]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'nfs-for-4.16-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83  * - enable syscall per default because its emulated by KVM
84  * - enable LME and LMA per default on 64 bit KVM
85  */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 static bool __read_mostly report_ignored_msrs = true;
111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
112
113 unsigned int min_timer_period_us = 500;
114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
115
116 static bool __read_mostly kvmclock_periodic_sync = true;
117 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
118
119 bool __read_mostly kvm_has_tsc_control;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
121 u32  __read_mostly kvm_max_guest_tsc_khz;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
123 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
125 u64  __read_mostly kvm_max_tsc_scaling_ratio;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
129
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm = 250;
132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
133
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns = 0;
136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly vector_hashing = true;
139 module_param(vector_hashing, bool, S_IRUGO);
140
141 #define KVM_NR_SHARED_MSRS 16
142
143 struct kvm_shared_msrs_global {
144         int nr;
145         u32 msrs[KVM_NR_SHARED_MSRS];
146 };
147
148 struct kvm_shared_msrs {
149         struct user_return_notifier urn;
150         bool registered;
151         struct kvm_shared_msr_values {
152                 u64 host;
153                 u64 curr;
154         } values[KVM_NR_SHARED_MSRS];
155 };
156
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
158 static struct kvm_shared_msrs __percpu *shared_msrs;
159
160 struct kvm_stats_debugfs_item debugfs_entries[] = {
161         { "pf_fixed", VCPU_STAT(pf_fixed) },
162         { "pf_guest", VCPU_STAT(pf_guest) },
163         { "tlb_flush", VCPU_STAT(tlb_flush) },
164         { "invlpg", VCPU_STAT(invlpg) },
165         { "exits", VCPU_STAT(exits) },
166         { "io_exits", VCPU_STAT(io_exits) },
167         { "mmio_exits", VCPU_STAT(mmio_exits) },
168         { "signal_exits", VCPU_STAT(signal_exits) },
169         { "irq_window", VCPU_STAT(irq_window_exits) },
170         { "nmi_window", VCPU_STAT(nmi_window_exits) },
171         { "halt_exits", VCPU_STAT(halt_exits) },
172         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
173         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
174         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
175         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
176         { "hypercalls", VCPU_STAT(hypercalls) },
177         { "request_irq", VCPU_STAT(request_irq_exits) },
178         { "irq_exits", VCPU_STAT(irq_exits) },
179         { "host_state_reload", VCPU_STAT(host_state_reload) },
180         { "efer_reload", VCPU_STAT(efer_reload) },
181         { "fpu_reload", VCPU_STAT(fpu_reload) },
182         { "insn_emulation", VCPU_STAT(insn_emulation) },
183         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
184         { "irq_injections", VCPU_STAT(irq_injections) },
185         { "nmi_injections", VCPU_STAT(nmi_injections) },
186         { "req_event", VCPU_STAT(req_event) },
187         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
188         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
189         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
190         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
191         { "mmu_flooded", VM_STAT(mmu_flooded) },
192         { "mmu_recycled", VM_STAT(mmu_recycled) },
193         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
194         { "mmu_unsync", VM_STAT(mmu_unsync) },
195         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
196         { "largepages", VM_STAT(lpages) },
197         { "max_mmu_page_hash_collisions",
198                 VM_STAT(max_mmu_page_hash_collisions) },
199         { NULL }
200 };
201
202 u64 __read_mostly host_xcr0;
203
204 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
205
206 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
207 {
208         int i;
209         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
210                 vcpu->arch.apf.gfns[i] = ~0;
211 }
212
213 static void kvm_on_user_return(struct user_return_notifier *urn)
214 {
215         unsigned slot;
216         struct kvm_shared_msrs *locals
217                 = container_of(urn, struct kvm_shared_msrs, urn);
218         struct kvm_shared_msr_values *values;
219         unsigned long flags;
220
221         /*
222          * Disabling irqs at this point since the following code could be
223          * interrupted and executed through kvm_arch_hardware_disable()
224          */
225         local_irq_save(flags);
226         if (locals->registered) {
227                 locals->registered = false;
228                 user_return_notifier_unregister(urn);
229         }
230         local_irq_restore(flags);
231         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
232                 values = &locals->values[slot];
233                 if (values->host != values->curr) {
234                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
235                         values->curr = values->host;
236                 }
237         }
238 }
239
240 static void shared_msr_update(unsigned slot, u32 msr)
241 {
242         u64 value;
243         unsigned int cpu = smp_processor_id();
244         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
245
246         /* only read, and nobody should modify it at this time,
247          * so don't need lock */
248         if (slot >= shared_msrs_global.nr) {
249                 printk(KERN_ERR "kvm: invalid MSR slot!");
250                 return;
251         }
252         rdmsrl_safe(msr, &value);
253         smsr->values[slot].host = value;
254         smsr->values[slot].curr = value;
255 }
256
257 void kvm_define_shared_msr(unsigned slot, u32 msr)
258 {
259         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
260         shared_msrs_global.msrs[slot] = msr;
261         if (slot >= shared_msrs_global.nr)
262                 shared_msrs_global.nr = slot + 1;
263 }
264 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
265
266 static void kvm_shared_msr_cpu_online(void)
267 {
268         unsigned i;
269
270         for (i = 0; i < shared_msrs_global.nr; ++i)
271                 shared_msr_update(i, shared_msrs_global.msrs[i]);
272 }
273
274 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
275 {
276         unsigned int cpu = smp_processor_id();
277         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278         int err;
279
280         if (((value ^ smsr->values[slot].curr) & mask) == 0)
281                 return 0;
282         smsr->values[slot].curr = value;
283         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
284         if (err)
285                 return 1;
286
287         if (!smsr->registered) {
288                 smsr->urn.on_user_return = kvm_on_user_return;
289                 user_return_notifier_register(&smsr->urn);
290                 smsr->registered = true;
291         }
292         return 0;
293 }
294 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
295
296 static void drop_user_return_notifiers(void)
297 {
298         unsigned int cpu = smp_processor_id();
299         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300
301         if (smsr->registered)
302                 kvm_on_user_return(&smsr->urn);
303 }
304
305 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
306 {
307         return vcpu->arch.apic_base;
308 }
309 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
310
311 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
312 {
313         u64 old_state = vcpu->arch.apic_base &
314                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315         u64 new_state = msr_info->data &
316                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
317         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
318                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
319
320         if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
321                 return 1;
322         if (!msr_info->host_initiated &&
323             ((new_state == MSR_IA32_APICBASE_ENABLE &&
324               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
325              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
326               old_state == 0)))
327                 return 1;
328
329         kvm_lapic_set_base(vcpu, msr_info->data);
330         return 0;
331 }
332 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
333
334 asmlinkage __visible void kvm_spurious_fault(void)
335 {
336         /* Fault while not rebooting.  We want the trace. */
337         BUG();
338 }
339 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
340
341 #define EXCPT_BENIGN            0
342 #define EXCPT_CONTRIBUTORY      1
343 #define EXCPT_PF                2
344
345 static int exception_class(int vector)
346 {
347         switch (vector) {
348         case PF_VECTOR:
349                 return EXCPT_PF;
350         case DE_VECTOR:
351         case TS_VECTOR:
352         case NP_VECTOR:
353         case SS_VECTOR:
354         case GP_VECTOR:
355                 return EXCPT_CONTRIBUTORY;
356         default:
357                 break;
358         }
359         return EXCPT_BENIGN;
360 }
361
362 #define EXCPT_FAULT             0
363 #define EXCPT_TRAP              1
364 #define EXCPT_ABORT             2
365 #define EXCPT_INTERRUPT         3
366
367 static int exception_type(int vector)
368 {
369         unsigned int mask;
370
371         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
372                 return EXCPT_INTERRUPT;
373
374         mask = 1 << vector;
375
376         /* #DB is trap, as instruction watchpoints are handled elsewhere */
377         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
378                 return EXCPT_TRAP;
379
380         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
381                 return EXCPT_ABORT;
382
383         /* Reserved exceptions will result in fault */
384         return EXCPT_FAULT;
385 }
386
387 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
388                 unsigned nr, bool has_error, u32 error_code,
389                 bool reinject)
390 {
391         u32 prev_nr;
392         int class1, class2;
393
394         kvm_make_request(KVM_REQ_EVENT, vcpu);
395
396         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
397         queue:
398                 if (has_error && !is_protmode(vcpu))
399                         has_error = false;
400                 if (reinject) {
401                         /*
402                          * On vmentry, vcpu->arch.exception.pending is only
403                          * true if an event injection was blocked by
404                          * nested_run_pending.  In that case, however,
405                          * vcpu_enter_guest requests an immediate exit,
406                          * and the guest shouldn't proceed far enough to
407                          * need reinjection.
408                          */
409                         WARN_ON_ONCE(vcpu->arch.exception.pending);
410                         vcpu->arch.exception.injected = true;
411                 } else {
412                         vcpu->arch.exception.pending = true;
413                         vcpu->arch.exception.injected = false;
414                 }
415                 vcpu->arch.exception.has_error_code = has_error;
416                 vcpu->arch.exception.nr = nr;
417                 vcpu->arch.exception.error_code = error_code;
418                 return;
419         }
420
421         /* to check exception */
422         prev_nr = vcpu->arch.exception.nr;
423         if (prev_nr == DF_VECTOR) {
424                 /* triple fault -> shutdown */
425                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
426                 return;
427         }
428         class1 = exception_class(prev_nr);
429         class2 = exception_class(nr);
430         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
431                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
432                 /*
433                  * Generate double fault per SDM Table 5-5.  Set
434                  * exception.pending = true so that the double fault
435                  * can trigger a nested vmexit.
436                  */
437                 vcpu->arch.exception.pending = true;
438                 vcpu->arch.exception.injected = false;
439                 vcpu->arch.exception.has_error_code = true;
440                 vcpu->arch.exception.nr = DF_VECTOR;
441                 vcpu->arch.exception.error_code = 0;
442         } else
443                 /* replace previous exception with a new one in a hope
444                    that instruction re-execution will regenerate lost
445                    exception */
446                 goto queue;
447 }
448
449 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
450 {
451         kvm_multiple_exception(vcpu, nr, false, 0, false);
452 }
453 EXPORT_SYMBOL_GPL(kvm_queue_exception);
454
455 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
456 {
457         kvm_multiple_exception(vcpu, nr, false, 0, true);
458 }
459 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
460
461 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
462 {
463         if (err)
464                 kvm_inject_gp(vcpu, 0);
465         else
466                 return kvm_skip_emulated_instruction(vcpu);
467
468         return 1;
469 }
470 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
471
472 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
473 {
474         ++vcpu->stat.pf_guest;
475         vcpu->arch.exception.nested_apf =
476                 is_guest_mode(vcpu) && fault->async_page_fault;
477         if (vcpu->arch.exception.nested_apf)
478                 vcpu->arch.apf.nested_apf_token = fault->address;
479         else
480                 vcpu->arch.cr2 = fault->address;
481         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
482 }
483 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
484
485 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
486 {
487         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
488                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
489         else
490                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
491
492         return fault->nested_page_fault;
493 }
494
495 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
496 {
497         atomic_inc(&vcpu->arch.nmi_queued);
498         kvm_make_request(KVM_REQ_NMI, vcpu);
499 }
500 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
501
502 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
503 {
504         kvm_multiple_exception(vcpu, nr, true, error_code, false);
505 }
506 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
507
508 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
509 {
510         kvm_multiple_exception(vcpu, nr, true, error_code, true);
511 }
512 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
513
514 /*
515  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
516  * a #GP and return false.
517  */
518 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
519 {
520         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
521                 return true;
522         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
523         return false;
524 }
525 EXPORT_SYMBOL_GPL(kvm_require_cpl);
526
527 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
528 {
529         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
530                 return true;
531
532         kvm_queue_exception(vcpu, UD_VECTOR);
533         return false;
534 }
535 EXPORT_SYMBOL_GPL(kvm_require_dr);
536
537 /*
538  * This function will be used to read from the physical memory of the currently
539  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
540  * can read from guest physical or from the guest's guest physical memory.
541  */
542 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
543                             gfn_t ngfn, void *data, int offset, int len,
544                             u32 access)
545 {
546         struct x86_exception exception;
547         gfn_t real_gfn;
548         gpa_t ngpa;
549
550         ngpa     = gfn_to_gpa(ngfn);
551         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
552         if (real_gfn == UNMAPPED_GVA)
553                 return -EFAULT;
554
555         real_gfn = gpa_to_gfn(real_gfn);
556
557         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
558 }
559 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
560
561 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
562                                void *data, int offset, int len, u32 access)
563 {
564         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
565                                        data, offset, len, access);
566 }
567
568 /*
569  * Load the pae pdptrs.  Return true is they are all valid.
570  */
571 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
572 {
573         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
574         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
575         int i;
576         int ret;
577         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
578
579         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
580                                       offset * sizeof(u64), sizeof(pdpte),
581                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
582         if (ret < 0) {
583                 ret = 0;
584                 goto out;
585         }
586         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
587                 if ((pdpte[i] & PT_PRESENT_MASK) &&
588                     (pdpte[i] &
589                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
590                         ret = 0;
591                         goto out;
592                 }
593         }
594         ret = 1;
595
596         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
597         __set_bit(VCPU_EXREG_PDPTR,
598                   (unsigned long *)&vcpu->arch.regs_avail);
599         __set_bit(VCPU_EXREG_PDPTR,
600                   (unsigned long *)&vcpu->arch.regs_dirty);
601 out:
602
603         return ret;
604 }
605 EXPORT_SYMBOL_GPL(load_pdptrs);
606
607 bool pdptrs_changed(struct kvm_vcpu *vcpu)
608 {
609         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
610         bool changed = true;
611         int offset;
612         gfn_t gfn;
613         int r;
614
615         if (is_long_mode(vcpu) || !is_pae(vcpu))
616                 return false;
617
618         if (!test_bit(VCPU_EXREG_PDPTR,
619                       (unsigned long *)&vcpu->arch.regs_avail))
620                 return true;
621
622         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
623         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
624         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
625                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
626         if (r < 0)
627                 goto out;
628         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
629 out:
630
631         return changed;
632 }
633 EXPORT_SYMBOL_GPL(pdptrs_changed);
634
635 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
636 {
637         unsigned long old_cr0 = kvm_read_cr0(vcpu);
638         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
639
640         cr0 |= X86_CR0_ET;
641
642 #ifdef CONFIG_X86_64
643         if (cr0 & 0xffffffff00000000UL)
644                 return 1;
645 #endif
646
647         cr0 &= ~CR0_RESERVED_BITS;
648
649         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
650                 return 1;
651
652         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
653                 return 1;
654
655         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
656 #ifdef CONFIG_X86_64
657                 if ((vcpu->arch.efer & EFER_LME)) {
658                         int cs_db, cs_l;
659
660                         if (!is_pae(vcpu))
661                                 return 1;
662                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
663                         if (cs_l)
664                                 return 1;
665                 } else
666 #endif
667                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
668                                                  kvm_read_cr3(vcpu)))
669                         return 1;
670         }
671
672         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
673                 return 1;
674
675         kvm_x86_ops->set_cr0(vcpu, cr0);
676
677         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
678                 kvm_clear_async_pf_completion_queue(vcpu);
679                 kvm_async_pf_hash_reset(vcpu);
680         }
681
682         if ((cr0 ^ old_cr0) & update_bits)
683                 kvm_mmu_reset_context(vcpu);
684
685         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
686             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
687             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
688                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
689
690         return 0;
691 }
692 EXPORT_SYMBOL_GPL(kvm_set_cr0);
693
694 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
695 {
696         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
697 }
698 EXPORT_SYMBOL_GPL(kvm_lmsw);
699
700 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
701 {
702         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
703                         !vcpu->guest_xcr0_loaded) {
704                 /* kvm_set_xcr() also depends on this */
705                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
706                 vcpu->guest_xcr0_loaded = 1;
707         }
708 }
709
710 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
711 {
712         if (vcpu->guest_xcr0_loaded) {
713                 if (vcpu->arch.xcr0 != host_xcr0)
714                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
715                 vcpu->guest_xcr0_loaded = 0;
716         }
717 }
718
719 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
720 {
721         u64 xcr0 = xcr;
722         u64 old_xcr0 = vcpu->arch.xcr0;
723         u64 valid_bits;
724
725         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
726         if (index != XCR_XFEATURE_ENABLED_MASK)
727                 return 1;
728         if (!(xcr0 & XFEATURE_MASK_FP))
729                 return 1;
730         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
731                 return 1;
732
733         /*
734          * Do not allow the guest to set bits that we do not support
735          * saving.  However, xcr0 bit 0 is always set, even if the
736          * emulated CPU does not support XSAVE (see fx_init).
737          */
738         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
739         if (xcr0 & ~valid_bits)
740                 return 1;
741
742         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
743             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
744                 return 1;
745
746         if (xcr0 & XFEATURE_MASK_AVX512) {
747                 if (!(xcr0 & XFEATURE_MASK_YMM))
748                         return 1;
749                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
750                         return 1;
751         }
752         vcpu->arch.xcr0 = xcr0;
753
754         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
755                 kvm_update_cpuid(vcpu);
756         return 0;
757 }
758
759 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
760 {
761         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
762             __kvm_set_xcr(vcpu, index, xcr)) {
763                 kvm_inject_gp(vcpu, 0);
764                 return 1;
765         }
766         return 0;
767 }
768 EXPORT_SYMBOL_GPL(kvm_set_xcr);
769
770 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
771 {
772         unsigned long old_cr4 = kvm_read_cr4(vcpu);
773         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
774                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
775
776         if (cr4 & CR4_RESERVED_BITS)
777                 return 1;
778
779         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
780                 return 1;
781
782         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
783                 return 1;
784
785         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
786                 return 1;
787
788         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
789                 return 1;
790
791         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
792                 return 1;
793
794         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
795                 return 1;
796
797         if (is_long_mode(vcpu)) {
798                 if (!(cr4 & X86_CR4_PAE))
799                         return 1;
800         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
801                    && ((cr4 ^ old_cr4) & pdptr_bits)
802                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
803                                    kvm_read_cr3(vcpu)))
804                 return 1;
805
806         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
807                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
808                         return 1;
809
810                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
811                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
812                         return 1;
813         }
814
815         if (kvm_x86_ops->set_cr4(vcpu, cr4))
816                 return 1;
817
818         if (((cr4 ^ old_cr4) & pdptr_bits) ||
819             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
820                 kvm_mmu_reset_context(vcpu);
821
822         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
823                 kvm_update_cpuid(vcpu);
824
825         return 0;
826 }
827 EXPORT_SYMBOL_GPL(kvm_set_cr4);
828
829 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
830 {
831 #ifdef CONFIG_X86_64
832         cr3 &= ~CR3_PCID_INVD;
833 #endif
834
835         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
836                 kvm_mmu_sync_roots(vcpu);
837                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
838                 return 0;
839         }
840
841         if (is_long_mode(vcpu) &&
842             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
843                 return 1;
844         else if (is_pae(vcpu) && is_paging(vcpu) &&
845                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
846                 return 1;
847
848         vcpu->arch.cr3 = cr3;
849         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
850         kvm_mmu_new_cr3(vcpu);
851         return 0;
852 }
853 EXPORT_SYMBOL_GPL(kvm_set_cr3);
854
855 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
856 {
857         if (cr8 & CR8_RESERVED_BITS)
858                 return 1;
859         if (lapic_in_kernel(vcpu))
860                 kvm_lapic_set_tpr(vcpu, cr8);
861         else
862                 vcpu->arch.cr8 = cr8;
863         return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_cr8);
866
867 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
868 {
869         if (lapic_in_kernel(vcpu))
870                 return kvm_lapic_get_cr8(vcpu);
871         else
872                 return vcpu->arch.cr8;
873 }
874 EXPORT_SYMBOL_GPL(kvm_get_cr8);
875
876 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
877 {
878         int i;
879
880         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
881                 for (i = 0; i < KVM_NR_DB_REGS; i++)
882                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
883                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
884         }
885 }
886
887 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
888 {
889         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
891 }
892
893 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
894 {
895         unsigned long dr7;
896
897         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
898                 dr7 = vcpu->arch.guest_debug_dr7;
899         else
900                 dr7 = vcpu->arch.dr7;
901         kvm_x86_ops->set_dr7(vcpu, dr7);
902         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
903         if (dr7 & DR7_BP_EN_MASK)
904                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
905 }
906
907 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
908 {
909         u64 fixed = DR6_FIXED_1;
910
911         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
912                 fixed |= DR6_RTM;
913         return fixed;
914 }
915
916 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
917 {
918         switch (dr) {
919         case 0 ... 3:
920                 vcpu->arch.db[dr] = val;
921                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
922                         vcpu->arch.eff_db[dr] = val;
923                 break;
924         case 4:
925                 /* fall through */
926         case 6:
927                 if (val & 0xffffffff00000000ULL)
928                         return -1; /* #GP */
929                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
930                 kvm_update_dr6(vcpu);
931                 break;
932         case 5:
933                 /* fall through */
934         default: /* 7 */
935                 if (val & 0xffffffff00000000ULL)
936                         return -1; /* #GP */
937                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
938                 kvm_update_dr7(vcpu);
939                 break;
940         }
941
942         return 0;
943 }
944
945 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
946 {
947         if (__kvm_set_dr(vcpu, dr, val)) {
948                 kvm_inject_gp(vcpu, 0);
949                 return 1;
950         }
951         return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_set_dr);
954
955 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
956 {
957         switch (dr) {
958         case 0 ... 3:
959                 *val = vcpu->arch.db[dr];
960                 break;
961         case 4:
962                 /* fall through */
963         case 6:
964                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
965                         *val = vcpu->arch.dr6;
966                 else
967                         *val = kvm_x86_ops->get_dr6(vcpu);
968                 break;
969         case 5:
970                 /* fall through */
971         default: /* 7 */
972                 *val = vcpu->arch.dr7;
973                 break;
974         }
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_get_dr);
978
979 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
980 {
981         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
982         u64 data;
983         int err;
984
985         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
986         if (err)
987                 return err;
988         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
989         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
990         return err;
991 }
992 EXPORT_SYMBOL_GPL(kvm_rdpmc);
993
994 /*
995  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
996  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
997  *
998  * This list is modified at module load time to reflect the
999  * capabilities of the host cpu. This capabilities test skips MSRs that are
1000  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1001  * may depend on host virtualization features rather than host cpu features.
1002  */
1003
1004 static u32 msrs_to_save[] = {
1005         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1006         MSR_STAR,
1007 #ifdef CONFIG_X86_64
1008         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1009 #endif
1010         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1011         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1012         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1013 };
1014
1015 static unsigned num_msrs_to_save;
1016
1017 static u32 emulated_msrs[] = {
1018         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1019         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1020         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1021         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1022         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1023         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1024         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1025         HV_X64_MSR_RESET,
1026         HV_X64_MSR_VP_INDEX,
1027         HV_X64_MSR_VP_RUNTIME,
1028         HV_X64_MSR_SCONTROL,
1029         HV_X64_MSR_STIMER0_CONFIG,
1030         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1031         MSR_KVM_PV_EOI_EN,
1032
1033         MSR_IA32_TSC_ADJUST,
1034         MSR_IA32_TSCDEADLINE,
1035         MSR_IA32_MISC_ENABLE,
1036         MSR_IA32_MCG_STATUS,
1037         MSR_IA32_MCG_CTL,
1038         MSR_IA32_MCG_EXT_CTL,
1039         MSR_IA32_SMBASE,
1040         MSR_PLATFORM_INFO,
1041         MSR_MISC_FEATURES_ENABLES,
1042 };
1043
1044 static unsigned num_emulated_msrs;
1045
1046 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1047 {
1048         if (efer & efer_reserved_bits)
1049                 return false;
1050
1051         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1052                         return false;
1053
1054         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1055                         return false;
1056
1057         return true;
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1060
1061 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1062 {
1063         u64 old_efer = vcpu->arch.efer;
1064
1065         if (!kvm_valid_efer(vcpu, efer))
1066                 return 1;
1067
1068         if (is_paging(vcpu)
1069             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1070                 return 1;
1071
1072         efer &= ~EFER_LMA;
1073         efer |= vcpu->arch.efer & EFER_LMA;
1074
1075         kvm_x86_ops->set_efer(vcpu, efer);
1076
1077         /* Update reserved bits */
1078         if ((efer ^ old_efer) & EFER_NX)
1079                 kvm_mmu_reset_context(vcpu);
1080
1081         return 0;
1082 }
1083
1084 void kvm_enable_efer_bits(u64 mask)
1085 {
1086        efer_reserved_bits &= ~mask;
1087 }
1088 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1089
1090 /*
1091  * Writes msr value into into the appropriate "register".
1092  * Returns 0 on success, non-0 otherwise.
1093  * Assumes vcpu_load() was already called.
1094  */
1095 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1096 {
1097         switch (msr->index) {
1098         case MSR_FS_BASE:
1099         case MSR_GS_BASE:
1100         case MSR_KERNEL_GS_BASE:
1101         case MSR_CSTAR:
1102         case MSR_LSTAR:
1103                 if (is_noncanonical_address(msr->data, vcpu))
1104                         return 1;
1105                 break;
1106         case MSR_IA32_SYSENTER_EIP:
1107         case MSR_IA32_SYSENTER_ESP:
1108                 /*
1109                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1110                  * non-canonical address is written on Intel but not on
1111                  * AMD (which ignores the top 32-bits, because it does
1112                  * not implement 64-bit SYSENTER).
1113                  *
1114                  * 64-bit code should hence be able to write a non-canonical
1115                  * value on AMD.  Making the address canonical ensures that
1116                  * vmentry does not fail on Intel after writing a non-canonical
1117                  * value, and that something deterministic happens if the guest
1118                  * invokes 64-bit SYSENTER.
1119                  */
1120                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1121         }
1122         return kvm_x86_ops->set_msr(vcpu, msr);
1123 }
1124 EXPORT_SYMBOL_GPL(kvm_set_msr);
1125
1126 /*
1127  * Adapt set_msr() to msr_io()'s calling convention
1128  */
1129 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1130 {
1131         struct msr_data msr;
1132         int r;
1133
1134         msr.index = index;
1135         msr.host_initiated = true;
1136         r = kvm_get_msr(vcpu, &msr);
1137         if (r)
1138                 return r;
1139
1140         *data = msr.data;
1141         return 0;
1142 }
1143
1144 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1145 {
1146         struct msr_data msr;
1147
1148         msr.data = *data;
1149         msr.index = index;
1150         msr.host_initiated = true;
1151         return kvm_set_msr(vcpu, &msr);
1152 }
1153
1154 #ifdef CONFIG_X86_64
1155 struct pvclock_gtod_data {
1156         seqcount_t      seq;
1157
1158         struct { /* extract of a clocksource struct */
1159                 int vclock_mode;
1160                 u64     cycle_last;
1161                 u64     mask;
1162                 u32     mult;
1163                 u32     shift;
1164         } clock;
1165
1166         u64             boot_ns;
1167         u64             nsec_base;
1168         u64             wall_time_sec;
1169 };
1170
1171 static struct pvclock_gtod_data pvclock_gtod_data;
1172
1173 static void update_pvclock_gtod(struct timekeeper *tk)
1174 {
1175         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1176         u64 boot_ns;
1177
1178         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1179
1180         write_seqcount_begin(&vdata->seq);
1181
1182         /* copy pvclock gtod data */
1183         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1184         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1185         vdata->clock.mask               = tk->tkr_mono.mask;
1186         vdata->clock.mult               = tk->tkr_mono.mult;
1187         vdata->clock.shift              = tk->tkr_mono.shift;
1188
1189         vdata->boot_ns                  = boot_ns;
1190         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1191
1192         vdata->wall_time_sec            = tk->xtime_sec;
1193
1194         write_seqcount_end(&vdata->seq);
1195 }
1196 #endif
1197
1198 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1199 {
1200         /*
1201          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1202          * vcpu_enter_guest.  This function is only called from
1203          * the physical CPU that is running vcpu.
1204          */
1205         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1206 }
1207
1208 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1209 {
1210         int version;
1211         int r;
1212         struct pvclock_wall_clock wc;
1213         struct timespec64 boot;
1214
1215         if (!wall_clock)
1216                 return;
1217
1218         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1219         if (r)
1220                 return;
1221
1222         if (version & 1)
1223                 ++version;  /* first time write, random junk */
1224
1225         ++version;
1226
1227         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1228                 return;
1229
1230         /*
1231          * The guest calculates current wall clock time by adding
1232          * system time (updated by kvm_guest_time_update below) to the
1233          * wall clock specified here.  guest system time equals host
1234          * system time for us, thus we must fill in host boot time here.
1235          */
1236         getboottime64(&boot);
1237
1238         if (kvm->arch.kvmclock_offset) {
1239                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1240                 boot = timespec64_sub(boot, ts);
1241         }
1242         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1243         wc.nsec = boot.tv_nsec;
1244         wc.version = version;
1245
1246         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1247
1248         version++;
1249         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1250 }
1251
1252 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1253 {
1254         do_shl32_div32(dividend, divisor);
1255         return dividend;
1256 }
1257
1258 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1259                                s8 *pshift, u32 *pmultiplier)
1260 {
1261         uint64_t scaled64;
1262         int32_t  shift = 0;
1263         uint64_t tps64;
1264         uint32_t tps32;
1265
1266         tps64 = base_hz;
1267         scaled64 = scaled_hz;
1268         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1269                 tps64 >>= 1;
1270                 shift--;
1271         }
1272
1273         tps32 = (uint32_t)tps64;
1274         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1275                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1276                         scaled64 >>= 1;
1277                 else
1278                         tps32 <<= 1;
1279                 shift++;
1280         }
1281
1282         *pshift = shift;
1283         *pmultiplier = div_frac(scaled64, tps32);
1284
1285         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1286                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1287 }
1288
1289 #ifdef CONFIG_X86_64
1290 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1291 #endif
1292
1293 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1294 static unsigned long max_tsc_khz;
1295
1296 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1297 {
1298         u64 v = (u64)khz * (1000000 + ppm);
1299         do_div(v, 1000000);
1300         return v;
1301 }
1302
1303 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1304 {
1305         u64 ratio;
1306
1307         /* Guest TSC same frequency as host TSC? */
1308         if (!scale) {
1309                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1310                 return 0;
1311         }
1312
1313         /* TSC scaling supported? */
1314         if (!kvm_has_tsc_control) {
1315                 if (user_tsc_khz > tsc_khz) {
1316                         vcpu->arch.tsc_catchup = 1;
1317                         vcpu->arch.tsc_always_catchup = 1;
1318                         return 0;
1319                 } else {
1320                         WARN(1, "user requested TSC rate below hardware speed\n");
1321                         return -1;
1322                 }
1323         }
1324
1325         /* TSC scaling required  - calculate ratio */
1326         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1327                                 user_tsc_khz, tsc_khz);
1328
1329         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1330                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1331                           user_tsc_khz);
1332                 return -1;
1333         }
1334
1335         vcpu->arch.tsc_scaling_ratio = ratio;
1336         return 0;
1337 }
1338
1339 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1340 {
1341         u32 thresh_lo, thresh_hi;
1342         int use_scaling = 0;
1343
1344         /* tsc_khz can be zero if TSC calibration fails */
1345         if (user_tsc_khz == 0) {
1346                 /* set tsc_scaling_ratio to a safe value */
1347                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1348                 return -1;
1349         }
1350
1351         /* Compute a scale to convert nanoseconds in TSC cycles */
1352         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1353                            &vcpu->arch.virtual_tsc_shift,
1354                            &vcpu->arch.virtual_tsc_mult);
1355         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1356
1357         /*
1358          * Compute the variation in TSC rate which is acceptable
1359          * within the range of tolerance and decide if the
1360          * rate being applied is within that bounds of the hardware
1361          * rate.  If so, no scaling or compensation need be done.
1362          */
1363         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1364         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1365         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1366                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1367                 use_scaling = 1;
1368         }
1369         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1370 }
1371
1372 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1373 {
1374         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1375                                       vcpu->arch.virtual_tsc_mult,
1376                                       vcpu->arch.virtual_tsc_shift);
1377         tsc += vcpu->arch.this_tsc_write;
1378         return tsc;
1379 }
1380
1381 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1382 {
1383 #ifdef CONFIG_X86_64
1384         bool vcpus_matched;
1385         struct kvm_arch *ka = &vcpu->kvm->arch;
1386         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1387
1388         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1389                          atomic_read(&vcpu->kvm->online_vcpus));
1390
1391         /*
1392          * Once the masterclock is enabled, always perform request in
1393          * order to update it.
1394          *
1395          * In order to enable masterclock, the host clocksource must be TSC
1396          * and the vcpus need to have matched TSCs.  When that happens,
1397          * perform request to enable masterclock.
1398          */
1399         if (ka->use_master_clock ||
1400             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1401                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1402
1403         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1404                             atomic_read(&vcpu->kvm->online_vcpus),
1405                             ka->use_master_clock, gtod->clock.vclock_mode);
1406 #endif
1407 }
1408
1409 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1410 {
1411         u64 curr_offset = vcpu->arch.tsc_offset;
1412         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1413 }
1414
1415 /*
1416  * Multiply tsc by a fixed point number represented by ratio.
1417  *
1418  * The most significant 64-N bits (mult) of ratio represent the
1419  * integral part of the fixed point number; the remaining N bits
1420  * (frac) represent the fractional part, ie. ratio represents a fixed
1421  * point number (mult + frac * 2^(-N)).
1422  *
1423  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1424  */
1425 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1426 {
1427         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1428 }
1429
1430 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1431 {
1432         u64 _tsc = tsc;
1433         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1434
1435         if (ratio != kvm_default_tsc_scaling_ratio)
1436                 _tsc = __scale_tsc(ratio, tsc);
1437
1438         return _tsc;
1439 }
1440 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1441
1442 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1443 {
1444         u64 tsc;
1445
1446         tsc = kvm_scale_tsc(vcpu, rdtsc());
1447
1448         return target_tsc - tsc;
1449 }
1450
1451 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1452 {
1453         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1454 }
1455 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1456
1457 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1458 {
1459         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1460         vcpu->arch.tsc_offset = offset;
1461 }
1462
1463 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1464 {
1465         struct kvm *kvm = vcpu->kvm;
1466         u64 offset, ns, elapsed;
1467         unsigned long flags;
1468         bool matched;
1469         bool already_matched;
1470         u64 data = msr->data;
1471         bool synchronizing = false;
1472
1473         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1474         offset = kvm_compute_tsc_offset(vcpu, data);
1475         ns = ktime_get_boot_ns();
1476         elapsed = ns - kvm->arch.last_tsc_nsec;
1477
1478         if (vcpu->arch.virtual_tsc_khz) {
1479                 if (data == 0 && msr->host_initiated) {
1480                         /*
1481                          * detection of vcpu initialization -- need to sync
1482                          * with other vCPUs. This particularly helps to keep
1483                          * kvm_clock stable after CPU hotplug
1484                          */
1485                         synchronizing = true;
1486                 } else {
1487                         u64 tsc_exp = kvm->arch.last_tsc_write +
1488                                                 nsec_to_cycles(vcpu, elapsed);
1489                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1490                         /*
1491                          * Special case: TSC write with a small delta (1 second)
1492                          * of virtual cycle time against real time is
1493                          * interpreted as an attempt to synchronize the CPU.
1494                          */
1495                         synchronizing = data < tsc_exp + tsc_hz &&
1496                                         data + tsc_hz > tsc_exp;
1497                 }
1498         }
1499
1500         /*
1501          * For a reliable TSC, we can match TSC offsets, and for an unstable
1502          * TSC, we add elapsed time in this computation.  We could let the
1503          * compensation code attempt to catch up if we fall behind, but
1504          * it's better to try to match offsets from the beginning.
1505          */
1506         if (synchronizing &&
1507             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1508                 if (!check_tsc_unstable()) {
1509                         offset = kvm->arch.cur_tsc_offset;
1510                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1511                 } else {
1512                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1513                         data += delta;
1514                         offset = kvm_compute_tsc_offset(vcpu, data);
1515                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1516                 }
1517                 matched = true;
1518                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1519         } else {
1520                 /*
1521                  * We split periods of matched TSC writes into generations.
1522                  * For each generation, we track the original measured
1523                  * nanosecond time, offset, and write, so if TSCs are in
1524                  * sync, we can match exact offset, and if not, we can match
1525                  * exact software computation in compute_guest_tsc()
1526                  *
1527                  * These values are tracked in kvm->arch.cur_xxx variables.
1528                  */
1529                 kvm->arch.cur_tsc_generation++;
1530                 kvm->arch.cur_tsc_nsec = ns;
1531                 kvm->arch.cur_tsc_write = data;
1532                 kvm->arch.cur_tsc_offset = offset;
1533                 matched = false;
1534                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1535                          kvm->arch.cur_tsc_generation, data);
1536         }
1537
1538         /*
1539          * We also track th most recent recorded KHZ, write and time to
1540          * allow the matching interval to be extended at each write.
1541          */
1542         kvm->arch.last_tsc_nsec = ns;
1543         kvm->arch.last_tsc_write = data;
1544         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1545
1546         vcpu->arch.last_guest_tsc = data;
1547
1548         /* Keep track of which generation this VCPU has synchronized to */
1549         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1550         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1551         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1552
1553         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1554                 update_ia32_tsc_adjust_msr(vcpu, offset);
1555
1556         kvm_vcpu_write_tsc_offset(vcpu, offset);
1557         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1558
1559         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1560         if (!matched) {
1561                 kvm->arch.nr_vcpus_matched_tsc = 0;
1562         } else if (!already_matched) {
1563                 kvm->arch.nr_vcpus_matched_tsc++;
1564         }
1565
1566         kvm_track_tsc_matching(vcpu);
1567         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1568 }
1569
1570 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1571
1572 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1573                                            s64 adjustment)
1574 {
1575         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1576 }
1577
1578 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1579 {
1580         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1581                 WARN_ON(adjustment < 0);
1582         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1583         adjust_tsc_offset_guest(vcpu, adjustment);
1584 }
1585
1586 #ifdef CONFIG_X86_64
1587
1588 static u64 read_tsc(void)
1589 {
1590         u64 ret = (u64)rdtsc_ordered();
1591         u64 last = pvclock_gtod_data.clock.cycle_last;
1592
1593         if (likely(ret >= last))
1594                 return ret;
1595
1596         /*
1597          * GCC likes to generate cmov here, but this branch is extremely
1598          * predictable (it's just a function of time and the likely is
1599          * very likely) and there's a data dependence, so force GCC
1600          * to generate a branch instead.  I don't barrier() because
1601          * we don't actually need a barrier, and if this function
1602          * ever gets inlined it will generate worse code.
1603          */
1604         asm volatile ("");
1605         return last;
1606 }
1607
1608 static inline u64 vgettsc(u64 *cycle_now)
1609 {
1610         long v;
1611         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1612
1613         *cycle_now = read_tsc();
1614
1615         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1616         return v * gtod->clock.mult;
1617 }
1618
1619 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1620 {
1621         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1622         unsigned long seq;
1623         int mode;
1624         u64 ns;
1625
1626         do {
1627                 seq = read_seqcount_begin(&gtod->seq);
1628                 mode = gtod->clock.vclock_mode;
1629                 ns = gtod->nsec_base;
1630                 ns += vgettsc(cycle_now);
1631                 ns >>= gtod->clock.shift;
1632                 ns += gtod->boot_ns;
1633         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1634         *t = ns;
1635
1636         return mode;
1637 }
1638
1639 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1640 {
1641         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1642         unsigned long seq;
1643         int mode;
1644         u64 ns;
1645
1646         do {
1647                 seq = read_seqcount_begin(&gtod->seq);
1648                 mode = gtod->clock.vclock_mode;
1649                 ts->tv_sec = gtod->wall_time_sec;
1650                 ns = gtod->nsec_base;
1651                 ns += vgettsc(cycle_now);
1652                 ns >>= gtod->clock.shift;
1653         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1654
1655         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1656         ts->tv_nsec = ns;
1657
1658         return mode;
1659 }
1660
1661 /* returns true if host is using tsc clocksource */
1662 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1663 {
1664         /* checked again under seqlock below */
1665         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1666                 return false;
1667
1668         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1669 }
1670
1671 /* returns true if host is using tsc clocksource */
1672 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1673                                            u64 *cycle_now)
1674 {
1675         /* checked again under seqlock below */
1676         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1677                 return false;
1678
1679         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1680 }
1681 #endif
1682
1683 /*
1684  *
1685  * Assuming a stable TSC across physical CPUS, and a stable TSC
1686  * across virtual CPUs, the following condition is possible.
1687  * Each numbered line represents an event visible to both
1688  * CPUs at the next numbered event.
1689  *
1690  * "timespecX" represents host monotonic time. "tscX" represents
1691  * RDTSC value.
1692  *
1693  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1694  *
1695  * 1.  read timespec0,tsc0
1696  * 2.                                   | timespec1 = timespec0 + N
1697  *                                      | tsc1 = tsc0 + M
1698  * 3. transition to guest               | transition to guest
1699  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1700  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1701  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1702  *
1703  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1704  *
1705  *      - ret0 < ret1
1706  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1707  *              ...
1708  *      - 0 < N - M => M < N
1709  *
1710  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1711  * always the case (the difference between two distinct xtime instances
1712  * might be smaller then the difference between corresponding TSC reads,
1713  * when updating guest vcpus pvclock areas).
1714  *
1715  * To avoid that problem, do not allow visibility of distinct
1716  * system_timestamp/tsc_timestamp values simultaneously: use a master
1717  * copy of host monotonic time values. Update that master copy
1718  * in lockstep.
1719  *
1720  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1721  *
1722  */
1723
1724 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1725 {
1726 #ifdef CONFIG_X86_64
1727         struct kvm_arch *ka = &kvm->arch;
1728         int vclock_mode;
1729         bool host_tsc_clocksource, vcpus_matched;
1730
1731         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1732                         atomic_read(&kvm->online_vcpus));
1733
1734         /*
1735          * If the host uses TSC clock, then passthrough TSC as stable
1736          * to the guest.
1737          */
1738         host_tsc_clocksource = kvm_get_time_and_clockread(
1739                                         &ka->master_kernel_ns,
1740                                         &ka->master_cycle_now);
1741
1742         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1743                                 && !ka->backwards_tsc_observed
1744                                 && !ka->boot_vcpu_runs_old_kvmclock;
1745
1746         if (ka->use_master_clock)
1747                 atomic_set(&kvm_guest_has_master_clock, 1);
1748
1749         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1750         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1751                                         vcpus_matched);
1752 #endif
1753 }
1754
1755 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1756 {
1757         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1758 }
1759
1760 static void kvm_gen_update_masterclock(struct kvm *kvm)
1761 {
1762 #ifdef CONFIG_X86_64
1763         int i;
1764         struct kvm_vcpu *vcpu;
1765         struct kvm_arch *ka = &kvm->arch;
1766
1767         spin_lock(&ka->pvclock_gtod_sync_lock);
1768         kvm_make_mclock_inprogress_request(kvm);
1769         /* no guest entries from this point */
1770         pvclock_update_vm_gtod_copy(kvm);
1771
1772         kvm_for_each_vcpu(i, vcpu, kvm)
1773                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1774
1775         /* guest entries allowed */
1776         kvm_for_each_vcpu(i, vcpu, kvm)
1777                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1778
1779         spin_unlock(&ka->pvclock_gtod_sync_lock);
1780 #endif
1781 }
1782
1783 u64 get_kvmclock_ns(struct kvm *kvm)
1784 {
1785         struct kvm_arch *ka = &kvm->arch;
1786         struct pvclock_vcpu_time_info hv_clock;
1787         u64 ret;
1788
1789         spin_lock(&ka->pvclock_gtod_sync_lock);
1790         if (!ka->use_master_clock) {
1791                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1792                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1793         }
1794
1795         hv_clock.tsc_timestamp = ka->master_cycle_now;
1796         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1797         spin_unlock(&ka->pvclock_gtod_sync_lock);
1798
1799         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1800         get_cpu();
1801
1802         if (__this_cpu_read(cpu_tsc_khz)) {
1803                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1804                                    &hv_clock.tsc_shift,
1805                                    &hv_clock.tsc_to_system_mul);
1806                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1807         } else
1808                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1809
1810         put_cpu();
1811
1812         return ret;
1813 }
1814
1815 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1816 {
1817         struct kvm_vcpu_arch *vcpu = &v->arch;
1818         struct pvclock_vcpu_time_info guest_hv_clock;
1819
1820         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1821                 &guest_hv_clock, sizeof(guest_hv_clock))))
1822                 return;
1823
1824         /* This VCPU is paused, but it's legal for a guest to read another
1825          * VCPU's kvmclock, so we really have to follow the specification where
1826          * it says that version is odd if data is being modified, and even after
1827          * it is consistent.
1828          *
1829          * Version field updates must be kept separate.  This is because
1830          * kvm_write_guest_cached might use a "rep movs" instruction, and
1831          * writes within a string instruction are weakly ordered.  So there
1832          * are three writes overall.
1833          *
1834          * As a small optimization, only write the version field in the first
1835          * and third write.  The vcpu->pv_time cache is still valid, because the
1836          * version field is the first in the struct.
1837          */
1838         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1839
1840         if (guest_hv_clock.version & 1)
1841                 ++guest_hv_clock.version;  /* first time write, random junk */
1842
1843         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1844         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1845                                 &vcpu->hv_clock,
1846                                 sizeof(vcpu->hv_clock.version));
1847
1848         smp_wmb();
1849
1850         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1851         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1852
1853         if (vcpu->pvclock_set_guest_stopped_request) {
1854                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1855                 vcpu->pvclock_set_guest_stopped_request = false;
1856         }
1857
1858         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1859
1860         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1861                                 &vcpu->hv_clock,
1862                                 sizeof(vcpu->hv_clock));
1863
1864         smp_wmb();
1865
1866         vcpu->hv_clock.version++;
1867         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1868                                 &vcpu->hv_clock,
1869                                 sizeof(vcpu->hv_clock.version));
1870 }
1871
1872 static int kvm_guest_time_update(struct kvm_vcpu *v)
1873 {
1874         unsigned long flags, tgt_tsc_khz;
1875         struct kvm_vcpu_arch *vcpu = &v->arch;
1876         struct kvm_arch *ka = &v->kvm->arch;
1877         s64 kernel_ns;
1878         u64 tsc_timestamp, host_tsc;
1879         u8 pvclock_flags;
1880         bool use_master_clock;
1881
1882         kernel_ns = 0;
1883         host_tsc = 0;
1884
1885         /*
1886          * If the host uses TSC clock, then passthrough TSC as stable
1887          * to the guest.
1888          */
1889         spin_lock(&ka->pvclock_gtod_sync_lock);
1890         use_master_clock = ka->use_master_clock;
1891         if (use_master_clock) {
1892                 host_tsc = ka->master_cycle_now;
1893                 kernel_ns = ka->master_kernel_ns;
1894         }
1895         spin_unlock(&ka->pvclock_gtod_sync_lock);
1896
1897         /* Keep irq disabled to prevent changes to the clock */
1898         local_irq_save(flags);
1899         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1900         if (unlikely(tgt_tsc_khz == 0)) {
1901                 local_irq_restore(flags);
1902                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1903                 return 1;
1904         }
1905         if (!use_master_clock) {
1906                 host_tsc = rdtsc();
1907                 kernel_ns = ktime_get_boot_ns();
1908         }
1909
1910         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1911
1912         /*
1913          * We may have to catch up the TSC to match elapsed wall clock
1914          * time for two reasons, even if kvmclock is used.
1915          *   1) CPU could have been running below the maximum TSC rate
1916          *   2) Broken TSC compensation resets the base at each VCPU
1917          *      entry to avoid unknown leaps of TSC even when running
1918          *      again on the same CPU.  This may cause apparent elapsed
1919          *      time to disappear, and the guest to stand still or run
1920          *      very slowly.
1921          */
1922         if (vcpu->tsc_catchup) {
1923                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1924                 if (tsc > tsc_timestamp) {
1925                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1926                         tsc_timestamp = tsc;
1927                 }
1928         }
1929
1930         local_irq_restore(flags);
1931
1932         /* With all the info we got, fill in the values */
1933
1934         if (kvm_has_tsc_control)
1935                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1936
1937         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1938                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1939                                    &vcpu->hv_clock.tsc_shift,
1940                                    &vcpu->hv_clock.tsc_to_system_mul);
1941                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1942         }
1943
1944         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1945         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1946         vcpu->last_guest_tsc = tsc_timestamp;
1947
1948         /* If the host uses TSC clocksource, then it is stable */
1949         pvclock_flags = 0;
1950         if (use_master_clock)
1951                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1952
1953         vcpu->hv_clock.flags = pvclock_flags;
1954
1955         if (vcpu->pv_time_enabled)
1956                 kvm_setup_pvclock_page(v);
1957         if (v == kvm_get_vcpu(v->kvm, 0))
1958                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1959         return 0;
1960 }
1961
1962 /*
1963  * kvmclock updates which are isolated to a given vcpu, such as
1964  * vcpu->cpu migration, should not allow system_timestamp from
1965  * the rest of the vcpus to remain static. Otherwise ntp frequency
1966  * correction applies to one vcpu's system_timestamp but not
1967  * the others.
1968  *
1969  * So in those cases, request a kvmclock update for all vcpus.
1970  * We need to rate-limit these requests though, as they can
1971  * considerably slow guests that have a large number of vcpus.
1972  * The time for a remote vcpu to update its kvmclock is bound
1973  * by the delay we use to rate-limit the updates.
1974  */
1975
1976 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1977
1978 static void kvmclock_update_fn(struct work_struct *work)
1979 {
1980         int i;
1981         struct delayed_work *dwork = to_delayed_work(work);
1982         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1983                                            kvmclock_update_work);
1984         struct kvm *kvm = container_of(ka, struct kvm, arch);
1985         struct kvm_vcpu *vcpu;
1986
1987         kvm_for_each_vcpu(i, vcpu, kvm) {
1988                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1989                 kvm_vcpu_kick(vcpu);
1990         }
1991 }
1992
1993 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1994 {
1995         struct kvm *kvm = v->kvm;
1996
1997         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1998         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1999                                         KVMCLOCK_UPDATE_DELAY);
2000 }
2001
2002 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2003
2004 static void kvmclock_sync_fn(struct work_struct *work)
2005 {
2006         struct delayed_work *dwork = to_delayed_work(work);
2007         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2008                                            kvmclock_sync_work);
2009         struct kvm *kvm = container_of(ka, struct kvm, arch);
2010
2011         if (!kvmclock_periodic_sync)
2012                 return;
2013
2014         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2015         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2016                                         KVMCLOCK_SYNC_PERIOD);
2017 }
2018
2019 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2020 {
2021         u64 mcg_cap = vcpu->arch.mcg_cap;
2022         unsigned bank_num = mcg_cap & 0xff;
2023         u32 msr = msr_info->index;
2024         u64 data = msr_info->data;
2025
2026         switch (msr) {
2027         case MSR_IA32_MCG_STATUS:
2028                 vcpu->arch.mcg_status = data;
2029                 break;
2030         case MSR_IA32_MCG_CTL:
2031                 if (!(mcg_cap & MCG_CTL_P))
2032                         return 1;
2033                 if (data != 0 && data != ~(u64)0)
2034                         return -1;
2035                 vcpu->arch.mcg_ctl = data;
2036                 break;
2037         default:
2038                 if (msr >= MSR_IA32_MC0_CTL &&
2039                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2040                         u32 offset = msr - MSR_IA32_MC0_CTL;
2041                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2042                          * some Linux kernels though clear bit 10 in bank 4 to
2043                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2044                          * this to avoid an uncatched #GP in the guest
2045                          */
2046                         if ((offset & 0x3) == 0 &&
2047                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2048                                 return -1;
2049                         if (!msr_info->host_initiated &&
2050                                 (offset & 0x3) == 1 && data != 0)
2051                                 return -1;
2052                         vcpu->arch.mce_banks[offset] = data;
2053                         break;
2054                 }
2055                 return 1;
2056         }
2057         return 0;
2058 }
2059
2060 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2061 {
2062         struct kvm *kvm = vcpu->kvm;
2063         int lm = is_long_mode(vcpu);
2064         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2065                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2066         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2067                 : kvm->arch.xen_hvm_config.blob_size_32;
2068         u32 page_num = data & ~PAGE_MASK;
2069         u64 page_addr = data & PAGE_MASK;
2070         u8 *page;
2071         int r;
2072
2073         r = -E2BIG;
2074         if (page_num >= blob_size)
2075                 goto out;
2076         r = -ENOMEM;
2077         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2078         if (IS_ERR(page)) {
2079                 r = PTR_ERR(page);
2080                 goto out;
2081         }
2082         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2083                 goto out_free;
2084         r = 0;
2085 out_free:
2086         kfree(page);
2087 out:
2088         return r;
2089 }
2090
2091 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2092 {
2093         gpa_t gpa = data & ~0x3f;
2094
2095         /* Bits 3:5 are reserved, Should be zero */
2096         if (data & 0x38)
2097                 return 1;
2098
2099         vcpu->arch.apf.msr_val = data;
2100
2101         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2102                 kvm_clear_async_pf_completion_queue(vcpu);
2103                 kvm_async_pf_hash_reset(vcpu);
2104                 return 0;
2105         }
2106
2107         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2108                                         sizeof(u32)))
2109                 return 1;
2110
2111         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2112         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2113         kvm_async_pf_wakeup_all(vcpu);
2114         return 0;
2115 }
2116
2117 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2118 {
2119         vcpu->arch.pv_time_enabled = false;
2120 }
2121
2122 static void record_steal_time(struct kvm_vcpu *vcpu)
2123 {
2124         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2125                 return;
2126
2127         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2128                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2129                 return;
2130
2131         vcpu->arch.st.steal.preempted = 0;
2132
2133         if (vcpu->arch.st.steal.version & 1)
2134                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2135
2136         vcpu->arch.st.steal.version += 1;
2137
2138         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2139                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2140
2141         smp_wmb();
2142
2143         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2144                 vcpu->arch.st.last_steal;
2145         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2146
2147         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2148                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2149
2150         smp_wmb();
2151
2152         vcpu->arch.st.steal.version += 1;
2153
2154         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2155                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2156 }
2157
2158 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2159 {
2160         bool pr = false;
2161         u32 msr = msr_info->index;
2162         u64 data = msr_info->data;
2163
2164         switch (msr) {
2165         case MSR_AMD64_NB_CFG:
2166         case MSR_IA32_UCODE_REV:
2167         case MSR_IA32_UCODE_WRITE:
2168         case MSR_VM_HSAVE_PA:
2169         case MSR_AMD64_PATCH_LOADER:
2170         case MSR_AMD64_BU_CFG2:
2171         case MSR_AMD64_DC_CFG:
2172                 break;
2173
2174         case MSR_EFER:
2175                 return set_efer(vcpu, data);
2176         case MSR_K7_HWCR:
2177                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2178                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2179                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2180                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2181                 if (data != 0) {
2182                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2183                                     data);
2184                         return 1;
2185                 }
2186                 break;
2187         case MSR_FAM10H_MMIO_CONF_BASE:
2188                 if (data != 0) {
2189                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2190                                     "0x%llx\n", data);
2191                         return 1;
2192                 }
2193                 break;
2194         case MSR_IA32_DEBUGCTLMSR:
2195                 if (!data) {
2196                         /* We support the non-activated case already */
2197                         break;
2198                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2199                         /* Values other than LBR and BTF are vendor-specific,
2200                            thus reserved and should throw a #GP */
2201                         return 1;
2202                 }
2203                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2204                             __func__, data);
2205                 break;
2206         case 0x200 ... 0x2ff:
2207                 return kvm_mtrr_set_msr(vcpu, msr, data);
2208         case MSR_IA32_APICBASE:
2209                 return kvm_set_apic_base(vcpu, msr_info);
2210         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2211                 return kvm_x2apic_msr_write(vcpu, msr, data);
2212         case MSR_IA32_TSCDEADLINE:
2213                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2214                 break;
2215         case MSR_IA32_TSC_ADJUST:
2216                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2217                         if (!msr_info->host_initiated) {
2218                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2219                                 adjust_tsc_offset_guest(vcpu, adj);
2220                         }
2221                         vcpu->arch.ia32_tsc_adjust_msr = data;
2222                 }
2223                 break;
2224         case MSR_IA32_MISC_ENABLE:
2225                 vcpu->arch.ia32_misc_enable_msr = data;
2226                 break;
2227         case MSR_IA32_SMBASE:
2228                 if (!msr_info->host_initiated)
2229                         return 1;
2230                 vcpu->arch.smbase = data;
2231                 break;
2232         case MSR_KVM_WALL_CLOCK_NEW:
2233         case MSR_KVM_WALL_CLOCK:
2234                 vcpu->kvm->arch.wall_clock = data;
2235                 kvm_write_wall_clock(vcpu->kvm, data);
2236                 break;
2237         case MSR_KVM_SYSTEM_TIME_NEW:
2238         case MSR_KVM_SYSTEM_TIME: {
2239                 struct kvm_arch *ka = &vcpu->kvm->arch;
2240
2241                 kvmclock_reset(vcpu);
2242
2243                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2244                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2245
2246                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2247                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2248
2249                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2250                 }
2251
2252                 vcpu->arch.time = data;
2253                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2254
2255                 /* we verify if the enable bit is set... */
2256                 if (!(data & 1))
2257                         break;
2258
2259                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2260                      &vcpu->arch.pv_time, data & ~1ULL,
2261                      sizeof(struct pvclock_vcpu_time_info)))
2262                         vcpu->arch.pv_time_enabled = false;
2263                 else
2264                         vcpu->arch.pv_time_enabled = true;
2265
2266                 break;
2267         }
2268         case MSR_KVM_ASYNC_PF_EN:
2269                 if (kvm_pv_enable_async_pf(vcpu, data))
2270                         return 1;
2271                 break;
2272         case MSR_KVM_STEAL_TIME:
2273
2274                 if (unlikely(!sched_info_on()))
2275                         return 1;
2276
2277                 if (data & KVM_STEAL_RESERVED_MASK)
2278                         return 1;
2279
2280                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2281                                                 data & KVM_STEAL_VALID_BITS,
2282                                                 sizeof(struct kvm_steal_time)))
2283                         return 1;
2284
2285                 vcpu->arch.st.msr_val = data;
2286
2287                 if (!(data & KVM_MSR_ENABLED))
2288                         break;
2289
2290                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2291
2292                 break;
2293         case MSR_KVM_PV_EOI_EN:
2294                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2295                         return 1;
2296                 break;
2297
2298         case MSR_IA32_MCG_CTL:
2299         case MSR_IA32_MCG_STATUS:
2300         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2301                 return set_msr_mce(vcpu, msr_info);
2302
2303         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2304         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2305                 pr = true; /* fall through */
2306         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2307         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2308                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2309                         return kvm_pmu_set_msr(vcpu, msr_info);
2310
2311                 if (pr || data != 0)
2312                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2313                                     "0x%x data 0x%llx\n", msr, data);
2314                 break;
2315         case MSR_K7_CLK_CTL:
2316                 /*
2317                  * Ignore all writes to this no longer documented MSR.
2318                  * Writes are only relevant for old K7 processors,
2319                  * all pre-dating SVM, but a recommended workaround from
2320                  * AMD for these chips. It is possible to specify the
2321                  * affected processor models on the command line, hence
2322                  * the need to ignore the workaround.
2323                  */
2324                 break;
2325         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2326         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2327         case HV_X64_MSR_CRASH_CTL:
2328         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2329                 return kvm_hv_set_msr_common(vcpu, msr, data,
2330                                              msr_info->host_initiated);
2331         case MSR_IA32_BBL_CR_CTL3:
2332                 /* Drop writes to this legacy MSR -- see rdmsr
2333                  * counterpart for further detail.
2334                  */
2335                 if (report_ignored_msrs)
2336                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2337                                 msr, data);
2338                 break;
2339         case MSR_AMD64_OSVW_ID_LENGTH:
2340                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2341                         return 1;
2342                 vcpu->arch.osvw.length = data;
2343                 break;
2344         case MSR_AMD64_OSVW_STATUS:
2345                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2346                         return 1;
2347                 vcpu->arch.osvw.status = data;
2348                 break;
2349         case MSR_PLATFORM_INFO:
2350                 if (!msr_info->host_initiated ||
2351                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2352                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2353                      cpuid_fault_enabled(vcpu)))
2354                         return 1;
2355                 vcpu->arch.msr_platform_info = data;
2356                 break;
2357         case MSR_MISC_FEATURES_ENABLES:
2358                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2359                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2360                      !supports_cpuid_fault(vcpu)))
2361                         return 1;
2362                 vcpu->arch.msr_misc_features_enables = data;
2363                 break;
2364         default:
2365                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2366                         return xen_hvm_config(vcpu, data);
2367                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2368                         return kvm_pmu_set_msr(vcpu, msr_info);
2369                 if (!ignore_msrs) {
2370                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2371                                     msr, data);
2372                         return 1;
2373                 } else {
2374                         if (report_ignored_msrs)
2375                                 vcpu_unimpl(vcpu,
2376                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2377                                         msr, data);
2378                         break;
2379                 }
2380         }
2381         return 0;
2382 }
2383 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2384
2385
2386 /*
2387  * Reads an msr value (of 'msr_index') into 'pdata'.
2388  * Returns 0 on success, non-0 otherwise.
2389  * Assumes vcpu_load() was already called.
2390  */
2391 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2392 {
2393         return kvm_x86_ops->get_msr(vcpu, msr);
2394 }
2395 EXPORT_SYMBOL_GPL(kvm_get_msr);
2396
2397 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2398 {
2399         u64 data;
2400         u64 mcg_cap = vcpu->arch.mcg_cap;
2401         unsigned bank_num = mcg_cap & 0xff;
2402
2403         switch (msr) {
2404         case MSR_IA32_P5_MC_ADDR:
2405         case MSR_IA32_P5_MC_TYPE:
2406                 data = 0;
2407                 break;
2408         case MSR_IA32_MCG_CAP:
2409                 data = vcpu->arch.mcg_cap;
2410                 break;
2411         case MSR_IA32_MCG_CTL:
2412                 if (!(mcg_cap & MCG_CTL_P))
2413                         return 1;
2414                 data = vcpu->arch.mcg_ctl;
2415                 break;
2416         case MSR_IA32_MCG_STATUS:
2417                 data = vcpu->arch.mcg_status;
2418                 break;
2419         default:
2420                 if (msr >= MSR_IA32_MC0_CTL &&
2421                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2422                         u32 offset = msr - MSR_IA32_MC0_CTL;
2423                         data = vcpu->arch.mce_banks[offset];
2424                         break;
2425                 }
2426                 return 1;
2427         }
2428         *pdata = data;
2429         return 0;
2430 }
2431
2432 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2433 {
2434         switch (msr_info->index) {
2435         case MSR_IA32_PLATFORM_ID:
2436         case MSR_IA32_EBL_CR_POWERON:
2437         case MSR_IA32_DEBUGCTLMSR:
2438         case MSR_IA32_LASTBRANCHFROMIP:
2439         case MSR_IA32_LASTBRANCHTOIP:
2440         case MSR_IA32_LASTINTFROMIP:
2441         case MSR_IA32_LASTINTTOIP:
2442         case MSR_K8_SYSCFG:
2443         case MSR_K8_TSEG_ADDR:
2444         case MSR_K8_TSEG_MASK:
2445         case MSR_K7_HWCR:
2446         case MSR_VM_HSAVE_PA:
2447         case MSR_K8_INT_PENDING_MSG:
2448         case MSR_AMD64_NB_CFG:
2449         case MSR_FAM10H_MMIO_CONF_BASE:
2450         case MSR_AMD64_BU_CFG2:
2451         case MSR_IA32_PERF_CTL:
2452         case MSR_AMD64_DC_CFG:
2453                 msr_info->data = 0;
2454                 break;
2455         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2456         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2457         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2458         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2459                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2460                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2461                 msr_info->data = 0;
2462                 break;
2463         case MSR_IA32_UCODE_REV:
2464                 msr_info->data = 0x100000000ULL;
2465                 break;
2466         case MSR_MTRRcap:
2467         case 0x200 ... 0x2ff:
2468                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2469         case 0xcd: /* fsb frequency */
2470                 msr_info->data = 3;
2471                 break;
2472                 /*
2473                  * MSR_EBC_FREQUENCY_ID
2474                  * Conservative value valid for even the basic CPU models.
2475                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2476                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2477                  * and 266MHz for model 3, or 4. Set Core Clock
2478                  * Frequency to System Bus Frequency Ratio to 1 (bits
2479                  * 31:24) even though these are only valid for CPU
2480                  * models > 2, however guests may end up dividing or
2481                  * multiplying by zero otherwise.
2482                  */
2483         case MSR_EBC_FREQUENCY_ID:
2484                 msr_info->data = 1 << 24;
2485                 break;
2486         case MSR_IA32_APICBASE:
2487                 msr_info->data = kvm_get_apic_base(vcpu);
2488                 break;
2489         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2490                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2491                 break;
2492         case MSR_IA32_TSCDEADLINE:
2493                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2494                 break;
2495         case MSR_IA32_TSC_ADJUST:
2496                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2497                 break;
2498         case MSR_IA32_MISC_ENABLE:
2499                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2500                 break;
2501         case MSR_IA32_SMBASE:
2502                 if (!msr_info->host_initiated)
2503                         return 1;
2504                 msr_info->data = vcpu->arch.smbase;
2505                 break;
2506         case MSR_IA32_PERF_STATUS:
2507                 /* TSC increment by tick */
2508                 msr_info->data = 1000ULL;
2509                 /* CPU multiplier */
2510                 msr_info->data |= (((uint64_t)4ULL) << 40);
2511                 break;
2512         case MSR_EFER:
2513                 msr_info->data = vcpu->arch.efer;
2514                 break;
2515         case MSR_KVM_WALL_CLOCK:
2516         case MSR_KVM_WALL_CLOCK_NEW:
2517                 msr_info->data = vcpu->kvm->arch.wall_clock;
2518                 break;
2519         case MSR_KVM_SYSTEM_TIME:
2520         case MSR_KVM_SYSTEM_TIME_NEW:
2521                 msr_info->data = vcpu->arch.time;
2522                 break;
2523         case MSR_KVM_ASYNC_PF_EN:
2524                 msr_info->data = vcpu->arch.apf.msr_val;
2525                 break;
2526         case MSR_KVM_STEAL_TIME:
2527                 msr_info->data = vcpu->arch.st.msr_val;
2528                 break;
2529         case MSR_KVM_PV_EOI_EN:
2530                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2531                 break;
2532         case MSR_IA32_P5_MC_ADDR:
2533         case MSR_IA32_P5_MC_TYPE:
2534         case MSR_IA32_MCG_CAP:
2535         case MSR_IA32_MCG_CTL:
2536         case MSR_IA32_MCG_STATUS:
2537         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2538                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2539         case MSR_K7_CLK_CTL:
2540                 /*
2541                  * Provide expected ramp-up count for K7. All other
2542                  * are set to zero, indicating minimum divisors for
2543                  * every field.
2544                  *
2545                  * This prevents guest kernels on AMD host with CPU
2546                  * type 6, model 8 and higher from exploding due to
2547                  * the rdmsr failing.
2548                  */
2549                 msr_info->data = 0x20000000;
2550                 break;
2551         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2552         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2553         case HV_X64_MSR_CRASH_CTL:
2554         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2555                 return kvm_hv_get_msr_common(vcpu,
2556                                              msr_info->index, &msr_info->data);
2557                 break;
2558         case MSR_IA32_BBL_CR_CTL3:
2559                 /* This legacy MSR exists but isn't fully documented in current
2560                  * silicon.  It is however accessed by winxp in very narrow
2561                  * scenarios where it sets bit #19, itself documented as
2562                  * a "reserved" bit.  Best effort attempt to source coherent
2563                  * read data here should the balance of the register be
2564                  * interpreted by the guest:
2565                  *
2566                  * L2 cache control register 3: 64GB range, 256KB size,
2567                  * enabled, latency 0x1, configured
2568                  */
2569                 msr_info->data = 0xbe702111;
2570                 break;
2571         case MSR_AMD64_OSVW_ID_LENGTH:
2572                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2573                         return 1;
2574                 msr_info->data = vcpu->arch.osvw.length;
2575                 break;
2576         case MSR_AMD64_OSVW_STATUS:
2577                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2578                         return 1;
2579                 msr_info->data = vcpu->arch.osvw.status;
2580                 break;
2581         case MSR_PLATFORM_INFO:
2582                 msr_info->data = vcpu->arch.msr_platform_info;
2583                 break;
2584         case MSR_MISC_FEATURES_ENABLES:
2585                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2586                 break;
2587         default:
2588                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2589                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2590                 if (!ignore_msrs) {
2591                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2592                                                msr_info->index);
2593                         return 1;
2594                 } else {
2595                         if (report_ignored_msrs)
2596                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2597                                         msr_info->index);
2598                         msr_info->data = 0;
2599                 }
2600                 break;
2601         }
2602         return 0;
2603 }
2604 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2605
2606 /*
2607  * Read or write a bunch of msrs. All parameters are kernel addresses.
2608  *
2609  * @return number of msrs set successfully.
2610  */
2611 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2612                     struct kvm_msr_entry *entries,
2613                     int (*do_msr)(struct kvm_vcpu *vcpu,
2614                                   unsigned index, u64 *data))
2615 {
2616         int i, idx;
2617
2618         idx = srcu_read_lock(&vcpu->kvm->srcu);
2619         for (i = 0; i < msrs->nmsrs; ++i)
2620                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2621                         break;
2622         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2623
2624         return i;
2625 }
2626
2627 /*
2628  * Read or write a bunch of msrs. Parameters are user addresses.
2629  *
2630  * @return number of msrs set successfully.
2631  */
2632 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2633                   int (*do_msr)(struct kvm_vcpu *vcpu,
2634                                 unsigned index, u64 *data),
2635                   int writeback)
2636 {
2637         struct kvm_msrs msrs;
2638         struct kvm_msr_entry *entries;
2639         int r, n;
2640         unsigned size;
2641
2642         r = -EFAULT;
2643         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2644                 goto out;
2645
2646         r = -E2BIG;
2647         if (msrs.nmsrs >= MAX_IO_MSRS)
2648                 goto out;
2649
2650         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2651         entries = memdup_user(user_msrs->entries, size);
2652         if (IS_ERR(entries)) {
2653                 r = PTR_ERR(entries);
2654                 goto out;
2655         }
2656
2657         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2658         if (r < 0)
2659                 goto out_free;
2660
2661         r = -EFAULT;
2662         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2663                 goto out_free;
2664
2665         r = n;
2666
2667 out_free:
2668         kfree(entries);
2669 out:
2670         return r;
2671 }
2672
2673 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2674 {
2675         int r;
2676
2677         switch (ext) {
2678         case KVM_CAP_IRQCHIP:
2679         case KVM_CAP_HLT:
2680         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2681         case KVM_CAP_SET_TSS_ADDR:
2682         case KVM_CAP_EXT_CPUID:
2683         case KVM_CAP_EXT_EMUL_CPUID:
2684         case KVM_CAP_CLOCKSOURCE:
2685         case KVM_CAP_PIT:
2686         case KVM_CAP_NOP_IO_DELAY:
2687         case KVM_CAP_MP_STATE:
2688         case KVM_CAP_SYNC_MMU:
2689         case KVM_CAP_USER_NMI:
2690         case KVM_CAP_REINJECT_CONTROL:
2691         case KVM_CAP_IRQ_INJECT_STATUS:
2692         case KVM_CAP_IOEVENTFD:
2693         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2694         case KVM_CAP_PIT2:
2695         case KVM_CAP_PIT_STATE2:
2696         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2697         case KVM_CAP_XEN_HVM:
2698         case KVM_CAP_VCPU_EVENTS:
2699         case KVM_CAP_HYPERV:
2700         case KVM_CAP_HYPERV_VAPIC:
2701         case KVM_CAP_HYPERV_SPIN:
2702         case KVM_CAP_HYPERV_SYNIC:
2703         case KVM_CAP_HYPERV_SYNIC2:
2704         case KVM_CAP_HYPERV_VP_INDEX:
2705         case KVM_CAP_PCI_SEGMENT:
2706         case KVM_CAP_DEBUGREGS:
2707         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2708         case KVM_CAP_XSAVE:
2709         case KVM_CAP_ASYNC_PF:
2710         case KVM_CAP_GET_TSC_KHZ:
2711         case KVM_CAP_KVMCLOCK_CTRL:
2712         case KVM_CAP_READONLY_MEM:
2713         case KVM_CAP_HYPERV_TIME:
2714         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2715         case KVM_CAP_TSC_DEADLINE_TIMER:
2716         case KVM_CAP_ENABLE_CAP_VM:
2717         case KVM_CAP_DISABLE_QUIRKS:
2718         case KVM_CAP_SET_BOOT_CPU_ID:
2719         case KVM_CAP_SPLIT_IRQCHIP:
2720         case KVM_CAP_IMMEDIATE_EXIT:
2721                 r = 1;
2722                 break;
2723         case KVM_CAP_ADJUST_CLOCK:
2724                 r = KVM_CLOCK_TSC_STABLE;
2725                 break;
2726         case KVM_CAP_X86_GUEST_MWAIT:
2727                 r = kvm_mwait_in_guest();
2728                 break;
2729         case KVM_CAP_X86_SMM:
2730                 /* SMBASE is usually relocated above 1M on modern chipsets,
2731                  * and SMM handlers might indeed rely on 4G segment limits,
2732                  * so do not report SMM to be available if real mode is
2733                  * emulated via vm86 mode.  Still, do not go to great lengths
2734                  * to avoid userspace's usage of the feature, because it is a
2735                  * fringe case that is not enabled except via specific settings
2736                  * of the module parameters.
2737                  */
2738                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2739                 break;
2740         case KVM_CAP_VAPIC:
2741                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2742                 break;
2743         case KVM_CAP_NR_VCPUS:
2744                 r = KVM_SOFT_MAX_VCPUS;
2745                 break;
2746         case KVM_CAP_MAX_VCPUS:
2747                 r = KVM_MAX_VCPUS;
2748                 break;
2749         case KVM_CAP_NR_MEMSLOTS:
2750                 r = KVM_USER_MEM_SLOTS;
2751                 break;
2752         case KVM_CAP_PV_MMU:    /* obsolete */
2753                 r = 0;
2754                 break;
2755         case KVM_CAP_MCE:
2756                 r = KVM_MAX_MCE_BANKS;
2757                 break;
2758         case KVM_CAP_XCRS:
2759                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2760                 break;
2761         case KVM_CAP_TSC_CONTROL:
2762                 r = kvm_has_tsc_control;
2763                 break;
2764         case KVM_CAP_X2APIC_API:
2765                 r = KVM_X2APIC_API_VALID_FLAGS;
2766                 break;
2767         default:
2768                 r = 0;
2769                 break;
2770         }
2771         return r;
2772
2773 }
2774
2775 long kvm_arch_dev_ioctl(struct file *filp,
2776                         unsigned int ioctl, unsigned long arg)
2777 {
2778         void __user *argp = (void __user *)arg;
2779         long r;
2780
2781         switch (ioctl) {
2782         case KVM_GET_MSR_INDEX_LIST: {
2783                 struct kvm_msr_list __user *user_msr_list = argp;
2784                 struct kvm_msr_list msr_list;
2785                 unsigned n;
2786
2787                 r = -EFAULT;
2788                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2789                         goto out;
2790                 n = msr_list.nmsrs;
2791                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2792                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2793                         goto out;
2794                 r = -E2BIG;
2795                 if (n < msr_list.nmsrs)
2796                         goto out;
2797                 r = -EFAULT;
2798                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2799                                  num_msrs_to_save * sizeof(u32)))
2800                         goto out;
2801                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2802                                  &emulated_msrs,
2803                                  num_emulated_msrs * sizeof(u32)))
2804                         goto out;
2805                 r = 0;
2806                 break;
2807         }
2808         case KVM_GET_SUPPORTED_CPUID:
2809         case KVM_GET_EMULATED_CPUID: {
2810                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2811                 struct kvm_cpuid2 cpuid;
2812
2813                 r = -EFAULT;
2814                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2815                         goto out;
2816
2817                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2818                                             ioctl);
2819                 if (r)
2820                         goto out;
2821
2822                 r = -EFAULT;
2823                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2824                         goto out;
2825                 r = 0;
2826                 break;
2827         }
2828         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2829                 r = -EFAULT;
2830                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2831                                  sizeof(kvm_mce_cap_supported)))
2832                         goto out;
2833                 r = 0;
2834                 break;
2835         }
2836         default:
2837                 r = -EINVAL;
2838         }
2839 out:
2840         return r;
2841 }
2842
2843 static void wbinvd_ipi(void *garbage)
2844 {
2845         wbinvd();
2846 }
2847
2848 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2849 {
2850         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2851 }
2852
2853 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2854 {
2855         /* Address WBINVD may be executed by guest */
2856         if (need_emulate_wbinvd(vcpu)) {
2857                 if (kvm_x86_ops->has_wbinvd_exit())
2858                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2859                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2860                         smp_call_function_single(vcpu->cpu,
2861                                         wbinvd_ipi, NULL, 1);
2862         }
2863
2864         kvm_x86_ops->vcpu_load(vcpu, cpu);
2865
2866         /* Apply any externally detected TSC adjustments (due to suspend) */
2867         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2868                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2869                 vcpu->arch.tsc_offset_adjustment = 0;
2870                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2871         }
2872
2873         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2874                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2875                                 rdtsc() - vcpu->arch.last_host_tsc;
2876                 if (tsc_delta < 0)
2877                         mark_tsc_unstable("KVM discovered backwards TSC");
2878
2879                 if (check_tsc_unstable()) {
2880                         u64 offset = kvm_compute_tsc_offset(vcpu,
2881                                                 vcpu->arch.last_guest_tsc);
2882                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2883                         vcpu->arch.tsc_catchup = 1;
2884                 }
2885
2886                 if (kvm_lapic_hv_timer_in_use(vcpu))
2887                         kvm_lapic_restart_hv_timer(vcpu);
2888
2889                 /*
2890                  * On a host with synchronized TSC, there is no need to update
2891                  * kvmclock on vcpu->cpu migration
2892                  */
2893                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2894                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2895                 if (vcpu->cpu != cpu)
2896                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2897                 vcpu->cpu = cpu;
2898         }
2899
2900         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2901 }
2902
2903 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2904 {
2905         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2906                 return;
2907
2908         vcpu->arch.st.steal.preempted = 1;
2909
2910         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2911                         &vcpu->arch.st.steal.preempted,
2912                         offsetof(struct kvm_steal_time, preempted),
2913                         sizeof(vcpu->arch.st.steal.preempted));
2914 }
2915
2916 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2917 {
2918         int idx;
2919
2920         if (vcpu->preempted)
2921                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2922
2923         /*
2924          * Disable page faults because we're in atomic context here.
2925          * kvm_write_guest_offset_cached() would call might_fault()
2926          * that relies on pagefault_disable() to tell if there's a
2927          * bug. NOTE: the write to guest memory may not go through if
2928          * during postcopy live migration or if there's heavy guest
2929          * paging.
2930          */
2931         pagefault_disable();
2932         /*
2933          * kvm_memslots() will be called by
2934          * kvm_write_guest_offset_cached() so take the srcu lock.
2935          */
2936         idx = srcu_read_lock(&vcpu->kvm->srcu);
2937         kvm_steal_time_set_preempted(vcpu);
2938         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2939         pagefault_enable();
2940         kvm_x86_ops->vcpu_put(vcpu);
2941         vcpu->arch.last_host_tsc = rdtsc();
2942 }
2943
2944 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2945                                     struct kvm_lapic_state *s)
2946 {
2947         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2948                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2949
2950         return kvm_apic_get_state(vcpu, s);
2951 }
2952
2953 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2954                                     struct kvm_lapic_state *s)
2955 {
2956         int r;
2957
2958         r = kvm_apic_set_state(vcpu, s);
2959         if (r)
2960                 return r;
2961         update_cr8_intercept(vcpu);
2962
2963         return 0;
2964 }
2965
2966 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2967 {
2968         return (!lapic_in_kernel(vcpu) ||
2969                 kvm_apic_accept_pic_intr(vcpu));
2970 }
2971
2972 /*
2973  * if userspace requested an interrupt window, check that the
2974  * interrupt window is open.
2975  *
2976  * No need to exit to userspace if we already have an interrupt queued.
2977  */
2978 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2979 {
2980         return kvm_arch_interrupt_allowed(vcpu) &&
2981                 !kvm_cpu_has_interrupt(vcpu) &&
2982                 !kvm_event_needs_reinjection(vcpu) &&
2983                 kvm_cpu_accept_dm_intr(vcpu);
2984 }
2985
2986 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2987                                     struct kvm_interrupt *irq)
2988 {
2989         if (irq->irq >= KVM_NR_INTERRUPTS)
2990                 return -EINVAL;
2991
2992         if (!irqchip_in_kernel(vcpu->kvm)) {
2993                 kvm_queue_interrupt(vcpu, irq->irq, false);
2994                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2995                 return 0;
2996         }
2997
2998         /*
2999          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3000          * fail for in-kernel 8259.
3001          */
3002         if (pic_in_kernel(vcpu->kvm))
3003                 return -ENXIO;
3004
3005         if (vcpu->arch.pending_external_vector != -1)
3006                 return -EEXIST;
3007
3008         vcpu->arch.pending_external_vector = irq->irq;
3009         kvm_make_request(KVM_REQ_EVENT, vcpu);
3010         return 0;
3011 }
3012
3013 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3014 {
3015         kvm_inject_nmi(vcpu);
3016
3017         return 0;
3018 }
3019
3020 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3021 {
3022         kvm_make_request(KVM_REQ_SMI, vcpu);
3023
3024         return 0;
3025 }
3026
3027 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3028                                            struct kvm_tpr_access_ctl *tac)
3029 {
3030         if (tac->flags)
3031                 return -EINVAL;
3032         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3033         return 0;
3034 }
3035
3036 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3037                                         u64 mcg_cap)
3038 {
3039         int r;
3040         unsigned bank_num = mcg_cap & 0xff, bank;
3041
3042         r = -EINVAL;
3043         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3044                 goto out;
3045         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3046                 goto out;
3047         r = 0;
3048         vcpu->arch.mcg_cap = mcg_cap;
3049         /* Init IA32_MCG_CTL to all 1s */
3050         if (mcg_cap & MCG_CTL_P)
3051                 vcpu->arch.mcg_ctl = ~(u64)0;
3052         /* Init IA32_MCi_CTL to all 1s */
3053         for (bank = 0; bank < bank_num; bank++)
3054                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3055
3056         if (kvm_x86_ops->setup_mce)
3057                 kvm_x86_ops->setup_mce(vcpu);
3058 out:
3059         return r;
3060 }
3061
3062 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3063                                       struct kvm_x86_mce *mce)
3064 {
3065         u64 mcg_cap = vcpu->arch.mcg_cap;
3066         unsigned bank_num = mcg_cap & 0xff;
3067         u64 *banks = vcpu->arch.mce_banks;
3068
3069         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3070                 return -EINVAL;
3071         /*
3072          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3073          * reporting is disabled
3074          */
3075         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3076             vcpu->arch.mcg_ctl != ~(u64)0)
3077                 return 0;
3078         banks += 4 * mce->bank;
3079         /*
3080          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3081          * reporting is disabled for the bank
3082          */
3083         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3084                 return 0;
3085         if (mce->status & MCI_STATUS_UC) {
3086                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3087                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3088                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3089                         return 0;
3090                 }
3091                 if (banks[1] & MCI_STATUS_VAL)
3092                         mce->status |= MCI_STATUS_OVER;
3093                 banks[2] = mce->addr;
3094                 banks[3] = mce->misc;
3095                 vcpu->arch.mcg_status = mce->mcg_status;
3096                 banks[1] = mce->status;
3097                 kvm_queue_exception(vcpu, MC_VECTOR);
3098         } else if (!(banks[1] & MCI_STATUS_VAL)
3099                    || !(banks[1] & MCI_STATUS_UC)) {
3100                 if (banks[1] & MCI_STATUS_VAL)
3101                         mce->status |= MCI_STATUS_OVER;
3102                 banks[2] = mce->addr;
3103                 banks[3] = mce->misc;
3104                 banks[1] = mce->status;
3105         } else
3106                 banks[1] |= MCI_STATUS_OVER;
3107         return 0;
3108 }
3109
3110 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3111                                                struct kvm_vcpu_events *events)
3112 {
3113         process_nmi(vcpu);
3114         /*
3115          * FIXME: pass injected and pending separately.  This is only
3116          * needed for nested virtualization, whose state cannot be
3117          * migrated yet.  For now we can combine them.
3118          */
3119         events->exception.injected =
3120                 (vcpu->arch.exception.pending ||
3121                  vcpu->arch.exception.injected) &&
3122                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3123         events->exception.nr = vcpu->arch.exception.nr;
3124         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3125         events->exception.pad = 0;
3126         events->exception.error_code = vcpu->arch.exception.error_code;
3127
3128         events->interrupt.injected =
3129                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3130         events->interrupt.nr = vcpu->arch.interrupt.nr;
3131         events->interrupt.soft = 0;
3132         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3133
3134         events->nmi.injected = vcpu->arch.nmi_injected;
3135         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3136         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3137         events->nmi.pad = 0;
3138
3139         events->sipi_vector = 0; /* never valid when reporting to user space */
3140
3141         events->smi.smm = is_smm(vcpu);
3142         events->smi.pending = vcpu->arch.smi_pending;
3143         events->smi.smm_inside_nmi =
3144                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3145         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3146
3147         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3148                          | KVM_VCPUEVENT_VALID_SHADOW
3149                          | KVM_VCPUEVENT_VALID_SMM);
3150         memset(&events->reserved, 0, sizeof(events->reserved));
3151 }
3152
3153 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3154
3155 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3156                                               struct kvm_vcpu_events *events)
3157 {
3158         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3159                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3160                               | KVM_VCPUEVENT_VALID_SHADOW
3161                               | KVM_VCPUEVENT_VALID_SMM))
3162                 return -EINVAL;
3163
3164         if (events->exception.injected &&
3165             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3166              is_guest_mode(vcpu)))
3167                 return -EINVAL;
3168
3169         /* INITs are latched while in SMM */
3170         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3171             (events->smi.smm || events->smi.pending) &&
3172             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3173                 return -EINVAL;
3174
3175         process_nmi(vcpu);
3176         vcpu->arch.exception.injected = false;
3177         vcpu->arch.exception.pending = events->exception.injected;
3178         vcpu->arch.exception.nr = events->exception.nr;
3179         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3180         vcpu->arch.exception.error_code = events->exception.error_code;
3181
3182         vcpu->arch.interrupt.pending = events->interrupt.injected;
3183         vcpu->arch.interrupt.nr = events->interrupt.nr;
3184         vcpu->arch.interrupt.soft = events->interrupt.soft;
3185         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3186                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3187                                                   events->interrupt.shadow);
3188
3189         vcpu->arch.nmi_injected = events->nmi.injected;
3190         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3191                 vcpu->arch.nmi_pending = events->nmi.pending;
3192         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3193
3194         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3195             lapic_in_kernel(vcpu))
3196                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3197
3198         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3199                 u32 hflags = vcpu->arch.hflags;
3200                 if (events->smi.smm)
3201                         hflags |= HF_SMM_MASK;
3202                 else
3203                         hflags &= ~HF_SMM_MASK;
3204                 kvm_set_hflags(vcpu, hflags);
3205
3206                 vcpu->arch.smi_pending = events->smi.pending;
3207
3208                 if (events->smi.smm) {
3209                         if (events->smi.smm_inside_nmi)
3210                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3211                         else
3212                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3213                         if (lapic_in_kernel(vcpu)) {
3214                                 if (events->smi.latched_init)
3215                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3216                                 else
3217                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3218                         }
3219                 }
3220         }
3221
3222         kvm_make_request(KVM_REQ_EVENT, vcpu);
3223
3224         return 0;
3225 }
3226
3227 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3228                                              struct kvm_debugregs *dbgregs)
3229 {
3230         unsigned long val;
3231
3232         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3233         kvm_get_dr(vcpu, 6, &val);
3234         dbgregs->dr6 = val;
3235         dbgregs->dr7 = vcpu->arch.dr7;
3236         dbgregs->flags = 0;
3237         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3238 }
3239
3240 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3241                                             struct kvm_debugregs *dbgregs)
3242 {
3243         if (dbgregs->flags)
3244                 return -EINVAL;
3245
3246         if (dbgregs->dr6 & ~0xffffffffull)
3247                 return -EINVAL;
3248         if (dbgregs->dr7 & ~0xffffffffull)
3249                 return -EINVAL;
3250
3251         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3252         kvm_update_dr0123(vcpu);
3253         vcpu->arch.dr6 = dbgregs->dr6;
3254         kvm_update_dr6(vcpu);
3255         vcpu->arch.dr7 = dbgregs->dr7;
3256         kvm_update_dr7(vcpu);
3257
3258         return 0;
3259 }
3260
3261 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3262
3263 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3264 {
3265         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3266         u64 xstate_bv = xsave->header.xfeatures;
3267         u64 valid;
3268
3269         /*
3270          * Copy legacy XSAVE area, to avoid complications with CPUID
3271          * leaves 0 and 1 in the loop below.
3272          */
3273         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3274
3275         /* Set XSTATE_BV */
3276         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3277         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3278
3279         /*
3280          * Copy each region from the possibly compacted offset to the
3281          * non-compacted offset.
3282          */
3283         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3284         while (valid) {
3285                 u64 feature = valid & -valid;
3286                 int index = fls64(feature) - 1;
3287                 void *src = get_xsave_addr(xsave, feature);
3288
3289                 if (src) {
3290                         u32 size, offset, ecx, edx;
3291                         cpuid_count(XSTATE_CPUID, index,
3292                                     &size, &offset, &ecx, &edx);
3293                         if (feature == XFEATURE_MASK_PKRU)
3294                                 memcpy(dest + offset, &vcpu->arch.pkru,
3295                                        sizeof(vcpu->arch.pkru));
3296                         else
3297                                 memcpy(dest + offset, src, size);
3298
3299                 }
3300
3301                 valid -= feature;
3302         }
3303 }
3304
3305 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3306 {
3307         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3308         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3309         u64 valid;
3310
3311         /*
3312          * Copy legacy XSAVE area, to avoid complications with CPUID
3313          * leaves 0 and 1 in the loop below.
3314          */
3315         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3316
3317         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3318         xsave->header.xfeatures = xstate_bv;
3319         if (boot_cpu_has(X86_FEATURE_XSAVES))
3320                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3321
3322         /*
3323          * Copy each region from the non-compacted offset to the
3324          * possibly compacted offset.
3325          */
3326         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3327         while (valid) {
3328                 u64 feature = valid & -valid;
3329                 int index = fls64(feature) - 1;
3330                 void *dest = get_xsave_addr(xsave, feature);
3331
3332                 if (dest) {
3333                         u32 size, offset, ecx, edx;
3334                         cpuid_count(XSTATE_CPUID, index,
3335                                     &size, &offset, &ecx, &edx);
3336                         if (feature == XFEATURE_MASK_PKRU)
3337                                 memcpy(&vcpu->arch.pkru, src + offset,
3338                                        sizeof(vcpu->arch.pkru));
3339                         else
3340                                 memcpy(dest, src + offset, size);
3341                 }
3342
3343                 valid -= feature;
3344         }
3345 }
3346
3347 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3348                                          struct kvm_xsave *guest_xsave)
3349 {
3350         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3351                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3352                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3353         } else {
3354                 memcpy(guest_xsave->region,
3355                         &vcpu->arch.guest_fpu.state.fxsave,
3356                         sizeof(struct fxregs_state));
3357                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3358                         XFEATURE_MASK_FPSSE;
3359         }
3360 }
3361
3362 #define XSAVE_MXCSR_OFFSET 24
3363
3364 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3365                                         struct kvm_xsave *guest_xsave)
3366 {
3367         u64 xstate_bv =
3368                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3369         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3370
3371         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3372                 /*
3373                  * Here we allow setting states that are not present in
3374                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3375                  * with old userspace.
3376                  */
3377                 if (xstate_bv & ~kvm_supported_xcr0() ||
3378                         mxcsr & ~mxcsr_feature_mask)
3379                         return -EINVAL;
3380                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3381         } else {
3382                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3383                         mxcsr & ~mxcsr_feature_mask)
3384                         return -EINVAL;
3385                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3386                         guest_xsave->region, sizeof(struct fxregs_state));
3387         }
3388         return 0;
3389 }
3390
3391 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3392                                         struct kvm_xcrs *guest_xcrs)
3393 {
3394         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3395                 guest_xcrs->nr_xcrs = 0;
3396                 return;
3397         }
3398
3399         guest_xcrs->nr_xcrs = 1;
3400         guest_xcrs->flags = 0;
3401         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3402         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3403 }
3404
3405 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3406                                        struct kvm_xcrs *guest_xcrs)
3407 {
3408         int i, r = 0;
3409
3410         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3411                 return -EINVAL;
3412
3413         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3414                 return -EINVAL;
3415
3416         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3417                 /* Only support XCR0 currently */
3418                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3419                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3420                                 guest_xcrs->xcrs[i].value);
3421                         break;
3422                 }
3423         if (r)
3424                 r = -EINVAL;
3425         return r;
3426 }
3427
3428 /*
3429  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3430  * stopped by the hypervisor.  This function will be called from the host only.
3431  * EINVAL is returned when the host attempts to set the flag for a guest that
3432  * does not support pv clocks.
3433  */
3434 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3435 {
3436         if (!vcpu->arch.pv_time_enabled)
3437                 return -EINVAL;
3438         vcpu->arch.pvclock_set_guest_stopped_request = true;
3439         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3440         return 0;
3441 }
3442
3443 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3444                                      struct kvm_enable_cap *cap)
3445 {
3446         if (cap->flags)
3447                 return -EINVAL;
3448
3449         switch (cap->cap) {
3450         case KVM_CAP_HYPERV_SYNIC2:
3451                 if (cap->args[0])
3452                         return -EINVAL;
3453         case KVM_CAP_HYPERV_SYNIC:
3454                 if (!irqchip_in_kernel(vcpu->kvm))
3455                         return -EINVAL;
3456                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3457                                              KVM_CAP_HYPERV_SYNIC2);
3458         default:
3459                 return -EINVAL;
3460         }
3461 }
3462
3463 long kvm_arch_vcpu_ioctl(struct file *filp,
3464                          unsigned int ioctl, unsigned long arg)
3465 {
3466         struct kvm_vcpu *vcpu = filp->private_data;
3467         void __user *argp = (void __user *)arg;
3468         int r;
3469         union {
3470                 struct kvm_lapic_state *lapic;
3471                 struct kvm_xsave *xsave;
3472                 struct kvm_xcrs *xcrs;
3473                 void *buffer;
3474         } u;
3475
3476         u.buffer = NULL;
3477         switch (ioctl) {
3478         case KVM_GET_LAPIC: {
3479                 r = -EINVAL;
3480                 if (!lapic_in_kernel(vcpu))
3481                         goto out;
3482                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3483
3484                 r = -ENOMEM;
3485                 if (!u.lapic)
3486                         goto out;
3487                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3488                 if (r)
3489                         goto out;
3490                 r = -EFAULT;
3491                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3492                         goto out;
3493                 r = 0;
3494                 break;
3495         }
3496         case KVM_SET_LAPIC: {
3497                 r = -EINVAL;
3498                 if (!lapic_in_kernel(vcpu))
3499                         goto out;
3500                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3501                 if (IS_ERR(u.lapic))
3502                         return PTR_ERR(u.lapic);
3503
3504                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3505                 break;
3506         }
3507         case KVM_INTERRUPT: {
3508                 struct kvm_interrupt irq;
3509
3510                 r = -EFAULT;
3511                 if (copy_from_user(&irq, argp, sizeof irq))
3512                         goto out;
3513                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3514                 break;
3515         }
3516         case KVM_NMI: {
3517                 r = kvm_vcpu_ioctl_nmi(vcpu);
3518                 break;
3519         }
3520         case KVM_SMI: {
3521                 r = kvm_vcpu_ioctl_smi(vcpu);
3522                 break;
3523         }
3524         case KVM_SET_CPUID: {
3525                 struct kvm_cpuid __user *cpuid_arg = argp;
3526                 struct kvm_cpuid cpuid;
3527
3528                 r = -EFAULT;
3529                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3530                         goto out;
3531                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3532                 break;
3533         }
3534         case KVM_SET_CPUID2: {
3535                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3536                 struct kvm_cpuid2 cpuid;
3537
3538                 r = -EFAULT;
3539                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3540                         goto out;
3541                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3542                                               cpuid_arg->entries);
3543                 break;
3544         }
3545         case KVM_GET_CPUID2: {
3546                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3547                 struct kvm_cpuid2 cpuid;
3548
3549                 r = -EFAULT;
3550                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3551                         goto out;
3552                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3553                                               cpuid_arg->entries);
3554                 if (r)
3555                         goto out;
3556                 r = -EFAULT;
3557                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3558                         goto out;
3559                 r = 0;
3560                 break;
3561         }
3562         case KVM_GET_MSRS:
3563                 r = msr_io(vcpu, argp, do_get_msr, 1);
3564                 break;
3565         case KVM_SET_MSRS:
3566                 r = msr_io(vcpu, argp, do_set_msr, 0);
3567                 break;
3568         case KVM_TPR_ACCESS_REPORTING: {
3569                 struct kvm_tpr_access_ctl tac;
3570
3571                 r = -EFAULT;
3572                 if (copy_from_user(&tac, argp, sizeof tac))
3573                         goto out;
3574                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3575                 if (r)
3576                         goto out;
3577                 r = -EFAULT;
3578                 if (copy_to_user(argp, &tac, sizeof tac))
3579                         goto out;
3580                 r = 0;
3581                 break;
3582         };
3583         case KVM_SET_VAPIC_ADDR: {
3584                 struct kvm_vapic_addr va;
3585                 int idx;
3586
3587                 r = -EINVAL;
3588                 if (!lapic_in_kernel(vcpu))
3589                         goto out;
3590                 r = -EFAULT;
3591                 if (copy_from_user(&va, argp, sizeof va))
3592                         goto out;
3593                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3594                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3595                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3596                 break;
3597         }
3598         case KVM_X86_SETUP_MCE: {
3599                 u64 mcg_cap;
3600
3601                 r = -EFAULT;
3602                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3603                         goto out;
3604                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3605                 break;
3606         }
3607         case KVM_X86_SET_MCE: {
3608                 struct kvm_x86_mce mce;
3609
3610                 r = -EFAULT;
3611                 if (copy_from_user(&mce, argp, sizeof mce))
3612                         goto out;
3613                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3614                 break;
3615         }
3616         case KVM_GET_VCPU_EVENTS: {
3617                 struct kvm_vcpu_events events;
3618
3619                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3620
3621                 r = -EFAULT;
3622                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3623                         break;
3624                 r = 0;
3625                 break;
3626         }
3627         case KVM_SET_VCPU_EVENTS: {
3628                 struct kvm_vcpu_events events;
3629
3630                 r = -EFAULT;
3631                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3632                         break;
3633
3634                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3635                 break;
3636         }
3637         case KVM_GET_DEBUGREGS: {
3638                 struct kvm_debugregs dbgregs;
3639
3640                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3641
3642                 r = -EFAULT;
3643                 if (copy_to_user(argp, &dbgregs,
3644                                  sizeof(struct kvm_debugregs)))
3645                         break;
3646                 r = 0;
3647                 break;
3648         }
3649         case KVM_SET_DEBUGREGS: {
3650                 struct kvm_debugregs dbgregs;
3651
3652                 r = -EFAULT;
3653                 if (copy_from_user(&dbgregs, argp,
3654                                    sizeof(struct kvm_debugregs)))
3655                         break;
3656
3657                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3658                 break;
3659         }
3660         case KVM_GET_XSAVE: {
3661                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3662                 r = -ENOMEM;
3663                 if (!u.xsave)
3664                         break;
3665
3666                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3667
3668                 r = -EFAULT;
3669                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3670                         break;
3671                 r = 0;
3672                 break;
3673         }
3674         case KVM_SET_XSAVE: {
3675                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3676                 if (IS_ERR(u.xsave))
3677                         return PTR_ERR(u.xsave);
3678
3679                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3680                 break;
3681         }
3682         case KVM_GET_XCRS: {
3683                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3684                 r = -ENOMEM;
3685                 if (!u.xcrs)
3686                         break;
3687
3688                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3689
3690                 r = -EFAULT;
3691                 if (copy_to_user(argp, u.xcrs,
3692                                  sizeof(struct kvm_xcrs)))
3693                         break;
3694                 r = 0;
3695                 break;
3696         }
3697         case KVM_SET_XCRS: {
3698                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3699                 if (IS_ERR(u.xcrs))
3700                         return PTR_ERR(u.xcrs);
3701
3702                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3703                 break;
3704         }
3705         case KVM_SET_TSC_KHZ: {
3706                 u32 user_tsc_khz;
3707
3708                 r = -EINVAL;
3709                 user_tsc_khz = (u32)arg;
3710
3711                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3712                         goto out;
3713
3714                 if (user_tsc_khz == 0)
3715                         user_tsc_khz = tsc_khz;
3716
3717                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3718                         r = 0;
3719
3720                 goto out;
3721         }
3722         case KVM_GET_TSC_KHZ: {
3723                 r = vcpu->arch.virtual_tsc_khz;
3724                 goto out;
3725         }
3726         case KVM_KVMCLOCK_CTRL: {
3727                 r = kvm_set_guest_paused(vcpu);
3728                 goto out;
3729         }
3730         case KVM_ENABLE_CAP: {
3731                 struct kvm_enable_cap cap;
3732
3733                 r = -EFAULT;
3734                 if (copy_from_user(&cap, argp, sizeof(cap)))
3735                         goto out;
3736                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3737                 break;
3738         }
3739         default:
3740                 r = -EINVAL;
3741         }
3742 out:
3743         kfree(u.buffer);
3744         return r;
3745 }
3746
3747 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3748 {
3749         return VM_FAULT_SIGBUS;
3750 }
3751
3752 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3753 {
3754         int ret;
3755
3756         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3757                 return -EINVAL;
3758         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3759         return ret;
3760 }
3761
3762 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3763                                               u64 ident_addr)
3764 {
3765         kvm->arch.ept_identity_map_addr = ident_addr;
3766         return 0;
3767 }
3768
3769 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3770                                           u32 kvm_nr_mmu_pages)
3771 {
3772         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3773                 return -EINVAL;
3774
3775         mutex_lock(&kvm->slots_lock);
3776
3777         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3778         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3779
3780         mutex_unlock(&kvm->slots_lock);
3781         return 0;
3782 }
3783
3784 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3785 {
3786         return kvm->arch.n_max_mmu_pages;
3787 }
3788
3789 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3790 {
3791         struct kvm_pic *pic = kvm->arch.vpic;
3792         int r;
3793
3794         r = 0;
3795         switch (chip->chip_id) {
3796         case KVM_IRQCHIP_PIC_MASTER:
3797                 memcpy(&chip->chip.pic, &pic->pics[0],
3798                         sizeof(struct kvm_pic_state));
3799                 break;
3800         case KVM_IRQCHIP_PIC_SLAVE:
3801                 memcpy(&chip->chip.pic, &pic->pics[1],
3802                         sizeof(struct kvm_pic_state));
3803                 break;
3804         case KVM_IRQCHIP_IOAPIC:
3805                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3806                 break;
3807         default:
3808                 r = -EINVAL;
3809                 break;
3810         }
3811         return r;
3812 }
3813
3814 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3815 {
3816         struct kvm_pic *pic = kvm->arch.vpic;
3817         int r;
3818
3819         r = 0;
3820         switch (chip->chip_id) {
3821         case KVM_IRQCHIP_PIC_MASTER:
3822                 spin_lock(&pic->lock);
3823                 memcpy(&pic->pics[0], &chip->chip.pic,
3824                         sizeof(struct kvm_pic_state));
3825                 spin_unlock(&pic->lock);
3826                 break;
3827         case KVM_IRQCHIP_PIC_SLAVE:
3828                 spin_lock(&pic->lock);
3829                 memcpy(&pic->pics[1], &chip->chip.pic,
3830                         sizeof(struct kvm_pic_state));
3831                 spin_unlock(&pic->lock);
3832                 break;
3833         case KVM_IRQCHIP_IOAPIC:
3834                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3835                 break;
3836         default:
3837                 r = -EINVAL;
3838                 break;
3839         }
3840         kvm_pic_update_irq(pic);
3841         return r;
3842 }
3843
3844 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3845 {
3846         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3847
3848         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3849
3850         mutex_lock(&kps->lock);
3851         memcpy(ps, &kps->channels, sizeof(*ps));
3852         mutex_unlock(&kps->lock);
3853         return 0;
3854 }
3855
3856 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3857 {
3858         int i;
3859         struct kvm_pit *pit = kvm->arch.vpit;
3860
3861         mutex_lock(&pit->pit_state.lock);
3862         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3863         for (i = 0; i < 3; i++)
3864                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3865         mutex_unlock(&pit->pit_state.lock);
3866         return 0;
3867 }
3868
3869 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3870 {
3871         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3872         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3873                 sizeof(ps->channels));
3874         ps->flags = kvm->arch.vpit->pit_state.flags;
3875         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3876         memset(&ps->reserved, 0, sizeof(ps->reserved));
3877         return 0;
3878 }
3879
3880 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3881 {
3882         int start = 0;
3883         int i;
3884         u32 prev_legacy, cur_legacy;
3885         struct kvm_pit *pit = kvm->arch.vpit;
3886
3887         mutex_lock(&pit->pit_state.lock);
3888         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3889         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3890         if (!prev_legacy && cur_legacy)
3891                 start = 1;
3892         memcpy(&pit->pit_state.channels, &ps->channels,
3893                sizeof(pit->pit_state.channels));
3894         pit->pit_state.flags = ps->flags;
3895         for (i = 0; i < 3; i++)
3896                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3897                                    start && i == 0);
3898         mutex_unlock(&pit->pit_state.lock);
3899         return 0;
3900 }
3901
3902 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3903                                  struct kvm_reinject_control *control)
3904 {
3905         struct kvm_pit *pit = kvm->arch.vpit;
3906
3907         if (!pit)
3908                 return -ENXIO;
3909
3910         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3911          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3912          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3913          */
3914         mutex_lock(&pit->pit_state.lock);
3915         kvm_pit_set_reinject(pit, control->pit_reinject);
3916         mutex_unlock(&pit->pit_state.lock);
3917
3918         return 0;
3919 }
3920
3921 /**
3922  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3923  * @kvm: kvm instance
3924  * @log: slot id and address to which we copy the log
3925  *
3926  * Steps 1-4 below provide general overview of dirty page logging. See
3927  * kvm_get_dirty_log_protect() function description for additional details.
3928  *
3929  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3930  * always flush the TLB (step 4) even if previous step failed  and the dirty
3931  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3932  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3933  * writes will be marked dirty for next log read.
3934  *
3935  *   1. Take a snapshot of the bit and clear it if needed.
3936  *   2. Write protect the corresponding page.
3937  *   3. Copy the snapshot to the userspace.
3938  *   4. Flush TLB's if needed.
3939  */
3940 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3941 {
3942         bool is_dirty = false;
3943         int r;
3944
3945         mutex_lock(&kvm->slots_lock);
3946
3947         /*
3948          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3949          */
3950         if (kvm_x86_ops->flush_log_dirty)
3951                 kvm_x86_ops->flush_log_dirty(kvm);
3952
3953         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3954
3955         /*
3956          * All the TLBs can be flushed out of mmu lock, see the comments in
3957          * kvm_mmu_slot_remove_write_access().
3958          */
3959         lockdep_assert_held(&kvm->slots_lock);
3960         if (is_dirty)
3961                 kvm_flush_remote_tlbs(kvm);
3962
3963         mutex_unlock(&kvm->slots_lock);
3964         return r;
3965 }
3966
3967 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3968                         bool line_status)
3969 {
3970         if (!irqchip_in_kernel(kvm))
3971                 return -ENXIO;
3972
3973         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3974                                         irq_event->irq, irq_event->level,
3975                                         line_status);
3976         return 0;
3977 }
3978
3979 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3980                                    struct kvm_enable_cap *cap)
3981 {
3982         int r;
3983
3984         if (cap->flags)
3985                 return -EINVAL;
3986
3987         switch (cap->cap) {
3988         case KVM_CAP_DISABLE_QUIRKS:
3989                 kvm->arch.disabled_quirks = cap->args[0];
3990                 r = 0;
3991                 break;
3992         case KVM_CAP_SPLIT_IRQCHIP: {
3993                 mutex_lock(&kvm->lock);
3994                 r = -EINVAL;
3995                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3996                         goto split_irqchip_unlock;
3997                 r = -EEXIST;
3998                 if (irqchip_in_kernel(kvm))
3999                         goto split_irqchip_unlock;
4000                 if (kvm->created_vcpus)
4001                         goto split_irqchip_unlock;
4002                 r = kvm_setup_empty_irq_routing(kvm);
4003                 if (r)
4004                         goto split_irqchip_unlock;
4005                 /* Pairs with irqchip_in_kernel. */
4006                 smp_wmb();
4007                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4008                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4009                 r = 0;
4010 split_irqchip_unlock:
4011                 mutex_unlock(&kvm->lock);
4012                 break;
4013         }
4014         case KVM_CAP_X2APIC_API:
4015                 r = -EINVAL;
4016                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4017                         break;
4018
4019                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4020                         kvm->arch.x2apic_format = true;
4021                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4022                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4023
4024                 r = 0;
4025                 break;
4026         default:
4027                 r = -EINVAL;
4028                 break;
4029         }
4030         return r;
4031 }
4032
4033 long kvm_arch_vm_ioctl(struct file *filp,
4034                        unsigned int ioctl, unsigned long arg)
4035 {
4036         struct kvm *kvm = filp->private_data;
4037         void __user *argp = (void __user *)arg;
4038         int r = -ENOTTY;
4039         /*
4040          * This union makes it completely explicit to gcc-3.x
4041          * that these two variables' stack usage should be
4042          * combined, not added together.
4043          */
4044         union {
4045                 struct kvm_pit_state ps;
4046                 struct kvm_pit_state2 ps2;
4047                 struct kvm_pit_config pit_config;
4048         } u;
4049
4050         switch (ioctl) {
4051         case KVM_SET_TSS_ADDR:
4052                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4053                 break;
4054         case KVM_SET_IDENTITY_MAP_ADDR: {
4055                 u64 ident_addr;
4056
4057                 mutex_lock(&kvm->lock);
4058                 r = -EINVAL;
4059                 if (kvm->created_vcpus)
4060                         goto set_identity_unlock;
4061                 r = -EFAULT;
4062                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4063                         goto set_identity_unlock;
4064                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4065 set_identity_unlock:
4066                 mutex_unlock(&kvm->lock);
4067                 break;
4068         }
4069         case KVM_SET_NR_MMU_PAGES:
4070                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4071                 break;
4072         case KVM_GET_NR_MMU_PAGES:
4073                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4074                 break;
4075         case KVM_CREATE_IRQCHIP: {
4076                 mutex_lock(&kvm->lock);
4077
4078                 r = -EEXIST;
4079                 if (irqchip_in_kernel(kvm))
4080                         goto create_irqchip_unlock;
4081
4082                 r = -EINVAL;
4083                 if (kvm->created_vcpus)
4084                         goto create_irqchip_unlock;
4085
4086                 r = kvm_pic_init(kvm);
4087                 if (r)
4088                         goto create_irqchip_unlock;
4089
4090                 r = kvm_ioapic_init(kvm);
4091                 if (r) {
4092                         kvm_pic_destroy(kvm);
4093                         goto create_irqchip_unlock;
4094                 }
4095
4096                 r = kvm_setup_default_irq_routing(kvm);
4097                 if (r) {
4098                         kvm_ioapic_destroy(kvm);
4099                         kvm_pic_destroy(kvm);
4100                         goto create_irqchip_unlock;
4101                 }
4102                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4103                 smp_wmb();
4104                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4105         create_irqchip_unlock:
4106                 mutex_unlock(&kvm->lock);
4107                 break;
4108         }
4109         case KVM_CREATE_PIT:
4110                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4111                 goto create_pit;
4112         case KVM_CREATE_PIT2:
4113                 r = -EFAULT;
4114                 if (copy_from_user(&u.pit_config, argp,
4115                                    sizeof(struct kvm_pit_config)))
4116                         goto out;
4117         create_pit:
4118                 mutex_lock(&kvm->lock);
4119                 r = -EEXIST;
4120                 if (kvm->arch.vpit)
4121                         goto create_pit_unlock;
4122                 r = -ENOMEM;
4123                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4124                 if (kvm->arch.vpit)
4125                         r = 0;
4126         create_pit_unlock:
4127                 mutex_unlock(&kvm->lock);
4128                 break;
4129         case KVM_GET_IRQCHIP: {
4130                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4131                 struct kvm_irqchip *chip;
4132
4133                 chip = memdup_user(argp, sizeof(*chip));
4134                 if (IS_ERR(chip)) {
4135                         r = PTR_ERR(chip);
4136                         goto out;
4137                 }
4138
4139                 r = -ENXIO;
4140                 if (!irqchip_kernel(kvm))
4141                         goto get_irqchip_out;
4142                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4143                 if (r)
4144                         goto get_irqchip_out;
4145                 r = -EFAULT;
4146                 if (copy_to_user(argp, chip, sizeof *chip))
4147                         goto get_irqchip_out;
4148                 r = 0;
4149         get_irqchip_out:
4150                 kfree(chip);
4151                 break;
4152         }
4153         case KVM_SET_IRQCHIP: {
4154                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4155                 struct kvm_irqchip *chip;
4156
4157                 chip = memdup_user(argp, sizeof(*chip));
4158                 if (IS_ERR(chip)) {
4159                         r = PTR_ERR(chip);
4160                         goto out;
4161                 }
4162
4163                 r = -ENXIO;
4164                 if (!irqchip_kernel(kvm))
4165                         goto set_irqchip_out;
4166                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4167                 if (r)
4168                         goto set_irqchip_out;
4169                 r = 0;
4170         set_irqchip_out:
4171                 kfree(chip);
4172                 break;
4173         }
4174         case KVM_GET_PIT: {
4175                 r = -EFAULT;
4176                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4177                         goto out;
4178                 r = -ENXIO;
4179                 if (!kvm->arch.vpit)
4180                         goto out;
4181                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4182                 if (r)
4183                         goto out;
4184                 r = -EFAULT;
4185                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4186                         goto out;
4187                 r = 0;
4188                 break;
4189         }
4190         case KVM_SET_PIT: {
4191                 r = -EFAULT;
4192                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4193                         goto out;
4194                 r = -ENXIO;
4195                 if (!kvm->arch.vpit)
4196                         goto out;
4197                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4198                 break;
4199         }
4200         case KVM_GET_PIT2: {
4201                 r = -ENXIO;
4202                 if (!kvm->arch.vpit)
4203                         goto out;
4204                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4205                 if (r)
4206                         goto out;
4207                 r = -EFAULT;
4208                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4209                         goto out;
4210                 r = 0;
4211                 break;
4212         }
4213         case KVM_SET_PIT2: {
4214                 r = -EFAULT;
4215                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4216                         goto out;
4217                 r = -ENXIO;
4218                 if (!kvm->arch.vpit)
4219                         goto out;
4220                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4221                 break;
4222         }
4223         case KVM_REINJECT_CONTROL: {
4224                 struct kvm_reinject_control control;
4225                 r =  -EFAULT;
4226                 if (copy_from_user(&control, argp, sizeof(control)))
4227                         goto out;
4228                 r = kvm_vm_ioctl_reinject(kvm, &control);
4229                 break;
4230         }
4231         case KVM_SET_BOOT_CPU_ID:
4232                 r = 0;
4233                 mutex_lock(&kvm->lock);
4234                 if (kvm->created_vcpus)
4235                         r = -EBUSY;
4236                 else
4237                         kvm->arch.bsp_vcpu_id = arg;
4238                 mutex_unlock(&kvm->lock);
4239                 break;
4240         case KVM_XEN_HVM_CONFIG: {
4241                 struct kvm_xen_hvm_config xhc;
4242                 r = -EFAULT;
4243                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4244                         goto out;
4245                 r = -EINVAL;
4246                 if (xhc.flags)
4247                         goto out;
4248                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4249                 r = 0;
4250                 break;
4251         }
4252         case KVM_SET_CLOCK: {
4253                 struct kvm_clock_data user_ns;
4254                 u64 now_ns;
4255
4256                 r = -EFAULT;
4257                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4258                         goto out;
4259
4260                 r = -EINVAL;
4261                 if (user_ns.flags)
4262                         goto out;
4263
4264                 r = 0;
4265                 /*
4266                  * TODO: userspace has to take care of races with VCPU_RUN, so
4267                  * kvm_gen_update_masterclock() can be cut down to locked
4268                  * pvclock_update_vm_gtod_copy().
4269                  */
4270                 kvm_gen_update_masterclock(kvm);
4271                 now_ns = get_kvmclock_ns(kvm);
4272                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4273                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4274                 break;
4275         }
4276         case KVM_GET_CLOCK: {
4277                 struct kvm_clock_data user_ns;
4278                 u64 now_ns;
4279
4280                 now_ns = get_kvmclock_ns(kvm);
4281                 user_ns.clock = now_ns;
4282                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4283                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4284
4285                 r = -EFAULT;
4286                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4287                         goto out;
4288                 r = 0;
4289                 break;
4290         }
4291         case KVM_ENABLE_CAP: {
4292                 struct kvm_enable_cap cap;
4293
4294                 r = -EFAULT;
4295                 if (copy_from_user(&cap, argp, sizeof(cap)))
4296                         goto out;
4297                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4298                 break;
4299         }
4300         default:
4301                 r = -ENOTTY;
4302         }
4303 out:
4304         return r;
4305 }
4306
4307 static void kvm_init_msr_list(void)
4308 {
4309         u32 dummy[2];
4310         unsigned i, j;
4311
4312         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4313                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4314                         continue;
4315
4316                 /*
4317                  * Even MSRs that are valid in the host may not be exposed
4318                  * to the guests in some cases.
4319                  */
4320                 switch (msrs_to_save[i]) {
4321                 case MSR_IA32_BNDCFGS:
4322                         if (!kvm_x86_ops->mpx_supported())
4323                                 continue;
4324                         break;
4325                 case MSR_TSC_AUX:
4326                         if (!kvm_x86_ops->rdtscp_supported())
4327                                 continue;
4328                         break;
4329                 default:
4330                         break;
4331                 }
4332
4333                 if (j < i)
4334                         msrs_to_save[j] = msrs_to_save[i];
4335                 j++;
4336         }
4337         num_msrs_to_save = j;
4338
4339         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4340                 switch (emulated_msrs[i]) {
4341                 case MSR_IA32_SMBASE:
4342                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4343                                 continue;
4344                         break;
4345                 default:
4346                         break;
4347                 }
4348
4349                 if (j < i)
4350                         emulated_msrs[j] = emulated_msrs[i];
4351                 j++;
4352         }
4353         num_emulated_msrs = j;
4354 }
4355
4356 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4357                            const void *v)
4358 {
4359         int handled = 0;
4360         int n;
4361
4362         do {
4363                 n = min(len, 8);
4364                 if (!(lapic_in_kernel(vcpu) &&
4365                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4366                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4367                         break;
4368                 handled += n;
4369                 addr += n;
4370                 len -= n;
4371                 v += n;
4372         } while (len);
4373
4374         return handled;
4375 }
4376
4377 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4378 {
4379         int handled = 0;
4380         int n;
4381
4382         do {
4383                 n = min(len, 8);
4384                 if (!(lapic_in_kernel(vcpu) &&
4385                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4386                                          addr, n, v))
4387                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4388                         break;
4389                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4390                 handled += n;
4391                 addr += n;
4392                 len -= n;
4393                 v += n;
4394         } while (len);
4395
4396         return handled;
4397 }
4398
4399 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4400                         struct kvm_segment *var, int seg)
4401 {
4402         kvm_x86_ops->set_segment(vcpu, var, seg);
4403 }
4404
4405 void kvm_get_segment(struct kvm_vcpu *vcpu,
4406                      struct kvm_segment *var, int seg)
4407 {
4408         kvm_x86_ops->get_segment(vcpu, var, seg);
4409 }
4410
4411 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4412                            struct x86_exception *exception)
4413 {
4414         gpa_t t_gpa;
4415
4416         BUG_ON(!mmu_is_nested(vcpu));
4417
4418         /* NPT walks are always user-walks */
4419         access |= PFERR_USER_MASK;
4420         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4421
4422         return t_gpa;
4423 }
4424
4425 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4426                               struct x86_exception *exception)
4427 {
4428         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4429         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4430 }
4431
4432  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4433                                 struct x86_exception *exception)
4434 {
4435         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4436         access |= PFERR_FETCH_MASK;
4437         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4438 }
4439
4440 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4441                                struct x86_exception *exception)
4442 {
4443         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4444         access |= PFERR_WRITE_MASK;
4445         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4446 }
4447
4448 /* uses this to access any guest's mapped memory without checking CPL */
4449 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4450                                 struct x86_exception *exception)
4451 {
4452         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4453 }
4454
4455 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4456                                       struct kvm_vcpu *vcpu, u32 access,
4457                                       struct x86_exception *exception)
4458 {
4459         void *data = val;
4460         int r = X86EMUL_CONTINUE;
4461
4462         while (bytes) {
4463                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4464                                                             exception);
4465                 unsigned offset = addr & (PAGE_SIZE-1);
4466                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4467                 int ret;
4468
4469                 if (gpa == UNMAPPED_GVA)
4470                         return X86EMUL_PROPAGATE_FAULT;
4471                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4472                                                offset, toread);
4473                 if (ret < 0) {
4474                         r = X86EMUL_IO_NEEDED;
4475                         goto out;
4476                 }
4477
4478                 bytes -= toread;
4479                 data += toread;
4480                 addr += toread;
4481         }
4482 out:
4483         return r;
4484 }
4485
4486 /* used for instruction fetching */
4487 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4488                                 gva_t addr, void *val, unsigned int bytes,
4489                                 struct x86_exception *exception)
4490 {
4491         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4492         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4493         unsigned offset;
4494         int ret;
4495
4496         /* Inline kvm_read_guest_virt_helper for speed.  */
4497         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4498                                                     exception);
4499         if (unlikely(gpa == UNMAPPED_GVA))
4500                 return X86EMUL_PROPAGATE_FAULT;
4501
4502         offset = addr & (PAGE_SIZE-1);
4503         if (WARN_ON(offset + bytes > PAGE_SIZE))
4504                 bytes = (unsigned)PAGE_SIZE - offset;
4505         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4506                                        offset, bytes);
4507         if (unlikely(ret < 0))
4508                 return X86EMUL_IO_NEEDED;
4509
4510         return X86EMUL_CONTINUE;
4511 }
4512
4513 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4514                                gva_t addr, void *val, unsigned int bytes,
4515                                struct x86_exception *exception)
4516 {
4517         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4518         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4519
4520         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4521                                           exception);
4522 }
4523 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4524
4525 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4526                                       gva_t addr, void *val, unsigned int bytes,
4527                                       struct x86_exception *exception)
4528 {
4529         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4530         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4531 }
4532
4533 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4534                 unsigned long addr, void *val, unsigned int bytes)
4535 {
4536         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4537         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4538
4539         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4540 }
4541
4542 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4543                                        gva_t addr, void *val,
4544                                        unsigned int bytes,
4545                                        struct x86_exception *exception)
4546 {
4547         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4548         void *data = val;
4549         int r = X86EMUL_CONTINUE;
4550
4551         while (bytes) {
4552                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4553                                                              PFERR_WRITE_MASK,
4554                                                              exception);
4555                 unsigned offset = addr & (PAGE_SIZE-1);
4556                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4557                 int ret;
4558
4559                 if (gpa == UNMAPPED_GVA)
4560                         return X86EMUL_PROPAGATE_FAULT;
4561                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4562                 if (ret < 0) {
4563                         r = X86EMUL_IO_NEEDED;
4564                         goto out;
4565                 }
4566
4567                 bytes -= towrite;
4568                 data += towrite;
4569                 addr += towrite;
4570         }
4571 out:
4572         return r;
4573 }
4574 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4575
4576 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4577                             gpa_t gpa, bool write)
4578 {
4579         /* For APIC access vmexit */
4580         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4581                 return 1;
4582
4583         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4584                 trace_vcpu_match_mmio(gva, gpa, write, true);
4585                 return 1;
4586         }
4587
4588         return 0;
4589 }
4590
4591 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4592                                 gpa_t *gpa, struct x86_exception *exception,
4593                                 bool write)
4594 {
4595         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4596                 | (write ? PFERR_WRITE_MASK : 0);
4597
4598         /*
4599          * currently PKRU is only applied to ept enabled guest so
4600          * there is no pkey in EPT page table for L1 guest or EPT
4601          * shadow page table for L2 guest.
4602          */
4603         if (vcpu_match_mmio_gva(vcpu, gva)
4604             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4605                                  vcpu->arch.access, 0, access)) {
4606                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4607                                         (gva & (PAGE_SIZE - 1));
4608                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4609                 return 1;
4610         }
4611
4612         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4613
4614         if (*gpa == UNMAPPED_GVA)
4615                 return -1;
4616
4617         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4618 }
4619
4620 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4621                         const void *val, int bytes)
4622 {
4623         int ret;
4624
4625         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4626         if (ret < 0)
4627                 return 0;
4628         kvm_page_track_write(vcpu, gpa, val, bytes);
4629         return 1;
4630 }
4631
4632 struct read_write_emulator_ops {
4633         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4634                                   int bytes);
4635         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4636                                   void *val, int bytes);
4637         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4638                                int bytes, void *val);
4639         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4640                                     void *val, int bytes);
4641         bool write;
4642 };
4643
4644 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4645 {
4646         if (vcpu->mmio_read_completed) {
4647                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4648                                vcpu->mmio_fragments[0].gpa, val);
4649                 vcpu->mmio_read_completed = 0;
4650                 return 1;
4651         }
4652
4653         return 0;
4654 }
4655
4656 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4657                         void *val, int bytes)
4658 {
4659         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4660 }
4661
4662 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4663                          void *val, int bytes)
4664 {
4665         return emulator_write_phys(vcpu, gpa, val, bytes);
4666 }
4667
4668 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4669 {
4670         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4671         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4672 }
4673
4674 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4675                           void *val, int bytes)
4676 {
4677         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4678         return X86EMUL_IO_NEEDED;
4679 }
4680
4681 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4682                            void *val, int bytes)
4683 {
4684         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4685
4686         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4687         return X86EMUL_CONTINUE;
4688 }
4689
4690 static const struct read_write_emulator_ops read_emultor = {
4691         .read_write_prepare = read_prepare,
4692         .read_write_emulate = read_emulate,
4693         .read_write_mmio = vcpu_mmio_read,
4694         .read_write_exit_mmio = read_exit_mmio,
4695 };
4696
4697 static const struct read_write_emulator_ops write_emultor = {
4698         .read_write_emulate = write_emulate,
4699         .read_write_mmio = write_mmio,
4700         .read_write_exit_mmio = write_exit_mmio,
4701         .write = true,
4702 };
4703
4704 static int emulator_read_write_onepage(unsigned long addr, void *val,
4705                                        unsigned int bytes,
4706                                        struct x86_exception *exception,
4707                                        struct kvm_vcpu *vcpu,
4708                                        const struct read_write_emulator_ops *ops)
4709 {
4710         gpa_t gpa;
4711         int handled, ret;
4712         bool write = ops->write;
4713         struct kvm_mmio_fragment *frag;
4714         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4715
4716         /*
4717          * If the exit was due to a NPF we may already have a GPA.
4718          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4719          * Note, this cannot be used on string operations since string
4720          * operation using rep will only have the initial GPA from the NPF
4721          * occurred.
4722          */
4723         if (vcpu->arch.gpa_available &&
4724             emulator_can_use_gpa(ctxt) &&
4725             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4726                 gpa = vcpu->arch.gpa_val;
4727                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4728         } else {
4729                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4730                 if (ret < 0)
4731                         return X86EMUL_PROPAGATE_FAULT;
4732         }
4733
4734         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4735                 return X86EMUL_CONTINUE;
4736
4737         /*
4738          * Is this MMIO handled locally?
4739          */
4740         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4741         if (handled == bytes)
4742                 return X86EMUL_CONTINUE;
4743
4744         gpa += handled;
4745         bytes -= handled;
4746         val += handled;
4747
4748         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4749         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4750         frag->gpa = gpa;
4751         frag->data = val;
4752         frag->len = bytes;
4753         return X86EMUL_CONTINUE;
4754 }
4755
4756 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4757                         unsigned long addr,
4758                         void *val, unsigned int bytes,
4759                         struct x86_exception *exception,
4760                         const struct read_write_emulator_ops *ops)
4761 {
4762         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4763         gpa_t gpa;
4764         int rc;
4765
4766         if (ops->read_write_prepare &&
4767                   ops->read_write_prepare(vcpu, val, bytes))
4768                 return X86EMUL_CONTINUE;
4769
4770         vcpu->mmio_nr_fragments = 0;
4771
4772         /* Crossing a page boundary? */
4773         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4774                 int now;
4775
4776                 now = -addr & ~PAGE_MASK;
4777                 rc = emulator_read_write_onepage(addr, val, now, exception,
4778                                                  vcpu, ops);
4779
4780                 if (rc != X86EMUL_CONTINUE)
4781                         return rc;
4782                 addr += now;
4783                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4784                         addr = (u32)addr;
4785                 val += now;
4786                 bytes -= now;
4787         }
4788
4789         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4790                                          vcpu, ops);
4791         if (rc != X86EMUL_CONTINUE)
4792                 return rc;
4793
4794         if (!vcpu->mmio_nr_fragments)
4795                 return rc;
4796
4797         gpa = vcpu->mmio_fragments[0].gpa;
4798
4799         vcpu->mmio_needed = 1;
4800         vcpu->mmio_cur_fragment = 0;
4801
4802         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4803         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4804         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4805         vcpu->run->mmio.phys_addr = gpa;
4806
4807         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4808 }
4809
4810 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4811                                   unsigned long addr,
4812                                   void *val,
4813                                   unsigned int bytes,
4814                                   struct x86_exception *exception)
4815 {
4816         return emulator_read_write(ctxt, addr, val, bytes,
4817                                    exception, &read_emultor);
4818 }
4819
4820 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4821                             unsigned long addr,
4822                             const void *val,
4823                             unsigned int bytes,
4824                             struct x86_exception *exception)
4825 {
4826         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4827                                    exception, &write_emultor);
4828 }
4829
4830 #define CMPXCHG_TYPE(t, ptr, old, new) \
4831         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4832
4833 #ifdef CONFIG_X86_64
4834 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4835 #else
4836 #  define CMPXCHG64(ptr, old, new) \
4837         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4838 #endif
4839
4840 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4841                                      unsigned long addr,
4842                                      const void *old,
4843                                      const void *new,
4844                                      unsigned int bytes,
4845                                      struct x86_exception *exception)
4846 {
4847         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4848         gpa_t gpa;
4849         struct page *page;
4850         char *kaddr;
4851         bool exchanged;
4852
4853         /* guests cmpxchg8b have to be emulated atomically */
4854         if (bytes > 8 || (bytes & (bytes - 1)))
4855                 goto emul_write;
4856
4857         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4858
4859         if (gpa == UNMAPPED_GVA ||
4860             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4861                 goto emul_write;
4862
4863         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4864                 goto emul_write;
4865
4866         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4867         if (is_error_page(page))
4868                 goto emul_write;
4869
4870         kaddr = kmap_atomic(page);
4871         kaddr += offset_in_page(gpa);
4872         switch (bytes) {
4873         case 1:
4874                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4875                 break;
4876         case 2:
4877                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4878                 break;
4879         case 4:
4880                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4881                 break;
4882         case 8:
4883                 exchanged = CMPXCHG64(kaddr, old, new);
4884                 break;
4885         default:
4886                 BUG();
4887         }
4888         kunmap_atomic(kaddr);
4889         kvm_release_page_dirty(page);
4890
4891         if (!exchanged)
4892                 return X86EMUL_CMPXCHG_FAILED;
4893
4894         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4895         kvm_page_track_write(vcpu, gpa, new, bytes);
4896
4897         return X86EMUL_CONTINUE;
4898
4899 emul_write:
4900         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4901
4902         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4903 }
4904
4905 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4906 {
4907         int r = 0, i;
4908
4909         for (i = 0; i < vcpu->arch.pio.count; i++) {
4910                 if (vcpu->arch.pio.in)
4911                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4912                                             vcpu->arch.pio.size, pd);
4913                 else
4914                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4915                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
4916                                              pd);
4917                 if (r)
4918                         break;
4919                 pd += vcpu->arch.pio.size;
4920         }
4921         return r;
4922 }
4923
4924 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4925                                unsigned short port, void *val,
4926                                unsigned int count, bool in)
4927 {
4928         vcpu->arch.pio.port = port;
4929         vcpu->arch.pio.in = in;
4930         vcpu->arch.pio.count  = count;
4931         vcpu->arch.pio.size = size;
4932
4933         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4934                 vcpu->arch.pio.count = 0;
4935                 return 1;
4936         }
4937
4938         vcpu->run->exit_reason = KVM_EXIT_IO;
4939         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4940         vcpu->run->io.size = size;
4941         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4942         vcpu->run->io.count = count;
4943         vcpu->run->io.port = port;
4944
4945         return 0;
4946 }
4947
4948 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4949                                     int size, unsigned short port, void *val,
4950                                     unsigned int count)
4951 {
4952         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4953         int ret;
4954
4955         if (vcpu->arch.pio.count)
4956                 goto data_avail;
4957
4958         memset(vcpu->arch.pio_data, 0, size * count);
4959
4960         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4961         if (ret) {
4962 data_avail:
4963                 memcpy(val, vcpu->arch.pio_data, size * count);
4964                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4965                 vcpu->arch.pio.count = 0;
4966                 return 1;
4967         }
4968
4969         return 0;
4970 }
4971
4972 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4973                                      int size, unsigned short port,
4974                                      const void *val, unsigned int count)
4975 {
4976         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4977
4978         memcpy(vcpu->arch.pio_data, val, size * count);
4979         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4980         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4981 }
4982
4983 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4984 {
4985         return kvm_x86_ops->get_segment_base(vcpu, seg);
4986 }
4987
4988 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4989 {
4990         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4991 }
4992
4993 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4994 {
4995         if (!need_emulate_wbinvd(vcpu))
4996                 return X86EMUL_CONTINUE;
4997
4998         if (kvm_x86_ops->has_wbinvd_exit()) {
4999                 int cpu = get_cpu();
5000
5001                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5002                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5003                                 wbinvd_ipi, NULL, 1);
5004                 put_cpu();
5005                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5006         } else
5007                 wbinvd();
5008         return X86EMUL_CONTINUE;
5009 }
5010
5011 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5012 {
5013         kvm_emulate_wbinvd_noskip(vcpu);
5014         return kvm_skip_emulated_instruction(vcpu);
5015 }
5016 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5017
5018
5019
5020 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5021 {
5022         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5023 }
5024
5025 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5026                            unsigned long *dest)
5027 {
5028         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5029 }
5030
5031 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5032                            unsigned long value)
5033 {
5034
5035         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5036 }
5037
5038 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5039 {
5040         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5041 }
5042
5043 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5044 {
5045         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5046         unsigned long value;
5047
5048         switch (cr) {
5049         case 0:
5050                 value = kvm_read_cr0(vcpu);
5051                 break;
5052         case 2:
5053                 value = vcpu->arch.cr2;
5054                 break;
5055         case 3:
5056                 value = kvm_read_cr3(vcpu);
5057                 break;
5058         case 4:
5059                 value = kvm_read_cr4(vcpu);
5060                 break;
5061         case 8:
5062                 value = kvm_get_cr8(vcpu);
5063                 break;
5064         default:
5065                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5066                 return 0;
5067         }
5068
5069         return value;
5070 }
5071
5072 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5073 {
5074         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5075         int res = 0;
5076
5077         switch (cr) {
5078         case 0:
5079                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5080                 break;
5081         case 2:
5082                 vcpu->arch.cr2 = val;
5083                 break;
5084         case 3:
5085                 res = kvm_set_cr3(vcpu, val);
5086                 break;
5087         case 4:
5088                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5089                 break;
5090         case 8:
5091                 res = kvm_set_cr8(vcpu, val);
5092                 break;
5093         default:
5094                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5095                 res = -1;
5096         }
5097
5098         return res;
5099 }
5100
5101 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5102 {
5103         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5104 }
5105
5106 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5107 {
5108         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5109 }
5110
5111 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5112 {
5113         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5114 }
5115
5116 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5117 {
5118         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5119 }
5120
5121 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5122 {
5123         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5124 }
5125
5126 static unsigned long emulator_get_cached_segment_base(
5127         struct x86_emulate_ctxt *ctxt, int seg)
5128 {
5129         return get_segment_base(emul_to_vcpu(ctxt), seg);
5130 }
5131
5132 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5133                                  struct desc_struct *desc, u32 *base3,
5134                                  int seg)
5135 {
5136         struct kvm_segment var;
5137
5138         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5139         *selector = var.selector;
5140
5141         if (var.unusable) {
5142                 memset(desc, 0, sizeof(*desc));
5143                 if (base3)
5144                         *base3 = 0;
5145                 return false;
5146         }
5147
5148         if (var.g)
5149                 var.limit >>= 12;
5150         set_desc_limit(desc, var.limit);
5151         set_desc_base(desc, (unsigned long)var.base);
5152 #ifdef CONFIG_X86_64
5153         if (base3)
5154                 *base3 = var.base >> 32;
5155 #endif
5156         desc->type = var.type;
5157         desc->s = var.s;
5158         desc->dpl = var.dpl;
5159         desc->p = var.present;
5160         desc->avl = var.avl;
5161         desc->l = var.l;
5162         desc->d = var.db;
5163         desc->g = var.g;
5164
5165         return true;
5166 }
5167
5168 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5169                                  struct desc_struct *desc, u32 base3,
5170                                  int seg)
5171 {
5172         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5173         struct kvm_segment var;
5174
5175         var.selector = selector;
5176         var.base = get_desc_base(desc);
5177 #ifdef CONFIG_X86_64
5178         var.base |= ((u64)base3) << 32;
5179 #endif
5180         var.limit = get_desc_limit(desc);
5181         if (desc->g)
5182                 var.limit = (var.limit << 12) | 0xfff;
5183         var.type = desc->type;
5184         var.dpl = desc->dpl;
5185         var.db = desc->d;
5186         var.s = desc->s;
5187         var.l = desc->l;
5188         var.g = desc->g;
5189         var.avl = desc->avl;
5190         var.present = desc->p;
5191         var.unusable = !var.present;
5192         var.padding = 0;
5193
5194         kvm_set_segment(vcpu, &var, seg);
5195         return;
5196 }
5197
5198 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5199                             u32 msr_index, u64 *pdata)
5200 {
5201         struct msr_data msr;
5202         int r;
5203
5204         msr.index = msr_index;
5205         msr.host_initiated = false;
5206         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5207         if (r)
5208                 return r;
5209
5210         *pdata = msr.data;
5211         return 0;
5212 }
5213
5214 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5215                             u32 msr_index, u64 data)
5216 {
5217         struct msr_data msr;
5218
5219         msr.data = data;
5220         msr.index = msr_index;
5221         msr.host_initiated = false;
5222         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5223 }
5224
5225 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5226 {
5227         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5228
5229         return vcpu->arch.smbase;
5230 }
5231
5232 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5233 {
5234         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5235
5236         vcpu->arch.smbase = smbase;
5237 }
5238
5239 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5240                               u32 pmc)
5241 {
5242         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5243 }
5244
5245 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5246                              u32 pmc, u64 *pdata)
5247 {
5248         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5249 }
5250
5251 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5252 {
5253         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5254 }
5255
5256 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5257                               struct x86_instruction_info *info,
5258                               enum x86_intercept_stage stage)
5259 {
5260         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5261 }
5262
5263 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5264                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5265 {
5266         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5267 }
5268
5269 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5270 {
5271         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5272 }
5273
5274 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5275 {
5276         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5277 }
5278
5279 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5280 {
5281         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5282 }
5283
5284 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5285 {
5286         return emul_to_vcpu(ctxt)->arch.hflags;
5287 }
5288
5289 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5290 {
5291         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5292 }
5293
5294 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5295 {
5296         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5297 }
5298
5299 static const struct x86_emulate_ops emulate_ops = {
5300         .read_gpr            = emulator_read_gpr,
5301         .write_gpr           = emulator_write_gpr,
5302         .read_std            = kvm_read_guest_virt_system,
5303         .write_std           = kvm_write_guest_virt_system,
5304         .read_phys           = kvm_read_guest_phys_system,
5305         .fetch               = kvm_fetch_guest_virt,
5306         .read_emulated       = emulator_read_emulated,
5307         .write_emulated      = emulator_write_emulated,
5308         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5309         .invlpg              = emulator_invlpg,
5310         .pio_in_emulated     = emulator_pio_in_emulated,
5311         .pio_out_emulated    = emulator_pio_out_emulated,
5312         .get_segment         = emulator_get_segment,
5313         .set_segment         = emulator_set_segment,
5314         .get_cached_segment_base = emulator_get_cached_segment_base,
5315         .get_gdt             = emulator_get_gdt,
5316         .get_idt             = emulator_get_idt,
5317         .set_gdt             = emulator_set_gdt,
5318         .set_idt             = emulator_set_idt,
5319         .get_cr              = emulator_get_cr,
5320         .set_cr              = emulator_set_cr,
5321         .cpl                 = emulator_get_cpl,
5322         .get_dr              = emulator_get_dr,
5323         .set_dr              = emulator_set_dr,
5324         .get_smbase          = emulator_get_smbase,
5325         .set_smbase          = emulator_set_smbase,
5326         .set_msr             = emulator_set_msr,
5327         .get_msr             = emulator_get_msr,
5328         .check_pmc           = emulator_check_pmc,
5329         .read_pmc            = emulator_read_pmc,
5330         .halt                = emulator_halt,
5331         .wbinvd              = emulator_wbinvd,
5332         .fix_hypercall       = emulator_fix_hypercall,
5333         .intercept           = emulator_intercept,
5334         .get_cpuid           = emulator_get_cpuid,
5335         .set_nmi_mask        = emulator_set_nmi_mask,
5336         .get_hflags          = emulator_get_hflags,
5337         .set_hflags          = emulator_set_hflags,
5338         .pre_leave_smm       = emulator_pre_leave_smm,
5339 };
5340
5341 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5342 {
5343         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5344         /*
5345          * an sti; sti; sequence only disable interrupts for the first
5346          * instruction. So, if the last instruction, be it emulated or
5347          * not, left the system with the INT_STI flag enabled, it
5348          * means that the last instruction is an sti. We should not
5349          * leave the flag on in this case. The same goes for mov ss
5350          */
5351         if (int_shadow & mask)
5352                 mask = 0;
5353         if (unlikely(int_shadow || mask)) {
5354                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5355                 if (!mask)
5356                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5357         }
5358 }
5359
5360 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5361 {
5362         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5363         if (ctxt->exception.vector == PF_VECTOR)
5364                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5365
5366         if (ctxt->exception.error_code_valid)
5367                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5368                                       ctxt->exception.error_code);
5369         else
5370                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5371         return false;
5372 }
5373
5374 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5375 {
5376         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5377         int cs_db, cs_l;
5378
5379         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5380
5381         ctxt->eflags = kvm_get_rflags(vcpu);
5382         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5383
5384         ctxt->eip = kvm_rip_read(vcpu);
5385         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5386                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5387                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5388                      cs_db                              ? X86EMUL_MODE_PROT32 :
5389                                                           X86EMUL_MODE_PROT16;
5390         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5391         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5392         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5393
5394         init_decode_cache(ctxt);
5395         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5396 }
5397
5398 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5399 {
5400         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5401         int ret;
5402
5403         init_emulate_ctxt(vcpu);
5404
5405         ctxt->op_bytes = 2;
5406         ctxt->ad_bytes = 2;
5407         ctxt->_eip = ctxt->eip + inc_eip;
5408         ret = emulate_int_real(ctxt, irq);
5409
5410         if (ret != X86EMUL_CONTINUE)
5411                 return EMULATE_FAIL;
5412
5413         ctxt->eip = ctxt->_eip;
5414         kvm_rip_write(vcpu, ctxt->eip);
5415         kvm_set_rflags(vcpu, ctxt->eflags);
5416
5417         if (irq == NMI_VECTOR)
5418                 vcpu->arch.nmi_pending = 0;
5419         else
5420                 vcpu->arch.interrupt.pending = false;
5421
5422         return EMULATE_DONE;
5423 }
5424 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5425
5426 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5427 {
5428         int r = EMULATE_DONE;
5429
5430         ++vcpu->stat.insn_emulation_fail;
5431         trace_kvm_emulate_insn_failed(vcpu);
5432         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5433                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5434                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5435                 vcpu->run->internal.ndata = 0;
5436                 r = EMULATE_USER_EXIT;
5437         }
5438         kvm_queue_exception(vcpu, UD_VECTOR);
5439
5440         return r;
5441 }
5442
5443 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5444                                   bool write_fault_to_shadow_pgtable,
5445                                   int emulation_type)
5446 {
5447         gpa_t gpa = cr2;
5448         kvm_pfn_t pfn;
5449
5450         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5451                 return false;
5452
5453         if (!vcpu->arch.mmu.direct_map) {
5454                 /*
5455                  * Write permission should be allowed since only
5456                  * write access need to be emulated.
5457                  */
5458                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5459
5460                 /*
5461                  * If the mapping is invalid in guest, let cpu retry
5462                  * it to generate fault.
5463                  */
5464                 if (gpa == UNMAPPED_GVA)
5465                         return true;
5466         }
5467
5468         /*
5469          * Do not retry the unhandleable instruction if it faults on the
5470          * readonly host memory, otherwise it will goto a infinite loop:
5471          * retry instruction -> write #PF -> emulation fail -> retry
5472          * instruction -> ...
5473          */
5474         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5475
5476         /*
5477          * If the instruction failed on the error pfn, it can not be fixed,
5478          * report the error to userspace.
5479          */
5480         if (is_error_noslot_pfn(pfn))
5481                 return false;
5482
5483         kvm_release_pfn_clean(pfn);
5484
5485         /* The instructions are well-emulated on direct mmu. */
5486         if (vcpu->arch.mmu.direct_map) {
5487                 unsigned int indirect_shadow_pages;
5488
5489                 spin_lock(&vcpu->kvm->mmu_lock);
5490                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5491                 spin_unlock(&vcpu->kvm->mmu_lock);
5492
5493                 if (indirect_shadow_pages)
5494                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5495
5496                 return true;
5497         }
5498
5499         /*
5500          * if emulation was due to access to shadowed page table
5501          * and it failed try to unshadow page and re-enter the
5502          * guest to let CPU execute the instruction.
5503          */
5504         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5505
5506         /*
5507          * If the access faults on its page table, it can not
5508          * be fixed by unprotecting shadow page and it should
5509          * be reported to userspace.
5510          */
5511         return !write_fault_to_shadow_pgtable;
5512 }
5513
5514 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5515                               unsigned long cr2,  int emulation_type)
5516 {
5517         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5518         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5519
5520         last_retry_eip = vcpu->arch.last_retry_eip;
5521         last_retry_addr = vcpu->arch.last_retry_addr;
5522
5523         /*
5524          * If the emulation is caused by #PF and it is non-page_table
5525          * writing instruction, it means the VM-EXIT is caused by shadow
5526          * page protected, we can zap the shadow page and retry this
5527          * instruction directly.
5528          *
5529          * Note: if the guest uses a non-page-table modifying instruction
5530          * on the PDE that points to the instruction, then we will unmap
5531          * the instruction and go to an infinite loop. So, we cache the
5532          * last retried eip and the last fault address, if we meet the eip
5533          * and the address again, we can break out of the potential infinite
5534          * loop.
5535          */
5536         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5537
5538         if (!(emulation_type & EMULTYPE_RETRY))
5539                 return false;
5540
5541         if (x86_page_table_writing_insn(ctxt))
5542                 return false;
5543
5544         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5545                 return false;
5546
5547         vcpu->arch.last_retry_eip = ctxt->eip;
5548         vcpu->arch.last_retry_addr = cr2;
5549
5550         if (!vcpu->arch.mmu.direct_map)
5551                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5552
5553         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5554
5555         return true;
5556 }
5557
5558 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5559 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5560
5561 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5562 {
5563         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5564                 /* This is a good place to trace that we are exiting SMM.  */
5565                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5566
5567                 /* Process a latched INIT or SMI, if any.  */
5568                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5569         }
5570
5571         kvm_mmu_reset_context(vcpu);
5572 }
5573
5574 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5575 {
5576         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5577
5578         vcpu->arch.hflags = emul_flags;
5579
5580         if (changed & HF_SMM_MASK)
5581                 kvm_smm_changed(vcpu);
5582 }
5583
5584 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5585                                 unsigned long *db)
5586 {
5587         u32 dr6 = 0;
5588         int i;
5589         u32 enable, rwlen;
5590
5591         enable = dr7;
5592         rwlen = dr7 >> 16;
5593         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5594                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5595                         dr6 |= (1 << i);
5596         return dr6;
5597 }
5598
5599 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5600 {
5601         struct kvm_run *kvm_run = vcpu->run;
5602
5603         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5604                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5605                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5606                 kvm_run->debug.arch.exception = DB_VECTOR;
5607                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5608                 *r = EMULATE_USER_EXIT;
5609         } else {
5610                 /*
5611                  * "Certain debug exceptions may clear bit 0-3.  The
5612                  * remaining contents of the DR6 register are never
5613                  * cleared by the processor".
5614                  */
5615                 vcpu->arch.dr6 &= ~15;
5616                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5617                 kvm_queue_exception(vcpu, DB_VECTOR);
5618         }
5619 }
5620
5621 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5622 {
5623         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5624         int r = EMULATE_DONE;
5625
5626         kvm_x86_ops->skip_emulated_instruction(vcpu);
5627
5628         /*
5629          * rflags is the old, "raw" value of the flags.  The new value has
5630          * not been saved yet.
5631          *
5632          * This is correct even for TF set by the guest, because "the
5633          * processor will not generate this exception after the instruction
5634          * that sets the TF flag".
5635          */
5636         if (unlikely(rflags & X86_EFLAGS_TF))
5637                 kvm_vcpu_do_singlestep(vcpu, &r);
5638         return r == EMULATE_DONE;
5639 }
5640 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5641
5642 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5643 {
5644         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5645             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5646                 struct kvm_run *kvm_run = vcpu->run;
5647                 unsigned long eip = kvm_get_linear_rip(vcpu);
5648                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5649                                            vcpu->arch.guest_debug_dr7,
5650                                            vcpu->arch.eff_db);
5651
5652                 if (dr6 != 0) {
5653                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5654                         kvm_run->debug.arch.pc = eip;
5655                         kvm_run->debug.arch.exception = DB_VECTOR;
5656                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5657                         *r = EMULATE_USER_EXIT;
5658                         return true;
5659                 }
5660         }
5661
5662         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5663             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5664                 unsigned long eip = kvm_get_linear_rip(vcpu);
5665                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5666                                            vcpu->arch.dr7,
5667                                            vcpu->arch.db);
5668
5669                 if (dr6 != 0) {
5670                         vcpu->arch.dr6 &= ~15;
5671                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5672                         kvm_queue_exception(vcpu, DB_VECTOR);
5673                         *r = EMULATE_DONE;
5674                         return true;
5675                 }
5676         }
5677
5678         return false;
5679 }
5680
5681 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5682                             unsigned long cr2,
5683                             int emulation_type,
5684                             void *insn,
5685                             int insn_len)
5686 {
5687         int r;
5688         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5689         bool writeback = true;
5690         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5691
5692         /*
5693          * Clear write_fault_to_shadow_pgtable here to ensure it is
5694          * never reused.
5695          */
5696         vcpu->arch.write_fault_to_shadow_pgtable = false;
5697         kvm_clear_exception_queue(vcpu);
5698
5699         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5700                 init_emulate_ctxt(vcpu);
5701
5702                 /*
5703                  * We will reenter on the same instruction since
5704                  * we do not set complete_userspace_io.  This does not
5705                  * handle watchpoints yet, those would be handled in
5706                  * the emulate_ops.
5707                  */
5708                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5709                         return r;
5710
5711                 ctxt->interruptibility = 0;
5712                 ctxt->have_exception = false;
5713                 ctxt->exception.vector = -1;
5714                 ctxt->perm_ok = false;
5715
5716                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5717
5718                 r = x86_decode_insn(ctxt, insn, insn_len);
5719
5720                 trace_kvm_emulate_insn_start(vcpu);
5721                 ++vcpu->stat.insn_emulation;
5722                 if (r != EMULATION_OK)  {
5723                         if (emulation_type & EMULTYPE_TRAP_UD)
5724                                 return EMULATE_FAIL;
5725                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5726                                                 emulation_type))
5727                                 return EMULATE_DONE;
5728                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
5729                                 return EMULATE_DONE;
5730                         if (emulation_type & EMULTYPE_SKIP)
5731                                 return EMULATE_FAIL;
5732                         return handle_emulation_failure(vcpu);
5733                 }
5734         }
5735
5736         if (emulation_type & EMULTYPE_SKIP) {
5737                 kvm_rip_write(vcpu, ctxt->_eip);
5738                 if (ctxt->eflags & X86_EFLAGS_RF)
5739                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5740                 return EMULATE_DONE;
5741         }
5742
5743         if (retry_instruction(ctxt, cr2, emulation_type))
5744                 return EMULATE_DONE;
5745
5746         /* this is needed for vmware backdoor interface to work since it
5747            changes registers values  during IO operation */
5748         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5749                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5750                 emulator_invalidate_register_cache(ctxt);
5751         }
5752
5753 restart:
5754         /* Save the faulting GPA (cr2) in the address field */
5755         ctxt->exception.address = cr2;
5756
5757         r = x86_emulate_insn(ctxt);
5758
5759         if (r == EMULATION_INTERCEPTED)
5760                 return EMULATE_DONE;
5761
5762         if (r == EMULATION_FAILED) {
5763                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5764                                         emulation_type))
5765                         return EMULATE_DONE;
5766
5767                 return handle_emulation_failure(vcpu);
5768         }
5769
5770         if (ctxt->have_exception) {
5771                 r = EMULATE_DONE;
5772                 if (inject_emulated_exception(vcpu))
5773                         return r;
5774         } else if (vcpu->arch.pio.count) {
5775                 if (!vcpu->arch.pio.in) {
5776                         /* FIXME: return into emulator if single-stepping.  */
5777                         vcpu->arch.pio.count = 0;
5778                 } else {
5779                         writeback = false;
5780                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5781                 }
5782                 r = EMULATE_USER_EXIT;
5783         } else if (vcpu->mmio_needed) {
5784                 if (!vcpu->mmio_is_write)
5785                         writeback = false;
5786                 r = EMULATE_USER_EXIT;
5787                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5788         } else if (r == EMULATION_RESTART)
5789                 goto restart;
5790         else
5791                 r = EMULATE_DONE;
5792
5793         if (writeback) {
5794                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5795                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5796                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5797                 kvm_rip_write(vcpu, ctxt->eip);
5798                 if (r == EMULATE_DONE &&
5799                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5800                         kvm_vcpu_do_singlestep(vcpu, &r);
5801                 if (!ctxt->have_exception ||
5802                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5803                         __kvm_set_rflags(vcpu, ctxt->eflags);
5804
5805                 /*
5806                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5807                  * do nothing, and it will be requested again as soon as
5808                  * the shadow expires.  But we still need to check here,
5809                  * because POPF has no interrupt shadow.
5810                  */
5811                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5812                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5813         } else
5814                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5815
5816         return r;
5817 }
5818 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5819
5820 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5821 {
5822         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5823         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5824                                             size, port, &val, 1);
5825         /* do not return to emulator after return from userspace */
5826         vcpu->arch.pio.count = 0;
5827         return ret;
5828 }
5829 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5830
5831 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5832 {
5833         unsigned long val;
5834
5835         /* We should only ever be called with arch.pio.count equal to 1 */
5836         BUG_ON(vcpu->arch.pio.count != 1);
5837
5838         /* For size less than 4 we merge, else we zero extend */
5839         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5840                                         : 0;
5841
5842         /*
5843          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5844          * the copy and tracing
5845          */
5846         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5847                                  vcpu->arch.pio.port, &val, 1);
5848         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5849
5850         return 1;
5851 }
5852
5853 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5854 {
5855         unsigned long val;
5856         int ret;
5857
5858         /* For size less than 4 we merge, else we zero extend */
5859         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5860
5861         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5862                                        &val, 1);
5863         if (ret) {
5864                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5865                 return ret;
5866         }
5867
5868         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5869
5870         return 0;
5871 }
5872 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5873
5874 static int kvmclock_cpu_down_prep(unsigned int cpu)
5875 {
5876         __this_cpu_write(cpu_tsc_khz, 0);
5877         return 0;
5878 }
5879
5880 static void tsc_khz_changed(void *data)
5881 {
5882         struct cpufreq_freqs *freq = data;
5883         unsigned long khz = 0;
5884
5885         if (data)
5886                 khz = freq->new;
5887         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5888                 khz = cpufreq_quick_get(raw_smp_processor_id());
5889         if (!khz)
5890                 khz = tsc_khz;
5891         __this_cpu_write(cpu_tsc_khz, khz);
5892 }
5893
5894 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5895                                      void *data)
5896 {
5897         struct cpufreq_freqs *freq = data;
5898         struct kvm *kvm;
5899         struct kvm_vcpu *vcpu;
5900         int i, send_ipi = 0;
5901
5902         /*
5903          * We allow guests to temporarily run on slowing clocks,
5904          * provided we notify them after, or to run on accelerating
5905          * clocks, provided we notify them before.  Thus time never
5906          * goes backwards.
5907          *
5908          * However, we have a problem.  We can't atomically update
5909          * the frequency of a given CPU from this function; it is
5910          * merely a notifier, which can be called from any CPU.
5911          * Changing the TSC frequency at arbitrary points in time
5912          * requires a recomputation of local variables related to
5913          * the TSC for each VCPU.  We must flag these local variables
5914          * to be updated and be sure the update takes place with the
5915          * new frequency before any guests proceed.
5916          *
5917          * Unfortunately, the combination of hotplug CPU and frequency
5918          * change creates an intractable locking scenario; the order
5919          * of when these callouts happen is undefined with respect to
5920          * CPU hotplug, and they can race with each other.  As such,
5921          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5922          * undefined; you can actually have a CPU frequency change take
5923          * place in between the computation of X and the setting of the
5924          * variable.  To protect against this problem, all updates of
5925          * the per_cpu tsc_khz variable are done in an interrupt
5926          * protected IPI, and all callers wishing to update the value
5927          * must wait for a synchronous IPI to complete (which is trivial
5928          * if the caller is on the CPU already).  This establishes the
5929          * necessary total order on variable updates.
5930          *
5931          * Note that because a guest time update may take place
5932          * anytime after the setting of the VCPU's request bit, the
5933          * correct TSC value must be set before the request.  However,
5934          * to ensure the update actually makes it to any guest which
5935          * starts running in hardware virtualization between the set
5936          * and the acquisition of the spinlock, we must also ping the
5937          * CPU after setting the request bit.
5938          *
5939          */
5940
5941         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5942                 return 0;
5943         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5944                 return 0;
5945
5946         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5947
5948         spin_lock(&kvm_lock);
5949         list_for_each_entry(kvm, &vm_list, vm_list) {
5950                 kvm_for_each_vcpu(i, vcpu, kvm) {
5951                         if (vcpu->cpu != freq->cpu)
5952                                 continue;
5953                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5954                         if (vcpu->cpu != smp_processor_id())
5955                                 send_ipi = 1;
5956                 }
5957         }
5958         spin_unlock(&kvm_lock);
5959
5960         if (freq->old < freq->new && send_ipi) {
5961                 /*
5962                  * We upscale the frequency.  Must make the guest
5963                  * doesn't see old kvmclock values while running with
5964                  * the new frequency, otherwise we risk the guest sees
5965                  * time go backwards.
5966                  *
5967                  * In case we update the frequency for another cpu
5968                  * (which might be in guest context) send an interrupt
5969                  * to kick the cpu out of guest context.  Next time
5970                  * guest context is entered kvmclock will be updated,
5971                  * so the guest will not see stale values.
5972                  */
5973                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5974         }
5975         return 0;
5976 }
5977
5978 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5979         .notifier_call  = kvmclock_cpufreq_notifier
5980 };
5981
5982 static int kvmclock_cpu_online(unsigned int cpu)
5983 {
5984         tsc_khz_changed(NULL);
5985         return 0;
5986 }
5987
5988 static void kvm_timer_init(void)
5989 {
5990         max_tsc_khz = tsc_khz;
5991
5992         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5993 #ifdef CONFIG_CPU_FREQ
5994                 struct cpufreq_policy policy;
5995                 int cpu;
5996
5997                 memset(&policy, 0, sizeof(policy));
5998                 cpu = get_cpu();
5999                 cpufreq_get_policy(&policy, cpu);
6000                 if (policy.cpuinfo.max_freq)
6001                         max_tsc_khz = policy.cpuinfo.max_freq;
6002                 put_cpu();
6003 #endif
6004                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6005                                           CPUFREQ_TRANSITION_NOTIFIER);
6006         }
6007         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6008
6009         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6010                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6011 }
6012
6013 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6014
6015 int kvm_is_in_guest(void)
6016 {
6017         return __this_cpu_read(current_vcpu) != NULL;
6018 }
6019
6020 static int kvm_is_user_mode(void)
6021 {
6022         int user_mode = 3;
6023
6024         if (__this_cpu_read(current_vcpu))
6025                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6026
6027         return user_mode != 0;
6028 }
6029
6030 static unsigned long kvm_get_guest_ip(void)
6031 {
6032         unsigned long ip = 0;
6033
6034         if (__this_cpu_read(current_vcpu))
6035                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6036
6037         return ip;
6038 }
6039
6040 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6041         .is_in_guest            = kvm_is_in_guest,
6042         .is_user_mode           = kvm_is_user_mode,
6043         .get_guest_ip           = kvm_get_guest_ip,
6044 };
6045
6046 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6047 {
6048         __this_cpu_write(current_vcpu, vcpu);
6049 }
6050 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6051
6052 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6053 {
6054         __this_cpu_write(current_vcpu, NULL);
6055 }
6056 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6057
6058 static void kvm_set_mmio_spte_mask(void)
6059 {
6060         u64 mask;
6061         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6062
6063         /*
6064          * Set the reserved bits and the present bit of an paging-structure
6065          * entry to generate page fault with PFER.RSV = 1.
6066          */
6067          /* Mask the reserved physical address bits. */
6068         mask = rsvd_bits(maxphyaddr, 51);
6069
6070         /* Set the present bit. */
6071         mask |= 1ull;
6072
6073 #ifdef CONFIG_X86_64
6074         /*
6075          * If reserved bit is not supported, clear the present bit to disable
6076          * mmio page fault.
6077          */
6078         if (maxphyaddr == 52)
6079                 mask &= ~1ull;
6080 #endif
6081
6082         kvm_mmu_set_mmio_spte_mask(mask, mask);
6083 }
6084
6085 #ifdef CONFIG_X86_64
6086 static void pvclock_gtod_update_fn(struct work_struct *work)
6087 {
6088         struct kvm *kvm;
6089
6090         struct kvm_vcpu *vcpu;
6091         int i;
6092
6093         spin_lock(&kvm_lock);
6094         list_for_each_entry(kvm, &vm_list, vm_list)
6095                 kvm_for_each_vcpu(i, vcpu, kvm)
6096                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6097         atomic_set(&kvm_guest_has_master_clock, 0);
6098         spin_unlock(&kvm_lock);
6099 }
6100
6101 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6102
6103 /*
6104  * Notification about pvclock gtod data update.
6105  */
6106 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6107                                void *priv)
6108 {
6109         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6110         struct timekeeper *tk = priv;
6111
6112         update_pvclock_gtod(tk);
6113
6114         /* disable master clock if host does not trust, or does not
6115          * use, TSC clocksource
6116          */
6117         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6118             atomic_read(&kvm_guest_has_master_clock) != 0)
6119                 queue_work(system_long_wq, &pvclock_gtod_work);
6120
6121         return 0;
6122 }
6123
6124 static struct notifier_block pvclock_gtod_notifier = {
6125         .notifier_call = pvclock_gtod_notify,
6126 };
6127 #endif
6128
6129 int kvm_arch_init(void *opaque)
6130 {
6131         int r;
6132         struct kvm_x86_ops *ops = opaque;
6133
6134         if (kvm_x86_ops) {
6135                 printk(KERN_ERR "kvm: already loaded the other module\n");
6136                 r = -EEXIST;
6137                 goto out;
6138         }
6139
6140         if (!ops->cpu_has_kvm_support()) {
6141                 printk(KERN_ERR "kvm: no hardware support\n");
6142                 r = -EOPNOTSUPP;
6143                 goto out;
6144         }
6145         if (ops->disabled_by_bios()) {
6146                 printk(KERN_ERR "kvm: disabled by bios\n");
6147                 r = -EOPNOTSUPP;
6148                 goto out;
6149         }
6150
6151         r = -ENOMEM;
6152         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6153         if (!shared_msrs) {
6154                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6155                 goto out;
6156         }
6157
6158         r = kvm_mmu_module_init();
6159         if (r)
6160                 goto out_free_percpu;
6161
6162         kvm_set_mmio_spte_mask();
6163
6164         kvm_x86_ops = ops;
6165
6166         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6167                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6168                         PT_PRESENT_MASK, 0, sme_me_mask);
6169         kvm_timer_init();
6170
6171         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6172
6173         if (boot_cpu_has(X86_FEATURE_XSAVE))
6174                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6175
6176         kvm_lapic_init();
6177 #ifdef CONFIG_X86_64
6178         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6179 #endif
6180
6181         return 0;
6182
6183 out_free_percpu:
6184         free_percpu(shared_msrs);
6185 out:
6186         return r;
6187 }
6188
6189 void kvm_arch_exit(void)
6190 {
6191         kvm_lapic_exit();
6192         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6193
6194         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6195                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6196                                             CPUFREQ_TRANSITION_NOTIFIER);
6197         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6198 #ifdef CONFIG_X86_64
6199         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6200 #endif
6201         kvm_x86_ops = NULL;
6202         kvm_mmu_module_exit();
6203         free_percpu(shared_msrs);
6204 }
6205
6206 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6207 {
6208         ++vcpu->stat.halt_exits;
6209         if (lapic_in_kernel(vcpu)) {
6210                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6211                 return 1;
6212         } else {
6213                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6214                 return 0;
6215         }
6216 }
6217 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6218
6219 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6220 {
6221         int ret = kvm_skip_emulated_instruction(vcpu);
6222         /*
6223          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6224          * KVM_EXIT_DEBUG here.
6225          */
6226         return kvm_vcpu_halt(vcpu) && ret;
6227 }
6228 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6229
6230 #ifdef CONFIG_X86_64
6231 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6232                                 unsigned long clock_type)
6233 {
6234         struct kvm_clock_pairing clock_pairing;
6235         struct timespec ts;
6236         u64 cycle;
6237         int ret;
6238
6239         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6240                 return -KVM_EOPNOTSUPP;
6241
6242         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6243                 return -KVM_EOPNOTSUPP;
6244
6245         clock_pairing.sec = ts.tv_sec;
6246         clock_pairing.nsec = ts.tv_nsec;
6247         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6248         clock_pairing.flags = 0;
6249
6250         ret = 0;
6251         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6252                             sizeof(struct kvm_clock_pairing)))
6253                 ret = -KVM_EFAULT;
6254
6255         return ret;
6256 }
6257 #endif
6258
6259 /*
6260  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6261  *
6262  * @apicid - apicid of vcpu to be kicked.
6263  */
6264 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6265 {
6266         struct kvm_lapic_irq lapic_irq;
6267
6268         lapic_irq.shorthand = 0;
6269         lapic_irq.dest_mode = 0;
6270         lapic_irq.level = 0;
6271         lapic_irq.dest_id = apicid;
6272         lapic_irq.msi_redir_hint = false;
6273
6274         lapic_irq.delivery_mode = APIC_DM_REMRD;
6275         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6276 }
6277
6278 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6279 {
6280         vcpu->arch.apicv_active = false;
6281         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6282 }
6283
6284 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6285 {
6286         unsigned long nr, a0, a1, a2, a3, ret;
6287         int op_64_bit, r;
6288
6289         r = kvm_skip_emulated_instruction(vcpu);
6290
6291         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6292                 return kvm_hv_hypercall(vcpu);
6293
6294         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6295         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6296         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6297         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6298         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6299
6300         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6301
6302         op_64_bit = is_64_bit_mode(vcpu);
6303         if (!op_64_bit) {
6304                 nr &= 0xFFFFFFFF;
6305                 a0 &= 0xFFFFFFFF;
6306                 a1 &= 0xFFFFFFFF;
6307                 a2 &= 0xFFFFFFFF;
6308                 a3 &= 0xFFFFFFFF;
6309         }
6310
6311         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6312                 ret = -KVM_EPERM;
6313                 goto out;
6314         }
6315
6316         switch (nr) {
6317         case KVM_HC_VAPIC_POLL_IRQ:
6318                 ret = 0;
6319                 break;
6320         case KVM_HC_KICK_CPU:
6321                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6322                 ret = 0;
6323                 break;
6324 #ifdef CONFIG_X86_64
6325         case KVM_HC_CLOCK_PAIRING:
6326                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6327                 break;
6328 #endif
6329         default:
6330                 ret = -KVM_ENOSYS;
6331                 break;
6332         }
6333 out:
6334         if (!op_64_bit)
6335                 ret = (u32)ret;
6336         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6337         ++vcpu->stat.hypercalls;
6338         return r;
6339 }
6340 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6341
6342 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6343 {
6344         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6345         char instruction[3];
6346         unsigned long rip = kvm_rip_read(vcpu);
6347
6348         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6349
6350         return emulator_write_emulated(ctxt, rip, instruction, 3,
6351                 &ctxt->exception);
6352 }
6353
6354 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6355 {
6356         return vcpu->run->request_interrupt_window &&
6357                 likely(!pic_in_kernel(vcpu->kvm));
6358 }
6359
6360 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6361 {
6362         struct kvm_run *kvm_run = vcpu->run;
6363
6364         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6365         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6366         kvm_run->cr8 = kvm_get_cr8(vcpu);
6367         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6368         kvm_run->ready_for_interrupt_injection =
6369                 pic_in_kernel(vcpu->kvm) ||
6370                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6371 }
6372
6373 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6374 {
6375         int max_irr, tpr;
6376
6377         if (!kvm_x86_ops->update_cr8_intercept)
6378                 return;
6379
6380         if (!lapic_in_kernel(vcpu))
6381                 return;
6382
6383         if (vcpu->arch.apicv_active)
6384                 return;
6385
6386         if (!vcpu->arch.apic->vapic_addr)
6387                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6388         else
6389                 max_irr = -1;
6390
6391         if (max_irr != -1)
6392                 max_irr >>= 4;
6393
6394         tpr = kvm_lapic_get_cr8(vcpu);
6395
6396         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6397 }
6398
6399 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6400 {
6401         int r;
6402
6403         /* try to reinject previous events if any */
6404         if (vcpu->arch.exception.injected) {
6405                 kvm_x86_ops->queue_exception(vcpu);
6406                 return 0;
6407         }
6408
6409         /*
6410          * Exceptions must be injected immediately, or the exception
6411          * frame will have the address of the NMI or interrupt handler.
6412          */
6413         if (!vcpu->arch.exception.pending) {
6414                 if (vcpu->arch.nmi_injected) {
6415                         kvm_x86_ops->set_nmi(vcpu);
6416                         return 0;
6417                 }
6418
6419                 if (vcpu->arch.interrupt.pending) {
6420                         kvm_x86_ops->set_irq(vcpu);
6421                         return 0;
6422                 }
6423         }
6424
6425         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6426                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6427                 if (r != 0)
6428                         return r;
6429         }
6430
6431         /* try to inject new event if pending */
6432         if (vcpu->arch.exception.pending) {
6433                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6434                                         vcpu->arch.exception.has_error_code,
6435                                         vcpu->arch.exception.error_code);
6436
6437                 vcpu->arch.exception.pending = false;
6438                 vcpu->arch.exception.injected = true;
6439
6440                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6441                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6442                                              X86_EFLAGS_RF);
6443
6444                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6445                     (vcpu->arch.dr7 & DR7_GD)) {
6446                         vcpu->arch.dr7 &= ~DR7_GD;
6447                         kvm_update_dr7(vcpu);
6448                 }
6449
6450                 kvm_x86_ops->queue_exception(vcpu);
6451         } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6452                 vcpu->arch.smi_pending = false;
6453                 enter_smm(vcpu);
6454         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6455                 --vcpu->arch.nmi_pending;
6456                 vcpu->arch.nmi_injected = true;
6457                 kvm_x86_ops->set_nmi(vcpu);
6458         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6459                 /*
6460                  * Because interrupts can be injected asynchronously, we are
6461                  * calling check_nested_events again here to avoid a race condition.
6462                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6463                  * proposal and current concerns.  Perhaps we should be setting
6464                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6465                  */
6466                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6467                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6468                         if (r != 0)
6469                                 return r;
6470                 }
6471                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6472                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6473                                             false);
6474                         kvm_x86_ops->set_irq(vcpu);
6475                 }
6476         }
6477
6478         return 0;
6479 }
6480
6481 static void process_nmi(struct kvm_vcpu *vcpu)
6482 {
6483         unsigned limit = 2;
6484
6485         /*
6486          * x86 is limited to one NMI running, and one NMI pending after it.
6487          * If an NMI is already in progress, limit further NMIs to just one.
6488          * Otherwise, allow two (and we'll inject the first one immediately).
6489          */
6490         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6491                 limit = 1;
6492
6493         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6494         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6495         kvm_make_request(KVM_REQ_EVENT, vcpu);
6496 }
6497
6498 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6499 {
6500         u32 flags = 0;
6501         flags |= seg->g       << 23;
6502         flags |= seg->db      << 22;
6503         flags |= seg->l       << 21;
6504         flags |= seg->avl     << 20;
6505         flags |= seg->present << 15;
6506         flags |= seg->dpl     << 13;
6507         flags |= seg->s       << 12;
6508         flags |= seg->type    << 8;
6509         return flags;
6510 }
6511
6512 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6513 {
6514         struct kvm_segment seg;
6515         int offset;
6516
6517         kvm_get_segment(vcpu, &seg, n);
6518         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6519
6520         if (n < 3)
6521                 offset = 0x7f84 + n * 12;
6522         else
6523                 offset = 0x7f2c + (n - 3) * 12;
6524
6525         put_smstate(u32, buf, offset + 8, seg.base);
6526         put_smstate(u32, buf, offset + 4, seg.limit);
6527         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6528 }
6529
6530 #ifdef CONFIG_X86_64
6531 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6532 {
6533         struct kvm_segment seg;
6534         int offset;
6535         u16 flags;
6536
6537         kvm_get_segment(vcpu, &seg, n);
6538         offset = 0x7e00 + n * 16;
6539
6540         flags = enter_smm_get_segment_flags(&seg) >> 8;
6541         put_smstate(u16, buf, offset, seg.selector);
6542         put_smstate(u16, buf, offset + 2, flags);
6543         put_smstate(u32, buf, offset + 4, seg.limit);
6544         put_smstate(u64, buf, offset + 8, seg.base);
6545 }
6546 #endif
6547
6548 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6549 {
6550         struct desc_ptr dt;
6551         struct kvm_segment seg;
6552         unsigned long val;
6553         int i;
6554
6555         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6556         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6557         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6558         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6559
6560         for (i = 0; i < 8; i++)
6561                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6562
6563         kvm_get_dr(vcpu, 6, &val);
6564         put_smstate(u32, buf, 0x7fcc, (u32)val);
6565         kvm_get_dr(vcpu, 7, &val);
6566         put_smstate(u32, buf, 0x7fc8, (u32)val);
6567
6568         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6569         put_smstate(u32, buf, 0x7fc4, seg.selector);
6570         put_smstate(u32, buf, 0x7f64, seg.base);
6571         put_smstate(u32, buf, 0x7f60, seg.limit);
6572         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6573
6574         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6575         put_smstate(u32, buf, 0x7fc0, seg.selector);
6576         put_smstate(u32, buf, 0x7f80, seg.base);
6577         put_smstate(u32, buf, 0x7f7c, seg.limit);
6578         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6579
6580         kvm_x86_ops->get_gdt(vcpu, &dt);
6581         put_smstate(u32, buf, 0x7f74, dt.address);
6582         put_smstate(u32, buf, 0x7f70, dt.size);
6583
6584         kvm_x86_ops->get_idt(vcpu, &dt);
6585         put_smstate(u32, buf, 0x7f58, dt.address);
6586         put_smstate(u32, buf, 0x7f54, dt.size);
6587
6588         for (i = 0; i < 6; i++)
6589                 enter_smm_save_seg_32(vcpu, buf, i);
6590
6591         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6592
6593         /* revision id */
6594         put_smstate(u32, buf, 0x7efc, 0x00020000);
6595         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6596 }
6597
6598 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6599 {
6600 #ifdef CONFIG_X86_64
6601         struct desc_ptr dt;
6602         struct kvm_segment seg;
6603         unsigned long val;
6604         int i;
6605
6606         for (i = 0; i < 16; i++)
6607                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6608
6609         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6610         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6611
6612         kvm_get_dr(vcpu, 6, &val);
6613         put_smstate(u64, buf, 0x7f68, val);
6614         kvm_get_dr(vcpu, 7, &val);
6615         put_smstate(u64, buf, 0x7f60, val);
6616
6617         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6618         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6619         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6620
6621         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6622
6623         /* revision id */
6624         put_smstate(u32, buf, 0x7efc, 0x00020064);
6625
6626         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6627
6628         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6629         put_smstate(u16, buf, 0x7e90, seg.selector);
6630         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6631         put_smstate(u32, buf, 0x7e94, seg.limit);
6632         put_smstate(u64, buf, 0x7e98, seg.base);
6633
6634         kvm_x86_ops->get_idt(vcpu, &dt);
6635         put_smstate(u32, buf, 0x7e84, dt.size);
6636         put_smstate(u64, buf, 0x7e88, dt.address);
6637
6638         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6639         put_smstate(u16, buf, 0x7e70, seg.selector);
6640         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6641         put_smstate(u32, buf, 0x7e74, seg.limit);
6642         put_smstate(u64, buf, 0x7e78, seg.base);
6643
6644         kvm_x86_ops->get_gdt(vcpu, &dt);
6645         put_smstate(u32, buf, 0x7e64, dt.size);
6646         put_smstate(u64, buf, 0x7e68, dt.address);
6647
6648         for (i = 0; i < 6; i++)
6649                 enter_smm_save_seg_64(vcpu, buf, i);
6650 #else
6651         WARN_ON_ONCE(1);
6652 #endif
6653 }
6654
6655 static void enter_smm(struct kvm_vcpu *vcpu)
6656 {
6657         struct kvm_segment cs, ds;
6658         struct desc_ptr dt;
6659         char buf[512];
6660         u32 cr0;
6661
6662         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6663         memset(buf, 0, 512);
6664         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6665                 enter_smm_save_state_64(vcpu, buf);
6666         else
6667                 enter_smm_save_state_32(vcpu, buf);
6668
6669         /*
6670          * Give pre_enter_smm() a chance to make ISA-specific changes to the
6671          * vCPU state (e.g. leave guest mode) after we've saved the state into
6672          * the SMM state-save area.
6673          */
6674         kvm_x86_ops->pre_enter_smm(vcpu, buf);
6675
6676         vcpu->arch.hflags |= HF_SMM_MASK;
6677         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6678
6679         if (kvm_x86_ops->get_nmi_mask(vcpu))
6680                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6681         else
6682                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6683
6684         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6685         kvm_rip_write(vcpu, 0x8000);
6686
6687         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6688         kvm_x86_ops->set_cr0(vcpu, cr0);
6689         vcpu->arch.cr0 = cr0;
6690
6691         kvm_x86_ops->set_cr4(vcpu, 0);
6692
6693         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6694         dt.address = dt.size = 0;
6695         kvm_x86_ops->set_idt(vcpu, &dt);
6696
6697         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6698
6699         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6700         cs.base = vcpu->arch.smbase;
6701
6702         ds.selector = 0;
6703         ds.base = 0;
6704
6705         cs.limit    = ds.limit = 0xffffffff;
6706         cs.type     = ds.type = 0x3;
6707         cs.dpl      = ds.dpl = 0;
6708         cs.db       = ds.db = 0;
6709         cs.s        = ds.s = 1;
6710         cs.l        = ds.l = 0;
6711         cs.g        = ds.g = 1;
6712         cs.avl      = ds.avl = 0;
6713         cs.present  = ds.present = 1;
6714         cs.unusable = ds.unusable = 0;
6715         cs.padding  = ds.padding = 0;
6716
6717         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6718         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6719         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6720         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6721         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6722         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6723
6724         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6725                 kvm_x86_ops->set_efer(vcpu, 0);
6726
6727         kvm_update_cpuid(vcpu);
6728         kvm_mmu_reset_context(vcpu);
6729 }
6730
6731 static void process_smi(struct kvm_vcpu *vcpu)
6732 {
6733         vcpu->arch.smi_pending = true;
6734         kvm_make_request(KVM_REQ_EVENT, vcpu);
6735 }
6736
6737 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6738 {
6739         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6740 }
6741
6742 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6743 {
6744         u64 eoi_exit_bitmap[4];
6745
6746         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6747                 return;
6748
6749         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6750
6751         if (irqchip_split(vcpu->kvm))
6752                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6753         else {
6754                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6755                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6756                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6757         }
6758         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6759                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6760         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6761 }
6762
6763 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6764 {
6765         ++vcpu->stat.tlb_flush;
6766         kvm_x86_ops->tlb_flush(vcpu);
6767 }
6768
6769 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6770                 unsigned long start, unsigned long end)
6771 {
6772         unsigned long apic_address;
6773
6774         /*
6775          * The physical address of apic access page is stored in the VMCS.
6776          * Update it when it becomes invalid.
6777          */
6778         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6779         if (start <= apic_address && apic_address < end)
6780                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6781 }
6782
6783 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6784 {
6785         struct page *page = NULL;
6786
6787         if (!lapic_in_kernel(vcpu))
6788                 return;
6789
6790         if (!kvm_x86_ops->set_apic_access_page_addr)
6791                 return;
6792
6793         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6794         if (is_error_page(page))
6795                 return;
6796         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6797
6798         /*
6799          * Do not pin apic access page in memory, the MMU notifier
6800          * will call us again if it is migrated or swapped out.
6801          */
6802         put_page(page);
6803 }
6804 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6805
6806 /*
6807  * Returns 1 to let vcpu_run() continue the guest execution loop without
6808  * exiting to the userspace.  Otherwise, the value will be returned to the
6809  * userspace.
6810  */
6811 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6812 {
6813         int r;
6814         bool req_int_win =
6815                 dm_request_for_irq_injection(vcpu) &&
6816                 kvm_cpu_accept_dm_intr(vcpu);
6817
6818         bool req_immediate_exit = false;
6819
6820         if (kvm_request_pending(vcpu)) {
6821                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6822                         kvm_mmu_unload(vcpu);
6823                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6824                         __kvm_migrate_timers(vcpu);
6825                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6826                         kvm_gen_update_masterclock(vcpu->kvm);
6827                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6828                         kvm_gen_kvmclock_update(vcpu);
6829                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6830                         r = kvm_guest_time_update(vcpu);
6831                         if (unlikely(r))
6832                                 goto out;
6833                 }
6834                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6835                         kvm_mmu_sync_roots(vcpu);
6836                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6837                         kvm_vcpu_flush_tlb(vcpu);
6838                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6839                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6840                         r = 0;
6841                         goto out;
6842                 }
6843                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6844                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6845                         vcpu->mmio_needed = 0;
6846                         r = 0;
6847                         goto out;
6848                 }
6849                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6850                         /* Page is swapped out. Do synthetic halt */
6851                         vcpu->arch.apf.halted = true;
6852                         r = 1;
6853                         goto out;
6854                 }
6855                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6856                         record_steal_time(vcpu);
6857                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6858                         process_smi(vcpu);
6859                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6860                         process_nmi(vcpu);
6861                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6862                         kvm_pmu_handle_event(vcpu);
6863                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6864                         kvm_pmu_deliver_pmi(vcpu);
6865                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6866                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6867                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6868                                      vcpu->arch.ioapic_handled_vectors)) {
6869                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6870                                 vcpu->run->eoi.vector =
6871                                                 vcpu->arch.pending_ioapic_eoi;
6872                                 r = 0;
6873                                 goto out;
6874                         }
6875                 }
6876                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6877                         vcpu_scan_ioapic(vcpu);
6878                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6879                         kvm_vcpu_reload_apic_access_page(vcpu);
6880                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6881                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6882                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6883                         r = 0;
6884                         goto out;
6885                 }
6886                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6887                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6888                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6889                         r = 0;
6890                         goto out;
6891                 }
6892                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6893                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6894                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6895                         r = 0;
6896                         goto out;
6897                 }
6898
6899                 /*
6900                  * KVM_REQ_HV_STIMER has to be processed after
6901                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6902                  * depend on the guest clock being up-to-date
6903                  */
6904                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6905                         kvm_hv_process_stimers(vcpu);
6906         }
6907
6908         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6909                 ++vcpu->stat.req_event;
6910                 kvm_apic_accept_events(vcpu);
6911                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6912                         r = 1;
6913                         goto out;
6914                 }
6915
6916                 if (inject_pending_event(vcpu, req_int_win) != 0)
6917                         req_immediate_exit = true;
6918                 else {
6919                         /* Enable SMI/NMI/IRQ window open exits if needed.
6920                          *
6921                          * SMIs have three cases:
6922                          * 1) They can be nested, and then there is nothing to
6923                          *    do here because RSM will cause a vmexit anyway.
6924                          * 2) There is an ISA-specific reason why SMI cannot be
6925                          *    injected, and the moment when this changes can be
6926                          *    intercepted.
6927                          * 3) Or the SMI can be pending because
6928                          *    inject_pending_event has completed the injection
6929                          *    of an IRQ or NMI from the previous vmexit, and
6930                          *    then we request an immediate exit to inject the
6931                          *    SMI.
6932                          */
6933                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6934                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
6935                                         req_immediate_exit = true;
6936                         if (vcpu->arch.nmi_pending)
6937                                 kvm_x86_ops->enable_nmi_window(vcpu);
6938                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6939                                 kvm_x86_ops->enable_irq_window(vcpu);
6940                         WARN_ON(vcpu->arch.exception.pending);
6941                 }
6942
6943                 if (kvm_lapic_enabled(vcpu)) {
6944                         update_cr8_intercept(vcpu);
6945                         kvm_lapic_sync_to_vapic(vcpu);
6946                 }
6947         }
6948
6949         r = kvm_mmu_reload(vcpu);
6950         if (unlikely(r)) {
6951                 goto cancel_injection;
6952         }
6953
6954         preempt_disable();
6955
6956         kvm_x86_ops->prepare_guest_switch(vcpu);
6957
6958         /*
6959          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6960          * IPI are then delayed after guest entry, which ensures that they
6961          * result in virtual interrupt delivery.
6962          */
6963         local_irq_disable();
6964         vcpu->mode = IN_GUEST_MODE;
6965
6966         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6967
6968         /*
6969          * 1) We should set ->mode before checking ->requests.  Please see
6970          * the comment in kvm_vcpu_exiting_guest_mode().
6971          *
6972          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6973          * pairs with the memory barrier implicit in pi_test_and_set_on
6974          * (see vmx_deliver_posted_interrupt).
6975          *
6976          * 3) This also orders the write to mode from any reads to the page
6977          * tables done while the VCPU is running.  Please see the comment
6978          * in kvm_flush_remote_tlbs.
6979          */
6980         smp_mb__after_srcu_read_unlock();
6981
6982         /*
6983          * This handles the case where a posted interrupt was
6984          * notified with kvm_vcpu_kick.
6985          */
6986         if (kvm_lapic_enabled(vcpu)) {
6987                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6988                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6989         }
6990
6991         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6992             || need_resched() || signal_pending(current)) {
6993                 vcpu->mode = OUTSIDE_GUEST_MODE;
6994                 smp_wmb();
6995                 local_irq_enable();
6996                 preempt_enable();
6997                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6998                 r = 1;
6999                 goto cancel_injection;
7000         }
7001
7002         kvm_load_guest_xcr0(vcpu);
7003
7004         if (req_immediate_exit) {
7005                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7006                 smp_send_reschedule(vcpu->cpu);
7007         }
7008
7009         trace_kvm_entry(vcpu->vcpu_id);
7010         wait_lapic_expire(vcpu);
7011         guest_enter_irqoff();
7012
7013         if (unlikely(vcpu->arch.switch_db_regs)) {
7014                 set_debugreg(0, 7);
7015                 set_debugreg(vcpu->arch.eff_db[0], 0);
7016                 set_debugreg(vcpu->arch.eff_db[1], 1);
7017                 set_debugreg(vcpu->arch.eff_db[2], 2);
7018                 set_debugreg(vcpu->arch.eff_db[3], 3);
7019                 set_debugreg(vcpu->arch.dr6, 6);
7020                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7021         }
7022
7023         kvm_x86_ops->run(vcpu);
7024
7025         /*
7026          * Do this here before restoring debug registers on the host.  And
7027          * since we do this before handling the vmexit, a DR access vmexit
7028          * can (a) read the correct value of the debug registers, (b) set
7029          * KVM_DEBUGREG_WONT_EXIT again.
7030          */
7031         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7032                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7033                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7034                 kvm_update_dr0123(vcpu);
7035                 kvm_update_dr6(vcpu);
7036                 kvm_update_dr7(vcpu);
7037                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7038         }
7039
7040         /*
7041          * If the guest has used debug registers, at least dr7
7042          * will be disabled while returning to the host.
7043          * If we don't have active breakpoints in the host, we don't
7044          * care about the messed up debug address registers. But if
7045          * we have some of them active, restore the old state.
7046          */
7047         if (hw_breakpoint_active())
7048                 hw_breakpoint_restore();
7049
7050         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7051
7052         vcpu->mode = OUTSIDE_GUEST_MODE;
7053         smp_wmb();
7054
7055         kvm_put_guest_xcr0(vcpu);
7056
7057         kvm_x86_ops->handle_external_intr(vcpu);
7058
7059         ++vcpu->stat.exits;
7060
7061         guest_exit_irqoff();
7062
7063         local_irq_enable();
7064         preempt_enable();
7065
7066         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7067
7068         /*
7069          * Profile KVM exit RIPs:
7070          */
7071         if (unlikely(prof_on == KVM_PROFILING)) {
7072                 unsigned long rip = kvm_rip_read(vcpu);
7073                 profile_hit(KVM_PROFILING, (void *)rip);
7074         }
7075
7076         if (unlikely(vcpu->arch.tsc_always_catchup))
7077                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7078
7079         if (vcpu->arch.apic_attention)
7080                 kvm_lapic_sync_from_vapic(vcpu);
7081
7082         vcpu->arch.gpa_available = false;
7083         r = kvm_x86_ops->handle_exit(vcpu);
7084         return r;
7085
7086 cancel_injection:
7087         kvm_x86_ops->cancel_injection(vcpu);
7088         if (unlikely(vcpu->arch.apic_attention))
7089                 kvm_lapic_sync_from_vapic(vcpu);
7090 out:
7091         return r;
7092 }
7093
7094 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7095 {
7096         if (!kvm_arch_vcpu_runnable(vcpu) &&
7097             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7098                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7099                 kvm_vcpu_block(vcpu);
7100                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7101
7102                 if (kvm_x86_ops->post_block)
7103                         kvm_x86_ops->post_block(vcpu);
7104
7105                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7106                         return 1;
7107         }
7108
7109         kvm_apic_accept_events(vcpu);
7110         switch(vcpu->arch.mp_state) {
7111         case KVM_MP_STATE_HALTED:
7112                 vcpu->arch.pv.pv_unhalted = false;
7113                 vcpu->arch.mp_state =
7114                         KVM_MP_STATE_RUNNABLE;
7115         case KVM_MP_STATE_RUNNABLE:
7116                 vcpu->arch.apf.halted = false;
7117                 break;
7118         case KVM_MP_STATE_INIT_RECEIVED:
7119                 break;
7120         default:
7121                 return -EINTR;
7122                 break;
7123         }
7124         return 1;
7125 }
7126
7127 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7128 {
7129         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7130                 kvm_x86_ops->check_nested_events(vcpu, false);
7131
7132         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7133                 !vcpu->arch.apf.halted);
7134 }
7135
7136 static int vcpu_run(struct kvm_vcpu *vcpu)
7137 {
7138         int r;
7139         struct kvm *kvm = vcpu->kvm;
7140
7141         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7142
7143         for (;;) {
7144                 if (kvm_vcpu_running(vcpu)) {
7145                         r = vcpu_enter_guest(vcpu);
7146                 } else {
7147                         r = vcpu_block(kvm, vcpu);
7148                 }
7149
7150                 if (r <= 0)
7151                         break;
7152
7153                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7154                 if (kvm_cpu_has_pending_timer(vcpu))
7155                         kvm_inject_pending_timer_irqs(vcpu);
7156
7157                 if (dm_request_for_irq_injection(vcpu) &&
7158                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7159                         r = 0;
7160                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7161                         ++vcpu->stat.request_irq_exits;
7162                         break;
7163                 }
7164
7165                 kvm_check_async_pf_completion(vcpu);
7166
7167                 if (signal_pending(current)) {
7168                         r = -EINTR;
7169                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7170                         ++vcpu->stat.signal_exits;
7171                         break;
7172                 }
7173                 if (need_resched()) {
7174                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7175                         cond_resched();
7176                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7177                 }
7178         }
7179
7180         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7181
7182         return r;
7183 }
7184
7185 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7186 {
7187         int r;
7188         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7189         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7190         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7191         if (r != EMULATE_DONE)
7192                 return 0;
7193         return 1;
7194 }
7195
7196 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7197 {
7198         BUG_ON(!vcpu->arch.pio.count);
7199
7200         return complete_emulated_io(vcpu);
7201 }
7202
7203 /*
7204  * Implements the following, as a state machine:
7205  *
7206  * read:
7207  *   for each fragment
7208  *     for each mmio piece in the fragment
7209  *       write gpa, len
7210  *       exit
7211  *       copy data
7212  *   execute insn
7213  *
7214  * write:
7215  *   for each fragment
7216  *     for each mmio piece in the fragment
7217  *       write gpa, len
7218  *       copy data
7219  *       exit
7220  */
7221 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7222 {
7223         struct kvm_run *run = vcpu->run;
7224         struct kvm_mmio_fragment *frag;
7225         unsigned len;
7226
7227         BUG_ON(!vcpu->mmio_needed);
7228
7229         /* Complete previous fragment */
7230         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7231         len = min(8u, frag->len);
7232         if (!vcpu->mmio_is_write)
7233                 memcpy(frag->data, run->mmio.data, len);
7234
7235         if (frag->len <= 8) {
7236                 /* Switch to the next fragment. */
7237                 frag++;
7238                 vcpu->mmio_cur_fragment++;
7239         } else {
7240                 /* Go forward to the next mmio piece. */
7241                 frag->data += len;
7242                 frag->gpa += len;
7243                 frag->len -= len;
7244         }
7245
7246         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7247                 vcpu->mmio_needed = 0;
7248
7249                 /* FIXME: return into emulator if single-stepping.  */
7250                 if (vcpu->mmio_is_write)
7251                         return 1;
7252                 vcpu->mmio_read_completed = 1;
7253                 return complete_emulated_io(vcpu);
7254         }
7255
7256         run->exit_reason = KVM_EXIT_MMIO;
7257         run->mmio.phys_addr = frag->gpa;
7258         if (vcpu->mmio_is_write)
7259                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7260         run->mmio.len = min(8u, frag->len);
7261         run->mmio.is_write = vcpu->mmio_is_write;
7262         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7263         return 0;
7264 }
7265
7266
7267 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7268 {
7269         int r;
7270
7271         kvm_sigset_activate(vcpu);
7272
7273         kvm_load_guest_fpu(vcpu);
7274
7275         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7276                 if (kvm_run->immediate_exit) {
7277                         r = -EINTR;
7278                         goto out;
7279                 }
7280                 kvm_vcpu_block(vcpu);
7281                 kvm_apic_accept_events(vcpu);
7282                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7283                 r = -EAGAIN;
7284                 if (signal_pending(current)) {
7285                         r = -EINTR;
7286                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7287                         ++vcpu->stat.signal_exits;
7288                 }
7289                 goto out;
7290         }
7291
7292         /* re-sync apic's tpr */
7293         if (!lapic_in_kernel(vcpu)) {
7294                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7295                         r = -EINVAL;
7296                         goto out;
7297                 }
7298         }
7299
7300         if (unlikely(vcpu->arch.complete_userspace_io)) {
7301                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7302                 vcpu->arch.complete_userspace_io = NULL;
7303                 r = cui(vcpu);
7304                 if (r <= 0)
7305                         goto out;
7306         } else
7307                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7308
7309         if (kvm_run->immediate_exit)
7310                 r = -EINTR;
7311         else
7312                 r = vcpu_run(vcpu);
7313
7314 out:
7315         kvm_put_guest_fpu(vcpu);
7316         post_kvm_run_save(vcpu);
7317         kvm_sigset_deactivate(vcpu);
7318
7319         return r;
7320 }
7321
7322 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7323 {
7324         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7325                 /*
7326                  * We are here if userspace calls get_regs() in the middle of
7327                  * instruction emulation. Registers state needs to be copied
7328                  * back from emulation context to vcpu. Userspace shouldn't do
7329                  * that usually, but some bad designed PV devices (vmware
7330                  * backdoor interface) need this to work
7331                  */
7332                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7333                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7334         }
7335         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7336         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7337         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7338         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7339         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7340         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7341         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7342         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7343 #ifdef CONFIG_X86_64
7344         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7345         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7346         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7347         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7348         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7349         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7350         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7351         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7352 #endif
7353
7354         regs->rip = kvm_rip_read(vcpu);
7355         regs->rflags = kvm_get_rflags(vcpu);
7356
7357         return 0;
7358 }
7359
7360 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7361 {
7362         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7363         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7364
7365         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7366         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7367         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7368         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7369         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7370         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7371         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7372         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7373 #ifdef CONFIG_X86_64
7374         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7375         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7376         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7377         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7378         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7379         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7380         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7381         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7382 #endif
7383
7384         kvm_rip_write(vcpu, regs->rip);
7385         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7386
7387         vcpu->arch.exception.pending = false;
7388
7389         kvm_make_request(KVM_REQ_EVENT, vcpu);
7390
7391         return 0;
7392 }
7393
7394 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7395 {
7396         struct kvm_segment cs;
7397
7398         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7399         *db = cs.db;
7400         *l = cs.l;
7401 }
7402 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7403
7404 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7405                                   struct kvm_sregs *sregs)
7406 {
7407         struct desc_ptr dt;
7408
7409         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7410         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7411         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7412         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7413         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7414         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7415
7416         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7417         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7418
7419         kvm_x86_ops->get_idt(vcpu, &dt);
7420         sregs->idt.limit = dt.size;
7421         sregs->idt.base = dt.address;
7422         kvm_x86_ops->get_gdt(vcpu, &dt);
7423         sregs->gdt.limit = dt.size;
7424         sregs->gdt.base = dt.address;
7425
7426         sregs->cr0 = kvm_read_cr0(vcpu);
7427         sregs->cr2 = vcpu->arch.cr2;
7428         sregs->cr3 = kvm_read_cr3(vcpu);
7429         sregs->cr4 = kvm_read_cr4(vcpu);
7430         sregs->cr8 = kvm_get_cr8(vcpu);
7431         sregs->efer = vcpu->arch.efer;
7432         sregs->apic_base = kvm_get_apic_base(vcpu);
7433
7434         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7435
7436         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7437                 set_bit(vcpu->arch.interrupt.nr,
7438                         (unsigned long *)sregs->interrupt_bitmap);
7439
7440         return 0;
7441 }
7442
7443 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7444                                     struct kvm_mp_state *mp_state)
7445 {
7446         kvm_apic_accept_events(vcpu);
7447         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7448                                         vcpu->arch.pv.pv_unhalted)
7449                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7450         else
7451                 mp_state->mp_state = vcpu->arch.mp_state;
7452
7453         return 0;
7454 }
7455
7456 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7457                                     struct kvm_mp_state *mp_state)
7458 {
7459         if (!lapic_in_kernel(vcpu) &&
7460             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7461                 return -EINVAL;
7462
7463         /* INITs are latched while in SMM */
7464         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7465             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7466              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7467                 return -EINVAL;
7468
7469         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7470                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7471                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7472         } else
7473                 vcpu->arch.mp_state = mp_state->mp_state;
7474         kvm_make_request(KVM_REQ_EVENT, vcpu);
7475         return 0;
7476 }
7477
7478 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7479                     int reason, bool has_error_code, u32 error_code)
7480 {
7481         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7482         int ret;
7483
7484         init_emulate_ctxt(vcpu);
7485
7486         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7487                                    has_error_code, error_code);
7488
7489         if (ret)
7490                 return EMULATE_FAIL;
7491
7492         kvm_rip_write(vcpu, ctxt->eip);
7493         kvm_set_rflags(vcpu, ctxt->eflags);
7494         kvm_make_request(KVM_REQ_EVENT, vcpu);
7495         return EMULATE_DONE;
7496 }
7497 EXPORT_SYMBOL_GPL(kvm_task_switch);
7498
7499 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7500 {
7501         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7502                 /*
7503                  * When EFER.LME and CR0.PG are set, the processor is in
7504                  * 64-bit mode (though maybe in a 32-bit code segment).
7505                  * CR4.PAE and EFER.LMA must be set.
7506                  */
7507                 if (!(sregs->cr4 & X86_CR4_PAE)
7508                     || !(sregs->efer & EFER_LMA))
7509                         return -EINVAL;
7510         } else {
7511                 /*
7512                  * Not in 64-bit mode: EFER.LMA is clear and the code
7513                  * segment cannot be 64-bit.
7514                  */
7515                 if (sregs->efer & EFER_LMA || sregs->cs.l)
7516                         return -EINVAL;
7517         }
7518
7519         return 0;
7520 }
7521
7522 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7523                                   struct kvm_sregs *sregs)
7524 {
7525         struct msr_data apic_base_msr;
7526         int mmu_reset_needed = 0;
7527         int pending_vec, max_bits, idx;
7528         struct desc_ptr dt;
7529
7530         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7531                         (sregs->cr4 & X86_CR4_OSXSAVE))
7532                 return -EINVAL;
7533
7534         if (kvm_valid_sregs(vcpu, sregs))
7535                 return -EINVAL;
7536
7537         apic_base_msr.data = sregs->apic_base;
7538         apic_base_msr.host_initiated = true;
7539         if (kvm_set_apic_base(vcpu, &apic_base_msr))
7540                 return -EINVAL;
7541
7542         dt.size = sregs->idt.limit;
7543         dt.address = sregs->idt.base;
7544         kvm_x86_ops->set_idt(vcpu, &dt);
7545         dt.size = sregs->gdt.limit;
7546         dt.address = sregs->gdt.base;
7547         kvm_x86_ops->set_gdt(vcpu, &dt);
7548
7549         vcpu->arch.cr2 = sregs->cr2;
7550         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7551         vcpu->arch.cr3 = sregs->cr3;
7552         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7553
7554         kvm_set_cr8(vcpu, sregs->cr8);
7555
7556         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7557         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7558
7559         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7560         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7561         vcpu->arch.cr0 = sregs->cr0;
7562
7563         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7564         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7565         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7566                 kvm_update_cpuid(vcpu);
7567
7568         idx = srcu_read_lock(&vcpu->kvm->srcu);
7569         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7570                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7571                 mmu_reset_needed = 1;
7572         }
7573         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7574
7575         if (mmu_reset_needed)
7576                 kvm_mmu_reset_context(vcpu);
7577
7578         max_bits = KVM_NR_INTERRUPTS;
7579         pending_vec = find_first_bit(
7580                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7581         if (pending_vec < max_bits) {
7582                 kvm_queue_interrupt(vcpu, pending_vec, false);
7583                 pr_debug("Set back pending irq %d\n", pending_vec);
7584         }
7585
7586         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7587         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7588         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7589         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7590         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7591         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7592
7593         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7594         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7595
7596         update_cr8_intercept(vcpu);
7597
7598         /* Older userspace won't unhalt the vcpu on reset. */
7599         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7600             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7601             !is_protmode(vcpu))
7602                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7603
7604         kvm_make_request(KVM_REQ_EVENT, vcpu);
7605
7606         return 0;
7607 }
7608
7609 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7610                                         struct kvm_guest_debug *dbg)
7611 {
7612         unsigned long rflags;
7613         int i, r;
7614
7615         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7616                 r = -EBUSY;
7617                 if (vcpu->arch.exception.pending)
7618                         goto out;
7619                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7620                         kvm_queue_exception(vcpu, DB_VECTOR);
7621                 else
7622                         kvm_queue_exception(vcpu, BP_VECTOR);
7623         }
7624
7625         /*
7626          * Read rflags as long as potentially injected trace flags are still
7627          * filtered out.
7628          */
7629         rflags = kvm_get_rflags(vcpu);
7630
7631         vcpu->guest_debug = dbg->control;
7632         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7633                 vcpu->guest_debug = 0;
7634
7635         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7636                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7637                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7638                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7639         } else {
7640                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7641                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7642         }
7643         kvm_update_dr7(vcpu);
7644
7645         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7646                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7647                         get_segment_base(vcpu, VCPU_SREG_CS);
7648
7649         /*
7650          * Trigger an rflags update that will inject or remove the trace
7651          * flags.
7652          */
7653         kvm_set_rflags(vcpu, rflags);
7654
7655         kvm_x86_ops->update_bp_intercept(vcpu);
7656
7657         r = 0;
7658
7659 out:
7660
7661         return r;
7662 }
7663
7664 /*
7665  * Translate a guest virtual address to a guest physical address.
7666  */
7667 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7668                                     struct kvm_translation *tr)
7669 {
7670         unsigned long vaddr = tr->linear_address;
7671         gpa_t gpa;
7672         int idx;
7673
7674         idx = srcu_read_lock(&vcpu->kvm->srcu);
7675         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7676         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7677         tr->physical_address = gpa;
7678         tr->valid = gpa != UNMAPPED_GVA;
7679         tr->writeable = 1;
7680         tr->usermode = 0;
7681
7682         return 0;
7683 }
7684
7685 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7686 {
7687         struct fxregs_state *fxsave =
7688                         &vcpu->arch.guest_fpu.state.fxsave;
7689
7690         memcpy(fpu->fpr, fxsave->st_space, 128);
7691         fpu->fcw = fxsave->cwd;
7692         fpu->fsw = fxsave->swd;
7693         fpu->ftwx = fxsave->twd;
7694         fpu->last_opcode = fxsave->fop;
7695         fpu->last_ip = fxsave->rip;
7696         fpu->last_dp = fxsave->rdp;
7697         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7698
7699         return 0;
7700 }
7701
7702 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7703 {
7704         struct fxregs_state *fxsave =
7705                         &vcpu->arch.guest_fpu.state.fxsave;
7706
7707         memcpy(fxsave->st_space, fpu->fpr, 128);
7708         fxsave->cwd = fpu->fcw;
7709         fxsave->swd = fpu->fsw;
7710         fxsave->twd = fpu->ftwx;
7711         fxsave->fop = fpu->last_opcode;
7712         fxsave->rip = fpu->last_ip;
7713         fxsave->rdp = fpu->last_dp;
7714         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7715
7716         return 0;
7717 }
7718
7719 static void fx_init(struct kvm_vcpu *vcpu)
7720 {
7721         fpstate_init(&vcpu->arch.guest_fpu.state);
7722         if (boot_cpu_has(X86_FEATURE_XSAVES))
7723                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7724                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7725
7726         /*
7727          * Ensure guest xcr0 is valid for loading
7728          */
7729         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7730
7731         vcpu->arch.cr0 |= X86_CR0_ET;
7732 }
7733
7734 /* Swap (qemu) user FPU context for the guest FPU context. */
7735 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7736 {
7737         preempt_disable();
7738         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7739         /* PKRU is separately restored in kvm_x86_ops->run.  */
7740         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7741                                 ~XFEATURE_MASK_PKRU);
7742         preempt_enable();
7743         trace_kvm_fpu(1);
7744 }
7745
7746 /* When vcpu_run ends, restore user space FPU context. */
7747 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7748 {
7749         preempt_disable();
7750         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7751         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7752         preempt_enable();
7753         ++vcpu->stat.fpu_reload;
7754         trace_kvm_fpu(0);
7755 }
7756
7757 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7758 {
7759         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7760
7761         kvmclock_reset(vcpu);
7762
7763         kvm_x86_ops->vcpu_free(vcpu);
7764         free_cpumask_var(wbinvd_dirty_mask);
7765 }
7766
7767 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7768                                                 unsigned int id)
7769 {
7770         struct kvm_vcpu *vcpu;
7771
7772         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7773                 printk_once(KERN_WARNING
7774                 "kvm: SMP vm created on host with unstable TSC; "
7775                 "guest TSC will not be reliable\n");
7776
7777         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7778
7779         return vcpu;
7780 }
7781
7782 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7783 {
7784         int r;
7785
7786         kvm_vcpu_mtrr_init(vcpu);
7787         r = vcpu_load(vcpu);
7788         if (r)
7789                 return r;
7790         kvm_vcpu_reset(vcpu, false);
7791         kvm_mmu_setup(vcpu);
7792         vcpu_put(vcpu);
7793         return r;
7794 }
7795
7796 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7797 {
7798         struct msr_data msr;
7799         struct kvm *kvm = vcpu->kvm;
7800
7801         kvm_hv_vcpu_postcreate(vcpu);
7802
7803         if (vcpu_load(vcpu))
7804                 return;
7805         msr.data = 0x0;
7806         msr.index = MSR_IA32_TSC;
7807         msr.host_initiated = true;
7808         kvm_write_tsc(vcpu, &msr);
7809         vcpu_put(vcpu);
7810
7811         if (!kvmclock_periodic_sync)
7812                 return;
7813
7814         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7815                                         KVMCLOCK_SYNC_PERIOD);
7816 }
7817
7818 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7819 {
7820         int r;
7821         vcpu->arch.apf.msr_val = 0;
7822
7823         r = vcpu_load(vcpu);
7824         BUG_ON(r);
7825         kvm_mmu_unload(vcpu);
7826         vcpu_put(vcpu);
7827
7828         kvm_x86_ops->vcpu_free(vcpu);
7829 }
7830
7831 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7832 {
7833         vcpu->arch.hflags = 0;
7834
7835         vcpu->arch.smi_pending = 0;
7836         atomic_set(&vcpu->arch.nmi_queued, 0);
7837         vcpu->arch.nmi_pending = 0;
7838         vcpu->arch.nmi_injected = false;
7839         kvm_clear_interrupt_queue(vcpu);
7840         kvm_clear_exception_queue(vcpu);
7841         vcpu->arch.exception.pending = false;
7842
7843         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7844         kvm_update_dr0123(vcpu);
7845         vcpu->arch.dr6 = DR6_INIT;
7846         kvm_update_dr6(vcpu);
7847         vcpu->arch.dr7 = DR7_FIXED_1;
7848         kvm_update_dr7(vcpu);
7849
7850         vcpu->arch.cr2 = 0;
7851
7852         kvm_make_request(KVM_REQ_EVENT, vcpu);
7853         vcpu->arch.apf.msr_val = 0;
7854         vcpu->arch.st.msr_val = 0;
7855
7856         kvmclock_reset(vcpu);
7857
7858         kvm_clear_async_pf_completion_queue(vcpu);
7859         kvm_async_pf_hash_reset(vcpu);
7860         vcpu->arch.apf.halted = false;
7861
7862         if (kvm_mpx_supported()) {
7863                 void *mpx_state_buffer;
7864
7865                 /*
7866                  * To avoid have the INIT path from kvm_apic_has_events() that be
7867                  * called with loaded FPU and does not let userspace fix the state.
7868                  */
7869                 if (init_event)
7870                         kvm_put_guest_fpu(vcpu);
7871                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7872                                         XFEATURE_MASK_BNDREGS);
7873                 if (mpx_state_buffer)
7874                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
7875                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7876                                         XFEATURE_MASK_BNDCSR);
7877                 if (mpx_state_buffer)
7878                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
7879                 if (init_event)
7880                         kvm_load_guest_fpu(vcpu);
7881         }
7882
7883         if (!init_event) {
7884                 kvm_pmu_reset(vcpu);
7885                 vcpu->arch.smbase = 0x30000;
7886
7887                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7888                 vcpu->arch.msr_misc_features_enables = 0;
7889
7890                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7891         }
7892
7893         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7894         vcpu->arch.regs_avail = ~0;
7895         vcpu->arch.regs_dirty = ~0;
7896
7897         vcpu->arch.ia32_xss = 0;
7898
7899         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7900 }
7901
7902 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7903 {
7904         struct kvm_segment cs;
7905
7906         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7907         cs.selector = vector << 8;
7908         cs.base = vector << 12;
7909         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7910         kvm_rip_write(vcpu, 0);
7911 }
7912
7913 int kvm_arch_hardware_enable(void)
7914 {
7915         struct kvm *kvm;
7916         struct kvm_vcpu *vcpu;
7917         int i;
7918         int ret;
7919         u64 local_tsc;
7920         u64 max_tsc = 0;
7921         bool stable, backwards_tsc = false;
7922
7923         kvm_shared_msr_cpu_online();
7924         ret = kvm_x86_ops->hardware_enable();
7925         if (ret != 0)
7926                 return ret;
7927
7928         local_tsc = rdtsc();
7929         stable = !check_tsc_unstable();
7930         list_for_each_entry(kvm, &vm_list, vm_list) {
7931                 kvm_for_each_vcpu(i, vcpu, kvm) {
7932                         if (!stable && vcpu->cpu == smp_processor_id())
7933                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7934                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7935                                 backwards_tsc = true;
7936                                 if (vcpu->arch.last_host_tsc > max_tsc)
7937                                         max_tsc = vcpu->arch.last_host_tsc;
7938                         }
7939                 }
7940         }
7941
7942         /*
7943          * Sometimes, even reliable TSCs go backwards.  This happens on
7944          * platforms that reset TSC during suspend or hibernate actions, but
7945          * maintain synchronization.  We must compensate.  Fortunately, we can
7946          * detect that condition here, which happens early in CPU bringup,
7947          * before any KVM threads can be running.  Unfortunately, we can't
7948          * bring the TSCs fully up to date with real time, as we aren't yet far
7949          * enough into CPU bringup that we know how much real time has actually
7950          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7951          * variables that haven't been updated yet.
7952          *
7953          * So we simply find the maximum observed TSC above, then record the
7954          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7955          * the adjustment will be applied.  Note that we accumulate
7956          * adjustments, in case multiple suspend cycles happen before some VCPU
7957          * gets a chance to run again.  In the event that no KVM threads get a
7958          * chance to run, we will miss the entire elapsed period, as we'll have
7959          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7960          * loose cycle time.  This isn't too big a deal, since the loss will be
7961          * uniform across all VCPUs (not to mention the scenario is extremely
7962          * unlikely). It is possible that a second hibernate recovery happens
7963          * much faster than a first, causing the observed TSC here to be
7964          * smaller; this would require additional padding adjustment, which is
7965          * why we set last_host_tsc to the local tsc observed here.
7966          *
7967          * N.B. - this code below runs only on platforms with reliable TSC,
7968          * as that is the only way backwards_tsc is set above.  Also note
7969          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7970          * have the same delta_cyc adjustment applied if backwards_tsc
7971          * is detected.  Note further, this adjustment is only done once,
7972          * as we reset last_host_tsc on all VCPUs to stop this from being
7973          * called multiple times (one for each physical CPU bringup).
7974          *
7975          * Platforms with unreliable TSCs don't have to deal with this, they
7976          * will be compensated by the logic in vcpu_load, which sets the TSC to
7977          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7978          * guarantee that they stay in perfect synchronization.
7979          */
7980         if (backwards_tsc) {
7981                 u64 delta_cyc = max_tsc - local_tsc;
7982                 list_for_each_entry(kvm, &vm_list, vm_list) {
7983                         kvm->arch.backwards_tsc_observed = true;
7984                         kvm_for_each_vcpu(i, vcpu, kvm) {
7985                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7986                                 vcpu->arch.last_host_tsc = local_tsc;
7987                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7988                         }
7989
7990                         /*
7991                          * We have to disable TSC offset matching.. if you were
7992                          * booting a VM while issuing an S4 host suspend....
7993                          * you may have some problem.  Solving this issue is
7994                          * left as an exercise to the reader.
7995                          */
7996                         kvm->arch.last_tsc_nsec = 0;
7997                         kvm->arch.last_tsc_write = 0;
7998                 }
7999
8000         }
8001         return 0;
8002 }
8003
8004 void kvm_arch_hardware_disable(void)
8005 {
8006         kvm_x86_ops->hardware_disable();
8007         drop_user_return_notifiers();
8008 }
8009
8010 int kvm_arch_hardware_setup(void)
8011 {
8012         int r;
8013
8014         r = kvm_x86_ops->hardware_setup();
8015         if (r != 0)
8016                 return r;
8017
8018         if (kvm_has_tsc_control) {
8019                 /*
8020                  * Make sure the user can only configure tsc_khz values that
8021                  * fit into a signed integer.
8022                  * A min value is not calculated needed because it will always
8023                  * be 1 on all machines.
8024                  */
8025                 u64 max = min(0x7fffffffULL,
8026                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8027                 kvm_max_guest_tsc_khz = max;
8028
8029                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8030         }
8031
8032         kvm_init_msr_list();
8033         return 0;
8034 }
8035
8036 void kvm_arch_hardware_unsetup(void)
8037 {
8038         kvm_x86_ops->hardware_unsetup();
8039 }
8040
8041 void kvm_arch_check_processor_compat(void *rtn)
8042 {
8043         kvm_x86_ops->check_processor_compatibility(rtn);
8044 }
8045
8046 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8047 {
8048         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8049 }
8050 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8051
8052 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8053 {
8054         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8055 }
8056
8057 struct static_key kvm_no_apic_vcpu __read_mostly;
8058 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8059
8060 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8061 {
8062         struct page *page;
8063         int r;
8064
8065         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8066         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8067         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8068                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8069         else
8070                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8071
8072         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8073         if (!page) {
8074                 r = -ENOMEM;
8075                 goto fail;
8076         }
8077         vcpu->arch.pio_data = page_address(page);
8078
8079         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8080
8081         r = kvm_mmu_create(vcpu);
8082         if (r < 0)
8083                 goto fail_free_pio_data;
8084
8085         if (irqchip_in_kernel(vcpu->kvm)) {
8086                 r = kvm_create_lapic(vcpu);
8087                 if (r < 0)
8088                         goto fail_mmu_destroy;
8089         } else
8090                 static_key_slow_inc(&kvm_no_apic_vcpu);
8091
8092         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8093                                        GFP_KERNEL);
8094         if (!vcpu->arch.mce_banks) {
8095                 r = -ENOMEM;
8096                 goto fail_free_lapic;
8097         }
8098         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8099
8100         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8101                 r = -ENOMEM;
8102                 goto fail_free_mce_banks;
8103         }
8104
8105         fx_init(vcpu);
8106
8107         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8108
8109         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8110
8111         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8112
8113         kvm_async_pf_hash_reset(vcpu);
8114         kvm_pmu_init(vcpu);
8115
8116         vcpu->arch.pending_external_vector = -1;
8117         vcpu->arch.preempted_in_kernel = false;
8118
8119         kvm_hv_vcpu_init(vcpu);
8120
8121         return 0;
8122
8123 fail_free_mce_banks:
8124         kfree(vcpu->arch.mce_banks);
8125 fail_free_lapic:
8126         kvm_free_lapic(vcpu);
8127 fail_mmu_destroy:
8128         kvm_mmu_destroy(vcpu);
8129 fail_free_pio_data:
8130         free_page((unsigned long)vcpu->arch.pio_data);
8131 fail:
8132         return r;
8133 }
8134
8135 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8136 {
8137         int idx;
8138
8139         kvm_hv_vcpu_uninit(vcpu);
8140         kvm_pmu_destroy(vcpu);
8141         kfree(vcpu->arch.mce_banks);
8142         kvm_free_lapic(vcpu);
8143         idx = srcu_read_lock(&vcpu->kvm->srcu);
8144         kvm_mmu_destroy(vcpu);
8145         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8146         free_page((unsigned long)vcpu->arch.pio_data);
8147         if (!lapic_in_kernel(vcpu))
8148                 static_key_slow_dec(&kvm_no_apic_vcpu);
8149 }
8150
8151 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8152 {
8153         kvm_x86_ops->sched_in(vcpu, cpu);
8154 }
8155
8156 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8157 {
8158         if (type)
8159                 return -EINVAL;
8160
8161         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8162         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8163         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8164         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8165         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8166
8167         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8168         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8169         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8170         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8171                 &kvm->arch.irq_sources_bitmap);
8172
8173         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8174         mutex_init(&kvm->arch.apic_map_lock);
8175         mutex_init(&kvm->arch.hyperv.hv_lock);
8176         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8177
8178         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8179         pvclock_update_vm_gtod_copy(kvm);
8180
8181         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8182         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8183
8184         kvm_page_track_init(kvm);
8185         kvm_mmu_init_vm(kvm);
8186
8187         if (kvm_x86_ops->vm_init)
8188                 return kvm_x86_ops->vm_init(kvm);
8189
8190         return 0;
8191 }
8192
8193 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8194 {
8195         int r;
8196         r = vcpu_load(vcpu);
8197         BUG_ON(r);
8198         kvm_mmu_unload(vcpu);
8199         vcpu_put(vcpu);
8200 }
8201
8202 static void kvm_free_vcpus(struct kvm *kvm)
8203 {
8204         unsigned int i;
8205         struct kvm_vcpu *vcpu;
8206
8207         /*
8208          * Unpin any mmu pages first.
8209          */
8210         kvm_for_each_vcpu(i, vcpu, kvm) {
8211                 kvm_clear_async_pf_completion_queue(vcpu);
8212                 kvm_unload_vcpu_mmu(vcpu);
8213         }
8214         kvm_for_each_vcpu(i, vcpu, kvm)
8215                 kvm_arch_vcpu_free(vcpu);
8216
8217         mutex_lock(&kvm->lock);
8218         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8219                 kvm->vcpus[i] = NULL;
8220
8221         atomic_set(&kvm->online_vcpus, 0);
8222         mutex_unlock(&kvm->lock);
8223 }
8224
8225 void kvm_arch_sync_events(struct kvm *kvm)
8226 {
8227         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8228         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8229         kvm_free_pit(kvm);
8230 }
8231
8232 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8233 {
8234         int i, r;
8235         unsigned long hva;
8236         struct kvm_memslots *slots = kvm_memslots(kvm);
8237         struct kvm_memory_slot *slot, old;
8238
8239         /* Called with kvm->slots_lock held.  */
8240         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8241                 return -EINVAL;
8242
8243         slot = id_to_memslot(slots, id);
8244         if (size) {
8245                 if (slot->npages)
8246                         return -EEXIST;
8247
8248                 /*
8249                  * MAP_SHARED to prevent internal slot pages from being moved
8250                  * by fork()/COW.
8251                  */
8252                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8253                               MAP_SHARED | MAP_ANONYMOUS, 0);
8254                 if (IS_ERR((void *)hva))
8255                         return PTR_ERR((void *)hva);
8256         } else {
8257                 if (!slot->npages)
8258                         return 0;
8259
8260                 hva = 0;
8261         }
8262
8263         old = *slot;
8264         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8265                 struct kvm_userspace_memory_region m;
8266
8267                 m.slot = id | (i << 16);
8268                 m.flags = 0;
8269                 m.guest_phys_addr = gpa;
8270                 m.userspace_addr = hva;
8271                 m.memory_size = size;
8272                 r = __kvm_set_memory_region(kvm, &m);
8273                 if (r < 0)
8274                         return r;
8275         }
8276
8277         if (!size) {
8278                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8279                 WARN_ON(r < 0);
8280         }
8281
8282         return 0;
8283 }
8284 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8285
8286 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8287 {
8288         int r;
8289
8290         mutex_lock(&kvm->slots_lock);
8291         r = __x86_set_memory_region(kvm, id, gpa, size);
8292         mutex_unlock(&kvm->slots_lock);
8293
8294         return r;
8295 }
8296 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8297
8298 void kvm_arch_destroy_vm(struct kvm *kvm)
8299 {
8300         if (current->mm == kvm->mm) {
8301                 /*
8302                  * Free memory regions allocated on behalf of userspace,
8303                  * unless the the memory map has changed due to process exit
8304                  * or fd copying.
8305                  */
8306                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8307                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8308                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8309         }
8310         if (kvm_x86_ops->vm_destroy)
8311                 kvm_x86_ops->vm_destroy(kvm);
8312         kvm_pic_destroy(kvm);
8313         kvm_ioapic_destroy(kvm);
8314         kvm_free_vcpus(kvm);
8315         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8316         kvm_mmu_uninit_vm(kvm);
8317         kvm_page_track_cleanup(kvm);
8318 }
8319
8320 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8321                            struct kvm_memory_slot *dont)
8322 {
8323         int i;
8324
8325         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8326                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8327                         kvfree(free->arch.rmap[i]);
8328                         free->arch.rmap[i] = NULL;
8329                 }
8330                 if (i == 0)
8331                         continue;
8332
8333                 if (!dont || free->arch.lpage_info[i - 1] !=
8334                              dont->arch.lpage_info[i - 1]) {
8335                         kvfree(free->arch.lpage_info[i - 1]);
8336                         free->arch.lpage_info[i - 1] = NULL;
8337                 }
8338         }
8339
8340         kvm_page_track_free_memslot(free, dont);
8341 }
8342
8343 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8344                             unsigned long npages)
8345 {
8346         int i;
8347
8348         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8349                 struct kvm_lpage_info *linfo;
8350                 unsigned long ugfn;
8351                 int lpages;
8352                 int level = i + 1;
8353
8354                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8355                                       slot->base_gfn, level) + 1;
8356
8357                 slot->arch.rmap[i] =
8358                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8359                 if (!slot->arch.rmap[i])
8360                         goto out_free;
8361                 if (i == 0)
8362                         continue;
8363
8364                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8365                 if (!linfo)
8366                         goto out_free;
8367
8368                 slot->arch.lpage_info[i - 1] = linfo;
8369
8370                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8371                         linfo[0].disallow_lpage = 1;
8372                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8373                         linfo[lpages - 1].disallow_lpage = 1;
8374                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8375                 /*
8376                  * If the gfn and userspace address are not aligned wrt each
8377                  * other, or if explicitly asked to, disable large page
8378                  * support for this slot
8379                  */
8380                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8381                     !kvm_largepages_enabled()) {
8382                         unsigned long j;
8383
8384                         for (j = 0; j < lpages; ++j)
8385                                 linfo[j].disallow_lpage = 1;
8386                 }
8387         }
8388
8389         if (kvm_page_track_create_memslot(slot, npages))
8390                 goto out_free;
8391
8392         return 0;
8393
8394 out_free:
8395         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8396                 kvfree(slot->arch.rmap[i]);
8397                 slot->arch.rmap[i] = NULL;
8398                 if (i == 0)
8399                         continue;
8400
8401                 kvfree(slot->arch.lpage_info[i - 1]);
8402                 slot->arch.lpage_info[i - 1] = NULL;
8403         }
8404         return -ENOMEM;
8405 }
8406
8407 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8408 {
8409         /*
8410          * memslots->generation has been incremented.
8411          * mmio generation may have reached its maximum value.
8412          */
8413         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8414 }
8415
8416 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8417                                 struct kvm_memory_slot *memslot,
8418                                 const struct kvm_userspace_memory_region *mem,
8419                                 enum kvm_mr_change change)
8420 {
8421         return 0;
8422 }
8423
8424 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8425                                      struct kvm_memory_slot *new)
8426 {
8427         /* Still write protect RO slot */
8428         if (new->flags & KVM_MEM_READONLY) {
8429                 kvm_mmu_slot_remove_write_access(kvm, new);
8430                 return;
8431         }
8432
8433         /*
8434          * Call kvm_x86_ops dirty logging hooks when they are valid.
8435          *
8436          * kvm_x86_ops->slot_disable_log_dirty is called when:
8437          *
8438          *  - KVM_MR_CREATE with dirty logging is disabled
8439          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8440          *
8441          * The reason is, in case of PML, we need to set D-bit for any slots
8442          * with dirty logging disabled in order to eliminate unnecessary GPA
8443          * logging in PML buffer (and potential PML buffer full VMEXT). This
8444          * guarantees leaving PML enabled during guest's lifetime won't have
8445          * any additonal overhead from PML when guest is running with dirty
8446          * logging disabled for memory slots.
8447          *
8448          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8449          * to dirty logging mode.
8450          *
8451          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8452          *
8453          * In case of write protect:
8454          *
8455          * Write protect all pages for dirty logging.
8456          *
8457          * All the sptes including the large sptes which point to this
8458          * slot are set to readonly. We can not create any new large
8459          * spte on this slot until the end of the logging.
8460          *
8461          * See the comments in fast_page_fault().
8462          */
8463         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8464                 if (kvm_x86_ops->slot_enable_log_dirty)
8465                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8466                 else
8467                         kvm_mmu_slot_remove_write_access(kvm, new);
8468         } else {
8469                 if (kvm_x86_ops->slot_disable_log_dirty)
8470                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8471         }
8472 }
8473
8474 void kvm_arch_commit_memory_region(struct kvm *kvm,
8475                                 const struct kvm_userspace_memory_region *mem,
8476                                 const struct kvm_memory_slot *old,
8477                                 const struct kvm_memory_slot *new,
8478                                 enum kvm_mr_change change)
8479 {
8480         int nr_mmu_pages = 0;
8481
8482         if (!kvm->arch.n_requested_mmu_pages)
8483                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8484
8485         if (nr_mmu_pages)
8486                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8487
8488         /*
8489          * Dirty logging tracks sptes in 4k granularity, meaning that large
8490          * sptes have to be split.  If live migration is successful, the guest
8491          * in the source machine will be destroyed and large sptes will be
8492          * created in the destination. However, if the guest continues to run
8493          * in the source machine (for example if live migration fails), small
8494          * sptes will remain around and cause bad performance.
8495          *
8496          * Scan sptes if dirty logging has been stopped, dropping those
8497          * which can be collapsed into a single large-page spte.  Later
8498          * page faults will create the large-page sptes.
8499          */
8500         if ((change != KVM_MR_DELETE) &&
8501                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8502                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8503                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8504
8505         /*
8506          * Set up write protection and/or dirty logging for the new slot.
8507          *
8508          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8509          * been zapped so no dirty logging staff is needed for old slot. For
8510          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8511          * new and it's also covered when dealing with the new slot.
8512          *
8513          * FIXME: const-ify all uses of struct kvm_memory_slot.
8514          */
8515         if (change != KVM_MR_DELETE)
8516                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8517 }
8518
8519 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8520 {
8521         kvm_mmu_invalidate_zap_all_pages(kvm);
8522 }
8523
8524 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8525                                    struct kvm_memory_slot *slot)
8526 {
8527         kvm_page_track_flush_slot(kvm, slot);
8528 }
8529
8530 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8531 {
8532         if (!list_empty_careful(&vcpu->async_pf.done))
8533                 return true;
8534
8535         if (kvm_apic_has_events(vcpu))
8536                 return true;
8537
8538         if (vcpu->arch.pv.pv_unhalted)
8539                 return true;
8540
8541         if (vcpu->arch.exception.pending)
8542                 return true;
8543
8544         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8545             (vcpu->arch.nmi_pending &&
8546              kvm_x86_ops->nmi_allowed(vcpu)))
8547                 return true;
8548
8549         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8550             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8551                 return true;
8552
8553         if (kvm_arch_interrupt_allowed(vcpu) &&
8554             kvm_cpu_has_interrupt(vcpu))
8555                 return true;
8556
8557         if (kvm_hv_has_stimer_pending(vcpu))
8558                 return true;
8559
8560         return false;
8561 }
8562
8563 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8564 {
8565         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8566 }
8567
8568 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8569 {
8570         return vcpu->arch.preempted_in_kernel;
8571 }
8572
8573 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8574 {
8575         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8576 }
8577
8578 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8579 {
8580         return kvm_x86_ops->interrupt_allowed(vcpu);
8581 }
8582
8583 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8584 {
8585         if (is_64_bit_mode(vcpu))
8586                 return kvm_rip_read(vcpu);
8587         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8588                      kvm_rip_read(vcpu));
8589 }
8590 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8591
8592 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8593 {
8594         return kvm_get_linear_rip(vcpu) == linear_rip;
8595 }
8596 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8597
8598 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8599 {
8600         unsigned long rflags;
8601
8602         rflags = kvm_x86_ops->get_rflags(vcpu);
8603         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8604                 rflags &= ~X86_EFLAGS_TF;
8605         return rflags;
8606 }
8607 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8608
8609 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8610 {
8611         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8612             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8613                 rflags |= X86_EFLAGS_TF;
8614         kvm_x86_ops->set_rflags(vcpu, rflags);
8615 }
8616
8617 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8618 {
8619         __kvm_set_rflags(vcpu, rflags);
8620         kvm_make_request(KVM_REQ_EVENT, vcpu);
8621 }
8622 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8623
8624 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8625 {
8626         int r;
8627
8628         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8629               work->wakeup_all)
8630                 return;
8631
8632         r = kvm_mmu_reload(vcpu);
8633         if (unlikely(r))
8634                 return;
8635
8636         if (!vcpu->arch.mmu.direct_map &&
8637               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8638                 return;
8639
8640         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8641 }
8642
8643 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8644 {
8645         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8646 }
8647
8648 static inline u32 kvm_async_pf_next_probe(u32 key)
8649 {
8650         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8651 }
8652
8653 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8654 {
8655         u32 key = kvm_async_pf_hash_fn(gfn);
8656
8657         while (vcpu->arch.apf.gfns[key] != ~0)
8658                 key = kvm_async_pf_next_probe(key);
8659
8660         vcpu->arch.apf.gfns[key] = gfn;
8661 }
8662
8663 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8664 {
8665         int i;
8666         u32 key = kvm_async_pf_hash_fn(gfn);
8667
8668         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8669                      (vcpu->arch.apf.gfns[key] != gfn &&
8670                       vcpu->arch.apf.gfns[key] != ~0); i++)
8671                 key = kvm_async_pf_next_probe(key);
8672
8673         return key;
8674 }
8675
8676 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8677 {
8678         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8679 }
8680
8681 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8682 {
8683         u32 i, j, k;
8684
8685         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8686         while (true) {
8687                 vcpu->arch.apf.gfns[i] = ~0;
8688                 do {
8689                         j = kvm_async_pf_next_probe(j);
8690                         if (vcpu->arch.apf.gfns[j] == ~0)
8691                                 return;
8692                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8693                         /*
8694                          * k lies cyclically in ]i,j]
8695                          * |    i.k.j |
8696                          * |....j i.k.| or  |.k..j i...|
8697                          */
8698                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8699                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8700                 i = j;
8701         }
8702 }
8703
8704 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8705 {
8706
8707         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8708                                       sizeof(val));
8709 }
8710
8711 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8712 {
8713
8714         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8715                                       sizeof(u32));
8716 }
8717
8718 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8719                                      struct kvm_async_pf *work)
8720 {
8721         struct x86_exception fault;
8722
8723         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8724         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8725
8726         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8727             (vcpu->arch.apf.send_user_only &&
8728              kvm_x86_ops->get_cpl(vcpu) == 0))
8729                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8730         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8731                 fault.vector = PF_VECTOR;
8732                 fault.error_code_valid = true;
8733                 fault.error_code = 0;
8734                 fault.nested_page_fault = false;
8735                 fault.address = work->arch.token;
8736                 fault.async_page_fault = true;
8737                 kvm_inject_page_fault(vcpu, &fault);
8738         }
8739 }
8740
8741 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8742                                  struct kvm_async_pf *work)
8743 {
8744         struct x86_exception fault;
8745         u32 val;
8746
8747         if (work->wakeup_all)
8748                 work->arch.token = ~0; /* broadcast wakeup */
8749         else
8750                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8751         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8752
8753         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8754             !apf_get_user(vcpu, &val)) {
8755                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8756                     vcpu->arch.exception.pending &&
8757                     vcpu->arch.exception.nr == PF_VECTOR &&
8758                     !apf_put_user(vcpu, 0)) {
8759                         vcpu->arch.exception.injected = false;
8760                         vcpu->arch.exception.pending = false;
8761                         vcpu->arch.exception.nr = 0;
8762                         vcpu->arch.exception.has_error_code = false;
8763                         vcpu->arch.exception.error_code = 0;
8764                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8765                         fault.vector = PF_VECTOR;
8766                         fault.error_code_valid = true;
8767                         fault.error_code = 0;
8768                         fault.nested_page_fault = false;
8769                         fault.address = work->arch.token;
8770                         fault.async_page_fault = true;
8771                         kvm_inject_page_fault(vcpu, &fault);
8772                 }
8773         }
8774         vcpu->arch.apf.halted = false;
8775         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8776 }
8777
8778 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8779 {
8780         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8781                 return true;
8782         else
8783                 return kvm_can_do_async_pf(vcpu);
8784 }
8785
8786 void kvm_arch_start_assignment(struct kvm *kvm)
8787 {
8788         atomic_inc(&kvm->arch.assigned_device_count);
8789 }
8790 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8791
8792 void kvm_arch_end_assignment(struct kvm *kvm)
8793 {
8794         atomic_dec(&kvm->arch.assigned_device_count);
8795 }
8796 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8797
8798 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8799 {
8800         return atomic_read(&kvm->arch.assigned_device_count);
8801 }
8802 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8803
8804 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8805 {
8806         atomic_inc(&kvm->arch.noncoherent_dma_count);
8807 }
8808 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8809
8810 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8811 {
8812         atomic_dec(&kvm->arch.noncoherent_dma_count);
8813 }
8814 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8815
8816 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8817 {
8818         return atomic_read(&kvm->arch.noncoherent_dma_count);
8819 }
8820 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8821
8822 bool kvm_arch_has_irq_bypass(void)
8823 {
8824         return kvm_x86_ops->update_pi_irte != NULL;
8825 }
8826
8827 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8828                                       struct irq_bypass_producer *prod)
8829 {
8830         struct kvm_kernel_irqfd *irqfd =
8831                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8832
8833         irqfd->producer = prod;
8834
8835         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8836                                            prod->irq, irqfd->gsi, 1);
8837 }
8838
8839 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8840                                       struct irq_bypass_producer *prod)
8841 {
8842         int ret;
8843         struct kvm_kernel_irqfd *irqfd =
8844                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8845
8846         WARN_ON(irqfd->producer != prod);
8847         irqfd->producer = NULL;
8848
8849         /*
8850          * When producer of consumer is unregistered, we change back to
8851          * remapped mode, so we can re-use the current implementation
8852          * when the irq is masked/disabled or the consumer side (KVM
8853          * int this case doesn't want to receive the interrupts.
8854         */
8855         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8856         if (ret)
8857                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8858                        " fails: %d\n", irqfd->consumer.token, ret);
8859 }
8860
8861 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8862                                    uint32_t guest_irq, bool set)
8863 {
8864         if (!kvm_x86_ops->update_pi_irte)
8865                 return -EINVAL;
8866
8867         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8868 }
8869
8870 bool kvm_vector_hashing_enabled(void)
8871 {
8872         return vector_hashing;
8873 }
8874 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8875
8876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);