]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
Merge branch 'omap-for-v4.16/soc' into omap-for-v4.16/fixes
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105
106 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
107 EXPORT_SYMBOL_GPL(kvm_x86_ops);
108
109 static bool __read_mostly ignore_msrs = 0;
110 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
111
112 static bool __read_mostly report_ignored_msrs = true;
113 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
114
115 unsigned int min_timer_period_us = 500;
116 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
117
118 static bool __read_mostly kvmclock_periodic_sync = true;
119 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
120
121 bool __read_mostly kvm_has_tsc_control;
122 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
123 u32  __read_mostly kvm_max_guest_tsc_khz;
124 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
125 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
126 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
127 u64  __read_mostly kvm_max_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
129 u64 __read_mostly kvm_default_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
131
132 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
133 static u32 __read_mostly tsc_tolerance_ppm = 250;
134 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
135
136 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
137 unsigned int __read_mostly lapic_timer_advance_ns = 0;
138 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
139
140 static bool __read_mostly vector_hashing = true;
141 module_param(vector_hashing, bool, S_IRUGO);
142
143 #define KVM_NR_SHARED_MSRS 16
144
145 struct kvm_shared_msrs_global {
146         int nr;
147         u32 msrs[KVM_NR_SHARED_MSRS];
148 };
149
150 struct kvm_shared_msrs {
151         struct user_return_notifier urn;
152         bool registered;
153         struct kvm_shared_msr_values {
154                 u64 host;
155                 u64 curr;
156         } values[KVM_NR_SHARED_MSRS];
157 };
158
159 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
160 static struct kvm_shared_msrs __percpu *shared_msrs;
161
162 struct kvm_stats_debugfs_item debugfs_entries[] = {
163         { "pf_fixed", VCPU_STAT(pf_fixed) },
164         { "pf_guest", VCPU_STAT(pf_guest) },
165         { "tlb_flush", VCPU_STAT(tlb_flush) },
166         { "invlpg", VCPU_STAT(invlpg) },
167         { "exits", VCPU_STAT(exits) },
168         { "io_exits", VCPU_STAT(io_exits) },
169         { "mmio_exits", VCPU_STAT(mmio_exits) },
170         { "signal_exits", VCPU_STAT(signal_exits) },
171         { "irq_window", VCPU_STAT(irq_window_exits) },
172         { "nmi_window", VCPU_STAT(nmi_window_exits) },
173         { "halt_exits", VCPU_STAT(halt_exits) },
174         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
175         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
176         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
177         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
178         { "hypercalls", VCPU_STAT(hypercalls) },
179         { "request_irq", VCPU_STAT(request_irq_exits) },
180         { "irq_exits", VCPU_STAT(irq_exits) },
181         { "host_state_reload", VCPU_STAT(host_state_reload) },
182         { "fpu_reload", VCPU_STAT(fpu_reload) },
183         { "insn_emulation", VCPU_STAT(insn_emulation) },
184         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
185         { "irq_injections", VCPU_STAT(irq_injections) },
186         { "nmi_injections", VCPU_STAT(nmi_injections) },
187         { "req_event", VCPU_STAT(req_event) },
188         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
189         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
190         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
191         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
192         { "mmu_flooded", VM_STAT(mmu_flooded) },
193         { "mmu_recycled", VM_STAT(mmu_recycled) },
194         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
195         { "mmu_unsync", VM_STAT(mmu_unsync) },
196         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
197         { "largepages", VM_STAT(lpages) },
198         { "max_mmu_page_hash_collisions",
199                 VM_STAT(max_mmu_page_hash_collisions) },
200         { NULL }
201 };
202
203 u64 __read_mostly host_xcr0;
204
205 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
206
207 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
208 {
209         int i;
210         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
211                 vcpu->arch.apf.gfns[i] = ~0;
212 }
213
214 static void kvm_on_user_return(struct user_return_notifier *urn)
215 {
216         unsigned slot;
217         struct kvm_shared_msrs *locals
218                 = container_of(urn, struct kvm_shared_msrs, urn);
219         struct kvm_shared_msr_values *values;
220         unsigned long flags;
221
222         /*
223          * Disabling irqs at this point since the following code could be
224          * interrupted and executed through kvm_arch_hardware_disable()
225          */
226         local_irq_save(flags);
227         if (locals->registered) {
228                 locals->registered = false;
229                 user_return_notifier_unregister(urn);
230         }
231         local_irq_restore(flags);
232         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
233                 values = &locals->values[slot];
234                 if (values->host != values->curr) {
235                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
236                         values->curr = values->host;
237                 }
238         }
239 }
240
241 static void shared_msr_update(unsigned slot, u32 msr)
242 {
243         u64 value;
244         unsigned int cpu = smp_processor_id();
245         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247         /* only read, and nobody should modify it at this time,
248          * so don't need lock */
249         if (slot >= shared_msrs_global.nr) {
250                 printk(KERN_ERR "kvm: invalid MSR slot!");
251                 return;
252         }
253         rdmsrl_safe(msr, &value);
254         smsr->values[slot].host = value;
255         smsr->values[slot].curr = value;
256 }
257
258 void kvm_define_shared_msr(unsigned slot, u32 msr)
259 {
260         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
261         shared_msrs_global.msrs[slot] = msr;
262         if (slot >= shared_msrs_global.nr)
263                 shared_msrs_global.nr = slot + 1;
264 }
265 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
266
267 static void kvm_shared_msr_cpu_online(void)
268 {
269         unsigned i;
270
271         for (i = 0; i < shared_msrs_global.nr; ++i)
272                 shared_msr_update(i, shared_msrs_global.msrs[i]);
273 }
274
275 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
276 {
277         unsigned int cpu = smp_processor_id();
278         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
279         int err;
280
281         if (((value ^ smsr->values[slot].curr) & mask) == 0)
282                 return 0;
283         smsr->values[slot].curr = value;
284         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
285         if (err)
286                 return 1;
287
288         if (!smsr->registered) {
289                 smsr->urn.on_user_return = kvm_on_user_return;
290                 user_return_notifier_register(&smsr->urn);
291                 smsr->registered = true;
292         }
293         return 0;
294 }
295 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
296
297 static void drop_user_return_notifiers(void)
298 {
299         unsigned int cpu = smp_processor_id();
300         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
301
302         if (smsr->registered)
303                 kvm_on_user_return(&smsr->urn);
304 }
305
306 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
307 {
308         return vcpu->arch.apic_base;
309 }
310 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
311
312 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
313 {
314         u64 old_state = vcpu->arch.apic_base &
315                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
316         u64 new_state = msr_info->data &
317                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
318         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
319                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
320
321         if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
322                 return 1;
323         if (!msr_info->host_initiated &&
324             ((new_state == MSR_IA32_APICBASE_ENABLE &&
325               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
326              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
327               old_state == 0)))
328                 return 1;
329
330         kvm_lapic_set_base(vcpu, msr_info->data);
331         return 0;
332 }
333 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
334
335 asmlinkage __visible void kvm_spurious_fault(void)
336 {
337         /* Fault while not rebooting.  We want the trace. */
338         BUG();
339 }
340 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
341
342 #define EXCPT_BENIGN            0
343 #define EXCPT_CONTRIBUTORY      1
344 #define EXCPT_PF                2
345
346 static int exception_class(int vector)
347 {
348         switch (vector) {
349         case PF_VECTOR:
350                 return EXCPT_PF;
351         case DE_VECTOR:
352         case TS_VECTOR:
353         case NP_VECTOR:
354         case SS_VECTOR:
355         case GP_VECTOR:
356                 return EXCPT_CONTRIBUTORY;
357         default:
358                 break;
359         }
360         return EXCPT_BENIGN;
361 }
362
363 #define EXCPT_FAULT             0
364 #define EXCPT_TRAP              1
365 #define EXCPT_ABORT             2
366 #define EXCPT_INTERRUPT         3
367
368 static int exception_type(int vector)
369 {
370         unsigned int mask;
371
372         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
373                 return EXCPT_INTERRUPT;
374
375         mask = 1 << vector;
376
377         /* #DB is trap, as instruction watchpoints are handled elsewhere */
378         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
379                 return EXCPT_TRAP;
380
381         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
382                 return EXCPT_ABORT;
383
384         /* Reserved exceptions will result in fault */
385         return EXCPT_FAULT;
386 }
387
388 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
389                 unsigned nr, bool has_error, u32 error_code,
390                 bool reinject)
391 {
392         u32 prev_nr;
393         int class1, class2;
394
395         kvm_make_request(KVM_REQ_EVENT, vcpu);
396
397         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
398         queue:
399                 if (has_error && !is_protmode(vcpu))
400                         has_error = false;
401                 if (reinject) {
402                         /*
403                          * On vmentry, vcpu->arch.exception.pending is only
404                          * true if an event injection was blocked by
405                          * nested_run_pending.  In that case, however,
406                          * vcpu_enter_guest requests an immediate exit,
407                          * and the guest shouldn't proceed far enough to
408                          * need reinjection.
409                          */
410                         WARN_ON_ONCE(vcpu->arch.exception.pending);
411                         vcpu->arch.exception.injected = true;
412                 } else {
413                         vcpu->arch.exception.pending = true;
414                         vcpu->arch.exception.injected = false;
415                 }
416                 vcpu->arch.exception.has_error_code = has_error;
417                 vcpu->arch.exception.nr = nr;
418                 vcpu->arch.exception.error_code = error_code;
419                 return;
420         }
421
422         /* to check exception */
423         prev_nr = vcpu->arch.exception.nr;
424         if (prev_nr == DF_VECTOR) {
425                 /* triple fault -> shutdown */
426                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
427                 return;
428         }
429         class1 = exception_class(prev_nr);
430         class2 = exception_class(nr);
431         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
432                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
433                 /*
434                  * Generate double fault per SDM Table 5-5.  Set
435                  * exception.pending = true so that the double fault
436                  * can trigger a nested vmexit.
437                  */
438                 vcpu->arch.exception.pending = true;
439                 vcpu->arch.exception.injected = false;
440                 vcpu->arch.exception.has_error_code = true;
441                 vcpu->arch.exception.nr = DF_VECTOR;
442                 vcpu->arch.exception.error_code = 0;
443         } else
444                 /* replace previous exception with a new one in a hope
445                    that instruction re-execution will regenerate lost
446                    exception */
447                 goto queue;
448 }
449
450 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
451 {
452         kvm_multiple_exception(vcpu, nr, false, 0, false);
453 }
454 EXPORT_SYMBOL_GPL(kvm_queue_exception);
455
456 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
457 {
458         kvm_multiple_exception(vcpu, nr, false, 0, true);
459 }
460 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
461
462 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
463 {
464         if (err)
465                 kvm_inject_gp(vcpu, 0);
466         else
467                 return kvm_skip_emulated_instruction(vcpu);
468
469         return 1;
470 }
471 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
472
473 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
474 {
475         ++vcpu->stat.pf_guest;
476         vcpu->arch.exception.nested_apf =
477                 is_guest_mode(vcpu) && fault->async_page_fault;
478         if (vcpu->arch.exception.nested_apf)
479                 vcpu->arch.apf.nested_apf_token = fault->address;
480         else
481                 vcpu->arch.cr2 = fault->address;
482         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
483 }
484 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
485
486 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
487 {
488         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
489                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
490         else
491                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
492
493         return fault->nested_page_fault;
494 }
495
496 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
497 {
498         atomic_inc(&vcpu->arch.nmi_queued);
499         kvm_make_request(KVM_REQ_NMI, vcpu);
500 }
501 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
502
503 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
504 {
505         kvm_multiple_exception(vcpu, nr, true, error_code, false);
506 }
507 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
508
509 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
510 {
511         kvm_multiple_exception(vcpu, nr, true, error_code, true);
512 }
513 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
514
515 /*
516  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
517  * a #GP and return false.
518  */
519 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
520 {
521         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
522                 return true;
523         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
524         return false;
525 }
526 EXPORT_SYMBOL_GPL(kvm_require_cpl);
527
528 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
529 {
530         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
531                 return true;
532
533         kvm_queue_exception(vcpu, UD_VECTOR);
534         return false;
535 }
536 EXPORT_SYMBOL_GPL(kvm_require_dr);
537
538 /*
539  * This function will be used to read from the physical memory of the currently
540  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
541  * can read from guest physical or from the guest's guest physical memory.
542  */
543 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
544                             gfn_t ngfn, void *data, int offset, int len,
545                             u32 access)
546 {
547         struct x86_exception exception;
548         gfn_t real_gfn;
549         gpa_t ngpa;
550
551         ngpa     = gfn_to_gpa(ngfn);
552         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
553         if (real_gfn == UNMAPPED_GVA)
554                 return -EFAULT;
555
556         real_gfn = gpa_to_gfn(real_gfn);
557
558         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
559 }
560 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
561
562 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
563                                void *data, int offset, int len, u32 access)
564 {
565         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
566                                        data, offset, len, access);
567 }
568
569 /*
570  * Load the pae pdptrs.  Return true is they are all valid.
571  */
572 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
573 {
574         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
575         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
576         int i;
577         int ret;
578         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
579
580         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
581                                       offset * sizeof(u64), sizeof(pdpte),
582                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
583         if (ret < 0) {
584                 ret = 0;
585                 goto out;
586         }
587         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
588                 if ((pdpte[i] & PT_PRESENT_MASK) &&
589                     (pdpte[i] &
590                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
591                         ret = 0;
592                         goto out;
593                 }
594         }
595         ret = 1;
596
597         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
598         __set_bit(VCPU_EXREG_PDPTR,
599                   (unsigned long *)&vcpu->arch.regs_avail);
600         __set_bit(VCPU_EXREG_PDPTR,
601                   (unsigned long *)&vcpu->arch.regs_dirty);
602 out:
603
604         return ret;
605 }
606 EXPORT_SYMBOL_GPL(load_pdptrs);
607
608 bool pdptrs_changed(struct kvm_vcpu *vcpu)
609 {
610         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
611         bool changed = true;
612         int offset;
613         gfn_t gfn;
614         int r;
615
616         if (is_long_mode(vcpu) || !is_pae(vcpu))
617                 return false;
618
619         if (!test_bit(VCPU_EXREG_PDPTR,
620                       (unsigned long *)&vcpu->arch.regs_avail))
621                 return true;
622
623         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
624         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
625         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
626                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
627         if (r < 0)
628                 goto out;
629         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
630 out:
631
632         return changed;
633 }
634 EXPORT_SYMBOL_GPL(pdptrs_changed);
635
636 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
637 {
638         unsigned long old_cr0 = kvm_read_cr0(vcpu);
639         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
640
641         cr0 |= X86_CR0_ET;
642
643 #ifdef CONFIG_X86_64
644         if (cr0 & 0xffffffff00000000UL)
645                 return 1;
646 #endif
647
648         cr0 &= ~CR0_RESERVED_BITS;
649
650         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
651                 return 1;
652
653         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
654                 return 1;
655
656         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
657 #ifdef CONFIG_X86_64
658                 if ((vcpu->arch.efer & EFER_LME)) {
659                         int cs_db, cs_l;
660
661                         if (!is_pae(vcpu))
662                                 return 1;
663                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
664                         if (cs_l)
665                                 return 1;
666                 } else
667 #endif
668                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
669                                                  kvm_read_cr3(vcpu)))
670                         return 1;
671         }
672
673         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
674                 return 1;
675
676         kvm_x86_ops->set_cr0(vcpu, cr0);
677
678         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
679                 kvm_clear_async_pf_completion_queue(vcpu);
680                 kvm_async_pf_hash_reset(vcpu);
681         }
682
683         if ((cr0 ^ old_cr0) & update_bits)
684                 kvm_mmu_reset_context(vcpu);
685
686         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
687             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
688             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
689                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
690
691         return 0;
692 }
693 EXPORT_SYMBOL_GPL(kvm_set_cr0);
694
695 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
696 {
697         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
698 }
699 EXPORT_SYMBOL_GPL(kvm_lmsw);
700
701 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
702 {
703         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
704                         !vcpu->guest_xcr0_loaded) {
705                 /* kvm_set_xcr() also depends on this */
706                 if (vcpu->arch.xcr0 != host_xcr0)
707                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
708                 vcpu->guest_xcr0_loaded = 1;
709         }
710 }
711
712 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
713 {
714         if (vcpu->guest_xcr0_loaded) {
715                 if (vcpu->arch.xcr0 != host_xcr0)
716                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
717                 vcpu->guest_xcr0_loaded = 0;
718         }
719 }
720
721 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
722 {
723         u64 xcr0 = xcr;
724         u64 old_xcr0 = vcpu->arch.xcr0;
725         u64 valid_bits;
726
727         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
728         if (index != XCR_XFEATURE_ENABLED_MASK)
729                 return 1;
730         if (!(xcr0 & XFEATURE_MASK_FP))
731                 return 1;
732         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
733                 return 1;
734
735         /*
736          * Do not allow the guest to set bits that we do not support
737          * saving.  However, xcr0 bit 0 is always set, even if the
738          * emulated CPU does not support XSAVE (see fx_init).
739          */
740         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
741         if (xcr0 & ~valid_bits)
742                 return 1;
743
744         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
745             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
746                 return 1;
747
748         if (xcr0 & XFEATURE_MASK_AVX512) {
749                 if (!(xcr0 & XFEATURE_MASK_YMM))
750                         return 1;
751                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
752                         return 1;
753         }
754         vcpu->arch.xcr0 = xcr0;
755
756         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
757                 kvm_update_cpuid(vcpu);
758         return 0;
759 }
760
761 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
762 {
763         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
764             __kvm_set_xcr(vcpu, index, xcr)) {
765                 kvm_inject_gp(vcpu, 0);
766                 return 1;
767         }
768         return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_xcr);
771
772 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
773 {
774         unsigned long old_cr4 = kvm_read_cr4(vcpu);
775         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
776                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
777
778         if (cr4 & CR4_RESERVED_BITS)
779                 return 1;
780
781         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
782                 return 1;
783
784         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
785                 return 1;
786
787         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
788                 return 1;
789
790         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
791                 return 1;
792
793         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
794                 return 1;
795
796         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
797                 return 1;
798
799         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
800                 return 1;
801
802         if (is_long_mode(vcpu)) {
803                 if (!(cr4 & X86_CR4_PAE))
804                         return 1;
805         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
806                    && ((cr4 ^ old_cr4) & pdptr_bits)
807                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
808                                    kvm_read_cr3(vcpu)))
809                 return 1;
810
811         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
812                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
813                         return 1;
814
815                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
816                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
817                         return 1;
818         }
819
820         if (kvm_x86_ops->set_cr4(vcpu, cr4))
821                 return 1;
822
823         if (((cr4 ^ old_cr4) & pdptr_bits) ||
824             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
825                 kvm_mmu_reset_context(vcpu);
826
827         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
828                 kvm_update_cpuid(vcpu);
829
830         return 0;
831 }
832 EXPORT_SYMBOL_GPL(kvm_set_cr4);
833
834 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
835 {
836 #ifdef CONFIG_X86_64
837         cr3 &= ~CR3_PCID_INVD;
838 #endif
839
840         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
841                 kvm_mmu_sync_roots(vcpu);
842                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
843                 return 0;
844         }
845
846         if (is_long_mode(vcpu) &&
847             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
848                 return 1;
849         else if (is_pae(vcpu) && is_paging(vcpu) &&
850                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
851                 return 1;
852
853         vcpu->arch.cr3 = cr3;
854         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
855         kvm_mmu_new_cr3(vcpu);
856         return 0;
857 }
858 EXPORT_SYMBOL_GPL(kvm_set_cr3);
859
860 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
861 {
862         if (cr8 & CR8_RESERVED_BITS)
863                 return 1;
864         if (lapic_in_kernel(vcpu))
865                 kvm_lapic_set_tpr(vcpu, cr8);
866         else
867                 vcpu->arch.cr8 = cr8;
868         return 0;
869 }
870 EXPORT_SYMBOL_GPL(kvm_set_cr8);
871
872 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
873 {
874         if (lapic_in_kernel(vcpu))
875                 return kvm_lapic_get_cr8(vcpu);
876         else
877                 return vcpu->arch.cr8;
878 }
879 EXPORT_SYMBOL_GPL(kvm_get_cr8);
880
881 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
882 {
883         int i;
884
885         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
886                 for (i = 0; i < KVM_NR_DB_REGS; i++)
887                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
888                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
889         }
890 }
891
892 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
893 {
894         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
895                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
896 }
897
898 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
899 {
900         unsigned long dr7;
901
902         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
903                 dr7 = vcpu->arch.guest_debug_dr7;
904         else
905                 dr7 = vcpu->arch.dr7;
906         kvm_x86_ops->set_dr7(vcpu, dr7);
907         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
908         if (dr7 & DR7_BP_EN_MASK)
909                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
910 }
911
912 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
913 {
914         u64 fixed = DR6_FIXED_1;
915
916         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
917                 fixed |= DR6_RTM;
918         return fixed;
919 }
920
921 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
922 {
923         switch (dr) {
924         case 0 ... 3:
925                 vcpu->arch.db[dr] = val;
926                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
927                         vcpu->arch.eff_db[dr] = val;
928                 break;
929         case 4:
930                 /* fall through */
931         case 6:
932                 if (val & 0xffffffff00000000ULL)
933                         return -1; /* #GP */
934                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
935                 kvm_update_dr6(vcpu);
936                 break;
937         case 5:
938                 /* fall through */
939         default: /* 7 */
940                 if (val & 0xffffffff00000000ULL)
941                         return -1; /* #GP */
942                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
943                 kvm_update_dr7(vcpu);
944                 break;
945         }
946
947         return 0;
948 }
949
950 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
951 {
952         if (__kvm_set_dr(vcpu, dr, val)) {
953                 kvm_inject_gp(vcpu, 0);
954                 return 1;
955         }
956         return 0;
957 }
958 EXPORT_SYMBOL_GPL(kvm_set_dr);
959
960 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
961 {
962         switch (dr) {
963         case 0 ... 3:
964                 *val = vcpu->arch.db[dr];
965                 break;
966         case 4:
967                 /* fall through */
968         case 6:
969                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
970                         *val = vcpu->arch.dr6;
971                 else
972                         *val = kvm_x86_ops->get_dr6(vcpu);
973                 break;
974         case 5:
975                 /* fall through */
976         default: /* 7 */
977                 *val = vcpu->arch.dr7;
978                 break;
979         }
980         return 0;
981 }
982 EXPORT_SYMBOL_GPL(kvm_get_dr);
983
984 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
985 {
986         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
987         u64 data;
988         int err;
989
990         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
991         if (err)
992                 return err;
993         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
994         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
995         return err;
996 }
997 EXPORT_SYMBOL_GPL(kvm_rdpmc);
998
999 /*
1000  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1001  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1002  *
1003  * This list is modified at module load time to reflect the
1004  * capabilities of the host cpu. This capabilities test skips MSRs that are
1005  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1006  * may depend on host virtualization features rather than host cpu features.
1007  */
1008
1009 static u32 msrs_to_save[] = {
1010         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1011         MSR_STAR,
1012 #ifdef CONFIG_X86_64
1013         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1014 #endif
1015         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1016         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1017         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1018 };
1019
1020 static unsigned num_msrs_to_save;
1021
1022 static u32 emulated_msrs[] = {
1023         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1024         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1025         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1026         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1027         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1028         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1029         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1030         HV_X64_MSR_RESET,
1031         HV_X64_MSR_VP_INDEX,
1032         HV_X64_MSR_VP_RUNTIME,
1033         HV_X64_MSR_SCONTROL,
1034         HV_X64_MSR_STIMER0_CONFIG,
1035         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1036         MSR_KVM_PV_EOI_EN,
1037
1038         MSR_IA32_TSC_ADJUST,
1039         MSR_IA32_TSCDEADLINE,
1040         MSR_IA32_MISC_ENABLE,
1041         MSR_IA32_MCG_STATUS,
1042         MSR_IA32_MCG_CTL,
1043         MSR_IA32_MCG_EXT_CTL,
1044         MSR_IA32_SMBASE,
1045         MSR_SMI_COUNT,
1046         MSR_PLATFORM_INFO,
1047         MSR_MISC_FEATURES_ENABLES,
1048 };
1049
1050 static unsigned num_emulated_msrs;
1051
1052 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1053 {
1054         if (efer & efer_reserved_bits)
1055                 return false;
1056
1057         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1058                         return false;
1059
1060         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1061                         return false;
1062
1063         return true;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1066
1067 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1068 {
1069         u64 old_efer = vcpu->arch.efer;
1070
1071         if (!kvm_valid_efer(vcpu, efer))
1072                 return 1;
1073
1074         if (is_paging(vcpu)
1075             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1076                 return 1;
1077
1078         efer &= ~EFER_LMA;
1079         efer |= vcpu->arch.efer & EFER_LMA;
1080
1081         kvm_x86_ops->set_efer(vcpu, efer);
1082
1083         /* Update reserved bits */
1084         if ((efer ^ old_efer) & EFER_NX)
1085                 kvm_mmu_reset_context(vcpu);
1086
1087         return 0;
1088 }
1089
1090 void kvm_enable_efer_bits(u64 mask)
1091 {
1092        efer_reserved_bits &= ~mask;
1093 }
1094 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1095
1096 /*
1097  * Writes msr value into into the appropriate "register".
1098  * Returns 0 on success, non-0 otherwise.
1099  * Assumes vcpu_load() was already called.
1100  */
1101 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1102 {
1103         switch (msr->index) {
1104         case MSR_FS_BASE:
1105         case MSR_GS_BASE:
1106         case MSR_KERNEL_GS_BASE:
1107         case MSR_CSTAR:
1108         case MSR_LSTAR:
1109                 if (is_noncanonical_address(msr->data, vcpu))
1110                         return 1;
1111                 break;
1112         case MSR_IA32_SYSENTER_EIP:
1113         case MSR_IA32_SYSENTER_ESP:
1114                 /*
1115                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1116                  * non-canonical address is written on Intel but not on
1117                  * AMD (which ignores the top 32-bits, because it does
1118                  * not implement 64-bit SYSENTER).
1119                  *
1120                  * 64-bit code should hence be able to write a non-canonical
1121                  * value on AMD.  Making the address canonical ensures that
1122                  * vmentry does not fail on Intel after writing a non-canonical
1123                  * value, and that something deterministic happens if the guest
1124                  * invokes 64-bit SYSENTER.
1125                  */
1126                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1127         }
1128         return kvm_x86_ops->set_msr(vcpu, msr);
1129 }
1130 EXPORT_SYMBOL_GPL(kvm_set_msr);
1131
1132 /*
1133  * Adapt set_msr() to msr_io()'s calling convention
1134  */
1135 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1136 {
1137         struct msr_data msr;
1138         int r;
1139
1140         msr.index = index;
1141         msr.host_initiated = true;
1142         r = kvm_get_msr(vcpu, &msr);
1143         if (r)
1144                 return r;
1145
1146         *data = msr.data;
1147         return 0;
1148 }
1149
1150 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1151 {
1152         struct msr_data msr;
1153
1154         msr.data = *data;
1155         msr.index = index;
1156         msr.host_initiated = true;
1157         return kvm_set_msr(vcpu, &msr);
1158 }
1159
1160 #ifdef CONFIG_X86_64
1161 struct pvclock_gtod_data {
1162         seqcount_t      seq;
1163
1164         struct { /* extract of a clocksource struct */
1165                 int vclock_mode;
1166                 u64     cycle_last;
1167                 u64     mask;
1168                 u32     mult;
1169                 u32     shift;
1170         } clock;
1171
1172         u64             boot_ns;
1173         u64             nsec_base;
1174         u64             wall_time_sec;
1175 };
1176
1177 static struct pvclock_gtod_data pvclock_gtod_data;
1178
1179 static void update_pvclock_gtod(struct timekeeper *tk)
1180 {
1181         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1182         u64 boot_ns;
1183
1184         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1185
1186         write_seqcount_begin(&vdata->seq);
1187
1188         /* copy pvclock gtod data */
1189         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1190         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1191         vdata->clock.mask               = tk->tkr_mono.mask;
1192         vdata->clock.mult               = tk->tkr_mono.mult;
1193         vdata->clock.shift              = tk->tkr_mono.shift;
1194
1195         vdata->boot_ns                  = boot_ns;
1196         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1197
1198         vdata->wall_time_sec            = tk->xtime_sec;
1199
1200         write_seqcount_end(&vdata->seq);
1201 }
1202 #endif
1203
1204 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1205 {
1206         /*
1207          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1208          * vcpu_enter_guest.  This function is only called from
1209          * the physical CPU that is running vcpu.
1210          */
1211         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1212 }
1213
1214 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1215 {
1216         int version;
1217         int r;
1218         struct pvclock_wall_clock wc;
1219         struct timespec64 boot;
1220
1221         if (!wall_clock)
1222                 return;
1223
1224         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1225         if (r)
1226                 return;
1227
1228         if (version & 1)
1229                 ++version;  /* first time write, random junk */
1230
1231         ++version;
1232
1233         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1234                 return;
1235
1236         /*
1237          * The guest calculates current wall clock time by adding
1238          * system time (updated by kvm_guest_time_update below) to the
1239          * wall clock specified here.  guest system time equals host
1240          * system time for us, thus we must fill in host boot time here.
1241          */
1242         getboottime64(&boot);
1243
1244         if (kvm->arch.kvmclock_offset) {
1245                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1246                 boot = timespec64_sub(boot, ts);
1247         }
1248         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1249         wc.nsec = boot.tv_nsec;
1250         wc.version = version;
1251
1252         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1253
1254         version++;
1255         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1256 }
1257
1258 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1259 {
1260         do_shl32_div32(dividend, divisor);
1261         return dividend;
1262 }
1263
1264 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1265                                s8 *pshift, u32 *pmultiplier)
1266 {
1267         uint64_t scaled64;
1268         int32_t  shift = 0;
1269         uint64_t tps64;
1270         uint32_t tps32;
1271
1272         tps64 = base_hz;
1273         scaled64 = scaled_hz;
1274         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1275                 tps64 >>= 1;
1276                 shift--;
1277         }
1278
1279         tps32 = (uint32_t)tps64;
1280         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1281                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1282                         scaled64 >>= 1;
1283                 else
1284                         tps32 <<= 1;
1285                 shift++;
1286         }
1287
1288         *pshift = shift;
1289         *pmultiplier = div_frac(scaled64, tps32);
1290
1291         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1292                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1293 }
1294
1295 #ifdef CONFIG_X86_64
1296 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1297 #endif
1298
1299 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1300 static unsigned long max_tsc_khz;
1301
1302 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1303 {
1304         u64 v = (u64)khz * (1000000 + ppm);
1305         do_div(v, 1000000);
1306         return v;
1307 }
1308
1309 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1310 {
1311         u64 ratio;
1312
1313         /* Guest TSC same frequency as host TSC? */
1314         if (!scale) {
1315                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1316                 return 0;
1317         }
1318
1319         /* TSC scaling supported? */
1320         if (!kvm_has_tsc_control) {
1321                 if (user_tsc_khz > tsc_khz) {
1322                         vcpu->arch.tsc_catchup = 1;
1323                         vcpu->arch.tsc_always_catchup = 1;
1324                         return 0;
1325                 } else {
1326                         WARN(1, "user requested TSC rate below hardware speed\n");
1327                         return -1;
1328                 }
1329         }
1330
1331         /* TSC scaling required  - calculate ratio */
1332         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1333                                 user_tsc_khz, tsc_khz);
1334
1335         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1336                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1337                           user_tsc_khz);
1338                 return -1;
1339         }
1340
1341         vcpu->arch.tsc_scaling_ratio = ratio;
1342         return 0;
1343 }
1344
1345 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1346 {
1347         u32 thresh_lo, thresh_hi;
1348         int use_scaling = 0;
1349
1350         /* tsc_khz can be zero if TSC calibration fails */
1351         if (user_tsc_khz == 0) {
1352                 /* set tsc_scaling_ratio to a safe value */
1353                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1354                 return -1;
1355         }
1356
1357         /* Compute a scale to convert nanoseconds in TSC cycles */
1358         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1359                            &vcpu->arch.virtual_tsc_shift,
1360                            &vcpu->arch.virtual_tsc_mult);
1361         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1362
1363         /*
1364          * Compute the variation in TSC rate which is acceptable
1365          * within the range of tolerance and decide if the
1366          * rate being applied is within that bounds of the hardware
1367          * rate.  If so, no scaling or compensation need be done.
1368          */
1369         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1370         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1371         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1372                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1373                 use_scaling = 1;
1374         }
1375         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1376 }
1377
1378 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1379 {
1380         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1381                                       vcpu->arch.virtual_tsc_mult,
1382                                       vcpu->arch.virtual_tsc_shift);
1383         tsc += vcpu->arch.this_tsc_write;
1384         return tsc;
1385 }
1386
1387 static inline int gtod_is_based_on_tsc(int mode)
1388 {
1389         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1390 }
1391
1392 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1393 {
1394 #ifdef CONFIG_X86_64
1395         bool vcpus_matched;
1396         struct kvm_arch *ka = &vcpu->kvm->arch;
1397         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1398
1399         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1400                          atomic_read(&vcpu->kvm->online_vcpus));
1401
1402         /*
1403          * Once the masterclock is enabled, always perform request in
1404          * order to update it.
1405          *
1406          * In order to enable masterclock, the host clocksource must be TSC
1407          * and the vcpus need to have matched TSCs.  When that happens,
1408          * perform request to enable masterclock.
1409          */
1410         if (ka->use_master_clock ||
1411             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1412                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1413
1414         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1415                             atomic_read(&vcpu->kvm->online_vcpus),
1416                             ka->use_master_clock, gtod->clock.vclock_mode);
1417 #endif
1418 }
1419
1420 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1421 {
1422         u64 curr_offset = vcpu->arch.tsc_offset;
1423         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1424 }
1425
1426 /*
1427  * Multiply tsc by a fixed point number represented by ratio.
1428  *
1429  * The most significant 64-N bits (mult) of ratio represent the
1430  * integral part of the fixed point number; the remaining N bits
1431  * (frac) represent the fractional part, ie. ratio represents a fixed
1432  * point number (mult + frac * 2^(-N)).
1433  *
1434  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1435  */
1436 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1437 {
1438         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1439 }
1440
1441 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1442 {
1443         u64 _tsc = tsc;
1444         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1445
1446         if (ratio != kvm_default_tsc_scaling_ratio)
1447                 _tsc = __scale_tsc(ratio, tsc);
1448
1449         return _tsc;
1450 }
1451 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1452
1453 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1454 {
1455         u64 tsc;
1456
1457         tsc = kvm_scale_tsc(vcpu, rdtsc());
1458
1459         return target_tsc - tsc;
1460 }
1461
1462 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1463 {
1464         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1465 }
1466 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1467
1468 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1469 {
1470         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1471         vcpu->arch.tsc_offset = offset;
1472 }
1473
1474 static inline bool kvm_check_tsc_unstable(void)
1475 {
1476 #ifdef CONFIG_X86_64
1477         /*
1478          * TSC is marked unstable when we're running on Hyper-V,
1479          * 'TSC page' clocksource is good.
1480          */
1481         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1482                 return false;
1483 #endif
1484         return check_tsc_unstable();
1485 }
1486
1487 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1488 {
1489         struct kvm *kvm = vcpu->kvm;
1490         u64 offset, ns, elapsed;
1491         unsigned long flags;
1492         bool matched;
1493         bool already_matched;
1494         u64 data = msr->data;
1495         bool synchronizing = false;
1496
1497         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1498         offset = kvm_compute_tsc_offset(vcpu, data);
1499         ns = ktime_get_boot_ns();
1500         elapsed = ns - kvm->arch.last_tsc_nsec;
1501
1502         if (vcpu->arch.virtual_tsc_khz) {
1503                 if (data == 0 && msr->host_initiated) {
1504                         /*
1505                          * detection of vcpu initialization -- need to sync
1506                          * with other vCPUs. This particularly helps to keep
1507                          * kvm_clock stable after CPU hotplug
1508                          */
1509                         synchronizing = true;
1510                 } else {
1511                         u64 tsc_exp = kvm->arch.last_tsc_write +
1512                                                 nsec_to_cycles(vcpu, elapsed);
1513                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1514                         /*
1515                          * Special case: TSC write with a small delta (1 second)
1516                          * of virtual cycle time against real time is
1517                          * interpreted as an attempt to synchronize the CPU.
1518                          */
1519                         synchronizing = data < tsc_exp + tsc_hz &&
1520                                         data + tsc_hz > tsc_exp;
1521                 }
1522         }
1523
1524         /*
1525          * For a reliable TSC, we can match TSC offsets, and for an unstable
1526          * TSC, we add elapsed time in this computation.  We could let the
1527          * compensation code attempt to catch up if we fall behind, but
1528          * it's better to try to match offsets from the beginning.
1529          */
1530         if (synchronizing &&
1531             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1532                 if (!kvm_check_tsc_unstable()) {
1533                         offset = kvm->arch.cur_tsc_offset;
1534                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1535                 } else {
1536                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1537                         data += delta;
1538                         offset = kvm_compute_tsc_offset(vcpu, data);
1539                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1540                 }
1541                 matched = true;
1542                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1543         } else {
1544                 /*
1545                  * We split periods of matched TSC writes into generations.
1546                  * For each generation, we track the original measured
1547                  * nanosecond time, offset, and write, so if TSCs are in
1548                  * sync, we can match exact offset, and if not, we can match
1549                  * exact software computation in compute_guest_tsc()
1550                  *
1551                  * These values are tracked in kvm->arch.cur_xxx variables.
1552                  */
1553                 kvm->arch.cur_tsc_generation++;
1554                 kvm->arch.cur_tsc_nsec = ns;
1555                 kvm->arch.cur_tsc_write = data;
1556                 kvm->arch.cur_tsc_offset = offset;
1557                 matched = false;
1558                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1559                          kvm->arch.cur_tsc_generation, data);
1560         }
1561
1562         /*
1563          * We also track th most recent recorded KHZ, write and time to
1564          * allow the matching interval to be extended at each write.
1565          */
1566         kvm->arch.last_tsc_nsec = ns;
1567         kvm->arch.last_tsc_write = data;
1568         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1569
1570         vcpu->arch.last_guest_tsc = data;
1571
1572         /* Keep track of which generation this VCPU has synchronized to */
1573         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1574         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1575         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1576
1577         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1578                 update_ia32_tsc_adjust_msr(vcpu, offset);
1579
1580         kvm_vcpu_write_tsc_offset(vcpu, offset);
1581         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1582
1583         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1584         if (!matched) {
1585                 kvm->arch.nr_vcpus_matched_tsc = 0;
1586         } else if (!already_matched) {
1587                 kvm->arch.nr_vcpus_matched_tsc++;
1588         }
1589
1590         kvm_track_tsc_matching(vcpu);
1591         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1592 }
1593
1594 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1595
1596 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1597                                            s64 adjustment)
1598 {
1599         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1600 }
1601
1602 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1603 {
1604         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1605                 WARN_ON(adjustment < 0);
1606         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1607         adjust_tsc_offset_guest(vcpu, adjustment);
1608 }
1609
1610 #ifdef CONFIG_X86_64
1611
1612 static u64 read_tsc(void)
1613 {
1614         u64 ret = (u64)rdtsc_ordered();
1615         u64 last = pvclock_gtod_data.clock.cycle_last;
1616
1617         if (likely(ret >= last))
1618                 return ret;
1619
1620         /*
1621          * GCC likes to generate cmov here, but this branch is extremely
1622          * predictable (it's just a function of time and the likely is
1623          * very likely) and there's a data dependence, so force GCC
1624          * to generate a branch instead.  I don't barrier() because
1625          * we don't actually need a barrier, and if this function
1626          * ever gets inlined it will generate worse code.
1627          */
1628         asm volatile ("");
1629         return last;
1630 }
1631
1632 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1633 {
1634         long v;
1635         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1636         u64 tsc_pg_val;
1637
1638         switch (gtod->clock.vclock_mode) {
1639         case VCLOCK_HVCLOCK:
1640                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1641                                                   tsc_timestamp);
1642                 if (tsc_pg_val != U64_MAX) {
1643                         /* TSC page valid */
1644                         *mode = VCLOCK_HVCLOCK;
1645                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1646                                 gtod->clock.mask;
1647                 } else {
1648                         /* TSC page invalid */
1649                         *mode = VCLOCK_NONE;
1650                 }
1651                 break;
1652         case VCLOCK_TSC:
1653                 *mode = VCLOCK_TSC;
1654                 *tsc_timestamp = read_tsc();
1655                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1656                         gtod->clock.mask;
1657                 break;
1658         default:
1659                 *mode = VCLOCK_NONE;
1660         }
1661
1662         if (*mode == VCLOCK_NONE)
1663                 *tsc_timestamp = v = 0;
1664
1665         return v * gtod->clock.mult;
1666 }
1667
1668 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1669 {
1670         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1671         unsigned long seq;
1672         int mode;
1673         u64 ns;
1674
1675         do {
1676                 seq = read_seqcount_begin(&gtod->seq);
1677                 ns = gtod->nsec_base;
1678                 ns += vgettsc(tsc_timestamp, &mode);
1679                 ns >>= gtod->clock.shift;
1680                 ns += gtod->boot_ns;
1681         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1682         *t = ns;
1683
1684         return mode;
1685 }
1686
1687 static int do_realtime(struct timespec *ts, u64 *tsc_timestamp)
1688 {
1689         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1690         unsigned long seq;
1691         int mode;
1692         u64 ns;
1693
1694         do {
1695                 seq = read_seqcount_begin(&gtod->seq);
1696                 ts->tv_sec = gtod->wall_time_sec;
1697                 ns = gtod->nsec_base;
1698                 ns += vgettsc(tsc_timestamp, &mode);
1699                 ns >>= gtod->clock.shift;
1700         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1701
1702         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1703         ts->tv_nsec = ns;
1704
1705         return mode;
1706 }
1707
1708 /* returns true if host is using TSC based clocksource */
1709 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1710 {
1711         /* checked again under seqlock below */
1712         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1713                 return false;
1714
1715         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1716                                                       tsc_timestamp));
1717 }
1718
1719 /* returns true if host is using TSC based clocksource */
1720 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1721                                            u64 *tsc_timestamp)
1722 {
1723         /* checked again under seqlock below */
1724         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1725                 return false;
1726
1727         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1728 }
1729 #endif
1730
1731 /*
1732  *
1733  * Assuming a stable TSC across physical CPUS, and a stable TSC
1734  * across virtual CPUs, the following condition is possible.
1735  * Each numbered line represents an event visible to both
1736  * CPUs at the next numbered event.
1737  *
1738  * "timespecX" represents host monotonic time. "tscX" represents
1739  * RDTSC value.
1740  *
1741  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1742  *
1743  * 1.  read timespec0,tsc0
1744  * 2.                                   | timespec1 = timespec0 + N
1745  *                                      | tsc1 = tsc0 + M
1746  * 3. transition to guest               | transition to guest
1747  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1748  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1749  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1750  *
1751  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1752  *
1753  *      - ret0 < ret1
1754  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1755  *              ...
1756  *      - 0 < N - M => M < N
1757  *
1758  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1759  * always the case (the difference between two distinct xtime instances
1760  * might be smaller then the difference between corresponding TSC reads,
1761  * when updating guest vcpus pvclock areas).
1762  *
1763  * To avoid that problem, do not allow visibility of distinct
1764  * system_timestamp/tsc_timestamp values simultaneously: use a master
1765  * copy of host monotonic time values. Update that master copy
1766  * in lockstep.
1767  *
1768  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1769  *
1770  */
1771
1772 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1773 {
1774 #ifdef CONFIG_X86_64
1775         struct kvm_arch *ka = &kvm->arch;
1776         int vclock_mode;
1777         bool host_tsc_clocksource, vcpus_matched;
1778
1779         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1780                         atomic_read(&kvm->online_vcpus));
1781
1782         /*
1783          * If the host uses TSC clock, then passthrough TSC as stable
1784          * to the guest.
1785          */
1786         host_tsc_clocksource = kvm_get_time_and_clockread(
1787                                         &ka->master_kernel_ns,
1788                                         &ka->master_cycle_now);
1789
1790         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1791                                 && !ka->backwards_tsc_observed
1792                                 && !ka->boot_vcpu_runs_old_kvmclock;
1793
1794         if (ka->use_master_clock)
1795                 atomic_set(&kvm_guest_has_master_clock, 1);
1796
1797         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1798         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1799                                         vcpus_matched);
1800 #endif
1801 }
1802
1803 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1804 {
1805         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1806 }
1807
1808 static void kvm_gen_update_masterclock(struct kvm *kvm)
1809 {
1810 #ifdef CONFIG_X86_64
1811         int i;
1812         struct kvm_vcpu *vcpu;
1813         struct kvm_arch *ka = &kvm->arch;
1814
1815         spin_lock(&ka->pvclock_gtod_sync_lock);
1816         kvm_make_mclock_inprogress_request(kvm);
1817         /* no guest entries from this point */
1818         pvclock_update_vm_gtod_copy(kvm);
1819
1820         kvm_for_each_vcpu(i, vcpu, kvm)
1821                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1822
1823         /* guest entries allowed */
1824         kvm_for_each_vcpu(i, vcpu, kvm)
1825                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1826
1827         spin_unlock(&ka->pvclock_gtod_sync_lock);
1828 #endif
1829 }
1830
1831 u64 get_kvmclock_ns(struct kvm *kvm)
1832 {
1833         struct kvm_arch *ka = &kvm->arch;
1834         struct pvclock_vcpu_time_info hv_clock;
1835         u64 ret;
1836
1837         spin_lock(&ka->pvclock_gtod_sync_lock);
1838         if (!ka->use_master_clock) {
1839                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1840                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1841         }
1842
1843         hv_clock.tsc_timestamp = ka->master_cycle_now;
1844         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1845         spin_unlock(&ka->pvclock_gtod_sync_lock);
1846
1847         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1848         get_cpu();
1849
1850         if (__this_cpu_read(cpu_tsc_khz)) {
1851                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1852                                    &hv_clock.tsc_shift,
1853                                    &hv_clock.tsc_to_system_mul);
1854                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1855         } else
1856                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1857
1858         put_cpu();
1859
1860         return ret;
1861 }
1862
1863 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1864 {
1865         struct kvm_vcpu_arch *vcpu = &v->arch;
1866         struct pvclock_vcpu_time_info guest_hv_clock;
1867
1868         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1869                 &guest_hv_clock, sizeof(guest_hv_clock))))
1870                 return;
1871
1872         /* This VCPU is paused, but it's legal for a guest to read another
1873          * VCPU's kvmclock, so we really have to follow the specification where
1874          * it says that version is odd if data is being modified, and even after
1875          * it is consistent.
1876          *
1877          * Version field updates must be kept separate.  This is because
1878          * kvm_write_guest_cached might use a "rep movs" instruction, and
1879          * writes within a string instruction are weakly ordered.  So there
1880          * are three writes overall.
1881          *
1882          * As a small optimization, only write the version field in the first
1883          * and third write.  The vcpu->pv_time cache is still valid, because the
1884          * version field is the first in the struct.
1885          */
1886         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1887
1888         if (guest_hv_clock.version & 1)
1889                 ++guest_hv_clock.version;  /* first time write, random junk */
1890
1891         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1892         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1893                                 &vcpu->hv_clock,
1894                                 sizeof(vcpu->hv_clock.version));
1895
1896         smp_wmb();
1897
1898         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1899         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1900
1901         if (vcpu->pvclock_set_guest_stopped_request) {
1902                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1903                 vcpu->pvclock_set_guest_stopped_request = false;
1904         }
1905
1906         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1907
1908         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1909                                 &vcpu->hv_clock,
1910                                 sizeof(vcpu->hv_clock));
1911
1912         smp_wmb();
1913
1914         vcpu->hv_clock.version++;
1915         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1916                                 &vcpu->hv_clock,
1917                                 sizeof(vcpu->hv_clock.version));
1918 }
1919
1920 static int kvm_guest_time_update(struct kvm_vcpu *v)
1921 {
1922         unsigned long flags, tgt_tsc_khz;
1923         struct kvm_vcpu_arch *vcpu = &v->arch;
1924         struct kvm_arch *ka = &v->kvm->arch;
1925         s64 kernel_ns;
1926         u64 tsc_timestamp, host_tsc;
1927         u8 pvclock_flags;
1928         bool use_master_clock;
1929
1930         kernel_ns = 0;
1931         host_tsc = 0;
1932
1933         /*
1934          * If the host uses TSC clock, then passthrough TSC as stable
1935          * to the guest.
1936          */
1937         spin_lock(&ka->pvclock_gtod_sync_lock);
1938         use_master_clock = ka->use_master_clock;
1939         if (use_master_clock) {
1940                 host_tsc = ka->master_cycle_now;
1941                 kernel_ns = ka->master_kernel_ns;
1942         }
1943         spin_unlock(&ka->pvclock_gtod_sync_lock);
1944
1945         /* Keep irq disabled to prevent changes to the clock */
1946         local_irq_save(flags);
1947         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1948         if (unlikely(tgt_tsc_khz == 0)) {
1949                 local_irq_restore(flags);
1950                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1951                 return 1;
1952         }
1953         if (!use_master_clock) {
1954                 host_tsc = rdtsc();
1955                 kernel_ns = ktime_get_boot_ns();
1956         }
1957
1958         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1959
1960         /*
1961          * We may have to catch up the TSC to match elapsed wall clock
1962          * time for two reasons, even if kvmclock is used.
1963          *   1) CPU could have been running below the maximum TSC rate
1964          *   2) Broken TSC compensation resets the base at each VCPU
1965          *      entry to avoid unknown leaps of TSC even when running
1966          *      again on the same CPU.  This may cause apparent elapsed
1967          *      time to disappear, and the guest to stand still or run
1968          *      very slowly.
1969          */
1970         if (vcpu->tsc_catchup) {
1971                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1972                 if (tsc > tsc_timestamp) {
1973                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1974                         tsc_timestamp = tsc;
1975                 }
1976         }
1977
1978         local_irq_restore(flags);
1979
1980         /* With all the info we got, fill in the values */
1981
1982         if (kvm_has_tsc_control)
1983                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1984
1985         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1986                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1987                                    &vcpu->hv_clock.tsc_shift,
1988                                    &vcpu->hv_clock.tsc_to_system_mul);
1989                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1990         }
1991
1992         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1993         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1994         vcpu->last_guest_tsc = tsc_timestamp;
1995
1996         /* If the host uses TSC clocksource, then it is stable */
1997         pvclock_flags = 0;
1998         if (use_master_clock)
1999                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2000
2001         vcpu->hv_clock.flags = pvclock_flags;
2002
2003         if (vcpu->pv_time_enabled)
2004                 kvm_setup_pvclock_page(v);
2005         if (v == kvm_get_vcpu(v->kvm, 0))
2006                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2007         return 0;
2008 }
2009
2010 /*
2011  * kvmclock updates which are isolated to a given vcpu, such as
2012  * vcpu->cpu migration, should not allow system_timestamp from
2013  * the rest of the vcpus to remain static. Otherwise ntp frequency
2014  * correction applies to one vcpu's system_timestamp but not
2015  * the others.
2016  *
2017  * So in those cases, request a kvmclock update for all vcpus.
2018  * We need to rate-limit these requests though, as they can
2019  * considerably slow guests that have a large number of vcpus.
2020  * The time for a remote vcpu to update its kvmclock is bound
2021  * by the delay we use to rate-limit the updates.
2022  */
2023
2024 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2025
2026 static void kvmclock_update_fn(struct work_struct *work)
2027 {
2028         int i;
2029         struct delayed_work *dwork = to_delayed_work(work);
2030         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2031                                            kvmclock_update_work);
2032         struct kvm *kvm = container_of(ka, struct kvm, arch);
2033         struct kvm_vcpu *vcpu;
2034
2035         kvm_for_each_vcpu(i, vcpu, kvm) {
2036                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2037                 kvm_vcpu_kick(vcpu);
2038         }
2039 }
2040
2041 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2042 {
2043         struct kvm *kvm = v->kvm;
2044
2045         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2046         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2047                                         KVMCLOCK_UPDATE_DELAY);
2048 }
2049
2050 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2051
2052 static void kvmclock_sync_fn(struct work_struct *work)
2053 {
2054         struct delayed_work *dwork = to_delayed_work(work);
2055         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2056                                            kvmclock_sync_work);
2057         struct kvm *kvm = container_of(ka, struct kvm, arch);
2058
2059         if (!kvmclock_periodic_sync)
2060                 return;
2061
2062         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2063         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2064                                         KVMCLOCK_SYNC_PERIOD);
2065 }
2066
2067 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2068 {
2069         u64 mcg_cap = vcpu->arch.mcg_cap;
2070         unsigned bank_num = mcg_cap & 0xff;
2071         u32 msr = msr_info->index;
2072         u64 data = msr_info->data;
2073
2074         switch (msr) {
2075         case MSR_IA32_MCG_STATUS:
2076                 vcpu->arch.mcg_status = data;
2077                 break;
2078         case MSR_IA32_MCG_CTL:
2079                 if (!(mcg_cap & MCG_CTL_P))
2080                         return 1;
2081                 if (data != 0 && data != ~(u64)0)
2082                         return -1;
2083                 vcpu->arch.mcg_ctl = data;
2084                 break;
2085         default:
2086                 if (msr >= MSR_IA32_MC0_CTL &&
2087                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2088                         u32 offset = msr - MSR_IA32_MC0_CTL;
2089                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2090                          * some Linux kernels though clear bit 10 in bank 4 to
2091                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2092                          * this to avoid an uncatched #GP in the guest
2093                          */
2094                         if ((offset & 0x3) == 0 &&
2095                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2096                                 return -1;
2097                         if (!msr_info->host_initiated &&
2098                                 (offset & 0x3) == 1 && data != 0)
2099                                 return -1;
2100                         vcpu->arch.mce_banks[offset] = data;
2101                         break;
2102                 }
2103                 return 1;
2104         }
2105         return 0;
2106 }
2107
2108 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2109 {
2110         struct kvm *kvm = vcpu->kvm;
2111         int lm = is_long_mode(vcpu);
2112         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2113                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2114         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2115                 : kvm->arch.xen_hvm_config.blob_size_32;
2116         u32 page_num = data & ~PAGE_MASK;
2117         u64 page_addr = data & PAGE_MASK;
2118         u8 *page;
2119         int r;
2120
2121         r = -E2BIG;
2122         if (page_num >= blob_size)
2123                 goto out;
2124         r = -ENOMEM;
2125         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2126         if (IS_ERR(page)) {
2127                 r = PTR_ERR(page);
2128                 goto out;
2129         }
2130         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2131                 goto out_free;
2132         r = 0;
2133 out_free:
2134         kfree(page);
2135 out:
2136         return r;
2137 }
2138
2139 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2140 {
2141         gpa_t gpa = data & ~0x3f;
2142
2143         /* Bits 3:5 are reserved, Should be zero */
2144         if (data & 0x38)
2145                 return 1;
2146
2147         vcpu->arch.apf.msr_val = data;
2148
2149         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2150                 kvm_clear_async_pf_completion_queue(vcpu);
2151                 kvm_async_pf_hash_reset(vcpu);
2152                 return 0;
2153         }
2154
2155         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2156                                         sizeof(u32)))
2157                 return 1;
2158
2159         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2160         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2161         kvm_async_pf_wakeup_all(vcpu);
2162         return 0;
2163 }
2164
2165 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2166 {
2167         vcpu->arch.pv_time_enabled = false;
2168 }
2169
2170 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2171 {
2172         ++vcpu->stat.tlb_flush;
2173         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2174 }
2175
2176 static void record_steal_time(struct kvm_vcpu *vcpu)
2177 {
2178         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2179                 return;
2180
2181         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2182                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2183                 return;
2184
2185         /*
2186          * Doing a TLB flush here, on the guest's behalf, can avoid
2187          * expensive IPIs.
2188          */
2189         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2190                 kvm_vcpu_flush_tlb(vcpu, false);
2191
2192         if (vcpu->arch.st.steal.version & 1)
2193                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2194
2195         vcpu->arch.st.steal.version += 1;
2196
2197         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2198                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2199
2200         smp_wmb();
2201
2202         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2203                 vcpu->arch.st.last_steal;
2204         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2205
2206         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2207                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2208
2209         smp_wmb();
2210
2211         vcpu->arch.st.steal.version += 1;
2212
2213         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2214                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2215 }
2216
2217 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2218 {
2219         bool pr = false;
2220         u32 msr = msr_info->index;
2221         u64 data = msr_info->data;
2222
2223         switch (msr) {
2224         case MSR_AMD64_NB_CFG:
2225         case MSR_IA32_UCODE_REV:
2226         case MSR_IA32_UCODE_WRITE:
2227         case MSR_VM_HSAVE_PA:
2228         case MSR_AMD64_PATCH_LOADER:
2229         case MSR_AMD64_BU_CFG2:
2230         case MSR_AMD64_DC_CFG:
2231                 break;
2232
2233         case MSR_EFER:
2234                 return set_efer(vcpu, data);
2235         case MSR_K7_HWCR:
2236                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2237                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2238                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2239                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2240                 if (data != 0) {
2241                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2242                                     data);
2243                         return 1;
2244                 }
2245                 break;
2246         case MSR_FAM10H_MMIO_CONF_BASE:
2247                 if (data != 0) {
2248                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2249                                     "0x%llx\n", data);
2250                         return 1;
2251                 }
2252                 break;
2253         case MSR_IA32_DEBUGCTLMSR:
2254                 if (!data) {
2255                         /* We support the non-activated case already */
2256                         break;
2257                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2258                         /* Values other than LBR and BTF are vendor-specific,
2259                            thus reserved and should throw a #GP */
2260                         return 1;
2261                 }
2262                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2263                             __func__, data);
2264                 break;
2265         case 0x200 ... 0x2ff:
2266                 return kvm_mtrr_set_msr(vcpu, msr, data);
2267         case MSR_IA32_APICBASE:
2268                 return kvm_set_apic_base(vcpu, msr_info);
2269         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2270                 return kvm_x2apic_msr_write(vcpu, msr, data);
2271         case MSR_IA32_TSCDEADLINE:
2272                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2273                 break;
2274         case MSR_IA32_TSC_ADJUST:
2275                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2276                         if (!msr_info->host_initiated) {
2277                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2278                                 adjust_tsc_offset_guest(vcpu, adj);
2279                         }
2280                         vcpu->arch.ia32_tsc_adjust_msr = data;
2281                 }
2282                 break;
2283         case MSR_IA32_MISC_ENABLE:
2284                 vcpu->arch.ia32_misc_enable_msr = data;
2285                 break;
2286         case MSR_IA32_SMBASE:
2287                 if (!msr_info->host_initiated)
2288                         return 1;
2289                 vcpu->arch.smbase = data;
2290                 break;
2291         case MSR_SMI_COUNT:
2292                 if (!msr_info->host_initiated)
2293                         return 1;
2294                 vcpu->arch.smi_count = data;
2295                 break;
2296         case MSR_KVM_WALL_CLOCK_NEW:
2297         case MSR_KVM_WALL_CLOCK:
2298                 vcpu->kvm->arch.wall_clock = data;
2299                 kvm_write_wall_clock(vcpu->kvm, data);
2300                 break;
2301         case MSR_KVM_SYSTEM_TIME_NEW:
2302         case MSR_KVM_SYSTEM_TIME: {
2303                 struct kvm_arch *ka = &vcpu->kvm->arch;
2304
2305                 kvmclock_reset(vcpu);
2306
2307                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2308                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2309
2310                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2311                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2312
2313                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2314                 }
2315
2316                 vcpu->arch.time = data;
2317                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2318
2319                 /* we verify if the enable bit is set... */
2320                 if (!(data & 1))
2321                         break;
2322
2323                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2324                      &vcpu->arch.pv_time, data & ~1ULL,
2325                      sizeof(struct pvclock_vcpu_time_info)))
2326                         vcpu->arch.pv_time_enabled = false;
2327                 else
2328                         vcpu->arch.pv_time_enabled = true;
2329
2330                 break;
2331         }
2332         case MSR_KVM_ASYNC_PF_EN:
2333                 if (kvm_pv_enable_async_pf(vcpu, data))
2334                         return 1;
2335                 break;
2336         case MSR_KVM_STEAL_TIME:
2337
2338                 if (unlikely(!sched_info_on()))
2339                         return 1;
2340
2341                 if (data & KVM_STEAL_RESERVED_MASK)
2342                         return 1;
2343
2344                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2345                                                 data & KVM_STEAL_VALID_BITS,
2346                                                 sizeof(struct kvm_steal_time)))
2347                         return 1;
2348
2349                 vcpu->arch.st.msr_val = data;
2350
2351                 if (!(data & KVM_MSR_ENABLED))
2352                         break;
2353
2354                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2355
2356                 break;
2357         case MSR_KVM_PV_EOI_EN:
2358                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2359                         return 1;
2360                 break;
2361
2362         case MSR_IA32_MCG_CTL:
2363         case MSR_IA32_MCG_STATUS:
2364         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2365                 return set_msr_mce(vcpu, msr_info);
2366
2367         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2368         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2369                 pr = true; /* fall through */
2370         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2371         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2372                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2373                         return kvm_pmu_set_msr(vcpu, msr_info);
2374
2375                 if (pr || data != 0)
2376                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2377                                     "0x%x data 0x%llx\n", msr, data);
2378                 break;
2379         case MSR_K7_CLK_CTL:
2380                 /*
2381                  * Ignore all writes to this no longer documented MSR.
2382                  * Writes are only relevant for old K7 processors,
2383                  * all pre-dating SVM, but a recommended workaround from
2384                  * AMD for these chips. It is possible to specify the
2385                  * affected processor models on the command line, hence
2386                  * the need to ignore the workaround.
2387                  */
2388                 break;
2389         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2390         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2391         case HV_X64_MSR_CRASH_CTL:
2392         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2393                 return kvm_hv_set_msr_common(vcpu, msr, data,
2394                                              msr_info->host_initiated);
2395         case MSR_IA32_BBL_CR_CTL3:
2396                 /* Drop writes to this legacy MSR -- see rdmsr
2397                  * counterpart for further detail.
2398                  */
2399                 if (report_ignored_msrs)
2400                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2401                                 msr, data);
2402                 break;
2403         case MSR_AMD64_OSVW_ID_LENGTH:
2404                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2405                         return 1;
2406                 vcpu->arch.osvw.length = data;
2407                 break;
2408         case MSR_AMD64_OSVW_STATUS:
2409                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2410                         return 1;
2411                 vcpu->arch.osvw.status = data;
2412                 break;
2413         case MSR_PLATFORM_INFO:
2414                 if (!msr_info->host_initiated ||
2415                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2416                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2417                      cpuid_fault_enabled(vcpu)))
2418                         return 1;
2419                 vcpu->arch.msr_platform_info = data;
2420                 break;
2421         case MSR_MISC_FEATURES_ENABLES:
2422                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2423                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2424                      !supports_cpuid_fault(vcpu)))
2425                         return 1;
2426                 vcpu->arch.msr_misc_features_enables = data;
2427                 break;
2428         default:
2429                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2430                         return xen_hvm_config(vcpu, data);
2431                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2432                         return kvm_pmu_set_msr(vcpu, msr_info);
2433                 if (!ignore_msrs) {
2434                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2435                                     msr, data);
2436                         return 1;
2437                 } else {
2438                         if (report_ignored_msrs)
2439                                 vcpu_unimpl(vcpu,
2440                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2441                                         msr, data);
2442                         break;
2443                 }
2444         }
2445         return 0;
2446 }
2447 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2448
2449
2450 /*
2451  * Reads an msr value (of 'msr_index') into 'pdata'.
2452  * Returns 0 on success, non-0 otherwise.
2453  * Assumes vcpu_load() was already called.
2454  */
2455 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2456 {
2457         return kvm_x86_ops->get_msr(vcpu, msr);
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_get_msr);
2460
2461 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2462 {
2463         u64 data;
2464         u64 mcg_cap = vcpu->arch.mcg_cap;
2465         unsigned bank_num = mcg_cap & 0xff;
2466
2467         switch (msr) {
2468         case MSR_IA32_P5_MC_ADDR:
2469         case MSR_IA32_P5_MC_TYPE:
2470                 data = 0;
2471                 break;
2472         case MSR_IA32_MCG_CAP:
2473                 data = vcpu->arch.mcg_cap;
2474                 break;
2475         case MSR_IA32_MCG_CTL:
2476                 if (!(mcg_cap & MCG_CTL_P))
2477                         return 1;
2478                 data = vcpu->arch.mcg_ctl;
2479                 break;
2480         case MSR_IA32_MCG_STATUS:
2481                 data = vcpu->arch.mcg_status;
2482                 break;
2483         default:
2484                 if (msr >= MSR_IA32_MC0_CTL &&
2485                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2486                         u32 offset = msr - MSR_IA32_MC0_CTL;
2487                         data = vcpu->arch.mce_banks[offset];
2488                         break;
2489                 }
2490                 return 1;
2491         }
2492         *pdata = data;
2493         return 0;
2494 }
2495
2496 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2497 {
2498         switch (msr_info->index) {
2499         case MSR_IA32_PLATFORM_ID:
2500         case MSR_IA32_EBL_CR_POWERON:
2501         case MSR_IA32_DEBUGCTLMSR:
2502         case MSR_IA32_LASTBRANCHFROMIP:
2503         case MSR_IA32_LASTBRANCHTOIP:
2504         case MSR_IA32_LASTINTFROMIP:
2505         case MSR_IA32_LASTINTTOIP:
2506         case MSR_K8_SYSCFG:
2507         case MSR_K8_TSEG_ADDR:
2508         case MSR_K8_TSEG_MASK:
2509         case MSR_K7_HWCR:
2510         case MSR_VM_HSAVE_PA:
2511         case MSR_K8_INT_PENDING_MSG:
2512         case MSR_AMD64_NB_CFG:
2513         case MSR_FAM10H_MMIO_CONF_BASE:
2514         case MSR_AMD64_BU_CFG2:
2515         case MSR_IA32_PERF_CTL:
2516         case MSR_AMD64_DC_CFG:
2517                 msr_info->data = 0;
2518                 break;
2519         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2520         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2521         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2522         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2523                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2524                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2525                 msr_info->data = 0;
2526                 break;
2527         case MSR_IA32_UCODE_REV:
2528                 msr_info->data = 0x100000000ULL;
2529                 break;
2530         case MSR_MTRRcap:
2531         case 0x200 ... 0x2ff:
2532                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2533         case 0xcd: /* fsb frequency */
2534                 msr_info->data = 3;
2535                 break;
2536                 /*
2537                  * MSR_EBC_FREQUENCY_ID
2538                  * Conservative value valid for even the basic CPU models.
2539                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2540                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2541                  * and 266MHz for model 3, or 4. Set Core Clock
2542                  * Frequency to System Bus Frequency Ratio to 1 (bits
2543                  * 31:24) even though these are only valid for CPU
2544                  * models > 2, however guests may end up dividing or
2545                  * multiplying by zero otherwise.
2546                  */
2547         case MSR_EBC_FREQUENCY_ID:
2548                 msr_info->data = 1 << 24;
2549                 break;
2550         case MSR_IA32_APICBASE:
2551                 msr_info->data = kvm_get_apic_base(vcpu);
2552                 break;
2553         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2554                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2555                 break;
2556         case MSR_IA32_TSCDEADLINE:
2557                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2558                 break;
2559         case MSR_IA32_TSC_ADJUST:
2560                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2561                 break;
2562         case MSR_IA32_MISC_ENABLE:
2563                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2564                 break;
2565         case MSR_IA32_SMBASE:
2566                 if (!msr_info->host_initiated)
2567                         return 1;
2568                 msr_info->data = vcpu->arch.smbase;
2569                 break;
2570         case MSR_SMI_COUNT:
2571                 msr_info->data = vcpu->arch.smi_count;
2572                 break;
2573         case MSR_IA32_PERF_STATUS:
2574                 /* TSC increment by tick */
2575                 msr_info->data = 1000ULL;
2576                 /* CPU multiplier */
2577                 msr_info->data |= (((uint64_t)4ULL) << 40);
2578                 break;
2579         case MSR_EFER:
2580                 msr_info->data = vcpu->arch.efer;
2581                 break;
2582         case MSR_KVM_WALL_CLOCK:
2583         case MSR_KVM_WALL_CLOCK_NEW:
2584                 msr_info->data = vcpu->kvm->arch.wall_clock;
2585                 break;
2586         case MSR_KVM_SYSTEM_TIME:
2587         case MSR_KVM_SYSTEM_TIME_NEW:
2588                 msr_info->data = vcpu->arch.time;
2589                 break;
2590         case MSR_KVM_ASYNC_PF_EN:
2591                 msr_info->data = vcpu->arch.apf.msr_val;
2592                 break;
2593         case MSR_KVM_STEAL_TIME:
2594                 msr_info->data = vcpu->arch.st.msr_val;
2595                 break;
2596         case MSR_KVM_PV_EOI_EN:
2597                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2598                 break;
2599         case MSR_IA32_P5_MC_ADDR:
2600         case MSR_IA32_P5_MC_TYPE:
2601         case MSR_IA32_MCG_CAP:
2602         case MSR_IA32_MCG_CTL:
2603         case MSR_IA32_MCG_STATUS:
2604         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2605                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2606         case MSR_K7_CLK_CTL:
2607                 /*
2608                  * Provide expected ramp-up count for K7. All other
2609                  * are set to zero, indicating minimum divisors for
2610                  * every field.
2611                  *
2612                  * This prevents guest kernels on AMD host with CPU
2613                  * type 6, model 8 and higher from exploding due to
2614                  * the rdmsr failing.
2615                  */
2616                 msr_info->data = 0x20000000;
2617                 break;
2618         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2619         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2620         case HV_X64_MSR_CRASH_CTL:
2621         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2622                 return kvm_hv_get_msr_common(vcpu,
2623                                              msr_info->index, &msr_info->data);
2624                 break;
2625         case MSR_IA32_BBL_CR_CTL3:
2626                 /* This legacy MSR exists but isn't fully documented in current
2627                  * silicon.  It is however accessed by winxp in very narrow
2628                  * scenarios where it sets bit #19, itself documented as
2629                  * a "reserved" bit.  Best effort attempt to source coherent
2630                  * read data here should the balance of the register be
2631                  * interpreted by the guest:
2632                  *
2633                  * L2 cache control register 3: 64GB range, 256KB size,
2634                  * enabled, latency 0x1, configured
2635                  */
2636                 msr_info->data = 0xbe702111;
2637                 break;
2638         case MSR_AMD64_OSVW_ID_LENGTH:
2639                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2640                         return 1;
2641                 msr_info->data = vcpu->arch.osvw.length;
2642                 break;
2643         case MSR_AMD64_OSVW_STATUS:
2644                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2645                         return 1;
2646                 msr_info->data = vcpu->arch.osvw.status;
2647                 break;
2648         case MSR_PLATFORM_INFO:
2649                 msr_info->data = vcpu->arch.msr_platform_info;
2650                 break;
2651         case MSR_MISC_FEATURES_ENABLES:
2652                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2653                 break;
2654         default:
2655                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2656                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2657                 if (!ignore_msrs) {
2658                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2659                                                msr_info->index);
2660                         return 1;
2661                 } else {
2662                         if (report_ignored_msrs)
2663                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2664                                         msr_info->index);
2665                         msr_info->data = 0;
2666                 }
2667                 break;
2668         }
2669         return 0;
2670 }
2671 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2672
2673 /*
2674  * Read or write a bunch of msrs. All parameters are kernel addresses.
2675  *
2676  * @return number of msrs set successfully.
2677  */
2678 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2679                     struct kvm_msr_entry *entries,
2680                     int (*do_msr)(struct kvm_vcpu *vcpu,
2681                                   unsigned index, u64 *data))
2682 {
2683         int i, idx;
2684
2685         idx = srcu_read_lock(&vcpu->kvm->srcu);
2686         for (i = 0; i < msrs->nmsrs; ++i)
2687                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2688                         break;
2689         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2690
2691         return i;
2692 }
2693
2694 /*
2695  * Read or write a bunch of msrs. Parameters are user addresses.
2696  *
2697  * @return number of msrs set successfully.
2698  */
2699 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2700                   int (*do_msr)(struct kvm_vcpu *vcpu,
2701                                 unsigned index, u64 *data),
2702                   int writeback)
2703 {
2704         struct kvm_msrs msrs;
2705         struct kvm_msr_entry *entries;
2706         int r, n;
2707         unsigned size;
2708
2709         r = -EFAULT;
2710         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2711                 goto out;
2712
2713         r = -E2BIG;
2714         if (msrs.nmsrs >= MAX_IO_MSRS)
2715                 goto out;
2716
2717         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2718         entries = memdup_user(user_msrs->entries, size);
2719         if (IS_ERR(entries)) {
2720                 r = PTR_ERR(entries);
2721                 goto out;
2722         }
2723
2724         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2725         if (r < 0)
2726                 goto out_free;
2727
2728         r = -EFAULT;
2729         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2730                 goto out_free;
2731
2732         r = n;
2733
2734 out_free:
2735         kfree(entries);
2736 out:
2737         return r;
2738 }
2739
2740 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2741 {
2742         int r;
2743
2744         switch (ext) {
2745         case KVM_CAP_IRQCHIP:
2746         case KVM_CAP_HLT:
2747         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2748         case KVM_CAP_SET_TSS_ADDR:
2749         case KVM_CAP_EXT_CPUID:
2750         case KVM_CAP_EXT_EMUL_CPUID:
2751         case KVM_CAP_CLOCKSOURCE:
2752         case KVM_CAP_PIT:
2753         case KVM_CAP_NOP_IO_DELAY:
2754         case KVM_CAP_MP_STATE:
2755         case KVM_CAP_SYNC_MMU:
2756         case KVM_CAP_USER_NMI:
2757         case KVM_CAP_REINJECT_CONTROL:
2758         case KVM_CAP_IRQ_INJECT_STATUS:
2759         case KVM_CAP_IOEVENTFD:
2760         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2761         case KVM_CAP_PIT2:
2762         case KVM_CAP_PIT_STATE2:
2763         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2764         case KVM_CAP_XEN_HVM:
2765         case KVM_CAP_VCPU_EVENTS:
2766         case KVM_CAP_HYPERV:
2767         case KVM_CAP_HYPERV_VAPIC:
2768         case KVM_CAP_HYPERV_SPIN:
2769         case KVM_CAP_HYPERV_SYNIC:
2770         case KVM_CAP_HYPERV_SYNIC2:
2771         case KVM_CAP_HYPERV_VP_INDEX:
2772         case KVM_CAP_PCI_SEGMENT:
2773         case KVM_CAP_DEBUGREGS:
2774         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2775         case KVM_CAP_XSAVE:
2776         case KVM_CAP_ASYNC_PF:
2777         case KVM_CAP_GET_TSC_KHZ:
2778         case KVM_CAP_KVMCLOCK_CTRL:
2779         case KVM_CAP_READONLY_MEM:
2780         case KVM_CAP_HYPERV_TIME:
2781         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2782         case KVM_CAP_TSC_DEADLINE_TIMER:
2783         case KVM_CAP_ENABLE_CAP_VM:
2784         case KVM_CAP_DISABLE_QUIRKS:
2785         case KVM_CAP_SET_BOOT_CPU_ID:
2786         case KVM_CAP_SPLIT_IRQCHIP:
2787         case KVM_CAP_IMMEDIATE_EXIT:
2788                 r = 1;
2789                 break;
2790         case KVM_CAP_ADJUST_CLOCK:
2791                 r = KVM_CLOCK_TSC_STABLE;
2792                 break;
2793         case KVM_CAP_X86_GUEST_MWAIT:
2794                 r = kvm_mwait_in_guest();
2795                 break;
2796         case KVM_CAP_X86_SMM:
2797                 /* SMBASE is usually relocated above 1M on modern chipsets,
2798                  * and SMM handlers might indeed rely on 4G segment limits,
2799                  * so do not report SMM to be available if real mode is
2800                  * emulated via vm86 mode.  Still, do not go to great lengths
2801                  * to avoid userspace's usage of the feature, because it is a
2802                  * fringe case that is not enabled except via specific settings
2803                  * of the module parameters.
2804                  */
2805                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2806                 break;
2807         case KVM_CAP_VAPIC:
2808                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2809                 break;
2810         case KVM_CAP_NR_VCPUS:
2811                 r = KVM_SOFT_MAX_VCPUS;
2812                 break;
2813         case KVM_CAP_MAX_VCPUS:
2814                 r = KVM_MAX_VCPUS;
2815                 break;
2816         case KVM_CAP_NR_MEMSLOTS:
2817                 r = KVM_USER_MEM_SLOTS;
2818                 break;
2819         case KVM_CAP_PV_MMU:    /* obsolete */
2820                 r = 0;
2821                 break;
2822         case KVM_CAP_MCE:
2823                 r = KVM_MAX_MCE_BANKS;
2824                 break;
2825         case KVM_CAP_XCRS:
2826                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2827                 break;
2828         case KVM_CAP_TSC_CONTROL:
2829                 r = kvm_has_tsc_control;
2830                 break;
2831         case KVM_CAP_X2APIC_API:
2832                 r = KVM_X2APIC_API_VALID_FLAGS;
2833                 break;
2834         default:
2835                 r = 0;
2836                 break;
2837         }
2838         return r;
2839
2840 }
2841
2842 long kvm_arch_dev_ioctl(struct file *filp,
2843                         unsigned int ioctl, unsigned long arg)
2844 {
2845         void __user *argp = (void __user *)arg;
2846         long r;
2847
2848         switch (ioctl) {
2849         case KVM_GET_MSR_INDEX_LIST: {
2850                 struct kvm_msr_list __user *user_msr_list = argp;
2851                 struct kvm_msr_list msr_list;
2852                 unsigned n;
2853
2854                 r = -EFAULT;
2855                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2856                         goto out;
2857                 n = msr_list.nmsrs;
2858                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2859                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2860                         goto out;
2861                 r = -E2BIG;
2862                 if (n < msr_list.nmsrs)
2863                         goto out;
2864                 r = -EFAULT;
2865                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2866                                  num_msrs_to_save * sizeof(u32)))
2867                         goto out;
2868                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2869                                  &emulated_msrs,
2870                                  num_emulated_msrs * sizeof(u32)))
2871                         goto out;
2872                 r = 0;
2873                 break;
2874         }
2875         case KVM_GET_SUPPORTED_CPUID:
2876         case KVM_GET_EMULATED_CPUID: {
2877                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2878                 struct kvm_cpuid2 cpuid;
2879
2880                 r = -EFAULT;
2881                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2882                         goto out;
2883
2884                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2885                                             ioctl);
2886                 if (r)
2887                         goto out;
2888
2889                 r = -EFAULT;
2890                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2891                         goto out;
2892                 r = 0;
2893                 break;
2894         }
2895         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2896                 r = -EFAULT;
2897                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2898                                  sizeof(kvm_mce_cap_supported)))
2899                         goto out;
2900                 r = 0;
2901                 break;
2902         }
2903         default:
2904                 r = -EINVAL;
2905         }
2906 out:
2907         return r;
2908 }
2909
2910 static void wbinvd_ipi(void *garbage)
2911 {
2912         wbinvd();
2913 }
2914
2915 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2916 {
2917         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2918 }
2919
2920 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2921 {
2922         /* Address WBINVD may be executed by guest */
2923         if (need_emulate_wbinvd(vcpu)) {
2924                 if (kvm_x86_ops->has_wbinvd_exit())
2925                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2926                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2927                         smp_call_function_single(vcpu->cpu,
2928                                         wbinvd_ipi, NULL, 1);
2929         }
2930
2931         kvm_x86_ops->vcpu_load(vcpu, cpu);
2932
2933         /* Apply any externally detected TSC adjustments (due to suspend) */
2934         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2935                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2936                 vcpu->arch.tsc_offset_adjustment = 0;
2937                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2938         }
2939
2940         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
2941                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2942                                 rdtsc() - vcpu->arch.last_host_tsc;
2943                 if (tsc_delta < 0)
2944                         mark_tsc_unstable("KVM discovered backwards TSC");
2945
2946                 if (kvm_check_tsc_unstable()) {
2947                         u64 offset = kvm_compute_tsc_offset(vcpu,
2948                                                 vcpu->arch.last_guest_tsc);
2949                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2950                         vcpu->arch.tsc_catchup = 1;
2951                 }
2952
2953                 if (kvm_lapic_hv_timer_in_use(vcpu))
2954                         kvm_lapic_restart_hv_timer(vcpu);
2955
2956                 /*
2957                  * On a host with synchronized TSC, there is no need to update
2958                  * kvmclock on vcpu->cpu migration
2959                  */
2960                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2961                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2962                 if (vcpu->cpu != cpu)
2963                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2964                 vcpu->cpu = cpu;
2965         }
2966
2967         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2968 }
2969
2970 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2971 {
2972         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2973                 return;
2974
2975         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
2976
2977         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2978                         &vcpu->arch.st.steal.preempted,
2979                         offsetof(struct kvm_steal_time, preempted),
2980                         sizeof(vcpu->arch.st.steal.preempted));
2981 }
2982
2983 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2984 {
2985         int idx;
2986
2987         if (vcpu->preempted)
2988                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2989
2990         /*
2991          * Disable page faults because we're in atomic context here.
2992          * kvm_write_guest_offset_cached() would call might_fault()
2993          * that relies on pagefault_disable() to tell if there's a
2994          * bug. NOTE: the write to guest memory may not go through if
2995          * during postcopy live migration or if there's heavy guest
2996          * paging.
2997          */
2998         pagefault_disable();
2999         /*
3000          * kvm_memslots() will be called by
3001          * kvm_write_guest_offset_cached() so take the srcu lock.
3002          */
3003         idx = srcu_read_lock(&vcpu->kvm->srcu);
3004         kvm_steal_time_set_preempted(vcpu);
3005         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3006         pagefault_enable();
3007         kvm_x86_ops->vcpu_put(vcpu);
3008         vcpu->arch.last_host_tsc = rdtsc();
3009         /*
3010          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3011          * on every vmexit, but if not, we might have a stale dr6 from the
3012          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3013          */
3014         set_debugreg(0, 6);
3015 }
3016
3017 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3018                                     struct kvm_lapic_state *s)
3019 {
3020         if (vcpu->arch.apicv_active)
3021                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3022
3023         return kvm_apic_get_state(vcpu, s);
3024 }
3025
3026 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3027                                     struct kvm_lapic_state *s)
3028 {
3029         int r;
3030
3031         r = kvm_apic_set_state(vcpu, s);
3032         if (r)
3033                 return r;
3034         update_cr8_intercept(vcpu);
3035
3036         return 0;
3037 }
3038
3039 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3040 {
3041         return (!lapic_in_kernel(vcpu) ||
3042                 kvm_apic_accept_pic_intr(vcpu));
3043 }
3044
3045 /*
3046  * if userspace requested an interrupt window, check that the
3047  * interrupt window is open.
3048  *
3049  * No need to exit to userspace if we already have an interrupt queued.
3050  */
3051 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3052 {
3053         return kvm_arch_interrupt_allowed(vcpu) &&
3054                 !kvm_cpu_has_interrupt(vcpu) &&
3055                 !kvm_event_needs_reinjection(vcpu) &&
3056                 kvm_cpu_accept_dm_intr(vcpu);
3057 }
3058
3059 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3060                                     struct kvm_interrupt *irq)
3061 {
3062         if (irq->irq >= KVM_NR_INTERRUPTS)
3063                 return -EINVAL;
3064
3065         if (!irqchip_in_kernel(vcpu->kvm)) {
3066                 kvm_queue_interrupt(vcpu, irq->irq, false);
3067                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3068                 return 0;
3069         }
3070
3071         /*
3072          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3073          * fail for in-kernel 8259.
3074          */
3075         if (pic_in_kernel(vcpu->kvm))
3076                 return -ENXIO;
3077
3078         if (vcpu->arch.pending_external_vector != -1)
3079                 return -EEXIST;
3080
3081         vcpu->arch.pending_external_vector = irq->irq;
3082         kvm_make_request(KVM_REQ_EVENT, vcpu);
3083         return 0;
3084 }
3085
3086 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3087 {
3088         kvm_inject_nmi(vcpu);
3089
3090         return 0;
3091 }
3092
3093 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3094 {
3095         kvm_make_request(KVM_REQ_SMI, vcpu);
3096
3097         return 0;
3098 }
3099
3100 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3101                                            struct kvm_tpr_access_ctl *tac)
3102 {
3103         if (tac->flags)
3104                 return -EINVAL;
3105         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3106         return 0;
3107 }
3108
3109 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3110                                         u64 mcg_cap)
3111 {
3112         int r;
3113         unsigned bank_num = mcg_cap & 0xff, bank;
3114
3115         r = -EINVAL;
3116         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3117                 goto out;
3118         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3119                 goto out;
3120         r = 0;
3121         vcpu->arch.mcg_cap = mcg_cap;
3122         /* Init IA32_MCG_CTL to all 1s */
3123         if (mcg_cap & MCG_CTL_P)
3124                 vcpu->arch.mcg_ctl = ~(u64)0;
3125         /* Init IA32_MCi_CTL to all 1s */
3126         for (bank = 0; bank < bank_num; bank++)
3127                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3128
3129         if (kvm_x86_ops->setup_mce)
3130                 kvm_x86_ops->setup_mce(vcpu);
3131 out:
3132         return r;
3133 }
3134
3135 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3136                                       struct kvm_x86_mce *mce)
3137 {
3138         u64 mcg_cap = vcpu->arch.mcg_cap;
3139         unsigned bank_num = mcg_cap & 0xff;
3140         u64 *banks = vcpu->arch.mce_banks;
3141
3142         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3143                 return -EINVAL;
3144         /*
3145          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3146          * reporting is disabled
3147          */
3148         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3149             vcpu->arch.mcg_ctl != ~(u64)0)
3150                 return 0;
3151         banks += 4 * mce->bank;
3152         /*
3153          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3154          * reporting is disabled for the bank
3155          */
3156         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3157                 return 0;
3158         if (mce->status & MCI_STATUS_UC) {
3159                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3160                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3161                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3162                         return 0;
3163                 }
3164                 if (banks[1] & MCI_STATUS_VAL)
3165                         mce->status |= MCI_STATUS_OVER;
3166                 banks[2] = mce->addr;
3167                 banks[3] = mce->misc;
3168                 vcpu->arch.mcg_status = mce->mcg_status;
3169                 banks[1] = mce->status;
3170                 kvm_queue_exception(vcpu, MC_VECTOR);
3171         } else if (!(banks[1] & MCI_STATUS_VAL)
3172                    || !(banks[1] & MCI_STATUS_UC)) {
3173                 if (banks[1] & MCI_STATUS_VAL)
3174                         mce->status |= MCI_STATUS_OVER;
3175                 banks[2] = mce->addr;
3176                 banks[3] = mce->misc;
3177                 banks[1] = mce->status;
3178         } else
3179                 banks[1] |= MCI_STATUS_OVER;
3180         return 0;
3181 }
3182
3183 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3184                                                struct kvm_vcpu_events *events)
3185 {
3186         process_nmi(vcpu);
3187         /*
3188          * FIXME: pass injected and pending separately.  This is only
3189          * needed for nested virtualization, whose state cannot be
3190          * migrated yet.  For now we can combine them.
3191          */
3192         events->exception.injected =
3193                 (vcpu->arch.exception.pending ||
3194                  vcpu->arch.exception.injected) &&
3195                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3196         events->exception.nr = vcpu->arch.exception.nr;
3197         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3198         events->exception.pad = 0;
3199         events->exception.error_code = vcpu->arch.exception.error_code;
3200
3201         events->interrupt.injected =
3202                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3203         events->interrupt.nr = vcpu->arch.interrupt.nr;
3204         events->interrupt.soft = 0;
3205         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3206
3207         events->nmi.injected = vcpu->arch.nmi_injected;
3208         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3209         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3210         events->nmi.pad = 0;
3211
3212         events->sipi_vector = 0; /* never valid when reporting to user space */
3213
3214         events->smi.smm = is_smm(vcpu);
3215         events->smi.pending = vcpu->arch.smi_pending;
3216         events->smi.smm_inside_nmi =
3217                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3218         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3219
3220         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3221                          | KVM_VCPUEVENT_VALID_SHADOW
3222                          | KVM_VCPUEVENT_VALID_SMM);
3223         memset(&events->reserved, 0, sizeof(events->reserved));
3224 }
3225
3226 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3227
3228 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3229                                               struct kvm_vcpu_events *events)
3230 {
3231         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3232                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3233                               | KVM_VCPUEVENT_VALID_SHADOW
3234                               | KVM_VCPUEVENT_VALID_SMM))
3235                 return -EINVAL;
3236
3237         if (events->exception.injected &&
3238             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3239              is_guest_mode(vcpu)))
3240                 return -EINVAL;
3241
3242         /* INITs are latched while in SMM */
3243         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3244             (events->smi.smm || events->smi.pending) &&
3245             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3246                 return -EINVAL;
3247
3248         process_nmi(vcpu);
3249         vcpu->arch.exception.injected = false;
3250         vcpu->arch.exception.pending = events->exception.injected;
3251         vcpu->arch.exception.nr = events->exception.nr;
3252         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3253         vcpu->arch.exception.error_code = events->exception.error_code;
3254
3255         vcpu->arch.interrupt.pending = events->interrupt.injected;
3256         vcpu->arch.interrupt.nr = events->interrupt.nr;
3257         vcpu->arch.interrupt.soft = events->interrupt.soft;
3258         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3259                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3260                                                   events->interrupt.shadow);
3261
3262         vcpu->arch.nmi_injected = events->nmi.injected;
3263         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3264                 vcpu->arch.nmi_pending = events->nmi.pending;
3265         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3266
3267         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3268             lapic_in_kernel(vcpu))
3269                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3270
3271         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3272                 u32 hflags = vcpu->arch.hflags;
3273                 if (events->smi.smm)
3274                         hflags |= HF_SMM_MASK;
3275                 else
3276                         hflags &= ~HF_SMM_MASK;
3277                 kvm_set_hflags(vcpu, hflags);
3278
3279                 vcpu->arch.smi_pending = events->smi.pending;
3280
3281                 if (events->smi.smm) {
3282                         if (events->smi.smm_inside_nmi)
3283                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3284                         else
3285                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3286                         if (lapic_in_kernel(vcpu)) {
3287                                 if (events->smi.latched_init)
3288                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3289                                 else
3290                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3291                         }
3292                 }
3293         }
3294
3295         kvm_make_request(KVM_REQ_EVENT, vcpu);
3296
3297         return 0;
3298 }
3299
3300 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3301                                              struct kvm_debugregs *dbgregs)
3302 {
3303         unsigned long val;
3304
3305         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3306         kvm_get_dr(vcpu, 6, &val);
3307         dbgregs->dr6 = val;
3308         dbgregs->dr7 = vcpu->arch.dr7;
3309         dbgregs->flags = 0;
3310         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3311 }
3312
3313 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3314                                             struct kvm_debugregs *dbgregs)
3315 {
3316         if (dbgregs->flags)
3317                 return -EINVAL;
3318
3319         if (dbgregs->dr6 & ~0xffffffffull)
3320                 return -EINVAL;
3321         if (dbgregs->dr7 & ~0xffffffffull)
3322                 return -EINVAL;
3323
3324         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3325         kvm_update_dr0123(vcpu);
3326         vcpu->arch.dr6 = dbgregs->dr6;
3327         kvm_update_dr6(vcpu);
3328         vcpu->arch.dr7 = dbgregs->dr7;
3329         kvm_update_dr7(vcpu);
3330
3331         return 0;
3332 }
3333
3334 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3335
3336 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3337 {
3338         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3339         u64 xstate_bv = xsave->header.xfeatures;
3340         u64 valid;
3341
3342         /*
3343          * Copy legacy XSAVE area, to avoid complications with CPUID
3344          * leaves 0 and 1 in the loop below.
3345          */
3346         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3347
3348         /* Set XSTATE_BV */
3349         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3350         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3351
3352         /*
3353          * Copy each region from the possibly compacted offset to the
3354          * non-compacted offset.
3355          */
3356         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3357         while (valid) {
3358                 u64 feature = valid & -valid;
3359                 int index = fls64(feature) - 1;
3360                 void *src = get_xsave_addr(xsave, feature);
3361
3362                 if (src) {
3363                         u32 size, offset, ecx, edx;
3364                         cpuid_count(XSTATE_CPUID, index,
3365                                     &size, &offset, &ecx, &edx);
3366                         if (feature == XFEATURE_MASK_PKRU)
3367                                 memcpy(dest + offset, &vcpu->arch.pkru,
3368                                        sizeof(vcpu->arch.pkru));
3369                         else
3370                                 memcpy(dest + offset, src, size);
3371
3372                 }
3373
3374                 valid -= feature;
3375         }
3376 }
3377
3378 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3379 {
3380         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3381         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3382         u64 valid;
3383
3384         /*
3385          * Copy legacy XSAVE area, to avoid complications with CPUID
3386          * leaves 0 and 1 in the loop below.
3387          */
3388         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3389
3390         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3391         xsave->header.xfeatures = xstate_bv;
3392         if (boot_cpu_has(X86_FEATURE_XSAVES))
3393                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3394
3395         /*
3396          * Copy each region from the non-compacted offset to the
3397          * possibly compacted offset.
3398          */
3399         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3400         while (valid) {
3401                 u64 feature = valid & -valid;
3402                 int index = fls64(feature) - 1;
3403                 void *dest = get_xsave_addr(xsave, feature);
3404
3405                 if (dest) {
3406                         u32 size, offset, ecx, edx;
3407                         cpuid_count(XSTATE_CPUID, index,
3408                                     &size, &offset, &ecx, &edx);
3409                         if (feature == XFEATURE_MASK_PKRU)
3410                                 memcpy(&vcpu->arch.pkru, src + offset,
3411                                        sizeof(vcpu->arch.pkru));
3412                         else
3413                                 memcpy(dest, src + offset, size);
3414                 }
3415
3416                 valid -= feature;
3417         }
3418 }
3419
3420 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3421                                          struct kvm_xsave *guest_xsave)
3422 {
3423         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3424                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3425                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3426         } else {
3427                 memcpy(guest_xsave->region,
3428                         &vcpu->arch.guest_fpu.state.fxsave,
3429                         sizeof(struct fxregs_state));
3430                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3431                         XFEATURE_MASK_FPSSE;
3432         }
3433 }
3434
3435 #define XSAVE_MXCSR_OFFSET 24
3436
3437 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3438                                         struct kvm_xsave *guest_xsave)
3439 {
3440         u64 xstate_bv =
3441                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3442         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3443
3444         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3445                 /*
3446                  * Here we allow setting states that are not present in
3447                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3448                  * with old userspace.
3449                  */
3450                 if (xstate_bv & ~kvm_supported_xcr0() ||
3451                         mxcsr & ~mxcsr_feature_mask)
3452                         return -EINVAL;
3453                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3454         } else {
3455                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3456                         mxcsr & ~mxcsr_feature_mask)
3457                         return -EINVAL;
3458                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3459                         guest_xsave->region, sizeof(struct fxregs_state));
3460         }
3461         return 0;
3462 }
3463
3464 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3465                                         struct kvm_xcrs *guest_xcrs)
3466 {
3467         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3468                 guest_xcrs->nr_xcrs = 0;
3469                 return;
3470         }
3471
3472         guest_xcrs->nr_xcrs = 1;
3473         guest_xcrs->flags = 0;
3474         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3475         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3476 }
3477
3478 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3479                                        struct kvm_xcrs *guest_xcrs)
3480 {
3481         int i, r = 0;
3482
3483         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3484                 return -EINVAL;
3485
3486         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3487                 return -EINVAL;
3488
3489         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3490                 /* Only support XCR0 currently */
3491                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3492                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3493                                 guest_xcrs->xcrs[i].value);
3494                         break;
3495                 }
3496         if (r)
3497                 r = -EINVAL;
3498         return r;
3499 }
3500
3501 /*
3502  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3503  * stopped by the hypervisor.  This function will be called from the host only.
3504  * EINVAL is returned when the host attempts to set the flag for a guest that
3505  * does not support pv clocks.
3506  */
3507 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3508 {
3509         if (!vcpu->arch.pv_time_enabled)
3510                 return -EINVAL;
3511         vcpu->arch.pvclock_set_guest_stopped_request = true;
3512         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3513         return 0;
3514 }
3515
3516 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3517                                      struct kvm_enable_cap *cap)
3518 {
3519         if (cap->flags)
3520                 return -EINVAL;
3521
3522         switch (cap->cap) {
3523         case KVM_CAP_HYPERV_SYNIC2:
3524                 if (cap->args[0])
3525                         return -EINVAL;
3526         case KVM_CAP_HYPERV_SYNIC:
3527                 if (!irqchip_in_kernel(vcpu->kvm))
3528                         return -EINVAL;
3529                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3530                                              KVM_CAP_HYPERV_SYNIC2);
3531         default:
3532                 return -EINVAL;
3533         }
3534 }
3535
3536 long kvm_arch_vcpu_ioctl(struct file *filp,
3537                          unsigned int ioctl, unsigned long arg)
3538 {
3539         struct kvm_vcpu *vcpu = filp->private_data;
3540         void __user *argp = (void __user *)arg;
3541         int r;
3542         union {
3543                 struct kvm_lapic_state *lapic;
3544                 struct kvm_xsave *xsave;
3545                 struct kvm_xcrs *xcrs;
3546                 void *buffer;
3547         } u;
3548
3549         vcpu_load(vcpu);
3550
3551         u.buffer = NULL;
3552         switch (ioctl) {
3553         case KVM_GET_LAPIC: {
3554                 r = -EINVAL;
3555                 if (!lapic_in_kernel(vcpu))
3556                         goto out;
3557                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3558
3559                 r = -ENOMEM;
3560                 if (!u.lapic)
3561                         goto out;
3562                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3563                 if (r)
3564                         goto out;
3565                 r = -EFAULT;
3566                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3567                         goto out;
3568                 r = 0;
3569                 break;
3570         }
3571         case KVM_SET_LAPIC: {
3572                 r = -EINVAL;
3573                 if (!lapic_in_kernel(vcpu))
3574                         goto out;
3575                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3576                 if (IS_ERR(u.lapic)) {
3577                         r = PTR_ERR(u.lapic);
3578                         goto out_nofree;
3579                 }
3580
3581                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3582                 break;
3583         }
3584         case KVM_INTERRUPT: {
3585                 struct kvm_interrupt irq;
3586
3587                 r = -EFAULT;
3588                 if (copy_from_user(&irq, argp, sizeof irq))
3589                         goto out;
3590                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3591                 break;
3592         }
3593         case KVM_NMI: {
3594                 r = kvm_vcpu_ioctl_nmi(vcpu);
3595                 break;
3596         }
3597         case KVM_SMI: {
3598                 r = kvm_vcpu_ioctl_smi(vcpu);
3599                 break;
3600         }
3601         case KVM_SET_CPUID: {
3602                 struct kvm_cpuid __user *cpuid_arg = argp;
3603                 struct kvm_cpuid cpuid;
3604
3605                 r = -EFAULT;
3606                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3607                         goto out;
3608                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3609                 break;
3610         }
3611         case KVM_SET_CPUID2: {
3612                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3613                 struct kvm_cpuid2 cpuid;
3614
3615                 r = -EFAULT;
3616                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3617                         goto out;
3618                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3619                                               cpuid_arg->entries);
3620                 break;
3621         }
3622         case KVM_GET_CPUID2: {
3623                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3624                 struct kvm_cpuid2 cpuid;
3625
3626                 r = -EFAULT;
3627                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3628                         goto out;
3629                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3630                                               cpuid_arg->entries);
3631                 if (r)
3632                         goto out;
3633                 r = -EFAULT;
3634                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3635                         goto out;
3636                 r = 0;
3637                 break;
3638         }
3639         case KVM_GET_MSRS:
3640                 r = msr_io(vcpu, argp, do_get_msr, 1);
3641                 break;
3642         case KVM_SET_MSRS:
3643                 r = msr_io(vcpu, argp, do_set_msr, 0);
3644                 break;
3645         case KVM_TPR_ACCESS_REPORTING: {
3646                 struct kvm_tpr_access_ctl tac;
3647
3648                 r = -EFAULT;
3649                 if (copy_from_user(&tac, argp, sizeof tac))
3650                         goto out;
3651                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3652                 if (r)
3653                         goto out;
3654                 r = -EFAULT;
3655                 if (copy_to_user(argp, &tac, sizeof tac))
3656                         goto out;
3657                 r = 0;
3658                 break;
3659         };
3660         case KVM_SET_VAPIC_ADDR: {
3661                 struct kvm_vapic_addr va;
3662                 int idx;
3663
3664                 r = -EINVAL;
3665                 if (!lapic_in_kernel(vcpu))
3666                         goto out;
3667                 r = -EFAULT;
3668                 if (copy_from_user(&va, argp, sizeof va))
3669                         goto out;
3670                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3671                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3672                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3673                 break;
3674         }
3675         case KVM_X86_SETUP_MCE: {
3676                 u64 mcg_cap;
3677
3678                 r = -EFAULT;
3679                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3680                         goto out;
3681                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3682                 break;
3683         }
3684         case KVM_X86_SET_MCE: {
3685                 struct kvm_x86_mce mce;
3686
3687                 r = -EFAULT;
3688                 if (copy_from_user(&mce, argp, sizeof mce))
3689                         goto out;
3690                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3691                 break;
3692         }
3693         case KVM_GET_VCPU_EVENTS: {
3694                 struct kvm_vcpu_events events;
3695
3696                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3697
3698                 r = -EFAULT;
3699                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3700                         break;
3701                 r = 0;
3702                 break;
3703         }
3704         case KVM_SET_VCPU_EVENTS: {
3705                 struct kvm_vcpu_events events;
3706
3707                 r = -EFAULT;
3708                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3709                         break;
3710
3711                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3712                 break;
3713         }
3714         case KVM_GET_DEBUGREGS: {
3715                 struct kvm_debugregs dbgregs;
3716
3717                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3718
3719                 r = -EFAULT;
3720                 if (copy_to_user(argp, &dbgregs,
3721                                  sizeof(struct kvm_debugregs)))
3722                         break;
3723                 r = 0;
3724                 break;
3725         }
3726         case KVM_SET_DEBUGREGS: {
3727                 struct kvm_debugregs dbgregs;
3728
3729                 r = -EFAULT;
3730                 if (copy_from_user(&dbgregs, argp,
3731                                    sizeof(struct kvm_debugregs)))
3732                         break;
3733
3734                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3735                 break;
3736         }
3737         case KVM_GET_XSAVE: {
3738                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3739                 r = -ENOMEM;
3740                 if (!u.xsave)
3741                         break;
3742
3743                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3744
3745                 r = -EFAULT;
3746                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3747                         break;
3748                 r = 0;
3749                 break;
3750         }
3751         case KVM_SET_XSAVE: {
3752                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3753                 if (IS_ERR(u.xsave)) {
3754                         r = PTR_ERR(u.xsave);
3755                         goto out_nofree;
3756                 }
3757
3758                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3759                 break;
3760         }
3761         case KVM_GET_XCRS: {
3762                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3763                 r = -ENOMEM;
3764                 if (!u.xcrs)
3765                         break;
3766
3767                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3768
3769                 r = -EFAULT;
3770                 if (copy_to_user(argp, u.xcrs,
3771                                  sizeof(struct kvm_xcrs)))
3772                         break;
3773                 r = 0;
3774                 break;
3775         }
3776         case KVM_SET_XCRS: {
3777                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3778                 if (IS_ERR(u.xcrs)) {
3779                         r = PTR_ERR(u.xcrs);
3780                         goto out_nofree;
3781                 }
3782
3783                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3784                 break;
3785         }
3786         case KVM_SET_TSC_KHZ: {
3787                 u32 user_tsc_khz;
3788
3789                 r = -EINVAL;
3790                 user_tsc_khz = (u32)arg;
3791
3792                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3793                         goto out;
3794
3795                 if (user_tsc_khz == 0)
3796                         user_tsc_khz = tsc_khz;
3797
3798                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3799                         r = 0;
3800
3801                 goto out;
3802         }
3803         case KVM_GET_TSC_KHZ: {
3804                 r = vcpu->arch.virtual_tsc_khz;
3805                 goto out;
3806         }
3807         case KVM_KVMCLOCK_CTRL: {
3808                 r = kvm_set_guest_paused(vcpu);
3809                 goto out;
3810         }
3811         case KVM_ENABLE_CAP: {
3812                 struct kvm_enable_cap cap;
3813
3814                 r = -EFAULT;
3815                 if (copy_from_user(&cap, argp, sizeof(cap)))
3816                         goto out;
3817                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3818                 break;
3819         }
3820         default:
3821                 r = -EINVAL;
3822         }
3823 out:
3824         kfree(u.buffer);
3825 out_nofree:
3826         vcpu_put(vcpu);
3827         return r;
3828 }
3829
3830 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3831 {
3832         return VM_FAULT_SIGBUS;
3833 }
3834
3835 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3836 {
3837         int ret;
3838
3839         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3840                 return -EINVAL;
3841         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3842         return ret;
3843 }
3844
3845 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3846                                               u64 ident_addr)
3847 {
3848         kvm->arch.ept_identity_map_addr = ident_addr;
3849         return 0;
3850 }
3851
3852 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3853                                           u32 kvm_nr_mmu_pages)
3854 {
3855         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3856                 return -EINVAL;
3857
3858         mutex_lock(&kvm->slots_lock);
3859
3860         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3861         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3862
3863         mutex_unlock(&kvm->slots_lock);
3864         return 0;
3865 }
3866
3867 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3868 {
3869         return kvm->arch.n_max_mmu_pages;
3870 }
3871
3872 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3873 {
3874         struct kvm_pic *pic = kvm->arch.vpic;
3875         int r;
3876
3877         r = 0;
3878         switch (chip->chip_id) {
3879         case KVM_IRQCHIP_PIC_MASTER:
3880                 memcpy(&chip->chip.pic, &pic->pics[0],
3881                         sizeof(struct kvm_pic_state));
3882                 break;
3883         case KVM_IRQCHIP_PIC_SLAVE:
3884                 memcpy(&chip->chip.pic, &pic->pics[1],
3885                         sizeof(struct kvm_pic_state));
3886                 break;
3887         case KVM_IRQCHIP_IOAPIC:
3888                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3889                 break;
3890         default:
3891                 r = -EINVAL;
3892                 break;
3893         }
3894         return r;
3895 }
3896
3897 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3898 {
3899         struct kvm_pic *pic = kvm->arch.vpic;
3900         int r;
3901
3902         r = 0;
3903         switch (chip->chip_id) {
3904         case KVM_IRQCHIP_PIC_MASTER:
3905                 spin_lock(&pic->lock);
3906                 memcpy(&pic->pics[0], &chip->chip.pic,
3907                         sizeof(struct kvm_pic_state));
3908                 spin_unlock(&pic->lock);
3909                 break;
3910         case KVM_IRQCHIP_PIC_SLAVE:
3911                 spin_lock(&pic->lock);
3912                 memcpy(&pic->pics[1], &chip->chip.pic,
3913                         sizeof(struct kvm_pic_state));
3914                 spin_unlock(&pic->lock);
3915                 break;
3916         case KVM_IRQCHIP_IOAPIC:
3917                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3918                 break;
3919         default:
3920                 r = -EINVAL;
3921                 break;
3922         }
3923         kvm_pic_update_irq(pic);
3924         return r;
3925 }
3926
3927 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3928 {
3929         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3930
3931         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3932
3933         mutex_lock(&kps->lock);
3934         memcpy(ps, &kps->channels, sizeof(*ps));
3935         mutex_unlock(&kps->lock);
3936         return 0;
3937 }
3938
3939 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3940 {
3941         int i;
3942         struct kvm_pit *pit = kvm->arch.vpit;
3943
3944         mutex_lock(&pit->pit_state.lock);
3945         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3946         for (i = 0; i < 3; i++)
3947                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3948         mutex_unlock(&pit->pit_state.lock);
3949         return 0;
3950 }
3951
3952 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3953 {
3954         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3955         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3956                 sizeof(ps->channels));
3957         ps->flags = kvm->arch.vpit->pit_state.flags;
3958         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3959         memset(&ps->reserved, 0, sizeof(ps->reserved));
3960         return 0;
3961 }
3962
3963 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3964 {
3965         int start = 0;
3966         int i;
3967         u32 prev_legacy, cur_legacy;
3968         struct kvm_pit *pit = kvm->arch.vpit;
3969
3970         mutex_lock(&pit->pit_state.lock);
3971         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3972         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3973         if (!prev_legacy && cur_legacy)
3974                 start = 1;
3975         memcpy(&pit->pit_state.channels, &ps->channels,
3976                sizeof(pit->pit_state.channels));
3977         pit->pit_state.flags = ps->flags;
3978         for (i = 0; i < 3; i++)
3979                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3980                                    start && i == 0);
3981         mutex_unlock(&pit->pit_state.lock);
3982         return 0;
3983 }
3984
3985 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3986                                  struct kvm_reinject_control *control)
3987 {
3988         struct kvm_pit *pit = kvm->arch.vpit;
3989
3990         if (!pit)
3991                 return -ENXIO;
3992
3993         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3994          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3995          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3996          */
3997         mutex_lock(&pit->pit_state.lock);
3998         kvm_pit_set_reinject(pit, control->pit_reinject);
3999         mutex_unlock(&pit->pit_state.lock);
4000
4001         return 0;
4002 }
4003
4004 /**
4005  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4006  * @kvm: kvm instance
4007  * @log: slot id and address to which we copy the log
4008  *
4009  * Steps 1-4 below provide general overview of dirty page logging. See
4010  * kvm_get_dirty_log_protect() function description for additional details.
4011  *
4012  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4013  * always flush the TLB (step 4) even if previous step failed  and the dirty
4014  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4015  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4016  * writes will be marked dirty for next log read.
4017  *
4018  *   1. Take a snapshot of the bit and clear it if needed.
4019  *   2. Write protect the corresponding page.
4020  *   3. Copy the snapshot to the userspace.
4021  *   4. Flush TLB's if needed.
4022  */
4023 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4024 {
4025         bool is_dirty = false;
4026         int r;
4027
4028         mutex_lock(&kvm->slots_lock);
4029
4030         /*
4031          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4032          */
4033         if (kvm_x86_ops->flush_log_dirty)
4034                 kvm_x86_ops->flush_log_dirty(kvm);
4035
4036         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
4037
4038         /*
4039          * All the TLBs can be flushed out of mmu lock, see the comments in
4040          * kvm_mmu_slot_remove_write_access().
4041          */
4042         lockdep_assert_held(&kvm->slots_lock);
4043         if (is_dirty)
4044                 kvm_flush_remote_tlbs(kvm);
4045
4046         mutex_unlock(&kvm->slots_lock);
4047         return r;
4048 }
4049
4050 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4051                         bool line_status)
4052 {
4053         if (!irqchip_in_kernel(kvm))
4054                 return -ENXIO;
4055
4056         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4057                                         irq_event->irq, irq_event->level,
4058                                         line_status);
4059         return 0;
4060 }
4061
4062 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4063                                    struct kvm_enable_cap *cap)
4064 {
4065         int r;
4066
4067         if (cap->flags)
4068                 return -EINVAL;
4069
4070         switch (cap->cap) {
4071         case KVM_CAP_DISABLE_QUIRKS:
4072                 kvm->arch.disabled_quirks = cap->args[0];
4073                 r = 0;
4074                 break;
4075         case KVM_CAP_SPLIT_IRQCHIP: {
4076                 mutex_lock(&kvm->lock);
4077                 r = -EINVAL;
4078                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4079                         goto split_irqchip_unlock;
4080                 r = -EEXIST;
4081                 if (irqchip_in_kernel(kvm))
4082                         goto split_irqchip_unlock;
4083                 if (kvm->created_vcpus)
4084                         goto split_irqchip_unlock;
4085                 r = kvm_setup_empty_irq_routing(kvm);
4086                 if (r)
4087                         goto split_irqchip_unlock;
4088                 /* Pairs with irqchip_in_kernel. */
4089                 smp_wmb();
4090                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4091                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4092                 r = 0;
4093 split_irqchip_unlock:
4094                 mutex_unlock(&kvm->lock);
4095                 break;
4096         }
4097         case KVM_CAP_X2APIC_API:
4098                 r = -EINVAL;
4099                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4100                         break;
4101
4102                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4103                         kvm->arch.x2apic_format = true;
4104                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4105                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4106
4107                 r = 0;
4108                 break;
4109         default:
4110                 r = -EINVAL;
4111                 break;
4112         }
4113         return r;
4114 }
4115
4116 long kvm_arch_vm_ioctl(struct file *filp,
4117                        unsigned int ioctl, unsigned long arg)
4118 {
4119         struct kvm *kvm = filp->private_data;
4120         void __user *argp = (void __user *)arg;
4121         int r = -ENOTTY;
4122         /*
4123          * This union makes it completely explicit to gcc-3.x
4124          * that these two variables' stack usage should be
4125          * combined, not added together.
4126          */
4127         union {
4128                 struct kvm_pit_state ps;
4129                 struct kvm_pit_state2 ps2;
4130                 struct kvm_pit_config pit_config;
4131         } u;
4132
4133         switch (ioctl) {
4134         case KVM_SET_TSS_ADDR:
4135                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4136                 break;
4137         case KVM_SET_IDENTITY_MAP_ADDR: {
4138                 u64 ident_addr;
4139
4140                 mutex_lock(&kvm->lock);
4141                 r = -EINVAL;
4142                 if (kvm->created_vcpus)
4143                         goto set_identity_unlock;
4144                 r = -EFAULT;
4145                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4146                         goto set_identity_unlock;
4147                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4148 set_identity_unlock:
4149                 mutex_unlock(&kvm->lock);
4150                 break;
4151         }
4152         case KVM_SET_NR_MMU_PAGES:
4153                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4154                 break;
4155         case KVM_GET_NR_MMU_PAGES:
4156                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4157                 break;
4158         case KVM_CREATE_IRQCHIP: {
4159                 mutex_lock(&kvm->lock);
4160
4161                 r = -EEXIST;
4162                 if (irqchip_in_kernel(kvm))
4163                         goto create_irqchip_unlock;
4164
4165                 r = -EINVAL;
4166                 if (kvm->created_vcpus)
4167                         goto create_irqchip_unlock;
4168
4169                 r = kvm_pic_init(kvm);
4170                 if (r)
4171                         goto create_irqchip_unlock;
4172
4173                 r = kvm_ioapic_init(kvm);
4174                 if (r) {
4175                         kvm_pic_destroy(kvm);
4176                         goto create_irqchip_unlock;
4177                 }
4178
4179                 r = kvm_setup_default_irq_routing(kvm);
4180                 if (r) {
4181                         kvm_ioapic_destroy(kvm);
4182                         kvm_pic_destroy(kvm);
4183                         goto create_irqchip_unlock;
4184                 }
4185                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4186                 smp_wmb();
4187                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4188         create_irqchip_unlock:
4189                 mutex_unlock(&kvm->lock);
4190                 break;
4191         }
4192         case KVM_CREATE_PIT:
4193                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4194                 goto create_pit;
4195         case KVM_CREATE_PIT2:
4196                 r = -EFAULT;
4197                 if (copy_from_user(&u.pit_config, argp,
4198                                    sizeof(struct kvm_pit_config)))
4199                         goto out;
4200         create_pit:
4201                 mutex_lock(&kvm->lock);
4202                 r = -EEXIST;
4203                 if (kvm->arch.vpit)
4204                         goto create_pit_unlock;
4205                 r = -ENOMEM;
4206                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4207                 if (kvm->arch.vpit)
4208                         r = 0;
4209         create_pit_unlock:
4210                 mutex_unlock(&kvm->lock);
4211                 break;
4212         case KVM_GET_IRQCHIP: {
4213                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4214                 struct kvm_irqchip *chip;
4215
4216                 chip = memdup_user(argp, sizeof(*chip));
4217                 if (IS_ERR(chip)) {
4218                         r = PTR_ERR(chip);
4219                         goto out;
4220                 }
4221
4222                 r = -ENXIO;
4223                 if (!irqchip_kernel(kvm))
4224                         goto get_irqchip_out;
4225                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4226                 if (r)
4227                         goto get_irqchip_out;
4228                 r = -EFAULT;
4229                 if (copy_to_user(argp, chip, sizeof *chip))
4230                         goto get_irqchip_out;
4231                 r = 0;
4232         get_irqchip_out:
4233                 kfree(chip);
4234                 break;
4235         }
4236         case KVM_SET_IRQCHIP: {
4237                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4238                 struct kvm_irqchip *chip;
4239
4240                 chip = memdup_user(argp, sizeof(*chip));
4241                 if (IS_ERR(chip)) {
4242                         r = PTR_ERR(chip);
4243                         goto out;
4244                 }
4245
4246                 r = -ENXIO;
4247                 if (!irqchip_kernel(kvm))
4248                         goto set_irqchip_out;
4249                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4250                 if (r)
4251                         goto set_irqchip_out;
4252                 r = 0;
4253         set_irqchip_out:
4254                 kfree(chip);
4255                 break;
4256         }
4257         case KVM_GET_PIT: {
4258                 r = -EFAULT;
4259                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4260                         goto out;
4261                 r = -ENXIO;
4262                 if (!kvm->arch.vpit)
4263                         goto out;
4264                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4265                 if (r)
4266                         goto out;
4267                 r = -EFAULT;
4268                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4269                         goto out;
4270                 r = 0;
4271                 break;
4272         }
4273         case KVM_SET_PIT: {
4274                 r = -EFAULT;
4275                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4276                         goto out;
4277                 r = -ENXIO;
4278                 if (!kvm->arch.vpit)
4279                         goto out;
4280                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4281                 break;
4282         }
4283         case KVM_GET_PIT2: {
4284                 r = -ENXIO;
4285                 if (!kvm->arch.vpit)
4286                         goto out;
4287                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4288                 if (r)
4289                         goto out;
4290                 r = -EFAULT;
4291                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4292                         goto out;
4293                 r = 0;
4294                 break;
4295         }
4296         case KVM_SET_PIT2: {
4297                 r = -EFAULT;
4298                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4299                         goto out;
4300                 r = -ENXIO;
4301                 if (!kvm->arch.vpit)
4302                         goto out;
4303                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4304                 break;
4305         }
4306         case KVM_REINJECT_CONTROL: {
4307                 struct kvm_reinject_control control;
4308                 r =  -EFAULT;
4309                 if (copy_from_user(&control, argp, sizeof(control)))
4310                         goto out;
4311                 r = kvm_vm_ioctl_reinject(kvm, &control);
4312                 break;
4313         }
4314         case KVM_SET_BOOT_CPU_ID:
4315                 r = 0;
4316                 mutex_lock(&kvm->lock);
4317                 if (kvm->created_vcpus)
4318                         r = -EBUSY;
4319                 else
4320                         kvm->arch.bsp_vcpu_id = arg;
4321                 mutex_unlock(&kvm->lock);
4322                 break;
4323         case KVM_XEN_HVM_CONFIG: {
4324                 struct kvm_xen_hvm_config xhc;
4325                 r = -EFAULT;
4326                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4327                         goto out;
4328                 r = -EINVAL;
4329                 if (xhc.flags)
4330                         goto out;
4331                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4332                 r = 0;
4333                 break;
4334         }
4335         case KVM_SET_CLOCK: {
4336                 struct kvm_clock_data user_ns;
4337                 u64 now_ns;
4338
4339                 r = -EFAULT;
4340                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4341                         goto out;
4342
4343                 r = -EINVAL;
4344                 if (user_ns.flags)
4345                         goto out;
4346
4347                 r = 0;
4348                 /*
4349                  * TODO: userspace has to take care of races with VCPU_RUN, so
4350                  * kvm_gen_update_masterclock() can be cut down to locked
4351                  * pvclock_update_vm_gtod_copy().
4352                  */
4353                 kvm_gen_update_masterclock(kvm);
4354                 now_ns = get_kvmclock_ns(kvm);
4355                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4356                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4357                 break;
4358         }
4359         case KVM_GET_CLOCK: {
4360                 struct kvm_clock_data user_ns;
4361                 u64 now_ns;
4362
4363                 now_ns = get_kvmclock_ns(kvm);
4364                 user_ns.clock = now_ns;
4365                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4366                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4367
4368                 r = -EFAULT;
4369                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4370                         goto out;
4371                 r = 0;
4372                 break;
4373         }
4374         case KVM_ENABLE_CAP: {
4375                 struct kvm_enable_cap cap;
4376
4377                 r = -EFAULT;
4378                 if (copy_from_user(&cap, argp, sizeof(cap)))
4379                         goto out;
4380                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4381                 break;
4382         }
4383         case KVM_MEMORY_ENCRYPT_OP: {
4384                 r = -ENOTTY;
4385                 if (kvm_x86_ops->mem_enc_op)
4386                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4387                 break;
4388         }
4389         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4390                 struct kvm_enc_region region;
4391
4392                 r = -EFAULT;
4393                 if (copy_from_user(&region, argp, sizeof(region)))
4394                         goto out;
4395
4396                 r = -ENOTTY;
4397                 if (kvm_x86_ops->mem_enc_reg_region)
4398                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4399                 break;
4400         }
4401         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4402                 struct kvm_enc_region region;
4403
4404                 r = -EFAULT;
4405                 if (copy_from_user(&region, argp, sizeof(region)))
4406                         goto out;
4407
4408                 r = -ENOTTY;
4409                 if (kvm_x86_ops->mem_enc_unreg_region)
4410                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4411                 break;
4412         }
4413         default:
4414                 r = -ENOTTY;
4415         }
4416 out:
4417         return r;
4418 }
4419
4420 static void kvm_init_msr_list(void)
4421 {
4422         u32 dummy[2];
4423         unsigned i, j;
4424
4425         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4426                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4427                         continue;
4428
4429                 /*
4430                  * Even MSRs that are valid in the host may not be exposed
4431                  * to the guests in some cases.
4432                  */
4433                 switch (msrs_to_save[i]) {
4434                 case MSR_IA32_BNDCFGS:
4435                         if (!kvm_x86_ops->mpx_supported())
4436                                 continue;
4437                         break;
4438                 case MSR_TSC_AUX:
4439                         if (!kvm_x86_ops->rdtscp_supported())
4440                                 continue;
4441                         break;
4442                 default:
4443                         break;
4444                 }
4445
4446                 if (j < i)
4447                         msrs_to_save[j] = msrs_to_save[i];
4448                 j++;
4449         }
4450         num_msrs_to_save = j;
4451
4452         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4453                 switch (emulated_msrs[i]) {
4454                 case MSR_IA32_SMBASE:
4455                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4456                                 continue;
4457                         break;
4458                 default:
4459                         break;
4460                 }
4461
4462                 if (j < i)
4463                         emulated_msrs[j] = emulated_msrs[i];
4464                 j++;
4465         }
4466         num_emulated_msrs = j;
4467 }
4468
4469 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4470                            const void *v)
4471 {
4472         int handled = 0;
4473         int n;
4474
4475         do {
4476                 n = min(len, 8);
4477                 if (!(lapic_in_kernel(vcpu) &&
4478                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4479                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4480                         break;
4481                 handled += n;
4482                 addr += n;
4483                 len -= n;
4484                 v += n;
4485         } while (len);
4486
4487         return handled;
4488 }
4489
4490 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4491 {
4492         int handled = 0;
4493         int n;
4494
4495         do {
4496                 n = min(len, 8);
4497                 if (!(lapic_in_kernel(vcpu) &&
4498                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4499                                          addr, n, v))
4500                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4501                         break;
4502                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4503                 handled += n;
4504                 addr += n;
4505                 len -= n;
4506                 v += n;
4507         } while (len);
4508
4509         return handled;
4510 }
4511
4512 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4513                         struct kvm_segment *var, int seg)
4514 {
4515         kvm_x86_ops->set_segment(vcpu, var, seg);
4516 }
4517
4518 void kvm_get_segment(struct kvm_vcpu *vcpu,
4519                      struct kvm_segment *var, int seg)
4520 {
4521         kvm_x86_ops->get_segment(vcpu, var, seg);
4522 }
4523
4524 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4525                            struct x86_exception *exception)
4526 {
4527         gpa_t t_gpa;
4528
4529         BUG_ON(!mmu_is_nested(vcpu));
4530
4531         /* NPT walks are always user-walks */
4532         access |= PFERR_USER_MASK;
4533         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4534
4535         return t_gpa;
4536 }
4537
4538 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4539                               struct x86_exception *exception)
4540 {
4541         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4542         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4543 }
4544
4545  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4546                                 struct x86_exception *exception)
4547 {
4548         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4549         access |= PFERR_FETCH_MASK;
4550         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4551 }
4552
4553 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4554                                struct x86_exception *exception)
4555 {
4556         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4557         access |= PFERR_WRITE_MASK;
4558         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4559 }
4560
4561 /* uses this to access any guest's mapped memory without checking CPL */
4562 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4563                                 struct x86_exception *exception)
4564 {
4565         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4566 }
4567
4568 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4569                                       struct kvm_vcpu *vcpu, u32 access,
4570                                       struct x86_exception *exception)
4571 {
4572         void *data = val;
4573         int r = X86EMUL_CONTINUE;
4574
4575         while (bytes) {
4576                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4577                                                             exception);
4578                 unsigned offset = addr & (PAGE_SIZE-1);
4579                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4580                 int ret;
4581
4582                 if (gpa == UNMAPPED_GVA)
4583                         return X86EMUL_PROPAGATE_FAULT;
4584                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4585                                                offset, toread);
4586                 if (ret < 0) {
4587                         r = X86EMUL_IO_NEEDED;
4588                         goto out;
4589                 }
4590
4591                 bytes -= toread;
4592                 data += toread;
4593                 addr += toread;
4594         }
4595 out:
4596         return r;
4597 }
4598
4599 /* used for instruction fetching */
4600 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4601                                 gva_t addr, void *val, unsigned int bytes,
4602                                 struct x86_exception *exception)
4603 {
4604         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4605         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4606         unsigned offset;
4607         int ret;
4608
4609         /* Inline kvm_read_guest_virt_helper for speed.  */
4610         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4611                                                     exception);
4612         if (unlikely(gpa == UNMAPPED_GVA))
4613                 return X86EMUL_PROPAGATE_FAULT;
4614
4615         offset = addr & (PAGE_SIZE-1);
4616         if (WARN_ON(offset + bytes > PAGE_SIZE))
4617                 bytes = (unsigned)PAGE_SIZE - offset;
4618         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4619                                        offset, bytes);
4620         if (unlikely(ret < 0))
4621                 return X86EMUL_IO_NEEDED;
4622
4623         return X86EMUL_CONTINUE;
4624 }
4625
4626 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4627                                gva_t addr, void *val, unsigned int bytes,
4628                                struct x86_exception *exception)
4629 {
4630         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4631         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4632
4633         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4634                                           exception);
4635 }
4636 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4637
4638 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4639                                       gva_t addr, void *val, unsigned int bytes,
4640                                       struct x86_exception *exception)
4641 {
4642         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4643         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4644 }
4645
4646 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4647                 unsigned long addr, void *val, unsigned int bytes)
4648 {
4649         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4650         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4651
4652         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4653 }
4654
4655 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4656                                        gva_t addr, void *val,
4657                                        unsigned int bytes,
4658                                        struct x86_exception *exception)
4659 {
4660         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4661         void *data = val;
4662         int r = X86EMUL_CONTINUE;
4663
4664         while (bytes) {
4665                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4666                                                              PFERR_WRITE_MASK,
4667                                                              exception);
4668                 unsigned offset = addr & (PAGE_SIZE-1);
4669                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4670                 int ret;
4671
4672                 if (gpa == UNMAPPED_GVA)
4673                         return X86EMUL_PROPAGATE_FAULT;
4674                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4675                 if (ret < 0) {
4676                         r = X86EMUL_IO_NEEDED;
4677                         goto out;
4678                 }
4679
4680                 bytes -= towrite;
4681                 data += towrite;
4682                 addr += towrite;
4683         }
4684 out:
4685         return r;
4686 }
4687 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4688
4689 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4690                             gpa_t gpa, bool write)
4691 {
4692         /* For APIC access vmexit */
4693         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4694                 return 1;
4695
4696         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4697                 trace_vcpu_match_mmio(gva, gpa, write, true);
4698                 return 1;
4699         }
4700
4701         return 0;
4702 }
4703
4704 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4705                                 gpa_t *gpa, struct x86_exception *exception,
4706                                 bool write)
4707 {
4708         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4709                 | (write ? PFERR_WRITE_MASK : 0);
4710
4711         /*
4712          * currently PKRU is only applied to ept enabled guest so
4713          * there is no pkey in EPT page table for L1 guest or EPT
4714          * shadow page table for L2 guest.
4715          */
4716         if (vcpu_match_mmio_gva(vcpu, gva)
4717             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4718                                  vcpu->arch.access, 0, access)) {
4719                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4720                                         (gva & (PAGE_SIZE - 1));
4721                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4722                 return 1;
4723         }
4724
4725         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4726
4727         if (*gpa == UNMAPPED_GVA)
4728                 return -1;
4729
4730         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4731 }
4732
4733 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4734                         const void *val, int bytes)
4735 {
4736         int ret;
4737
4738         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4739         if (ret < 0)
4740                 return 0;
4741         kvm_page_track_write(vcpu, gpa, val, bytes);
4742         return 1;
4743 }
4744
4745 struct read_write_emulator_ops {
4746         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4747                                   int bytes);
4748         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4749                                   void *val, int bytes);
4750         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4751                                int bytes, void *val);
4752         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4753                                     void *val, int bytes);
4754         bool write;
4755 };
4756
4757 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4758 {
4759         if (vcpu->mmio_read_completed) {
4760                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4761                                vcpu->mmio_fragments[0].gpa, val);
4762                 vcpu->mmio_read_completed = 0;
4763                 return 1;
4764         }
4765
4766         return 0;
4767 }
4768
4769 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4770                         void *val, int bytes)
4771 {
4772         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4773 }
4774
4775 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4776                          void *val, int bytes)
4777 {
4778         return emulator_write_phys(vcpu, gpa, val, bytes);
4779 }
4780
4781 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4782 {
4783         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4784         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4785 }
4786
4787 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4788                           void *val, int bytes)
4789 {
4790         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4791         return X86EMUL_IO_NEEDED;
4792 }
4793
4794 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4795                            void *val, int bytes)
4796 {
4797         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4798
4799         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4800         return X86EMUL_CONTINUE;
4801 }
4802
4803 static const struct read_write_emulator_ops read_emultor = {
4804         .read_write_prepare = read_prepare,
4805         .read_write_emulate = read_emulate,
4806         .read_write_mmio = vcpu_mmio_read,
4807         .read_write_exit_mmio = read_exit_mmio,
4808 };
4809
4810 static const struct read_write_emulator_ops write_emultor = {
4811         .read_write_emulate = write_emulate,
4812         .read_write_mmio = write_mmio,
4813         .read_write_exit_mmio = write_exit_mmio,
4814         .write = true,
4815 };
4816
4817 static int emulator_read_write_onepage(unsigned long addr, void *val,
4818                                        unsigned int bytes,
4819                                        struct x86_exception *exception,
4820                                        struct kvm_vcpu *vcpu,
4821                                        const struct read_write_emulator_ops *ops)
4822 {
4823         gpa_t gpa;
4824         int handled, ret;
4825         bool write = ops->write;
4826         struct kvm_mmio_fragment *frag;
4827         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4828
4829         /*
4830          * If the exit was due to a NPF we may already have a GPA.
4831          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4832          * Note, this cannot be used on string operations since string
4833          * operation using rep will only have the initial GPA from the NPF
4834          * occurred.
4835          */
4836         if (vcpu->arch.gpa_available &&
4837             emulator_can_use_gpa(ctxt) &&
4838             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4839                 gpa = vcpu->arch.gpa_val;
4840                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4841         } else {
4842                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4843                 if (ret < 0)
4844                         return X86EMUL_PROPAGATE_FAULT;
4845         }
4846
4847         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4848                 return X86EMUL_CONTINUE;
4849
4850         /*
4851          * Is this MMIO handled locally?
4852          */
4853         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4854         if (handled == bytes)
4855                 return X86EMUL_CONTINUE;
4856
4857         gpa += handled;
4858         bytes -= handled;
4859         val += handled;
4860
4861         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4862         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4863         frag->gpa = gpa;
4864         frag->data = val;
4865         frag->len = bytes;
4866         return X86EMUL_CONTINUE;
4867 }
4868
4869 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4870                         unsigned long addr,
4871                         void *val, unsigned int bytes,
4872                         struct x86_exception *exception,
4873                         const struct read_write_emulator_ops *ops)
4874 {
4875         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4876         gpa_t gpa;
4877         int rc;
4878
4879         if (ops->read_write_prepare &&
4880                   ops->read_write_prepare(vcpu, val, bytes))
4881                 return X86EMUL_CONTINUE;
4882
4883         vcpu->mmio_nr_fragments = 0;
4884
4885         /* Crossing a page boundary? */
4886         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4887                 int now;
4888
4889                 now = -addr & ~PAGE_MASK;
4890                 rc = emulator_read_write_onepage(addr, val, now, exception,
4891                                                  vcpu, ops);
4892
4893                 if (rc != X86EMUL_CONTINUE)
4894                         return rc;
4895                 addr += now;
4896                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4897                         addr = (u32)addr;
4898                 val += now;
4899                 bytes -= now;
4900         }
4901
4902         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4903                                          vcpu, ops);
4904         if (rc != X86EMUL_CONTINUE)
4905                 return rc;
4906
4907         if (!vcpu->mmio_nr_fragments)
4908                 return rc;
4909
4910         gpa = vcpu->mmio_fragments[0].gpa;
4911
4912         vcpu->mmio_needed = 1;
4913         vcpu->mmio_cur_fragment = 0;
4914
4915         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4916         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4917         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4918         vcpu->run->mmio.phys_addr = gpa;
4919
4920         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4921 }
4922
4923 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4924                                   unsigned long addr,
4925                                   void *val,
4926                                   unsigned int bytes,
4927                                   struct x86_exception *exception)
4928 {
4929         return emulator_read_write(ctxt, addr, val, bytes,
4930                                    exception, &read_emultor);
4931 }
4932
4933 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4934                             unsigned long addr,
4935                             const void *val,
4936                             unsigned int bytes,
4937                             struct x86_exception *exception)
4938 {
4939         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4940                                    exception, &write_emultor);
4941 }
4942
4943 #define CMPXCHG_TYPE(t, ptr, old, new) \
4944         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4945
4946 #ifdef CONFIG_X86_64
4947 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4948 #else
4949 #  define CMPXCHG64(ptr, old, new) \
4950         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4951 #endif
4952
4953 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4954                                      unsigned long addr,
4955                                      const void *old,
4956                                      const void *new,
4957                                      unsigned int bytes,
4958                                      struct x86_exception *exception)
4959 {
4960         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4961         gpa_t gpa;
4962         struct page *page;
4963         char *kaddr;
4964         bool exchanged;
4965
4966         /* guests cmpxchg8b have to be emulated atomically */
4967         if (bytes > 8 || (bytes & (bytes - 1)))
4968                 goto emul_write;
4969
4970         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4971
4972         if (gpa == UNMAPPED_GVA ||
4973             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4974                 goto emul_write;
4975
4976         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4977                 goto emul_write;
4978
4979         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4980         if (is_error_page(page))
4981                 goto emul_write;
4982
4983         kaddr = kmap_atomic(page);
4984         kaddr += offset_in_page(gpa);
4985         switch (bytes) {
4986         case 1:
4987                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4988                 break;
4989         case 2:
4990                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4991                 break;
4992         case 4:
4993                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4994                 break;
4995         case 8:
4996                 exchanged = CMPXCHG64(kaddr, old, new);
4997                 break;
4998         default:
4999                 BUG();
5000         }
5001         kunmap_atomic(kaddr);
5002         kvm_release_page_dirty(page);
5003
5004         if (!exchanged)
5005                 return X86EMUL_CMPXCHG_FAILED;
5006
5007         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5008         kvm_page_track_write(vcpu, gpa, new, bytes);
5009
5010         return X86EMUL_CONTINUE;
5011
5012 emul_write:
5013         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5014
5015         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5016 }
5017
5018 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5019 {
5020         int r = 0, i;
5021
5022         for (i = 0; i < vcpu->arch.pio.count; i++) {
5023                 if (vcpu->arch.pio.in)
5024                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5025                                             vcpu->arch.pio.size, pd);
5026                 else
5027                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5028                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5029                                              pd);
5030                 if (r)
5031                         break;
5032                 pd += vcpu->arch.pio.size;
5033         }
5034         return r;
5035 }
5036
5037 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5038                                unsigned short port, void *val,
5039                                unsigned int count, bool in)
5040 {
5041         vcpu->arch.pio.port = port;
5042         vcpu->arch.pio.in = in;
5043         vcpu->arch.pio.count  = count;
5044         vcpu->arch.pio.size = size;
5045
5046         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5047                 vcpu->arch.pio.count = 0;
5048                 return 1;
5049         }
5050
5051         vcpu->run->exit_reason = KVM_EXIT_IO;
5052         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5053         vcpu->run->io.size = size;
5054         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5055         vcpu->run->io.count = count;
5056         vcpu->run->io.port = port;
5057
5058         return 0;
5059 }
5060
5061 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5062                                     int size, unsigned short port, void *val,
5063                                     unsigned int count)
5064 {
5065         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5066         int ret;
5067
5068         if (vcpu->arch.pio.count)
5069                 goto data_avail;
5070
5071         memset(vcpu->arch.pio_data, 0, size * count);
5072
5073         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5074         if (ret) {
5075 data_avail:
5076                 memcpy(val, vcpu->arch.pio_data, size * count);
5077                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5078                 vcpu->arch.pio.count = 0;
5079                 return 1;
5080         }
5081
5082         return 0;
5083 }
5084
5085 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5086                                      int size, unsigned short port,
5087                                      const void *val, unsigned int count)
5088 {
5089         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5090
5091         memcpy(vcpu->arch.pio_data, val, size * count);
5092         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5093         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5094 }
5095
5096 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5097 {
5098         return kvm_x86_ops->get_segment_base(vcpu, seg);
5099 }
5100
5101 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5102 {
5103         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5104 }
5105
5106 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5107 {
5108         if (!need_emulate_wbinvd(vcpu))
5109                 return X86EMUL_CONTINUE;
5110
5111         if (kvm_x86_ops->has_wbinvd_exit()) {
5112                 int cpu = get_cpu();
5113
5114                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5115                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5116                                 wbinvd_ipi, NULL, 1);
5117                 put_cpu();
5118                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5119         } else
5120                 wbinvd();
5121         return X86EMUL_CONTINUE;
5122 }
5123
5124 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5125 {
5126         kvm_emulate_wbinvd_noskip(vcpu);
5127         return kvm_skip_emulated_instruction(vcpu);
5128 }
5129 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5130
5131
5132
5133 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5134 {
5135         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5136 }
5137
5138 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5139                            unsigned long *dest)
5140 {
5141         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5142 }
5143
5144 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5145                            unsigned long value)
5146 {
5147
5148         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5149 }
5150
5151 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5152 {
5153         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5154 }
5155
5156 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5157 {
5158         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5159         unsigned long value;
5160
5161         switch (cr) {
5162         case 0:
5163                 value = kvm_read_cr0(vcpu);
5164                 break;
5165         case 2:
5166                 value = vcpu->arch.cr2;
5167                 break;
5168         case 3:
5169                 value = kvm_read_cr3(vcpu);
5170                 break;
5171         case 4:
5172                 value = kvm_read_cr4(vcpu);
5173                 break;
5174         case 8:
5175                 value = kvm_get_cr8(vcpu);
5176                 break;
5177         default:
5178                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5179                 return 0;
5180         }
5181
5182         return value;
5183 }
5184
5185 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5186 {
5187         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5188         int res = 0;
5189
5190         switch (cr) {
5191         case 0:
5192                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5193                 break;
5194         case 2:
5195                 vcpu->arch.cr2 = val;
5196                 break;
5197         case 3:
5198                 res = kvm_set_cr3(vcpu, val);
5199                 break;
5200         case 4:
5201                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5202                 break;
5203         case 8:
5204                 res = kvm_set_cr8(vcpu, val);
5205                 break;
5206         default:
5207                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5208                 res = -1;
5209         }
5210
5211         return res;
5212 }
5213
5214 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5215 {
5216         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5217 }
5218
5219 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5220 {
5221         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5222 }
5223
5224 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5225 {
5226         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5227 }
5228
5229 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5230 {
5231         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5232 }
5233
5234 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5235 {
5236         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5237 }
5238
5239 static unsigned long emulator_get_cached_segment_base(
5240         struct x86_emulate_ctxt *ctxt, int seg)
5241 {
5242         return get_segment_base(emul_to_vcpu(ctxt), seg);
5243 }
5244
5245 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5246                                  struct desc_struct *desc, u32 *base3,
5247                                  int seg)
5248 {
5249         struct kvm_segment var;
5250
5251         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5252         *selector = var.selector;
5253
5254         if (var.unusable) {
5255                 memset(desc, 0, sizeof(*desc));
5256                 if (base3)
5257                         *base3 = 0;
5258                 return false;
5259         }
5260
5261         if (var.g)
5262                 var.limit >>= 12;
5263         set_desc_limit(desc, var.limit);
5264         set_desc_base(desc, (unsigned long)var.base);
5265 #ifdef CONFIG_X86_64
5266         if (base3)
5267                 *base3 = var.base >> 32;
5268 #endif
5269         desc->type = var.type;
5270         desc->s = var.s;
5271         desc->dpl = var.dpl;
5272         desc->p = var.present;
5273         desc->avl = var.avl;
5274         desc->l = var.l;
5275         desc->d = var.db;
5276         desc->g = var.g;
5277
5278         return true;
5279 }
5280
5281 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5282                                  struct desc_struct *desc, u32 base3,
5283                                  int seg)
5284 {
5285         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5286         struct kvm_segment var;
5287
5288         var.selector = selector;
5289         var.base = get_desc_base(desc);
5290 #ifdef CONFIG_X86_64
5291         var.base |= ((u64)base3) << 32;
5292 #endif
5293         var.limit = get_desc_limit(desc);
5294         if (desc->g)
5295                 var.limit = (var.limit << 12) | 0xfff;
5296         var.type = desc->type;
5297         var.dpl = desc->dpl;
5298         var.db = desc->d;
5299         var.s = desc->s;
5300         var.l = desc->l;
5301         var.g = desc->g;
5302         var.avl = desc->avl;
5303         var.present = desc->p;
5304         var.unusable = !var.present;
5305         var.padding = 0;
5306
5307         kvm_set_segment(vcpu, &var, seg);
5308         return;
5309 }
5310
5311 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5312                             u32 msr_index, u64 *pdata)
5313 {
5314         struct msr_data msr;
5315         int r;
5316
5317         msr.index = msr_index;
5318         msr.host_initiated = false;
5319         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5320         if (r)
5321                 return r;
5322
5323         *pdata = msr.data;
5324         return 0;
5325 }
5326
5327 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5328                             u32 msr_index, u64 data)
5329 {
5330         struct msr_data msr;
5331
5332         msr.data = data;
5333         msr.index = msr_index;
5334         msr.host_initiated = false;
5335         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5336 }
5337
5338 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5339 {
5340         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5341
5342         return vcpu->arch.smbase;
5343 }
5344
5345 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5346 {
5347         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5348
5349         vcpu->arch.smbase = smbase;
5350 }
5351
5352 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5353                               u32 pmc)
5354 {
5355         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5356 }
5357
5358 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5359                              u32 pmc, u64 *pdata)
5360 {
5361         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5362 }
5363
5364 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5365 {
5366         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5367 }
5368
5369 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5370                               struct x86_instruction_info *info,
5371                               enum x86_intercept_stage stage)
5372 {
5373         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5374 }
5375
5376 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5377                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5378 {
5379         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5380 }
5381
5382 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5383 {
5384         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5385 }
5386
5387 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5388 {
5389         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5390 }
5391
5392 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5393 {
5394         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5395 }
5396
5397 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5398 {
5399         return emul_to_vcpu(ctxt)->arch.hflags;
5400 }
5401
5402 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5403 {
5404         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5405 }
5406
5407 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5408 {
5409         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5410 }
5411
5412 static const struct x86_emulate_ops emulate_ops = {
5413         .read_gpr            = emulator_read_gpr,
5414         .write_gpr           = emulator_write_gpr,
5415         .read_std            = kvm_read_guest_virt_system,
5416         .write_std           = kvm_write_guest_virt_system,
5417         .read_phys           = kvm_read_guest_phys_system,
5418         .fetch               = kvm_fetch_guest_virt,
5419         .read_emulated       = emulator_read_emulated,
5420         .write_emulated      = emulator_write_emulated,
5421         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5422         .invlpg              = emulator_invlpg,
5423         .pio_in_emulated     = emulator_pio_in_emulated,
5424         .pio_out_emulated    = emulator_pio_out_emulated,
5425         .get_segment         = emulator_get_segment,
5426         .set_segment         = emulator_set_segment,
5427         .get_cached_segment_base = emulator_get_cached_segment_base,
5428         .get_gdt             = emulator_get_gdt,
5429         .get_idt             = emulator_get_idt,
5430         .set_gdt             = emulator_set_gdt,
5431         .set_idt             = emulator_set_idt,
5432         .get_cr              = emulator_get_cr,
5433         .set_cr              = emulator_set_cr,
5434         .cpl                 = emulator_get_cpl,
5435         .get_dr              = emulator_get_dr,
5436         .set_dr              = emulator_set_dr,
5437         .get_smbase          = emulator_get_smbase,
5438         .set_smbase          = emulator_set_smbase,
5439         .set_msr             = emulator_set_msr,
5440         .get_msr             = emulator_get_msr,
5441         .check_pmc           = emulator_check_pmc,
5442         .read_pmc            = emulator_read_pmc,
5443         .halt                = emulator_halt,
5444         .wbinvd              = emulator_wbinvd,
5445         .fix_hypercall       = emulator_fix_hypercall,
5446         .intercept           = emulator_intercept,
5447         .get_cpuid           = emulator_get_cpuid,
5448         .set_nmi_mask        = emulator_set_nmi_mask,
5449         .get_hflags          = emulator_get_hflags,
5450         .set_hflags          = emulator_set_hflags,
5451         .pre_leave_smm       = emulator_pre_leave_smm,
5452 };
5453
5454 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5455 {
5456         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5457         /*
5458          * an sti; sti; sequence only disable interrupts for the first
5459          * instruction. So, if the last instruction, be it emulated or
5460          * not, left the system with the INT_STI flag enabled, it
5461          * means that the last instruction is an sti. We should not
5462          * leave the flag on in this case. The same goes for mov ss
5463          */
5464         if (int_shadow & mask)
5465                 mask = 0;
5466         if (unlikely(int_shadow || mask)) {
5467                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5468                 if (!mask)
5469                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5470         }
5471 }
5472
5473 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5474 {
5475         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5476         if (ctxt->exception.vector == PF_VECTOR)
5477                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5478
5479         if (ctxt->exception.error_code_valid)
5480                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5481                                       ctxt->exception.error_code);
5482         else
5483                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5484         return false;
5485 }
5486
5487 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5488 {
5489         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5490         int cs_db, cs_l;
5491
5492         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5493
5494         ctxt->eflags = kvm_get_rflags(vcpu);
5495         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5496
5497         ctxt->eip = kvm_rip_read(vcpu);
5498         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5499                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5500                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5501                      cs_db                              ? X86EMUL_MODE_PROT32 :
5502                                                           X86EMUL_MODE_PROT16;
5503         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5504         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5505         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5506
5507         init_decode_cache(ctxt);
5508         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5509 }
5510
5511 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5512 {
5513         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5514         int ret;
5515
5516         init_emulate_ctxt(vcpu);
5517
5518         ctxt->op_bytes = 2;
5519         ctxt->ad_bytes = 2;
5520         ctxt->_eip = ctxt->eip + inc_eip;
5521         ret = emulate_int_real(ctxt, irq);
5522
5523         if (ret != X86EMUL_CONTINUE)
5524                 return EMULATE_FAIL;
5525
5526         ctxt->eip = ctxt->_eip;
5527         kvm_rip_write(vcpu, ctxt->eip);
5528         kvm_set_rflags(vcpu, ctxt->eflags);
5529
5530         if (irq == NMI_VECTOR)
5531                 vcpu->arch.nmi_pending = 0;
5532         else
5533                 vcpu->arch.interrupt.pending = false;
5534
5535         return EMULATE_DONE;
5536 }
5537 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5538
5539 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5540 {
5541         int r = EMULATE_DONE;
5542
5543         ++vcpu->stat.insn_emulation_fail;
5544         trace_kvm_emulate_insn_failed(vcpu);
5545         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5546                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5547                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5548                 vcpu->run->internal.ndata = 0;
5549                 r = EMULATE_USER_EXIT;
5550         }
5551         kvm_queue_exception(vcpu, UD_VECTOR);
5552
5553         return r;
5554 }
5555
5556 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5557                                   bool write_fault_to_shadow_pgtable,
5558                                   int emulation_type)
5559 {
5560         gpa_t gpa = cr2;
5561         kvm_pfn_t pfn;
5562
5563         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5564                 return false;
5565
5566         if (!vcpu->arch.mmu.direct_map) {
5567                 /*
5568                  * Write permission should be allowed since only
5569                  * write access need to be emulated.
5570                  */
5571                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5572
5573                 /*
5574                  * If the mapping is invalid in guest, let cpu retry
5575                  * it to generate fault.
5576                  */
5577                 if (gpa == UNMAPPED_GVA)
5578                         return true;
5579         }
5580
5581         /*
5582          * Do not retry the unhandleable instruction if it faults on the
5583          * readonly host memory, otherwise it will goto a infinite loop:
5584          * retry instruction -> write #PF -> emulation fail -> retry
5585          * instruction -> ...
5586          */
5587         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5588
5589         /*
5590          * If the instruction failed on the error pfn, it can not be fixed,
5591          * report the error to userspace.
5592          */
5593         if (is_error_noslot_pfn(pfn))
5594                 return false;
5595
5596         kvm_release_pfn_clean(pfn);
5597
5598         /* The instructions are well-emulated on direct mmu. */
5599         if (vcpu->arch.mmu.direct_map) {
5600                 unsigned int indirect_shadow_pages;
5601
5602                 spin_lock(&vcpu->kvm->mmu_lock);
5603                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5604                 spin_unlock(&vcpu->kvm->mmu_lock);
5605
5606                 if (indirect_shadow_pages)
5607                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5608
5609                 return true;
5610         }
5611
5612         /*
5613          * if emulation was due to access to shadowed page table
5614          * and it failed try to unshadow page and re-enter the
5615          * guest to let CPU execute the instruction.
5616          */
5617         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5618
5619         /*
5620          * If the access faults on its page table, it can not
5621          * be fixed by unprotecting shadow page and it should
5622          * be reported to userspace.
5623          */
5624         return !write_fault_to_shadow_pgtable;
5625 }
5626
5627 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5628                               unsigned long cr2,  int emulation_type)
5629 {
5630         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5631         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5632
5633         last_retry_eip = vcpu->arch.last_retry_eip;
5634         last_retry_addr = vcpu->arch.last_retry_addr;
5635
5636         /*
5637          * If the emulation is caused by #PF and it is non-page_table
5638          * writing instruction, it means the VM-EXIT is caused by shadow
5639          * page protected, we can zap the shadow page and retry this
5640          * instruction directly.
5641          *
5642          * Note: if the guest uses a non-page-table modifying instruction
5643          * on the PDE that points to the instruction, then we will unmap
5644          * the instruction and go to an infinite loop. So, we cache the
5645          * last retried eip and the last fault address, if we meet the eip
5646          * and the address again, we can break out of the potential infinite
5647          * loop.
5648          */
5649         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5650
5651         if (!(emulation_type & EMULTYPE_RETRY))
5652                 return false;
5653
5654         if (x86_page_table_writing_insn(ctxt))
5655                 return false;
5656
5657         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5658                 return false;
5659
5660         vcpu->arch.last_retry_eip = ctxt->eip;
5661         vcpu->arch.last_retry_addr = cr2;
5662
5663         if (!vcpu->arch.mmu.direct_map)
5664                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5665
5666         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5667
5668         return true;
5669 }
5670
5671 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5672 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5673
5674 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5675 {
5676         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5677                 /* This is a good place to trace that we are exiting SMM.  */
5678                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5679
5680                 /* Process a latched INIT or SMI, if any.  */
5681                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5682         }
5683
5684         kvm_mmu_reset_context(vcpu);
5685 }
5686
5687 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5688 {
5689         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5690
5691         vcpu->arch.hflags = emul_flags;
5692
5693         if (changed & HF_SMM_MASK)
5694                 kvm_smm_changed(vcpu);
5695 }
5696
5697 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5698                                 unsigned long *db)
5699 {
5700         u32 dr6 = 0;
5701         int i;
5702         u32 enable, rwlen;
5703
5704         enable = dr7;
5705         rwlen = dr7 >> 16;
5706         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5707                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5708                         dr6 |= (1 << i);
5709         return dr6;
5710 }
5711
5712 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5713 {
5714         struct kvm_run *kvm_run = vcpu->run;
5715
5716         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5717                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5718                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5719                 kvm_run->debug.arch.exception = DB_VECTOR;
5720                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5721                 *r = EMULATE_USER_EXIT;
5722         } else {
5723                 /*
5724                  * "Certain debug exceptions may clear bit 0-3.  The
5725                  * remaining contents of the DR6 register are never
5726                  * cleared by the processor".
5727                  */
5728                 vcpu->arch.dr6 &= ~15;
5729                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5730                 kvm_queue_exception(vcpu, DB_VECTOR);
5731         }
5732 }
5733
5734 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5735 {
5736         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5737         int r = EMULATE_DONE;
5738
5739         kvm_x86_ops->skip_emulated_instruction(vcpu);
5740
5741         /*
5742          * rflags is the old, "raw" value of the flags.  The new value has
5743          * not been saved yet.
5744          *
5745          * This is correct even for TF set by the guest, because "the
5746          * processor will not generate this exception after the instruction
5747          * that sets the TF flag".
5748          */
5749         if (unlikely(rflags & X86_EFLAGS_TF))
5750                 kvm_vcpu_do_singlestep(vcpu, &r);
5751         return r == EMULATE_DONE;
5752 }
5753 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5754
5755 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5756 {
5757         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5758             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5759                 struct kvm_run *kvm_run = vcpu->run;
5760                 unsigned long eip = kvm_get_linear_rip(vcpu);
5761                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5762                                            vcpu->arch.guest_debug_dr7,
5763                                            vcpu->arch.eff_db);
5764
5765                 if (dr6 != 0) {
5766                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5767                         kvm_run->debug.arch.pc = eip;
5768                         kvm_run->debug.arch.exception = DB_VECTOR;
5769                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5770                         *r = EMULATE_USER_EXIT;
5771                         return true;
5772                 }
5773         }
5774
5775         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5776             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5777                 unsigned long eip = kvm_get_linear_rip(vcpu);
5778                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5779                                            vcpu->arch.dr7,
5780                                            vcpu->arch.db);
5781
5782                 if (dr6 != 0) {
5783                         vcpu->arch.dr6 &= ~15;
5784                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5785                         kvm_queue_exception(vcpu, DB_VECTOR);
5786                         *r = EMULATE_DONE;
5787                         return true;
5788                 }
5789         }
5790
5791         return false;
5792 }
5793
5794 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5795                             unsigned long cr2,
5796                             int emulation_type,
5797                             void *insn,
5798                             int insn_len)
5799 {
5800         int r;
5801         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5802         bool writeback = true;
5803         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5804
5805         /*
5806          * Clear write_fault_to_shadow_pgtable here to ensure it is
5807          * never reused.
5808          */
5809         vcpu->arch.write_fault_to_shadow_pgtable = false;
5810         kvm_clear_exception_queue(vcpu);
5811
5812         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5813                 init_emulate_ctxt(vcpu);
5814
5815                 /*
5816                  * We will reenter on the same instruction since
5817                  * we do not set complete_userspace_io.  This does not
5818                  * handle watchpoints yet, those would be handled in
5819                  * the emulate_ops.
5820                  */
5821                 if (!(emulation_type & EMULTYPE_SKIP) &&
5822                     kvm_vcpu_check_breakpoint(vcpu, &r))
5823                         return r;
5824
5825                 ctxt->interruptibility = 0;
5826                 ctxt->have_exception = false;
5827                 ctxt->exception.vector = -1;
5828                 ctxt->perm_ok = false;
5829
5830                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5831
5832                 r = x86_decode_insn(ctxt, insn, insn_len);
5833
5834                 trace_kvm_emulate_insn_start(vcpu);
5835                 ++vcpu->stat.insn_emulation;
5836                 if (r != EMULATION_OK)  {
5837                         if (emulation_type & EMULTYPE_TRAP_UD)
5838                                 return EMULATE_FAIL;
5839                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5840                                                 emulation_type))
5841                                 return EMULATE_DONE;
5842                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
5843                                 return EMULATE_DONE;
5844                         if (emulation_type & EMULTYPE_SKIP)
5845                                 return EMULATE_FAIL;
5846                         return handle_emulation_failure(vcpu);
5847                 }
5848         }
5849
5850         if (emulation_type & EMULTYPE_SKIP) {
5851                 kvm_rip_write(vcpu, ctxt->_eip);
5852                 if (ctxt->eflags & X86_EFLAGS_RF)
5853                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5854                 return EMULATE_DONE;
5855         }
5856
5857         if (retry_instruction(ctxt, cr2, emulation_type))
5858                 return EMULATE_DONE;
5859
5860         /* this is needed for vmware backdoor interface to work since it
5861            changes registers values  during IO operation */
5862         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5863                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5864                 emulator_invalidate_register_cache(ctxt);
5865         }
5866
5867 restart:
5868         /* Save the faulting GPA (cr2) in the address field */
5869         ctxt->exception.address = cr2;
5870
5871         r = x86_emulate_insn(ctxt);
5872
5873         if (r == EMULATION_INTERCEPTED)
5874                 return EMULATE_DONE;
5875
5876         if (r == EMULATION_FAILED) {
5877                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5878                                         emulation_type))
5879                         return EMULATE_DONE;
5880
5881                 return handle_emulation_failure(vcpu);
5882         }
5883
5884         if (ctxt->have_exception) {
5885                 r = EMULATE_DONE;
5886                 if (inject_emulated_exception(vcpu))
5887                         return r;
5888         } else if (vcpu->arch.pio.count) {
5889                 if (!vcpu->arch.pio.in) {
5890                         /* FIXME: return into emulator if single-stepping.  */
5891                         vcpu->arch.pio.count = 0;
5892                 } else {
5893                         writeback = false;
5894                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5895                 }
5896                 r = EMULATE_USER_EXIT;
5897         } else if (vcpu->mmio_needed) {
5898                 if (!vcpu->mmio_is_write)
5899                         writeback = false;
5900                 r = EMULATE_USER_EXIT;
5901                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5902         } else if (r == EMULATION_RESTART)
5903                 goto restart;
5904         else
5905                 r = EMULATE_DONE;
5906
5907         if (writeback) {
5908                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5909                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5910                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5911                 kvm_rip_write(vcpu, ctxt->eip);
5912                 if (r == EMULATE_DONE &&
5913                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5914                         kvm_vcpu_do_singlestep(vcpu, &r);
5915                 if (!ctxt->have_exception ||
5916                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5917                         __kvm_set_rflags(vcpu, ctxt->eflags);
5918
5919                 /*
5920                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5921                  * do nothing, and it will be requested again as soon as
5922                  * the shadow expires.  But we still need to check here,
5923                  * because POPF has no interrupt shadow.
5924                  */
5925                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5926                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5927         } else
5928                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5929
5930         return r;
5931 }
5932 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5933
5934 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5935 {
5936         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5937         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5938                                             size, port, &val, 1);
5939         /* do not return to emulator after return from userspace */
5940         vcpu->arch.pio.count = 0;
5941         return ret;
5942 }
5943 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5944
5945 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5946 {
5947         unsigned long val;
5948
5949         /* We should only ever be called with arch.pio.count equal to 1 */
5950         BUG_ON(vcpu->arch.pio.count != 1);
5951
5952         /* For size less than 4 we merge, else we zero extend */
5953         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5954                                         : 0;
5955
5956         /*
5957          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5958          * the copy and tracing
5959          */
5960         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5961                                  vcpu->arch.pio.port, &val, 1);
5962         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5963
5964         return 1;
5965 }
5966
5967 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5968 {
5969         unsigned long val;
5970         int ret;
5971
5972         /* For size less than 4 we merge, else we zero extend */
5973         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5974
5975         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5976                                        &val, 1);
5977         if (ret) {
5978                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5979                 return ret;
5980         }
5981
5982         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5983
5984         return 0;
5985 }
5986 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5987
5988 static int kvmclock_cpu_down_prep(unsigned int cpu)
5989 {
5990         __this_cpu_write(cpu_tsc_khz, 0);
5991         return 0;
5992 }
5993
5994 static void tsc_khz_changed(void *data)
5995 {
5996         struct cpufreq_freqs *freq = data;
5997         unsigned long khz = 0;
5998
5999         if (data)
6000                 khz = freq->new;
6001         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6002                 khz = cpufreq_quick_get(raw_smp_processor_id());
6003         if (!khz)
6004                 khz = tsc_khz;
6005         __this_cpu_write(cpu_tsc_khz, khz);
6006 }
6007
6008 #ifdef CONFIG_X86_64
6009 static void kvm_hyperv_tsc_notifier(void)
6010 {
6011         struct kvm *kvm;
6012         struct kvm_vcpu *vcpu;
6013         int cpu;
6014
6015         spin_lock(&kvm_lock);
6016         list_for_each_entry(kvm, &vm_list, vm_list)
6017                 kvm_make_mclock_inprogress_request(kvm);
6018
6019         hyperv_stop_tsc_emulation();
6020
6021         /* TSC frequency always matches when on Hyper-V */
6022         for_each_present_cpu(cpu)
6023                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6024         kvm_max_guest_tsc_khz = tsc_khz;
6025
6026         list_for_each_entry(kvm, &vm_list, vm_list) {
6027                 struct kvm_arch *ka = &kvm->arch;
6028
6029                 spin_lock(&ka->pvclock_gtod_sync_lock);
6030
6031                 pvclock_update_vm_gtod_copy(kvm);
6032
6033                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6034                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6035
6036                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6037                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6038
6039                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6040         }
6041         spin_unlock(&kvm_lock);
6042 }
6043 #endif
6044
6045 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6046                                      void *data)
6047 {
6048         struct cpufreq_freqs *freq = data;
6049         struct kvm *kvm;
6050         struct kvm_vcpu *vcpu;
6051         int i, send_ipi = 0;
6052
6053         /*
6054          * We allow guests to temporarily run on slowing clocks,
6055          * provided we notify them after, or to run on accelerating
6056          * clocks, provided we notify them before.  Thus time never
6057          * goes backwards.
6058          *
6059          * However, we have a problem.  We can't atomically update
6060          * the frequency of a given CPU from this function; it is
6061          * merely a notifier, which can be called from any CPU.
6062          * Changing the TSC frequency at arbitrary points in time
6063          * requires a recomputation of local variables related to
6064          * the TSC for each VCPU.  We must flag these local variables
6065          * to be updated and be sure the update takes place with the
6066          * new frequency before any guests proceed.
6067          *
6068          * Unfortunately, the combination of hotplug CPU and frequency
6069          * change creates an intractable locking scenario; the order
6070          * of when these callouts happen is undefined with respect to
6071          * CPU hotplug, and they can race with each other.  As such,
6072          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6073          * undefined; you can actually have a CPU frequency change take
6074          * place in between the computation of X and the setting of the
6075          * variable.  To protect against this problem, all updates of
6076          * the per_cpu tsc_khz variable are done in an interrupt
6077          * protected IPI, and all callers wishing to update the value
6078          * must wait for a synchronous IPI to complete (which is trivial
6079          * if the caller is on the CPU already).  This establishes the
6080          * necessary total order on variable updates.
6081          *
6082          * Note that because a guest time update may take place
6083          * anytime after the setting of the VCPU's request bit, the
6084          * correct TSC value must be set before the request.  However,
6085          * to ensure the update actually makes it to any guest which
6086          * starts running in hardware virtualization between the set
6087          * and the acquisition of the spinlock, we must also ping the
6088          * CPU after setting the request bit.
6089          *
6090          */
6091
6092         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6093                 return 0;
6094         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6095                 return 0;
6096
6097         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6098
6099         spin_lock(&kvm_lock);
6100         list_for_each_entry(kvm, &vm_list, vm_list) {
6101                 kvm_for_each_vcpu(i, vcpu, kvm) {
6102                         if (vcpu->cpu != freq->cpu)
6103                                 continue;
6104                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6105                         if (vcpu->cpu != smp_processor_id())
6106                                 send_ipi = 1;
6107                 }
6108         }
6109         spin_unlock(&kvm_lock);
6110
6111         if (freq->old < freq->new && send_ipi) {
6112                 /*
6113                  * We upscale the frequency.  Must make the guest
6114                  * doesn't see old kvmclock values while running with
6115                  * the new frequency, otherwise we risk the guest sees
6116                  * time go backwards.
6117                  *
6118                  * In case we update the frequency for another cpu
6119                  * (which might be in guest context) send an interrupt
6120                  * to kick the cpu out of guest context.  Next time
6121                  * guest context is entered kvmclock will be updated,
6122                  * so the guest will not see stale values.
6123                  */
6124                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6125         }
6126         return 0;
6127 }
6128
6129 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6130         .notifier_call  = kvmclock_cpufreq_notifier
6131 };
6132
6133 static int kvmclock_cpu_online(unsigned int cpu)
6134 {
6135         tsc_khz_changed(NULL);
6136         return 0;
6137 }
6138
6139 static void kvm_timer_init(void)
6140 {
6141         max_tsc_khz = tsc_khz;
6142
6143         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6144 #ifdef CONFIG_CPU_FREQ
6145                 struct cpufreq_policy policy;
6146                 int cpu;
6147
6148                 memset(&policy, 0, sizeof(policy));
6149                 cpu = get_cpu();
6150                 cpufreq_get_policy(&policy, cpu);
6151                 if (policy.cpuinfo.max_freq)
6152                         max_tsc_khz = policy.cpuinfo.max_freq;
6153                 put_cpu();
6154 #endif
6155                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6156                                           CPUFREQ_TRANSITION_NOTIFIER);
6157         }
6158         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6159
6160         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6161                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6162 }
6163
6164 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6165
6166 int kvm_is_in_guest(void)
6167 {
6168         return __this_cpu_read(current_vcpu) != NULL;
6169 }
6170
6171 static int kvm_is_user_mode(void)
6172 {
6173         int user_mode = 3;
6174
6175         if (__this_cpu_read(current_vcpu))
6176                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6177
6178         return user_mode != 0;
6179 }
6180
6181 static unsigned long kvm_get_guest_ip(void)
6182 {
6183         unsigned long ip = 0;
6184
6185         if (__this_cpu_read(current_vcpu))
6186                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6187
6188         return ip;
6189 }
6190
6191 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6192         .is_in_guest            = kvm_is_in_guest,
6193         .is_user_mode           = kvm_is_user_mode,
6194         .get_guest_ip           = kvm_get_guest_ip,
6195 };
6196
6197 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6198 {
6199         __this_cpu_write(current_vcpu, vcpu);
6200 }
6201 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6202
6203 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6204 {
6205         __this_cpu_write(current_vcpu, NULL);
6206 }
6207 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6208
6209 static void kvm_set_mmio_spte_mask(void)
6210 {
6211         u64 mask;
6212         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6213
6214         /*
6215          * Set the reserved bits and the present bit of an paging-structure
6216          * entry to generate page fault with PFER.RSV = 1.
6217          */
6218          /* Mask the reserved physical address bits. */
6219         mask = rsvd_bits(maxphyaddr, 51);
6220
6221         /* Set the present bit. */
6222         mask |= 1ull;
6223
6224 #ifdef CONFIG_X86_64
6225         /*
6226          * If reserved bit is not supported, clear the present bit to disable
6227          * mmio page fault.
6228          */
6229         if (maxphyaddr == 52)
6230                 mask &= ~1ull;
6231 #endif
6232
6233         kvm_mmu_set_mmio_spte_mask(mask, mask);
6234 }
6235
6236 #ifdef CONFIG_X86_64
6237 static void pvclock_gtod_update_fn(struct work_struct *work)
6238 {
6239         struct kvm *kvm;
6240
6241         struct kvm_vcpu *vcpu;
6242         int i;
6243
6244         spin_lock(&kvm_lock);
6245         list_for_each_entry(kvm, &vm_list, vm_list)
6246                 kvm_for_each_vcpu(i, vcpu, kvm)
6247                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6248         atomic_set(&kvm_guest_has_master_clock, 0);
6249         spin_unlock(&kvm_lock);
6250 }
6251
6252 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6253
6254 /*
6255  * Notification about pvclock gtod data update.
6256  */
6257 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6258                                void *priv)
6259 {
6260         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6261         struct timekeeper *tk = priv;
6262
6263         update_pvclock_gtod(tk);
6264
6265         /* disable master clock if host does not trust, or does not
6266          * use, TSC based clocksource.
6267          */
6268         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6269             atomic_read(&kvm_guest_has_master_clock) != 0)
6270                 queue_work(system_long_wq, &pvclock_gtod_work);
6271
6272         return 0;
6273 }
6274
6275 static struct notifier_block pvclock_gtod_notifier = {
6276         .notifier_call = pvclock_gtod_notify,
6277 };
6278 #endif
6279
6280 int kvm_arch_init(void *opaque)
6281 {
6282         int r;
6283         struct kvm_x86_ops *ops = opaque;
6284
6285         if (kvm_x86_ops) {
6286                 printk(KERN_ERR "kvm: already loaded the other module\n");
6287                 r = -EEXIST;
6288                 goto out;
6289         }
6290
6291         if (!ops->cpu_has_kvm_support()) {
6292                 printk(KERN_ERR "kvm: no hardware support\n");
6293                 r = -EOPNOTSUPP;
6294                 goto out;
6295         }
6296         if (ops->disabled_by_bios()) {
6297                 printk(KERN_ERR "kvm: disabled by bios\n");
6298                 r = -EOPNOTSUPP;
6299                 goto out;
6300         }
6301
6302         r = -ENOMEM;
6303         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6304         if (!shared_msrs) {
6305                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6306                 goto out;
6307         }
6308
6309         r = kvm_mmu_module_init();
6310         if (r)
6311                 goto out_free_percpu;
6312
6313         kvm_set_mmio_spte_mask();
6314
6315         kvm_x86_ops = ops;
6316
6317         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6318                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6319                         PT_PRESENT_MASK, 0, sme_me_mask);
6320         kvm_timer_init();
6321
6322         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6323
6324         if (boot_cpu_has(X86_FEATURE_XSAVE))
6325                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6326
6327         kvm_lapic_init();
6328 #ifdef CONFIG_X86_64
6329         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6330
6331         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6332                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6333 #endif
6334
6335         return 0;
6336
6337 out_free_percpu:
6338         free_percpu(shared_msrs);
6339 out:
6340         return r;
6341 }
6342
6343 void kvm_arch_exit(void)
6344 {
6345 #ifdef CONFIG_X86_64
6346         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6347                 clear_hv_tscchange_cb();
6348 #endif
6349         kvm_lapic_exit();
6350         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6351
6352         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6353                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6354                                             CPUFREQ_TRANSITION_NOTIFIER);
6355         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6356 #ifdef CONFIG_X86_64
6357         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6358 #endif
6359         kvm_x86_ops = NULL;
6360         kvm_mmu_module_exit();
6361         free_percpu(shared_msrs);
6362 }
6363
6364 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6365 {
6366         ++vcpu->stat.halt_exits;
6367         if (lapic_in_kernel(vcpu)) {
6368                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6369                 return 1;
6370         } else {
6371                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6372                 return 0;
6373         }
6374 }
6375 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6376
6377 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6378 {
6379         int ret = kvm_skip_emulated_instruction(vcpu);
6380         /*
6381          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6382          * KVM_EXIT_DEBUG here.
6383          */
6384         return kvm_vcpu_halt(vcpu) && ret;
6385 }
6386 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6387
6388 #ifdef CONFIG_X86_64
6389 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6390                                 unsigned long clock_type)
6391 {
6392         struct kvm_clock_pairing clock_pairing;
6393         struct timespec ts;
6394         u64 cycle;
6395         int ret;
6396
6397         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6398                 return -KVM_EOPNOTSUPP;
6399
6400         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6401                 return -KVM_EOPNOTSUPP;
6402
6403         clock_pairing.sec = ts.tv_sec;
6404         clock_pairing.nsec = ts.tv_nsec;
6405         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6406         clock_pairing.flags = 0;
6407
6408         ret = 0;
6409         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6410                             sizeof(struct kvm_clock_pairing)))
6411                 ret = -KVM_EFAULT;
6412
6413         return ret;
6414 }
6415 #endif
6416
6417 /*
6418  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6419  *
6420  * @apicid - apicid of vcpu to be kicked.
6421  */
6422 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6423 {
6424         struct kvm_lapic_irq lapic_irq;
6425
6426         lapic_irq.shorthand = 0;
6427         lapic_irq.dest_mode = 0;
6428         lapic_irq.level = 0;
6429         lapic_irq.dest_id = apicid;
6430         lapic_irq.msi_redir_hint = false;
6431
6432         lapic_irq.delivery_mode = APIC_DM_REMRD;
6433         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6434 }
6435
6436 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6437 {
6438         vcpu->arch.apicv_active = false;
6439         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6440 }
6441
6442 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6443 {
6444         unsigned long nr, a0, a1, a2, a3, ret;
6445         int op_64_bit, r;
6446
6447         r = kvm_skip_emulated_instruction(vcpu);
6448
6449         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6450                 return kvm_hv_hypercall(vcpu);
6451
6452         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6453         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6454         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6455         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6456         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6457
6458         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6459
6460         op_64_bit = is_64_bit_mode(vcpu);
6461         if (!op_64_bit) {
6462                 nr &= 0xFFFFFFFF;
6463                 a0 &= 0xFFFFFFFF;
6464                 a1 &= 0xFFFFFFFF;
6465                 a2 &= 0xFFFFFFFF;
6466                 a3 &= 0xFFFFFFFF;
6467         }
6468
6469         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6470                 ret = -KVM_EPERM;
6471                 goto out;
6472         }
6473
6474         switch (nr) {
6475         case KVM_HC_VAPIC_POLL_IRQ:
6476                 ret = 0;
6477                 break;
6478         case KVM_HC_KICK_CPU:
6479                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6480                 ret = 0;
6481                 break;
6482 #ifdef CONFIG_X86_64
6483         case KVM_HC_CLOCK_PAIRING:
6484                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6485                 break;
6486 #endif
6487         default:
6488                 ret = -KVM_ENOSYS;
6489                 break;
6490         }
6491 out:
6492         if (!op_64_bit)
6493                 ret = (u32)ret;
6494         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6495         ++vcpu->stat.hypercalls;
6496         return r;
6497 }
6498 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6499
6500 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6501 {
6502         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6503         char instruction[3];
6504         unsigned long rip = kvm_rip_read(vcpu);
6505
6506         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6507
6508         return emulator_write_emulated(ctxt, rip, instruction, 3,
6509                 &ctxt->exception);
6510 }
6511
6512 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6513 {
6514         return vcpu->run->request_interrupt_window &&
6515                 likely(!pic_in_kernel(vcpu->kvm));
6516 }
6517
6518 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6519 {
6520         struct kvm_run *kvm_run = vcpu->run;
6521
6522         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6523         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6524         kvm_run->cr8 = kvm_get_cr8(vcpu);
6525         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6526         kvm_run->ready_for_interrupt_injection =
6527                 pic_in_kernel(vcpu->kvm) ||
6528                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6529 }
6530
6531 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6532 {
6533         int max_irr, tpr;
6534
6535         if (!kvm_x86_ops->update_cr8_intercept)
6536                 return;
6537
6538         if (!lapic_in_kernel(vcpu))
6539                 return;
6540
6541         if (vcpu->arch.apicv_active)
6542                 return;
6543
6544         if (!vcpu->arch.apic->vapic_addr)
6545                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6546         else
6547                 max_irr = -1;
6548
6549         if (max_irr != -1)
6550                 max_irr >>= 4;
6551
6552         tpr = kvm_lapic_get_cr8(vcpu);
6553
6554         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6555 }
6556
6557 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6558 {
6559         int r;
6560
6561         /* try to reinject previous events if any */
6562         if (vcpu->arch.exception.injected) {
6563                 kvm_x86_ops->queue_exception(vcpu);
6564                 return 0;
6565         }
6566
6567         /*
6568          * Exceptions must be injected immediately, or the exception
6569          * frame will have the address of the NMI or interrupt handler.
6570          */
6571         if (!vcpu->arch.exception.pending) {
6572                 if (vcpu->arch.nmi_injected) {
6573                         kvm_x86_ops->set_nmi(vcpu);
6574                         return 0;
6575                 }
6576
6577                 if (vcpu->arch.interrupt.pending) {
6578                         kvm_x86_ops->set_irq(vcpu);
6579                         return 0;
6580                 }
6581         }
6582
6583         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6584                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6585                 if (r != 0)
6586                         return r;
6587         }
6588
6589         /* try to inject new event if pending */
6590         if (vcpu->arch.exception.pending) {
6591                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6592                                         vcpu->arch.exception.has_error_code,
6593                                         vcpu->arch.exception.error_code);
6594
6595                 vcpu->arch.exception.pending = false;
6596                 vcpu->arch.exception.injected = true;
6597
6598                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6599                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6600                                              X86_EFLAGS_RF);
6601
6602                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6603                     (vcpu->arch.dr7 & DR7_GD)) {
6604                         vcpu->arch.dr7 &= ~DR7_GD;
6605                         kvm_update_dr7(vcpu);
6606                 }
6607
6608                 kvm_x86_ops->queue_exception(vcpu);
6609         } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6610                 vcpu->arch.smi_pending = false;
6611                 ++vcpu->arch.smi_count;
6612                 enter_smm(vcpu);
6613         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6614                 --vcpu->arch.nmi_pending;
6615                 vcpu->arch.nmi_injected = true;
6616                 kvm_x86_ops->set_nmi(vcpu);
6617         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6618                 /*
6619                  * Because interrupts can be injected asynchronously, we are
6620                  * calling check_nested_events again here to avoid a race condition.
6621                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6622                  * proposal and current concerns.  Perhaps we should be setting
6623                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6624                  */
6625                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6626                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6627                         if (r != 0)
6628                                 return r;
6629                 }
6630                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6631                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6632                                             false);
6633                         kvm_x86_ops->set_irq(vcpu);
6634                 }
6635         }
6636
6637         return 0;
6638 }
6639
6640 static void process_nmi(struct kvm_vcpu *vcpu)
6641 {
6642         unsigned limit = 2;
6643
6644         /*
6645          * x86 is limited to one NMI running, and one NMI pending after it.
6646          * If an NMI is already in progress, limit further NMIs to just one.
6647          * Otherwise, allow two (and we'll inject the first one immediately).
6648          */
6649         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6650                 limit = 1;
6651
6652         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6653         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6654         kvm_make_request(KVM_REQ_EVENT, vcpu);
6655 }
6656
6657 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6658 {
6659         u32 flags = 0;
6660         flags |= seg->g       << 23;
6661         flags |= seg->db      << 22;
6662         flags |= seg->l       << 21;
6663         flags |= seg->avl     << 20;
6664         flags |= seg->present << 15;
6665         flags |= seg->dpl     << 13;
6666         flags |= seg->s       << 12;
6667         flags |= seg->type    << 8;
6668         return flags;
6669 }
6670
6671 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6672 {
6673         struct kvm_segment seg;
6674         int offset;
6675
6676         kvm_get_segment(vcpu, &seg, n);
6677         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6678
6679         if (n < 3)
6680                 offset = 0x7f84 + n * 12;
6681         else
6682                 offset = 0x7f2c + (n - 3) * 12;
6683
6684         put_smstate(u32, buf, offset + 8, seg.base);
6685         put_smstate(u32, buf, offset + 4, seg.limit);
6686         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6687 }
6688
6689 #ifdef CONFIG_X86_64
6690 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6691 {
6692         struct kvm_segment seg;
6693         int offset;
6694         u16 flags;
6695
6696         kvm_get_segment(vcpu, &seg, n);
6697         offset = 0x7e00 + n * 16;
6698
6699         flags = enter_smm_get_segment_flags(&seg) >> 8;
6700         put_smstate(u16, buf, offset, seg.selector);
6701         put_smstate(u16, buf, offset + 2, flags);
6702         put_smstate(u32, buf, offset + 4, seg.limit);
6703         put_smstate(u64, buf, offset + 8, seg.base);
6704 }
6705 #endif
6706
6707 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6708 {
6709         struct desc_ptr dt;
6710         struct kvm_segment seg;
6711         unsigned long val;
6712         int i;
6713
6714         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6715         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6716         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6717         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6718
6719         for (i = 0; i < 8; i++)
6720                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6721
6722         kvm_get_dr(vcpu, 6, &val);
6723         put_smstate(u32, buf, 0x7fcc, (u32)val);
6724         kvm_get_dr(vcpu, 7, &val);
6725         put_smstate(u32, buf, 0x7fc8, (u32)val);
6726
6727         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6728         put_smstate(u32, buf, 0x7fc4, seg.selector);
6729         put_smstate(u32, buf, 0x7f64, seg.base);
6730         put_smstate(u32, buf, 0x7f60, seg.limit);
6731         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6732
6733         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6734         put_smstate(u32, buf, 0x7fc0, seg.selector);
6735         put_smstate(u32, buf, 0x7f80, seg.base);
6736         put_smstate(u32, buf, 0x7f7c, seg.limit);
6737         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6738
6739         kvm_x86_ops->get_gdt(vcpu, &dt);
6740         put_smstate(u32, buf, 0x7f74, dt.address);
6741         put_smstate(u32, buf, 0x7f70, dt.size);
6742
6743         kvm_x86_ops->get_idt(vcpu, &dt);
6744         put_smstate(u32, buf, 0x7f58, dt.address);
6745         put_smstate(u32, buf, 0x7f54, dt.size);
6746
6747         for (i = 0; i < 6; i++)
6748                 enter_smm_save_seg_32(vcpu, buf, i);
6749
6750         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6751
6752         /* revision id */
6753         put_smstate(u32, buf, 0x7efc, 0x00020000);
6754         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6755 }
6756
6757 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6758 {
6759 #ifdef CONFIG_X86_64
6760         struct desc_ptr dt;
6761         struct kvm_segment seg;
6762         unsigned long val;
6763         int i;
6764
6765         for (i = 0; i < 16; i++)
6766                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6767
6768         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6769         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6770
6771         kvm_get_dr(vcpu, 6, &val);
6772         put_smstate(u64, buf, 0x7f68, val);
6773         kvm_get_dr(vcpu, 7, &val);
6774         put_smstate(u64, buf, 0x7f60, val);
6775
6776         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6777         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6778         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6779
6780         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6781
6782         /* revision id */
6783         put_smstate(u32, buf, 0x7efc, 0x00020064);
6784
6785         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6786
6787         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6788         put_smstate(u16, buf, 0x7e90, seg.selector);
6789         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6790         put_smstate(u32, buf, 0x7e94, seg.limit);
6791         put_smstate(u64, buf, 0x7e98, seg.base);
6792
6793         kvm_x86_ops->get_idt(vcpu, &dt);
6794         put_smstate(u32, buf, 0x7e84, dt.size);
6795         put_smstate(u64, buf, 0x7e88, dt.address);
6796
6797         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6798         put_smstate(u16, buf, 0x7e70, seg.selector);
6799         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6800         put_smstate(u32, buf, 0x7e74, seg.limit);
6801         put_smstate(u64, buf, 0x7e78, seg.base);
6802
6803         kvm_x86_ops->get_gdt(vcpu, &dt);
6804         put_smstate(u32, buf, 0x7e64, dt.size);
6805         put_smstate(u64, buf, 0x7e68, dt.address);
6806
6807         for (i = 0; i < 6; i++)
6808                 enter_smm_save_seg_64(vcpu, buf, i);
6809 #else
6810         WARN_ON_ONCE(1);
6811 #endif
6812 }
6813
6814 static void enter_smm(struct kvm_vcpu *vcpu)
6815 {
6816         struct kvm_segment cs, ds;
6817         struct desc_ptr dt;
6818         char buf[512];
6819         u32 cr0;
6820
6821         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6822         memset(buf, 0, 512);
6823         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6824                 enter_smm_save_state_64(vcpu, buf);
6825         else
6826                 enter_smm_save_state_32(vcpu, buf);
6827
6828         /*
6829          * Give pre_enter_smm() a chance to make ISA-specific changes to the
6830          * vCPU state (e.g. leave guest mode) after we've saved the state into
6831          * the SMM state-save area.
6832          */
6833         kvm_x86_ops->pre_enter_smm(vcpu, buf);
6834
6835         vcpu->arch.hflags |= HF_SMM_MASK;
6836         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6837
6838         if (kvm_x86_ops->get_nmi_mask(vcpu))
6839                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6840         else
6841                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6842
6843         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6844         kvm_rip_write(vcpu, 0x8000);
6845
6846         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6847         kvm_x86_ops->set_cr0(vcpu, cr0);
6848         vcpu->arch.cr0 = cr0;
6849
6850         kvm_x86_ops->set_cr4(vcpu, 0);
6851
6852         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6853         dt.address = dt.size = 0;
6854         kvm_x86_ops->set_idt(vcpu, &dt);
6855
6856         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6857
6858         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6859         cs.base = vcpu->arch.smbase;
6860
6861         ds.selector = 0;
6862         ds.base = 0;
6863
6864         cs.limit    = ds.limit = 0xffffffff;
6865         cs.type     = ds.type = 0x3;
6866         cs.dpl      = ds.dpl = 0;
6867         cs.db       = ds.db = 0;
6868         cs.s        = ds.s = 1;
6869         cs.l        = ds.l = 0;
6870         cs.g        = ds.g = 1;
6871         cs.avl      = ds.avl = 0;
6872         cs.present  = ds.present = 1;
6873         cs.unusable = ds.unusable = 0;
6874         cs.padding  = ds.padding = 0;
6875
6876         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6877         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6878         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6879         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6880         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6881         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6882
6883         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6884                 kvm_x86_ops->set_efer(vcpu, 0);
6885
6886         kvm_update_cpuid(vcpu);
6887         kvm_mmu_reset_context(vcpu);
6888 }
6889
6890 static void process_smi(struct kvm_vcpu *vcpu)
6891 {
6892         vcpu->arch.smi_pending = true;
6893         kvm_make_request(KVM_REQ_EVENT, vcpu);
6894 }
6895
6896 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6897 {
6898         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6899 }
6900
6901 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6902 {
6903         u64 eoi_exit_bitmap[4];
6904
6905         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6906                 return;
6907
6908         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6909
6910         if (irqchip_split(vcpu->kvm))
6911                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6912         else {
6913                 if (vcpu->arch.apicv_active)
6914                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6915                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6916         }
6917         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6918                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6919         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6920 }
6921
6922 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6923                 unsigned long start, unsigned long end)
6924 {
6925         unsigned long apic_address;
6926
6927         /*
6928          * The physical address of apic access page is stored in the VMCS.
6929          * Update it when it becomes invalid.
6930          */
6931         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6932         if (start <= apic_address && apic_address < end)
6933                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6934 }
6935
6936 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6937 {
6938         struct page *page = NULL;
6939
6940         if (!lapic_in_kernel(vcpu))
6941                 return;
6942
6943         if (!kvm_x86_ops->set_apic_access_page_addr)
6944                 return;
6945
6946         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6947         if (is_error_page(page))
6948                 return;
6949         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6950
6951         /*
6952          * Do not pin apic access page in memory, the MMU notifier
6953          * will call us again if it is migrated or swapped out.
6954          */
6955         put_page(page);
6956 }
6957 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6958
6959 /*
6960  * Returns 1 to let vcpu_run() continue the guest execution loop without
6961  * exiting to the userspace.  Otherwise, the value will be returned to the
6962  * userspace.
6963  */
6964 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6965 {
6966         int r;
6967         bool req_int_win =
6968                 dm_request_for_irq_injection(vcpu) &&
6969                 kvm_cpu_accept_dm_intr(vcpu);
6970
6971         bool req_immediate_exit = false;
6972
6973         if (kvm_request_pending(vcpu)) {
6974                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6975                         kvm_mmu_unload(vcpu);
6976                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6977                         __kvm_migrate_timers(vcpu);
6978                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6979                         kvm_gen_update_masterclock(vcpu->kvm);
6980                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6981                         kvm_gen_kvmclock_update(vcpu);
6982                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6983                         r = kvm_guest_time_update(vcpu);
6984                         if (unlikely(r))
6985                                 goto out;
6986                 }
6987                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6988                         kvm_mmu_sync_roots(vcpu);
6989                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6990                         kvm_vcpu_flush_tlb(vcpu, true);
6991                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6992                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6993                         r = 0;
6994                         goto out;
6995                 }
6996                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6997                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6998                         vcpu->mmio_needed = 0;
6999                         r = 0;
7000                         goto out;
7001                 }
7002                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7003                         /* Page is swapped out. Do synthetic halt */
7004                         vcpu->arch.apf.halted = true;
7005                         r = 1;
7006                         goto out;
7007                 }
7008                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7009                         record_steal_time(vcpu);
7010                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7011                         process_smi(vcpu);
7012                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7013                         process_nmi(vcpu);
7014                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7015                         kvm_pmu_handle_event(vcpu);
7016                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7017                         kvm_pmu_deliver_pmi(vcpu);
7018                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7019                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7020                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7021                                      vcpu->arch.ioapic_handled_vectors)) {
7022                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7023                                 vcpu->run->eoi.vector =
7024                                                 vcpu->arch.pending_ioapic_eoi;
7025                                 r = 0;
7026                                 goto out;
7027                         }
7028                 }
7029                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7030                         vcpu_scan_ioapic(vcpu);
7031                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7032                         kvm_vcpu_reload_apic_access_page(vcpu);
7033                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7034                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7035                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7036                         r = 0;
7037                         goto out;
7038                 }
7039                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7040                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7041                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7042                         r = 0;
7043                         goto out;
7044                 }
7045                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7046                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7047                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7048                         r = 0;
7049                         goto out;
7050                 }
7051
7052                 /*
7053                  * KVM_REQ_HV_STIMER has to be processed after
7054                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7055                  * depend on the guest clock being up-to-date
7056                  */
7057                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7058                         kvm_hv_process_stimers(vcpu);
7059         }
7060
7061         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7062                 ++vcpu->stat.req_event;
7063                 kvm_apic_accept_events(vcpu);
7064                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7065                         r = 1;
7066                         goto out;
7067                 }
7068
7069                 if (inject_pending_event(vcpu, req_int_win) != 0)
7070                         req_immediate_exit = true;
7071                 else {
7072                         /* Enable SMI/NMI/IRQ window open exits if needed.
7073                          *
7074                          * SMIs have three cases:
7075                          * 1) They can be nested, and then there is nothing to
7076                          *    do here because RSM will cause a vmexit anyway.
7077                          * 2) There is an ISA-specific reason why SMI cannot be
7078                          *    injected, and the moment when this changes can be
7079                          *    intercepted.
7080                          * 3) Or the SMI can be pending because
7081                          *    inject_pending_event has completed the injection
7082                          *    of an IRQ or NMI from the previous vmexit, and
7083                          *    then we request an immediate exit to inject the
7084                          *    SMI.
7085                          */
7086                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7087                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7088                                         req_immediate_exit = true;
7089                         if (vcpu->arch.nmi_pending)
7090                                 kvm_x86_ops->enable_nmi_window(vcpu);
7091                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7092                                 kvm_x86_ops->enable_irq_window(vcpu);
7093                         WARN_ON(vcpu->arch.exception.pending);
7094                 }
7095
7096                 if (kvm_lapic_enabled(vcpu)) {
7097                         update_cr8_intercept(vcpu);
7098                         kvm_lapic_sync_to_vapic(vcpu);
7099                 }
7100         }
7101
7102         r = kvm_mmu_reload(vcpu);
7103         if (unlikely(r)) {
7104                 goto cancel_injection;
7105         }
7106
7107         preempt_disable();
7108
7109         kvm_x86_ops->prepare_guest_switch(vcpu);
7110
7111         /*
7112          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7113          * IPI are then delayed after guest entry, which ensures that they
7114          * result in virtual interrupt delivery.
7115          */
7116         local_irq_disable();
7117         vcpu->mode = IN_GUEST_MODE;
7118
7119         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7120
7121         /*
7122          * 1) We should set ->mode before checking ->requests.  Please see
7123          * the comment in kvm_vcpu_exiting_guest_mode().
7124          *
7125          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7126          * pairs with the memory barrier implicit in pi_test_and_set_on
7127          * (see vmx_deliver_posted_interrupt).
7128          *
7129          * 3) This also orders the write to mode from any reads to the page
7130          * tables done while the VCPU is running.  Please see the comment
7131          * in kvm_flush_remote_tlbs.
7132          */
7133         smp_mb__after_srcu_read_unlock();
7134
7135         /*
7136          * This handles the case where a posted interrupt was
7137          * notified with kvm_vcpu_kick.
7138          */
7139         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7140                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7141
7142         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7143             || need_resched() || signal_pending(current)) {
7144                 vcpu->mode = OUTSIDE_GUEST_MODE;
7145                 smp_wmb();
7146                 local_irq_enable();
7147                 preempt_enable();
7148                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7149                 r = 1;
7150                 goto cancel_injection;
7151         }
7152
7153         kvm_load_guest_xcr0(vcpu);
7154
7155         if (req_immediate_exit) {
7156                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7157                 smp_send_reschedule(vcpu->cpu);
7158         }
7159
7160         trace_kvm_entry(vcpu->vcpu_id);
7161         if (lapic_timer_advance_ns)
7162                 wait_lapic_expire(vcpu);
7163         guest_enter_irqoff();
7164
7165         if (unlikely(vcpu->arch.switch_db_regs)) {
7166                 set_debugreg(0, 7);
7167                 set_debugreg(vcpu->arch.eff_db[0], 0);
7168                 set_debugreg(vcpu->arch.eff_db[1], 1);
7169                 set_debugreg(vcpu->arch.eff_db[2], 2);
7170                 set_debugreg(vcpu->arch.eff_db[3], 3);
7171                 set_debugreg(vcpu->arch.dr6, 6);
7172                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7173         }
7174
7175         kvm_x86_ops->run(vcpu);
7176
7177         /*
7178          * Do this here before restoring debug registers on the host.  And
7179          * since we do this before handling the vmexit, a DR access vmexit
7180          * can (a) read the correct value of the debug registers, (b) set
7181          * KVM_DEBUGREG_WONT_EXIT again.
7182          */
7183         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7184                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7185                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7186                 kvm_update_dr0123(vcpu);
7187                 kvm_update_dr6(vcpu);
7188                 kvm_update_dr7(vcpu);
7189                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7190         }
7191
7192         /*
7193          * If the guest has used debug registers, at least dr7
7194          * will be disabled while returning to the host.
7195          * If we don't have active breakpoints in the host, we don't
7196          * care about the messed up debug address registers. But if
7197          * we have some of them active, restore the old state.
7198          */
7199         if (hw_breakpoint_active())
7200                 hw_breakpoint_restore();
7201
7202         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7203
7204         vcpu->mode = OUTSIDE_GUEST_MODE;
7205         smp_wmb();
7206
7207         kvm_put_guest_xcr0(vcpu);
7208
7209         kvm_x86_ops->handle_external_intr(vcpu);
7210
7211         ++vcpu->stat.exits;
7212
7213         guest_exit_irqoff();
7214
7215         local_irq_enable();
7216         preempt_enable();
7217
7218         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7219
7220         /*
7221          * Profile KVM exit RIPs:
7222          */
7223         if (unlikely(prof_on == KVM_PROFILING)) {
7224                 unsigned long rip = kvm_rip_read(vcpu);
7225                 profile_hit(KVM_PROFILING, (void *)rip);
7226         }
7227
7228         if (unlikely(vcpu->arch.tsc_always_catchup))
7229                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7230
7231         if (vcpu->arch.apic_attention)
7232                 kvm_lapic_sync_from_vapic(vcpu);
7233
7234         vcpu->arch.gpa_available = false;
7235         r = kvm_x86_ops->handle_exit(vcpu);
7236         return r;
7237
7238 cancel_injection:
7239         kvm_x86_ops->cancel_injection(vcpu);
7240         if (unlikely(vcpu->arch.apic_attention))
7241                 kvm_lapic_sync_from_vapic(vcpu);
7242 out:
7243         return r;
7244 }
7245
7246 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7247 {
7248         if (!kvm_arch_vcpu_runnable(vcpu) &&
7249             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7250                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7251                 kvm_vcpu_block(vcpu);
7252                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7253
7254                 if (kvm_x86_ops->post_block)
7255                         kvm_x86_ops->post_block(vcpu);
7256
7257                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7258                         return 1;
7259         }
7260
7261         kvm_apic_accept_events(vcpu);
7262         switch(vcpu->arch.mp_state) {
7263         case KVM_MP_STATE_HALTED:
7264                 vcpu->arch.pv.pv_unhalted = false;
7265                 vcpu->arch.mp_state =
7266                         KVM_MP_STATE_RUNNABLE;
7267         case KVM_MP_STATE_RUNNABLE:
7268                 vcpu->arch.apf.halted = false;
7269                 break;
7270         case KVM_MP_STATE_INIT_RECEIVED:
7271                 break;
7272         default:
7273                 return -EINTR;
7274                 break;
7275         }
7276         return 1;
7277 }
7278
7279 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7280 {
7281         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7282                 kvm_x86_ops->check_nested_events(vcpu, false);
7283
7284         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7285                 !vcpu->arch.apf.halted);
7286 }
7287
7288 static int vcpu_run(struct kvm_vcpu *vcpu)
7289 {
7290         int r;
7291         struct kvm *kvm = vcpu->kvm;
7292
7293         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7294
7295         for (;;) {
7296                 if (kvm_vcpu_running(vcpu)) {
7297                         r = vcpu_enter_guest(vcpu);
7298                 } else {
7299                         r = vcpu_block(kvm, vcpu);
7300                 }
7301
7302                 if (r <= 0)
7303                         break;
7304
7305                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7306                 if (kvm_cpu_has_pending_timer(vcpu))
7307                         kvm_inject_pending_timer_irqs(vcpu);
7308
7309                 if (dm_request_for_irq_injection(vcpu) &&
7310                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7311                         r = 0;
7312                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7313                         ++vcpu->stat.request_irq_exits;
7314                         break;
7315                 }
7316
7317                 kvm_check_async_pf_completion(vcpu);
7318
7319                 if (signal_pending(current)) {
7320                         r = -EINTR;
7321                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7322                         ++vcpu->stat.signal_exits;
7323                         break;
7324                 }
7325                 if (need_resched()) {
7326                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7327                         cond_resched();
7328                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7329                 }
7330         }
7331
7332         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7333
7334         return r;
7335 }
7336
7337 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7338 {
7339         int r;
7340         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7341         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7342         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7343         if (r != EMULATE_DONE)
7344                 return 0;
7345         return 1;
7346 }
7347
7348 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7349 {
7350         BUG_ON(!vcpu->arch.pio.count);
7351
7352         return complete_emulated_io(vcpu);
7353 }
7354
7355 /*
7356  * Implements the following, as a state machine:
7357  *
7358  * read:
7359  *   for each fragment
7360  *     for each mmio piece in the fragment
7361  *       write gpa, len
7362  *       exit
7363  *       copy data
7364  *   execute insn
7365  *
7366  * write:
7367  *   for each fragment
7368  *     for each mmio piece in the fragment
7369  *       write gpa, len
7370  *       copy data
7371  *       exit
7372  */
7373 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7374 {
7375         struct kvm_run *run = vcpu->run;
7376         struct kvm_mmio_fragment *frag;
7377         unsigned len;
7378
7379         BUG_ON(!vcpu->mmio_needed);
7380
7381         /* Complete previous fragment */
7382         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7383         len = min(8u, frag->len);
7384         if (!vcpu->mmio_is_write)
7385                 memcpy(frag->data, run->mmio.data, len);
7386
7387         if (frag->len <= 8) {
7388                 /* Switch to the next fragment. */
7389                 frag++;
7390                 vcpu->mmio_cur_fragment++;
7391         } else {
7392                 /* Go forward to the next mmio piece. */
7393                 frag->data += len;
7394                 frag->gpa += len;
7395                 frag->len -= len;
7396         }
7397
7398         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7399                 vcpu->mmio_needed = 0;
7400
7401                 /* FIXME: return into emulator if single-stepping.  */
7402                 if (vcpu->mmio_is_write)
7403                         return 1;
7404                 vcpu->mmio_read_completed = 1;
7405                 return complete_emulated_io(vcpu);
7406         }
7407
7408         run->exit_reason = KVM_EXIT_MMIO;
7409         run->mmio.phys_addr = frag->gpa;
7410         if (vcpu->mmio_is_write)
7411                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7412         run->mmio.len = min(8u, frag->len);
7413         run->mmio.is_write = vcpu->mmio_is_write;
7414         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7415         return 0;
7416 }
7417
7418
7419 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7420 {
7421         int r;
7422
7423         vcpu_load(vcpu);
7424         kvm_sigset_activate(vcpu);
7425         kvm_load_guest_fpu(vcpu);
7426
7427         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7428                 if (kvm_run->immediate_exit) {
7429                         r = -EINTR;
7430                         goto out;
7431                 }
7432                 kvm_vcpu_block(vcpu);
7433                 kvm_apic_accept_events(vcpu);
7434                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7435                 r = -EAGAIN;
7436                 if (signal_pending(current)) {
7437                         r = -EINTR;
7438                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7439                         ++vcpu->stat.signal_exits;
7440                 }
7441                 goto out;
7442         }
7443
7444         /* re-sync apic's tpr */
7445         if (!lapic_in_kernel(vcpu)) {
7446                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7447                         r = -EINVAL;
7448                         goto out;
7449                 }
7450         }
7451
7452         if (unlikely(vcpu->arch.complete_userspace_io)) {
7453                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7454                 vcpu->arch.complete_userspace_io = NULL;
7455                 r = cui(vcpu);
7456                 if (r <= 0)
7457                         goto out;
7458         } else
7459                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7460
7461         if (kvm_run->immediate_exit)
7462                 r = -EINTR;
7463         else
7464                 r = vcpu_run(vcpu);
7465
7466 out:
7467         kvm_put_guest_fpu(vcpu);
7468         post_kvm_run_save(vcpu);
7469         kvm_sigset_deactivate(vcpu);
7470
7471         vcpu_put(vcpu);
7472         return r;
7473 }
7474
7475 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7476 {
7477         vcpu_load(vcpu);
7478
7479         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7480                 /*
7481                  * We are here if userspace calls get_regs() in the middle of
7482                  * instruction emulation. Registers state needs to be copied
7483                  * back from emulation context to vcpu. Userspace shouldn't do
7484                  * that usually, but some bad designed PV devices (vmware
7485                  * backdoor interface) need this to work
7486                  */
7487                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7488                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7489         }
7490         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7491         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7492         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7493         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7494         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7495         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7496         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7497         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7498 #ifdef CONFIG_X86_64
7499         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7500         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7501         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7502         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7503         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7504         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7505         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7506         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7507 #endif
7508
7509         regs->rip = kvm_rip_read(vcpu);
7510         regs->rflags = kvm_get_rflags(vcpu);
7511
7512         vcpu_put(vcpu);
7513         return 0;
7514 }
7515
7516 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7517 {
7518         vcpu_load(vcpu);
7519
7520         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7521         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7522
7523         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7524         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7525         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7526         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7527         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7528         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7529         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7530         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7531 #ifdef CONFIG_X86_64
7532         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7533         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7534         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7535         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7536         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7537         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7538         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7539         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7540 #endif
7541
7542         kvm_rip_write(vcpu, regs->rip);
7543         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7544
7545         vcpu->arch.exception.pending = false;
7546
7547         kvm_make_request(KVM_REQ_EVENT, vcpu);
7548
7549         vcpu_put(vcpu);
7550         return 0;
7551 }
7552
7553 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7554 {
7555         struct kvm_segment cs;
7556
7557         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7558         *db = cs.db;
7559         *l = cs.l;
7560 }
7561 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7562
7563 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7564                                   struct kvm_sregs *sregs)
7565 {
7566         struct desc_ptr dt;
7567
7568         vcpu_load(vcpu);
7569
7570         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7571         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7572         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7573         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7574         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7575         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7576
7577         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7578         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7579
7580         kvm_x86_ops->get_idt(vcpu, &dt);
7581         sregs->idt.limit = dt.size;
7582         sregs->idt.base = dt.address;
7583         kvm_x86_ops->get_gdt(vcpu, &dt);
7584         sregs->gdt.limit = dt.size;
7585         sregs->gdt.base = dt.address;
7586
7587         sregs->cr0 = kvm_read_cr0(vcpu);
7588         sregs->cr2 = vcpu->arch.cr2;
7589         sregs->cr3 = kvm_read_cr3(vcpu);
7590         sregs->cr4 = kvm_read_cr4(vcpu);
7591         sregs->cr8 = kvm_get_cr8(vcpu);
7592         sregs->efer = vcpu->arch.efer;
7593         sregs->apic_base = kvm_get_apic_base(vcpu);
7594
7595         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7596
7597         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7598                 set_bit(vcpu->arch.interrupt.nr,
7599                         (unsigned long *)sregs->interrupt_bitmap);
7600
7601         vcpu_put(vcpu);
7602         return 0;
7603 }
7604
7605 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7606                                     struct kvm_mp_state *mp_state)
7607 {
7608         vcpu_load(vcpu);
7609
7610         kvm_apic_accept_events(vcpu);
7611         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7612                                         vcpu->arch.pv.pv_unhalted)
7613                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7614         else
7615                 mp_state->mp_state = vcpu->arch.mp_state;
7616
7617         vcpu_put(vcpu);
7618         return 0;
7619 }
7620
7621 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7622                                     struct kvm_mp_state *mp_state)
7623 {
7624         int ret = -EINVAL;
7625
7626         vcpu_load(vcpu);
7627
7628         if (!lapic_in_kernel(vcpu) &&
7629             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7630                 goto out;
7631
7632         /* INITs are latched while in SMM */
7633         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7634             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7635              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7636                 goto out;
7637
7638         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7639                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7640                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7641         } else
7642                 vcpu->arch.mp_state = mp_state->mp_state;
7643         kvm_make_request(KVM_REQ_EVENT, vcpu);
7644
7645         ret = 0;
7646 out:
7647         vcpu_put(vcpu);
7648         return ret;
7649 }
7650
7651 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7652                     int reason, bool has_error_code, u32 error_code)
7653 {
7654         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7655         int ret;
7656
7657         init_emulate_ctxt(vcpu);
7658
7659         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7660                                    has_error_code, error_code);
7661
7662         if (ret)
7663                 return EMULATE_FAIL;
7664
7665         kvm_rip_write(vcpu, ctxt->eip);
7666         kvm_set_rflags(vcpu, ctxt->eflags);
7667         kvm_make_request(KVM_REQ_EVENT, vcpu);
7668         return EMULATE_DONE;
7669 }
7670 EXPORT_SYMBOL_GPL(kvm_task_switch);
7671
7672 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7673 {
7674         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7675                 /*
7676                  * When EFER.LME and CR0.PG are set, the processor is in
7677                  * 64-bit mode (though maybe in a 32-bit code segment).
7678                  * CR4.PAE and EFER.LMA must be set.
7679                  */
7680                 if (!(sregs->cr4 & X86_CR4_PAE)
7681                     || !(sregs->efer & EFER_LMA))
7682                         return -EINVAL;
7683         } else {
7684                 /*
7685                  * Not in 64-bit mode: EFER.LMA is clear and the code
7686                  * segment cannot be 64-bit.
7687                  */
7688                 if (sregs->efer & EFER_LMA || sregs->cs.l)
7689                         return -EINVAL;
7690         }
7691
7692         return 0;
7693 }
7694
7695 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7696                                   struct kvm_sregs *sregs)
7697 {
7698         struct msr_data apic_base_msr;
7699         int mmu_reset_needed = 0;
7700         int pending_vec, max_bits, idx;
7701         struct desc_ptr dt;
7702         int ret = -EINVAL;
7703
7704         vcpu_load(vcpu);
7705
7706         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7707                         (sregs->cr4 & X86_CR4_OSXSAVE))
7708                 goto out;
7709
7710         if (kvm_valid_sregs(vcpu, sregs))
7711                 goto out;
7712
7713         apic_base_msr.data = sregs->apic_base;
7714         apic_base_msr.host_initiated = true;
7715         if (kvm_set_apic_base(vcpu, &apic_base_msr))
7716                 goto out;
7717
7718         dt.size = sregs->idt.limit;
7719         dt.address = sregs->idt.base;
7720         kvm_x86_ops->set_idt(vcpu, &dt);
7721         dt.size = sregs->gdt.limit;
7722         dt.address = sregs->gdt.base;
7723         kvm_x86_ops->set_gdt(vcpu, &dt);
7724
7725         vcpu->arch.cr2 = sregs->cr2;
7726         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7727         vcpu->arch.cr3 = sregs->cr3;
7728         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7729
7730         kvm_set_cr8(vcpu, sregs->cr8);
7731
7732         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7733         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7734
7735         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7736         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7737         vcpu->arch.cr0 = sregs->cr0;
7738
7739         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7740         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7741         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7742                 kvm_update_cpuid(vcpu);
7743
7744         idx = srcu_read_lock(&vcpu->kvm->srcu);
7745         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7746                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7747                 mmu_reset_needed = 1;
7748         }
7749         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7750
7751         if (mmu_reset_needed)
7752                 kvm_mmu_reset_context(vcpu);
7753
7754         max_bits = KVM_NR_INTERRUPTS;
7755         pending_vec = find_first_bit(
7756                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7757         if (pending_vec < max_bits) {
7758                 kvm_queue_interrupt(vcpu, pending_vec, false);
7759                 pr_debug("Set back pending irq %d\n", pending_vec);
7760         }
7761
7762         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7763         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7764         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7765         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7766         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7767         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7768
7769         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7770         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7771
7772         update_cr8_intercept(vcpu);
7773
7774         /* Older userspace won't unhalt the vcpu on reset. */
7775         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7776             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7777             !is_protmode(vcpu))
7778                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7779
7780         kvm_make_request(KVM_REQ_EVENT, vcpu);
7781
7782         ret = 0;
7783 out:
7784         vcpu_put(vcpu);
7785         return ret;
7786 }
7787
7788 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7789                                         struct kvm_guest_debug *dbg)
7790 {
7791         unsigned long rflags;
7792         int i, r;
7793
7794         vcpu_load(vcpu);
7795
7796         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7797                 r = -EBUSY;
7798                 if (vcpu->arch.exception.pending)
7799                         goto out;
7800                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7801                         kvm_queue_exception(vcpu, DB_VECTOR);
7802                 else
7803                         kvm_queue_exception(vcpu, BP_VECTOR);
7804         }
7805
7806         /*
7807          * Read rflags as long as potentially injected trace flags are still
7808          * filtered out.
7809          */
7810         rflags = kvm_get_rflags(vcpu);
7811
7812         vcpu->guest_debug = dbg->control;
7813         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7814                 vcpu->guest_debug = 0;
7815
7816         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7817                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7818                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7819                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7820         } else {
7821                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7822                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7823         }
7824         kvm_update_dr7(vcpu);
7825
7826         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7827                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7828                         get_segment_base(vcpu, VCPU_SREG_CS);
7829
7830         /*
7831          * Trigger an rflags update that will inject or remove the trace
7832          * flags.
7833          */
7834         kvm_set_rflags(vcpu, rflags);
7835
7836         kvm_x86_ops->update_bp_intercept(vcpu);
7837
7838         r = 0;
7839
7840 out:
7841         vcpu_put(vcpu);
7842         return r;
7843 }
7844
7845 /*
7846  * Translate a guest virtual address to a guest physical address.
7847  */
7848 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7849                                     struct kvm_translation *tr)
7850 {
7851         unsigned long vaddr = tr->linear_address;
7852         gpa_t gpa;
7853         int idx;
7854
7855         vcpu_load(vcpu);
7856
7857         idx = srcu_read_lock(&vcpu->kvm->srcu);
7858         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7859         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7860         tr->physical_address = gpa;
7861         tr->valid = gpa != UNMAPPED_GVA;
7862         tr->writeable = 1;
7863         tr->usermode = 0;
7864
7865         vcpu_put(vcpu);
7866         return 0;
7867 }
7868
7869 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7870 {
7871         struct fxregs_state *fxsave;
7872
7873         vcpu_load(vcpu);
7874
7875         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
7876         memcpy(fpu->fpr, fxsave->st_space, 128);
7877         fpu->fcw = fxsave->cwd;
7878         fpu->fsw = fxsave->swd;
7879         fpu->ftwx = fxsave->twd;
7880         fpu->last_opcode = fxsave->fop;
7881         fpu->last_ip = fxsave->rip;
7882         fpu->last_dp = fxsave->rdp;
7883         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7884
7885         vcpu_put(vcpu);
7886         return 0;
7887 }
7888
7889 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7890 {
7891         struct fxregs_state *fxsave;
7892
7893         vcpu_load(vcpu);
7894
7895         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
7896
7897         memcpy(fxsave->st_space, fpu->fpr, 128);
7898         fxsave->cwd = fpu->fcw;
7899         fxsave->swd = fpu->fsw;
7900         fxsave->twd = fpu->ftwx;
7901         fxsave->fop = fpu->last_opcode;
7902         fxsave->rip = fpu->last_ip;
7903         fxsave->rdp = fpu->last_dp;
7904         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7905
7906         vcpu_put(vcpu);
7907         return 0;
7908 }
7909
7910 static void fx_init(struct kvm_vcpu *vcpu)
7911 {
7912         fpstate_init(&vcpu->arch.guest_fpu.state);
7913         if (boot_cpu_has(X86_FEATURE_XSAVES))
7914                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7915                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7916
7917         /*
7918          * Ensure guest xcr0 is valid for loading
7919          */
7920         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7921
7922         vcpu->arch.cr0 |= X86_CR0_ET;
7923 }
7924
7925 /* Swap (qemu) user FPU context for the guest FPU context. */
7926 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7927 {
7928         preempt_disable();
7929         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7930         /* PKRU is separately restored in kvm_x86_ops->run.  */
7931         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7932                                 ~XFEATURE_MASK_PKRU);
7933         preempt_enable();
7934         trace_kvm_fpu(1);
7935 }
7936
7937 /* When vcpu_run ends, restore user space FPU context. */
7938 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7939 {
7940         preempt_disable();
7941         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7942         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7943         preempt_enable();
7944         ++vcpu->stat.fpu_reload;
7945         trace_kvm_fpu(0);
7946 }
7947
7948 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7949 {
7950         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7951
7952         kvmclock_reset(vcpu);
7953
7954         kvm_x86_ops->vcpu_free(vcpu);
7955         free_cpumask_var(wbinvd_dirty_mask);
7956 }
7957
7958 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7959                                                 unsigned int id)
7960 {
7961         struct kvm_vcpu *vcpu;
7962
7963         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7964                 printk_once(KERN_WARNING
7965                 "kvm: SMP vm created on host with unstable TSC; "
7966                 "guest TSC will not be reliable\n");
7967
7968         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7969
7970         return vcpu;
7971 }
7972
7973 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7974 {
7975         kvm_vcpu_mtrr_init(vcpu);
7976         vcpu_load(vcpu);
7977         kvm_vcpu_reset(vcpu, false);
7978         kvm_mmu_setup(vcpu);
7979         vcpu_put(vcpu);
7980         return 0;
7981 }
7982
7983 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7984 {
7985         struct msr_data msr;
7986         struct kvm *kvm = vcpu->kvm;
7987
7988         kvm_hv_vcpu_postcreate(vcpu);
7989
7990         if (mutex_lock_killable(&vcpu->mutex))
7991                 return;
7992         vcpu_load(vcpu);
7993         msr.data = 0x0;
7994         msr.index = MSR_IA32_TSC;
7995         msr.host_initiated = true;
7996         kvm_write_tsc(vcpu, &msr);
7997         vcpu_put(vcpu);
7998         mutex_unlock(&vcpu->mutex);
7999
8000         if (!kvmclock_periodic_sync)
8001                 return;
8002
8003         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8004                                         KVMCLOCK_SYNC_PERIOD);
8005 }
8006
8007 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8008 {
8009         vcpu->arch.apf.msr_val = 0;
8010
8011         vcpu_load(vcpu);
8012         kvm_mmu_unload(vcpu);
8013         vcpu_put(vcpu);
8014
8015         kvm_x86_ops->vcpu_free(vcpu);
8016 }
8017
8018 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8019 {
8020         vcpu->arch.hflags = 0;
8021
8022         vcpu->arch.smi_pending = 0;
8023         vcpu->arch.smi_count = 0;
8024         atomic_set(&vcpu->arch.nmi_queued, 0);
8025         vcpu->arch.nmi_pending = 0;
8026         vcpu->arch.nmi_injected = false;
8027         kvm_clear_interrupt_queue(vcpu);
8028         kvm_clear_exception_queue(vcpu);
8029         vcpu->arch.exception.pending = false;
8030
8031         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8032         kvm_update_dr0123(vcpu);
8033         vcpu->arch.dr6 = DR6_INIT;
8034         kvm_update_dr6(vcpu);
8035         vcpu->arch.dr7 = DR7_FIXED_1;
8036         kvm_update_dr7(vcpu);
8037
8038         vcpu->arch.cr2 = 0;
8039
8040         kvm_make_request(KVM_REQ_EVENT, vcpu);
8041         vcpu->arch.apf.msr_val = 0;
8042         vcpu->arch.st.msr_val = 0;
8043
8044         kvmclock_reset(vcpu);
8045
8046         kvm_clear_async_pf_completion_queue(vcpu);
8047         kvm_async_pf_hash_reset(vcpu);
8048         vcpu->arch.apf.halted = false;
8049
8050         if (kvm_mpx_supported()) {
8051                 void *mpx_state_buffer;
8052
8053                 /*
8054                  * To avoid have the INIT path from kvm_apic_has_events() that be
8055                  * called with loaded FPU and does not let userspace fix the state.
8056                  */
8057                 if (init_event)
8058                         kvm_put_guest_fpu(vcpu);
8059                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8060                                         XFEATURE_MASK_BNDREGS);
8061                 if (mpx_state_buffer)
8062                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8063                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8064                                         XFEATURE_MASK_BNDCSR);
8065                 if (mpx_state_buffer)
8066                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8067                 if (init_event)
8068                         kvm_load_guest_fpu(vcpu);
8069         }
8070
8071         if (!init_event) {
8072                 kvm_pmu_reset(vcpu);
8073                 vcpu->arch.smbase = 0x30000;
8074
8075                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8076                 vcpu->arch.msr_misc_features_enables = 0;
8077
8078                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8079         }
8080
8081         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8082         vcpu->arch.regs_avail = ~0;
8083         vcpu->arch.regs_dirty = ~0;
8084
8085         vcpu->arch.ia32_xss = 0;
8086
8087         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8088 }
8089
8090 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8091 {
8092         struct kvm_segment cs;
8093
8094         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8095         cs.selector = vector << 8;
8096         cs.base = vector << 12;
8097         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8098         kvm_rip_write(vcpu, 0);
8099 }
8100
8101 int kvm_arch_hardware_enable(void)
8102 {
8103         struct kvm *kvm;
8104         struct kvm_vcpu *vcpu;
8105         int i;
8106         int ret;
8107         u64 local_tsc;
8108         u64 max_tsc = 0;
8109         bool stable, backwards_tsc = false;
8110
8111         kvm_shared_msr_cpu_online();
8112         ret = kvm_x86_ops->hardware_enable();
8113         if (ret != 0)
8114                 return ret;
8115
8116         local_tsc = rdtsc();
8117         stable = !kvm_check_tsc_unstable();
8118         list_for_each_entry(kvm, &vm_list, vm_list) {
8119                 kvm_for_each_vcpu(i, vcpu, kvm) {
8120                         if (!stable && vcpu->cpu == smp_processor_id())
8121                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8122                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8123                                 backwards_tsc = true;
8124                                 if (vcpu->arch.last_host_tsc > max_tsc)
8125                                         max_tsc = vcpu->arch.last_host_tsc;
8126                         }
8127                 }
8128         }
8129
8130         /*
8131          * Sometimes, even reliable TSCs go backwards.  This happens on
8132          * platforms that reset TSC during suspend or hibernate actions, but
8133          * maintain synchronization.  We must compensate.  Fortunately, we can
8134          * detect that condition here, which happens early in CPU bringup,
8135          * before any KVM threads can be running.  Unfortunately, we can't
8136          * bring the TSCs fully up to date with real time, as we aren't yet far
8137          * enough into CPU bringup that we know how much real time has actually
8138          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8139          * variables that haven't been updated yet.
8140          *
8141          * So we simply find the maximum observed TSC above, then record the
8142          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8143          * the adjustment will be applied.  Note that we accumulate
8144          * adjustments, in case multiple suspend cycles happen before some VCPU
8145          * gets a chance to run again.  In the event that no KVM threads get a
8146          * chance to run, we will miss the entire elapsed period, as we'll have
8147          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8148          * loose cycle time.  This isn't too big a deal, since the loss will be
8149          * uniform across all VCPUs (not to mention the scenario is extremely
8150          * unlikely). It is possible that a second hibernate recovery happens
8151          * much faster than a first, causing the observed TSC here to be
8152          * smaller; this would require additional padding adjustment, which is
8153          * why we set last_host_tsc to the local tsc observed here.
8154          *
8155          * N.B. - this code below runs only on platforms with reliable TSC,
8156          * as that is the only way backwards_tsc is set above.  Also note
8157          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8158          * have the same delta_cyc adjustment applied if backwards_tsc
8159          * is detected.  Note further, this adjustment is only done once,
8160          * as we reset last_host_tsc on all VCPUs to stop this from being
8161          * called multiple times (one for each physical CPU bringup).
8162          *
8163          * Platforms with unreliable TSCs don't have to deal with this, they
8164          * will be compensated by the logic in vcpu_load, which sets the TSC to
8165          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8166          * guarantee that they stay in perfect synchronization.
8167          */
8168         if (backwards_tsc) {
8169                 u64 delta_cyc = max_tsc - local_tsc;
8170                 list_for_each_entry(kvm, &vm_list, vm_list) {
8171                         kvm->arch.backwards_tsc_observed = true;
8172                         kvm_for_each_vcpu(i, vcpu, kvm) {
8173                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8174                                 vcpu->arch.last_host_tsc = local_tsc;
8175                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8176                         }
8177
8178                         /*
8179                          * We have to disable TSC offset matching.. if you were
8180                          * booting a VM while issuing an S4 host suspend....
8181                          * you may have some problem.  Solving this issue is
8182                          * left as an exercise to the reader.
8183                          */
8184                         kvm->arch.last_tsc_nsec = 0;
8185                         kvm->arch.last_tsc_write = 0;
8186                 }
8187
8188         }
8189         return 0;
8190 }
8191
8192 void kvm_arch_hardware_disable(void)
8193 {
8194         kvm_x86_ops->hardware_disable();
8195         drop_user_return_notifiers();
8196 }
8197
8198 int kvm_arch_hardware_setup(void)
8199 {
8200         int r;
8201
8202         r = kvm_x86_ops->hardware_setup();
8203         if (r != 0)
8204                 return r;
8205
8206         if (kvm_has_tsc_control) {
8207                 /*
8208                  * Make sure the user can only configure tsc_khz values that
8209                  * fit into a signed integer.
8210                  * A min value is not calculated needed because it will always
8211                  * be 1 on all machines.
8212                  */
8213                 u64 max = min(0x7fffffffULL,
8214                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8215                 kvm_max_guest_tsc_khz = max;
8216
8217                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8218         }
8219
8220         kvm_init_msr_list();
8221         return 0;
8222 }
8223
8224 void kvm_arch_hardware_unsetup(void)
8225 {
8226         kvm_x86_ops->hardware_unsetup();
8227 }
8228
8229 void kvm_arch_check_processor_compat(void *rtn)
8230 {
8231         kvm_x86_ops->check_processor_compatibility(rtn);
8232 }
8233
8234 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8235 {
8236         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8237 }
8238 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8239
8240 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8241 {
8242         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8243 }
8244
8245 struct static_key kvm_no_apic_vcpu __read_mostly;
8246 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8247
8248 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8249 {
8250         struct page *page;
8251         int r;
8252
8253         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8254         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8255         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8256                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8257         else
8258                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8259
8260         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8261         if (!page) {
8262                 r = -ENOMEM;
8263                 goto fail;
8264         }
8265         vcpu->arch.pio_data = page_address(page);
8266
8267         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8268
8269         r = kvm_mmu_create(vcpu);
8270         if (r < 0)
8271                 goto fail_free_pio_data;
8272
8273         if (irqchip_in_kernel(vcpu->kvm)) {
8274                 r = kvm_create_lapic(vcpu);
8275                 if (r < 0)
8276                         goto fail_mmu_destroy;
8277         } else
8278                 static_key_slow_inc(&kvm_no_apic_vcpu);
8279
8280         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8281                                        GFP_KERNEL);
8282         if (!vcpu->arch.mce_banks) {
8283                 r = -ENOMEM;
8284                 goto fail_free_lapic;
8285         }
8286         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8287
8288         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8289                 r = -ENOMEM;
8290                 goto fail_free_mce_banks;
8291         }
8292
8293         fx_init(vcpu);
8294
8295         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8296
8297         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8298
8299         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8300
8301         kvm_async_pf_hash_reset(vcpu);
8302         kvm_pmu_init(vcpu);
8303
8304         vcpu->arch.pending_external_vector = -1;
8305         vcpu->arch.preempted_in_kernel = false;
8306
8307         kvm_hv_vcpu_init(vcpu);
8308
8309         return 0;
8310
8311 fail_free_mce_banks:
8312         kfree(vcpu->arch.mce_banks);
8313 fail_free_lapic:
8314         kvm_free_lapic(vcpu);
8315 fail_mmu_destroy:
8316         kvm_mmu_destroy(vcpu);
8317 fail_free_pio_data:
8318         free_page((unsigned long)vcpu->arch.pio_data);
8319 fail:
8320         return r;
8321 }
8322
8323 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8324 {
8325         int idx;
8326
8327         kvm_hv_vcpu_uninit(vcpu);
8328         kvm_pmu_destroy(vcpu);
8329         kfree(vcpu->arch.mce_banks);
8330         kvm_free_lapic(vcpu);
8331         idx = srcu_read_lock(&vcpu->kvm->srcu);
8332         kvm_mmu_destroy(vcpu);
8333         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8334         free_page((unsigned long)vcpu->arch.pio_data);
8335         if (!lapic_in_kernel(vcpu))
8336                 static_key_slow_dec(&kvm_no_apic_vcpu);
8337 }
8338
8339 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8340 {
8341         kvm_x86_ops->sched_in(vcpu, cpu);
8342 }
8343
8344 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8345 {
8346         if (type)
8347                 return -EINVAL;
8348
8349         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8350         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8351         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8352         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8353         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8354
8355         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8356         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8357         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8358         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8359                 &kvm->arch.irq_sources_bitmap);
8360
8361         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8362         mutex_init(&kvm->arch.apic_map_lock);
8363         mutex_init(&kvm->arch.hyperv.hv_lock);
8364         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8365
8366         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8367         pvclock_update_vm_gtod_copy(kvm);
8368
8369         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8370         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8371
8372         kvm_page_track_init(kvm);
8373         kvm_mmu_init_vm(kvm);
8374
8375         if (kvm_x86_ops->vm_init)
8376                 return kvm_x86_ops->vm_init(kvm);
8377
8378         return 0;
8379 }
8380
8381 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8382 {
8383         vcpu_load(vcpu);
8384         kvm_mmu_unload(vcpu);
8385         vcpu_put(vcpu);
8386 }
8387
8388 static void kvm_free_vcpus(struct kvm *kvm)
8389 {
8390         unsigned int i;
8391         struct kvm_vcpu *vcpu;
8392
8393         /*
8394          * Unpin any mmu pages first.
8395          */
8396         kvm_for_each_vcpu(i, vcpu, kvm) {
8397                 kvm_clear_async_pf_completion_queue(vcpu);
8398                 kvm_unload_vcpu_mmu(vcpu);
8399         }
8400         kvm_for_each_vcpu(i, vcpu, kvm)
8401                 kvm_arch_vcpu_free(vcpu);
8402
8403         mutex_lock(&kvm->lock);
8404         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8405                 kvm->vcpus[i] = NULL;
8406
8407         atomic_set(&kvm->online_vcpus, 0);
8408         mutex_unlock(&kvm->lock);
8409 }
8410
8411 void kvm_arch_sync_events(struct kvm *kvm)
8412 {
8413         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8414         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8415         kvm_free_pit(kvm);
8416 }
8417
8418 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8419 {
8420         int i, r;
8421         unsigned long hva;
8422         struct kvm_memslots *slots = kvm_memslots(kvm);
8423         struct kvm_memory_slot *slot, old;
8424
8425         /* Called with kvm->slots_lock held.  */
8426         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8427                 return -EINVAL;
8428
8429         slot = id_to_memslot(slots, id);
8430         if (size) {
8431                 if (slot->npages)
8432                         return -EEXIST;
8433
8434                 /*
8435                  * MAP_SHARED to prevent internal slot pages from being moved
8436                  * by fork()/COW.
8437                  */
8438                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8439                               MAP_SHARED | MAP_ANONYMOUS, 0);
8440                 if (IS_ERR((void *)hva))
8441                         return PTR_ERR((void *)hva);
8442         } else {
8443                 if (!slot->npages)
8444                         return 0;
8445
8446                 hva = 0;
8447         }
8448
8449         old = *slot;
8450         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8451                 struct kvm_userspace_memory_region m;
8452
8453                 m.slot = id | (i << 16);
8454                 m.flags = 0;
8455                 m.guest_phys_addr = gpa;
8456                 m.userspace_addr = hva;
8457                 m.memory_size = size;
8458                 r = __kvm_set_memory_region(kvm, &m);
8459                 if (r < 0)
8460                         return r;
8461         }
8462
8463         if (!size) {
8464                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8465                 WARN_ON(r < 0);
8466         }
8467
8468         return 0;
8469 }
8470 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8471
8472 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8473 {
8474         int r;
8475
8476         mutex_lock(&kvm->slots_lock);
8477         r = __x86_set_memory_region(kvm, id, gpa, size);
8478         mutex_unlock(&kvm->slots_lock);
8479
8480         return r;
8481 }
8482 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8483
8484 void kvm_arch_destroy_vm(struct kvm *kvm)
8485 {
8486         if (current->mm == kvm->mm) {
8487                 /*
8488                  * Free memory regions allocated on behalf of userspace,
8489                  * unless the the memory map has changed due to process exit
8490                  * or fd copying.
8491                  */
8492                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8493                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8494                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8495         }
8496         if (kvm_x86_ops->vm_destroy)
8497                 kvm_x86_ops->vm_destroy(kvm);
8498         kvm_pic_destroy(kvm);
8499         kvm_ioapic_destroy(kvm);
8500         kvm_free_vcpus(kvm);
8501         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8502         kvm_mmu_uninit_vm(kvm);
8503         kvm_page_track_cleanup(kvm);
8504 }
8505
8506 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8507                            struct kvm_memory_slot *dont)
8508 {
8509         int i;
8510
8511         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8512                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8513                         kvfree(free->arch.rmap[i]);
8514                         free->arch.rmap[i] = NULL;
8515                 }
8516                 if (i == 0)
8517                         continue;
8518
8519                 if (!dont || free->arch.lpage_info[i - 1] !=
8520                              dont->arch.lpage_info[i - 1]) {
8521                         kvfree(free->arch.lpage_info[i - 1]);
8522                         free->arch.lpage_info[i - 1] = NULL;
8523                 }
8524         }
8525
8526         kvm_page_track_free_memslot(free, dont);
8527 }
8528
8529 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8530                             unsigned long npages)
8531 {
8532         int i;
8533
8534         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8535                 struct kvm_lpage_info *linfo;
8536                 unsigned long ugfn;
8537                 int lpages;
8538                 int level = i + 1;
8539
8540                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8541                                       slot->base_gfn, level) + 1;
8542
8543                 slot->arch.rmap[i] =
8544                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8545                 if (!slot->arch.rmap[i])
8546                         goto out_free;
8547                 if (i == 0)
8548                         continue;
8549
8550                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8551                 if (!linfo)
8552                         goto out_free;
8553
8554                 slot->arch.lpage_info[i - 1] = linfo;
8555
8556                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8557                         linfo[0].disallow_lpage = 1;
8558                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8559                         linfo[lpages - 1].disallow_lpage = 1;
8560                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8561                 /*
8562                  * If the gfn and userspace address are not aligned wrt each
8563                  * other, or if explicitly asked to, disable large page
8564                  * support for this slot
8565                  */
8566                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8567                     !kvm_largepages_enabled()) {
8568                         unsigned long j;
8569
8570                         for (j = 0; j < lpages; ++j)
8571                                 linfo[j].disallow_lpage = 1;
8572                 }
8573         }
8574
8575         if (kvm_page_track_create_memslot(slot, npages))
8576                 goto out_free;
8577
8578         return 0;
8579
8580 out_free:
8581         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8582                 kvfree(slot->arch.rmap[i]);
8583                 slot->arch.rmap[i] = NULL;
8584                 if (i == 0)
8585                         continue;
8586
8587                 kvfree(slot->arch.lpage_info[i - 1]);
8588                 slot->arch.lpage_info[i - 1] = NULL;
8589         }
8590         return -ENOMEM;
8591 }
8592
8593 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8594 {
8595         /*
8596          * memslots->generation has been incremented.
8597          * mmio generation may have reached its maximum value.
8598          */
8599         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8600 }
8601
8602 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8603                                 struct kvm_memory_slot *memslot,
8604                                 const struct kvm_userspace_memory_region *mem,
8605                                 enum kvm_mr_change change)
8606 {
8607         return 0;
8608 }
8609
8610 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8611                                      struct kvm_memory_slot *new)
8612 {
8613         /* Still write protect RO slot */
8614         if (new->flags & KVM_MEM_READONLY) {
8615                 kvm_mmu_slot_remove_write_access(kvm, new);
8616                 return;
8617         }
8618
8619         /*
8620          * Call kvm_x86_ops dirty logging hooks when they are valid.
8621          *
8622          * kvm_x86_ops->slot_disable_log_dirty is called when:
8623          *
8624          *  - KVM_MR_CREATE with dirty logging is disabled
8625          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8626          *
8627          * The reason is, in case of PML, we need to set D-bit for any slots
8628          * with dirty logging disabled in order to eliminate unnecessary GPA
8629          * logging in PML buffer (and potential PML buffer full VMEXT). This
8630          * guarantees leaving PML enabled during guest's lifetime won't have
8631          * any additonal overhead from PML when guest is running with dirty
8632          * logging disabled for memory slots.
8633          *
8634          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8635          * to dirty logging mode.
8636          *
8637          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8638          *
8639          * In case of write protect:
8640          *
8641          * Write protect all pages for dirty logging.
8642          *
8643          * All the sptes including the large sptes which point to this
8644          * slot are set to readonly. We can not create any new large
8645          * spte on this slot until the end of the logging.
8646          *
8647          * See the comments in fast_page_fault().
8648          */
8649         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8650                 if (kvm_x86_ops->slot_enable_log_dirty)
8651                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8652                 else
8653                         kvm_mmu_slot_remove_write_access(kvm, new);
8654         } else {
8655                 if (kvm_x86_ops->slot_disable_log_dirty)
8656                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8657         }
8658 }
8659
8660 void kvm_arch_commit_memory_region(struct kvm *kvm,
8661                                 const struct kvm_userspace_memory_region *mem,
8662                                 const struct kvm_memory_slot *old,
8663                                 const struct kvm_memory_slot *new,
8664                                 enum kvm_mr_change change)
8665 {
8666         int nr_mmu_pages = 0;
8667
8668         if (!kvm->arch.n_requested_mmu_pages)
8669                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8670
8671         if (nr_mmu_pages)
8672                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8673
8674         /*
8675          * Dirty logging tracks sptes in 4k granularity, meaning that large
8676          * sptes have to be split.  If live migration is successful, the guest
8677          * in the source machine will be destroyed and large sptes will be
8678          * created in the destination. However, if the guest continues to run
8679          * in the source machine (for example if live migration fails), small
8680          * sptes will remain around and cause bad performance.
8681          *
8682          * Scan sptes if dirty logging has been stopped, dropping those
8683          * which can be collapsed into a single large-page spte.  Later
8684          * page faults will create the large-page sptes.
8685          */
8686         if ((change != KVM_MR_DELETE) &&
8687                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8688                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8689                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8690
8691         /*
8692          * Set up write protection and/or dirty logging for the new slot.
8693          *
8694          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8695          * been zapped so no dirty logging staff is needed for old slot. For
8696          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8697          * new and it's also covered when dealing with the new slot.
8698          *
8699          * FIXME: const-ify all uses of struct kvm_memory_slot.
8700          */
8701         if (change != KVM_MR_DELETE)
8702                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8703 }
8704
8705 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8706 {
8707         kvm_mmu_invalidate_zap_all_pages(kvm);
8708 }
8709
8710 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8711                                    struct kvm_memory_slot *slot)
8712 {
8713         kvm_page_track_flush_slot(kvm, slot);
8714 }
8715
8716 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8717 {
8718         if (!list_empty_careful(&vcpu->async_pf.done))
8719                 return true;
8720
8721         if (kvm_apic_has_events(vcpu))
8722                 return true;
8723
8724         if (vcpu->arch.pv.pv_unhalted)
8725                 return true;
8726
8727         if (vcpu->arch.exception.pending)
8728                 return true;
8729
8730         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8731             (vcpu->arch.nmi_pending &&
8732              kvm_x86_ops->nmi_allowed(vcpu)))
8733                 return true;
8734
8735         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8736             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8737                 return true;
8738
8739         if (kvm_arch_interrupt_allowed(vcpu) &&
8740             kvm_cpu_has_interrupt(vcpu))
8741                 return true;
8742
8743         if (kvm_hv_has_stimer_pending(vcpu))
8744                 return true;
8745
8746         return false;
8747 }
8748
8749 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8750 {
8751         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8752 }
8753
8754 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8755 {
8756         return vcpu->arch.preempted_in_kernel;
8757 }
8758
8759 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8760 {
8761         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8762 }
8763
8764 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8765 {
8766         return kvm_x86_ops->interrupt_allowed(vcpu);
8767 }
8768
8769 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8770 {
8771         if (is_64_bit_mode(vcpu))
8772                 return kvm_rip_read(vcpu);
8773         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8774                      kvm_rip_read(vcpu));
8775 }
8776 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8777
8778 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8779 {
8780         return kvm_get_linear_rip(vcpu) == linear_rip;
8781 }
8782 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8783
8784 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8785 {
8786         unsigned long rflags;
8787
8788         rflags = kvm_x86_ops->get_rflags(vcpu);
8789         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8790                 rflags &= ~X86_EFLAGS_TF;
8791         return rflags;
8792 }
8793 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8794
8795 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8796 {
8797         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8798             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8799                 rflags |= X86_EFLAGS_TF;
8800         kvm_x86_ops->set_rflags(vcpu, rflags);
8801 }
8802
8803 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8804 {
8805         __kvm_set_rflags(vcpu, rflags);
8806         kvm_make_request(KVM_REQ_EVENT, vcpu);
8807 }
8808 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8809
8810 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8811 {
8812         int r;
8813
8814         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8815               work->wakeup_all)
8816                 return;
8817
8818         r = kvm_mmu_reload(vcpu);
8819         if (unlikely(r))
8820                 return;
8821
8822         if (!vcpu->arch.mmu.direct_map &&
8823               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8824                 return;
8825
8826         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8827 }
8828
8829 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8830 {
8831         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8832 }
8833
8834 static inline u32 kvm_async_pf_next_probe(u32 key)
8835 {
8836         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8837 }
8838
8839 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8840 {
8841         u32 key = kvm_async_pf_hash_fn(gfn);
8842
8843         while (vcpu->arch.apf.gfns[key] != ~0)
8844                 key = kvm_async_pf_next_probe(key);
8845
8846         vcpu->arch.apf.gfns[key] = gfn;
8847 }
8848
8849 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8850 {
8851         int i;
8852         u32 key = kvm_async_pf_hash_fn(gfn);
8853
8854         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8855                      (vcpu->arch.apf.gfns[key] != gfn &&
8856                       vcpu->arch.apf.gfns[key] != ~0); i++)
8857                 key = kvm_async_pf_next_probe(key);
8858
8859         return key;
8860 }
8861
8862 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8863 {
8864         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8865 }
8866
8867 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8868 {
8869         u32 i, j, k;
8870
8871         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8872         while (true) {
8873                 vcpu->arch.apf.gfns[i] = ~0;
8874                 do {
8875                         j = kvm_async_pf_next_probe(j);
8876                         if (vcpu->arch.apf.gfns[j] == ~0)
8877                                 return;
8878                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8879                         /*
8880                          * k lies cyclically in ]i,j]
8881                          * |    i.k.j |
8882                          * |....j i.k.| or  |.k..j i...|
8883                          */
8884                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8885                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8886                 i = j;
8887         }
8888 }
8889
8890 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8891 {
8892
8893         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8894                                       sizeof(val));
8895 }
8896
8897 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8898 {
8899
8900         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8901                                       sizeof(u32));
8902 }
8903
8904 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8905                                      struct kvm_async_pf *work)
8906 {
8907         struct x86_exception fault;
8908
8909         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8910         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8911
8912         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8913             (vcpu->arch.apf.send_user_only &&
8914              kvm_x86_ops->get_cpl(vcpu) == 0))
8915                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8916         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8917                 fault.vector = PF_VECTOR;
8918                 fault.error_code_valid = true;
8919                 fault.error_code = 0;
8920                 fault.nested_page_fault = false;
8921                 fault.address = work->arch.token;
8922                 fault.async_page_fault = true;
8923                 kvm_inject_page_fault(vcpu, &fault);
8924         }
8925 }
8926
8927 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8928                                  struct kvm_async_pf *work)
8929 {
8930         struct x86_exception fault;
8931         u32 val;
8932
8933         if (work->wakeup_all)
8934                 work->arch.token = ~0; /* broadcast wakeup */
8935         else
8936                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8937         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8938
8939         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8940             !apf_get_user(vcpu, &val)) {
8941                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8942                     vcpu->arch.exception.pending &&
8943                     vcpu->arch.exception.nr == PF_VECTOR &&
8944                     !apf_put_user(vcpu, 0)) {
8945                         vcpu->arch.exception.injected = false;
8946                         vcpu->arch.exception.pending = false;
8947                         vcpu->arch.exception.nr = 0;
8948                         vcpu->arch.exception.has_error_code = false;
8949                         vcpu->arch.exception.error_code = 0;
8950                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8951                         fault.vector = PF_VECTOR;
8952                         fault.error_code_valid = true;
8953                         fault.error_code = 0;
8954                         fault.nested_page_fault = false;
8955                         fault.address = work->arch.token;
8956                         fault.async_page_fault = true;
8957                         kvm_inject_page_fault(vcpu, &fault);
8958                 }
8959         }
8960         vcpu->arch.apf.halted = false;
8961         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8962 }
8963
8964 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8965 {
8966         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8967                 return true;
8968         else
8969                 return kvm_can_do_async_pf(vcpu);
8970 }
8971
8972 void kvm_arch_start_assignment(struct kvm *kvm)
8973 {
8974         atomic_inc(&kvm->arch.assigned_device_count);
8975 }
8976 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8977
8978 void kvm_arch_end_assignment(struct kvm *kvm)
8979 {
8980         atomic_dec(&kvm->arch.assigned_device_count);
8981 }
8982 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8983
8984 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8985 {
8986         return atomic_read(&kvm->arch.assigned_device_count);
8987 }
8988 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8989
8990 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8991 {
8992         atomic_inc(&kvm->arch.noncoherent_dma_count);
8993 }
8994 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8995
8996 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8997 {
8998         atomic_dec(&kvm->arch.noncoherent_dma_count);
8999 }
9000 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9001
9002 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9003 {
9004         return atomic_read(&kvm->arch.noncoherent_dma_count);
9005 }
9006 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9007
9008 bool kvm_arch_has_irq_bypass(void)
9009 {
9010         return kvm_x86_ops->update_pi_irte != NULL;
9011 }
9012
9013 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9014                                       struct irq_bypass_producer *prod)
9015 {
9016         struct kvm_kernel_irqfd *irqfd =
9017                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9018
9019         irqfd->producer = prod;
9020
9021         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9022                                            prod->irq, irqfd->gsi, 1);
9023 }
9024
9025 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9026                                       struct irq_bypass_producer *prod)
9027 {
9028         int ret;
9029         struct kvm_kernel_irqfd *irqfd =
9030                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9031
9032         WARN_ON(irqfd->producer != prod);
9033         irqfd->producer = NULL;
9034
9035         /*
9036          * When producer of consumer is unregistered, we change back to
9037          * remapped mode, so we can re-use the current implementation
9038          * when the irq is masked/disabled or the consumer side (KVM
9039          * int this case doesn't want to receive the interrupts.
9040         */
9041         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9042         if (ret)
9043                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9044                        " fails: %d\n", irqfd->consumer.token, ret);
9045 }
9046
9047 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9048                                    uint32_t guest_irq, bool set)
9049 {
9050         if (!kvm_x86_ops->update_pi_irte)
9051                 return -EINVAL;
9052
9053         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9054 }
9055
9056 bool kvm_vector_hashing_enabled(void)
9057 {
9058         return vector_hashing;
9059 }
9060 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9061
9062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9064 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9066 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9067 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9068 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9069 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9070 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9071 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9072 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9073 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9074 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9075 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9076 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9077 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9078 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9079 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9080 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);