cpu();
6417                 cpufreq_get_policy(&policy, cpu);
6418                 if (policy.cpuinfo.max_freq)
6419                         max_tsc_khz = policy.cpuinfo.max_freq;
6420                 put_cpu();
6421 #endif
6422                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6423                                           CPUFREQ_TRANSITION_NOTIFIER);
6424         }
6425         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6426
6427         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6428                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6429 }
6430
6431 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6432 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6433
6434 int kvm_is_in_guest(void)
6435 {
6436         return __this_cpu_read(current_vcpu) != NULL;
6437 }
6438
6439 static int kvm_is_user_mode(void)
6440 {
6441         int user_mode = 3;
6442
6443         if (__this_cpu_read(current_vcpu))
6444                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6445
6446         return user_mode != 0;
6447 }
6448
6449 static unsigned long kvm_get_guest_ip(void)
6450 {
6451         unsigned long ip = 0;
6452
6453         if (__this_cpu_read(current_vcpu))
6454                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6455
6456         return ip;
6457 }
6458
6459 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6460         .is_in_guest            = kvm_is_in_guest,
6461         .is_user_mode           = kvm_is_user_mode,
6462         .get_guest_ip           = kvm_get_guest_ip,
6463 };
6464
6465 static void kvm_set_mmio_spte_mask(void)
6466 {
6467         u64 mask;
6468         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6469
6470         /*
6471          * Set the reserved bits and the present bit of an paging-structure
6472          * entry to generate page fault with PFER.RSV = 1.
6473          */
6474          /* Mask the reserved physical address bits. */
6475         mask = rsvd_bits(maxphyaddr, 51);
6476
6477         /* Set the present bit. */
6478         mask |= 1ull;
6479
6480 #ifdef CONFIG_X86_64
6481         /*
6482          * If reserved bit is not supported, clear the present bit to disable
6483          * mmio page fault.
6484          */
6485         if (maxphyaddr == 52)
6486                 mask &= ~1ull;
6487 #endif
6488
6489         kvm_mmu_set_mmio_spte_mask(mask, mask);
6490 }
6491
6492 #ifdef CONFIG_X86_64
6493 static void pvclock_gtod_update_fn(struct work_struct *work)
6494 {
6495         struct kvm *kvm;
6496
6497         struct kvm_vcpu *vcpu;
6498         int i;
6499
6500         spin_lock(&kvm_lock);
6501         list_for_each_entry(kvm, &vm_list, vm_list)
6502                 kvm_for_each_vcpu(i, vcpu, kvm)
6503                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6504         atomic_set(&kvm_guest_has_master_clock, 0);
6505         spin_unlock(&kvm_lock);
6506 }
6507
6508 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6509
6510 /*
6511  * Notification about pvclock gtod data update.
6512  */
6513 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6514                                void *priv)
6515 {
6516         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6517         struct timekeeper *tk = priv;
6518
6519         update_pvclock_gtod(tk);
6520
6521         /* disable master clock if host does not trust, or does not
6522          * use, TSC based clocksource.
6523          */
6524         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6525             atomic_read(&kvm_guest_has_master_clock) != 0)
6526                 queue_work(system_long_wq, &pvclock_gtod_work);
6527
6528         return 0;
6529 }
6530
6531 static struct notifier_block pvclock_gtod_notifier = {
6532         .notifier_call = pvclock_gtod_notify,
6533 };
6534 #endif
6535
6536 int kvm_arch_init(void *opaque)
6537 {
6538         int r;
6539         struct kvm_x86_ops *ops = opaque;
6540
6541         if (kvm_x86_ops) {
6542                 printk(KERN_ERR "kvm: already loaded the other module\n");
6543                 r = -EEXIST;
6544                 goto out;
6545         }
6546
6547         if (!ops->cpu_has_kvm_support()) {
6548                 printk(KERN_ERR "kvm: no hardware support\n");
6549                 r = -EOPNOTSUPP;
6550                 goto out;
6551         }
6552         if (ops->disabled_by_bios()) {
6553                 printk(KERN_ERR "kvm: disabled by bios\n");
6554                 r = -EOPNOTSUPP;
6555                 goto out;
6556         }
6557
6558         r = -ENOMEM;
6559         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6560         if (!shared_msrs) {
6561                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6562                 goto out;
6563         }
6564
6565         r = kvm_mmu_module_init();
6566         if (r)
6567                 goto out_free_percpu;
6568
6569         kvm_set_mmio_spte_mask();
6570
6571         kvm_x86_ops = ops;
6572
6573         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6574                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6575                         PT_PRESENT_MASK, 0, sme_me_mask);
6576         kvm_timer_init();
6577
6578         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6579
6580         if (boot_cpu_has(X86_FEATURE_XSAVE))
6581                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6582
6583         kvm_lapic_init();
6584 #ifdef CONFIG_X86_64
6585         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6586
6587         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6588                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6589 #endif
6590
6591         return 0;
6592
6593 out_free_percpu:
6594         free_percpu(shared_msrs);
6595 out:
6596         return r;
6597 }
6598
6599 void kvm_arch_exit(void)
6600 {
6601 #ifdef CONFIG_X86_64
6602         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6603                 clear_hv_tscchange_cb();
6604 #endif
6605         kvm_lapic_exit();
6606         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6607
6608         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6609                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6610                                             CPUFREQ_TRANSITION_NOTIFIER);
6611         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6612 #ifdef CONFIG_X86_64
6613         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6614 #endif
6615         kvm_x86_ops = NULL;
6616         kvm_mmu_module_exit();
6617         free_percpu(shared_msrs);
6618 }
6619
6620 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6621 {
6622         ++vcpu->stat.halt_exits;
6623         if (lapic_in_kernel(vcpu)) {
6624                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6625                 return 1;
6626         } else {
6627                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6628                 return 0;
6629         }
6630 }
6631 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6632
6633 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6634 {
6635         int ret = kvm_skip_emulated_instruction(vcpu);
6636         /*
6637          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6638          * KVM_EXIT_DEBUG here.
6639          */
6640         return kvm_vcpu_halt(vcpu) && ret;
6641 }
6642 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6643
6644 #ifdef CONFIG_X86_64
6645 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6646                                 unsigned long clock_type)
6647 {
6648         struct kvm_clock_pairing clock_pairing;
6649         struct timespec64 ts;
6650         u64 cycle;
6651         int ret;
6652
6653         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6654                 return -KVM_EOPNOTSUPP;
6655
6656         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6657                 return -KVM_EOPNOTSUPP;
6658
6659         clock_pairing.sec = ts.tv_sec;
6660         clock_pairing.nsec = ts.tv_nsec;
6661         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6662         clock_pairing.flags = 0;
6663
6664         ret = 0;
6665         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6666                             sizeof(struct kvm_clock_pairing)))
6667                 ret = -KVM_EFAULT;
6668
6669         return ret;
6670 }
6671 #endif
6672
6673 /*
6674  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6675  *
6676  * @apicid - apicid of vcpu to be kicked.
6677  */
6678 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6679 {
6680         struct kvm_lapic_irq lapic_irq;
6681
6682         lapic_irq.shorthand = 0;
6683         lapic_irq.dest_mode = 0;
6684         lapic_irq.level = 0;
6685         lapic_irq.dest_id = apicid;
6686         lapic_irq.msi_redir_hint = false;
6687
6688         lapic_irq.delivery_mode = APIC_DM_REMRD;
6689         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6690 }
6691
6692 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6693 {
6694         vcpu->arch.apicv_active = false;
6695         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6696 }
6697
6698 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6699 {
6700         unsigned long nr, a0, a1, a2, a3, ret;
6701         int op_64_bit;
6702
6703         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6704                 return kvm_hv_hypercall(vcpu);
6705
6706         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6707         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6708         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6709         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6710         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6711
6712         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6713
6714         op_64_bit = is_64_bit_mode(vcpu);
6715         if (!op_64_bit) {
6716                 nr &= 0xFFFFFFFF;
6717                 a0 &= 0xFFFFFFFF;
6718                 a1 &= 0xFFFFFFFF;
6719                 a2 &= 0xFFFFFFFF;
6720                 a3 &= 0xFFFFFFFF;
6721         }
6722
6723         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6724                 ret = -KVM_EPERM;
6725                 goto out;
6726         }
6727
6728         switch (nr) {
6729         case KVM_HC_VAPIC_POLL_IRQ:
6730                 ret = 0;
6731                 break;
6732         case KVM_HC_KICK_CPU:
6733                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6734                 ret = 0;
6735                 break;
6736 #ifdef CONFIG_X86_64
6737         case KVM_HC_CLOCK_PAIRING:
6738                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6739                 break;
6740 #endif
6741         default:
6742                 ret = -KVM_ENOSYS;
6743                 break;
6744         }
6745 out:
6746         if (!op_64_bit)
6747                 ret = (u32)ret;
6748         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6749
6750         ++vcpu->stat.hypercalls;
6751         return kvm_skip_emulated_instruction(vcpu);
6752 }
6753 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6754
6755 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6756 {
6757         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6758         char instruction[3];
6759         unsigned long rip = kvm_rip_read(vcpu);
6760
6761         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6762
6763         return emulator_write_emulated(ctxt, rip, instruction, 3,
6764                 &ctxt->exception);
6765 }
6766
6767 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6768 {
6769         return vcpu->run->request_interrupt_window &&
6770                 likely(!pic_in_kernel(vcpu->kvm));
6771 }
6772
6773 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6774 {
6775         struct kvm_run *kvm_run = vcpu->run;
6776
6777         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6778         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6779         kvm_run->cr8 = kvm_get_cr8(vcpu);
6780         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6781         kvm_run->ready_for_interrupt_injection =
6782                 pic_in_kernel(vcpu->kvm) ||
6783                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6784 }
6785
6786 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6787 {
6788         int max_irr, tpr;
6789
6790         if (!kvm_x86_ops->update_cr8_intercept)
6791                 return;
6792
6793         if (!lapic_in_kernel(vcpu))
6794                 return;
6795
6796         if (vcpu->arch.apicv_active)
6797                 return;
6798
6799         if (!vcpu->arch.apic->vapic_addr)
6800                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6801         else
6802                 max_irr = -1;
6803
6804         if (max_irr != -1)
6805                 max_irr >>= 4;
6806
6807         tpr = kvm_lapic_get_cr8(vcpu);
6808
6809         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6810 }
6811
6812 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6813 {
6814         int r;
6815
6816         /* try to reinject previous events if any */
6817
6818         if (vcpu->arch.exception.injected)
6819                 kvm_x86_ops->queue_exception(vcpu);
6820         /*
6821          * Do not inject an NMI or interrupt if there is a pending
6822          * exception.  Exceptions and interrupts are recognized at
6823          * instruction boundaries, i.e. the start of an instruction.
6824          * Trap-like exceptions, e.g. #DB, have higher priority than
6825          * NMIs and interrupts, i.e. traps are recognized before an
6826          * NMI/interrupt that's pending on the same instruction.
6827          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
6828          * priority, but are only generated (pended) during instruction
6829          * execution, i.e. a pending fault-like exception means the
6830          * fault occurred on the *previous* instruction and must be
6831          * serviced prior to recognizing any new events in order to
6832          * fully complete the previous instruction.
6833          */
6834         else if (!vcpu->arch.exception.pending) {
6835                 if (vcpu->arch.nmi_injected)
6836                         kvm_x86_ops->set_nmi(vcpu);
6837                 else if (vcpu->arch.interrupt.injected)
6838                         kvm_x86_ops->set_irq(vcpu);
6839         }
6840
6841         /*
6842          * Call check_nested_events() even if we reinjected a previous event
6843          * in order for caller to determine if it should require immediate-exit
6844          * from L2 to L1 due to pending L1 events which require exit
6845          * from L2 to L1.
6846          */
6847         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6848                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6849                 if (r != 0)
6850                         return r;
6851         }
6852
6853         /* try to inject new event if pending */
6854         if (vcpu->arch.exception.pending) {
6855                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6856                                         vcpu->arch.exception.has_error_code,
6857                                         vcpu->arch.exception.error_code);
6858
6859                 WARN_ON_ONCE(vcpu->arch.exception.injected);
6860                 vcpu->arch.exception.pending = false;
6861                 vcpu->arch.exception.injected = true;
6862
6863                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6864                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6865                                              X86_EFLAGS_RF);
6866
6867                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6868                     (vcpu->arch.dr7 & DR7_GD)) {
6869                         vcpu->arch.dr7 &= ~DR7_GD;
6870                         kvm_update_dr7(vcpu);
6871                 }
6872
6873                 kvm_x86_ops->queue_exception(vcpu);
6874         }
6875
6876         /* Don't consider new event if we re-injected an event */
6877         if (kvm_event_needs_reinjection(vcpu))
6878                 return 0;
6879
6880         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
6881             kvm_x86_ops->smi_allowed(vcpu)) {
6882                 vcpu->arch.smi_pending = false;
6883                 ++vcpu->arch.smi_count;
6884                 enter_smm(vcpu);
6885         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6886                 --vcpu->arch.nmi_pending;
6887                 vcpu->arch.nmi_injected = true;
6888                 kvm_x86_ops->set_nmi(vcpu);
6889         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6890                 /*
6891                  * Because interrupts can be injected asynchronously, we are
6892                  * calling check_nested_events again here to avoid a race condition.
6893                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6894                  * proposal and current concerns.  Perhaps we should be setting
6895                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6896                  */
6897                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6898                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6899                         if (r != 0)
6900                                 return r;
6901                 }
6902                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6903                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6904                                             false);
6905                         kvm_x86_ops->set_irq(vcpu);
6906                 }
6907         }
6908
6909         return 0;
6910 }
6911
6912 static void process_nmi(struct kvm_vcpu *vcpu)
6913 {
6914         unsigned limit = 2;
6915
6916         /*
6917          * x86 is limited to one NMI running, and one NMI pending after it.
6918          * If an NMI is already in progress, limit further NMIs to just one.
6919          * Otherwise, allow two (and we'll inject the first one immediately).
6920          */
6921         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6922                 limit = 1;
6923
6924         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6925         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6926         kvm_make_request(KVM_REQ_EVENT, vcpu);
6927 }
6928
6929 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6930 {
6931         u32 flags = 0;
6932         flags |= seg->g       << 23;
6933         flags |= seg->db      << 22;
6934         flags |= seg->l       << 21;
6935         flags |= seg->avl     << 20;
6936         flags |= seg->present << 15;
6937         flags |= seg->dpl     << 13;
6938         flags |= seg->s       << 12;
6939         flags |= seg->type    << 8;
6940         return flags;
6941 }
6942
6943 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6944 {
6945         struct kvm_segment seg;
6946         int offset;
6947
6948         kvm_get_segment(vcpu, &seg, n);
6949         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6950
6951         if (n < 3)
6952                 offset = 0x7f84 + n * 12;
6953         else
6954                 offset = 0x7f2c + (n - 3) * 12;
6955
6956         put_smstate(u32, buf, offset + 8, seg.base);
6957         put_smstate(u32, buf, offset + 4, seg.limit);
6958         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6959 }
6960
6961 #ifdef CONFIG_X86_64
6962 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6963 {
6964         struct kvm_segment seg;
6965         int offset;
6966         u16 flags;
6967
6968         kvm_get_segment(vcpu, &seg, n);
6969         offset = 0x7e00 + n * 16;
6970
6971         flags = enter_smm_get_segment_flags(&seg) >> 8;
6972         put_smstate(u16, buf, offset, seg.selector);
6973         put_smstate(u16, buf, offset + 2, flags);
6974         put_smstate(u32, buf, offset + 4, seg.limit);
6975         put_smstate(u64, buf, offset + 8, seg.base);
6976 }
6977 #endif
6978
6979 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6980 {
6981         struct desc_ptr dt;
6982         struct kvm_segment seg;
6983         unsigned long val;
6984         int i;
6985
6986         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6987         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6988         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6989         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6990
6991         for (i = 0; i < 8; i++)
6992                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6993
6994         kvm_get_dr(vcpu, 6, &val);
6995         put_smstate(u32, buf, 0x7fcc, (u32)val);
6996         kvm_get_dr(vcpu, 7, &val);
6997         put_smstate(u32, buf, 0x7fc8, (u32)val);
6998
6999         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7000         put_smstate(u32, buf, 0x7fc4, seg.selector);
7001         put_smstate(u32, buf, 0x7f64, seg.base);
7002         put_smstate(u32, buf, 0x7f60, seg.limit);
7003         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7004
7005         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7006         put_smstate(u32, buf, 0x7fc0, seg.selector);
7007         put_smstate(u32, buf, 0x7f80, seg.base);
7008         put_smstate(u32, buf, 0x7f7c, seg.limit);
7009         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7010
7011         kvm_x86_ops->get_gdt(vcpu, &dt);
7012         put_smstate(u32, buf, 0x7f74, dt.address);
7013         put_smstate(u32, buf, 0x7f70, dt.size);
7014
7015         kvm_x86_ops->get_idt(vcpu, &dt);
7016         put_smstate(u32, buf, 0x7f58, dt.address);
7017         put_smstate(u32, buf, 0x7f54, dt.size);
7018
7019         for (i = 0; i < 6; i++)
7020                 enter_smm_save_seg_32(vcpu, buf, i);
7021
7022         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7023
7024         /* revision id */
7025         put_smstate(u32, buf, 0x7efc, 0x00020000);
7026         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7027 }
7028
7029 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7030 {
7031 #ifdef CONFIG_X86_64
7032         struct desc_ptr dt;
7033         struct kvm_segment seg;
7034         unsigned long val;
7035         int i;
7036
7037         for (i = 0; i < 16; i++)
7038                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7039
7040         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7041         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7042
7043         kvm_get_dr(vcpu, 6, &val);
7044         put_smstate(u64, buf, 0x7f68, val);
7045         kvm_get_dr(vcpu, 7, &val);
7046         put_smstate(u64, buf, 0x7f60, val);
7047
7048         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7049         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7050         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7051
7052         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7053
7054         /* revision id */
7055         put_smstate(u32, buf, 0x7efc, 0x00020064);
7056
7057         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7058
7059         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7060         put_smstate(u16, buf, 0x7e90, seg.selector);
7061         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7062         put_smstate(u32, buf, 0x7e94, seg.limit);
7063         put_smstate(u64, buf, 0x7e98, seg.base);
7064
7065         kvm_x86_ops->get_idt(vcpu, &dt);
7066         put_smstate(u32, buf, 0x7e84, dt.size);
7067         put_smstate(u64, buf, 0x7e88, dt.address);
7068
7069         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7070         put_smstate(u16, buf, 0x7e70, seg.selector);
7071         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7072         put_smstate(u32, buf, 0x7e74, seg.limit);
7073         put_smstate(u64, buf, 0x7e78, seg.base);
7074
7075         kvm_x86_ops->get_gdt(vcpu, &dt);
7076         put_smstate(u32, buf, 0x7e64, dt.size);
7077         put_smstate(u64, buf, 0x7e68, dt.address);
7078
7079         for (i = 0; i < 6; i++)
7080                 enter_smm_save_seg_64(vcpu, buf, i);
7081 #else
7082         WARN_ON_ONCE(1);
7083 #endif
7084 }
7085
7086 static void enter_smm(struct kvm_vcpu *vcpu)
7087 {
7088         struct kvm_segment cs, ds;
7089         struct desc_ptr dt;
7090         char buf[512];
7091         u32 cr0;
7092
7093         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7094         memset(buf, 0, 512);
7095         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7096                 enter_smm_save_state_64(vcpu, buf);
7097         else
7098                 enter_smm_save_state_32(vcpu, buf);
7099
7100         /*
7101          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7102          * vCPU state (e.g. leave guest mode) after we've saved the state into
7103          * the SMM state-save area.
7104          */
7105         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7106
7107         vcpu->arch.hflags |= HF_SMM_MASK;
7108         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7109
7110         if (kvm_x86_ops->get_nmi_mask(vcpu))
7111                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7112         else
7113                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7114
7115         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7116         kvm_rip_write(vcpu, 0x8000);
7117
7118         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7119         kvm_x86_ops->set_cr0(vcpu, cr0);
7120         vcpu->arch.cr0 = cr0;
7121
7122         kvm_x86_ops->set_cr4(vcpu, 0);
7123
7124         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7125         dt.address = dt.size = 0;
7126         kvm_x86_ops->set_idt(vcpu, &dt);
7127
7128         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7129
7130         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7131         cs.base = vcpu->arch.smbase;
7132
7133         ds.selector = 0;
7134         ds.base = 0;
7135
7136         cs.limit    = ds.limit = 0xffffffff;
7137         cs.type     = ds.type = 0x3;
7138         cs.dpl      = ds.dpl = 0;
7139         cs.db       = ds.db = 0;
7140         cs.s        = ds.s = 1;
7141         cs.l        = ds.l = 0;
7142         cs.g        = ds.g = 1;
7143         cs.avl      = ds.avl = 0;
7144         cs.present  = ds.present = 1;
7145         cs.unusable = ds.unusable = 0;
7146         cs.padding  = ds.padding = 0;
7147
7148         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7149         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7150         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7151         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7152         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7153         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7154
7155         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7156                 kvm_x86_ops->set_efer(vcpu, 0);
7157
7158         kvm_update_cpuid(vcpu);
7159         kvm_mmu_reset_context(vcpu);
7160 }
7161
7162 static void process_smi(struct kvm_vcpu *vcpu)
7163 {
7164         vcpu->arch.smi_pending = true;
7165         kvm_make_request(KVM_REQ_EVENT, vcpu);
7166 }
7167
7168 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7169 {
7170         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7171 }
7172
7173 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7174 {
7175         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7176                 return;
7177
7178         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7179
7180         if (irqchip_split(vcpu->kvm))
7181                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7182         else {
7183                 if (vcpu->arch.apicv_active)
7184                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7185                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7186         }
7187
7188         if (is_guest_mode(vcpu))
7189                 vcpu->arch.load_eoi_exitmap_pending = true;
7190         else
7191                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7192 }
7193
7194 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7195 {
7196         u64 eoi_exit_bitmap[4];
7197
7198         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7199                 return;
7200
7201         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7202                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7203         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7204 }
7205
7206 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7207                 unsigned long start, unsigned long end)
7208 {
7209         unsigned long apic_address;
7210
7211         /*
7212          * The physical address of apic access page is stored in the VMCS.
7213          * Update it when it becomes invalid.
7214          */
7215         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7216         if (start <= apic_address && apic_address < end)
7217                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7218 }
7219
7220 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7221 {
7222         struct page *page = NULL;
7223
7224         if (!lapic_in_kernel(vcpu))
7225                 return;
7226
7227         if (!kvm_x86_ops->set_apic_access_page_addr)
7228                 return;
7229
7230         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7231         if (is_error_page(page))
7232                 return;
7233         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7234
7235         /*
7236          * Do not pin apic access page in memory, the MMU notifier
7237          * will call us again if it is migrated or swapped out.
7238          */
7239         put_page(page);
7240 }
7241 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7242
7243 /*
7244  * Returns 1 to let vcpu_run() continue the guest execution loop without
7245  * exiting to the userspace.  Otherwise, the value will be returned to the
7246  * userspace.
7247  */
7248 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7249 {
7250         int r;
7251         bool req_int_win =
7252                 dm_request_for_irq_injection(vcpu) &&
7253                 kvm_cpu_accept_dm_intr(vcpu);
7254
7255         bool req_immediate_exit = false;
7256
7257         if (kvm_request_pending(vcpu)) {
7258                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7259                         kvm_mmu_unload(vcpu);
7260                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7261                         __kvm_migrate_timers(vcpu);
7262                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7263                         kvm_gen_update_masterclock(vcpu->kvm);
7264                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7265                         kvm_gen_kvmclock_update(vcpu);
7266                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7267                         r = kvm_guest_time_update(vcpu);
7268                         if (unlikely(r))
7269                                 goto out;
7270                 }
7271                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7272                         kvm_mmu_sync_roots(vcpu);
7273                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7274                         kvm_vcpu_flush_tlb(vcpu, true);
7275                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7276                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7277                         r = 0;
7278                         goto out;
7279                 }
7280                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7281                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7282                         vcpu->mmio_needed = 0;
7283                         r = 0;
7284                         goto out;
7285                 }
7286                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7287                         /* Page is swapped out. Do synthetic halt */
7288                         vcpu->arch.apf.halted = true;
7289                         r = 1;
7290                         goto out;
7291                 }
7292                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7293                         record_steal_time(vcpu);
7294                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7295                         process_smi(vcpu);
7296                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7297                         process_nmi(vcpu);
7298                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7299                         kvm_pmu_handle_event(vcpu);
7300                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7301                         kvm_pmu_deliver_pmi(vcpu);
7302                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7303                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7304                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7305                                      vcpu->arch.ioapic_handled_vectors)) {
7306                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7307                                 vcpu->run->eoi.vector =
7308                                                 vcpu->arch.pending_ioapic_eoi;
7309                                 r = 0;
7310                                 goto out;
7311                         }
7312                 }
7313                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7314                         vcpu_scan_ioapic(vcpu);
7315                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7316                         vcpu_load_eoi_exitmap(vcpu);
7317                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7318                         kvm_vcpu_reload_apic_access_page(vcpu);
7319                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7320                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7321                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7322                         r = 0;
7323                         goto out;
7324                 }
7325                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7326                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7327                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7328                         r = 0;
7329                         goto out;
7330                 }
7331                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7332                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7333                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7334                         r = 0;
7335                         goto out;
7336                 }
7337
7338                 /*
7339                  * KVM_REQ_HV_STIMER has to be processed after
7340                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7341                  * depend on the guest clock being up-to-date
7342                  */
7343                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7344                         kvm_hv_process_stimers(vcpu);
7345         }
7346
7347         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7348                 ++vcpu->stat.req_event;
7349                 kvm_apic_accept_events(vcpu);
7350                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7351                         r = 1;
7352                         goto out;
7353                 }
7354
7355                 if (inject_pending_event(vcpu, req_int_win) != 0)
7356                         req_immediate_exit = true;
7357                 else {
7358                         /* Enable SMI/NMI/IRQ window open exits if needed.
7359                          *
7360                          * SMIs have three cases:
7361                          * 1) They can be nested, and then there is nothing to
7362                          *    do here because RSM will cause a vmexit anyway.
7363                          * 2) There is an ISA-specific reason why SMI cannot be
7364                          *    injected, and the moment when this changes can be
7365                          *    intercepted.
7366                          * 3) Or the SMI can be pending because
7367                          *    inject_pending_event has completed the injection
7368                          *    of an IRQ or NMI from the previous vmexit, and
7369                          *    then we request an immediate exit to inject the
7370                          *    SMI.
7371                          */
7372                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7373                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7374                                         req_immediate_exit = true;
7375                         if (vcpu->arch.nmi_pending)
7376                                 kvm_x86_ops->enable_nmi_window(vcpu);
7377                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7378                                 kvm_x86_ops->enable_irq_window(vcpu);
7379                         WARN_ON(vcpu->arch.exception.pending);
7380                 }
7381
7382                 if (kvm_lapic_enabled(vcpu)) {
7383                         update_cr8_intercept(vcpu);
7384                         kvm_lapic_sync_to_vapic(vcpu);
7385                 }
7386         }
7387
7388         r = kvm_mmu_reload(vcpu);
7389         if (unlikely(r)) {
7390                 goto cancel_injection;
7391         }
7392
7393         preempt_disable();
7394
7395         kvm_x86_ops->prepare_guest_switch(vcpu);
7396
7397         /*
7398          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7399          * IPI are then delayed after guest entry, which ensures that they
7400          * result in virtual interrupt delivery.
7401          */
7402         local_irq_disable();
7403         vcpu->mode = IN_GUEST_MODE;
7404
7405         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7406
7407         /*
7408          * 1) We should set ->mode before checking ->requests.  Please see
7409          * the comment in kvm_vcpu_exiting_guest_mode().
7410          *
7411          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7412          * pairs with the memory barrier implicit in pi_test_and_set_on
7413          * (see vmx_deliver_posted_interrupt).
7414          *
7415          * 3) This also orders the write to mode from any reads to the page
7416          * tables done while the VCPU is running.  Please see the comment
7417          * in kvm_flush_remote_tlbs.
7418          */
7419         smp_mb__after_srcu_read_unlock();
7420
7421         /*
7422          * This handles the case where a posted interrupt was
7423          * notified with kvm_vcpu_kick.
7424          */
7425         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7426                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7427
7428         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7429             || need_resched() || signal_pending(current)) {
7430                 vcpu->mode = OUTSIDE_GUEST_MODE;
7431                 smp_wmb();
7432                 local_irq_enable();
7433                 preempt_enable();
7434                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7435                 r = 1;
7436                 goto cancel_injection;
7437         }
7438
7439         kvm_load_guest_xcr0(vcpu);
7440
7441         if (req_immediate_exit) {
7442                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7443                 smp_send_reschedule(vcpu->cpu);
7444         }
7445
7446         trace_kvm_entry(vcpu->vcpu_id);
7447         if (lapic_timer_advance_ns)
7448                 wait_lapic_expire(vcpu);
7449         guest_enter_irqoff();
7450
7451         if (unlikely(vcpu->arch.switch_db_regs)) {
7452                 set_debugreg(0, 7);
7453                 set_debugreg(vcpu->arch.eff_db[0], 0);
7454                 set_debugreg(vcpu->arch.eff_db[1], 1);
7455                 set_debugreg(vcpu->arch.eff_db[2], 2);
7456                 set_debugreg(vcpu->arch.eff_db[3], 3);
7457                 set_debugreg(vcpu->arch.dr6, 6);
7458                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7459         }
7460
7461         kvm_x86_ops->run(vcpu);
7462
7463         /*
7464          * Do this here before restoring debug registers on the host.  And
7465          * since we do this before handling the vmexit, a DR access vmexit
7466          * can (a) read the correct value of the debug registers, (b) set
7467          * KVM_DEBUGREG_WONT_EXIT again.
7468          */
7469         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7470                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7471                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7472                 kvm_update_dr0123(vcpu);
7473                 kvm_update_dr6(vcpu);
7474                 kvm_update_dr7(vcpu);
7475                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7476         }
7477
7478         /*
7479          * If the guest has used debug registers, at least dr7
7480          * will be disabled while returning to the host.
7481          * If we don't have active breakpoints in the host, we don't
7482          * care about the messed up debug address registers. But if
7483          * we have some of them active, restore the old state.
7484          */
7485         if (hw_breakpoint_active())
7486                 hw_breakpoint_restore();
7487
7488         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7489
7490         vcpu->mode = OUTSIDE_GUEST_MODE;
7491         smp_wmb();
7492
7493         kvm_put_guest_xcr0(vcpu);
7494
7495         kvm_before_interrupt(vcpu);
7496         kvm_x86_ops->handle_external_intr(vcpu);
7497         kvm_after_interrupt(vcpu);
7498
7499         ++vcpu->stat.exits;
7500
7501         guest_exit_irqoff();
7502
7503         local_irq_enable();
7504         preempt_enable();
7505
7506         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7507
7508         /*
7509          * Profile KVM exit RIPs:
7510          */
7511         if (unlikely(prof_on == KVM_PROFILING)) {
7512                 unsigned long rip = kvm_rip_read(vcpu);
7513                 profile_hit(KVM_PROFILING, (void *)rip);
7514         }
7515
7516         if (unlikely(vcpu->arch.tsc_always_catchup))
7517                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7518
7519         if (vcpu->arch.apic_attention)
7520                 kvm_lapic_sync_from_vapic(vcpu);
7521
7522         vcpu->arch.gpa_available = false;
7523         r = kvm_x86_ops->handle_exit(vcpu);
7524         return r;
7525
7526 cancel_injection:
7527         kvm_x86_ops->cancel_injection(vcpu);
7528         if (unlikely(vcpu->arch.apic_attention))
7529                 kvm_lapic_sync_from_vapic(vcpu);
7530 out:
7531         return r;
7532 }
7533
7534 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7535 {
7536         if (!kvm_arch_vcpu_runnable(vcpu) &&
7537             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7538                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7539                 kvm_vcpu_block(vcpu);
7540                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7541
7542                 if (kvm_x86_ops->post_block)
7543                         kvm_x86_ops->post_block(vcpu);
7544
7545                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7546                         return 1;
7547         }
7548
7549         kvm_apic_accept_events(vcpu);
7550         switch(vcpu->arch.mp_state) {
7551         case KVM_MP_STATE_HALTED:
7552                 vcpu->arch.pv.pv_unhalted = false;
7553                 vcpu->arch.mp_state =
7554                         KVM_MP_STATE_RUNNABLE;
7555         case KVM_MP_STATE_RUNNABLE:
7556                 vcpu->arch.apf.halted = false;
7557                 break;
7558         case KVM_MP_STATE_INIT_RECEIVED:
7559                 break;
7560         default:
7561                 return -EINTR;
7562                 break;
7563         }
7564         return 1;
7565 }
7566
7567 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7568 {
7569         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7570                 kvm_x86_ops->check_nested_events(vcpu, false);
7571
7572         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7573                 !vcpu->arch.apf.halted);
7574 }
7575
7576 static int vcpu_run(struct kvm_vcpu *vcpu)
7577 {
7578         int r;
7579         struct kvm *kvm = vcpu->kvm;
7580
7581         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7582
7583         for (;;) {
7584                 if (kvm_vcpu_running(vcpu)) {
7585                         r = vcpu_enter_guest(vcpu);
7586                 } else {
7587                         r = vcpu_block(kvm, vcpu);
7588                 }
7589
7590                 if (r <= 0)
7591                         break;
7592
7593                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7594                 if (kvm_cpu_has_pending_timer(vcpu))
7595                         kvm_inject_pending_timer_irqs(vcpu);
7596
7597                 if (dm_request_for_irq_injection(vcpu) &&
7598                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7599                         r = 0;
7600                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7601                         ++vcpu->stat.request_irq_exits;
7602                         break;
7603                 }
7604
7605                 kvm_check_async_pf_completion(vcpu);
7606
7607                 if (signal_pending(current)) {
7608                         r = -EINTR;
7609                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7610                         ++vcpu->stat.signal_exits;
7611                         break;
7612                 }
7613                 if (need_resched()) {
7614                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7615                         cond_resched();
7616                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7617                 }
7618         }
7619
7620         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7621
7622         return r;
7623 }
7624
7625 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7626 {
7627         int r;
7628         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7629         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7630         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7631         if (r != EMULATE_DONE)
7632                 return 0;
7633         return 1;
7634 }
7635
7636 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7637 {
7638         BUG_ON(!vcpu->arch.pio.count);
7639
7640         return complete_emulated_io(vcpu);
7641 }
7642
7643 /*
7644  * Implements the following, as a state machine:
7645  *
7646  * read:
7647  *   for each fragment
7648  *     for each mmio piece in the fragment
7649  *       write gpa, len
7650  *       exit
7651  *       copy data
7652  *   execute insn
7653  *
7654  * write:
7655  *   for each fragment
7656  *     for each mmio piece in the fragment
7657  *       write gpa, len
7658  *       copy data
7659  *       exit
7660  */
7661 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7662 {
7663         struct kvm_run *run = vcpu->run;
7664         struct kvm_mmio_fragment *frag;
7665         unsigned len;
7666
7667         BUG_ON(!vcpu->mmio_needed);
7668
7669         /* Complete previous fragment */
7670         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7671         len = min(8u, frag->len);
7672         if (!vcpu->mmio_is_write)
7673                 memcpy(frag->data, run->mmio.data, len);
7674
7675         if (frag->len <= 8) {
7676                 /* Switch to the next fragment. */
7677                 frag++;
7678                 vcpu->mmio_cur_fragment++;
7679         } else {
7680                 /* Go forward to the next mmio piece. */
7681                 frag->data += len;
7682                 frag->gpa += len;
7683                 frag->len -= len;
7684         }
7685
7686         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7687                 vcpu->mmio_needed = 0;
7688
7689                 /* FIXME: return into emulator if single-stepping.  */
7690                 if (vcpu->mmio_is_write)
7691                         return 1;
7692                 vcpu->mmio_read_completed = 1;
7693                 return complete_emulated_io(vcpu);
7694         }
7695
7696         run->exit_reason = KVM_EXIT_MMIO;
7697         run->mmio.phys_addr = frag->gpa;
7698         if (vcpu->mmio_is_write)
7699                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7700         run->mmio.len = min(8u, frag->len);
7701         run->mmio.is_write = vcpu->mmio_is_write;
7702         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7703         return 0;
7704 }
7705
7706 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7707 {
7708         int r;
7709
7710         vcpu_load(vcpu);
7711         kvm_sigset_activate(vcpu);
7712         kvm_load_guest_fpu(vcpu);
7713
7714         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7715                 if (kvm_run->immediate_exit) {
7716                         r = -EINTR;
7717                         goto out;
7718                 }
7719                 kvm_vcpu_block(vcpu);
7720                 kvm_apic_accept_events(vcpu);
7721                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7722                 r = -EAGAIN;
7723                 if (signal_pending(current)) {
7724                         r = -EINTR;
7725                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7726                         ++vcpu->stat.signal_exits;
7727                 }
7728                 goto out;
7729         }
7730
7731         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
7732                 r = -EINVAL;
7733                 goto out;
7734         }
7735
7736         if (vcpu->run->kvm_dirty_regs) {
7737                 r = sync_regs(vcpu);
7738                 if (r != 0)
7739                         goto out;
7740         }
7741
7742         /* re-sync apic's tpr */
7743         if (!lapic_in_kernel(vcpu)) {
7744                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7745                         r = -EINVAL;
7746                         goto out;
7747                 }
7748         }
7749
7750         if (unlikely(vcpu->arch.complete_userspace_io)) {
7751                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7752                 vcpu->arch.complete_userspace_io = NULL;
7753                 r = cui(vcpu);
7754                 if (r <= 0)
7755                         goto out;
7756         } else
7757                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7758
7759         if (kvm_run->immediate_exit)
7760                 r = -EINTR;
7761         else
7762                 r = vcpu_run(vcpu);
7763
7764 out:
7765         kvm_put_guest_fpu(vcpu);
7766         if (vcpu->run->kvm_valid_regs)
7767                 store_regs(vcpu);
7768         post_kvm_run_save(vcpu);
7769         kvm_sigset_deactivate(vcpu);
7770
7771         vcpu_put(vcpu);
7772         return r;
7773 }
7774
7775 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7776 {
7777         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7778                 /*
7779                  * We are here if userspace calls get_regs() in the middle of
7780                  * instruction emulation. Registers state needs to be copied
7781                  * back from emulation context to vcpu. Userspace shouldn't do
7782                  * that usually, but some bad designed PV devices (vmware
7783                  * backdoor interface) need this to work
7784                  */
7785                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7786                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7787         }
7788         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7789         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7790         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7791         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7792         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7793         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7794         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7795         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7796 #ifdef CONFIG_X86_64
7797         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7798         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7799         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7800         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7801         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7802         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7803         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7804         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7805 #endif
7806
7807         regs->rip = kvm_rip_read(vcpu);
7808         regs->rflags = kvm_get_rflags(vcpu);
7809 }
7810
7811 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7812 {
7813         vcpu_load(vcpu);
7814         __get_regs(vcpu, regs);
7815         vcpu_put(vcpu);
7816         return 0;
7817 }
7818
7819 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7820 {
7821         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7822         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7823
7824         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7825         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7826         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7827         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7828         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7829         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7830         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7831         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7832 #ifdef CONFIG_X86_64
7833         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7834         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7835         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7836         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7837         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7838         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7839         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7840         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7841 #endif
7842
7843         kvm_rip_write(vcpu, regs->rip);
7844         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7845
7846         vcpu->arch.exception.pending = false;
7847
7848         kvm_make_request(KVM_REQ_EVENT, vcpu);
7849 }
7850
7851 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7852 {
7853         vcpu_load(vcpu);
7854         __set_regs(vcpu, regs);
7855         vcpu_put(vcpu);
7856         return 0;
7857 }
7858
7859 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7860 {
7861         struct kvm_segment cs;
7862
7863         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7864         *db = cs.db;
7865         *l = cs.l;
7866 }
7867 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7868
7869 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7870 {
7871         struct desc_ptr dt;
7872
7873         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7874         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7875         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7876         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7877         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7878         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7879
7880         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7881         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7882
7883         kvm_x86_ops->get_idt(vcpu, &dt);
7884         sregs->idt.limit = dt.size;
7885         sregs->idt.base = dt.address;
7886         kvm_x86_ops->get_gdt(vcpu, &dt);
7887         sregs->gdt.limit = dt.size;
7888         sregs->gdt.base = dt.address;
7889
7890         sregs->cr0 = kvm_read_cr0(vcpu);
7891         sregs->cr2 = vcpu->arch.cr2;
7892         sregs->cr3 = kvm_read_cr3(vcpu);
7893         sregs->cr4 = kvm_read_cr4(vcpu);
7894         sregs->cr8 = kvm_get_cr8(vcpu);
7895         sregs->efer = vcpu->arch.efer;
7896         sregs->apic_base = kvm_get_apic_base(vcpu);
7897
7898         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7899
7900         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
7901                 set_bit(vcpu->arch.interrupt.nr,
7902                         (unsigned long *)sregs->interrupt_bitmap);
7903 }
7904
7905 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7906                                   struct kvm_sregs *sregs)
7907 {
7908         vcpu_load(vcpu);
7909         __get_sregs(vcpu, sregs);
7910         vcpu_put(vcpu);
7911         return 0;
7912 }
7913
7914 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7915                                     struct kvm_mp_state *mp_state)
7916 {
7917         vcpu_load(vcpu);
7918
7919         kvm_apic_accept_events(vcpu);
7920         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7921                                         vcpu->arch.pv.pv_unhalted)
7922                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7923         else
7924                 mp_state->mp_state = vcpu->arch.mp_state;
7925
7926         vcpu_put(vcpu);
7927         return 0;
7928 }
7929
7930 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7931                                     struct kvm_mp_state *mp_state)
7932 {
7933         int ret = -EINVAL;
7934
7935         vcpu_load(vcpu);
7936
7937         if (!lapic_in_kernel(vcpu) &&
7938             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7939                 goto out;
7940
7941         /* INITs are latched while in SMM */
7942         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7943             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7944              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7945                 goto out;
7946
7947         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7948                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7949                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7950         } else
7951                 vcpu->arch.mp_state = mp_state->mp_state;
7952         kvm_make_request(KVM_REQ_EVENT, vcpu);
7953
7954         ret = 0;
7955 out:
7956         vcpu_put(vcpu);
7957         return ret;
7958 }
7959
7960 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7961                     int reason, bool has_error_code, u32 error_code)
7962 {
7963         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7964         int ret;
7965
7966         init_emulate_ctxt(vcpu);
7967
7968         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7969                                    has_error_code, error_code);
7970
7971         if (ret)
7972                 return EMULATE_FAIL;
7973
7974         kvm_rip_write(vcpu, ctxt->eip);
7975         kvm_set_rflags(vcpu, ctxt->eflags);
7976         kvm_make_request(KVM_REQ_EVENT, vcpu);
7977         return EMULATE_DONE;
7978 }
7979 EXPORT_SYMBOL_GPL(kvm_task_switch);
7980
7981 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7982 {
7983         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7984                 /*
7985                  * When EFER.LME and CR0.PG are set, the processor is in
7986                  * 64-bit mode (though maybe in a 32-bit code segment).
7987                  * CR4.PAE and EFER.LMA must be set.
7988                  */
7989                 if (!(sregs->cr4 & X86_CR4_PAE)
7990                     || !(sregs->efer & EFER_LMA))
7991                         return -EINVAL;
7992         } else {
7993                 /*
7994                  * Not in 64-bit mode: EFER.LMA is clear and the code
7995                  * segment cannot be 64-bit.
7996                  */
7997                 if (sregs->efer & EFER_LMA || sregs->cs.l)
7998                         return -EINVAL;
7999         }
8000
8001         return 0;
8002 }
8003
8004 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8005 {
8006         struct msr_data apic_base_msr;
8007         int mmu_reset_needed = 0;
8008         int cpuid_update_needed = 0;
8009         int pending_vec, max_bits, idx;
8010         struct desc_ptr dt;
8011         int ret = -EINVAL;
8012
8013         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8014                         (sregs->cr4 & X86_CR4_OSXSAVE))
8015                 goto out;
8016
8017         if (kvm_valid_sregs(vcpu, sregs))
8018                 goto out;
8019
8020         apic_base_msr.data = sregs->apic_base;
8021         apic_base_msr.host_initiated = true;
8022         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8023                 goto out;
8024
8025         dt.size = sregs->idt.limit;
8026         dt.address = sregs->idt.base;
8027         kvm_x86_ops->set_idt(vcpu, &dt);
8028         dt.size = sregs->gdt.limit;
8029         dt.address = sregs->gdt.base;
8030         kvm_x86_ops->set_gdt(vcpu, &dt);
8031
8032         vcpu->arch.cr2 = sregs->cr2;
8033         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8034         vcpu->arch.cr3 = sregs->cr3;
8035         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8036
8037         kvm_set_cr8(vcpu, sregs->cr8);
8038
8039         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8040         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8041
8042         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8043         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8044         vcpu->arch.cr0 = sregs->cr0;
8045
8046         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8047         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8048                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8049         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8050         if (cpuid_update_needed)
8051                 kvm_update_cpuid(vcpu);
8052
8053         idx = srcu_read_lock(&vcpu->kvm->srcu);
8054         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
8055                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8056                 mmu_reset_needed = 1;
8057         }
8058         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8059
8060         if (mmu_reset_needed)
8061                 kvm_mmu_reset_context(vcpu);
8062
8063         max_bits = KVM_NR_INTERRUPTS;
8064         pending_vec = find_first_bit(
8065                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8066         if (pending_vec < max_bits) {
8067                 kvm_queue_interrupt(vcpu, pending_vec, false);
8068                 pr_debug("Set back pending irq %d\n", pending_vec);
8069         }
8070
8071         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8072         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8073         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8074         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8075         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8076         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8077
8078         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8079         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8080
8081         update_cr8_intercept(vcpu);
8082
8083         /* Older userspace won't unhalt the vcpu on reset. */
8084         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8085             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8086             !is_protmode(vcpu))
8087                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8088
8089         kvm_make_request(KVM_REQ_EVENT, vcpu);
8090
8091         ret = 0;
8092 out:
8093         return ret;
8094 }
8095
8096 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8097                                   struct kvm_sregs *sregs)
8098 {
8099         int ret;
8100
8101         vcpu_load(vcpu);
8102         ret = __set_sregs(vcpu, sregs);
8103         vcpu_put(vcpu);
8104         return ret;
8105 }
8106
8107 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8108                                         struct kvm_guest_debug *dbg)
8109 {
8110         unsigned long rflags;
8111         int i, r;
8112
8113         vcpu_load(vcpu);
8114
8115         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8116                 r = -EBUSY;
8117                 if (vcpu->arch.exception.pending)
8118                         goto out;
8119                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8120                         kvm_queue_exception(vcpu, DB_VECTOR);
8121                 else
8122                         kvm_queue_exception(vcpu, BP_VECTOR);
8123         }
8124
8125         /*
8126          * Read rflags as long as potentially injected trace flags are still
8127          * filtered out.
8128          */
8129         rflags = kvm_get_rflags(vcpu);
8130
8131         vcpu->guest_debug = dbg->control;
8132         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8133                 vcpu->guest_debug = 0;
8134
8135         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8136                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8137                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8138                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8139         } else {
8140                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8141                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8142         }
8143         kvm_update_dr7(vcpu);
8144
8145         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8146                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8147                         get_segment_base(vcpu, VCPU_SREG_CS);
8148
8149         /*
8150          * Trigger an rflags update that will inject or remove the trace
8151          * flags.
8152          */
8153         kvm_set_rflags(vcpu, rflags);
8154
8155         kvm_x86_ops->update_bp_intercept(vcpu);
8156
8157         r = 0;
8158
8159 out:
8160         vcpu_put(vcpu);
8161         return r;
8162 }
8163
8164 /*
8165  * Translate a guest virtual address to a guest physical address.
8166  */
8167 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8168                                     struct kvm_translation *tr)
8169 {
8170         unsigned long vaddr = tr->linear_address;
8171         gpa_t gpa;
8172         int idx;
8173
8174         vcpu_load(vcpu);
8175
8176         idx = srcu_read_lock(&vcpu->kvm->srcu);
8177         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8178         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8179         tr->physical_address = gpa;
8180         tr->valid = gpa != UNMAPPED_GVA;
8181         tr->writeable = 1;
8182         tr->usermode = 0;
8183
8184         vcpu_put(vcpu);
8185         return 0;
8186 }
8187
8188 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8189 {
8190         struct fxregs_state *fxsave;
8191
8192         vcpu_load(vcpu);
8193
8194         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8195         memcpy(fpu->fpr, fxsave->st_space, 128);
8196         fpu->fcw = fxsave->cwd;
8197         fpu->fsw = fxsave->swd;
8198         fpu->ftwx = fxsave->twd;
8199         fpu->last_opcode = fxsave->fop;
8200         fpu->last_ip = fxsave->rip;
8201         fpu->last_dp = fxsave->rdp;
8202         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
8203
8204         vcpu_put(vcpu);
8205         return 0;
8206 }
8207
8208 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8209 {
8210         struct fxregs_state *fxsave;
8211
8212         vcpu_load(vcpu);
8213
8214         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8215
8216         memcpy(fxsave->st_space, fpu->fpr, 128);
8217         fxsave->cwd = fpu->fcw;
8218         fxsave->swd = fpu->fsw;
8219         fxsave->twd = fpu->ftwx;
8220         fxsave->fop = fpu->last_opcode;
8221         fxsave->rip = fpu->last_ip;
8222         fxsave->rdp = fpu->last_dp;
8223         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
8224
8225         vcpu_put(vcpu);
8226         return 0;
8227 }
8228
8229 static void store_regs(struct kvm_vcpu *vcpu)
8230 {
8231         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8232
8233         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8234                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8235
8236         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8237                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8238
8239         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8240                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8241                                 vcpu, &vcpu->run->s.regs.events);
8242 }
8243
8244 static int sync_regs(struct kvm_vcpu *vcpu)
8245 {
8246         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8247                 return -EINVAL;
8248
8249         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8250                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8251                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8252         }
8253         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8254                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8255                         return -EINVAL;
8256                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8257         }
8258         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8259                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8260                                 vcpu, &vcpu->run->s.regs.events))
8261                         return -EINVAL;
8262                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8263         }
8264
8265         return 0;
8266 }
8267
8268 static void fx_init(struct kvm_vcpu *vcpu)
8269 {
8270         fpstate_init(&vcpu->arch.guest_fpu.state);
8271         if (boot_cpu_has(X86_FEATURE_XSAVES))
8272                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8273                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8274
8275         /*
8276          * Ensure guest xcr0 is valid for loading
8277          */
8278         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8279
8280         vcpu->arch.cr0 |= X86_CR0_ET;
8281 }
8282
8283 /* Swap (qemu) user FPU context for the guest FPU context. */
8284 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8285 {
8286         preempt_disable();
8287         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
8288         /* PKRU is separately restored in kvm_x86_ops->run.  */
8289         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
8290                                 ~XFEATURE_MASK_PKRU);
8291         preempt_enable();
8292         trace_kvm_fpu(1);
8293 }
8294
8295 /* When vcpu_run ends, restore user space FPU context. */
8296 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8297 {
8298         preempt_disable();
8299         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8300         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8301         preempt_enable();
8302         ++vcpu->stat.fpu_reload;
8303         trace_kvm_fpu(0);
8304 }
8305
8306 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8307 {
8308         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8309
8310         kvmclock_reset(vcpu);
8311
8312         kvm_x86_ops->vcpu_free(vcpu);
8313         free_cpumask_var(wbinvd_dirty_mask);
8314 }
8315
8316 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8317                                                 unsigned int id)
8318 {
8319         struct kvm_vcpu *vcpu;
8320
8321         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8322                 printk_once(KERN_WARNING
8323                 "kvm: SMP vm created on host with unstable TSC; "
8324                 "guest TSC will not be reliable\n");
8325
8326         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8327
8328         return vcpu;
8329 }
8330
8331 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8332 {
8333         kvm_vcpu_mtrr_init(vcpu);
8334         vcpu_load(vcpu);
8335         kvm_vcpu_reset(vcpu, false);
8336         kvm_mmu_setup(vcpu);
8337         vcpu_put(vcpu);
8338         return 0;
8339 }
8340
8341 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8342 {
8343         struct msr_data msr;
8344         struct kvm *kvm = vcpu->kvm;
8345
8346         kvm_hv_vcpu_postcreate(vcpu);
8347
8348         if (mutex_lock_killable(&vcpu->mutex))
8349                 return;
8350         vcpu_load(vcpu);
8351         msr.data = 0x0;
8352         msr.index = MSR_IA32_TSC;
8353         msr.host_initiated = true;
8354         kvm_write_tsc(vcpu, &msr);
8355         vcpu_put(vcpu);
8356         mutex_unlock(&vcpu->mutex);
8357
8358         if (!kvmclock_periodic_sync)
8359                 return;
8360
8361         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8362                                         KVMCLOCK_SYNC_PERIOD);
8363 }
8364
8365 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8366 {
8367         vcpu->arch.apf.msr_val = 0;
8368
8369         vcpu_load(vcpu);
8370         kvm_mmu_unload(vcpu);
8371         vcpu_put(vcpu);
8372
8373         kvm_x86_ops->vcpu_free(vcpu);
8374 }
8375
8376 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8377 {
8378         kvm_lapic_reset(vcpu, init_event);
8379
8380         vcpu->arch.hflags = 0;
8381
8382         vcpu->arch.smi_pending = 0;
8383         vcpu->arch.smi_count = 0;
8384         atomic_set(&vcpu->arch.nmi_queued, 0);
8385         vcpu->arch.nmi_pending = 0;
8386         vcpu->arch.nmi_injected = false;
8387         kvm_clear_interrupt_queue(vcpu);
8388         kvm_clear_exception_queue(vcpu);
8389         vcpu->arch.exception.pending = false;
8390
8391         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8392         kvm_update_dr0123(vcpu);
8393         vcpu->arch.dr6 = DR6_INIT;
8394         kvm_update_dr6(vcpu);
8395         vcpu->arch.dr7 = DR7_FIXED_1;
8396         kvm_update_dr7(vcpu);
8397
8398         vcpu->arch.cr2 = 0;
8399
8400         kvm_make_request(KVM_REQ_EVENT, vcpu);
8401         vcpu->arch.apf.msr_val = 0;
8402         vcpu->arch.st.msr_val = 0;
8403
8404         kvmclock_reset(vcpu);
8405
8406         kvm_clear_async_pf_completion_queue(vcpu);
8407         kvm_async_pf_hash_reset(vcpu);
8408         vcpu->arch.apf.halted = false;
8409
8410         if (kvm_mpx_supported()) {
8411                 void *mpx_state_buffer;
8412
8413                 /*
8414                  * To avoid have the INIT path from kvm_apic_has_events() that be
8415                  * called with loaded FPU and does not let userspace fix the state.
8416                  */
8417                 if (init_event)
8418                         kvm_put_guest_fpu(vcpu);
8419                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8420                                         XFEATURE_MASK_BNDREGS);
8421                 if (mpx_state_buffer)
8422                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8423                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8424                                         XFEATURE_MASK_BNDCSR);
8425                 if (mpx_state_buffer)
8426                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8427                 if (init_event)
8428                         kvm_load_guest_fpu(vcpu);
8429         }
8430
8431         if (!init_event) {
8432                 kvm_pmu_reset(vcpu);
8433                 vcpu->arch.smbase = 0x30000;
8434
8435                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8436                 vcpu->arch.msr_misc_features_enables = 0;
8437
8438                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8439         }
8440
8441         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8442         vcpu->arch.regs_avail = ~0;
8443         vcpu->arch.regs_dirty = ~0;
8444
8445         vcpu->arch.ia32_xss = 0;
8446
8447         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8448 }
8449
8450 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8451 {
8452         struct kvm_segment cs;
8453
8454         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8455         cs.selector = vector << 8;
8456         cs.base = vector << 12;
8457         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8458         kvm_rip_write(vcpu, 0);
8459 }
8460
8461 int kvm_arch_hardware_enable(void)
8462 {
8463         struct kvm *kvm;
8464         struct kvm_vcpu *vcpu;
8465         int i;
8466         int ret;
8467         u64 local_tsc;
8468         u64 max_tsc = 0;
8469         bool stable, backwards_tsc = false;
8470
8471         kvm_shared_msr_cpu_online();
8472         ret = kvm_x86_ops->hardware_enable();
8473         if (ret != 0)
8474                 return ret;
8475
8476         local_tsc = rdtsc();
8477         stable = !kvm_check_tsc_unstable();
8478         list_for_each_entry(kvm, &vm_list, vm_list) {
8479                 kvm_for_each_vcpu(i, vcpu, kvm) {
8480                         if (!stable && vcpu->cpu == smp_processor_id())
8481                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8482                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8483                                 backwards_tsc = true;
8484                                 if (vcpu->arch.last_host_tsc > max_tsc)
8485                                         max_tsc = vcpu->arch.last_host_tsc;
8486                         }
8487                 }
8488         }
8489
8490         /*
8491          * Sometimes, even reliable TSCs go backwards.  This happens on
8492          * platforms that reset TSC during suspend or hibernate actions, but
8493          * maintain synchronization.  We must compensate.  Fortunately, we can
8494          * detect that condition here, which happens early in CPU bringup,
8495          * before any KVM threads can be running.  Unfortunately, we can't
8496          * bring the TSCs fully up to date with real time, as we aren't yet far
8497          * enough into CPU bringup that we know how much real time has actually
8498          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8499          * variables that haven't been updated yet.
8500          *
8501          * So we simply find the maximum observed TSC above, then record the
8502          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8503          * the adjustment will be applied.  Note that we accumulate
8504          * adjustments, in case multiple suspend cycles happen before some VCPU
8505          * gets a chance to run again.  In the event that no KVM threads get a
8506          * chance to run, we will miss the entire elapsed period, as we'll have
8507          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8508          * loose cycle time.  This isn't too big a deal, since the loss will be
8509          * uniform across all VCPUs (not to mention the scenario is extremely
8510          * unlikely). It is possible that a second hibernate recovery happens
8511          * much faster than a first, causing the observed TSC here to be
8512          * smaller; this would require additional padding adjustment, which is
8513          * why we set last_host_tsc to the local tsc observed here.
8514          *
8515          * N.B. - this code below runs only on platforms with reliable TSC,
8516          * as that is the only way backwards_tsc is set above.  Also note
8517          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8518          * have the same delta_cyc adjustment applied if backwards_tsc
8519          * is detected.  Note further, this adjustment is only done once,
8520          * as we reset last_host_tsc on all VCPUs to stop this from being
8521          * called multiple times (one for each physical CPU bringup).
8522          *
8523          * Platforms with unreliable TSCs don't have to deal with this, they
8524          * will be compensated by the logic in vcpu_load, which sets the TSC to
8525          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8526          * guarantee that they stay in perfect synchronization.
8527          */
8528         if (backwards_tsc) {
8529                 u64 delta_cyc = max_tsc - local_tsc;
8530                 list_for_each_entry(kvm, &vm_list, vm_list) {
8531                         kvm->arch.backwards_tsc_observed = true;
8532                         kvm_for_each_vcpu(i, vcpu, kvm) {
8533                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8534                                 vcpu->arch.last_host_tsc = local_tsc;
8535                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8536                         }
8537
8538                         /*
8539                          * We have to disable TSC offset matching.. if you were
8540                          * booting a VM while issuing an S4 host suspend....
8541                          * you may have some problem.  Solving this issue is
8542                          * left as an exercise to the reader.
8543                          */
8544                         kvm->arch.last_tsc_nsec = 0;
8545                         kvm->arch.last_tsc_write = 0;
8546                 }
8547
8548         }
8549         return 0;
8550 }
8551
8552 void kvm_arch_hardware_disable(void)
8553 {
8554         kvm_x86_ops->hardware_disable();
8555         drop_user_return_notifiers();
8556 }
8557
8558 int kvm_arch_hardware_setup(void)
8559 {
8560         int r;
8561
8562         r = kvm_x86_ops->hardware_setup();
8563         if (r != 0)
8564                 return r;
8565
8566         if (kvm_has_tsc_control) {
8567                 /*
8568                  * Make sure the user can only configure tsc_khz values that
8569                  * fit into a signed integer.
8570                  * A min value is not calculated needed because it will always
8571                  * be 1 on all machines.
8572                  */
8573                 u64 max = min(0x7fffffffULL,
8574                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8575                 kvm_max_guest_tsc_khz = max;
8576
8577                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8578         }
8579
8580         kvm_init_msr_list();
8581         return 0;
8582 }
8583
8584 void kvm_arch_hardware_unsetup(void)
8585 {
8586         kvm_x86_ops->hardware_unsetup();
8587 }
8588
8589 void kvm_arch_check_processor_compat(void *rtn)
8590 {
8591         kvm_x86_ops->check_processor_compatibility(rtn);
8592 }
8593
8594 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8595 {
8596         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8597 }
8598 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8599
8600 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8601 {
8602         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8603 }
8604
8605 struct static_key kvm_no_apic_vcpu __read_mostly;
8606 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8607
8608 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8609 {
8610         struct page *page;
8611         int r;
8612
8613         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8614         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8615         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8616                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8617         else
8618                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8619
8620         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8621         if (!page) {
8622                 r = -ENOMEM;
8623                 goto fail;
8624         }
8625         vcpu->arch.pio_data = page_address(page);
8626
8627         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8628
8629         r = kvm_mmu_create(vcpu);
8630         if (r < 0)
8631                 goto fail_free_pio_data;
8632
8633         if (irqchip_in_kernel(vcpu->kvm)) {
8634                 r = kvm_create_lapic(vcpu);
8635                 if (r < 0)
8636                         goto fail_mmu_destroy;
8637         } else
8638                 static_key_slow_inc(&kvm_no_apic_vcpu);
8639
8640         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8641                                        GFP_KERNEL);
8642         if (!vcpu->arch.mce_banks) {
8643                 r = -ENOMEM;
8644                 goto fail_free_lapic;
8645         }
8646         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8647
8648         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8649                 r = -ENOMEM;
8650                 goto fail_free_mce_banks;
8651         }
8652
8653         fx_init(vcpu);
8654
8655         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8656
8657         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8658
8659         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8660
8661         kvm_async_pf_hash_reset(vcpu);
8662         kvm_pmu_init(vcpu);
8663
8664         vcpu->arch.pending_external_vector = -1;
8665         vcpu->arch.preempted_in_kernel = false;
8666
8667         kvm_hv_vcpu_init(vcpu);
8668
8669         return 0;
8670
8671 fail_free_mce_banks:
8672         kfree(vcpu->arch.mce_banks);
8673 fail_free_lapic:
8674         kvm_free_lapic(vcpu);
8675 fail_mmu_destroy:
8676         kvm_mmu_destroy(vcpu);
8677 fail_free_pio_data:
8678         free_page((unsigned long)vcpu->arch.pio_data);
8679 fail:
8680         return r;
8681 }
8682
8683 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8684 {
8685         int idx;
8686
8687         kvm_hv_vcpu_uninit(vcpu);
8688         kvm_pmu_destroy(vcpu);
8689         kfree(vcpu->arch.mce_banks);
8690         kvm_free_lapic(vcpu);
8691         idx = srcu_read_lock(&vcpu->kvm->srcu);
8692         kvm_mmu_destroy(vcpu);
8693         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8694         free_page((unsigned long)vcpu->arch.pio_data);
8695         if (!lapic_in_kernel(vcpu))
8696                 static_key_slow_dec(&kvm_no_apic_vcpu);
8697 }
8698
8699 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8700 {
8701         kvm_x86_ops->sched_in(vcpu, cpu);
8702 }
8703
8704 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8705 {
8706         if (type)
8707                 return -EINVAL;
8708
8709         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8710         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8711         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8712         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8713         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8714
8715         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8716         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8717         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8718         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8719                 &kvm->arch.irq_sources_bitmap);
8720
8721         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8722         mutex_init(&kvm->arch.apic_map_lock);
8723         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8724
8725         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8726         pvclock_update_vm_gtod_copy(kvm);
8727
8728         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8729         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8730
8731         kvm_hv_init_vm(kvm);
8732         kvm_page_track_init(kvm);
8733         kvm_mmu_init_vm(kvm);
8734
8735         if (kvm_x86_ops->vm_init)
8736                 return kvm_x86_ops->vm_init(kvm);
8737
8738         return 0;
8739 }
8740
8741 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8742 {
8743         vcpu_load(vcpu);
8744         kvm_mmu_unload(vcpu);
8745         vcpu_put(vcpu);
8746 }
8747
8748 static void kvm_free_vcpus(struct kvm *kvm)
8749 {
8750         unsigned int i;
8751         struct kvm_vcpu *vcpu;
8752
8753         /*
8754          * Unpin any mmu pages first.
8755          */
8756         kvm_for_each_vcpu(i, vcpu, kvm) {
8757                 kvm_clear_async_pf_completion_queue(vcpu);
8758                 kvm_unload_vcpu_mmu(vcpu);
8759         }
8760         kvm_for_each_vcpu(i, vcpu, kvm)
8761                 kvm_arch_vcpu_free(vcpu);
8762
8763         mutex_lock(&kvm->lock);
8764         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8765                 kvm->vcpus[i] = NULL;
8766
8767         atomic_set(&kvm->online_vcpus, 0);
8768         mutex_unlock(&kvm->lock);
8769 }
8770
8771 void kvm_arch_sync_events(struct kvm *kvm)
8772 {
8773         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8774         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8775         kvm_free_pit(kvm);
8776 }
8777
8778 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8779 {
8780         int i, r;
8781         unsigned long hva;
8782         struct kvm_memslots *slots = kvm_memslots(kvm);
8783         struct kvm_memory_slot *slot, old;
8784
8785         /* Called with kvm->slots_lock held.  */
8786         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8787                 return -EINVAL;
8788
8789         slot = id_to_memslot(slots, id);
8790         if (size) {
8791                 if (slot->npages)
8792                         return -EEXIST;
8793
8794                 /*
8795                  * MAP_SHARED to prevent internal slot pages from being moved
8796                  * by fork()/COW.
8797                  */
8798                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8799                               MAP_SHARED | MAP_ANONYMOUS, 0);
8800                 if (IS_ERR((void *)hva))
8801                         return PTR_ERR((void *)hva);
8802         } else {
8803                 if (!slot->npages)
8804                         return 0;
8805
8806                 hva = 0;
8807         }
8808
8809         old = *slot;
8810         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8811                 struct kvm_userspace_memory_region m;
8812
8813                 m.slot = id | (i << 16);
8814                 m.flags = 0;
8815                 m.guest_phys_addr = gpa;
8816                 m.userspace_addr = hva;
8817                 m.memory_size = size;
8818                 r = __kvm_set_memory_region(kvm, &m);
8819                 if (r < 0)
8820                         return r;
8821         }
8822
8823         if (!size)
8824                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8825
8826         return 0;
8827 }
8828 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8829
8830 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8831 {
8832         int r;
8833
8834         mutex_lock(&kvm->slots_lock);
8835         r = __x86_set_memory_region(kvm, id, gpa, size);
8836         mutex_unlock(&kvm->slots_lock);
8837
8838         return r;
8839 }
8840 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8841
8842 void kvm_arch_destroy_vm(struct kvm *kvm)
8843 {
8844         if (current->mm == kvm->mm) {
8845                 /*
8846                  * Free memory regions allocated on behalf of userspace,
8847                  * unless the the memory map has changed due to process exit
8848                  * or fd copying.
8849                  */
8850                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8851                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8852                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8853         }
8854         if (kvm_x86_ops->vm_destroy)
8855                 kvm_x86_ops->vm_destroy(kvm);
8856         kvm_pic_destroy(kvm);
8857         kvm_ioapic_destroy(kvm);
8858         kvm_free_vcpus(kvm);
8859         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8860         kvm_mmu_uninit_vm(kvm);
8861         kvm_page_track_cleanup(kvm);
8862         kvm_hv_destroy_vm(kvm);
8863 }
8864
8865 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8866                            struct kvm_memory_slot *dont)
8867 {
8868         int i;
8869
8870         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8871                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8872                         kvfree(free->arch.rmap[i]);
8873                         free->arch.rmap[i] = NULL;
8874                 }
8875                 if (i == 0)
8876                         continue;
8877
8878                 if (!dont || free->arch.lpage_info[i - 1] !=
8879                              dont->arch.lpage_info[i - 1]) {
8880                         kvfree(free->arch.lpage_info[i - 1]);
8881                         free->arch.lpage_info[i - 1] = NULL;
8882                 }
8883         }
8884
8885         kvm_page_track_free_memslot(free, dont);
8886 }
8887
8888 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8889                             unsigned long npages)
8890 {
8891         int i;
8892
8893         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8894                 struct kvm_lpage_info *linfo;
8895                 unsigned long ugfn;
8896                 int lpages;
8897                 int level = i + 1;
8898
8899                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8900                                       slot->base_gfn, level) + 1;
8901
8902                 slot->arch.rmap[i] =
8903                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
8904                                  GFP_KERNEL);
8905                 if (!slot->arch.rmap[i])
8906                         goto out_free;
8907                 if (i == 0)
8908                         continue;
8909
8910                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
8911                 if (!linfo)
8912                         goto out_free;
8913
8914                 slot->arch.lpage_info[i - 1] = linfo;
8915
8916                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8917                         linfo[0].disallow_lpage = 1;
8918                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8919                         linfo[lpages - 1].disallow_lpage = 1;
8920                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8921                 /*
8922                  * If the gfn and userspace address are not aligned wrt each
8923                  * other, or if explicitly asked to, disable large page
8924                  * support for this slot
8925                  */
8926                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8927                     !kvm_largepages_enabled()) {
8928                         unsigned long j;
8929
8930                         for (j = 0; j < lpages; ++j)
8931                                 linfo[j].disallow_lpage = 1;
8932                 }
8933         }
8934
8935         if (kvm_page_track_create_memslot(slot, npages))
8936                 goto out_free;
8937
8938         return 0;
8939
8940 out_free:
8941         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8942                 kvfree(slot->arch.rmap[i]);
8943                 slot->arch.rmap[i] = NULL;
8944                 if (i == 0)
8945                         continue;
8946
8947                 kvfree(slot->arch.lpage_info[i - 1]);
8948                 slot->arch.lpage_info[i - 1] = NULL;
8949         }
8950         return -ENOMEM;
8951 }
8952
8953 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8954 {
8955         /*
8956          * memslots->generation has been incremented.
8957          * mmio generation may have reached its maximum value.
8958          */
8959         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8960 }
8961
8962 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8963                                 struct kvm_memory_slot *memslot,
8964                                 const struct kvm_userspace_memory_region *mem,
8965                                 enum kvm_mr_change change)
8966 {
8967         return 0;
8968 }
8969
8970 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8971                                      struct kvm_memory_slot *new)
8972 {
8973         /* Still write protect RO slot */
8974         if (new->flags & KVM_MEM_READONLY) {
8975                 kvm_mmu_slot_remove_write_access(kvm, new);
8976                 return;
8977         }
8978
8979         /*
8980          * Call kvm_x86_ops dirty logging hooks when they are valid.
8981          *
8982          * kvm_x86_ops->slot_disable_log_dirty is called when:
8983          *
8984          *  - KVM_MR_CREATE with dirty logging is disabled
8985          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8986          *
8987          * The reason is, in case of PML, we need to set D-bit for any slots
8988          * with dirty logging disabled in order to eliminate unnecessary GPA
8989          * logging in PML buffer (and potential PML buffer full VMEXT). This
8990          * guarantees leaving PML enabled during guest's lifetime won't have
8991          * any additonal overhead from PML when guest is running with dirty
8992          * logging disabled for memory slots.
8993          *
8994          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8995          * to dirty logging mode.
8996          *
8997          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8998          *
8999          * In case of write protect:
9000          *
9001          * Write protect all pages for dirty logging.
9002          *
9003          * All the sptes including the large sptes which point to this
9004          * slot are set to readonly. We can not create any new large
9005          * spte on this slot until the end of the logging.
9006          *
9007          * See the comments in fast_page_fault().
9008          */
9009         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9010                 if (kvm_x86_ops->slot_enable_log_dirty)
9011                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9012                 else
9013                         kvm_mmu_slot_remove_write_access(kvm, new);
9014         } else {
9015                 if (kvm_x86_ops->slot_disable_log_dirty)
9016                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9017         }
9018 }
9019
9020 void kvm_arch_commit_memory_region(struct kvm *kvm,
9021                                 const struct kvm_userspace_memory_region *mem,
9022                                 const struct kvm_memory_slot *old,
9023                                 const struct kvm_memory_slot *new,
9024                                 enum kvm_mr_change change)
9025 {
9026         int nr_mmu_pages = 0;
9027
9028         if (!kvm->arch.n_requested_mmu_pages)
9029                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9030
9031         if (nr_mmu_pages)
9032                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9033
9034         /*
9035          * Dirty logging tracks sptes in 4k granularity, meaning that large
9036          * sptes have to be split.  If live migration is successful, the guest
9037          * in the source machine will be destroyed and large sptes will be
9038          * created in the destination. However, if the guest continues to run
9039          * in the source machine (for example if live migration fails), small
9040          * sptes will remain around and cause bad performance.
9041          *
9042          * Scan sptes if dirty logging has been stopped, dropping those
9043          * which can be collapsed into a single large-page spte.  Later
9044          * page faults will create the large-page sptes.
9045          */
9046         if ((change != KVM_MR_DELETE) &&
9047                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9048                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9049                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9050
9051         /*
9052          * Set up write protection and/or dirty logging for the new slot.
9053          *
9054          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9055          * been zapped so no dirty logging staff is needed for old slot. For
9056          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9057          * new and it's also covered when dealing with the new slot.
9058          *
9059          * FIXME: const-ify all uses of struct kvm_memory_slot.
9060          */
9061         if (change != KVM_MR_DELETE)
9062                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9063 }
9064
9065 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9066 {
9067         kvm_mmu_invalidate_zap_all_pages(kvm);
9068 }
9069
9070 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9071                                    struct kvm_memory_slot *slot)
9072 {
9073         kvm_page_track_flush_slot(kvm, slot);
9074 }
9075
9076 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9077 {
9078         if (!list_empty_careful(&vcpu->async_pf.done))
9079                 return true;
9080
9081         if (kvm_apic_has_events(vcpu))
9082                 return true;
9083
9084         if (vcpu->arch.pv.pv_unhalted)
9085                 return true;
9086
9087         if (vcpu->arch.exception.pending)
9088                 return true;
9089
9090         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9091             (vcpu->arch.nmi_pending &&
9092              kvm_x86_ops->nmi_allowed(vcpu)))
9093                 return true;
9094
9095         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9096             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9097                 return true;
9098
9099         if (kvm_arch_interrupt_allowed(vcpu) &&
9100             kvm_cpu_has_interrupt(vcpu))
9101                 return true;
9102
9103         if (kvm_hv_has_stimer_pending(vcpu))
9104                 return true;
9105
9106         return false;
9107 }
9108
9109 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9110 {
9111         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9112 }
9113
9114 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9115 {
9116         return vcpu->arch.preempted_in_kernel;
9117 }
9118
9119 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9120 {
9121         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9122 }
9123
9124 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9125 {
9126         return kvm_x86_ops->interrupt_allowed(vcpu);
9127 }
9128
9129 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9130 {
9131         if (is_64_bit_mode(vcpu))
9132                 return kvm_rip_read(vcpu);
9133         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9134                      kvm_rip_read(vcpu));
9135 }
9136 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9137
9138 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9139 {
9140         return kvm_get_linear_rip(vcpu) == linear_rip;
9141 }
9142 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9143
9144 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9145 {
9146         unsigned long rflags;
9147
9148         rflags = kvm_x86_ops->get_rflags(vcpu);
9149         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9150                 rflags &= ~X86_EFLAGS_TF;
9151         return rflags;
9152 }
9153 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9154
9155 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9156 {
9157         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9158             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9159                 rflags |= X86_EFLAGS_TF;
9160         kvm_x86_ops->set_rflags(vcpu, rflags);
9161 }
9162
9163 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9164 {
9165         __kvm_set_rflags(vcpu, rflags);
9166         kvm_make_request(KVM_REQ_EVENT, vcpu);
9167 }
9168 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9169
9170 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9171 {
9172         int r;
9173
9174         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
9175               work->wakeup_all)
9176                 return;
9177
9178         r = kvm_mmu_reload(vcpu);
9179         if (unlikely(r))
9180                 return;
9181
9182         if (!vcpu->arch.mmu.direct_map &&
9183               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
9184                 return;
9185
9186         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
9187 }
9188
9189 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9190 {
9191         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9192 }
9193
9194 static inline u32 kvm_async_pf_next_probe(u32 key)
9195 {
9196         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9197 }
9198
9199 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9200 {
9201         u32 key = kvm_async_pf_hash_fn(gfn);
9202
9203         while (vcpu->arch.apf.gfns[key] != ~0)
9204                 key = kvm_async_pf_next_probe(key);
9205
9206         vcpu->arch.apf.gfns[key] = gfn;
9207 }
9208
9209 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9210 {
9211         int i;
9212         u32 key = kvm_async_pf_hash_fn(gfn);
9213
9214         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9215                      (vcpu->arch.apf.gfns[key] != gfn &&
9216                       vcpu->arch.apf.gfns[key] != ~0); i++)
9217                 key = kvm_async_pf_next_probe(key);
9218
9219         return key;
9220 }
9221
9222 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9223 {
9224         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9225 }
9226
9227 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9228 {
9229         u32 i, j, k;
9230
9231         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9232         while (true) {
9233                 vcpu->arch.apf.gfns[i] = ~0;
9234                 do {
9235                         j = kvm_async_pf_next_probe(j);
9236                         if (vcpu->arch.apf.gfns[j] == ~0)
9237                                 return;
9238                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9239                         /*
9240                          * k lies cyclically in ]i,j]
9241                          * |    i.k.j |
9242                          * |....j i.k.| or  |.k..j i...|
9243                          */
9244                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9245                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9246                 i = j;
9247         }
9248 }
9249
9250 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9251 {
9252
9253         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9254                                       sizeof(val));
9255 }
9256
9257 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9258 {
9259
9260         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9261                                       sizeof(u32));
9262 }
9263
9264 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9265                                      struct kvm_async_pf *work)
9266 {
9267         struct x86_exception fault;
9268
9269         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9270         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9271
9272         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9273             (vcpu->arch.apf.send_user_only &&
9274              kvm_x86_ops->get_cpl(vcpu) == 0))
9275                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9276         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9277                 fault.vector = PF_VECTOR;
9278                 fault.error_code_valid = true;
9279                 fault.error_code = 0;
9280                 fault.nested_page_fault = false;
9281                 fault.address = work->arch.token;
9282                 fault.async_page_fault = true;
9283                 kvm_inject_page_fault(vcpu, &fault);
9284         }
9285 }
9286
9287 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9288                                  struct kvm_async_pf *work)
9289 {
9290         struct x86_exception fault;
9291         u32 val;
9292
9293         if (work->wakeup_all)
9294                 work->arch.token = ~0; /* broadcast wakeup */
9295         else
9296                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9297         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9298
9299         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9300             !apf_get_user(vcpu, &val)) {
9301                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9302                     vcpu->arch.exception.pending &&
9303                     vcpu->arch.exception.nr == PF_VECTOR &&
9304                     !apf_put_user(vcpu, 0)) {
9305                         vcpu->arch.exception.injected = false;
9306                         vcpu->arch.exception.pending = false;
9307                         vcpu->arch.exception.nr = 0;
9308                         vcpu->arch.exception.has_error_code = false;
9309                         vcpu->arch.exception.error_code = 0;
9310                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9311                         fault.vector = PF_VECTOR;
9312                         fault.error_code_valid = true;
9313                         fault.error_code = 0;
9314                         fault.nested_page_fault = false;
9315                         fault.address = work->arch.token;
9316                         fault.async_page_fault = true;
9317                         kvm_inject_page_fault(vcpu, &fault);
9318                 }
9319         }
9320         vcpu->arch.apf.halted = false;
9321         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9322 }
9323
9324 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9325 {
9326         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9327                 return true;
9328         else
9329                 return kvm_can_do_async_pf(vcpu);
9330 }
9331
9332 void kvm_arch_start_assignment(struct kvm *kvm)
9333 {
9334         atomic_inc(&kvm->arch.assigned_device_count);
9335 }
9336 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9337
9338 void kvm_arch_end_assignment(struct kvm *kvm)
9339 {
9340         atomic_dec(&kvm->arch.assigned_device_count);
9341 }
9342 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9343
9344 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9345 {
9346         return atomic_read(&kvm->arch.assigned_device_count);
9347 }
9348 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9349
9350 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9351 {
9352         atomic_inc(&kvm->arch.noncoherent_dma_count);
9353 }
9354 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9355
9356 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9357 {
9358         atomic_dec(&kvm->arch.noncoherent_dma_count);
9359 }
9360 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9361
9362 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9363 {
9364         return atomic_read(&kvm->arch.noncoherent_dma_count);
9365 }
9366 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9367
9368 bool kvm_arch_has_irq_bypass(void)
9369 {
9370         return kvm_x86_ops->update_pi_irte != NULL;
9371 }
9372
9373 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9374                                       struct irq_bypass_producer *prod)
9375 {
9376         struct kvm_kernel_irqfd *irqfd =
9377                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9378
9379         irqfd->producer = prod;
9380
9381         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9382                                            prod->irq, irqfd->gsi, 1);
9383 }
9384
9385 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9386                                       struct irq_bypass_producer *prod)
9387 {
9388         int ret;
9389         struct kvm_kernel_irqfd *irqfd =
9390                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9391
9392         WARN_ON(irqfd->producer != prod);
9393         irqfd->producer = NULL;
9394
9395         /*
9396          * When producer of consumer is unregistered, we change back to
9397          * remapped mode, so we can re-use the current implementation
9398          * when the irq is masked/disabled or the consumer side (KVM
9399          * int this case doesn't want to receive the interrupts.
9400         */
9401         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9402         if (ret)
9403                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9404                        " fails: %d\n", irqfd->consumer.token, ret);
9405 }
9406
9407 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9408                                    uint32_t guest_irq, bool set)
9409 {
9410         if (!kvm_x86_ops->update_pi_irte)
9411                 return -EINVAL;
9412
9413         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9414 }
9415
9416 bool kvm_vector_hashing_enabled(void)
9417 {
9418         return vector_hashing;
9419 }
9420 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9421
9422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);