]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
kvm: rename last argument to kvm_get_dirty_log_protect
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 #include <asm/mshyperv.h>
71 #include <asm/hypervisor.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
139 unsigned int __read_mostly lapic_timer_advance_ns = 1000;
140 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
141 EXPORT_SYMBOL_GPL(lapic_timer_advance_ns);
142
143 static bool __read_mostly vector_hashing = true;
144 module_param(vector_hashing, bool, S_IRUGO);
145
146 bool __read_mostly enable_vmware_backdoor = false;
147 module_param(enable_vmware_backdoor, bool, S_IRUGO);
148 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
149
150 static bool __read_mostly force_emulation_prefix = false;
151 module_param(force_emulation_prefix, bool, S_IRUGO);
152
153 #define KVM_NR_SHARED_MSRS 16
154
155 struct kvm_shared_msrs_global {
156         int nr;
157         u32 msrs[KVM_NR_SHARED_MSRS];
158 };
159
160 struct kvm_shared_msrs {
161         struct user_return_notifier urn;
162         bool registered;
163         struct kvm_shared_msr_values {
164                 u64 host;
165                 u64 curr;
166         } values[KVM_NR_SHARED_MSRS];
167 };
168
169 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
170 static struct kvm_shared_msrs __percpu *shared_msrs;
171
172 struct kvm_stats_debugfs_item debugfs_entries[] = {
173         { "pf_fixed", VCPU_STAT(pf_fixed) },
174         { "pf_guest", VCPU_STAT(pf_guest) },
175         { "tlb_flush", VCPU_STAT(tlb_flush) },
176         { "invlpg", VCPU_STAT(invlpg) },
177         { "exits", VCPU_STAT(exits) },
178         { "io_exits", VCPU_STAT(io_exits) },
179         { "mmio_exits", VCPU_STAT(mmio_exits) },
180         { "signal_exits", VCPU_STAT(signal_exits) },
181         { "irq_window", VCPU_STAT(irq_window_exits) },
182         { "nmi_window", VCPU_STAT(nmi_window_exits) },
183         { "halt_exits", VCPU_STAT(halt_exits) },
184         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
185         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
186         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
187         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
188         { "hypercalls", VCPU_STAT(hypercalls) },
189         { "request_irq", VCPU_STAT(request_irq_exits) },
190         { "irq_exits", VCPU_STAT(irq_exits) },
191         { "host_state_reload", VCPU_STAT(host_state_reload) },
192         { "fpu_reload", VCPU_STAT(fpu_reload) },
193         { "insn_emulation", VCPU_STAT(insn_emulation) },
194         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
195         { "irq_injections", VCPU_STAT(irq_injections) },
196         { "nmi_injections", VCPU_STAT(nmi_injections) },
197         { "req_event", VCPU_STAT(req_event) },
198         { "l1d_flush", VCPU_STAT(l1d_flush) },
199         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
200         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
201         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
202         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
203         { "mmu_flooded", VM_STAT(mmu_flooded) },
204         { "mmu_recycled", VM_STAT(mmu_recycled) },
205         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
206         { "mmu_unsync", VM_STAT(mmu_unsync) },
207         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
208         { "largepages", VM_STAT(lpages) },
209         { "max_mmu_page_hash_collisions",
210                 VM_STAT(max_mmu_page_hash_collisions) },
211         { NULL }
212 };
213
214 u64 __read_mostly host_xcr0;
215
216 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
217
218 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
219 {
220         int i;
221         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
222                 vcpu->arch.apf.gfns[i] = ~0;
223 }
224
225 static void kvm_on_user_return(struct user_return_notifier *urn)
226 {
227         unsigned slot;
228         struct kvm_shared_msrs *locals
229                 = container_of(urn, struct kvm_shared_msrs, urn);
230         struct kvm_shared_msr_values *values;
231         unsigned long flags;
232
233         /*
234          * Disabling irqs at this point since the following code could be
235          * interrupted and executed through kvm_arch_hardware_disable()
236          */
237         local_irq_save(flags);
238         if (locals->registered) {
239                 locals->registered = false;
240                 user_return_notifier_unregister(urn);
241         }
242         local_irq_restore(flags);
243         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
244                 values = &locals->values[slot];
245                 if (values->host != values->curr) {
246                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
247                         values->curr = values->host;
248                 }
249         }
250 }
251
252 static void shared_msr_update(unsigned slot, u32 msr)
253 {
254         u64 value;
255         unsigned int cpu = smp_processor_id();
256         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
257
258         /* only read, and nobody should modify it at this time,
259          * so don't need lock */
260         if (slot >= shared_msrs_global.nr) {
261                 printk(KERN_ERR "kvm: invalid MSR slot!");
262                 return;
263         }
264         rdmsrl_safe(msr, &value);
265         smsr->values[slot].host = value;
266         smsr->values[slot].curr = value;
267 }
268
269 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 {
271         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
272         shared_msrs_global.msrs[slot] = msr;
273         if (slot >= shared_msrs_global.nr)
274                 shared_msrs_global.nr = slot + 1;
275 }
276 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277
278 static void kvm_shared_msr_cpu_online(void)
279 {
280         unsigned i;
281
282         for (i = 0; i < shared_msrs_global.nr; ++i)
283                 shared_msr_update(i, shared_msrs_global.msrs[i]);
284 }
285
286 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
287 {
288         unsigned int cpu = smp_processor_id();
289         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
290         int err;
291
292         if (((value ^ smsr->values[slot].curr) & mask) == 0)
293                 return 0;
294         smsr->values[slot].curr = value;
295         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
296         if (err)
297                 return 1;
298
299         if (!smsr->registered) {
300                 smsr->urn.on_user_return = kvm_on_user_return;
301                 user_return_notifier_register(&smsr->urn);
302                 smsr->registered = true;
303         }
304         return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
307
308 static void drop_user_return_notifiers(void)
309 {
310         unsigned int cpu = smp_processor_id();
311         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
312
313         if (smsr->registered)
314                 kvm_on_user_return(&smsr->urn);
315 }
316
317 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
318 {
319         return vcpu->arch.apic_base;
320 }
321 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
322
323 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
324 {
325         return kvm_apic_mode(kvm_get_apic_base(vcpu));
326 }
327 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
328
329 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
330 {
331         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
332         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
333         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
334                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
335
336         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
337                 return 1;
338         if (!msr_info->host_initiated) {
339                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
340                         return 1;
341                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
342                         return 1;
343         }
344
345         kvm_lapic_set_base(vcpu, msr_info->data);
346         return 0;
347 }
348 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
349
350 asmlinkage __visible void kvm_spurious_fault(void)
351 {
352         /* Fault while not rebooting.  We want the trace. */
353         BUG();
354 }
355 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
356
357 #define EXCPT_BENIGN            0
358 #define EXCPT_CONTRIBUTORY      1
359 #define EXCPT_PF                2
360
361 static int exception_class(int vector)
362 {
363         switch (vector) {
364         case PF_VECTOR:
365                 return EXCPT_PF;
366         case DE_VECTOR:
367         case TS_VECTOR:
368         case NP_VECTOR:
369         case SS_VECTOR:
370         case GP_VECTOR:
371                 return EXCPT_CONTRIBUTORY;
372         default:
373                 break;
374         }
375         return EXCPT_BENIGN;
376 }
377
378 #define EXCPT_FAULT             0
379 #define EXCPT_TRAP              1
380 #define EXCPT_ABORT             2
381 #define EXCPT_INTERRUPT         3
382
383 static int exception_type(int vector)
384 {
385         unsigned int mask;
386
387         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
388                 return EXCPT_INTERRUPT;
389
390         mask = 1 << vector;
391
392         /* #DB is trap, as instruction watchpoints are handled elsewhere */
393         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
394                 return EXCPT_TRAP;
395
396         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
397                 return EXCPT_ABORT;
398
399         /* Reserved exceptions will result in fault */
400         return EXCPT_FAULT;
401 }
402
403 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
404 {
405         unsigned nr = vcpu->arch.exception.nr;
406         bool has_payload = vcpu->arch.exception.has_payload;
407         unsigned long payload = vcpu->arch.exception.payload;
408
409         if (!has_payload)
410                 return;
411
412         switch (nr) {
413         case DB_VECTOR:
414                 /*
415                  * "Certain debug exceptions may clear bit 0-3.  The
416                  * remaining contents of the DR6 register are never
417                  * cleared by the processor".
418                  */
419                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
420                 /*
421                  * DR6.RTM is set by all #DB exceptions that don't clear it.
422                  */
423                 vcpu->arch.dr6 |= DR6_RTM;
424                 vcpu->arch.dr6 |= payload;
425                 /*
426                  * Bit 16 should be set in the payload whenever the #DB
427                  * exception should clear DR6.RTM. This makes the payload
428                  * compatible with the pending debug exceptions under VMX.
429                  * Though not currently documented in the SDM, this also
430                  * makes the payload compatible with the exit qualification
431                  * for #DB exceptions under VMX.
432                  */
433                 vcpu->arch.dr6 ^= payload & DR6_RTM;
434                 break;
435         case PF_VECTOR:
436                 vcpu->arch.cr2 = payload;
437                 break;
438         }
439
440         vcpu->arch.exception.has_payload = false;
441         vcpu->arch.exception.payload = 0;
442 }
443 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
444
445 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
446                 unsigned nr, bool has_error, u32 error_code,
447                 bool has_payload, unsigned long payload, bool reinject)
448 {
449         u32 prev_nr;
450         int class1, class2;
451
452         kvm_make_request(KVM_REQ_EVENT, vcpu);
453
454         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
455         queue:
456                 if (has_error && !is_protmode(vcpu))
457                         has_error = false;
458                 if (reinject) {
459                         /*
460                          * On vmentry, vcpu->arch.exception.pending is only
461                          * true if an event injection was blocked by
462                          * nested_run_pending.  In that case, however,
463                          * vcpu_enter_guest requests an immediate exit,
464                          * and the guest shouldn't proceed far enough to
465                          * need reinjection.
466                          */
467                         WARN_ON_ONCE(vcpu->arch.exception.pending);
468                         vcpu->arch.exception.injected = true;
469                         if (WARN_ON_ONCE(has_payload)) {
470                                 /*
471                                  * A reinjected event has already
472                                  * delivered its payload.
473                                  */
474                                 has_payload = false;
475                                 payload = 0;
476                         }
477                 } else {
478                         vcpu->arch.exception.pending = true;
479                         vcpu->arch.exception.injected = false;
480                 }
481                 vcpu->arch.exception.has_error_code = has_error;
482                 vcpu->arch.exception.nr = nr;
483                 vcpu->arch.exception.error_code = error_code;
484                 vcpu->arch.exception.has_payload = has_payload;
485                 vcpu->arch.exception.payload = payload;
486                 /*
487                  * In guest mode, payload delivery should be deferred,
488                  * so that the L1 hypervisor can intercept #PF before
489                  * CR2 is modified (or intercept #DB before DR6 is
490                  * modified under nVMX).  However, for ABI
491                  * compatibility with KVM_GET_VCPU_EVENTS and
492                  * KVM_SET_VCPU_EVENTS, we can't delay payload
493                  * delivery unless userspace has enabled this
494                  * functionality via the per-VM capability,
495                  * KVM_CAP_EXCEPTION_PAYLOAD.
496                  */
497                 if (!vcpu->kvm->arch.exception_payload_enabled ||
498                     !is_guest_mode(vcpu))
499                         kvm_deliver_exception_payload(vcpu);
500                 return;
501         }
502
503         /* to check exception */
504         prev_nr = vcpu->arch.exception.nr;
505         if (prev_nr == DF_VECTOR) {
506                 /* triple fault -> shutdown */
507                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
508                 return;
509         }
510         class1 = exception_class(prev_nr);
511         class2 = exception_class(nr);
512         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
513                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
514                 /*
515                  * Generate double fault per SDM Table 5-5.  Set
516                  * exception.pending = true so that the double fault
517                  * can trigger a nested vmexit.
518                  */
519                 vcpu->arch.exception.pending = true;
520                 vcpu->arch.exception.injected = false;
521                 vcpu->arch.exception.has_error_code = true;
522                 vcpu->arch.exception.nr = DF_VECTOR;
523                 vcpu->arch.exception.error_code = 0;
524                 vcpu->arch.exception.has_payload = false;
525                 vcpu->arch.exception.payload = 0;
526         } else
527                 /* replace previous exception with a new one in a hope
528                    that instruction re-execution will regenerate lost
529                    exception */
530                 goto queue;
531 }
532
533 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
534 {
535         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
536 }
537 EXPORT_SYMBOL_GPL(kvm_queue_exception);
538
539 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
540 {
541         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
542 }
543 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
544
545 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
546                                   unsigned long payload)
547 {
548         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
549 }
550
551 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
552                                     u32 error_code, unsigned long payload)
553 {
554         kvm_multiple_exception(vcpu, nr, true, error_code,
555                                true, payload, false);
556 }
557
558 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
559 {
560         if (err)
561                 kvm_inject_gp(vcpu, 0);
562         else
563                 return kvm_skip_emulated_instruction(vcpu);
564
565         return 1;
566 }
567 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
568
569 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
570 {
571         ++vcpu->stat.pf_guest;
572         vcpu->arch.exception.nested_apf =
573                 is_guest_mode(vcpu) && fault->async_page_fault;
574         if (vcpu->arch.exception.nested_apf) {
575                 vcpu->arch.apf.nested_apf_token = fault->address;
576                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
577         } else {
578                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
579                                         fault->address);
580         }
581 }
582 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
583
584 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
585 {
586         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
587                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
588         else
589                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
590
591         return fault->nested_page_fault;
592 }
593
594 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
595 {
596         atomic_inc(&vcpu->arch.nmi_queued);
597         kvm_make_request(KVM_REQ_NMI, vcpu);
598 }
599 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
600
601 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
602 {
603         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
604 }
605 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
606
607 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
608 {
609         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
610 }
611 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
612
613 /*
614  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
615  * a #GP and return false.
616  */
617 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
618 {
619         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
620                 return true;
621         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
622         return false;
623 }
624 EXPORT_SYMBOL_GPL(kvm_require_cpl);
625
626 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
627 {
628         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
629                 return true;
630
631         kvm_queue_exception(vcpu, UD_VECTOR);
632         return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_dr);
635
636 /*
637  * This function will be used to read from the physical memory of the currently
638  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
639  * can read from guest physical or from the guest's guest physical memory.
640  */
641 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
642                             gfn_t ngfn, void *data, int offset, int len,
643                             u32 access)
644 {
645         struct x86_exception exception;
646         gfn_t real_gfn;
647         gpa_t ngpa;
648
649         ngpa     = gfn_to_gpa(ngfn);
650         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
651         if (real_gfn == UNMAPPED_GVA)
652                 return -EFAULT;
653
654         real_gfn = gpa_to_gfn(real_gfn);
655
656         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
657 }
658 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
659
660 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
661                                void *data, int offset, int len, u32 access)
662 {
663         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
664                                        data, offset, len, access);
665 }
666
667 /*
668  * Load the pae pdptrs.  Return true is they are all valid.
669  */
670 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
671 {
672         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
673         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
674         int i;
675         int ret;
676         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
677
678         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
679                                       offset * sizeof(u64), sizeof(pdpte),
680                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
681         if (ret < 0) {
682                 ret = 0;
683                 goto out;
684         }
685         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
686                 if ((pdpte[i] & PT_PRESENT_MASK) &&
687                     (pdpte[i] &
688                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
689                         ret = 0;
690                         goto out;
691                 }
692         }
693         ret = 1;
694
695         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
696         __set_bit(VCPU_EXREG_PDPTR,
697                   (unsigned long *)&vcpu->arch.regs_avail);
698         __set_bit(VCPU_EXREG_PDPTR,
699                   (unsigned long *)&vcpu->arch.regs_dirty);
700 out:
701
702         return ret;
703 }
704 EXPORT_SYMBOL_GPL(load_pdptrs);
705
706 bool pdptrs_changed(struct kvm_vcpu *vcpu)
707 {
708         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
709         bool changed = true;
710         int offset;
711         gfn_t gfn;
712         int r;
713
714         if (is_long_mode(vcpu) || !is_pae(vcpu) || !is_paging(vcpu))
715                 return false;
716
717         if (!test_bit(VCPU_EXREG_PDPTR,
718                       (unsigned long *)&vcpu->arch.regs_avail))
719                 return true;
720
721         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
722         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
723         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
724                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
725         if (r < 0)
726                 goto out;
727         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
728 out:
729
730         return changed;
731 }
732 EXPORT_SYMBOL_GPL(pdptrs_changed);
733
734 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
735 {
736         unsigned long old_cr0 = kvm_read_cr0(vcpu);
737         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
738
739         cr0 |= X86_CR0_ET;
740
741 #ifdef CONFIG_X86_64
742         if (cr0 & 0xffffffff00000000UL)
743                 return 1;
744 #endif
745
746         cr0 &= ~CR0_RESERVED_BITS;
747
748         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
749                 return 1;
750
751         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
752                 return 1;
753
754         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
755 #ifdef CONFIG_X86_64
756                 if ((vcpu->arch.efer & EFER_LME)) {
757                         int cs_db, cs_l;
758
759                         if (!is_pae(vcpu))
760                                 return 1;
761                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
762                         if (cs_l)
763                                 return 1;
764                 } else
765 #endif
766                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
767                                                  kvm_read_cr3(vcpu)))
768                         return 1;
769         }
770
771         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
772                 return 1;
773
774         kvm_x86_ops->set_cr0(vcpu, cr0);
775
776         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
777                 kvm_clear_async_pf_completion_queue(vcpu);
778                 kvm_async_pf_hash_reset(vcpu);
779         }
780
781         if ((cr0 ^ old_cr0) & update_bits)
782                 kvm_mmu_reset_context(vcpu);
783
784         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
785             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
786             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
787                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
788
789         return 0;
790 }
791 EXPORT_SYMBOL_GPL(kvm_set_cr0);
792
793 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
794 {
795         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
796 }
797 EXPORT_SYMBOL_GPL(kvm_lmsw);
798
799 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
800 {
801         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
802                         !vcpu->guest_xcr0_loaded) {
803                 /* kvm_set_xcr() also depends on this */
804                 if (vcpu->arch.xcr0 != host_xcr0)
805                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
806                 vcpu->guest_xcr0_loaded = 1;
807         }
808 }
809
810 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
811 {
812         if (vcpu->guest_xcr0_loaded) {
813                 if (vcpu->arch.xcr0 != host_xcr0)
814                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
815                 vcpu->guest_xcr0_loaded = 0;
816         }
817 }
818
819 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
820 {
821         u64 xcr0 = xcr;
822         u64 old_xcr0 = vcpu->arch.xcr0;
823         u64 valid_bits;
824
825         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
826         if (index != XCR_XFEATURE_ENABLED_MASK)
827                 return 1;
828         if (!(xcr0 & XFEATURE_MASK_FP))
829                 return 1;
830         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
831                 return 1;
832
833         /*
834          * Do not allow the guest to set bits that we do not support
835          * saving.  However, xcr0 bit 0 is always set, even if the
836          * emulated CPU does not support XSAVE (see fx_init).
837          */
838         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
839         if (xcr0 & ~valid_bits)
840                 return 1;
841
842         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
843             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
844                 return 1;
845
846         if (xcr0 & XFEATURE_MASK_AVX512) {
847                 if (!(xcr0 & XFEATURE_MASK_YMM))
848                         return 1;
849                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
850                         return 1;
851         }
852         vcpu->arch.xcr0 = xcr0;
853
854         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
855                 kvm_update_cpuid(vcpu);
856         return 0;
857 }
858
859 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
860 {
861         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
862             __kvm_set_xcr(vcpu, index, xcr)) {
863                 kvm_inject_gp(vcpu, 0);
864                 return 1;
865         }
866         return 0;
867 }
868 EXPORT_SYMBOL_GPL(kvm_set_xcr);
869
870 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
871 {
872         unsigned long old_cr4 = kvm_read_cr4(vcpu);
873         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
874                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
875
876         if (cr4 & CR4_RESERVED_BITS)
877                 return 1;
878
879         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
880                 return 1;
881
882         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
883                 return 1;
884
885         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
886                 return 1;
887
888         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
889                 return 1;
890
891         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
892                 return 1;
893
894         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
895                 return 1;
896
897         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
898                 return 1;
899
900         if (is_long_mode(vcpu)) {
901                 if (!(cr4 & X86_CR4_PAE))
902                         return 1;
903         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
904                    && ((cr4 ^ old_cr4) & pdptr_bits)
905                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
906                                    kvm_read_cr3(vcpu)))
907                 return 1;
908
909         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
910                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
911                         return 1;
912
913                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
914                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
915                         return 1;
916         }
917
918         if (kvm_x86_ops->set_cr4(vcpu, cr4))
919                 return 1;
920
921         if (((cr4 ^ old_cr4) & pdptr_bits) ||
922             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
923                 kvm_mmu_reset_context(vcpu);
924
925         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
926                 kvm_update_cpuid(vcpu);
927
928         return 0;
929 }
930 EXPORT_SYMBOL_GPL(kvm_set_cr4);
931
932 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
933 {
934         bool skip_tlb_flush = false;
935 #ifdef CONFIG_X86_64
936         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
937
938         if (pcid_enabled) {
939                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
940                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
941         }
942 #endif
943
944         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
945                 if (!skip_tlb_flush) {
946                         kvm_mmu_sync_roots(vcpu);
947                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
948                 }
949                 return 0;
950         }
951
952         if (is_long_mode(vcpu) &&
953             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
954                 return 1;
955         else if (is_pae(vcpu) && is_paging(vcpu) &&
956                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
957                 return 1;
958
959         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
960         vcpu->arch.cr3 = cr3;
961         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
962
963         return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_cr3);
966
967 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
968 {
969         if (cr8 & CR8_RESERVED_BITS)
970                 return 1;
971         if (lapic_in_kernel(vcpu))
972                 kvm_lapic_set_tpr(vcpu, cr8);
973         else
974                 vcpu->arch.cr8 = cr8;
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr8);
978
979 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
980 {
981         if (lapic_in_kernel(vcpu))
982                 return kvm_lapic_get_cr8(vcpu);
983         else
984                 return vcpu->arch.cr8;
985 }
986 EXPORT_SYMBOL_GPL(kvm_get_cr8);
987
988 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
989 {
990         int i;
991
992         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
993                 for (i = 0; i < KVM_NR_DB_REGS; i++)
994                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
995                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
996         }
997 }
998
999 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1000 {
1001         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1002                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1003 }
1004
1005 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1006 {
1007         unsigned long dr7;
1008
1009         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1010                 dr7 = vcpu->arch.guest_debug_dr7;
1011         else
1012                 dr7 = vcpu->arch.dr7;
1013         kvm_x86_ops->set_dr7(vcpu, dr7);
1014         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1015         if (dr7 & DR7_BP_EN_MASK)
1016                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1017 }
1018
1019 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1020 {
1021         u64 fixed = DR6_FIXED_1;
1022
1023         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1024                 fixed |= DR6_RTM;
1025         return fixed;
1026 }
1027
1028 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1029 {
1030         switch (dr) {
1031         case 0 ... 3:
1032                 vcpu->arch.db[dr] = val;
1033                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1034                         vcpu->arch.eff_db[dr] = val;
1035                 break;
1036         case 4:
1037                 /* fall through */
1038         case 6:
1039                 if (val & 0xffffffff00000000ULL)
1040                         return -1; /* #GP */
1041                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1042                 kvm_update_dr6(vcpu);
1043                 break;
1044         case 5:
1045                 /* fall through */
1046         default: /* 7 */
1047                 if (val & 0xffffffff00000000ULL)
1048                         return -1; /* #GP */
1049                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1050                 kvm_update_dr7(vcpu);
1051                 break;
1052         }
1053
1054         return 0;
1055 }
1056
1057 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1058 {
1059         if (__kvm_set_dr(vcpu, dr, val)) {
1060                 kvm_inject_gp(vcpu, 0);
1061                 return 1;
1062         }
1063         return 0;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_set_dr);
1066
1067 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1068 {
1069         switch (dr) {
1070         case 0 ... 3:
1071                 *val = vcpu->arch.db[dr];
1072                 break;
1073         case 4:
1074                 /* fall through */
1075         case 6:
1076                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1077                         *val = vcpu->arch.dr6;
1078                 else
1079                         *val = kvm_x86_ops->get_dr6(vcpu);
1080                 break;
1081         case 5:
1082                 /* fall through */
1083         default: /* 7 */
1084                 *val = vcpu->arch.dr7;
1085                 break;
1086         }
1087         return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_get_dr);
1090
1091 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1092 {
1093         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
1094         u64 data;
1095         int err;
1096
1097         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1098         if (err)
1099                 return err;
1100         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
1101         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
1102         return err;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1105
1106 /*
1107  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1108  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1109  *
1110  * This list is modified at module load time to reflect the
1111  * capabilities of the host cpu. This capabilities test skips MSRs that are
1112  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1113  * may depend on host virtualization features rather than host cpu features.
1114  */
1115
1116 static u32 msrs_to_save[] = {
1117         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1118         MSR_STAR,
1119 #ifdef CONFIG_X86_64
1120         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1121 #endif
1122         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1123         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1124         MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
1125 };
1126
1127 static unsigned num_msrs_to_save;
1128
1129 static u32 emulated_msrs[] = {
1130         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1131         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1132         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1133         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1134         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1135         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1136         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1137         HV_X64_MSR_RESET,
1138         HV_X64_MSR_VP_INDEX,
1139         HV_X64_MSR_VP_RUNTIME,
1140         HV_X64_MSR_SCONTROL,
1141         HV_X64_MSR_STIMER0_CONFIG,
1142         HV_X64_MSR_VP_ASSIST_PAGE,
1143         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1144         HV_X64_MSR_TSC_EMULATION_STATUS,
1145
1146         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1147         MSR_KVM_PV_EOI_EN,
1148
1149         MSR_IA32_TSC_ADJUST,
1150         MSR_IA32_TSCDEADLINE,
1151         MSR_IA32_MISC_ENABLE,
1152         MSR_IA32_MCG_STATUS,
1153         MSR_IA32_MCG_CTL,
1154         MSR_IA32_MCG_EXT_CTL,
1155         MSR_IA32_SMBASE,
1156         MSR_SMI_COUNT,
1157         MSR_PLATFORM_INFO,
1158         MSR_MISC_FEATURES_ENABLES,
1159         MSR_AMD64_VIRT_SPEC_CTRL,
1160 };
1161
1162 static unsigned num_emulated_msrs;
1163
1164 /*
1165  * List of msr numbers which are used to expose MSR-based features that
1166  * can be used by a hypervisor to validate requested CPU features.
1167  */
1168 static u32 msr_based_features[] = {
1169         MSR_IA32_VMX_BASIC,
1170         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1171         MSR_IA32_VMX_PINBASED_CTLS,
1172         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1173         MSR_IA32_VMX_PROCBASED_CTLS,
1174         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1175         MSR_IA32_VMX_EXIT_CTLS,
1176         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1177         MSR_IA32_VMX_ENTRY_CTLS,
1178         MSR_IA32_VMX_MISC,
1179         MSR_IA32_VMX_CR0_FIXED0,
1180         MSR_IA32_VMX_CR0_FIXED1,
1181         MSR_IA32_VMX_CR4_FIXED0,
1182         MSR_IA32_VMX_CR4_FIXED1,
1183         MSR_IA32_VMX_VMCS_ENUM,
1184         MSR_IA32_VMX_PROCBASED_CTLS2,
1185         MSR_IA32_VMX_EPT_VPID_CAP,
1186         MSR_IA32_VMX_VMFUNC,
1187
1188         MSR_F10H_DECFG,
1189         MSR_IA32_UCODE_REV,
1190         MSR_IA32_ARCH_CAPABILITIES,
1191 };
1192
1193 static unsigned int num_msr_based_features;
1194
1195 u64 kvm_get_arch_capabilities(void)
1196 {
1197         u64 data;
1198
1199         rdmsrl_safe(MSR_IA32_ARCH_CAPABILITIES, &data);
1200
1201         /*
1202          * If we're doing cache flushes (either "always" or "cond")
1203          * we will do one whenever the guest does a vmlaunch/vmresume.
1204          * If an outer hypervisor is doing the cache flush for us
1205          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1206          * capability to the guest too, and if EPT is disabled we're not
1207          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1208          * require a nested hypervisor to do a flush of its own.
1209          */
1210         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1211                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1212
1213         return data;
1214 }
1215 EXPORT_SYMBOL_GPL(kvm_get_arch_capabilities);
1216
1217 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1218 {
1219         switch (msr->index) {
1220         case MSR_IA32_ARCH_CAPABILITIES:
1221                 msr->data = kvm_get_arch_capabilities();
1222                 break;
1223         case MSR_IA32_UCODE_REV:
1224                 rdmsrl_safe(msr->index, &msr->data);
1225                 break;
1226         default:
1227                 if (kvm_x86_ops->get_msr_feature(msr))
1228                         return 1;
1229         }
1230         return 0;
1231 }
1232
1233 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1234 {
1235         struct kvm_msr_entry msr;
1236         int r;
1237
1238         msr.index = index;
1239         r = kvm_get_msr_feature(&msr);
1240         if (r)
1241                 return r;
1242
1243         *data = msr.data;
1244
1245         return 0;
1246 }
1247
1248 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1249 {
1250         if (efer & efer_reserved_bits)
1251                 return false;
1252
1253         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1254                         return false;
1255
1256         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1257                         return false;
1258
1259         return true;
1260 }
1261 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1262
1263 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1264 {
1265         u64 old_efer = vcpu->arch.efer;
1266
1267         if (!kvm_valid_efer(vcpu, efer))
1268                 return 1;
1269
1270         if (is_paging(vcpu)
1271             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1272                 return 1;
1273
1274         efer &= ~EFER_LMA;
1275         efer |= vcpu->arch.efer & EFER_LMA;
1276
1277         kvm_x86_ops->set_efer(vcpu, efer);
1278
1279         /* Update reserved bits */
1280         if ((efer ^ old_efer) & EFER_NX)
1281                 kvm_mmu_reset_context(vcpu);
1282
1283         return 0;
1284 }
1285
1286 void kvm_enable_efer_bits(u64 mask)
1287 {
1288        efer_reserved_bits &= ~mask;
1289 }
1290 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1291
1292 /*
1293  * Writes msr value into into the appropriate "register".
1294  * Returns 0 on success, non-0 otherwise.
1295  * Assumes vcpu_load() was already called.
1296  */
1297 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1298 {
1299         switch (msr->index) {
1300         case MSR_FS_BASE:
1301         case MSR_GS_BASE:
1302         case MSR_KERNEL_GS_BASE:
1303         case MSR_CSTAR:
1304         case MSR_LSTAR:
1305                 if (is_noncanonical_address(msr->data, vcpu))
1306                         return 1;
1307                 break;
1308         case MSR_IA32_SYSENTER_EIP:
1309         case MSR_IA32_SYSENTER_ESP:
1310                 /*
1311                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1312                  * non-canonical address is written on Intel but not on
1313                  * AMD (which ignores the top 32-bits, because it does
1314                  * not implement 64-bit SYSENTER).
1315                  *
1316                  * 64-bit code should hence be able to write a non-canonical
1317                  * value on AMD.  Making the address canonical ensures that
1318                  * vmentry does not fail on Intel after writing a non-canonical
1319                  * value, and that something deterministic happens if the guest
1320                  * invokes 64-bit SYSENTER.
1321                  */
1322                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1323         }
1324         return kvm_x86_ops->set_msr(vcpu, msr);
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_set_msr);
1327
1328 /*
1329  * Adapt set_msr() to msr_io()'s calling convention
1330  */
1331 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1332 {
1333         struct msr_data msr;
1334         int r;
1335
1336         msr.index = index;
1337         msr.host_initiated = true;
1338         r = kvm_get_msr(vcpu, &msr);
1339         if (r)
1340                 return r;
1341
1342         *data = msr.data;
1343         return 0;
1344 }
1345
1346 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1347 {
1348         struct msr_data msr;
1349
1350         msr.data = *data;
1351         msr.index = index;
1352         msr.host_initiated = true;
1353         return kvm_set_msr(vcpu, &msr);
1354 }
1355
1356 #ifdef CONFIG_X86_64
1357 struct pvclock_gtod_data {
1358         seqcount_t      seq;
1359
1360         struct { /* extract of a clocksource struct */
1361                 int vclock_mode;
1362                 u64     cycle_last;
1363                 u64     mask;
1364                 u32     mult;
1365                 u32     shift;
1366         } clock;
1367
1368         u64             boot_ns;
1369         u64             nsec_base;
1370         u64             wall_time_sec;
1371 };
1372
1373 static struct pvclock_gtod_data pvclock_gtod_data;
1374
1375 static void update_pvclock_gtod(struct timekeeper *tk)
1376 {
1377         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1378         u64 boot_ns;
1379
1380         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1381
1382         write_seqcount_begin(&vdata->seq);
1383
1384         /* copy pvclock gtod data */
1385         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1386         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1387         vdata->clock.mask               = tk->tkr_mono.mask;
1388         vdata->clock.mult               = tk->tkr_mono.mult;
1389         vdata->clock.shift              = tk->tkr_mono.shift;
1390
1391         vdata->boot_ns                  = boot_ns;
1392         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1393
1394         vdata->wall_time_sec            = tk->xtime_sec;
1395
1396         write_seqcount_end(&vdata->seq);
1397 }
1398 #endif
1399
1400 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1401 {
1402         /*
1403          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1404          * vcpu_enter_guest.  This function is only called from
1405          * the physical CPU that is running vcpu.
1406          */
1407         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1408 }
1409
1410 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1411 {
1412         int version;
1413         int r;
1414         struct pvclock_wall_clock wc;
1415         struct timespec64 boot;
1416
1417         if (!wall_clock)
1418                 return;
1419
1420         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1421         if (r)
1422                 return;
1423
1424         if (version & 1)
1425                 ++version;  /* first time write, random junk */
1426
1427         ++version;
1428
1429         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1430                 return;
1431
1432         /*
1433          * The guest calculates current wall clock time by adding
1434          * system time (updated by kvm_guest_time_update below) to the
1435          * wall clock specified here.  guest system time equals host
1436          * system time for us, thus we must fill in host boot time here.
1437          */
1438         getboottime64(&boot);
1439
1440         if (kvm->arch.kvmclock_offset) {
1441                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1442                 boot = timespec64_sub(boot, ts);
1443         }
1444         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1445         wc.nsec = boot.tv_nsec;
1446         wc.version = version;
1447
1448         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1449
1450         version++;
1451         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1452 }
1453
1454 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1455 {
1456         do_shl32_div32(dividend, divisor);
1457         return dividend;
1458 }
1459
1460 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1461                                s8 *pshift, u32 *pmultiplier)
1462 {
1463         uint64_t scaled64;
1464         int32_t  shift = 0;
1465         uint64_t tps64;
1466         uint32_t tps32;
1467
1468         tps64 = base_hz;
1469         scaled64 = scaled_hz;
1470         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1471                 tps64 >>= 1;
1472                 shift--;
1473         }
1474
1475         tps32 = (uint32_t)tps64;
1476         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1477                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1478                         scaled64 >>= 1;
1479                 else
1480                         tps32 <<= 1;
1481                 shift++;
1482         }
1483
1484         *pshift = shift;
1485         *pmultiplier = div_frac(scaled64, tps32);
1486
1487         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1488                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1489 }
1490
1491 #ifdef CONFIG_X86_64
1492 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1493 #endif
1494
1495 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1496 static unsigned long max_tsc_khz;
1497
1498 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1499 {
1500         u64 v = (u64)khz * (1000000 + ppm);
1501         do_div(v, 1000000);
1502         return v;
1503 }
1504
1505 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1506 {
1507         u64 ratio;
1508
1509         /* Guest TSC same frequency as host TSC? */
1510         if (!scale) {
1511                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1512                 return 0;
1513         }
1514
1515         /* TSC scaling supported? */
1516         if (!kvm_has_tsc_control) {
1517                 if (user_tsc_khz > tsc_khz) {
1518                         vcpu->arch.tsc_catchup = 1;
1519                         vcpu->arch.tsc_always_catchup = 1;
1520                         return 0;
1521                 } else {
1522                         WARN(1, "user requested TSC rate below hardware speed\n");
1523                         return -1;
1524                 }
1525         }
1526
1527         /* TSC scaling required  - calculate ratio */
1528         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1529                                 user_tsc_khz, tsc_khz);
1530
1531         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1532                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1533                           user_tsc_khz);
1534                 return -1;
1535         }
1536
1537         vcpu->arch.tsc_scaling_ratio = ratio;
1538         return 0;
1539 }
1540
1541 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1542 {
1543         u32 thresh_lo, thresh_hi;
1544         int use_scaling = 0;
1545
1546         /* tsc_khz can be zero if TSC calibration fails */
1547         if (user_tsc_khz == 0) {
1548                 /* set tsc_scaling_ratio to a safe value */
1549                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1550                 return -1;
1551         }
1552
1553         /* Compute a scale to convert nanoseconds in TSC cycles */
1554         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1555                            &vcpu->arch.virtual_tsc_shift,
1556                            &vcpu->arch.virtual_tsc_mult);
1557         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1558
1559         /*
1560          * Compute the variation in TSC rate which is acceptable
1561          * within the range of tolerance and decide if the
1562          * rate being applied is within that bounds of the hardware
1563          * rate.  If so, no scaling or compensation need be done.
1564          */
1565         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1566         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1567         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1568                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1569                 use_scaling = 1;
1570         }
1571         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1572 }
1573
1574 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1575 {
1576         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1577                                       vcpu->arch.virtual_tsc_mult,
1578                                       vcpu->arch.virtual_tsc_shift);
1579         tsc += vcpu->arch.this_tsc_write;
1580         return tsc;
1581 }
1582
1583 static inline int gtod_is_based_on_tsc(int mode)
1584 {
1585         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1586 }
1587
1588 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1589 {
1590 #ifdef CONFIG_X86_64
1591         bool vcpus_matched;
1592         struct kvm_arch *ka = &vcpu->kvm->arch;
1593         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1594
1595         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1596                          atomic_read(&vcpu->kvm->online_vcpus));
1597
1598         /*
1599          * Once the masterclock is enabled, always perform request in
1600          * order to update it.
1601          *
1602          * In order to enable masterclock, the host clocksource must be TSC
1603          * and the vcpus need to have matched TSCs.  When that happens,
1604          * perform request to enable masterclock.
1605          */
1606         if (ka->use_master_clock ||
1607             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1608                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1609
1610         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1611                             atomic_read(&vcpu->kvm->online_vcpus),
1612                             ka->use_master_clock, gtod->clock.vclock_mode);
1613 #endif
1614 }
1615
1616 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1617 {
1618         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1619         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1620 }
1621
1622 /*
1623  * Multiply tsc by a fixed point number represented by ratio.
1624  *
1625  * The most significant 64-N bits (mult) of ratio represent the
1626  * integral part of the fixed point number; the remaining N bits
1627  * (frac) represent the fractional part, ie. ratio represents a fixed
1628  * point number (mult + frac * 2^(-N)).
1629  *
1630  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1631  */
1632 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1633 {
1634         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1635 }
1636
1637 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1638 {
1639         u64 _tsc = tsc;
1640         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1641
1642         if (ratio != kvm_default_tsc_scaling_ratio)
1643                 _tsc = __scale_tsc(ratio, tsc);
1644
1645         return _tsc;
1646 }
1647 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1648
1649 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1650 {
1651         u64 tsc;
1652
1653         tsc = kvm_scale_tsc(vcpu, rdtsc());
1654
1655         return target_tsc - tsc;
1656 }
1657
1658 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1659 {
1660         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1661
1662         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1663 }
1664 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1665
1666 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1667 {
1668         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1669 }
1670
1671 static inline bool kvm_check_tsc_unstable(void)
1672 {
1673 #ifdef CONFIG_X86_64
1674         /*
1675          * TSC is marked unstable when we're running on Hyper-V,
1676          * 'TSC page' clocksource is good.
1677          */
1678         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1679                 return false;
1680 #endif
1681         return check_tsc_unstable();
1682 }
1683
1684 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1685 {
1686         struct kvm *kvm = vcpu->kvm;
1687         u64 offset, ns, elapsed;
1688         unsigned long flags;
1689         bool matched;
1690         bool already_matched;
1691         u64 data = msr->data;
1692         bool synchronizing = false;
1693
1694         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1695         offset = kvm_compute_tsc_offset(vcpu, data);
1696         ns = ktime_get_boot_ns();
1697         elapsed = ns - kvm->arch.last_tsc_nsec;
1698
1699         if (vcpu->arch.virtual_tsc_khz) {
1700                 if (data == 0 && msr->host_initiated) {
1701                         /*
1702                          * detection of vcpu initialization -- need to sync
1703                          * with other vCPUs. This particularly helps to keep
1704                          * kvm_clock stable after CPU hotplug
1705                          */
1706                         synchronizing = true;
1707                 } else {
1708                         u64 tsc_exp = kvm->arch.last_tsc_write +
1709                                                 nsec_to_cycles(vcpu, elapsed);
1710                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1711                         /*
1712                          * Special case: TSC write with a small delta (1 second)
1713                          * of virtual cycle time against real time is
1714                          * interpreted as an attempt to synchronize the CPU.
1715                          */
1716                         synchronizing = data < tsc_exp + tsc_hz &&
1717                                         data + tsc_hz > tsc_exp;
1718                 }
1719         }
1720
1721         /*
1722          * For a reliable TSC, we can match TSC offsets, and for an unstable
1723          * TSC, we add elapsed time in this computation.  We could let the
1724          * compensation code attempt to catch up if we fall behind, but
1725          * it's better to try to match offsets from the beginning.
1726          */
1727         if (synchronizing &&
1728             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1729                 if (!kvm_check_tsc_unstable()) {
1730                         offset = kvm->arch.cur_tsc_offset;
1731                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1732                 } else {
1733                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1734                         data += delta;
1735                         offset = kvm_compute_tsc_offset(vcpu, data);
1736                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1737                 }
1738                 matched = true;
1739                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1740         } else {
1741                 /*
1742                  * We split periods of matched TSC writes into generations.
1743                  * For each generation, we track the original measured
1744                  * nanosecond time, offset, and write, so if TSCs are in
1745                  * sync, we can match exact offset, and if not, we can match
1746                  * exact software computation in compute_guest_tsc()
1747                  *
1748                  * These values are tracked in kvm->arch.cur_xxx variables.
1749                  */
1750                 kvm->arch.cur_tsc_generation++;
1751                 kvm->arch.cur_tsc_nsec = ns;
1752                 kvm->arch.cur_tsc_write = data;
1753                 kvm->arch.cur_tsc_offset = offset;
1754                 matched = false;
1755                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1756                          kvm->arch.cur_tsc_generation, data);
1757         }
1758
1759         /*
1760          * We also track th most recent recorded KHZ, write and time to
1761          * allow the matching interval to be extended at each write.
1762          */
1763         kvm->arch.last_tsc_nsec = ns;
1764         kvm->arch.last_tsc_write = data;
1765         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1766
1767         vcpu->arch.last_guest_tsc = data;
1768
1769         /* Keep track of which generation this VCPU has synchronized to */
1770         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1771         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1772         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1773
1774         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1775                 update_ia32_tsc_adjust_msr(vcpu, offset);
1776
1777         kvm_vcpu_write_tsc_offset(vcpu, offset);
1778         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1779
1780         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1781         if (!matched) {
1782                 kvm->arch.nr_vcpus_matched_tsc = 0;
1783         } else if (!already_matched) {
1784                 kvm->arch.nr_vcpus_matched_tsc++;
1785         }
1786
1787         kvm_track_tsc_matching(vcpu);
1788         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1789 }
1790
1791 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1792
1793 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1794                                            s64 adjustment)
1795 {
1796         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1797         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1798 }
1799
1800 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1801 {
1802         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1803                 WARN_ON(adjustment < 0);
1804         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1805         adjust_tsc_offset_guest(vcpu, adjustment);
1806 }
1807
1808 #ifdef CONFIG_X86_64
1809
1810 static u64 read_tsc(void)
1811 {
1812         u64 ret = (u64)rdtsc_ordered();
1813         u64 last = pvclock_gtod_data.clock.cycle_last;
1814
1815         if (likely(ret >= last))
1816                 return ret;
1817
1818         /*
1819          * GCC likes to generate cmov here, but this branch is extremely
1820          * predictable (it's just a function of time and the likely is
1821          * very likely) and there's a data dependence, so force GCC
1822          * to generate a branch instead.  I don't barrier() because
1823          * we don't actually need a barrier, and if this function
1824          * ever gets inlined it will generate worse code.
1825          */
1826         asm volatile ("");
1827         return last;
1828 }
1829
1830 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1831 {
1832         long v;
1833         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1834         u64 tsc_pg_val;
1835
1836         switch (gtod->clock.vclock_mode) {
1837         case VCLOCK_HVCLOCK:
1838                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1839                                                   tsc_timestamp);
1840                 if (tsc_pg_val != U64_MAX) {
1841                         /* TSC page valid */
1842                         *mode = VCLOCK_HVCLOCK;
1843                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1844                                 gtod->clock.mask;
1845                 } else {
1846                         /* TSC page invalid */
1847                         *mode = VCLOCK_NONE;
1848                 }
1849                 break;
1850         case VCLOCK_TSC:
1851                 *mode = VCLOCK_TSC;
1852                 *tsc_timestamp = read_tsc();
1853                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1854                         gtod->clock.mask;
1855                 break;
1856         default:
1857                 *mode = VCLOCK_NONE;
1858         }
1859
1860         if (*mode == VCLOCK_NONE)
1861                 *tsc_timestamp = v = 0;
1862
1863         return v * gtod->clock.mult;
1864 }
1865
1866 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1867 {
1868         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1869         unsigned long seq;
1870         int mode;
1871         u64 ns;
1872
1873         do {
1874                 seq = read_seqcount_begin(&gtod->seq);
1875                 ns = gtod->nsec_base;
1876                 ns += vgettsc(tsc_timestamp, &mode);
1877                 ns >>= gtod->clock.shift;
1878                 ns += gtod->boot_ns;
1879         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1880         *t = ns;
1881
1882         return mode;
1883 }
1884
1885 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1886 {
1887         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1888         unsigned long seq;
1889         int mode;
1890         u64 ns;
1891
1892         do {
1893                 seq = read_seqcount_begin(&gtod->seq);
1894                 ts->tv_sec = gtod->wall_time_sec;
1895                 ns = gtod->nsec_base;
1896                 ns += vgettsc(tsc_timestamp, &mode);
1897                 ns >>= gtod->clock.shift;
1898         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1899
1900         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1901         ts->tv_nsec = ns;
1902
1903         return mode;
1904 }
1905
1906 /* returns true if host is using TSC based clocksource */
1907 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1908 {
1909         /* checked again under seqlock below */
1910         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1911                 return false;
1912
1913         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1914                                                       tsc_timestamp));
1915 }
1916
1917 /* returns true if host is using TSC based clocksource */
1918 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1919                                            u64 *tsc_timestamp)
1920 {
1921         /* checked again under seqlock below */
1922         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1923                 return false;
1924
1925         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1926 }
1927 #endif
1928
1929 /*
1930  *
1931  * Assuming a stable TSC across physical CPUS, and a stable TSC
1932  * across virtual CPUs, the following condition is possible.
1933  * Each numbered line represents an event visible to both
1934  * CPUs at the next numbered event.
1935  *
1936  * "timespecX" represents host monotonic time. "tscX" represents
1937  * RDTSC value.
1938  *
1939  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1940  *
1941  * 1.  read timespec0,tsc0
1942  * 2.                                   | timespec1 = timespec0 + N
1943  *                                      | tsc1 = tsc0 + M
1944  * 3. transition to guest               | transition to guest
1945  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1946  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1947  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1948  *
1949  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1950  *
1951  *      - ret0 < ret1
1952  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1953  *              ...
1954  *      - 0 < N - M => M < N
1955  *
1956  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1957  * always the case (the difference between two distinct xtime instances
1958  * might be smaller then the difference between corresponding TSC reads,
1959  * when updating guest vcpus pvclock areas).
1960  *
1961  * To avoid that problem, do not allow visibility of distinct
1962  * system_timestamp/tsc_timestamp values simultaneously: use a master
1963  * copy of host monotonic time values. Update that master copy
1964  * in lockstep.
1965  *
1966  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1967  *
1968  */
1969
1970 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1971 {
1972 #ifdef CONFIG_X86_64
1973         struct kvm_arch *ka = &kvm->arch;
1974         int vclock_mode;
1975         bool host_tsc_clocksource, vcpus_matched;
1976
1977         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1978                         atomic_read(&kvm->online_vcpus));
1979
1980         /*
1981          * If the host uses TSC clock, then passthrough TSC as stable
1982          * to the guest.
1983          */
1984         host_tsc_clocksource = kvm_get_time_and_clockread(
1985                                         &ka->master_kernel_ns,
1986                                         &ka->master_cycle_now);
1987
1988         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1989                                 && !ka->backwards_tsc_observed
1990                                 && !ka->boot_vcpu_runs_old_kvmclock;
1991
1992         if (ka->use_master_clock)
1993                 atomic_set(&kvm_guest_has_master_clock, 1);
1994
1995         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1996         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1997                                         vcpus_matched);
1998 #endif
1999 }
2000
2001 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2002 {
2003         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2004 }
2005
2006 static void kvm_gen_update_masterclock(struct kvm *kvm)
2007 {
2008 #ifdef CONFIG_X86_64
2009         int i;
2010         struct kvm_vcpu *vcpu;
2011         struct kvm_arch *ka = &kvm->arch;
2012
2013         spin_lock(&ka->pvclock_gtod_sync_lock);
2014         kvm_make_mclock_inprogress_request(kvm);
2015         /* no guest entries from this point */
2016         pvclock_update_vm_gtod_copy(kvm);
2017
2018         kvm_for_each_vcpu(i, vcpu, kvm)
2019                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2020
2021         /* guest entries allowed */
2022         kvm_for_each_vcpu(i, vcpu, kvm)
2023                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2024
2025         spin_unlock(&ka->pvclock_gtod_sync_lock);
2026 #endif
2027 }
2028
2029 u64 get_kvmclock_ns(struct kvm *kvm)
2030 {
2031         struct kvm_arch *ka = &kvm->arch;
2032         struct pvclock_vcpu_time_info hv_clock;
2033         u64 ret;
2034
2035         spin_lock(&ka->pvclock_gtod_sync_lock);
2036         if (!ka->use_master_clock) {
2037                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2038                 return ktime_get_boot_ns() + ka->kvmclock_offset;
2039         }
2040
2041         hv_clock.tsc_timestamp = ka->master_cycle_now;
2042         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2043         spin_unlock(&ka->pvclock_gtod_sync_lock);
2044
2045         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2046         get_cpu();
2047
2048         if (__this_cpu_read(cpu_tsc_khz)) {
2049                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2050                                    &hv_clock.tsc_shift,
2051                                    &hv_clock.tsc_to_system_mul);
2052                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2053         } else
2054                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
2055
2056         put_cpu();
2057
2058         return ret;
2059 }
2060
2061 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2062 {
2063         struct kvm_vcpu_arch *vcpu = &v->arch;
2064         struct pvclock_vcpu_time_info guest_hv_clock;
2065
2066         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2067                 &guest_hv_clock, sizeof(guest_hv_clock))))
2068                 return;
2069
2070         /* This VCPU is paused, but it's legal for a guest to read another
2071          * VCPU's kvmclock, so we really have to follow the specification where
2072          * it says that version is odd if data is being modified, and even after
2073          * it is consistent.
2074          *
2075          * Version field updates must be kept separate.  This is because
2076          * kvm_write_guest_cached might use a "rep movs" instruction, and
2077          * writes within a string instruction are weakly ordered.  So there
2078          * are three writes overall.
2079          *
2080          * As a small optimization, only write the version field in the first
2081          * and third write.  The vcpu->pv_time cache is still valid, because the
2082          * version field is the first in the struct.
2083          */
2084         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2085
2086         if (guest_hv_clock.version & 1)
2087                 ++guest_hv_clock.version;  /* first time write, random junk */
2088
2089         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2090         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2091                                 &vcpu->hv_clock,
2092                                 sizeof(vcpu->hv_clock.version));
2093
2094         smp_wmb();
2095
2096         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2097         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2098
2099         if (vcpu->pvclock_set_guest_stopped_request) {
2100                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2101                 vcpu->pvclock_set_guest_stopped_request = false;
2102         }
2103
2104         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2105
2106         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2107                                 &vcpu->hv_clock,
2108                                 sizeof(vcpu->hv_clock));
2109
2110         smp_wmb();
2111
2112         vcpu->hv_clock.version++;
2113         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2114                                 &vcpu->hv_clock,
2115                                 sizeof(vcpu->hv_clock.version));
2116 }
2117
2118 static int kvm_guest_time_update(struct kvm_vcpu *v)
2119 {
2120         unsigned long flags, tgt_tsc_khz;
2121         struct kvm_vcpu_arch *vcpu = &v->arch;
2122         struct kvm_arch *ka = &v->kvm->arch;
2123         s64 kernel_ns;
2124         u64 tsc_timestamp, host_tsc;
2125         u8 pvclock_flags;
2126         bool use_master_clock;
2127
2128         kernel_ns = 0;
2129         host_tsc = 0;
2130
2131         /*
2132          * If the host uses TSC clock, then passthrough TSC as stable
2133          * to the guest.
2134          */
2135         spin_lock(&ka->pvclock_gtod_sync_lock);
2136         use_master_clock = ka->use_master_clock;
2137         if (use_master_clock) {
2138                 host_tsc = ka->master_cycle_now;
2139                 kernel_ns = ka->master_kernel_ns;
2140         }
2141         spin_unlock(&ka->pvclock_gtod_sync_lock);
2142
2143         /* Keep irq disabled to prevent changes to the clock */
2144         local_irq_save(flags);
2145         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2146         if (unlikely(tgt_tsc_khz == 0)) {
2147                 local_irq_restore(flags);
2148                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2149                 return 1;
2150         }
2151         if (!use_master_clock) {
2152                 host_tsc = rdtsc();
2153                 kernel_ns = ktime_get_boot_ns();
2154         }
2155
2156         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2157
2158         /*
2159          * We may have to catch up the TSC to match elapsed wall clock
2160          * time for two reasons, even if kvmclock is used.
2161          *   1) CPU could have been running below the maximum TSC rate
2162          *   2) Broken TSC compensation resets the base at each VCPU
2163          *      entry to avoid unknown leaps of TSC even when running
2164          *      again on the same CPU.  This may cause apparent elapsed
2165          *      time to disappear, and the guest to stand still or run
2166          *      very slowly.
2167          */
2168         if (vcpu->tsc_catchup) {
2169                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2170                 if (tsc > tsc_timestamp) {
2171                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2172                         tsc_timestamp = tsc;
2173                 }
2174         }
2175
2176         local_irq_restore(flags);
2177
2178         /* With all the info we got, fill in the values */
2179
2180         if (kvm_has_tsc_control)
2181                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2182
2183         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2184                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2185                                    &vcpu->hv_clock.tsc_shift,
2186                                    &vcpu->hv_clock.tsc_to_system_mul);
2187                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2188         }
2189
2190         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2191         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2192         vcpu->last_guest_tsc = tsc_timestamp;
2193
2194         /* If the host uses TSC clocksource, then it is stable */
2195         pvclock_flags = 0;
2196         if (use_master_clock)
2197                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2198
2199         vcpu->hv_clock.flags = pvclock_flags;
2200
2201         if (vcpu->pv_time_enabled)
2202                 kvm_setup_pvclock_page(v);
2203         if (v == kvm_get_vcpu(v->kvm, 0))
2204                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2205         return 0;
2206 }
2207
2208 /*
2209  * kvmclock updates which are isolated to a given vcpu, such as
2210  * vcpu->cpu migration, should not allow system_timestamp from
2211  * the rest of the vcpus to remain static. Otherwise ntp frequency
2212  * correction applies to one vcpu's system_timestamp but not
2213  * the others.
2214  *
2215  * So in those cases, request a kvmclock update for all vcpus.
2216  * We need to rate-limit these requests though, as they can
2217  * considerably slow guests that have a large number of vcpus.
2218  * The time for a remote vcpu to update its kvmclock is bound
2219  * by the delay we use to rate-limit the updates.
2220  */
2221
2222 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2223
2224 static void kvmclock_update_fn(struct work_struct *work)
2225 {
2226         int i;
2227         struct delayed_work *dwork = to_delayed_work(work);
2228         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2229                                            kvmclock_update_work);
2230         struct kvm *kvm = container_of(ka, struct kvm, arch);
2231         struct kvm_vcpu *vcpu;
2232
2233         kvm_for_each_vcpu(i, vcpu, kvm) {
2234                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2235                 kvm_vcpu_kick(vcpu);
2236         }
2237 }
2238
2239 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2240 {
2241         struct kvm *kvm = v->kvm;
2242
2243         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2244         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2245                                         KVMCLOCK_UPDATE_DELAY);
2246 }
2247
2248 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2249
2250 static void kvmclock_sync_fn(struct work_struct *work)
2251 {
2252         struct delayed_work *dwork = to_delayed_work(work);
2253         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2254                                            kvmclock_sync_work);
2255         struct kvm *kvm = container_of(ka, struct kvm, arch);
2256
2257         if (!kvmclock_periodic_sync)
2258                 return;
2259
2260         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2261         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2262                                         KVMCLOCK_SYNC_PERIOD);
2263 }
2264
2265 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2266 {
2267         u64 mcg_cap = vcpu->arch.mcg_cap;
2268         unsigned bank_num = mcg_cap & 0xff;
2269         u32 msr = msr_info->index;
2270         u64 data = msr_info->data;
2271
2272         switch (msr) {
2273         case MSR_IA32_MCG_STATUS:
2274                 vcpu->arch.mcg_status = data;
2275                 break;
2276         case MSR_IA32_MCG_CTL:
2277                 if (!(mcg_cap & MCG_CTL_P) &&
2278                     (data || !msr_info->host_initiated))
2279                         return 1;
2280                 if (data != 0 && data != ~(u64)0)
2281                         return 1;
2282                 vcpu->arch.mcg_ctl = data;
2283                 break;
2284         default:
2285                 if (msr >= MSR_IA32_MC0_CTL &&
2286                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2287                         u32 offset = msr - MSR_IA32_MC0_CTL;
2288                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2289                          * some Linux kernels though clear bit 10 in bank 4 to
2290                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2291                          * this to avoid an uncatched #GP in the guest
2292                          */
2293                         if ((offset & 0x3) == 0 &&
2294                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2295                                 return -1;
2296                         if (!msr_info->host_initiated &&
2297                                 (offset & 0x3) == 1 && data != 0)
2298                                 return -1;
2299                         vcpu->arch.mce_banks[offset] = data;
2300                         break;
2301                 }
2302                 return 1;
2303         }
2304         return 0;
2305 }
2306
2307 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2308 {
2309         struct kvm *kvm = vcpu->kvm;
2310         int lm = is_long_mode(vcpu);
2311         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2312                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2313         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2314                 : kvm->arch.xen_hvm_config.blob_size_32;
2315         u32 page_num = data & ~PAGE_MASK;
2316         u64 page_addr = data & PAGE_MASK;
2317         u8 *page;
2318         int r;
2319
2320         r = -E2BIG;
2321         if (page_num >= blob_size)
2322                 goto out;
2323         r = -ENOMEM;
2324         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2325         if (IS_ERR(page)) {
2326                 r = PTR_ERR(page);
2327                 goto out;
2328         }
2329         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2330                 goto out_free;
2331         r = 0;
2332 out_free:
2333         kfree(page);
2334 out:
2335         return r;
2336 }
2337
2338 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2339 {
2340         gpa_t gpa = data & ~0x3f;
2341
2342         /* Bits 3:5 are reserved, Should be zero */
2343         if (data & 0x38)
2344                 return 1;
2345
2346         vcpu->arch.apf.msr_val = data;
2347
2348         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2349                 kvm_clear_async_pf_completion_queue(vcpu);
2350                 kvm_async_pf_hash_reset(vcpu);
2351                 return 0;
2352         }
2353
2354         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2355                                         sizeof(u32)))
2356                 return 1;
2357
2358         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2359         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2360         kvm_async_pf_wakeup_all(vcpu);
2361         return 0;
2362 }
2363
2364 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2365 {
2366         vcpu->arch.pv_time_enabled = false;
2367 }
2368
2369 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2370 {
2371         ++vcpu->stat.tlb_flush;
2372         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2373 }
2374
2375 static void record_steal_time(struct kvm_vcpu *vcpu)
2376 {
2377         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2378                 return;
2379
2380         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2381                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2382                 return;
2383
2384         /*
2385          * Doing a TLB flush here, on the guest's behalf, can avoid
2386          * expensive IPIs.
2387          */
2388         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2389                 kvm_vcpu_flush_tlb(vcpu, false);
2390
2391         if (vcpu->arch.st.steal.version & 1)
2392                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2393
2394         vcpu->arch.st.steal.version += 1;
2395
2396         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2397                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2398
2399         smp_wmb();
2400
2401         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2402                 vcpu->arch.st.last_steal;
2403         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2404
2405         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2406                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2407
2408         smp_wmb();
2409
2410         vcpu->arch.st.steal.version += 1;
2411
2412         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2413                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2414 }
2415
2416 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2417 {
2418         bool pr = false;
2419         u32 msr = msr_info->index;
2420         u64 data = msr_info->data;
2421
2422         switch (msr) {
2423         case MSR_AMD64_NB_CFG:
2424         case MSR_IA32_UCODE_WRITE:
2425         case MSR_VM_HSAVE_PA:
2426         case MSR_AMD64_PATCH_LOADER:
2427         case MSR_AMD64_BU_CFG2:
2428         case MSR_AMD64_DC_CFG:
2429                 break;
2430
2431         case MSR_IA32_UCODE_REV:
2432                 if (msr_info->host_initiated)
2433                         vcpu->arch.microcode_version = data;
2434                 break;
2435         case MSR_EFER:
2436                 return set_efer(vcpu, data);
2437         case MSR_K7_HWCR:
2438                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2439                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2440                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2441                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2442                 if (data != 0) {
2443                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2444                                     data);
2445                         return 1;
2446                 }
2447                 break;
2448         case MSR_FAM10H_MMIO_CONF_BASE:
2449                 if (data != 0) {
2450                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2451                                     "0x%llx\n", data);
2452                         return 1;
2453                 }
2454                 break;
2455         case MSR_IA32_DEBUGCTLMSR:
2456                 if (!data) {
2457                         /* We support the non-activated case already */
2458                         break;
2459                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2460                         /* Values other than LBR and BTF are vendor-specific,
2461                            thus reserved and should throw a #GP */
2462                         return 1;
2463                 }
2464                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2465                             __func__, data);
2466                 break;
2467         case 0x200 ... 0x2ff:
2468                 return kvm_mtrr_set_msr(vcpu, msr, data);
2469         case MSR_IA32_APICBASE:
2470                 return kvm_set_apic_base(vcpu, msr_info);
2471         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2472                 return kvm_x2apic_msr_write(vcpu, msr, data);
2473         case MSR_IA32_TSCDEADLINE:
2474                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2475                 break;
2476         case MSR_IA32_TSC_ADJUST:
2477                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2478                         if (!msr_info->host_initiated) {
2479                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2480                                 adjust_tsc_offset_guest(vcpu, adj);
2481                         }
2482                         vcpu->arch.ia32_tsc_adjust_msr = data;
2483                 }
2484                 break;
2485         case MSR_IA32_MISC_ENABLE:
2486                 vcpu->arch.ia32_misc_enable_msr = data;
2487                 break;
2488         case MSR_IA32_SMBASE:
2489                 if (!msr_info->host_initiated)
2490                         return 1;
2491                 vcpu->arch.smbase = data;
2492                 break;
2493         case MSR_IA32_TSC:
2494                 kvm_write_tsc(vcpu, msr_info);
2495                 break;
2496         case MSR_SMI_COUNT:
2497                 if (!msr_info->host_initiated)
2498                         return 1;
2499                 vcpu->arch.smi_count = data;
2500                 break;
2501         case MSR_KVM_WALL_CLOCK_NEW:
2502         case MSR_KVM_WALL_CLOCK:
2503                 vcpu->kvm->arch.wall_clock = data;
2504                 kvm_write_wall_clock(vcpu->kvm, data);
2505                 break;
2506         case MSR_KVM_SYSTEM_TIME_NEW:
2507         case MSR_KVM_SYSTEM_TIME: {
2508                 struct kvm_arch *ka = &vcpu->kvm->arch;
2509
2510                 kvmclock_reset(vcpu);
2511
2512                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2513                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2514
2515                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2516                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2517
2518                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2519                 }
2520
2521                 vcpu->arch.time = data;
2522                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2523
2524                 /* we verify if the enable bit is set... */
2525                 if (!(data & 1))
2526                         break;
2527
2528                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2529                      &vcpu->arch.pv_time, data & ~1ULL,
2530                      sizeof(struct pvclock_vcpu_time_info)))
2531                         vcpu->arch.pv_time_enabled = false;
2532                 else
2533                         vcpu->arch.pv_time_enabled = true;
2534
2535                 break;
2536         }
2537         case MSR_KVM_ASYNC_PF_EN:
2538                 if (kvm_pv_enable_async_pf(vcpu, data))
2539                         return 1;
2540                 break;
2541         case MSR_KVM_STEAL_TIME:
2542
2543                 if (unlikely(!sched_info_on()))
2544                         return 1;
2545
2546                 if (data & KVM_STEAL_RESERVED_MASK)
2547                         return 1;
2548
2549                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2550                                                 data & KVM_STEAL_VALID_BITS,
2551                                                 sizeof(struct kvm_steal_time)))
2552                         return 1;
2553
2554                 vcpu->arch.st.msr_val = data;
2555
2556                 if (!(data & KVM_MSR_ENABLED))
2557                         break;
2558
2559                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2560
2561                 break;
2562         case MSR_KVM_PV_EOI_EN:
2563                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2564                         return 1;
2565                 break;
2566
2567         case MSR_IA32_MCG_CTL:
2568         case MSR_IA32_MCG_STATUS:
2569         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2570                 return set_msr_mce(vcpu, msr_info);
2571
2572         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2573         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2574                 pr = true; /* fall through */
2575         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2576         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2577                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2578                         return kvm_pmu_set_msr(vcpu, msr_info);
2579
2580                 if (pr || data != 0)
2581                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2582                                     "0x%x data 0x%llx\n", msr, data);
2583                 break;
2584         case MSR_K7_CLK_CTL:
2585                 /*
2586                  * Ignore all writes to this no longer documented MSR.
2587                  * Writes are only relevant for old K7 processors,
2588                  * all pre-dating SVM, but a recommended workaround from
2589                  * AMD for these chips. It is possible to specify the
2590                  * affected processor models on the command line, hence
2591                  * the need to ignore the workaround.
2592                  */
2593                 break;
2594         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2595         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2596         case HV_X64_MSR_CRASH_CTL:
2597         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2598         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2599         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2600         case HV_X64_MSR_TSC_EMULATION_STATUS:
2601                 return kvm_hv_set_msr_common(vcpu, msr, data,
2602                                              msr_info->host_initiated);
2603         case MSR_IA32_BBL_CR_CTL3:
2604                 /* Drop writes to this legacy MSR -- see rdmsr
2605                  * counterpart for further detail.
2606                  */
2607                 if (report_ignored_msrs)
2608                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2609                                 msr, data);
2610                 break;
2611         case MSR_AMD64_OSVW_ID_LENGTH:
2612                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2613                         return 1;
2614                 vcpu->arch.osvw.length = data;
2615                 break;
2616         case MSR_AMD64_OSVW_STATUS:
2617                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2618                         return 1;
2619                 vcpu->arch.osvw.status = data;
2620                 break;
2621         case MSR_PLATFORM_INFO:
2622                 if (!msr_info->host_initiated ||
2623                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2624                      cpuid_fault_enabled(vcpu)))
2625                         return 1;
2626                 vcpu->arch.msr_platform_info = data;
2627                 break;
2628         case MSR_MISC_FEATURES_ENABLES:
2629                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2630                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2631                      !supports_cpuid_fault(vcpu)))
2632                         return 1;
2633                 vcpu->arch.msr_misc_features_enables = data;
2634                 break;
2635         default:
2636                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2637                         return xen_hvm_config(vcpu, data);
2638                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2639                         return kvm_pmu_set_msr(vcpu, msr_info);
2640                 if (!ignore_msrs) {
2641                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2642                                     msr, data);
2643                         return 1;
2644                 } else {
2645                         if (report_ignored_msrs)
2646                                 vcpu_unimpl(vcpu,
2647                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2648                                         msr, data);
2649                         break;
2650                 }
2651         }
2652         return 0;
2653 }
2654 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2655
2656
2657 /*
2658  * Reads an msr value (of 'msr_index') into 'pdata'.
2659  * Returns 0 on success, non-0 otherwise.
2660  * Assumes vcpu_load() was already called.
2661  */
2662 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2663 {
2664         return kvm_x86_ops->get_msr(vcpu, msr);
2665 }
2666 EXPORT_SYMBOL_GPL(kvm_get_msr);
2667
2668 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2669 {
2670         u64 data;
2671         u64 mcg_cap = vcpu->arch.mcg_cap;
2672         unsigned bank_num = mcg_cap & 0xff;
2673
2674         switch (msr) {
2675         case MSR_IA32_P5_MC_ADDR:
2676         case MSR_IA32_P5_MC_TYPE:
2677                 data = 0;
2678                 break;
2679         case MSR_IA32_MCG_CAP:
2680                 data = vcpu->arch.mcg_cap;
2681                 break;
2682         case MSR_IA32_MCG_CTL:
2683                 if (!(mcg_cap & MCG_CTL_P) && !host)
2684                         return 1;
2685                 data = vcpu->arch.mcg_ctl;
2686                 break;
2687         case MSR_IA32_MCG_STATUS:
2688                 data = vcpu->arch.mcg_status;
2689                 break;
2690         default:
2691                 if (msr >= MSR_IA32_MC0_CTL &&
2692                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2693                         u32 offset = msr - MSR_IA32_MC0_CTL;
2694                         data = vcpu->arch.mce_banks[offset];
2695                         break;
2696                 }
2697                 return 1;
2698         }
2699         *pdata = data;
2700         return 0;
2701 }
2702
2703 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2704 {
2705         switch (msr_info->index) {
2706         case MSR_IA32_PLATFORM_ID:
2707         case MSR_IA32_EBL_CR_POWERON:
2708         case MSR_IA32_DEBUGCTLMSR:
2709         case MSR_IA32_LASTBRANCHFROMIP:
2710         case MSR_IA32_LASTBRANCHTOIP:
2711         case MSR_IA32_LASTINTFROMIP:
2712         case MSR_IA32_LASTINTTOIP:
2713         case MSR_K8_SYSCFG:
2714         case MSR_K8_TSEG_ADDR:
2715         case MSR_K8_TSEG_MASK:
2716         case MSR_K7_HWCR:
2717         case MSR_VM_HSAVE_PA:
2718         case MSR_K8_INT_PENDING_MSG:
2719         case MSR_AMD64_NB_CFG:
2720         case MSR_FAM10H_MMIO_CONF_BASE:
2721         case MSR_AMD64_BU_CFG2:
2722         case MSR_IA32_PERF_CTL:
2723         case MSR_AMD64_DC_CFG:
2724                 msr_info->data = 0;
2725                 break;
2726         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2727         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2728         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2729         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2730         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2731                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2732                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2733                 msr_info->data = 0;
2734                 break;
2735         case MSR_IA32_UCODE_REV:
2736                 msr_info->data = vcpu->arch.microcode_version;
2737                 break;
2738         case MSR_IA32_TSC:
2739                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2740                 break;
2741         case MSR_MTRRcap:
2742         case 0x200 ... 0x2ff:
2743                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2744         case 0xcd: /* fsb frequency */
2745                 msr_info->data = 3;
2746                 break;
2747                 /*
2748                  * MSR_EBC_FREQUENCY_ID
2749                  * Conservative value valid for even the basic CPU models.
2750                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2751                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2752                  * and 266MHz for model 3, or 4. Set Core Clock
2753                  * Frequency to System Bus Frequency Ratio to 1 (bits
2754                  * 31:24) even though these are only valid for CPU
2755                  * models > 2, however guests may end up dividing or
2756                  * multiplying by zero otherwise.
2757                  */
2758         case MSR_EBC_FREQUENCY_ID:
2759                 msr_info->data = 1 << 24;
2760                 break;
2761         case MSR_IA32_APICBASE:
2762                 msr_info->data = kvm_get_apic_base(vcpu);
2763                 break;
2764         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2765                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2766                 break;
2767         case MSR_IA32_TSCDEADLINE:
2768                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2769                 break;
2770         case MSR_IA32_TSC_ADJUST:
2771                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2772                 break;
2773         case MSR_IA32_MISC_ENABLE:
2774                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2775                 break;
2776         case MSR_IA32_SMBASE:
2777                 if (!msr_info->host_initiated)
2778                         return 1;
2779                 msr_info->data = vcpu->arch.smbase;
2780                 break;
2781         case MSR_SMI_COUNT:
2782                 msr_info->data = vcpu->arch.smi_count;
2783                 break;
2784         case MSR_IA32_PERF_STATUS:
2785                 /* TSC increment by tick */
2786                 msr_info->data = 1000ULL;
2787                 /* CPU multiplier */
2788                 msr_info->data |= (((uint64_t)4ULL) << 40);
2789                 break;
2790         case MSR_EFER:
2791                 msr_info->data = vcpu->arch.efer;
2792                 break;
2793         case MSR_KVM_WALL_CLOCK:
2794         case MSR_KVM_WALL_CLOCK_NEW:
2795                 msr_info->data = vcpu->kvm->arch.wall_clock;
2796                 break;
2797         case MSR_KVM_SYSTEM_TIME:
2798         case MSR_KVM_SYSTEM_TIME_NEW:
2799                 msr_info->data = vcpu->arch.time;
2800                 break;
2801         case MSR_KVM_ASYNC_PF_EN:
2802                 msr_info->data = vcpu->arch.apf.msr_val;
2803                 break;
2804         case MSR_KVM_STEAL_TIME:
2805                 msr_info->data = vcpu->arch.st.msr_val;
2806                 break;
2807         case MSR_KVM_PV_EOI_EN:
2808                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2809                 break;
2810         case MSR_IA32_P5_MC_ADDR:
2811         case MSR_IA32_P5_MC_TYPE:
2812         case MSR_IA32_MCG_CAP:
2813         case MSR_IA32_MCG_CTL:
2814         case MSR_IA32_MCG_STATUS:
2815         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2816                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2817                                    msr_info->host_initiated);
2818         case MSR_K7_CLK_CTL:
2819                 /*
2820                  * Provide expected ramp-up count for K7. All other
2821                  * are set to zero, indicating minimum divisors for
2822                  * every field.
2823                  *
2824                  * This prevents guest kernels on AMD host with CPU
2825                  * type 6, model 8 and higher from exploding due to
2826                  * the rdmsr failing.
2827                  */
2828                 msr_info->data = 0x20000000;
2829                 break;
2830         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2831         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2832         case HV_X64_MSR_CRASH_CTL:
2833         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2834         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2835         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2836         case HV_X64_MSR_TSC_EMULATION_STATUS:
2837                 return kvm_hv_get_msr_common(vcpu,
2838                                              msr_info->index, &msr_info->data,
2839                                              msr_info->host_initiated);
2840                 break;
2841         case MSR_IA32_BBL_CR_CTL3:
2842                 /* This legacy MSR exists but isn't fully documented in current
2843                  * silicon.  It is however accessed by winxp in very narrow
2844                  * scenarios where it sets bit #19, itself documented as
2845                  * a "reserved" bit.  Best effort attempt to source coherent
2846                  * read data here should the balance of the register be
2847                  * interpreted by the guest:
2848                  *
2849                  * L2 cache control register 3: 64GB range, 256KB size,
2850                  * enabled, latency 0x1, configured
2851                  */
2852                 msr_info->data = 0xbe702111;
2853                 break;
2854         case MSR_AMD64_OSVW_ID_LENGTH:
2855                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2856                         return 1;
2857                 msr_info->data = vcpu->arch.osvw.length;
2858                 break;
2859         case MSR_AMD64_OSVW_STATUS:
2860                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2861                         return 1;
2862                 msr_info->data = vcpu->arch.osvw.status;
2863                 break;
2864         case MSR_PLATFORM_INFO:
2865                 if (!msr_info->host_initiated &&
2866                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2867                         return 1;
2868                 msr_info->data = vcpu->arch.msr_platform_info;
2869                 break;
2870         case MSR_MISC_FEATURES_ENABLES:
2871                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2872                 break;
2873         default:
2874                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2875                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2876                 if (!ignore_msrs) {
2877                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2878                                                msr_info->index);
2879                         return 1;
2880                 } else {
2881                         if (report_ignored_msrs)
2882                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2883                                         msr_info->index);
2884                         msr_info->data = 0;
2885                 }
2886                 break;
2887         }
2888         return 0;
2889 }
2890 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2891
2892 /*
2893  * Read or write a bunch of msrs. All parameters are kernel addresses.
2894  *
2895  * @return number of msrs set successfully.
2896  */
2897 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2898                     struct kvm_msr_entry *entries,
2899                     int (*do_msr)(struct kvm_vcpu *vcpu,
2900                                   unsigned index, u64 *data))
2901 {
2902         int i;
2903
2904         for (i = 0; i < msrs->nmsrs; ++i)
2905                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2906                         break;
2907
2908         return i;
2909 }
2910
2911 /*
2912  * Read or write a bunch of msrs. Parameters are user addresses.
2913  *
2914  * @return number of msrs set successfully.
2915  */
2916 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2917                   int (*do_msr)(struct kvm_vcpu *vcpu,
2918                                 unsigned index, u64 *data),
2919                   int writeback)
2920 {
2921         struct kvm_msrs msrs;
2922         struct kvm_msr_entry *entries;
2923         int r, n;
2924         unsigned size;
2925
2926         r = -EFAULT;
2927         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
2928                 goto out;
2929
2930         r = -E2BIG;
2931         if (msrs.nmsrs >= MAX_IO_MSRS)
2932                 goto out;
2933
2934         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2935         entries = memdup_user(user_msrs->entries, size);
2936         if (IS_ERR(entries)) {
2937                 r = PTR_ERR(entries);
2938                 goto out;
2939         }
2940
2941         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2942         if (r < 0)
2943                 goto out_free;
2944
2945         r = -EFAULT;
2946         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2947                 goto out_free;
2948
2949         r = n;
2950
2951 out_free:
2952         kfree(entries);
2953 out:
2954         return r;
2955 }
2956
2957 static inline bool kvm_can_mwait_in_guest(void)
2958 {
2959         return boot_cpu_has(X86_FEATURE_MWAIT) &&
2960                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
2961                 boot_cpu_has(X86_FEATURE_ARAT);
2962 }
2963
2964 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2965 {
2966         int r = 0;
2967
2968         switch (ext) {
2969         case KVM_CAP_IRQCHIP:
2970         case KVM_CAP_HLT:
2971         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2972         case KVM_CAP_SET_TSS_ADDR:
2973         case KVM_CAP_EXT_CPUID:
2974         case KVM_CAP_EXT_EMUL_CPUID:
2975         case KVM_CAP_CLOCKSOURCE:
2976         case KVM_CAP_PIT:
2977         case KVM_CAP_NOP_IO_DELAY:
2978         case KVM_CAP_MP_STATE:
2979         case KVM_CAP_SYNC_MMU:
2980         case KVM_CAP_USER_NMI:
2981         case KVM_CAP_REINJECT_CONTROL:
2982         case KVM_CAP_IRQ_INJECT_STATUS:
2983         case KVM_CAP_IOEVENTFD:
2984         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2985         case KVM_CAP_PIT2:
2986         case KVM_CAP_PIT_STATE2:
2987         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2988         case KVM_CAP_XEN_HVM:
2989         case KVM_CAP_VCPU_EVENTS:
2990         case KVM_CAP_HYPERV:
2991         case KVM_CAP_HYPERV_VAPIC:
2992         case KVM_CAP_HYPERV_SPIN:
2993         case KVM_CAP_HYPERV_SYNIC:
2994         case KVM_CAP_HYPERV_SYNIC2:
2995         case KVM_CAP_HYPERV_VP_INDEX:
2996         case KVM_CAP_HYPERV_EVENTFD:
2997         case KVM_CAP_HYPERV_TLBFLUSH:
2998         case KVM_CAP_HYPERV_SEND_IPI:
2999         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3000         case KVM_CAP_PCI_SEGMENT:
3001         case KVM_CAP_DEBUGREGS:
3002         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3003         case KVM_CAP_XSAVE:
3004         case KVM_CAP_ASYNC_PF:
3005         case KVM_CAP_GET_TSC_KHZ:
3006         case KVM_CAP_KVMCLOCK_CTRL:
3007         case KVM_CAP_READONLY_MEM:
3008         case KVM_CAP_HYPERV_TIME:
3009         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3010         case KVM_CAP_TSC_DEADLINE_TIMER:
3011         case KVM_CAP_DISABLE_QUIRKS:
3012         case KVM_CAP_SET_BOOT_CPU_ID:
3013         case KVM_CAP_SPLIT_IRQCHIP:
3014         case KVM_CAP_IMMEDIATE_EXIT:
3015         case KVM_CAP_GET_MSR_FEATURES:
3016         case KVM_CAP_MSR_PLATFORM_INFO:
3017         case KVM_CAP_EXCEPTION_PAYLOAD:
3018                 r = 1;
3019                 break;
3020         case KVM_CAP_SYNC_REGS:
3021                 r = KVM_SYNC_X86_VALID_FIELDS;
3022                 break;
3023         case KVM_CAP_ADJUST_CLOCK:
3024                 r = KVM_CLOCK_TSC_STABLE;
3025                 break;
3026         case KVM_CAP_X86_DISABLE_EXITS:
3027                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE;
3028                 if(kvm_can_mwait_in_guest())
3029                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3030                 break;
3031         case KVM_CAP_X86_SMM:
3032                 /* SMBASE is usually relocated above 1M on modern chipsets,
3033                  * and SMM handlers might indeed rely on 4G segment limits,
3034                  * so do not report SMM to be available if real mode is
3035                  * emulated via vm86 mode.  Still, do not go to great lengths
3036                  * to avoid userspace's usage of the feature, because it is a
3037                  * fringe case that is not enabled except via specific settings
3038                  * of the module parameters.
3039                  */
3040                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3041                 break;
3042         case KVM_CAP_VAPIC:
3043                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3044                 break;
3045         case KVM_CAP_NR_VCPUS:
3046                 r = KVM_SOFT_MAX_VCPUS;
3047                 break;
3048         case KVM_CAP_MAX_VCPUS:
3049                 r = KVM_MAX_VCPUS;
3050                 break;
3051         case KVM_CAP_NR_MEMSLOTS:
3052                 r = KVM_USER_MEM_SLOTS;
3053                 break;
3054         case KVM_CAP_PV_MMU:    /* obsolete */
3055                 r = 0;
3056                 break;
3057         case KVM_CAP_MCE:
3058                 r = KVM_MAX_MCE_BANKS;
3059                 break;
3060         case KVM_CAP_XCRS:
3061                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3062                 break;
3063         case KVM_CAP_TSC_CONTROL:
3064                 r = kvm_has_tsc_control;
3065                 break;
3066         case KVM_CAP_X2APIC_API:
3067                 r = KVM_X2APIC_API_VALID_FLAGS;
3068                 break;
3069         case KVM_CAP_NESTED_STATE:
3070                 r = kvm_x86_ops->get_nested_state ?
3071                         kvm_x86_ops->get_nested_state(NULL, 0, 0) : 0;
3072                 break;
3073         default:
3074                 break;
3075         }
3076         return r;
3077
3078 }
3079
3080 long kvm_arch_dev_ioctl(struct file *filp,
3081                         unsigned int ioctl, unsigned long arg)
3082 {
3083         void __user *argp = (void __user *)arg;
3084         long r;
3085
3086         switch (ioctl) {
3087         case KVM_GET_MSR_INDEX_LIST: {
3088                 struct kvm_msr_list __user *user_msr_list = argp;
3089                 struct kvm_msr_list msr_list;
3090                 unsigned n;
3091
3092                 r = -EFAULT;
3093                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3094                         goto out;
3095                 n = msr_list.nmsrs;
3096                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3097                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3098                         goto out;
3099                 r = -E2BIG;
3100                 if (n < msr_list.nmsrs)
3101                         goto out;
3102                 r = -EFAULT;
3103                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3104                                  num_msrs_to_save * sizeof(u32)))
3105                         goto out;
3106                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3107                                  &emulated_msrs,
3108                                  num_emulated_msrs * sizeof(u32)))
3109                         goto out;
3110                 r = 0;
3111                 break;
3112         }
3113         case KVM_GET_SUPPORTED_CPUID:
3114         case KVM_GET_EMULATED_CPUID: {
3115                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3116                 struct kvm_cpuid2 cpuid;
3117
3118                 r = -EFAULT;
3119                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3120                         goto out;
3121
3122                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3123                                             ioctl);
3124                 if (r)
3125                         goto out;
3126
3127                 r = -EFAULT;
3128                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3129                         goto out;
3130                 r = 0;
3131                 break;
3132         }
3133         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3134                 r = -EFAULT;
3135                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3136                                  sizeof(kvm_mce_cap_supported)))
3137                         goto out;
3138                 r = 0;
3139                 break;
3140         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3141                 struct kvm_msr_list __user *user_msr_list = argp;
3142                 struct kvm_msr_list msr_list;
3143                 unsigned int n;
3144
3145                 r = -EFAULT;
3146                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3147                         goto out;
3148                 n = msr_list.nmsrs;
3149                 msr_list.nmsrs = num_msr_based_features;
3150                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3151                         goto out;
3152                 r = -E2BIG;
3153                 if (n < msr_list.nmsrs)
3154                         goto out;
3155                 r = -EFAULT;
3156                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3157                                  num_msr_based_features * sizeof(u32)))
3158                         goto out;
3159                 r = 0;
3160                 break;
3161         }
3162         case KVM_GET_MSRS:
3163                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3164                 break;
3165         }
3166         default:
3167                 r = -EINVAL;
3168         }
3169 out:
3170         return r;
3171 }
3172
3173 static void wbinvd_ipi(void *garbage)
3174 {
3175         wbinvd();
3176 }
3177
3178 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3179 {
3180         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3181 }
3182
3183 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3184 {
3185         /* Address WBINVD may be executed by guest */
3186         if (need_emulate_wbinvd(vcpu)) {
3187                 if (kvm_x86_ops->has_wbinvd_exit())
3188                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3189                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3190                         smp_call_function_single(vcpu->cpu,
3191                                         wbinvd_ipi, NULL, 1);
3192         }
3193
3194         kvm_x86_ops->vcpu_load(vcpu, cpu);
3195
3196         /* Apply any externally detected TSC adjustments (due to suspend) */
3197         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3198                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3199                 vcpu->arch.tsc_offset_adjustment = 0;
3200                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3201         }
3202
3203         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3204                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3205                                 rdtsc() - vcpu->arch.last_host_tsc;
3206                 if (tsc_delta < 0)
3207                         mark_tsc_unstable("KVM discovered backwards TSC");
3208
3209                 if (kvm_check_tsc_unstable()) {
3210                         u64 offset = kvm_compute_tsc_offset(vcpu,
3211                                                 vcpu->arch.last_guest_tsc);
3212                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3213                         vcpu->arch.tsc_catchup = 1;
3214                 }
3215
3216                 if (kvm_lapic_hv_timer_in_use(vcpu))
3217                         kvm_lapic_restart_hv_timer(vcpu);
3218
3219                 /*
3220                  * On a host with synchronized TSC, there is no need to update
3221                  * kvmclock on vcpu->cpu migration
3222                  */
3223                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3224                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3225                 if (vcpu->cpu != cpu)
3226                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3227                 vcpu->cpu = cpu;
3228         }
3229
3230         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3231 }
3232
3233 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3234 {
3235         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3236                 return;
3237
3238         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3239
3240         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3241                         &vcpu->arch.st.steal.preempted,
3242                         offsetof(struct kvm_steal_time, preempted),
3243                         sizeof(vcpu->arch.st.steal.preempted));
3244 }
3245
3246 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3247 {
3248         int idx;
3249
3250         if (vcpu->preempted)
3251                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3252
3253         /*
3254          * Disable page faults because we're in atomic context here.
3255          * kvm_write_guest_offset_cached() would call might_fault()
3256          * that relies on pagefault_disable() to tell if there's a
3257          * bug. NOTE: the write to guest memory may not go through if
3258          * during postcopy live migration or if there's heavy guest
3259          * paging.
3260          */
3261         pagefault_disable();
3262         /*
3263          * kvm_memslots() will be called by
3264          * kvm_write_guest_offset_cached() so take the srcu lock.
3265          */
3266         idx = srcu_read_lock(&vcpu->kvm->srcu);
3267         kvm_steal_time_set_preempted(vcpu);
3268         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3269         pagefault_enable();
3270         kvm_x86_ops->vcpu_put(vcpu);
3271         vcpu->arch.last_host_tsc = rdtsc();
3272         /*
3273          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3274          * on every vmexit, but if not, we might have a stale dr6 from the
3275          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3276          */
3277         set_debugreg(0, 6);
3278 }
3279
3280 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3281                                     struct kvm_lapic_state *s)
3282 {
3283         if (vcpu->arch.apicv_active)
3284                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3285
3286         return kvm_apic_get_state(vcpu, s);
3287 }
3288
3289 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3290                                     struct kvm_lapic_state *s)
3291 {
3292         int r;
3293
3294         r = kvm_apic_set_state(vcpu, s);
3295         if (r)
3296                 return r;
3297         update_cr8_intercept(vcpu);
3298
3299         return 0;
3300 }
3301
3302 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3303 {
3304         return (!lapic_in_kernel(vcpu) ||
3305                 kvm_apic_accept_pic_intr(vcpu));
3306 }
3307
3308 /*
3309  * if userspace requested an interrupt window, check that the
3310  * interrupt window is open.
3311  *
3312  * No need to exit to userspace if we already have an interrupt queued.
3313  */
3314 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3315 {
3316         return kvm_arch_interrupt_allowed(vcpu) &&
3317                 !kvm_cpu_has_interrupt(vcpu) &&
3318                 !kvm_event_needs_reinjection(vcpu) &&
3319                 kvm_cpu_accept_dm_intr(vcpu);
3320 }
3321
3322 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3323                                     struct kvm_interrupt *irq)
3324 {
3325         if (irq->irq >= KVM_NR_INTERRUPTS)
3326                 return -EINVAL;
3327
3328         if (!irqchip_in_kernel(vcpu->kvm)) {
3329                 kvm_queue_interrupt(vcpu, irq->irq, false);
3330                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3331                 return 0;
3332         }
3333
3334         /*
3335          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3336          * fail for in-kernel 8259.
3337          */
3338         if (pic_in_kernel(vcpu->kvm))
3339                 return -ENXIO;
3340
3341         if (vcpu->arch.pending_external_vector != -1)
3342                 return -EEXIST;
3343
3344         vcpu->arch.pending_external_vector = irq->irq;
3345         kvm_make_request(KVM_REQ_EVENT, vcpu);
3346         return 0;
3347 }
3348
3349 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3350 {
3351         kvm_inject_nmi(vcpu);
3352
3353         return 0;
3354 }
3355
3356 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3357 {
3358         kvm_make_request(KVM_REQ_SMI, vcpu);
3359
3360         return 0;
3361 }
3362
3363 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3364                                            struct kvm_tpr_access_ctl *tac)
3365 {
3366         if (tac->flags)
3367                 return -EINVAL;
3368         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3369         return 0;
3370 }
3371
3372 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3373                                         u64 mcg_cap)
3374 {
3375         int r;
3376         unsigned bank_num = mcg_cap & 0xff, bank;
3377
3378         r = -EINVAL;
3379         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3380                 goto out;
3381         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3382                 goto out;
3383         r = 0;
3384         vcpu->arch.mcg_cap = mcg_cap;
3385         /* Init IA32_MCG_CTL to all 1s */
3386         if (mcg_cap & MCG_CTL_P)
3387                 vcpu->arch.mcg_ctl = ~(u64)0;
3388         /* Init IA32_MCi_CTL to all 1s */
3389         for (bank = 0; bank < bank_num; bank++)
3390                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3391
3392         if (kvm_x86_ops->setup_mce)
3393                 kvm_x86_ops->setup_mce(vcpu);
3394 out:
3395         return r;
3396 }
3397
3398 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3399                                       struct kvm_x86_mce *mce)
3400 {
3401         u64 mcg_cap = vcpu->arch.mcg_cap;
3402         unsigned bank_num = mcg_cap & 0xff;
3403         u64 *banks = vcpu->arch.mce_banks;
3404
3405         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3406                 return -EINVAL;
3407         /*
3408          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3409          * reporting is disabled
3410          */
3411         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3412             vcpu->arch.mcg_ctl != ~(u64)0)
3413                 return 0;
3414         banks += 4 * mce->bank;
3415         /*
3416          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3417          * reporting is disabled for the bank
3418          */
3419         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3420                 return 0;
3421         if (mce->status & MCI_STATUS_UC) {
3422                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3423                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3424                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3425                         return 0;
3426                 }
3427                 if (banks[1] & MCI_STATUS_VAL)
3428                         mce->status |= MCI_STATUS_OVER;
3429                 banks[2] = mce->addr;
3430                 banks[3] = mce->misc;
3431                 vcpu->arch.mcg_status = mce->mcg_status;
3432                 banks[1] = mce->status;
3433                 kvm_queue_exception(vcpu, MC_VECTOR);
3434         } else if (!(banks[1] & MCI_STATUS_VAL)
3435                    || !(banks[1] & MCI_STATUS_UC)) {
3436                 if (banks[1] & MCI_STATUS_VAL)
3437                         mce->status |= MCI_STATUS_OVER;
3438                 banks[2] = mce->addr;
3439                 banks[3] = mce->misc;
3440                 banks[1] = mce->status;
3441         } else
3442                 banks[1] |= MCI_STATUS_OVER;
3443         return 0;
3444 }
3445
3446 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3447                                                struct kvm_vcpu_events *events)
3448 {
3449         process_nmi(vcpu);
3450
3451         /*
3452          * The API doesn't provide the instruction length for software
3453          * exceptions, so don't report them. As long as the guest RIP
3454          * isn't advanced, we should expect to encounter the exception
3455          * again.
3456          */
3457         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3458                 events->exception.injected = 0;
3459                 events->exception.pending = 0;
3460         } else {
3461                 events->exception.injected = vcpu->arch.exception.injected;
3462                 events->exception.pending = vcpu->arch.exception.pending;
3463                 /*
3464                  * For ABI compatibility, deliberately conflate
3465                  * pending and injected exceptions when
3466                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3467                  */
3468                 if (!vcpu->kvm->arch.exception_payload_enabled)
3469                         events->exception.injected |=
3470                                 vcpu->arch.exception.pending;
3471         }
3472         events->exception.nr = vcpu->arch.exception.nr;
3473         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3474         events->exception.error_code = vcpu->arch.exception.error_code;
3475         events->exception_has_payload = vcpu->arch.exception.has_payload;
3476         events->exception_payload = vcpu->arch.exception.payload;
3477
3478         events->interrupt.injected =
3479                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3480         events->interrupt.nr = vcpu->arch.interrupt.nr;
3481         events->interrupt.soft = 0;
3482         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3483
3484         events->nmi.injected = vcpu->arch.nmi_injected;
3485         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3486         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3487         events->nmi.pad = 0;
3488
3489         events->sipi_vector = 0; /* never valid when reporting to user space */
3490
3491         events->smi.smm = is_smm(vcpu);
3492         events->smi.pending = vcpu->arch.smi_pending;
3493         events->smi.smm_inside_nmi =
3494                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3495         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3496
3497         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3498                          | KVM_VCPUEVENT_VALID_SHADOW
3499                          | KVM_VCPUEVENT_VALID_SMM);
3500         if (vcpu->kvm->arch.exception_payload_enabled)
3501                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3502
3503         memset(&events->reserved, 0, sizeof(events->reserved));
3504 }
3505
3506 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3507
3508 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3509                                               struct kvm_vcpu_events *events)
3510 {
3511         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3512                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3513                               | KVM_VCPUEVENT_VALID_SHADOW
3514                               | KVM_VCPUEVENT_VALID_SMM
3515                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3516                 return -EINVAL;
3517
3518         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3519                 if (!vcpu->kvm->arch.exception_payload_enabled)
3520                         return -EINVAL;
3521                 if (events->exception.pending)
3522                         events->exception.injected = 0;
3523                 else
3524                         events->exception_has_payload = 0;
3525         } else {
3526                 events->exception.pending = 0;
3527                 events->exception_has_payload = 0;
3528         }
3529
3530         if ((events->exception.injected || events->exception.pending) &&
3531             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3532                 return -EINVAL;
3533
3534         /* INITs are latched while in SMM */
3535         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3536             (events->smi.smm || events->smi.pending) &&
3537             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3538                 return -EINVAL;
3539
3540         process_nmi(vcpu);
3541         vcpu->arch.exception.injected = events->exception.injected;
3542         vcpu->arch.exception.pending = events->exception.pending;
3543         vcpu->arch.exception.nr = events->exception.nr;
3544         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3545         vcpu->arch.exception.error_code = events->exception.error_code;
3546         vcpu->arch.exception.has_payload = events->exception_has_payload;
3547         vcpu->arch.exception.payload = events->exception_payload;
3548
3549         vcpu->arch.interrupt.injected = events->interrupt.injected;
3550         vcpu->arch.interrupt.nr = events->interrupt.nr;
3551         vcpu->arch.interrupt.soft = events->interrupt.soft;
3552         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3553                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3554                                                   events->interrupt.shadow);
3555
3556         vcpu->arch.nmi_injected = events->nmi.injected;
3557         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3558                 vcpu->arch.nmi_pending = events->nmi.pending;
3559         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3560
3561         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3562             lapic_in_kernel(vcpu))
3563                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3564
3565         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3566                 u32 hflags = vcpu->arch.hflags;
3567                 if (events->smi.smm)
3568                         hflags |= HF_SMM_MASK;
3569                 else
3570                         hflags &= ~HF_SMM_MASK;
3571                 kvm_set_hflags(vcpu, hflags);
3572
3573                 vcpu->arch.smi_pending = events->smi.pending;
3574
3575                 if (events->smi.smm) {
3576                         if (events->smi.smm_inside_nmi)
3577                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3578                         else
3579                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3580                         if (lapic_in_kernel(vcpu)) {
3581                                 if (events->smi.latched_init)
3582                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3583                                 else
3584                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3585                         }
3586                 }
3587         }
3588
3589         kvm_make_request(KVM_REQ_EVENT, vcpu);
3590
3591         return 0;
3592 }
3593
3594 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3595                                              struct kvm_debugregs *dbgregs)
3596 {
3597         unsigned long val;
3598
3599         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3600         kvm_get_dr(vcpu, 6, &val);
3601         dbgregs->dr6 = val;
3602         dbgregs->dr7 = vcpu->arch.dr7;
3603         dbgregs->flags = 0;
3604         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3605 }
3606
3607 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3608                                             struct kvm_debugregs *dbgregs)
3609 {
3610         if (dbgregs->flags)
3611                 return -EINVAL;
3612
3613         if (dbgregs->dr6 & ~0xffffffffull)
3614                 return -EINVAL;
3615         if (dbgregs->dr7 & ~0xffffffffull)
3616                 return -EINVAL;
3617
3618         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3619         kvm_update_dr0123(vcpu);
3620         vcpu->arch.dr6 = dbgregs->dr6;
3621         kvm_update_dr6(vcpu);
3622         vcpu->arch.dr7 = dbgregs->dr7;
3623         kvm_update_dr7(vcpu);
3624
3625         return 0;
3626 }
3627
3628 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3629
3630 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3631 {
3632         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3633         u64 xstate_bv = xsave->header.xfeatures;
3634         u64 valid;
3635
3636         /*
3637          * Copy legacy XSAVE area, to avoid complications with CPUID
3638          * leaves 0 and 1 in the loop below.
3639          */
3640         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3641
3642         /* Set XSTATE_BV */
3643         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3644         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3645
3646         /*
3647          * Copy each region from the possibly compacted offset to the
3648          * non-compacted offset.
3649          */
3650         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3651         while (valid) {
3652                 u64 feature = valid & -valid;
3653                 int index = fls64(feature) - 1;
3654                 void *src = get_xsave_addr(xsave, feature);
3655
3656                 if (src) {
3657                         u32 size, offset, ecx, edx;
3658                         cpuid_count(XSTATE_CPUID, index,
3659                                     &size, &offset, &ecx, &edx);
3660                         if (feature == XFEATURE_MASK_PKRU)
3661                                 memcpy(dest + offset, &vcpu->arch.pkru,
3662                                        sizeof(vcpu->arch.pkru));
3663                         else
3664                                 memcpy(dest + offset, src, size);
3665
3666                 }
3667
3668                 valid -= feature;
3669         }
3670 }
3671
3672 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3673 {
3674         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3675         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3676         u64 valid;
3677
3678         /*
3679          * Copy legacy XSAVE area, to avoid complications with CPUID
3680          * leaves 0 and 1 in the loop below.
3681          */
3682         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3683
3684         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3685         xsave->header.xfeatures = xstate_bv;
3686         if (boot_cpu_has(X86_FEATURE_XSAVES))
3687                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3688
3689         /*
3690          * Copy each region from the non-compacted offset to the
3691          * possibly compacted offset.
3692          */
3693         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3694         while (valid) {
3695                 u64 feature = valid & -valid;
3696                 int index = fls64(feature) - 1;
3697                 void *dest = get_xsave_addr(xsave, feature);
3698
3699                 if (dest) {
3700                         u32 size, offset, ecx, edx;
3701                         cpuid_count(XSTATE_CPUID, index,
3702                                     &size, &offset, &ecx, &edx);
3703                         if (feature == XFEATURE_MASK_PKRU)
3704                                 memcpy(&vcpu->arch.pkru, src + offset,
3705                                        sizeof(vcpu->arch.pkru));
3706                         else
3707                                 memcpy(dest, src + offset, size);
3708                 }
3709
3710                 valid -= feature;
3711         }
3712 }
3713
3714 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3715                                          struct kvm_xsave *guest_xsave)
3716 {
3717         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3718                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3719                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3720         } else {
3721                 memcpy(guest_xsave->region,
3722                         &vcpu->arch.guest_fpu.state.fxsave,
3723                         sizeof(struct fxregs_state));
3724                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3725                         XFEATURE_MASK_FPSSE;
3726         }
3727 }
3728
3729 #define XSAVE_MXCSR_OFFSET 24
3730
3731 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3732                                         struct kvm_xsave *guest_xsave)
3733 {
3734         u64 xstate_bv =
3735                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3736         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3737
3738         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3739                 /*
3740                  * Here we allow setting states that are not present in
3741                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3742                  * with old userspace.
3743                  */
3744                 if (xstate_bv & ~kvm_supported_xcr0() ||
3745                         mxcsr & ~mxcsr_feature_mask)
3746                         return -EINVAL;
3747                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3748         } else {
3749                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3750                         mxcsr & ~mxcsr_feature_mask)
3751                         return -EINVAL;
3752                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3753                         guest_xsave->region, sizeof(struct fxregs_state));
3754         }
3755         return 0;
3756 }
3757
3758 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3759                                         struct kvm_xcrs *guest_xcrs)
3760 {
3761         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3762                 guest_xcrs->nr_xcrs = 0;
3763                 return;
3764         }
3765
3766         guest_xcrs->nr_xcrs = 1;
3767         guest_xcrs->flags = 0;
3768         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3769         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3770 }
3771
3772 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3773                                        struct kvm_xcrs *guest_xcrs)
3774 {
3775         int i, r = 0;
3776
3777         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3778                 return -EINVAL;
3779
3780         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3781                 return -EINVAL;
3782
3783         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3784                 /* Only support XCR0 currently */
3785                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3786                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3787                                 guest_xcrs->xcrs[i].value);
3788                         break;
3789                 }
3790         if (r)
3791                 r = -EINVAL;
3792         return r;
3793 }
3794
3795 /*
3796  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3797  * stopped by the hypervisor.  This function will be called from the host only.
3798  * EINVAL is returned when the host attempts to set the flag for a guest that
3799  * does not support pv clocks.
3800  */
3801 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3802 {
3803         if (!vcpu->arch.pv_time_enabled)
3804                 return -EINVAL;
3805         vcpu->arch.pvclock_set_guest_stopped_request = true;
3806         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3807         return 0;
3808 }
3809
3810 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3811                                      struct kvm_enable_cap *cap)
3812 {
3813         int r;
3814         uint16_t vmcs_version;
3815         void __user *user_ptr;
3816
3817         if (cap->flags)
3818                 return -EINVAL;
3819
3820         switch (cap->cap) {
3821         case KVM_CAP_HYPERV_SYNIC2:
3822                 if (cap->args[0])
3823                         return -EINVAL;
3824         case KVM_CAP_HYPERV_SYNIC:
3825                 if (!irqchip_in_kernel(vcpu->kvm))
3826                         return -EINVAL;
3827                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3828                                              KVM_CAP_HYPERV_SYNIC2);
3829         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3830                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3831                 if (!r) {
3832                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3833                         if (copy_to_user(user_ptr, &vmcs_version,
3834                                          sizeof(vmcs_version)))
3835                                 r = -EFAULT;
3836                 }
3837                 return r;
3838
3839         default:
3840                 return -EINVAL;
3841         }
3842 }
3843
3844 long kvm_arch_vcpu_ioctl(struct file *filp,
3845                          unsigned int ioctl, unsigned long arg)
3846 {
3847         struct kvm_vcpu *vcpu = filp->private_data;
3848         void __user *argp = (void __user *)arg;
3849         int r;
3850         union {
3851                 struct kvm_lapic_state *lapic;
3852                 struct kvm_xsave *xsave;
3853                 struct kvm_xcrs *xcrs;
3854                 void *buffer;
3855         } u;
3856
3857         vcpu_load(vcpu);
3858
3859         u.buffer = NULL;
3860         switch (ioctl) {
3861         case KVM_GET_LAPIC: {
3862                 r = -EINVAL;
3863                 if (!lapic_in_kernel(vcpu))
3864                         goto out;
3865                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3866
3867                 r = -ENOMEM;
3868                 if (!u.lapic)
3869                         goto out;
3870                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3871                 if (r)
3872                         goto out;
3873                 r = -EFAULT;
3874                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3875                         goto out;
3876                 r = 0;
3877                 break;
3878         }
3879         case KVM_SET_LAPIC: {
3880                 r = -EINVAL;
3881                 if (!lapic_in_kernel(vcpu))
3882                         goto out;
3883                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3884                 if (IS_ERR(u.lapic)) {
3885                         r = PTR_ERR(u.lapic);
3886                         goto out_nofree;
3887                 }
3888
3889                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3890                 break;
3891         }
3892         case KVM_INTERRUPT: {
3893                 struct kvm_interrupt irq;
3894
3895                 r = -EFAULT;
3896                 if (copy_from_user(&irq, argp, sizeof(irq)))
3897                         goto out;
3898                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3899                 break;
3900         }
3901         case KVM_NMI: {
3902                 r = kvm_vcpu_ioctl_nmi(vcpu);
3903                 break;
3904         }
3905         case KVM_SMI: {
3906                 r = kvm_vcpu_ioctl_smi(vcpu);
3907                 break;
3908         }
3909         case KVM_SET_CPUID: {
3910                 struct kvm_cpuid __user *cpuid_arg = argp;
3911                 struct kvm_cpuid cpuid;
3912
3913                 r = -EFAULT;
3914                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3915                         goto out;
3916                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3917                 break;
3918         }
3919         case KVM_SET_CPUID2: {
3920                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3921                 struct kvm_cpuid2 cpuid;
3922
3923                 r = -EFAULT;
3924                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3925                         goto out;
3926                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3927                                               cpuid_arg->entries);
3928                 break;
3929         }
3930         case KVM_GET_CPUID2: {
3931                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3932                 struct kvm_cpuid2 cpuid;
3933
3934                 r = -EFAULT;
3935                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3936                         goto out;
3937                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3938                                               cpuid_arg->entries);
3939                 if (r)
3940                         goto out;
3941                 r = -EFAULT;
3942                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3943                         goto out;
3944                 r = 0;
3945                 break;
3946         }
3947         case KVM_GET_MSRS: {
3948                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3949                 r = msr_io(vcpu, argp, do_get_msr, 1);
3950                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3951                 break;
3952         }
3953         case KVM_SET_MSRS: {
3954                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3955                 r = msr_io(vcpu, argp, do_set_msr, 0);
3956                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3957                 break;
3958         }
3959         case KVM_TPR_ACCESS_REPORTING: {
3960                 struct kvm_tpr_access_ctl tac;
3961
3962                 r = -EFAULT;
3963                 if (copy_from_user(&tac, argp, sizeof(tac)))
3964                         goto out;
3965                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3966                 if (r)
3967                         goto out;
3968                 r = -EFAULT;
3969                 if (copy_to_user(argp, &tac, sizeof(tac)))
3970                         goto out;
3971                 r = 0;
3972                 break;
3973         };
3974         case KVM_SET_VAPIC_ADDR: {
3975                 struct kvm_vapic_addr va;
3976                 int idx;
3977
3978                 r = -EINVAL;
3979                 if (!lapic_in_kernel(vcpu))
3980                         goto out;
3981                 r = -EFAULT;
3982                 if (copy_from_user(&va, argp, sizeof(va)))
3983                         goto out;
3984                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3985                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3986                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3987                 break;
3988         }
3989         case KVM_X86_SETUP_MCE: {
3990                 u64 mcg_cap;
3991
3992                 r = -EFAULT;
3993                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
3994                         goto out;
3995                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3996                 break;
3997         }
3998         case KVM_X86_SET_MCE: {
3999                 struct kvm_x86_mce mce;
4000
4001                 r = -EFAULT;
4002                 if (copy_from_user(&mce, argp, sizeof(mce)))
4003                         goto out;
4004                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4005                 break;
4006         }
4007         case KVM_GET_VCPU_EVENTS: {
4008                 struct kvm_vcpu_events events;
4009
4010                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4011
4012                 r = -EFAULT;
4013                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4014                         break;
4015                 r = 0;
4016                 break;
4017         }
4018         case KVM_SET_VCPU_EVENTS: {
4019                 struct kvm_vcpu_events events;
4020
4021                 r = -EFAULT;
4022                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4023                         break;
4024
4025                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4026                 break;
4027         }
4028         case KVM_GET_DEBUGREGS: {
4029                 struct kvm_debugregs dbgregs;
4030
4031                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4032
4033                 r = -EFAULT;
4034                 if (copy_to_user(argp, &dbgregs,
4035                                  sizeof(struct kvm_debugregs)))
4036                         break;
4037                 r = 0;
4038                 break;
4039         }
4040         case KVM_SET_DEBUGREGS: {
4041                 struct kvm_debugregs dbgregs;
4042
4043                 r = -EFAULT;
4044                 if (copy_from_user(&dbgregs, argp,
4045                                    sizeof(struct kvm_debugregs)))
4046                         break;
4047
4048                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4049                 break;
4050         }
4051         case KVM_GET_XSAVE: {
4052                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
4053                 r = -ENOMEM;
4054                 if (!u.xsave)
4055                         break;
4056
4057                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4058
4059                 r = -EFAULT;
4060                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4061                         break;
4062                 r = 0;
4063                 break;
4064         }
4065         case KVM_SET_XSAVE: {
4066                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4067                 if (IS_ERR(u.xsave)) {
4068                         r = PTR_ERR(u.xsave);
4069                         goto out_nofree;
4070                 }
4071
4072                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4073                 break;
4074         }
4075         case KVM_GET_XCRS: {
4076                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
4077                 r = -ENOMEM;
4078                 if (!u.xcrs)
4079                         break;
4080
4081                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4082
4083                 r = -EFAULT;
4084                 if (copy_to_user(argp, u.xcrs,
4085                                  sizeof(struct kvm_xcrs)))
4086                         break;
4087                 r = 0;
4088                 break;
4089         }
4090         case KVM_SET_XCRS: {
4091                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4092                 if (IS_ERR(u.xcrs)) {
4093                         r = PTR_ERR(u.xcrs);
4094                         goto out_nofree;
4095                 }
4096
4097                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4098                 break;
4099         }
4100         case KVM_SET_TSC_KHZ: {
4101                 u32 user_tsc_khz;
4102
4103                 r = -EINVAL;
4104                 user_tsc_khz = (u32)arg;
4105
4106                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4107                         goto out;
4108
4109                 if (user_tsc_khz == 0)
4110                         user_tsc_khz = tsc_khz;
4111
4112                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4113                         r = 0;
4114
4115                 goto out;
4116         }
4117         case KVM_GET_TSC_KHZ: {
4118                 r = vcpu->arch.virtual_tsc_khz;
4119                 goto out;
4120         }
4121         case KVM_KVMCLOCK_CTRL: {
4122                 r = kvm_set_guest_paused(vcpu);
4123                 goto out;
4124         }
4125         case KVM_ENABLE_CAP: {
4126                 struct kvm_enable_cap cap;
4127
4128                 r = -EFAULT;
4129                 if (copy_from_user(&cap, argp, sizeof(cap)))
4130                         goto out;
4131                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4132                 break;
4133         }
4134         case KVM_GET_NESTED_STATE: {
4135                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4136                 u32 user_data_size;
4137
4138                 r = -EINVAL;
4139                 if (!kvm_x86_ops->get_nested_state)
4140                         break;
4141
4142                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4143                 r = -EFAULT;
4144                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4145                         break;
4146
4147                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4148                                                   user_data_size);
4149                 if (r < 0)
4150                         break;
4151
4152                 if (r > user_data_size) {
4153                         if (put_user(r, &user_kvm_nested_state->size))
4154                                 r = -EFAULT;
4155                         else
4156                                 r = -E2BIG;
4157                         break;
4158                 }
4159
4160                 r = 0;
4161                 break;
4162         }
4163         case KVM_SET_NESTED_STATE: {
4164                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4165                 struct kvm_nested_state kvm_state;
4166
4167                 r = -EINVAL;
4168                 if (!kvm_x86_ops->set_nested_state)
4169                         break;
4170
4171                 r = -EFAULT;
4172                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4173                         break;
4174
4175                 r = -EINVAL;
4176                 if (kvm_state.size < sizeof(kvm_state))
4177                         break;
4178
4179                 if (kvm_state.flags &
4180                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4181                       | KVM_STATE_NESTED_EVMCS))
4182                         break;
4183
4184                 /* nested_run_pending implies guest_mode.  */
4185                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4186                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4187                         break;
4188
4189                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4190                 break;
4191         }
4192         default:
4193                 r = -EINVAL;
4194         }
4195 out:
4196         kfree(u.buffer);
4197 out_nofree:
4198         vcpu_put(vcpu);
4199         return r;
4200 }
4201
4202 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4203 {
4204         return VM_FAULT_SIGBUS;
4205 }
4206
4207 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4208 {
4209         int ret;
4210
4211         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4212                 return -EINVAL;
4213         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4214         return ret;
4215 }
4216
4217 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4218                                               u64 ident_addr)
4219 {
4220         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4221 }
4222
4223 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4224                                           u32 kvm_nr_mmu_pages)
4225 {
4226         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4227                 return -EINVAL;
4228
4229         mutex_lock(&kvm->slots_lock);
4230
4231         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4232         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4233
4234         mutex_unlock(&kvm->slots_lock);
4235         return 0;
4236 }
4237
4238 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4239 {
4240         return kvm->arch.n_max_mmu_pages;
4241 }
4242
4243 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4244 {
4245         struct kvm_pic *pic = kvm->arch.vpic;
4246         int r;
4247
4248         r = 0;
4249         switch (chip->chip_id) {
4250         case KVM_IRQCHIP_PIC_MASTER:
4251                 memcpy(&chip->chip.pic, &pic->pics[0],
4252                         sizeof(struct kvm_pic_state));
4253                 break;
4254         case KVM_IRQCHIP_PIC_SLAVE:
4255                 memcpy(&chip->chip.pic, &pic->pics[1],
4256                         sizeof(struct kvm_pic_state));
4257                 break;
4258         case KVM_IRQCHIP_IOAPIC:
4259                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4260                 break;
4261         default:
4262                 r = -EINVAL;
4263                 break;
4264         }
4265         return r;
4266 }
4267
4268 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4269 {
4270         struct kvm_pic *pic = kvm->arch.vpic;
4271         int r;
4272
4273         r = 0;
4274         switch (chip->chip_id) {
4275         case KVM_IRQCHIP_PIC_MASTER:
4276                 spin_lock(&pic->lock);
4277                 memcpy(&pic->pics[0], &chip->chip.pic,
4278                         sizeof(struct kvm_pic_state));
4279                 spin_unlock(&pic->lock);
4280                 break;
4281         case KVM_IRQCHIP_PIC_SLAVE:
4282                 spin_lock(&pic->lock);
4283                 memcpy(&pic->pics[1], &chip->chip.pic,
4284                         sizeof(struct kvm_pic_state));
4285                 spin_unlock(&pic->lock);
4286                 break;
4287         case KVM_IRQCHIP_IOAPIC:
4288                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4289                 break;
4290         default:
4291                 r = -EINVAL;
4292                 break;
4293         }
4294         kvm_pic_update_irq(pic);
4295         return r;
4296 }
4297
4298 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4299 {
4300         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4301
4302         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4303
4304         mutex_lock(&kps->lock);
4305         memcpy(ps, &kps->channels, sizeof(*ps));
4306         mutex_unlock(&kps->lock);
4307         return 0;
4308 }
4309
4310 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4311 {
4312         int i;
4313         struct kvm_pit *pit = kvm->arch.vpit;
4314
4315         mutex_lock(&pit->pit_state.lock);
4316         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4317         for (i = 0; i < 3; i++)
4318                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4319         mutex_unlock(&pit->pit_state.lock);
4320         return 0;
4321 }
4322
4323 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4324 {
4325         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4326         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4327                 sizeof(ps->channels));
4328         ps->flags = kvm->arch.vpit->pit_state.flags;
4329         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4330         memset(&ps->reserved, 0, sizeof(ps->reserved));
4331         return 0;
4332 }
4333
4334 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4335 {
4336         int start = 0;
4337         int i;
4338         u32 prev_legacy, cur_legacy;
4339         struct kvm_pit *pit = kvm->arch.vpit;
4340
4341         mutex_lock(&pit->pit_state.lock);
4342         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4343         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4344         if (!prev_legacy && cur_legacy)
4345                 start = 1;
4346         memcpy(&pit->pit_state.channels, &ps->channels,
4347                sizeof(pit->pit_state.channels));
4348         pit->pit_state.flags = ps->flags;
4349         for (i = 0; i < 3; i++)
4350                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4351                                    start && i == 0);
4352         mutex_unlock(&pit->pit_state.lock);
4353         return 0;
4354 }
4355
4356 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4357                                  struct kvm_reinject_control *control)
4358 {
4359         struct kvm_pit *pit = kvm->arch.vpit;
4360
4361         if (!pit)
4362                 return -ENXIO;
4363
4364         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4365          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4366          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4367          */
4368         mutex_lock(&pit->pit_state.lock);
4369         kvm_pit_set_reinject(pit, control->pit_reinject);
4370         mutex_unlock(&pit->pit_state.lock);
4371
4372         return 0;
4373 }
4374
4375 /**
4376  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4377  * @kvm: kvm instance
4378  * @log: slot id and address to which we copy the log
4379  *
4380  * Steps 1-4 below provide general overview of dirty page logging. See
4381  * kvm_get_dirty_log_protect() function description for additional details.
4382  *
4383  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4384  * always flush the TLB (step 4) even if previous step failed  and the dirty
4385  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4386  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4387  * writes will be marked dirty for next log read.
4388  *
4389  *   1. Take a snapshot of the bit and clear it if needed.
4390  *   2. Write protect the corresponding page.
4391  *   3. Copy the snapshot to the userspace.
4392  *   4. Flush TLB's if needed.
4393  */
4394 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4395 {
4396         bool flush = false;
4397         int r;
4398
4399         mutex_lock(&kvm->slots_lock);
4400
4401         /*
4402          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4403          */
4404         if (kvm_x86_ops->flush_log_dirty)
4405                 kvm_x86_ops->flush_log_dirty(kvm);
4406
4407         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4408
4409         /*
4410          * All the TLBs can be flushed out of mmu lock, see the comments in
4411          * kvm_mmu_slot_remove_write_access().
4412          */
4413         lockdep_assert_held(&kvm->slots_lock);
4414         if (flush)
4415                 kvm_flush_remote_tlbs(kvm);
4416
4417         mutex_unlock(&kvm->slots_lock);
4418         return r;
4419 }
4420
4421 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4422                         bool line_status)
4423 {
4424         if (!irqchip_in_kernel(kvm))
4425                 return -ENXIO;
4426
4427         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4428                                         irq_event->irq, irq_event->level,
4429                                         line_status);
4430         return 0;
4431 }
4432
4433 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4434                             struct kvm_enable_cap *cap)
4435 {
4436         int r;
4437
4438         if (cap->flags)
4439                 return -EINVAL;
4440
4441         switch (cap->cap) {
4442         case KVM_CAP_DISABLE_QUIRKS:
4443                 kvm->arch.disabled_quirks = cap->args[0];
4444                 r = 0;
4445                 break;
4446         case KVM_CAP_SPLIT_IRQCHIP: {
4447                 mutex_lock(&kvm->lock);
4448                 r = -EINVAL;
4449                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4450                         goto split_irqchip_unlock;
4451                 r = -EEXIST;
4452                 if (irqchip_in_kernel(kvm))
4453                         goto split_irqchip_unlock;
4454                 if (kvm->created_vcpus)
4455                         goto split_irqchip_unlock;
4456                 r = kvm_setup_empty_irq_routing(kvm);
4457                 if (r)
4458                         goto split_irqchip_unlock;
4459                 /* Pairs with irqchip_in_kernel. */
4460                 smp_wmb();
4461                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4462                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4463                 r = 0;
4464 split_irqchip_unlock:
4465                 mutex_unlock(&kvm->lock);
4466                 break;
4467         }
4468         case KVM_CAP_X2APIC_API:
4469                 r = -EINVAL;
4470                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4471                         break;
4472
4473                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4474                         kvm->arch.x2apic_format = true;
4475                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4476                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4477
4478                 r = 0;
4479                 break;
4480         case KVM_CAP_X86_DISABLE_EXITS:
4481                 r = -EINVAL;
4482                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4483                         break;
4484
4485                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4486                         kvm_can_mwait_in_guest())
4487                         kvm->arch.mwait_in_guest = true;
4488                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4489                         kvm->arch.hlt_in_guest = true;
4490                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4491                         kvm->arch.pause_in_guest = true;
4492                 r = 0;
4493                 break;
4494         case KVM_CAP_MSR_PLATFORM_INFO:
4495                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4496                 r = 0;
4497                 break;
4498         case KVM_CAP_EXCEPTION_PAYLOAD:
4499                 kvm->arch.exception_payload_enabled = cap->args[0];
4500                 r = 0;
4501                 break;
4502         default:
4503                 r = -EINVAL;
4504                 break;
4505         }
4506         return r;
4507 }
4508
4509 long kvm_arch_vm_ioctl(struct file *filp,
4510                        unsigned int ioctl, unsigned long arg)
4511 {
4512         struct kvm *kvm = filp->private_data;
4513         void __user *argp = (void __user *)arg;
4514         int r = -ENOTTY;
4515         /*
4516          * This union makes it completely explicit to gcc-3.x
4517          * that these two variables' stack usage should be
4518          * combined, not added together.
4519          */
4520         union {
4521                 struct kvm_pit_state ps;
4522                 struct kvm_pit_state2 ps2;
4523                 struct kvm_pit_config pit_config;
4524         } u;
4525
4526         switch (ioctl) {
4527         case KVM_SET_TSS_ADDR:
4528                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4529                 break;
4530         case KVM_SET_IDENTITY_MAP_ADDR: {
4531                 u64 ident_addr;
4532
4533                 mutex_lock(&kvm->lock);
4534                 r = -EINVAL;
4535                 if (kvm->created_vcpus)
4536                         goto set_identity_unlock;
4537                 r = -EFAULT;
4538                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4539                         goto set_identity_unlock;
4540                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4541 set_identity_unlock:
4542                 mutex_unlock(&kvm->lock);
4543                 break;
4544         }
4545         case KVM_SET_NR_MMU_PAGES:
4546                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4547                 break;
4548         case KVM_GET_NR_MMU_PAGES:
4549                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4550                 break;
4551         case KVM_CREATE_IRQCHIP: {
4552                 mutex_lock(&kvm->lock);
4553
4554                 r = -EEXIST;
4555                 if (irqchip_in_kernel(kvm))
4556                         goto create_irqchip_unlock;
4557
4558                 r = -EINVAL;
4559                 if (kvm->created_vcpus)
4560                         goto create_irqchip_unlock;
4561
4562                 r = kvm_pic_init(kvm);
4563                 if (r)
4564                         goto create_irqchip_unlock;
4565
4566                 r = kvm_ioapic_init(kvm);
4567                 if (r) {
4568                         kvm_pic_destroy(kvm);
4569                         goto create_irqchip_unlock;
4570                 }
4571
4572                 r = kvm_setup_default_irq_routing(kvm);
4573                 if (r) {
4574                         kvm_ioapic_destroy(kvm);
4575                         kvm_pic_destroy(kvm);
4576                         goto create_irqchip_unlock;
4577                 }
4578                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4579                 smp_wmb();
4580                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4581         create_irqchip_unlock:
4582                 mutex_unlock(&kvm->lock);
4583                 break;
4584         }
4585         case KVM_CREATE_PIT:
4586                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4587                 goto create_pit;
4588         case KVM_CREATE_PIT2:
4589                 r = -EFAULT;
4590                 if (copy_from_user(&u.pit_config, argp,
4591                                    sizeof(struct kvm_pit_config)))
4592                         goto out;
4593         create_pit:
4594                 mutex_lock(&kvm->lock);
4595                 r = -EEXIST;
4596                 if (kvm->arch.vpit)
4597                         goto create_pit_unlock;
4598                 r = -ENOMEM;
4599                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4600                 if (kvm->arch.vpit)
4601                         r = 0;
4602         create_pit_unlock:
4603                 mutex_unlock(&kvm->lock);
4604                 break;
4605         case KVM_GET_IRQCHIP: {
4606                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4607                 struct kvm_irqchip *chip;
4608
4609                 chip = memdup_user(argp, sizeof(*chip));
4610                 if (IS_ERR(chip)) {
4611                         r = PTR_ERR(chip);
4612                         goto out;
4613                 }
4614
4615                 r = -ENXIO;
4616                 if (!irqchip_kernel(kvm))
4617                         goto get_irqchip_out;
4618                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4619                 if (r)
4620                         goto get_irqchip_out;
4621                 r = -EFAULT;
4622                 if (copy_to_user(argp, chip, sizeof(*chip)))
4623                         goto get_irqchip_out;
4624                 r = 0;
4625         get_irqchip_out:
4626                 kfree(chip);
4627                 break;
4628         }
4629         case KVM_SET_IRQCHIP: {
4630                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4631                 struct kvm_irqchip *chip;
4632
4633                 chip = memdup_user(argp, sizeof(*chip));
4634                 if (IS_ERR(chip)) {
4635                         r = PTR_ERR(chip);
4636                         goto out;
4637                 }
4638
4639                 r = -ENXIO;
4640                 if (!irqchip_kernel(kvm))
4641                         goto set_irqchip_out;
4642                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4643                 if (r)
4644                         goto set_irqchip_out;
4645                 r = 0;
4646         set_irqchip_out:
4647                 kfree(chip);
4648                 break;
4649         }
4650         case KVM_GET_PIT: {
4651                 r = -EFAULT;
4652                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4653                         goto out;
4654                 r = -ENXIO;
4655                 if (!kvm->arch.vpit)
4656                         goto out;
4657                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4658                 if (r)
4659                         goto out;
4660                 r = -EFAULT;
4661                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4662                         goto out;
4663                 r = 0;
4664                 break;
4665         }
4666         case KVM_SET_PIT: {
4667                 r = -EFAULT;
4668                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4669                         goto out;
4670                 r = -ENXIO;
4671                 if (!kvm->arch.vpit)
4672                         goto out;
4673                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4674                 break;
4675         }
4676         case KVM_GET_PIT2: {
4677                 r = -ENXIO;
4678                 if (!kvm->arch.vpit)
4679                         goto out;
4680                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4681                 if (r)
4682                         goto out;
4683                 r = -EFAULT;
4684                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4685                         goto out;
4686                 r = 0;
4687                 break;
4688         }
4689         case KVM_SET_PIT2: {
4690                 r = -EFAULT;
4691                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4692                         goto out;
4693                 r = -ENXIO;
4694                 if (!kvm->arch.vpit)
4695                         goto out;
4696                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4697                 break;
4698         }
4699         case KVM_REINJECT_CONTROL: {
4700                 struct kvm_reinject_control control;
4701                 r =  -EFAULT;
4702                 if (copy_from_user(&control, argp, sizeof(control)))
4703                         goto out;
4704                 r = kvm_vm_ioctl_reinject(kvm, &control);
4705                 break;
4706         }
4707         case KVM_SET_BOOT_CPU_ID:
4708                 r = 0;
4709                 mutex_lock(&kvm->lock);
4710                 if (kvm->created_vcpus)
4711                         r = -EBUSY;
4712                 else
4713                         kvm->arch.bsp_vcpu_id = arg;
4714                 mutex_unlock(&kvm->lock);
4715                 break;
4716         case KVM_XEN_HVM_CONFIG: {
4717                 struct kvm_xen_hvm_config xhc;
4718                 r = -EFAULT;
4719                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4720                         goto out;
4721                 r = -EINVAL;
4722                 if (xhc.flags)
4723                         goto out;
4724                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4725                 r = 0;
4726                 break;
4727         }
4728         case KVM_SET_CLOCK: {
4729                 struct kvm_clock_data user_ns;
4730                 u64 now_ns;
4731
4732                 r = -EFAULT;
4733                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4734                         goto out;
4735
4736                 r = -EINVAL;
4737                 if (user_ns.flags)
4738                         goto out;
4739
4740                 r = 0;
4741                 /*
4742                  * TODO: userspace has to take care of races with VCPU_RUN, so
4743                  * kvm_gen_update_masterclock() can be cut down to locked
4744                  * pvclock_update_vm_gtod_copy().
4745                  */
4746                 kvm_gen_update_masterclock(kvm);
4747                 now_ns = get_kvmclock_ns(kvm);
4748                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4749                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4750                 break;
4751         }
4752         case KVM_GET_CLOCK: {
4753                 struct kvm_clock_data user_ns;
4754                 u64 now_ns;
4755
4756                 now_ns = get_kvmclock_ns(kvm);
4757                 user_ns.clock = now_ns;
4758                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4759                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4760
4761                 r = -EFAULT;
4762                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4763                         goto out;
4764                 r = 0;
4765                 break;
4766         }
4767         case KVM_MEMORY_ENCRYPT_OP: {
4768                 r = -ENOTTY;
4769                 if (kvm_x86_ops->mem_enc_op)
4770                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4771                 break;
4772         }
4773         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4774                 struct kvm_enc_region region;
4775
4776                 r = -EFAULT;
4777                 if (copy_from_user(&region, argp, sizeof(region)))
4778                         goto out;
4779
4780                 r = -ENOTTY;
4781                 if (kvm_x86_ops->mem_enc_reg_region)
4782                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4783                 break;
4784         }
4785         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4786                 struct kvm_enc_region region;
4787
4788                 r = -EFAULT;
4789                 if (copy_from_user(&region, argp, sizeof(region)))
4790                         goto out;
4791
4792                 r = -ENOTTY;
4793                 if (kvm_x86_ops->mem_enc_unreg_region)
4794                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4795                 break;
4796         }
4797         case KVM_HYPERV_EVENTFD: {
4798                 struct kvm_hyperv_eventfd hvevfd;
4799
4800                 r = -EFAULT;
4801                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4802                         goto out;
4803                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4804                 break;
4805         }
4806         default:
4807                 r = -ENOTTY;
4808         }
4809 out:
4810         return r;
4811 }
4812
4813 static void kvm_init_msr_list(void)
4814 {
4815         u32 dummy[2];
4816         unsigned i, j;
4817
4818         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4819                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4820                         continue;
4821
4822                 /*
4823                  * Even MSRs that are valid in the host may not be exposed
4824                  * to the guests in some cases.
4825                  */
4826                 switch (msrs_to_save[i]) {
4827                 case MSR_IA32_BNDCFGS:
4828                         if (!kvm_mpx_supported())
4829                                 continue;
4830                         break;
4831                 case MSR_TSC_AUX:
4832                         if (!kvm_x86_ops->rdtscp_supported())
4833                                 continue;
4834                         break;
4835                 default:
4836                         break;
4837                 }
4838
4839                 if (j < i)
4840                         msrs_to_save[j] = msrs_to_save[i];
4841                 j++;
4842         }
4843         num_msrs_to_save = j;
4844
4845         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4846                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
4847                         continue;
4848
4849                 if (j < i)
4850                         emulated_msrs[j] = emulated_msrs[i];
4851                 j++;
4852         }
4853         num_emulated_msrs = j;
4854
4855         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
4856                 struct kvm_msr_entry msr;
4857
4858                 msr.index = msr_based_features[i];
4859                 if (kvm_get_msr_feature(&msr))
4860                         continue;
4861
4862                 if (j < i)
4863                         msr_based_features[j] = msr_based_features[i];
4864                 j++;
4865         }
4866         num_msr_based_features = j;
4867 }
4868
4869 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4870                            const void *v)
4871 {
4872         int handled = 0;
4873         int n;
4874
4875         do {
4876                 n = min(len, 8);
4877                 if (!(lapic_in_kernel(vcpu) &&
4878                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4879                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4880                         break;
4881                 handled += n;
4882                 addr += n;
4883                 len -= n;
4884                 v += n;
4885         } while (len);
4886
4887         return handled;
4888 }
4889
4890 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4891 {
4892         int handled = 0;
4893         int n;
4894
4895         do {
4896                 n = min(len, 8);
4897                 if (!(lapic_in_kernel(vcpu) &&
4898                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4899                                          addr, n, v))
4900                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4901                         break;
4902                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4903                 handled += n;
4904                 addr += n;
4905                 len -= n;
4906                 v += n;
4907         } while (len);
4908
4909         return handled;
4910 }
4911
4912 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4913                         struct kvm_segment *var, int seg)
4914 {
4915         kvm_x86_ops->set_segment(vcpu, var, seg);
4916 }
4917
4918 void kvm_get_segment(struct kvm_vcpu *vcpu,
4919                      struct kvm_segment *var, int seg)
4920 {
4921         kvm_x86_ops->get_segment(vcpu, var, seg);
4922 }
4923
4924 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4925                            struct x86_exception *exception)
4926 {
4927         gpa_t t_gpa;
4928
4929         BUG_ON(!mmu_is_nested(vcpu));
4930
4931         /* NPT walks are always user-walks */
4932         access |= PFERR_USER_MASK;
4933         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
4934
4935         return t_gpa;
4936 }
4937
4938 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4939                               struct x86_exception *exception)
4940 {
4941         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4942         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4943 }
4944
4945  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4946                                 struct x86_exception *exception)
4947 {
4948         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4949         access |= PFERR_FETCH_MASK;
4950         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4951 }
4952
4953 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4954                                struct x86_exception *exception)
4955 {
4956         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4957         access |= PFERR_WRITE_MASK;
4958         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4959 }
4960
4961 /* uses this to access any guest's mapped memory without checking CPL */
4962 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4963                                 struct x86_exception *exception)
4964 {
4965         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4966 }
4967
4968 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4969                                       struct kvm_vcpu *vcpu, u32 access,
4970                                       struct x86_exception *exception)
4971 {
4972         void *data = val;
4973         int r = X86EMUL_CONTINUE;
4974
4975         while (bytes) {
4976                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4977                                                             exception);
4978                 unsigned offset = addr & (PAGE_SIZE-1);
4979                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4980                 int ret;
4981
4982                 if (gpa == UNMAPPED_GVA)
4983                         return X86EMUL_PROPAGATE_FAULT;
4984                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4985                                                offset, toread);
4986                 if (ret < 0) {
4987                         r = X86EMUL_IO_NEEDED;
4988                         goto out;
4989                 }
4990
4991                 bytes -= toread;
4992                 data += toread;
4993                 addr += toread;
4994         }
4995 out:
4996         return r;
4997 }
4998
4999 /* used for instruction fetching */
5000 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5001                                 gva_t addr, void *val, unsigned int bytes,
5002                                 struct x86_exception *exception)
5003 {
5004         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5005         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5006         unsigned offset;
5007         int ret;
5008
5009         /* Inline kvm_read_guest_virt_helper for speed.  */
5010         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5011                                                     exception);
5012         if (unlikely(gpa == UNMAPPED_GVA))
5013                 return X86EMUL_PROPAGATE_FAULT;
5014
5015         offset = addr & (PAGE_SIZE-1);
5016         if (WARN_ON(offset + bytes > PAGE_SIZE))
5017                 bytes = (unsigned)PAGE_SIZE - offset;
5018         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5019                                        offset, bytes);
5020         if (unlikely(ret < 0))
5021                 return X86EMUL_IO_NEEDED;
5022
5023         return X86EMUL_CONTINUE;
5024 }
5025
5026 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5027                                gva_t addr, void *val, unsigned int bytes,
5028                                struct x86_exception *exception)
5029 {
5030         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5031
5032         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5033                                           exception);
5034 }
5035 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5036
5037 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5038                              gva_t addr, void *val, unsigned int bytes,
5039                              struct x86_exception *exception, bool system)
5040 {
5041         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5042         u32 access = 0;
5043
5044         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5045                 access |= PFERR_USER_MASK;
5046
5047         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5048 }
5049
5050 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5051                 unsigned long addr, void *val, unsigned int bytes)
5052 {
5053         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5054         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5055
5056         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5057 }
5058
5059 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5060                                       struct kvm_vcpu *vcpu, u32 access,
5061                                       struct x86_exception *exception)
5062 {
5063         void *data = val;
5064         int r = X86EMUL_CONTINUE;
5065
5066         while (bytes) {
5067                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5068                                                              access,
5069                                                              exception);
5070                 unsigned offset = addr & (PAGE_SIZE-1);
5071                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5072                 int ret;
5073
5074                 if (gpa == UNMAPPED_GVA)
5075                         return X86EMUL_PROPAGATE_FAULT;
5076                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5077                 if (ret < 0) {
5078                         r = X86EMUL_IO_NEEDED;
5079                         goto out;
5080                 }
5081
5082                 bytes -= towrite;
5083                 data += towrite;
5084                 addr += towrite;
5085         }
5086 out:
5087         return r;
5088 }
5089
5090 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5091                               unsigned int bytes, struct x86_exception *exception,
5092                               bool system)
5093 {
5094         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5095         u32 access = PFERR_WRITE_MASK;
5096
5097         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5098                 access |= PFERR_USER_MASK;
5099
5100         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5101                                            access, exception);
5102 }
5103
5104 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5105                                 unsigned int bytes, struct x86_exception *exception)
5106 {
5107         /* kvm_write_guest_virt_system can pull in tons of pages. */
5108         vcpu->arch.l1tf_flush_l1d = true;
5109
5110         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5111                                            PFERR_WRITE_MASK, exception);
5112 }
5113 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5114
5115 int handle_ud(struct kvm_vcpu *vcpu)
5116 {
5117         int emul_type = EMULTYPE_TRAP_UD;
5118         enum emulation_result er;
5119         char sig[5]; /* ud2; .ascii "kvm" */
5120         struct x86_exception e;
5121
5122         if (force_emulation_prefix &&
5123             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5124                                 sig, sizeof(sig), &e) == 0 &&
5125             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5126                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5127                 emul_type = 0;
5128         }
5129
5130         er = kvm_emulate_instruction(vcpu, emul_type);
5131         if (er == EMULATE_USER_EXIT)
5132                 return 0;
5133         if (er != EMULATE_DONE)
5134                 kvm_queue_exception(vcpu, UD_VECTOR);
5135         return 1;
5136 }
5137 EXPORT_SYMBOL_GPL(handle_ud);
5138
5139 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5140                             gpa_t gpa, bool write)
5141 {
5142         /* For APIC access vmexit */
5143         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5144                 return 1;
5145
5146         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5147                 trace_vcpu_match_mmio(gva, gpa, write, true);
5148                 return 1;
5149         }
5150
5151         return 0;
5152 }
5153
5154 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5155                                 gpa_t *gpa, struct x86_exception *exception,
5156                                 bool write)
5157 {
5158         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5159                 | (write ? PFERR_WRITE_MASK : 0);
5160
5161         /*
5162          * currently PKRU is only applied to ept enabled guest so
5163          * there is no pkey in EPT page table for L1 guest or EPT
5164          * shadow page table for L2 guest.
5165          */
5166         if (vcpu_match_mmio_gva(vcpu, gva)
5167             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5168                                  vcpu->arch.access, 0, access)) {
5169                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5170                                         (gva & (PAGE_SIZE - 1));
5171                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5172                 return 1;
5173         }
5174
5175         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5176
5177         if (*gpa == UNMAPPED_GVA)
5178                 return -1;
5179
5180         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5181 }
5182
5183 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5184                         const void *val, int bytes)
5185 {
5186         int ret;
5187
5188         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5189         if (ret < 0)
5190                 return 0;
5191         kvm_page_track_write(vcpu, gpa, val, bytes);
5192         return 1;
5193 }
5194
5195 struct read_write_emulator_ops {
5196         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5197                                   int bytes);
5198         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5199                                   void *val, int bytes);
5200         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5201                                int bytes, void *val);
5202         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5203                                     void *val, int bytes);
5204         bool write;
5205 };
5206
5207 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5208 {
5209         if (vcpu->mmio_read_completed) {
5210                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5211                                vcpu->mmio_fragments[0].gpa, val);
5212                 vcpu->mmio_read_completed = 0;
5213                 return 1;
5214         }
5215
5216         return 0;
5217 }
5218
5219 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5220                         void *val, int bytes)
5221 {
5222         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5223 }
5224
5225 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5226                          void *val, int bytes)
5227 {
5228         return emulator_write_phys(vcpu, gpa, val, bytes);
5229 }
5230
5231 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5232 {
5233         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5234         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5235 }
5236
5237 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5238                           void *val, int bytes)
5239 {
5240         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5241         return X86EMUL_IO_NEEDED;
5242 }
5243
5244 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5245                            void *val, int bytes)
5246 {
5247         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5248
5249         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5250         return X86EMUL_CONTINUE;
5251 }
5252
5253 static const struct read_write_emulator_ops read_emultor = {
5254         .read_write_prepare = read_prepare,
5255         .read_write_emulate = read_emulate,
5256         .read_write_mmio = vcpu_mmio_read,
5257         .read_write_exit_mmio = read_exit_mmio,
5258 };
5259
5260 static const struct read_write_emulator_ops write_emultor = {
5261         .read_write_emulate = write_emulate,
5262         .read_write_mmio = write_mmio,
5263         .read_write_exit_mmio = write_exit_mmio,
5264         .write = true,
5265 };
5266
5267 static int emulator_read_write_onepage(unsigned long addr, void *val,
5268                                        unsigned int bytes,
5269                                        struct x86_exception *exception,
5270                                        struct kvm_vcpu *vcpu,
5271                                        const struct read_write_emulator_ops *ops)
5272 {
5273         gpa_t gpa;
5274         int handled, ret;
5275         bool write = ops->write;
5276         struct kvm_mmio_fragment *frag;
5277         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5278
5279         /*
5280          * If the exit was due to a NPF we may already have a GPA.
5281          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5282          * Note, this cannot be used on string operations since string
5283          * operation using rep will only have the initial GPA from the NPF
5284          * occurred.
5285          */
5286         if (vcpu->arch.gpa_available &&
5287             emulator_can_use_gpa(ctxt) &&
5288             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5289                 gpa = vcpu->arch.gpa_val;
5290                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5291         } else {
5292                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5293                 if (ret < 0)
5294                         return X86EMUL_PROPAGATE_FAULT;
5295         }
5296
5297         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5298                 return X86EMUL_CONTINUE;
5299
5300         /*
5301          * Is this MMIO handled locally?
5302          */
5303         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5304         if (handled == bytes)
5305                 return X86EMUL_CONTINUE;
5306
5307         gpa += handled;
5308         bytes -= handled;
5309         val += handled;
5310
5311         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5312         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5313         frag->gpa = gpa;
5314         frag->data = val;
5315         frag->len = bytes;
5316         return X86EMUL_CONTINUE;
5317 }
5318
5319 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5320                         unsigned long addr,
5321                         void *val, unsigned int bytes,
5322                         struct x86_exception *exception,
5323                         const struct read_write_emulator_ops *ops)
5324 {
5325         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5326         gpa_t gpa;
5327         int rc;
5328
5329         if (ops->read_write_prepare &&
5330                   ops->read_write_prepare(vcpu, val, bytes))
5331                 return X86EMUL_CONTINUE;
5332
5333         vcpu->mmio_nr_fragments = 0;
5334
5335         /* Crossing a page boundary? */
5336         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5337                 int now;
5338
5339                 now = -addr & ~PAGE_MASK;
5340                 rc = emulator_read_write_onepage(addr, val, now, exception,
5341                                                  vcpu, ops);
5342
5343                 if (rc != X86EMUL_CONTINUE)
5344                         return rc;
5345                 addr += now;
5346                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5347                         addr = (u32)addr;
5348                 val += now;
5349                 bytes -= now;
5350         }
5351
5352         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5353                                          vcpu, ops);
5354         if (rc != X86EMUL_CONTINUE)
5355                 return rc;
5356
5357         if (!vcpu->mmio_nr_fragments)
5358                 return rc;
5359
5360         gpa = vcpu->mmio_fragments[0].gpa;
5361
5362         vcpu->mmio_needed = 1;
5363         vcpu->mmio_cur_fragment = 0;
5364
5365         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5366         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5367         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5368         vcpu->run->mmio.phys_addr = gpa;
5369
5370         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5371 }
5372
5373 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5374                                   unsigned long addr,
5375                                   void *val,
5376                                   unsigned int bytes,
5377                                   struct x86_exception *exception)
5378 {
5379         return emulator_read_write(ctxt, addr, val, bytes,
5380                                    exception, &read_emultor);
5381 }
5382
5383 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5384                             unsigned long addr,
5385                             const void *val,
5386                             unsigned int bytes,
5387                             struct x86_exception *exception)
5388 {
5389         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5390                                    exception, &write_emultor);
5391 }
5392
5393 #define CMPXCHG_TYPE(t, ptr, old, new) \
5394         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5395
5396 #ifdef CONFIG_X86_64
5397 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5398 #else
5399 #  define CMPXCHG64(ptr, old, new) \
5400         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5401 #endif
5402
5403 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5404                                      unsigned long addr,
5405                                      const void *old,
5406                                      const void *new,
5407                                      unsigned int bytes,
5408                                      struct x86_exception *exception)
5409 {
5410         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5411         gpa_t gpa;
5412         struct page *page;
5413         char *kaddr;
5414         bool exchanged;
5415
5416         /* guests cmpxchg8b have to be emulated atomically */
5417         if (bytes > 8 || (bytes & (bytes - 1)))
5418                 goto emul_write;
5419
5420         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5421
5422         if (gpa == UNMAPPED_GVA ||
5423             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5424                 goto emul_write;
5425
5426         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5427                 goto emul_write;
5428
5429         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
5430         if (is_error_page(page))
5431                 goto emul_write;
5432
5433         kaddr = kmap_atomic(page);
5434         kaddr += offset_in_page(gpa);
5435         switch (bytes) {
5436         case 1:
5437                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5438                 break;
5439         case 2:
5440                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5441                 break;
5442         case 4:
5443                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5444                 break;
5445         case 8:
5446                 exchanged = CMPXCHG64(kaddr, old, new);
5447                 break;
5448         default:
5449                 BUG();
5450         }
5451         kunmap_atomic(kaddr);
5452         kvm_release_page_dirty(page);
5453
5454         if (!exchanged)
5455                 return X86EMUL_CMPXCHG_FAILED;
5456
5457         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5458         kvm_page_track_write(vcpu, gpa, new, bytes);
5459
5460         return X86EMUL_CONTINUE;
5461
5462 emul_write:
5463         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5464
5465         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5466 }
5467
5468 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5469 {
5470         int r = 0, i;
5471
5472         for (i = 0; i < vcpu->arch.pio.count; i++) {
5473                 if (vcpu->arch.pio.in)
5474                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5475                                             vcpu->arch.pio.size, pd);
5476                 else
5477                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5478                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5479                                              pd);
5480                 if (r)
5481                         break;
5482                 pd += vcpu->arch.pio.size;
5483         }
5484         return r;
5485 }
5486
5487 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5488                                unsigned short port, void *val,
5489                                unsigned int count, bool in)
5490 {
5491         vcpu->arch.pio.port = port;
5492         vcpu->arch.pio.in = in;
5493         vcpu->arch.pio.count  = count;
5494         vcpu->arch.pio.size = size;
5495
5496         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5497                 vcpu->arch.pio.count = 0;
5498                 return 1;
5499         }
5500
5501         vcpu->run->exit_reason = KVM_EXIT_IO;
5502         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5503         vcpu->run->io.size = size;
5504         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5505         vcpu->run->io.count = count;
5506         vcpu->run->io.port = port;
5507
5508         return 0;
5509 }
5510
5511 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5512                                     int size, unsigned short port, void *val,
5513                                     unsigned int count)
5514 {
5515         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5516         int ret;
5517
5518         if (vcpu->arch.pio.count)
5519                 goto data_avail;
5520
5521         memset(vcpu->arch.pio_data, 0, size * count);
5522
5523         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5524         if (ret) {
5525 data_avail:
5526                 memcpy(val, vcpu->arch.pio_data, size * count);
5527                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5528                 vcpu->arch.pio.count = 0;
5529                 return 1;
5530         }
5531
5532         return 0;
5533 }
5534
5535 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5536                                      int size, unsigned short port,
5537                                      const void *val, unsigned int count)
5538 {
5539         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5540
5541         memcpy(vcpu->arch.pio_data, val, size * count);
5542         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5543         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5544 }
5545
5546 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5547 {
5548         return kvm_x86_ops->get_segment_base(vcpu, seg);
5549 }
5550
5551 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5552 {
5553         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5554 }
5555
5556 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5557 {
5558         if (!need_emulate_wbinvd(vcpu))
5559                 return X86EMUL_CONTINUE;
5560
5561         if (kvm_x86_ops->has_wbinvd_exit()) {
5562                 int cpu = get_cpu();
5563
5564                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5565                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5566                                 wbinvd_ipi, NULL, 1);
5567                 put_cpu();
5568                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5569         } else
5570                 wbinvd();
5571         return X86EMUL_CONTINUE;
5572 }
5573
5574 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5575 {
5576         kvm_emulate_wbinvd_noskip(vcpu);
5577         return kvm_skip_emulated_instruction(vcpu);
5578 }
5579 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5580
5581
5582
5583 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5584 {
5585         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5586 }
5587
5588 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5589                            unsigned long *dest)
5590 {
5591         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5592 }
5593
5594 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5595                            unsigned long value)
5596 {
5597
5598         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5599 }
5600
5601 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5602 {
5603         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5604 }
5605
5606 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5607 {
5608         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5609         unsigned long value;
5610
5611         switch (cr) {
5612         case 0:
5613                 value = kvm_read_cr0(vcpu);
5614                 break;
5615         case 2:
5616                 value = vcpu->arch.cr2;
5617                 break;
5618         case 3:
5619                 value = kvm_read_cr3(vcpu);
5620                 break;
5621         case 4:
5622                 value = kvm_read_cr4(vcpu);
5623                 break;
5624         case 8:
5625                 value = kvm_get_cr8(vcpu);
5626                 break;
5627         default:
5628                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5629                 return 0;
5630         }
5631
5632         return value;
5633 }
5634
5635 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5636 {
5637         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5638         int res = 0;
5639
5640         switch (cr) {
5641         case 0:
5642                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5643                 break;
5644         case 2:
5645                 vcpu->arch.cr2 = val;
5646                 break;
5647         case 3:
5648                 res = kvm_set_cr3(vcpu, val);
5649                 break;
5650         case 4:
5651                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5652                 break;
5653         case 8:
5654                 res = kvm_set_cr8(vcpu, val);
5655                 break;
5656         default:
5657                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5658                 res = -1;
5659         }
5660
5661         return res;
5662 }
5663
5664 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5665 {
5666         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5667 }
5668
5669 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5670 {
5671         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5672 }
5673
5674 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5675 {
5676         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5677 }
5678
5679 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5680 {
5681         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5682 }
5683
5684 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5685 {
5686         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5687 }
5688
5689 static unsigned long emulator_get_cached_segment_base(
5690         struct x86_emulate_ctxt *ctxt, int seg)
5691 {
5692         return get_segment_base(emul_to_vcpu(ctxt), seg);
5693 }
5694
5695 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5696                                  struct desc_struct *desc, u32 *base3,
5697                                  int seg)
5698 {
5699         struct kvm_segment var;
5700
5701         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5702         *selector = var.selector;
5703
5704         if (var.unusable) {
5705                 memset(desc, 0, sizeof(*desc));
5706                 if (base3)
5707                         *base3 = 0;
5708                 return false;
5709         }
5710
5711         if (var.g)
5712                 var.limit >>= 12;
5713         set_desc_limit(desc, var.limit);
5714         set_desc_base(desc, (unsigned long)var.base);
5715 #ifdef CONFIG_X86_64
5716         if (base3)
5717                 *base3 = var.base >> 32;
5718 #endif
5719         desc->type = var.type;
5720         desc->s = var.s;
5721         desc->dpl = var.dpl;
5722         desc->p = var.present;
5723         desc->avl = var.avl;
5724         desc->l = var.l;
5725         desc->d = var.db;
5726         desc->g = var.g;
5727
5728         return true;
5729 }
5730
5731 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5732                                  struct desc_struct *desc, u32 base3,
5733                                  int seg)
5734 {
5735         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5736         struct kvm_segment var;
5737
5738         var.selector = selector;
5739         var.base = get_desc_base(desc);
5740 #ifdef CONFIG_X86_64
5741         var.base |= ((u64)base3) << 32;
5742 #endif
5743         var.limit = get_desc_limit(desc);
5744         if (desc->g)
5745                 var.limit = (var.limit << 12) | 0xfff;
5746         var.type = desc->type;
5747         var.dpl = desc->dpl;
5748         var.db = desc->d;
5749         var.s = desc->s;
5750         var.l = desc->l;
5751         var.g = desc->g;
5752         var.avl = desc->avl;
5753         var.present = desc->p;
5754         var.unusable = !var.present;
5755         var.padding = 0;
5756
5757         kvm_set_segment(vcpu, &var, seg);
5758         return;
5759 }
5760
5761 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5762                             u32 msr_index, u64 *pdata)
5763 {
5764         struct msr_data msr;
5765         int r;
5766
5767         msr.index = msr_index;
5768         msr.host_initiated = false;
5769         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5770         if (r)
5771                 return r;
5772
5773         *pdata = msr.data;
5774         return 0;
5775 }
5776
5777 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5778                             u32 msr_index, u64 data)
5779 {
5780         struct msr_data msr;
5781
5782         msr.data = data;
5783         msr.index = msr_index;
5784         msr.host_initiated = false;
5785         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5786 }
5787
5788 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5789 {
5790         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5791
5792         return vcpu->arch.smbase;
5793 }
5794
5795 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5796 {
5797         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5798
5799         vcpu->arch.smbase = smbase;
5800 }
5801
5802 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5803                               u32 pmc)
5804 {
5805         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5806 }
5807
5808 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5809                              u32 pmc, u64 *pdata)
5810 {
5811         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5812 }
5813
5814 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5815 {
5816         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5817 }
5818
5819 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5820                               struct x86_instruction_info *info,
5821                               enum x86_intercept_stage stage)
5822 {
5823         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5824 }
5825
5826 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5827                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5828 {
5829         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5830 }
5831
5832 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5833 {
5834         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5835 }
5836
5837 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5838 {
5839         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5840 }
5841
5842 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5843 {
5844         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5845 }
5846
5847 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5848 {
5849         return emul_to_vcpu(ctxt)->arch.hflags;
5850 }
5851
5852 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5853 {
5854         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5855 }
5856
5857 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5858 {
5859         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5860 }
5861
5862 static const struct x86_emulate_ops emulate_ops = {
5863         .read_gpr            = emulator_read_gpr,
5864         .write_gpr           = emulator_write_gpr,
5865         .read_std            = emulator_read_std,
5866         .write_std           = emulator_write_std,
5867         .read_phys           = kvm_read_guest_phys_system,
5868         .fetch               = kvm_fetch_guest_virt,
5869         .read_emulated       = emulator_read_emulated,
5870         .write_emulated      = emulator_write_emulated,
5871         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5872         .invlpg              = emulator_invlpg,
5873         .pio_in_emulated     = emulator_pio_in_emulated,
5874         .pio_out_emulated    = emulator_pio_out_emulated,
5875         .get_segment         = emulator_get_segment,
5876         .set_segment         = emulator_set_segment,
5877         .get_cached_segment_base = emulator_get_cached_segment_base,
5878         .get_gdt             = emulator_get_gdt,
5879         .get_idt             = emulator_get_idt,
5880         .set_gdt             = emulator_set_gdt,
5881         .set_idt             = emulator_set_idt,
5882         .get_cr              = emulator_get_cr,
5883         .set_cr              = emulator_set_cr,
5884         .cpl                 = emulator_get_cpl,
5885         .get_dr              = emulator_get_dr,
5886         .set_dr              = emulator_set_dr,
5887         .get_smbase          = emulator_get_smbase,
5888         .set_smbase          = emulator_set_smbase,
5889         .set_msr             = emulator_set_msr,
5890         .get_msr             = emulator_get_msr,
5891         .check_pmc           = emulator_check_pmc,
5892         .read_pmc            = emulator_read_pmc,
5893         .halt                = emulator_halt,
5894         .wbinvd              = emulator_wbinvd,
5895         .fix_hypercall       = emulator_fix_hypercall,
5896         .intercept           = emulator_intercept,
5897         .get_cpuid           = emulator_get_cpuid,
5898         .set_nmi_mask        = emulator_set_nmi_mask,
5899         .get_hflags          = emulator_get_hflags,
5900         .set_hflags          = emulator_set_hflags,
5901         .pre_leave_smm       = emulator_pre_leave_smm,
5902 };
5903
5904 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5905 {
5906         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5907         /*
5908          * an sti; sti; sequence only disable interrupts for the first
5909          * instruction. So, if the last instruction, be it emulated or
5910          * not, left the system with the INT_STI flag enabled, it
5911          * means that the last instruction is an sti. We should not
5912          * leave the flag on in this case. The same goes for mov ss
5913          */
5914         if (int_shadow & mask)
5915                 mask = 0;
5916         if (unlikely(int_shadow || mask)) {
5917                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5918                 if (!mask)
5919                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5920         }
5921 }
5922
5923 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5924 {
5925         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5926         if (ctxt->exception.vector == PF_VECTOR)
5927                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5928
5929         if (ctxt->exception.error_code_valid)
5930                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5931                                       ctxt->exception.error_code);
5932         else
5933                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5934         return false;
5935 }
5936
5937 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5938 {
5939         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5940         int cs_db, cs_l;
5941
5942         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5943
5944         ctxt->eflags = kvm_get_rflags(vcpu);
5945         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5946
5947         ctxt->eip = kvm_rip_read(vcpu);
5948         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5949                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5950                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5951                      cs_db                              ? X86EMUL_MODE_PROT32 :
5952                                                           X86EMUL_MODE_PROT16;
5953         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5954         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5955         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5956
5957         init_decode_cache(ctxt);
5958         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5959 }
5960
5961 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5962 {
5963         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5964         int ret;
5965
5966         init_emulate_ctxt(vcpu);
5967
5968         ctxt->op_bytes = 2;
5969         ctxt->ad_bytes = 2;
5970         ctxt->_eip = ctxt->eip + inc_eip;
5971         ret = emulate_int_real(ctxt, irq);
5972
5973         if (ret != X86EMUL_CONTINUE)
5974                 return EMULATE_FAIL;
5975
5976         ctxt->eip = ctxt->_eip;
5977         kvm_rip_write(vcpu, ctxt->eip);
5978         kvm_set_rflags(vcpu, ctxt->eflags);
5979
5980         return EMULATE_DONE;
5981 }
5982 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5983
5984 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
5985 {
5986         int r = EMULATE_DONE;
5987
5988         ++vcpu->stat.insn_emulation_fail;
5989         trace_kvm_emulate_insn_failed(vcpu);
5990
5991         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
5992                 return EMULATE_FAIL;
5993
5994         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5995                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5996                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5997                 vcpu->run->internal.ndata = 0;
5998                 r = EMULATE_USER_EXIT;
5999         }
6000
6001         kvm_queue_exception(vcpu, UD_VECTOR);
6002
6003         return r;
6004 }
6005
6006 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6007                                   bool write_fault_to_shadow_pgtable,
6008                                   int emulation_type)
6009 {
6010         gpa_t gpa = cr2;
6011         kvm_pfn_t pfn;
6012
6013         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6014                 return false;
6015
6016         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6017                 return false;
6018
6019         if (!vcpu->arch.mmu->direct_map) {
6020                 /*
6021                  * Write permission should be allowed since only
6022                  * write access need to be emulated.
6023                  */
6024                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6025
6026                 /*
6027                  * If the mapping is invalid in guest, let cpu retry
6028                  * it to generate fault.
6029                  */
6030                 if (gpa == UNMAPPED_GVA)
6031                         return true;
6032         }
6033
6034         /*
6035          * Do not retry the unhandleable instruction if it faults on the
6036          * readonly host memory, otherwise it will goto a infinite loop:
6037          * retry instruction -> write #PF -> emulation fail -> retry
6038          * instruction -> ...
6039          */
6040         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6041
6042         /*
6043          * If the instruction failed on the error pfn, it can not be fixed,
6044          * report the error to userspace.
6045          */
6046         if (is_error_noslot_pfn(pfn))
6047                 return false;
6048
6049         kvm_release_pfn_clean(pfn);
6050
6051         /* The instructions are well-emulated on direct mmu. */
6052         if (vcpu->arch.mmu->direct_map) {
6053                 unsigned int indirect_shadow_pages;
6054
6055                 spin_lock(&vcpu->kvm->mmu_lock);
6056                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6057                 spin_unlock(&vcpu->kvm->mmu_lock);
6058
6059                 if (indirect_shadow_pages)
6060                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6061
6062                 return true;
6063         }
6064
6065         /*
6066          * if emulation was due to access to shadowed page table
6067          * and it failed try to unshadow page and re-enter the
6068          * guest to let CPU execute the instruction.
6069          */
6070         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6071
6072         /*
6073          * If the access faults on its page table, it can not
6074          * be fixed by unprotecting shadow page and it should
6075          * be reported to userspace.
6076          */
6077         return !write_fault_to_shadow_pgtable;
6078 }
6079
6080 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6081                               unsigned long cr2,  int emulation_type)
6082 {
6083         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6084         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6085
6086         last_retry_eip = vcpu->arch.last_retry_eip;
6087         last_retry_addr = vcpu->arch.last_retry_addr;
6088
6089         /*
6090          * If the emulation is caused by #PF and it is non-page_table
6091          * writing instruction, it means the VM-EXIT is caused by shadow
6092          * page protected, we can zap the shadow page and retry this
6093          * instruction directly.
6094          *
6095          * Note: if the guest uses a non-page-table modifying instruction
6096          * on the PDE that points to the instruction, then we will unmap
6097          * the instruction and go to an infinite loop. So, we cache the
6098          * last retried eip and the last fault address, if we meet the eip
6099          * and the address again, we can break out of the potential infinite
6100          * loop.
6101          */
6102         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6103
6104         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6105                 return false;
6106
6107         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6108                 return false;
6109
6110         if (x86_page_table_writing_insn(ctxt))
6111                 return false;
6112
6113         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6114                 return false;
6115
6116         vcpu->arch.last_retry_eip = ctxt->eip;
6117         vcpu->arch.last_retry_addr = cr2;
6118
6119         if (!vcpu->arch.mmu->direct_map)
6120                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6121
6122         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6123
6124         return true;
6125 }
6126
6127 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6128 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6129
6130 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6131 {
6132         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6133                 /* This is a good place to trace that we are exiting SMM.  */
6134                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6135
6136                 /* Process a latched INIT or SMI, if any.  */
6137                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6138         }
6139
6140         kvm_mmu_reset_context(vcpu);
6141 }
6142
6143 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
6144 {
6145         unsigned changed = vcpu->arch.hflags ^ emul_flags;
6146
6147         vcpu->arch.hflags = emul_flags;
6148
6149         if (changed & HF_SMM_MASK)
6150                 kvm_smm_changed(vcpu);
6151 }
6152
6153 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6154                                 unsigned long *db)
6155 {
6156         u32 dr6 = 0;
6157         int i;
6158         u32 enable, rwlen;
6159
6160         enable = dr7;
6161         rwlen = dr7 >> 16;
6162         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6163                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6164                         dr6 |= (1 << i);
6165         return dr6;
6166 }
6167
6168 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6169 {
6170         struct kvm_run *kvm_run = vcpu->run;
6171
6172         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6173                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6174                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6175                 kvm_run->debug.arch.exception = DB_VECTOR;
6176                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6177                 *r = EMULATE_USER_EXIT;
6178         } else {
6179                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6180         }
6181 }
6182
6183 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6184 {
6185         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6186         int r = EMULATE_DONE;
6187
6188         kvm_x86_ops->skip_emulated_instruction(vcpu);
6189
6190         /*
6191          * rflags is the old, "raw" value of the flags.  The new value has
6192          * not been saved yet.
6193          *
6194          * This is correct even for TF set by the guest, because "the
6195          * processor will not generate this exception after the instruction
6196          * that sets the TF flag".
6197          */
6198         if (unlikely(rflags & X86_EFLAGS_TF))
6199                 kvm_vcpu_do_singlestep(vcpu, &r);
6200         return r == EMULATE_DONE;
6201 }
6202 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6203
6204 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6205 {
6206         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6207             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6208                 struct kvm_run *kvm_run = vcpu->run;
6209                 unsigned long eip = kvm_get_linear_rip(vcpu);
6210                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6211                                            vcpu->arch.guest_debug_dr7,
6212                                            vcpu->arch.eff_db);
6213
6214                 if (dr6 != 0) {
6215                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6216                         kvm_run->debug.arch.pc = eip;
6217                         kvm_run->debug.arch.exception = DB_VECTOR;
6218                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6219                         *r = EMULATE_USER_EXIT;
6220                         return true;
6221                 }
6222         }
6223
6224         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6225             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6226                 unsigned long eip = kvm_get_linear_rip(vcpu);
6227                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6228                                            vcpu->arch.dr7,
6229                                            vcpu->arch.db);
6230
6231                 if (dr6 != 0) {
6232                         vcpu->arch.dr6 &= ~15;
6233                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6234                         kvm_queue_exception(vcpu, DB_VECTOR);
6235                         *r = EMULATE_DONE;
6236                         return true;
6237                 }
6238         }
6239
6240         return false;
6241 }
6242
6243 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6244 {
6245         switch (ctxt->opcode_len) {
6246         case 1:
6247                 switch (ctxt->b) {
6248                 case 0xe4:      /* IN */
6249                 case 0xe5:
6250                 case 0xec:
6251                 case 0xed:
6252                 case 0xe6:      /* OUT */
6253                 case 0xe7:
6254                 case 0xee:
6255                 case 0xef:
6256                 case 0x6c:      /* INS */
6257                 case 0x6d:
6258                 case 0x6e:      /* OUTS */
6259                 case 0x6f:
6260                         return true;
6261                 }
6262                 break;
6263         case 2:
6264                 switch (ctxt->b) {
6265                 case 0x33:      /* RDPMC */
6266                         return true;
6267                 }
6268                 break;
6269         }
6270
6271         return false;
6272 }
6273
6274 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6275                             unsigned long cr2,
6276                             int emulation_type,
6277                             void *insn,
6278                             int insn_len)
6279 {
6280         int r;
6281         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6282         bool writeback = true;
6283         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6284
6285         vcpu->arch.l1tf_flush_l1d = true;
6286
6287         /*
6288          * Clear write_fault_to_shadow_pgtable here to ensure it is
6289          * never reused.
6290          */
6291         vcpu->arch.write_fault_to_shadow_pgtable = false;
6292         kvm_clear_exception_queue(vcpu);
6293
6294         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6295                 init_emulate_ctxt(vcpu);
6296
6297                 /*
6298                  * We will reenter on the same instruction since
6299                  * we do not set complete_userspace_io.  This does not
6300                  * handle watchpoints yet, those would be handled in
6301                  * the emulate_ops.
6302                  */
6303                 if (!(emulation_type & EMULTYPE_SKIP) &&
6304                     kvm_vcpu_check_breakpoint(vcpu, &r))
6305                         return r;
6306
6307                 ctxt->interruptibility = 0;
6308                 ctxt->have_exception = false;
6309                 ctxt->exception.vector = -1;
6310                 ctxt->perm_ok = false;
6311
6312                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6313
6314                 r = x86_decode_insn(ctxt, insn, insn_len);
6315
6316                 trace_kvm_emulate_insn_start(vcpu);
6317                 ++vcpu->stat.insn_emulation;
6318                 if (r != EMULATION_OK)  {
6319                         if (emulation_type & EMULTYPE_TRAP_UD)
6320                                 return EMULATE_FAIL;
6321                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6322                                                 emulation_type))
6323                                 return EMULATE_DONE;
6324                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6325                                 return EMULATE_DONE;
6326                         if (emulation_type & EMULTYPE_SKIP)
6327                                 return EMULATE_FAIL;
6328                         return handle_emulation_failure(vcpu, emulation_type);
6329                 }
6330         }
6331
6332         if ((emulation_type & EMULTYPE_VMWARE) &&
6333             !is_vmware_backdoor_opcode(ctxt))
6334                 return EMULATE_FAIL;
6335
6336         if (emulation_type & EMULTYPE_SKIP) {
6337                 kvm_rip_write(vcpu, ctxt->_eip);
6338                 if (ctxt->eflags & X86_EFLAGS_RF)
6339                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6340                 return EMULATE_DONE;
6341         }
6342
6343         if (retry_instruction(ctxt, cr2, emulation_type))
6344                 return EMULATE_DONE;
6345
6346         /* this is needed for vmware backdoor interface to work since it
6347            changes registers values  during IO operation */
6348         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6349                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6350                 emulator_invalidate_register_cache(ctxt);
6351         }
6352
6353 restart:
6354         /* Save the faulting GPA (cr2) in the address field */
6355         ctxt->exception.address = cr2;
6356
6357         r = x86_emulate_insn(ctxt);
6358
6359         if (r == EMULATION_INTERCEPTED)
6360                 return EMULATE_DONE;
6361
6362         if (r == EMULATION_FAILED) {
6363                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6364                                         emulation_type))
6365                         return EMULATE_DONE;
6366
6367                 return handle_emulation_failure(vcpu, emulation_type);
6368         }
6369
6370         if (ctxt->have_exception) {
6371                 r = EMULATE_DONE;
6372                 if (inject_emulated_exception(vcpu))
6373                         return r;
6374         } else if (vcpu->arch.pio.count) {
6375                 if (!vcpu->arch.pio.in) {
6376                         /* FIXME: return into emulator if single-stepping.  */
6377                         vcpu->arch.pio.count = 0;
6378                 } else {
6379                         writeback = false;
6380                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6381                 }
6382                 r = EMULATE_USER_EXIT;
6383         } else if (vcpu->mmio_needed) {
6384                 if (!vcpu->mmio_is_write)
6385                         writeback = false;
6386                 r = EMULATE_USER_EXIT;
6387                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6388         } else if (r == EMULATION_RESTART)
6389                 goto restart;
6390         else
6391                 r = EMULATE_DONE;
6392
6393         if (writeback) {
6394                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6395                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6396                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6397                 kvm_rip_write(vcpu, ctxt->eip);
6398                 if (r == EMULATE_DONE &&
6399                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
6400                         kvm_vcpu_do_singlestep(vcpu, &r);
6401                 if (!ctxt->have_exception ||
6402                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6403                         __kvm_set_rflags(vcpu, ctxt->eflags);
6404
6405                 /*
6406                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6407                  * do nothing, and it will be requested again as soon as
6408                  * the shadow expires.  But we still need to check here,
6409                  * because POPF has no interrupt shadow.
6410                  */
6411                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6412                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6413         } else
6414                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6415
6416         return r;
6417 }
6418
6419 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6420 {
6421         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6422 }
6423 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6424
6425 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6426                                         void *insn, int insn_len)
6427 {
6428         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6429 }
6430 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6431
6432 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6433                             unsigned short port)
6434 {
6435         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
6436         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6437                                             size, port, &val, 1);
6438         /* do not return to emulator after return from userspace */
6439         vcpu->arch.pio.count = 0;
6440         return ret;
6441 }
6442
6443 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6444 {
6445         unsigned long val;
6446
6447         /* We should only ever be called with arch.pio.count equal to 1 */
6448         BUG_ON(vcpu->arch.pio.count != 1);
6449
6450         /* For size less than 4 we merge, else we zero extend */
6451         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
6452                                         : 0;
6453
6454         /*
6455          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6456          * the copy and tracing
6457          */
6458         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6459                                  vcpu->arch.pio.port, &val, 1);
6460         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6461
6462         return 1;
6463 }
6464
6465 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6466                            unsigned short port)
6467 {
6468         unsigned long val;
6469         int ret;
6470
6471         /* For size less than 4 we merge, else we zero extend */
6472         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
6473
6474         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6475                                        &val, 1);
6476         if (ret) {
6477                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
6478                 return ret;
6479         }
6480
6481         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6482
6483         return 0;
6484 }
6485
6486 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6487 {
6488         int ret = kvm_skip_emulated_instruction(vcpu);
6489
6490         /*
6491          * TODO: we might be squashing a KVM_GUESTDBG_SINGLESTEP-triggered
6492          * KVM_EXIT_DEBUG here.
6493          */
6494         if (in)
6495                 return kvm_fast_pio_in(vcpu, size, port) && ret;
6496         else
6497                 return kvm_fast_pio_out(vcpu, size, port) && ret;
6498 }
6499 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6500
6501 static int kvmclock_cpu_down_prep(unsigned int cpu)
6502 {
6503         __this_cpu_write(cpu_tsc_khz, 0);
6504         return 0;
6505 }
6506
6507 static void tsc_khz_changed(void *data)
6508 {
6509         struct cpufreq_freqs *freq = data;
6510         unsigned long khz = 0;
6511
6512         if (data)
6513                 khz = freq->new;
6514         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6515                 khz = cpufreq_quick_get(raw_smp_processor_id());
6516         if (!khz)
6517                 khz = tsc_khz;
6518         __this_cpu_write(cpu_tsc_khz, khz);
6519 }
6520
6521 #ifdef CONFIG_X86_64
6522 static void kvm_hyperv_tsc_notifier(void)
6523 {
6524         struct kvm *kvm;
6525         struct kvm_vcpu *vcpu;
6526         int cpu;
6527
6528         spin_lock(&kvm_lock);
6529         list_for_each_entry(kvm, &vm_list, vm_list)
6530                 kvm_make_mclock_inprogress_request(kvm);
6531
6532         hyperv_stop_tsc_emulation();
6533
6534         /* TSC frequency always matches when on Hyper-V */
6535         for_each_present_cpu(cpu)
6536                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6537         kvm_max_guest_tsc_khz = tsc_khz;
6538
6539         list_for_each_entry(kvm, &vm_list, vm_list) {
6540                 struct kvm_arch *ka = &kvm->arch;
6541
6542                 spin_lock(&ka->pvclock_gtod_sync_lock);
6543
6544                 pvclock_update_vm_gtod_copy(kvm);
6545
6546                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6547                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6548
6549                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6550                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6551
6552                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6553         }
6554         spin_unlock(&kvm_lock);
6555 }
6556 #endif
6557
6558 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6559                                      void *data)
6560 {
6561         struct cpufreq_freqs *freq = data;
6562         struct kvm *kvm;
6563         struct kvm_vcpu *vcpu;
6564         int i, send_ipi = 0;
6565
6566         /*
6567          * We allow guests to temporarily run on slowing clocks,
6568          * provided we notify them after, or to run on accelerating
6569          * clocks, provided we notify them before.  Thus time never
6570          * goes backwards.
6571          *
6572          * However, we have a problem.  We can't atomically update
6573          * the frequency of a given CPU from this function; it is
6574          * merely a notifier, which can be called from any CPU.
6575          * Changing the TSC frequency at arbitrary points in time
6576          * requires a recomputation of local variables related to
6577          * the TSC for each VCPU.  We must flag these local variables
6578          * to be updated and be sure the update takes place with the
6579          * new frequency before any guests proceed.
6580          *
6581          * Unfortunately, the combination of hotplug CPU and frequency
6582          * change creates an intractable locking scenario; the order
6583          * of when these callouts happen is undefined with respect to
6584          * CPU hotplug, and they can race with each other.  As such,
6585          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6586          * undefined; you can actually have a CPU frequency change take
6587          * place in between the computation of X and the setting of the
6588          * variable.  To protect against this problem, all updates of
6589          * the per_cpu tsc_khz variable are done in an interrupt
6590          * protected IPI, and all callers wishing to update the value
6591          * must wait for a synchronous IPI to complete (which is trivial
6592          * if the caller is on the CPU already).  This establishes the
6593          * necessary total order on variable updates.
6594          *
6595          * Note that because a guest time update may take place
6596          * anytime after the setting of the VCPU's request bit, the
6597          * correct TSC value must be set before the request.  However,
6598          * to ensure the update actually makes it to any guest which
6599          * starts running in hardware virtualization between the set
6600          * and the acquisition of the spinlock, we must also ping the
6601          * CPU after setting the request bit.
6602          *
6603          */
6604
6605         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6606                 return 0;
6607         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6608                 return 0;
6609
6610         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6611
6612         spin_lock(&kvm_lock);
6613         list_for_each_entry(kvm, &vm_list, vm_list) {
6614                 kvm_for_each_vcpu(i, vcpu, kvm) {
6615                         if (vcpu->cpu != freq->cpu)
6616                                 continue;
6617                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6618                         if (vcpu->cpu != smp_processor_id())
6619                                 send_ipi = 1;
6620                 }
6621         }
6622         spin_unlock(&kvm_lock);
6623
6624         if (freq->old < freq->new && send_ipi) {
6625                 /*
6626                  * We upscale the frequency.  Must make the guest
6627                  * doesn't see old kvmclock values while running with
6628                  * the new frequency, otherwise we risk the guest sees
6629                  * time go backwards.
6630                  *
6631                  * In case we update the frequency for another cpu
6632                  * (which might be in guest context) send an interrupt
6633                  * to kick the cpu out of guest context.  Next time
6634                  * guest context is entered kvmclock will be updated,
6635                  * so the guest will not see stale values.
6636                  */
6637                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
6638         }
6639         return 0;
6640 }
6641
6642 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6643         .notifier_call  = kvmclock_cpufreq_notifier
6644 };
6645
6646 static int kvmclock_cpu_online(unsigned int cpu)
6647 {
6648         tsc_khz_changed(NULL);
6649         return 0;
6650 }
6651
6652 static void kvm_timer_init(void)
6653 {
6654         max_tsc_khz = tsc_khz;
6655
6656         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6657 #ifdef CONFIG_CPU_FREQ
6658                 struct cpufreq_policy policy;
6659                 int cpu;
6660
6661                 memset(&policy, 0, sizeof(policy));
6662                 cpu = get_cpu();
6663                 cpufreq_get_policy(&policy, cpu);
6664                 if (policy.cpuinfo.max_freq)
6665                         max_tsc_khz = policy.cpuinfo.max_freq;
6666                 put_cpu();
6667 #endif
6668                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6669                                           CPUFREQ_TRANSITION_NOTIFIER);
6670         }
6671         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6672
6673         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6674                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6675 }
6676
6677 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6678 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6679
6680 int kvm_is_in_guest(void)
6681 {
6682         return __this_cpu_read(current_vcpu) != NULL;
6683 }
6684
6685 static int kvm_is_user_mode(void)
6686 {
6687         int user_mode = 3;
6688
6689         if (__this_cpu_read(current_vcpu))
6690                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6691
6692         return user_mode != 0;
6693 }
6694
6695 static unsigned long kvm_get_guest_ip(void)
6696 {
6697         unsigned long ip = 0;
6698
6699         if (__this_cpu_read(current_vcpu))
6700                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6701
6702         return ip;
6703 }
6704
6705 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6706         .is_in_guest            = kvm_is_in_guest,
6707         .is_user_mode           = kvm_is_user_mode,
6708         .get_guest_ip           = kvm_get_guest_ip,
6709 };
6710
6711 static void kvm_set_mmio_spte_mask(void)
6712 {
6713         u64 mask;
6714         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6715
6716         /*
6717          * Set the reserved bits and the present bit of an paging-structure
6718          * entry to generate page fault with PFER.RSV = 1.
6719          */
6720
6721         /*
6722          * Mask the uppermost physical address bit, which would be reserved as
6723          * long as the supported physical address width is less than 52.
6724          */
6725         mask = 1ull << 51;
6726
6727         /* Set the present bit. */
6728         mask |= 1ull;
6729
6730         /*
6731          * If reserved bit is not supported, clear the present bit to disable
6732          * mmio page fault.
6733          */
6734         if (IS_ENABLED(CONFIG_X86_64) && maxphyaddr == 52)
6735                 mask &= ~1ull;
6736
6737         kvm_mmu_set_mmio_spte_mask(mask, mask);
6738 }
6739
6740 #ifdef CONFIG_X86_64
6741 static void pvclock_gtod_update_fn(struct work_struct *work)
6742 {
6743         struct kvm *kvm;
6744
6745         struct kvm_vcpu *vcpu;
6746         int i;
6747
6748         spin_lock(&kvm_lock);
6749         list_for_each_entry(kvm, &vm_list, vm_list)
6750                 kvm_for_each_vcpu(i, vcpu, kvm)
6751                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6752         atomic_set(&kvm_guest_has_master_clock, 0);
6753         spin_unlock(&kvm_lock);
6754 }
6755
6756 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6757
6758 /*
6759  * Notification about pvclock gtod data update.
6760  */
6761 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6762                                void *priv)
6763 {
6764         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6765         struct timekeeper *tk = priv;
6766
6767         update_pvclock_gtod(tk);
6768
6769         /* disable master clock if host does not trust, or does not
6770          * use, TSC based clocksource.
6771          */
6772         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6773             atomic_read(&kvm_guest_has_master_clock) != 0)
6774                 queue_work(system_long_wq, &pvclock_gtod_work);
6775
6776         return 0;
6777 }
6778
6779 static struct notifier_block pvclock_gtod_notifier = {
6780         .notifier_call = pvclock_gtod_notify,
6781 };
6782 #endif
6783
6784 int kvm_arch_init(void *opaque)
6785 {
6786         int r;
6787         struct kvm_x86_ops *ops = opaque;
6788
6789         if (kvm_x86_ops) {
6790                 printk(KERN_ERR "kvm: already loaded the other module\n");
6791                 r = -EEXIST;
6792                 goto out;
6793         }
6794
6795         if (!ops->cpu_has_kvm_support()) {
6796                 printk(KERN_ERR "kvm: no hardware support\n");
6797                 r = -EOPNOTSUPP;
6798                 goto out;
6799         }
6800         if (ops->disabled_by_bios()) {
6801                 printk(KERN_ERR "kvm: disabled by bios\n");
6802                 r = -EOPNOTSUPP;
6803                 goto out;
6804         }
6805
6806         r = -ENOMEM;
6807         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6808         if (!shared_msrs) {
6809                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6810                 goto out;
6811         }
6812
6813         r = kvm_mmu_module_init();
6814         if (r)
6815                 goto out_free_percpu;
6816
6817         kvm_set_mmio_spte_mask();
6818
6819         kvm_x86_ops = ops;
6820
6821         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6822                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6823                         PT_PRESENT_MASK, 0, sme_me_mask);
6824         kvm_timer_init();
6825
6826         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6827
6828         if (boot_cpu_has(X86_FEATURE_XSAVE))
6829                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6830
6831         kvm_lapic_init();
6832 #ifdef CONFIG_X86_64
6833         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6834
6835         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6836                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
6837 #endif
6838
6839         return 0;
6840
6841 out_free_percpu:
6842         free_percpu(shared_msrs);
6843 out:
6844         return r;
6845 }
6846
6847 void kvm_arch_exit(void)
6848 {
6849 #ifdef CONFIG_X86_64
6850         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
6851                 clear_hv_tscchange_cb();
6852 #endif
6853         kvm_lapic_exit();
6854         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6855
6856         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6857                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6858                                             CPUFREQ_TRANSITION_NOTIFIER);
6859         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6860 #ifdef CONFIG_X86_64
6861         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6862 #endif
6863         kvm_x86_ops = NULL;
6864         kvm_mmu_module_exit();
6865         free_percpu(shared_msrs);
6866 }
6867
6868 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6869 {
6870         ++vcpu->stat.halt_exits;
6871         if (lapic_in_kernel(vcpu)) {
6872                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6873                 return 1;
6874         } else {
6875                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6876                 return 0;
6877         }
6878 }
6879 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6880
6881 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6882 {
6883         int ret = kvm_skip_emulated_instruction(vcpu);
6884         /*
6885          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6886          * KVM_EXIT_DEBUG here.
6887          */
6888         return kvm_vcpu_halt(vcpu) && ret;
6889 }
6890 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6891
6892 #ifdef CONFIG_X86_64
6893 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6894                                 unsigned long clock_type)
6895 {
6896         struct kvm_clock_pairing clock_pairing;
6897         struct timespec64 ts;
6898         u64 cycle;
6899         int ret;
6900
6901         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6902                 return -KVM_EOPNOTSUPP;
6903
6904         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6905                 return -KVM_EOPNOTSUPP;
6906
6907         clock_pairing.sec = ts.tv_sec;
6908         clock_pairing.nsec = ts.tv_nsec;
6909         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6910         clock_pairing.flags = 0;
6911         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
6912
6913         ret = 0;
6914         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6915                             sizeof(struct kvm_clock_pairing)))
6916                 ret = -KVM_EFAULT;
6917
6918         return ret;
6919 }
6920 #endif
6921
6922 /*
6923  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6924  *
6925  * @apicid - apicid of vcpu to be kicked.
6926  */
6927 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6928 {
6929         struct kvm_lapic_irq lapic_irq;
6930
6931         lapic_irq.shorthand = 0;
6932         lapic_irq.dest_mode = 0;
6933         lapic_irq.level = 0;
6934         lapic_irq.dest_id = apicid;
6935         lapic_irq.msi_redir_hint = false;
6936
6937         lapic_irq.delivery_mode = APIC_DM_REMRD;
6938         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6939 }
6940
6941 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6942 {
6943         vcpu->arch.apicv_active = false;
6944         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6945 }
6946
6947 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6948 {
6949         unsigned long nr, a0, a1, a2, a3, ret;
6950         int op_64_bit;
6951
6952         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6953                 return kvm_hv_hypercall(vcpu);
6954
6955         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6956         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6957         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6958         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6959         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6960
6961         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6962
6963         op_64_bit = is_64_bit_mode(vcpu);
6964         if (!op_64_bit) {
6965                 nr &= 0xFFFFFFFF;
6966                 a0 &= 0xFFFFFFFF;
6967                 a1 &= 0xFFFFFFFF;
6968                 a2 &= 0xFFFFFFFF;
6969                 a3 &= 0xFFFFFFFF;
6970         }
6971
6972         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6973                 ret = -KVM_EPERM;
6974                 goto out;
6975         }
6976
6977         switch (nr) {
6978         case KVM_HC_VAPIC_POLL_IRQ:
6979                 ret = 0;
6980                 break;
6981         case KVM_HC_KICK_CPU:
6982                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6983                 ret = 0;
6984                 break;
6985 #ifdef CONFIG_X86_64
6986         case KVM_HC_CLOCK_PAIRING:
6987                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6988                 break;
6989         case KVM_HC_SEND_IPI:
6990                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
6991                 break;
6992 #endif
6993         default:
6994                 ret = -KVM_ENOSYS;
6995                 break;
6996         }
6997 out:
6998         if (!op_64_bit)
6999                 ret = (u32)ret;
7000         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
7001
7002         ++vcpu->stat.hypercalls;
7003         return kvm_skip_emulated_instruction(vcpu);
7004 }
7005 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7006
7007 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7008 {
7009         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7010         char instruction[3];
7011         unsigned long rip = kvm_rip_read(vcpu);
7012
7013         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7014
7015         return emulator_write_emulated(ctxt, rip, instruction, 3,
7016                 &ctxt->exception);
7017 }
7018
7019 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7020 {
7021         return vcpu->run->request_interrupt_window &&
7022                 likely(!pic_in_kernel(vcpu->kvm));
7023 }
7024
7025 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7026 {
7027         struct kvm_run *kvm_run = vcpu->run;
7028
7029         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7030         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7031         kvm_run->cr8 = kvm_get_cr8(vcpu);
7032         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7033         kvm_run->ready_for_interrupt_injection =
7034                 pic_in_kernel(vcpu->kvm) ||
7035                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7036 }
7037
7038 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7039 {
7040         int max_irr, tpr;
7041
7042         if (!kvm_x86_ops->update_cr8_intercept)
7043                 return;
7044
7045         if (!lapic_in_kernel(vcpu))
7046                 return;
7047
7048         if (vcpu->arch.apicv_active)
7049                 return;
7050
7051         if (!vcpu->arch.apic->vapic_addr)
7052                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7053         else
7054                 max_irr = -1;
7055
7056         if (max_irr != -1)
7057                 max_irr >>= 4;
7058
7059         tpr = kvm_lapic_get_cr8(vcpu);
7060
7061         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7062 }
7063
7064 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7065 {
7066         int r;
7067
7068         /* try to reinject previous events if any */
7069
7070         if (vcpu->arch.exception.injected)
7071                 kvm_x86_ops->queue_exception(vcpu);
7072         /*
7073          * Do not inject an NMI or interrupt if there is a pending
7074          * exception.  Exceptions and interrupts are recognized at
7075          * instruction boundaries, i.e. the start of an instruction.
7076          * Trap-like exceptions, e.g. #DB, have higher priority than
7077          * NMIs and interrupts, i.e. traps are recognized before an
7078          * NMI/interrupt that's pending on the same instruction.
7079          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7080          * priority, but are only generated (pended) during instruction
7081          * execution, i.e. a pending fault-like exception means the
7082          * fault occurred on the *previous* instruction and must be
7083          * serviced prior to recognizing any new events in order to
7084          * fully complete the previous instruction.
7085          */
7086         else if (!vcpu->arch.exception.pending) {
7087                 if (vcpu->arch.nmi_injected)
7088                         kvm_x86_ops->set_nmi(vcpu);
7089                 else if (vcpu->arch.interrupt.injected)
7090                         kvm_x86_ops->set_irq(vcpu);
7091         }
7092
7093         /*
7094          * Call check_nested_events() even if we reinjected a previous event
7095          * in order for caller to determine if it should require immediate-exit
7096          * from L2 to L1 due to pending L1 events which require exit
7097          * from L2 to L1.
7098          */
7099         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7100                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7101                 if (r != 0)
7102                         return r;
7103         }
7104
7105         /* try to inject new event if pending */
7106         if (vcpu->arch.exception.pending) {
7107                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7108                                         vcpu->arch.exception.has_error_code,
7109                                         vcpu->arch.exception.error_code);
7110
7111                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7112                 vcpu->arch.exception.pending = false;
7113                 vcpu->arch.exception.injected = true;
7114
7115                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7116                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7117                                              X86_EFLAGS_RF);
7118
7119                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7120                         /*
7121                          * This code assumes that nSVM doesn't use
7122                          * check_nested_events(). If it does, the
7123                          * DR6/DR7 changes should happen before L1
7124                          * gets a #VMEXIT for an intercepted #DB in
7125                          * L2.  (Under VMX, on the other hand, the
7126                          * DR6/DR7 changes should not happen in the
7127                          * event of a VM-exit to L1 for an intercepted
7128                          * #DB in L2.)
7129                          */
7130                         kvm_deliver_exception_payload(vcpu);
7131                         if (vcpu->arch.dr7 & DR7_GD) {
7132                                 vcpu->arch.dr7 &= ~DR7_GD;
7133                                 kvm_update_dr7(vcpu);
7134                         }
7135                 }
7136
7137                 kvm_x86_ops->queue_exception(vcpu);
7138         }
7139
7140         /* Don't consider new event if we re-injected an event */
7141         if (kvm_event_needs_reinjection(vcpu))
7142                 return 0;
7143
7144         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7145             kvm_x86_ops->smi_allowed(vcpu)) {
7146                 vcpu->arch.smi_pending = false;
7147                 ++vcpu->arch.smi_count;
7148                 enter_smm(vcpu);
7149         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7150                 --vcpu->arch.nmi_pending;
7151                 vcpu->arch.nmi_injected = true;
7152                 kvm_x86_ops->set_nmi(vcpu);
7153         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7154                 /*
7155                  * Because interrupts can be injected asynchronously, we are
7156                  * calling check_nested_events again here to avoid a race condition.
7157                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7158                  * proposal and current concerns.  Perhaps we should be setting
7159                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7160                  */
7161                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7162                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7163                         if (r != 0)
7164                                 return r;
7165                 }
7166                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7167                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7168                                             false);
7169                         kvm_x86_ops->set_irq(vcpu);
7170                 }
7171         }
7172
7173         return 0;
7174 }
7175
7176 static void process_nmi(struct kvm_vcpu *vcpu)
7177 {
7178         unsigned limit = 2;
7179
7180         /*
7181          * x86 is limited to one NMI running, and one NMI pending after it.
7182          * If an NMI is already in progress, limit further NMIs to just one.
7183          * Otherwise, allow two (and we'll inject the first one immediately).
7184          */
7185         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7186                 limit = 1;
7187
7188         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7189         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7190         kvm_make_request(KVM_REQ_EVENT, vcpu);
7191 }
7192
7193 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7194 {
7195         u32 flags = 0;
7196         flags |= seg->g       << 23;
7197         flags |= seg->db      << 22;
7198         flags |= seg->l       << 21;
7199         flags |= seg->avl     << 20;
7200         flags |= seg->present << 15;
7201         flags |= seg->dpl     << 13;
7202         flags |= seg->s       << 12;
7203         flags |= seg->type    << 8;
7204         return flags;
7205 }
7206
7207 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7208 {
7209         struct kvm_segment seg;
7210         int offset;
7211
7212         kvm_get_segment(vcpu, &seg, n);
7213         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7214
7215         if (n < 3)
7216                 offset = 0x7f84 + n * 12;
7217         else
7218                 offset = 0x7f2c + (n - 3) * 12;
7219
7220         put_smstate(u32, buf, offset + 8, seg.base);
7221         put_smstate(u32, buf, offset + 4, seg.limit);
7222         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7223 }
7224
7225 #ifdef CONFIG_X86_64
7226 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7227 {
7228         struct kvm_segment seg;
7229         int offset;
7230         u16 flags;
7231
7232         kvm_get_segment(vcpu, &seg, n);
7233         offset = 0x7e00 + n * 16;
7234
7235         flags = enter_smm_get_segment_flags(&seg) >> 8;
7236         put_smstate(u16, buf, offset, seg.selector);
7237         put_smstate(u16, buf, offset + 2, flags);
7238         put_smstate(u32, buf, offset + 4, seg.limit);
7239         put_smstate(u64, buf, offset + 8, seg.base);
7240 }
7241 #endif
7242
7243 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7244 {
7245         struct desc_ptr dt;
7246         struct kvm_segment seg;
7247         unsigned long val;
7248         int i;
7249
7250         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7251         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7252         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7253         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7254
7255         for (i = 0; i < 8; i++)
7256                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7257
7258         kvm_get_dr(vcpu, 6, &val);
7259         put_smstate(u32, buf, 0x7fcc, (u32)val);
7260         kvm_get_dr(vcpu, 7, &val);
7261         put_smstate(u32, buf, 0x7fc8, (u32)val);
7262
7263         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7264         put_smstate(u32, buf, 0x7fc4, seg.selector);
7265         put_smstate(u32, buf, 0x7f64, seg.base);
7266         put_smstate(u32, buf, 0x7f60, seg.limit);
7267         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7268
7269         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7270         put_smstate(u32, buf, 0x7fc0, seg.selector);
7271         put_smstate(u32, buf, 0x7f80, seg.base);
7272         put_smstate(u32, buf, 0x7f7c, seg.limit);
7273         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7274
7275         kvm_x86_ops->get_gdt(vcpu, &dt);
7276         put_smstate(u32, buf, 0x7f74, dt.address);
7277         put_smstate(u32, buf, 0x7f70, dt.size);
7278
7279         kvm_x86_ops->get_idt(vcpu, &dt);
7280         put_smstate(u32, buf, 0x7f58, dt.address);
7281         put_smstate(u32, buf, 0x7f54, dt.size);
7282
7283         for (i = 0; i < 6; i++)
7284                 enter_smm_save_seg_32(vcpu, buf, i);
7285
7286         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7287
7288         /* revision id */
7289         put_smstate(u32, buf, 0x7efc, 0x00020000);
7290         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7291 }
7292
7293 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7294 {
7295 #ifdef CONFIG_X86_64
7296         struct desc_ptr dt;
7297         struct kvm_segment seg;
7298         unsigned long val;
7299         int i;
7300
7301         for (i = 0; i < 16; i++)
7302                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7303
7304         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7305         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7306
7307         kvm_get_dr(vcpu, 6, &val);
7308         put_smstate(u64, buf, 0x7f68, val);
7309         kvm_get_dr(vcpu, 7, &val);
7310         put_smstate(u64, buf, 0x7f60, val);
7311
7312         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7313         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7314         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7315
7316         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7317
7318         /* revision id */
7319         put_smstate(u32, buf, 0x7efc, 0x00020064);
7320
7321         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7322
7323         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7324         put_smstate(u16, buf, 0x7e90, seg.selector);
7325         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7326         put_smstate(u32, buf, 0x7e94, seg.limit);
7327         put_smstate(u64, buf, 0x7e98, seg.base);
7328
7329         kvm_x86_ops->get_idt(vcpu, &dt);
7330         put_smstate(u32, buf, 0x7e84, dt.size);
7331         put_smstate(u64, buf, 0x7e88, dt.address);
7332
7333         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7334         put_smstate(u16, buf, 0x7e70, seg.selector);
7335         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7336         put_smstate(u32, buf, 0x7e74, seg.limit);
7337         put_smstate(u64, buf, 0x7e78, seg.base);
7338
7339         kvm_x86_ops->get_gdt(vcpu, &dt);
7340         put_smstate(u32, buf, 0x7e64, dt.size);
7341         put_smstate(u64, buf, 0x7e68, dt.address);
7342
7343         for (i = 0; i < 6; i++)
7344                 enter_smm_save_seg_64(vcpu, buf, i);
7345 #else
7346         WARN_ON_ONCE(1);
7347 #endif
7348 }
7349
7350 static void enter_smm(struct kvm_vcpu *vcpu)
7351 {
7352         struct kvm_segment cs, ds;
7353         struct desc_ptr dt;
7354         char buf[512];
7355         u32 cr0;
7356
7357         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7358         memset(buf, 0, 512);
7359         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7360                 enter_smm_save_state_64(vcpu, buf);
7361         else
7362                 enter_smm_save_state_32(vcpu, buf);
7363
7364         /*
7365          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7366          * vCPU state (e.g. leave guest mode) after we've saved the state into
7367          * the SMM state-save area.
7368          */
7369         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7370
7371         vcpu->arch.hflags |= HF_SMM_MASK;
7372         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7373
7374         if (kvm_x86_ops->get_nmi_mask(vcpu))
7375                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7376         else
7377                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7378
7379         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7380         kvm_rip_write(vcpu, 0x8000);
7381
7382         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7383         kvm_x86_ops->set_cr0(vcpu, cr0);
7384         vcpu->arch.cr0 = cr0;
7385
7386         kvm_x86_ops->set_cr4(vcpu, 0);
7387
7388         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7389         dt.address = dt.size = 0;
7390         kvm_x86_ops->set_idt(vcpu, &dt);
7391
7392         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7393
7394         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7395         cs.base = vcpu->arch.smbase;
7396
7397         ds.selector = 0;
7398         ds.base = 0;
7399
7400         cs.limit    = ds.limit = 0xffffffff;
7401         cs.type     = ds.type = 0x3;
7402         cs.dpl      = ds.dpl = 0;
7403         cs.db       = ds.db = 0;
7404         cs.s        = ds.s = 1;
7405         cs.l        = ds.l = 0;
7406         cs.g        = ds.g = 1;
7407         cs.avl      = ds.avl = 0;
7408         cs.present  = ds.present = 1;
7409         cs.unusable = ds.unusable = 0;
7410         cs.padding  = ds.padding = 0;
7411
7412         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7413         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7414         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7415         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7416         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7417         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7418
7419         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7420                 kvm_x86_ops->set_efer(vcpu, 0);
7421
7422         kvm_update_cpuid(vcpu);
7423         kvm_mmu_reset_context(vcpu);
7424 }
7425
7426 static void process_smi(struct kvm_vcpu *vcpu)
7427 {
7428         vcpu->arch.smi_pending = true;
7429         kvm_make_request(KVM_REQ_EVENT, vcpu);
7430 }
7431
7432 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7433 {
7434         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7435 }
7436
7437 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7438 {
7439         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7440                 return;
7441
7442         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7443
7444         if (irqchip_split(vcpu->kvm))
7445                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7446         else {
7447                 if (vcpu->arch.apicv_active)
7448                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7449                 if (ioapic_in_kernel(vcpu->kvm))
7450                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7451         }
7452
7453         if (is_guest_mode(vcpu))
7454                 vcpu->arch.load_eoi_exitmap_pending = true;
7455         else
7456                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7457 }
7458
7459 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7460 {
7461         u64 eoi_exit_bitmap[4];
7462
7463         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7464                 return;
7465
7466         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7467                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7468         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7469 }
7470
7471 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7472                 unsigned long start, unsigned long end,
7473                 bool blockable)
7474 {
7475         unsigned long apic_address;
7476
7477         /*
7478          * The physical address of apic access page is stored in the VMCS.
7479          * Update it when it becomes invalid.
7480          */
7481         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7482         if (start <= apic_address && apic_address < end)
7483                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7484
7485         return 0;
7486 }
7487
7488 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7489 {
7490         struct page *page = NULL;
7491
7492         if (!lapic_in_kernel(vcpu))
7493                 return;
7494
7495         if (!kvm_x86_ops->set_apic_access_page_addr)
7496                 return;
7497
7498         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7499         if (is_error_page(page))
7500                 return;
7501         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7502
7503         /*
7504          * Do not pin apic access page in memory, the MMU notifier
7505          * will call us again if it is migrated or swapped out.
7506          */
7507         put_page(page);
7508 }
7509 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7510
7511 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7512 {
7513         smp_send_reschedule(vcpu->cpu);
7514 }
7515 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7516
7517 /*
7518  * Returns 1 to let vcpu_run() continue the guest execution loop without
7519  * exiting to the userspace.  Otherwise, the value will be returned to the
7520  * userspace.
7521  */
7522 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7523 {
7524         int r;
7525         bool req_int_win =
7526                 dm_request_for_irq_injection(vcpu) &&
7527                 kvm_cpu_accept_dm_intr(vcpu);
7528
7529         bool req_immediate_exit = false;
7530
7531         if (kvm_request_pending(vcpu)) {
7532                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7533                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7534                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7535                         kvm_mmu_unload(vcpu);
7536                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7537                         __kvm_migrate_timers(vcpu);
7538                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7539                         kvm_gen_update_masterclock(vcpu->kvm);
7540                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7541                         kvm_gen_kvmclock_update(vcpu);
7542                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7543                         r = kvm_guest_time_update(vcpu);
7544                         if (unlikely(r))
7545                                 goto out;
7546                 }
7547                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7548                         kvm_mmu_sync_roots(vcpu);
7549                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7550                         kvm_mmu_load_cr3(vcpu);
7551                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7552                         kvm_vcpu_flush_tlb(vcpu, true);
7553                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7554                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7555                         r = 0;
7556                         goto out;
7557                 }
7558                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7559                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7560                         vcpu->mmio_needed = 0;
7561                         r = 0;
7562                         goto out;
7563                 }
7564                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7565                         /* Page is swapped out. Do synthetic halt */
7566                         vcpu->arch.apf.halted = true;
7567                         r = 1;
7568                         goto out;
7569                 }
7570                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7571                         record_steal_time(vcpu);
7572                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7573                         process_smi(vcpu);
7574                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7575                         process_nmi(vcpu);
7576                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7577                         kvm_pmu_handle_event(vcpu);
7578                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7579                         kvm_pmu_deliver_pmi(vcpu);
7580                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7581                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7582                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7583                                      vcpu->arch.ioapic_handled_vectors)) {
7584                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7585                                 vcpu->run->eoi.vector =
7586                                                 vcpu->arch.pending_ioapic_eoi;
7587                                 r = 0;
7588                                 goto out;
7589                         }
7590                 }
7591                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7592                         vcpu_scan_ioapic(vcpu);
7593                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7594                         vcpu_load_eoi_exitmap(vcpu);
7595                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7596                         kvm_vcpu_reload_apic_access_page(vcpu);
7597                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7598                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7599                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7600                         r = 0;
7601                         goto out;
7602                 }
7603                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7604                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7605                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7606                         r = 0;
7607                         goto out;
7608                 }
7609                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7610                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7611                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7612                         r = 0;
7613                         goto out;
7614                 }
7615
7616                 /*
7617                  * KVM_REQ_HV_STIMER has to be processed after
7618                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7619                  * depend on the guest clock being up-to-date
7620                  */
7621                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7622                         kvm_hv_process_stimers(vcpu);
7623         }
7624
7625         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7626                 ++vcpu->stat.req_event;
7627                 kvm_apic_accept_events(vcpu);
7628                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7629                         r = 1;
7630                         goto out;
7631                 }
7632
7633                 if (inject_pending_event(vcpu, req_int_win) != 0)
7634                         req_immediate_exit = true;
7635                 else {
7636                         /* Enable SMI/NMI/IRQ window open exits if needed.
7637                          *
7638                          * SMIs have three cases:
7639                          * 1) They can be nested, and then there is nothing to
7640                          *    do here because RSM will cause a vmexit anyway.
7641                          * 2) There is an ISA-specific reason why SMI cannot be
7642                          *    injected, and the moment when this changes can be
7643                          *    intercepted.
7644                          * 3) Or the SMI can be pending because
7645                          *    inject_pending_event has completed the injection
7646                          *    of an IRQ or NMI from the previous vmexit, and
7647                          *    then we request an immediate exit to inject the
7648                          *    SMI.
7649                          */
7650                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7651                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7652                                         req_immediate_exit = true;
7653                         if (vcpu->arch.nmi_pending)
7654                                 kvm_x86_ops->enable_nmi_window(vcpu);
7655                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7656                                 kvm_x86_ops->enable_irq_window(vcpu);
7657                         WARN_ON(vcpu->arch.exception.pending);
7658                 }
7659
7660                 if (kvm_lapic_enabled(vcpu)) {
7661                         update_cr8_intercept(vcpu);
7662                         kvm_lapic_sync_to_vapic(vcpu);
7663                 }
7664         }
7665
7666         r = kvm_mmu_reload(vcpu);
7667         if (unlikely(r)) {
7668                 goto cancel_injection;
7669         }
7670
7671         preempt_disable();
7672
7673         kvm_x86_ops->prepare_guest_switch(vcpu);
7674
7675         /*
7676          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7677          * IPI are then delayed after guest entry, which ensures that they
7678          * result in virtual interrupt delivery.
7679          */
7680         local_irq_disable();
7681         vcpu->mode = IN_GUEST_MODE;
7682
7683         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7684
7685         /*
7686          * 1) We should set ->mode before checking ->requests.  Please see
7687          * the comment in kvm_vcpu_exiting_guest_mode().
7688          *
7689          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
7690          * pairs with the memory barrier implicit in pi_test_and_set_on
7691          * (see vmx_deliver_posted_interrupt).
7692          *
7693          * 3) This also orders the write to mode from any reads to the page
7694          * tables done while the VCPU is running.  Please see the comment
7695          * in kvm_flush_remote_tlbs.
7696          */
7697         smp_mb__after_srcu_read_unlock();
7698
7699         /*
7700          * This handles the case where a posted interrupt was
7701          * notified with kvm_vcpu_kick.
7702          */
7703         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7704                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7705
7706         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7707             || need_resched() || signal_pending(current)) {
7708                 vcpu->mode = OUTSIDE_GUEST_MODE;
7709                 smp_wmb();
7710                 local_irq_enable();
7711                 preempt_enable();
7712                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7713                 r = 1;
7714                 goto cancel_injection;
7715         }
7716
7717         kvm_load_guest_xcr0(vcpu);
7718
7719         if (req_immediate_exit) {
7720                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7721                 kvm_x86_ops->request_immediate_exit(vcpu);
7722         }
7723
7724         trace_kvm_entry(vcpu->vcpu_id);
7725         if (lapic_timer_advance_ns)
7726                 wait_lapic_expire(vcpu);
7727         guest_enter_irqoff();
7728
7729         if (unlikely(vcpu->arch.switch_db_regs)) {
7730                 set_debugreg(0, 7);
7731                 set_debugreg(vcpu->arch.eff_db[0], 0);
7732                 set_debugreg(vcpu->arch.eff_db[1], 1);
7733                 set_debugreg(vcpu->arch.eff_db[2], 2);
7734                 set_debugreg(vcpu->arch.eff_db[3], 3);
7735                 set_debugreg(vcpu->arch.dr6, 6);
7736                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7737         }
7738
7739         kvm_x86_ops->run(vcpu);
7740
7741         /*
7742          * Do this here before restoring debug registers on the host.  And
7743          * since we do this before handling the vmexit, a DR access vmexit
7744          * can (a) read the correct value of the debug registers, (b) set
7745          * KVM_DEBUGREG_WONT_EXIT again.
7746          */
7747         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7748                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7749                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7750                 kvm_update_dr0123(vcpu);
7751                 kvm_update_dr6(vcpu);
7752                 kvm_update_dr7(vcpu);
7753                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7754         }
7755
7756         /*
7757          * If the guest has used debug registers, at least dr7
7758          * will be disabled while returning to the host.
7759          * If we don't have active breakpoints in the host, we don't
7760          * care about the messed up debug address registers. But if
7761          * we have some of them active, restore the old state.
7762          */
7763         if (hw_breakpoint_active())
7764                 hw_breakpoint_restore();
7765
7766         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7767
7768         vcpu->mode = OUTSIDE_GUEST_MODE;
7769         smp_wmb();
7770
7771         kvm_put_guest_xcr0(vcpu);
7772
7773         kvm_before_interrupt(vcpu);
7774         kvm_x86_ops->handle_external_intr(vcpu);
7775         kvm_after_interrupt(vcpu);
7776
7777         ++vcpu->stat.exits;
7778
7779         guest_exit_irqoff();
7780
7781         local_irq_enable();
7782         preempt_enable();
7783
7784         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7785
7786         /*
7787          * Profile KVM exit RIPs:
7788          */
7789         if (unlikely(prof_on == KVM_PROFILING)) {
7790                 unsigned long rip = kvm_rip_read(vcpu);
7791                 profile_hit(KVM_PROFILING, (void *)rip);
7792         }
7793
7794         if (unlikely(vcpu->arch.tsc_always_catchup))
7795                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7796
7797         if (vcpu->arch.apic_attention)
7798                 kvm_lapic_sync_from_vapic(vcpu);
7799
7800         vcpu->arch.gpa_available = false;
7801         r = kvm_x86_ops->handle_exit(vcpu);
7802         return r;
7803
7804 cancel_injection:
7805         kvm_x86_ops->cancel_injection(vcpu);
7806         if (unlikely(vcpu->arch.apic_attention))
7807                 kvm_lapic_sync_from_vapic(vcpu);
7808 out:
7809         return r;
7810 }
7811
7812 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7813 {
7814         if (!kvm_arch_vcpu_runnable(vcpu) &&
7815             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7816                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7817                 kvm_vcpu_block(vcpu);
7818                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7819
7820                 if (kvm_x86_ops->post_block)
7821                         kvm_x86_ops->post_block(vcpu);
7822
7823                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7824                         return 1;
7825         }
7826
7827         kvm_apic_accept_events(vcpu);
7828         switch(vcpu->arch.mp_state) {
7829         case KVM_MP_STATE_HALTED:
7830                 vcpu->arch.pv.pv_unhalted = false;
7831                 vcpu->arch.mp_state =
7832                         KVM_MP_STATE_RUNNABLE;
7833         case KVM_MP_STATE_RUNNABLE:
7834                 vcpu->arch.apf.halted = false;
7835                 break;
7836         case KVM_MP_STATE_INIT_RECEIVED:
7837                 break;
7838         default:
7839                 return -EINTR;
7840                 break;
7841         }
7842         return 1;
7843 }
7844
7845 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7846 {
7847         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7848                 kvm_x86_ops->check_nested_events(vcpu, false);
7849
7850         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7851                 !vcpu->arch.apf.halted);
7852 }
7853
7854 static int vcpu_run(struct kvm_vcpu *vcpu)
7855 {
7856         int r;
7857         struct kvm *kvm = vcpu->kvm;
7858
7859         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7860         vcpu->arch.l1tf_flush_l1d = true;
7861
7862         for (;;) {
7863                 if (kvm_vcpu_running(vcpu)) {
7864                         r = vcpu_enter_guest(vcpu);
7865                 } else {
7866                         r = vcpu_block(kvm, vcpu);
7867                 }
7868
7869                 if (r <= 0)
7870                         break;
7871
7872                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7873                 if (kvm_cpu_has_pending_timer(vcpu))
7874                         kvm_inject_pending_timer_irqs(vcpu);
7875
7876                 if (dm_request_for_irq_injection(vcpu) &&
7877                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7878                         r = 0;
7879                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7880                         ++vcpu->stat.request_irq_exits;
7881                         break;
7882                 }
7883
7884                 kvm_check_async_pf_completion(vcpu);
7885
7886                 if (signal_pending(current)) {
7887                         r = -EINTR;
7888                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7889                         ++vcpu->stat.signal_exits;
7890                         break;
7891                 }
7892                 if (need_resched()) {
7893                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7894                         cond_resched();
7895                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7896                 }
7897         }
7898
7899         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7900
7901         return r;
7902 }
7903
7904 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7905 {
7906         int r;
7907         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7908         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7909         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7910         if (r != EMULATE_DONE)
7911                 return 0;
7912         return 1;
7913 }
7914
7915 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7916 {
7917         BUG_ON(!vcpu->arch.pio.count);
7918
7919         return complete_emulated_io(vcpu);
7920 }
7921
7922 /*
7923  * Implements the following, as a state machine:
7924  *
7925  * read:
7926  *   for each fragment
7927  *     for each mmio piece in the fragment
7928  *       write gpa, len
7929  *       exit
7930  *       copy data
7931  *   execute insn
7932  *
7933  * write:
7934  *   for each fragment
7935  *     for each mmio piece in the fragment
7936  *       write gpa, len
7937  *       copy data
7938  *       exit
7939  */
7940 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7941 {
7942         struct kvm_run *run = vcpu->run;
7943         struct kvm_mmio_fragment *frag;
7944         unsigned len;
7945
7946         BUG_ON(!vcpu->mmio_needed);
7947
7948         /* Complete previous fragment */
7949         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7950         len = min(8u, frag->len);
7951         if (!vcpu->mmio_is_write)
7952                 memcpy(frag->data, run->mmio.data, len);
7953
7954         if (frag->len <= 8) {
7955                 /* Switch to the next fragment. */
7956                 frag++;
7957                 vcpu->mmio_cur_fragment++;
7958         } else {
7959                 /* Go forward to the next mmio piece. */
7960                 frag->data += len;
7961                 frag->gpa += len;
7962                 frag->len -= len;
7963         }
7964
7965         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7966                 vcpu->mmio_needed = 0;
7967
7968                 /* FIXME: return into emulator if single-stepping.  */
7969                 if (vcpu->mmio_is_write)
7970                         return 1;
7971                 vcpu->mmio_read_completed = 1;
7972                 return complete_emulated_io(vcpu);
7973         }
7974
7975         run->exit_reason = KVM_EXIT_MMIO;
7976         run->mmio.phys_addr = frag->gpa;
7977         if (vcpu->mmio_is_write)
7978                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7979         run->mmio.len = min(8u, frag->len);
7980         run->mmio.is_write = vcpu->mmio_is_write;
7981         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7982         return 0;
7983 }
7984
7985 /* Swap (qemu) user FPU context for the guest FPU context. */
7986 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7987 {
7988         preempt_disable();
7989         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7990         /* PKRU is separately restored in kvm_x86_ops->run.  */
7991         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7992                                 ~XFEATURE_MASK_PKRU);
7993         preempt_enable();
7994         trace_kvm_fpu(1);
7995 }
7996
7997 /* When vcpu_run ends, restore user space FPU context. */
7998 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7999 {
8000         preempt_disable();
8001         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
8002         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
8003         preempt_enable();
8004         ++vcpu->stat.fpu_reload;
8005         trace_kvm_fpu(0);
8006 }
8007
8008 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8009 {
8010         int r;
8011
8012         vcpu_load(vcpu);
8013         kvm_sigset_activate(vcpu);
8014         kvm_load_guest_fpu(vcpu);
8015
8016         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8017                 if (kvm_run->immediate_exit) {
8018                         r = -EINTR;
8019                         goto out;
8020                 }
8021                 kvm_vcpu_block(vcpu);
8022                 kvm_apic_accept_events(vcpu);
8023                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8024                 r = -EAGAIN;
8025                 if (signal_pending(current)) {
8026                         r = -EINTR;
8027                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8028                         ++vcpu->stat.signal_exits;
8029                 }
8030                 goto out;
8031         }
8032
8033         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8034                 r = -EINVAL;
8035                 goto out;
8036         }
8037
8038         if (vcpu->run->kvm_dirty_regs) {
8039                 r = sync_regs(vcpu);
8040                 if (r != 0)
8041                         goto out;
8042         }
8043
8044         /* re-sync apic's tpr */
8045         if (!lapic_in_kernel(vcpu)) {
8046                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8047                         r = -EINVAL;
8048                         goto out;
8049                 }
8050         }
8051
8052         if (unlikely(vcpu->arch.complete_userspace_io)) {
8053                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8054                 vcpu->arch.complete_userspace_io = NULL;
8055                 r = cui(vcpu);
8056                 if (r <= 0)
8057                         goto out;
8058         } else
8059                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8060
8061         if (kvm_run->immediate_exit)
8062                 r = -EINTR;
8063         else
8064                 r = vcpu_run(vcpu);
8065
8066 out:
8067         kvm_put_guest_fpu(vcpu);
8068         if (vcpu->run->kvm_valid_regs)
8069                 store_regs(vcpu);
8070         post_kvm_run_save(vcpu);
8071         kvm_sigset_deactivate(vcpu);
8072
8073         vcpu_put(vcpu);
8074         return r;
8075 }
8076
8077 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8078 {
8079         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8080                 /*
8081                  * We are here if userspace calls get_regs() in the middle of
8082                  * instruction emulation. Registers state needs to be copied
8083                  * back from emulation context to vcpu. Userspace shouldn't do
8084                  * that usually, but some bad designed PV devices (vmware
8085                  * backdoor interface) need this to work
8086                  */
8087                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8088                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8089         }
8090         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
8091         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
8092         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
8093         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
8094         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
8095         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
8096         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8097         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
8098 #ifdef CONFIG_X86_64
8099         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
8100         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
8101         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
8102         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
8103         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
8104         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
8105         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
8106         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
8107 #endif
8108
8109         regs->rip = kvm_rip_read(vcpu);
8110         regs->rflags = kvm_get_rflags(vcpu);
8111 }
8112
8113 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8114 {
8115         vcpu_load(vcpu);
8116         __get_regs(vcpu, regs);
8117         vcpu_put(vcpu);
8118         return 0;
8119 }
8120
8121 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8122 {
8123         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8124         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8125
8126         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
8127         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
8128         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
8129         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
8130         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
8131         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
8132         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
8133         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
8134 #ifdef CONFIG_X86_64
8135         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
8136         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
8137         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
8138         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
8139         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
8140         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
8141         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
8142         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
8143 #endif
8144
8145         kvm_rip_write(vcpu, regs->rip);
8146         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8147
8148         vcpu->arch.exception.pending = false;
8149
8150         kvm_make_request(KVM_REQ_EVENT, vcpu);
8151 }
8152
8153 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8154 {
8155         vcpu_load(vcpu);
8156         __set_regs(vcpu, regs);
8157         vcpu_put(vcpu);
8158         return 0;
8159 }
8160
8161 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8162 {
8163         struct kvm_segment cs;
8164
8165         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8166         *db = cs.db;
8167         *l = cs.l;
8168 }
8169 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8170
8171 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8172 {
8173         struct desc_ptr dt;
8174
8175         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8176         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8177         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8178         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8179         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8180         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8181
8182         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8183         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8184
8185         kvm_x86_ops->get_idt(vcpu, &dt);
8186         sregs->idt.limit = dt.size;
8187         sregs->idt.base = dt.address;
8188         kvm_x86_ops->get_gdt(vcpu, &dt);
8189         sregs->gdt.limit = dt.size;
8190         sregs->gdt.base = dt.address;
8191
8192         sregs->cr0 = kvm_read_cr0(vcpu);
8193         sregs->cr2 = vcpu->arch.cr2;
8194         sregs->cr3 = kvm_read_cr3(vcpu);
8195         sregs->cr4 = kvm_read_cr4(vcpu);
8196         sregs->cr8 = kvm_get_cr8(vcpu);
8197         sregs->efer = vcpu->arch.efer;
8198         sregs->apic_base = kvm_get_apic_base(vcpu);
8199
8200         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8201
8202         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8203                 set_bit(vcpu->arch.interrupt.nr,
8204                         (unsigned long *)sregs->interrupt_bitmap);
8205 }
8206
8207 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8208                                   struct kvm_sregs *sregs)
8209 {
8210         vcpu_load(vcpu);
8211         __get_sregs(vcpu, sregs);
8212         vcpu_put(vcpu);
8213         return 0;
8214 }
8215
8216 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8217                                     struct kvm_mp_state *mp_state)
8218 {
8219         vcpu_load(vcpu);
8220
8221         kvm_apic_accept_events(vcpu);
8222         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8223                                         vcpu->arch.pv.pv_unhalted)
8224                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8225         else
8226                 mp_state->mp_state = vcpu->arch.mp_state;
8227
8228         vcpu_put(vcpu);
8229         return 0;
8230 }
8231
8232 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8233                                     struct kvm_mp_state *mp_state)
8234 {
8235         int ret = -EINVAL;
8236
8237         vcpu_load(vcpu);
8238
8239         if (!lapic_in_kernel(vcpu) &&
8240             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8241                 goto out;
8242
8243         /* INITs are latched while in SMM */
8244         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8245             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8246              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8247                 goto out;
8248
8249         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8250                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8251                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8252         } else
8253                 vcpu->arch.mp_state = mp_state->mp_state;
8254         kvm_make_request(KVM_REQ_EVENT, vcpu);
8255
8256         ret = 0;
8257 out:
8258         vcpu_put(vcpu);
8259         return ret;
8260 }
8261
8262 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8263                     int reason, bool has_error_code, u32 error_code)
8264 {
8265         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8266         int ret;
8267
8268         init_emulate_ctxt(vcpu);
8269
8270         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8271                                    has_error_code, error_code);
8272
8273         if (ret)
8274                 return EMULATE_FAIL;
8275
8276         kvm_rip_write(vcpu, ctxt->eip);
8277         kvm_set_rflags(vcpu, ctxt->eflags);
8278         kvm_make_request(KVM_REQ_EVENT, vcpu);
8279         return EMULATE_DONE;
8280 }
8281 EXPORT_SYMBOL_GPL(kvm_task_switch);
8282
8283 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8284 {
8285         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8286                         (sregs->cr4 & X86_CR4_OSXSAVE))
8287                 return  -EINVAL;
8288
8289         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8290                 /*
8291                  * When EFER.LME and CR0.PG are set, the processor is in
8292                  * 64-bit mode (though maybe in a 32-bit code segment).
8293                  * CR4.PAE and EFER.LMA must be set.
8294                  */
8295                 if (!(sregs->cr4 & X86_CR4_PAE)
8296                     || !(sregs->efer & EFER_LMA))
8297                         return -EINVAL;
8298         } else {
8299                 /*
8300                  * Not in 64-bit mode: EFER.LMA is clear and the code
8301                  * segment cannot be 64-bit.
8302                  */
8303                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8304                         return -EINVAL;
8305         }
8306
8307         return 0;
8308 }
8309
8310 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8311 {
8312         struct msr_data apic_base_msr;
8313         int mmu_reset_needed = 0;
8314         int cpuid_update_needed = 0;
8315         int pending_vec, max_bits, idx;
8316         struct desc_ptr dt;
8317         int ret = -EINVAL;
8318
8319         if (kvm_valid_sregs(vcpu, sregs))
8320                 goto out;
8321
8322         apic_base_msr.data = sregs->apic_base;
8323         apic_base_msr.host_initiated = true;
8324         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8325                 goto out;
8326
8327         dt.size = sregs->idt.limit;
8328         dt.address = sregs->idt.base;
8329         kvm_x86_ops->set_idt(vcpu, &dt);
8330         dt.size = sregs->gdt.limit;
8331         dt.address = sregs->gdt.base;
8332         kvm_x86_ops->set_gdt(vcpu, &dt);
8333
8334         vcpu->arch.cr2 = sregs->cr2;
8335         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8336         vcpu->arch.cr3 = sregs->cr3;
8337         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8338
8339         kvm_set_cr8(vcpu, sregs->cr8);
8340
8341         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8342         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8343
8344         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8345         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8346         vcpu->arch.cr0 = sregs->cr0;
8347
8348         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8349         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8350                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8351         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8352         if (cpuid_update_needed)
8353                 kvm_update_cpuid(vcpu);
8354
8355         idx = srcu_read_lock(&vcpu->kvm->srcu);
8356         if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu)) {
8357                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8358                 mmu_reset_needed = 1;
8359         }
8360         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8361
8362         if (mmu_reset_needed)
8363                 kvm_mmu_reset_context(vcpu);
8364
8365         max_bits = KVM_NR_INTERRUPTS;
8366         pending_vec = find_first_bit(
8367                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8368         if (pending_vec < max_bits) {
8369                 kvm_queue_interrupt(vcpu, pending_vec, false);
8370                 pr_debug("Set back pending irq %d\n", pending_vec);
8371         }
8372
8373         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8374         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8375         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8376         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8377         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8378         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8379
8380         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8381         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8382
8383         update_cr8_intercept(vcpu);
8384
8385         /* Older userspace won't unhalt the vcpu on reset. */
8386         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8387             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8388             !is_protmode(vcpu))
8389                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8390
8391         kvm_make_request(KVM_REQ_EVENT, vcpu);
8392
8393         ret = 0;
8394 out:
8395         return ret;
8396 }
8397
8398 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8399                                   struct kvm_sregs *sregs)
8400 {
8401         int ret;
8402
8403         vcpu_load(vcpu);
8404         ret = __set_sregs(vcpu, sregs);
8405         vcpu_put(vcpu);
8406         return ret;
8407 }
8408
8409 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8410                                         struct kvm_guest_debug *dbg)
8411 {
8412         unsigned long rflags;
8413         int i, r;
8414
8415         vcpu_load(vcpu);
8416
8417         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8418                 r = -EBUSY;
8419                 if (vcpu->arch.exception.pending)
8420                         goto out;
8421                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8422                         kvm_queue_exception(vcpu, DB_VECTOR);
8423                 else
8424                         kvm_queue_exception(vcpu, BP_VECTOR);
8425         }
8426
8427         /*
8428          * Read rflags as long as potentially injected trace flags are still
8429          * filtered out.
8430          */
8431         rflags = kvm_get_rflags(vcpu);
8432
8433         vcpu->guest_debug = dbg->control;
8434         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8435                 vcpu->guest_debug = 0;
8436
8437         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8438                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8439                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8440                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8441         } else {
8442                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8443                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8444         }
8445         kvm_update_dr7(vcpu);
8446
8447         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8448                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8449                         get_segment_base(vcpu, VCPU_SREG_CS);
8450
8451         /*
8452          * Trigger an rflags update that will inject or remove the trace
8453          * flags.
8454          */
8455         kvm_set_rflags(vcpu, rflags);
8456
8457         kvm_x86_ops->update_bp_intercept(vcpu);
8458
8459         r = 0;
8460
8461 out:
8462         vcpu_put(vcpu);
8463         return r;
8464 }
8465
8466 /*
8467  * Translate a guest virtual address to a guest physical address.
8468  */
8469 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8470                                     struct kvm_translation *tr)
8471 {
8472         unsigned long vaddr = tr->linear_address;
8473         gpa_t gpa;
8474         int idx;
8475
8476         vcpu_load(vcpu);
8477
8478         idx = srcu_read_lock(&vcpu->kvm->srcu);
8479         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8480         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8481         tr->physical_address = gpa;
8482         tr->valid = gpa != UNMAPPED_GVA;
8483         tr->writeable = 1;
8484         tr->usermode = 0;
8485
8486         vcpu_put(vcpu);
8487         return 0;
8488 }
8489
8490 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8491 {
8492         struct fxregs_state *fxsave;
8493
8494         vcpu_load(vcpu);
8495
8496         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8497         memcpy(fpu->fpr, fxsave->st_space, 128);
8498         fpu->fcw = fxsave->cwd;
8499         fpu->fsw = fxsave->swd;
8500         fpu->ftwx = fxsave->twd;
8501         fpu->last_opcode = fxsave->fop;
8502         fpu->last_ip = fxsave->rip;
8503         fpu->last_dp = fxsave->rdp;
8504         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8505
8506         vcpu_put(vcpu);
8507         return 0;
8508 }
8509
8510 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8511 {
8512         struct fxregs_state *fxsave;
8513
8514         vcpu_load(vcpu);
8515
8516         fxsave = &vcpu->arch.guest_fpu.state.fxsave;
8517
8518         memcpy(fxsave->st_space, fpu->fpr, 128);
8519         fxsave->cwd = fpu->fcw;
8520         fxsave->swd = fpu->fsw;
8521         fxsave->twd = fpu->ftwx;
8522         fxsave->fop = fpu->last_opcode;
8523         fxsave->rip = fpu->last_ip;
8524         fxsave->rdp = fpu->last_dp;
8525         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8526
8527         vcpu_put(vcpu);
8528         return 0;
8529 }
8530
8531 static void store_regs(struct kvm_vcpu *vcpu)
8532 {
8533         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8534
8535         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8536                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8537
8538         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8539                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8540
8541         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8542                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8543                                 vcpu, &vcpu->run->s.regs.events);
8544 }
8545
8546 static int sync_regs(struct kvm_vcpu *vcpu)
8547 {
8548         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8549                 return -EINVAL;
8550
8551         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8552                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8553                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8554         }
8555         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8556                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8557                         return -EINVAL;
8558                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8559         }
8560         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8561                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8562                                 vcpu, &vcpu->run->s.regs.events))
8563                         return -EINVAL;
8564                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8565         }
8566
8567         return 0;
8568 }
8569
8570 static void fx_init(struct kvm_vcpu *vcpu)
8571 {
8572         fpstate_init(&vcpu->arch.guest_fpu.state);
8573         if (boot_cpu_has(X86_FEATURE_XSAVES))
8574                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
8575                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8576
8577         /*
8578          * Ensure guest xcr0 is valid for loading
8579          */
8580         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8581
8582         vcpu->arch.cr0 |= X86_CR0_ET;
8583 }
8584
8585 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8586 {
8587         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8588
8589         kvmclock_reset(vcpu);
8590
8591         kvm_x86_ops->vcpu_free(vcpu);
8592         free_cpumask_var(wbinvd_dirty_mask);
8593 }
8594
8595 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8596                                                 unsigned int id)
8597 {
8598         struct kvm_vcpu *vcpu;
8599
8600         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8601                 printk_once(KERN_WARNING
8602                 "kvm: SMP vm created on host with unstable TSC; "
8603                 "guest TSC will not be reliable\n");
8604
8605         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8606
8607         return vcpu;
8608 }
8609
8610 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8611 {
8612         kvm_vcpu_mtrr_init(vcpu);
8613         vcpu_load(vcpu);
8614         kvm_vcpu_reset(vcpu, false);
8615         kvm_init_mmu(vcpu, false);
8616         vcpu_put(vcpu);
8617         return 0;
8618 }
8619
8620 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8621 {
8622         struct msr_data msr;
8623         struct kvm *kvm = vcpu->kvm;
8624
8625         kvm_hv_vcpu_postcreate(vcpu);
8626
8627         if (mutex_lock_killable(&vcpu->mutex))
8628                 return;
8629         vcpu_load(vcpu);
8630         msr.data = 0x0;
8631         msr.index = MSR_IA32_TSC;
8632         msr.host_initiated = true;
8633         kvm_write_tsc(vcpu, &msr);
8634         vcpu_put(vcpu);
8635         mutex_unlock(&vcpu->mutex);
8636
8637         if (!kvmclock_periodic_sync)
8638                 return;
8639
8640         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8641                                         KVMCLOCK_SYNC_PERIOD);
8642 }
8643
8644 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8645 {
8646         vcpu->arch.apf.msr_val = 0;
8647
8648         vcpu_load(vcpu);
8649         kvm_mmu_unload(vcpu);
8650         vcpu_put(vcpu);
8651
8652         kvm_x86_ops->vcpu_free(vcpu);
8653 }
8654
8655 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8656 {
8657         kvm_lapic_reset(vcpu, init_event);
8658
8659         vcpu->arch.hflags = 0;
8660
8661         vcpu->arch.smi_pending = 0;
8662         vcpu->arch.smi_count = 0;
8663         atomic_set(&vcpu->arch.nmi_queued, 0);
8664         vcpu->arch.nmi_pending = 0;
8665         vcpu->arch.nmi_injected = false;
8666         kvm_clear_interrupt_queue(vcpu);
8667         kvm_clear_exception_queue(vcpu);
8668         vcpu->arch.exception.pending = false;
8669
8670         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8671         kvm_update_dr0123(vcpu);
8672         vcpu->arch.dr6 = DR6_INIT;
8673         kvm_update_dr6(vcpu);
8674         vcpu->arch.dr7 = DR7_FIXED_1;
8675         kvm_update_dr7(vcpu);
8676
8677         vcpu->arch.cr2 = 0;
8678
8679         kvm_make_request(KVM_REQ_EVENT, vcpu);
8680         vcpu->arch.apf.msr_val = 0;
8681         vcpu->arch.st.msr_val = 0;
8682
8683         kvmclock_reset(vcpu);
8684
8685         kvm_clear_async_pf_completion_queue(vcpu);
8686         kvm_async_pf_hash_reset(vcpu);
8687         vcpu->arch.apf.halted = false;
8688
8689         if (kvm_mpx_supported()) {
8690                 void *mpx_state_buffer;
8691
8692                 /*
8693                  * To avoid have the INIT path from kvm_apic_has_events() that be
8694                  * called with loaded FPU and does not let userspace fix the state.
8695                  */
8696                 if (init_event)
8697                         kvm_put_guest_fpu(vcpu);
8698                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8699                                         XFEATURE_MASK_BNDREGS);
8700                 if (mpx_state_buffer)
8701                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8702                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
8703                                         XFEATURE_MASK_BNDCSR);
8704                 if (mpx_state_buffer)
8705                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
8706                 if (init_event)
8707                         kvm_load_guest_fpu(vcpu);
8708         }
8709
8710         if (!init_event) {
8711                 kvm_pmu_reset(vcpu);
8712                 vcpu->arch.smbase = 0x30000;
8713
8714                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8715                 vcpu->arch.msr_misc_features_enables = 0;
8716
8717                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8718         }
8719
8720         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
8721         vcpu->arch.regs_avail = ~0;
8722         vcpu->arch.regs_dirty = ~0;
8723
8724         vcpu->arch.ia32_xss = 0;
8725
8726         kvm_x86_ops->vcpu_reset(vcpu, init_event);
8727 }
8728
8729 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
8730 {
8731         struct kvm_segment cs;
8732
8733         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8734         cs.selector = vector << 8;
8735         cs.base = vector << 12;
8736         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8737         kvm_rip_write(vcpu, 0);
8738 }
8739
8740 int kvm_arch_hardware_enable(void)
8741 {
8742         struct kvm *kvm;
8743         struct kvm_vcpu *vcpu;
8744         int i;
8745         int ret;
8746         u64 local_tsc;
8747         u64 max_tsc = 0;
8748         bool stable, backwards_tsc = false;
8749
8750         kvm_shared_msr_cpu_online();
8751         ret = kvm_x86_ops->hardware_enable();
8752         if (ret != 0)
8753                 return ret;
8754
8755         local_tsc = rdtsc();
8756         stable = !kvm_check_tsc_unstable();
8757         list_for_each_entry(kvm, &vm_list, vm_list) {
8758                 kvm_for_each_vcpu(i, vcpu, kvm) {
8759                         if (!stable && vcpu->cpu == smp_processor_id())
8760                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8761                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
8762                                 backwards_tsc = true;
8763                                 if (vcpu->arch.last_host_tsc > max_tsc)
8764                                         max_tsc = vcpu->arch.last_host_tsc;
8765                         }
8766                 }
8767         }
8768
8769         /*
8770          * Sometimes, even reliable TSCs go backwards.  This happens on
8771          * platforms that reset TSC during suspend or hibernate actions, but
8772          * maintain synchronization.  We must compensate.  Fortunately, we can
8773          * detect that condition here, which happens early in CPU bringup,
8774          * before any KVM threads can be running.  Unfortunately, we can't
8775          * bring the TSCs fully up to date with real time, as we aren't yet far
8776          * enough into CPU bringup that we know how much real time has actually
8777          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
8778          * variables that haven't been updated yet.
8779          *
8780          * So we simply find the maximum observed TSC above, then record the
8781          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
8782          * the adjustment will be applied.  Note that we accumulate
8783          * adjustments, in case multiple suspend cycles happen before some VCPU
8784          * gets a chance to run again.  In the event that no KVM threads get a
8785          * chance to run, we will miss the entire elapsed period, as we'll have
8786          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
8787          * loose cycle time.  This isn't too big a deal, since the loss will be
8788          * uniform across all VCPUs (not to mention the scenario is extremely
8789          * unlikely). It is possible that a second hibernate recovery happens
8790          * much faster than a first, causing the observed TSC here to be
8791          * smaller; this would require additional padding adjustment, which is
8792          * why we set last_host_tsc to the local tsc observed here.
8793          *
8794          * N.B. - this code below runs only on platforms with reliable TSC,
8795          * as that is the only way backwards_tsc is set above.  Also note
8796          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
8797          * have the same delta_cyc adjustment applied if backwards_tsc
8798          * is detected.  Note further, this adjustment is only done once,
8799          * as we reset last_host_tsc on all VCPUs to stop this from being
8800          * called multiple times (one for each physical CPU bringup).
8801          *
8802          * Platforms with unreliable TSCs don't have to deal with this, they
8803          * will be compensated by the logic in vcpu_load, which sets the TSC to
8804          * catchup mode.  This will catchup all VCPUs to real time, but cannot
8805          * guarantee that they stay in perfect synchronization.
8806          */
8807         if (backwards_tsc) {
8808                 u64 delta_cyc = max_tsc - local_tsc;
8809                 list_for_each_entry(kvm, &vm_list, vm_list) {
8810                         kvm->arch.backwards_tsc_observed = true;
8811                         kvm_for_each_vcpu(i, vcpu, kvm) {
8812                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
8813                                 vcpu->arch.last_host_tsc = local_tsc;
8814                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8815                         }
8816
8817                         /*
8818                          * We have to disable TSC offset matching.. if you were
8819                          * booting a VM while issuing an S4 host suspend....
8820                          * you may have some problem.  Solving this issue is
8821                          * left as an exercise to the reader.
8822                          */
8823                         kvm->arch.last_tsc_nsec = 0;
8824                         kvm->arch.last_tsc_write = 0;
8825                 }
8826
8827         }
8828         return 0;
8829 }
8830
8831 void kvm_arch_hardware_disable(void)
8832 {
8833         kvm_x86_ops->hardware_disable();
8834         drop_user_return_notifiers();
8835 }
8836
8837 int kvm_arch_hardware_setup(void)
8838 {
8839         int r;
8840
8841         r = kvm_x86_ops->hardware_setup();
8842         if (r != 0)
8843                 return r;
8844
8845         if (kvm_has_tsc_control) {
8846                 /*
8847                  * Make sure the user can only configure tsc_khz values that
8848                  * fit into a signed integer.
8849                  * A min value is not calculated because it will always
8850                  * be 1 on all machines.
8851                  */
8852                 u64 max = min(0x7fffffffULL,
8853                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8854                 kvm_max_guest_tsc_khz = max;
8855
8856                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8857         }
8858
8859         kvm_init_msr_list();
8860         return 0;
8861 }
8862
8863 void kvm_arch_hardware_unsetup(void)
8864 {
8865         kvm_x86_ops->hardware_unsetup();
8866 }
8867
8868 void kvm_arch_check_processor_compat(void *rtn)
8869 {
8870         kvm_x86_ops->check_processor_compatibility(rtn);
8871 }
8872
8873 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8874 {
8875         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8876 }
8877 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8878
8879 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8880 {
8881         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8882 }
8883
8884 struct static_key kvm_no_apic_vcpu __read_mostly;
8885 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8886
8887 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8888 {
8889         struct page *page;
8890         int r;
8891
8892         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8893         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8894         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8895                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8896         else
8897                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8898
8899         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8900         if (!page) {
8901                 r = -ENOMEM;
8902                 goto fail;
8903         }
8904         vcpu->arch.pio_data = page_address(page);
8905
8906         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8907
8908         r = kvm_mmu_create(vcpu);
8909         if (r < 0)
8910                 goto fail_free_pio_data;
8911
8912         if (irqchip_in_kernel(vcpu->kvm)) {
8913                 r = kvm_create_lapic(vcpu);
8914                 if (r < 0)
8915                         goto fail_mmu_destroy;
8916         } else
8917                 static_key_slow_inc(&kvm_no_apic_vcpu);
8918
8919         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8920                                        GFP_KERNEL);
8921         if (!vcpu->arch.mce_banks) {
8922                 r = -ENOMEM;
8923                 goto fail_free_lapic;
8924         }
8925         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8926
8927         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8928                 r = -ENOMEM;
8929                 goto fail_free_mce_banks;
8930         }
8931
8932         fx_init(vcpu);
8933
8934         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8935
8936         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8937
8938         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8939
8940         kvm_async_pf_hash_reset(vcpu);
8941         kvm_pmu_init(vcpu);
8942
8943         vcpu->arch.pending_external_vector = -1;
8944         vcpu->arch.preempted_in_kernel = false;
8945
8946         kvm_hv_vcpu_init(vcpu);
8947
8948         return 0;
8949
8950 fail_free_mce_banks:
8951         kfree(vcpu->arch.mce_banks);
8952 fail_free_lapic:
8953         kvm_free_lapic(vcpu);
8954 fail_mmu_destroy:
8955         kvm_mmu_destroy(vcpu);
8956 fail_free_pio_data:
8957         free_page((unsigned long)vcpu->arch.pio_data);
8958 fail:
8959         return r;
8960 }
8961
8962 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8963 {
8964         int idx;
8965
8966         kvm_hv_vcpu_uninit(vcpu);
8967         kvm_pmu_destroy(vcpu);
8968         kfree(vcpu->arch.mce_banks);
8969         kvm_free_lapic(vcpu);
8970         idx = srcu_read_lock(&vcpu->kvm->srcu);
8971         kvm_mmu_destroy(vcpu);
8972         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8973         free_page((unsigned long)vcpu->arch.pio_data);
8974         if (!lapic_in_kernel(vcpu))
8975                 static_key_slow_dec(&kvm_no_apic_vcpu);
8976 }
8977
8978 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8979 {
8980         vcpu->arch.l1tf_flush_l1d = true;
8981         kvm_x86_ops->sched_in(vcpu, cpu);
8982 }
8983
8984 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8985 {
8986         if (type)
8987                 return -EINVAL;
8988
8989         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8990         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8991         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8992         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8993         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8994
8995         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8996         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8997         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8998         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8999                 &kvm->arch.irq_sources_bitmap);
9000
9001         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9002         mutex_init(&kvm->arch.apic_map_lock);
9003         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9004
9005         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
9006         pvclock_update_vm_gtod_copy(kvm);
9007
9008         kvm->arch.guest_can_read_msr_platform_info = true;
9009
9010         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9011         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9012
9013         kvm_hv_init_vm(kvm);
9014         kvm_page_track_init(kvm);
9015         kvm_mmu_init_vm(kvm);
9016
9017         if (kvm_x86_ops->vm_init)
9018                 return kvm_x86_ops->vm_init(kvm);
9019
9020         return 0;
9021 }
9022
9023 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9024 {
9025         vcpu_load(vcpu);
9026         kvm_mmu_unload(vcpu);
9027         vcpu_put(vcpu);
9028 }
9029
9030 static void kvm_free_vcpus(struct kvm *kvm)
9031 {
9032         unsigned int i;
9033         struct kvm_vcpu *vcpu;
9034
9035         /*
9036          * Unpin any mmu pages first.
9037          */
9038         kvm_for_each_vcpu(i, vcpu, kvm) {
9039                 kvm_clear_async_pf_completion_queue(vcpu);
9040                 kvm_unload_vcpu_mmu(vcpu);
9041         }
9042         kvm_for_each_vcpu(i, vcpu, kvm)
9043                 kvm_arch_vcpu_free(vcpu);
9044
9045         mutex_lock(&kvm->lock);
9046         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9047                 kvm->vcpus[i] = NULL;
9048
9049         atomic_set(&kvm->online_vcpus, 0);
9050         mutex_unlock(&kvm->lock);
9051 }
9052
9053 void kvm_arch_sync_events(struct kvm *kvm)
9054 {
9055         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9056         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9057         kvm_free_pit(kvm);
9058 }
9059
9060 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9061 {
9062         int i, r;
9063         unsigned long hva;
9064         struct kvm_memslots *slots = kvm_memslots(kvm);
9065         struct kvm_memory_slot *slot, old;
9066
9067         /* Called with kvm->slots_lock held.  */
9068         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9069                 return -EINVAL;
9070
9071         slot = id_to_memslot(slots, id);
9072         if (size) {
9073                 if (slot->npages)
9074                         return -EEXIST;
9075
9076                 /*
9077                  * MAP_SHARED to prevent internal slot pages from being moved
9078                  * by fork()/COW.
9079                  */
9080                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9081                               MAP_SHARED | MAP_ANONYMOUS, 0);
9082                 if (IS_ERR((void *)hva))
9083                         return PTR_ERR((void *)hva);
9084         } else {
9085                 if (!slot->npages)
9086                         return 0;
9087
9088                 hva = 0;
9089         }
9090
9091         old = *slot;
9092         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9093                 struct kvm_userspace_memory_region m;
9094
9095                 m.slot = id | (i << 16);
9096                 m.flags = 0;
9097                 m.guest_phys_addr = gpa;
9098                 m.userspace_addr = hva;
9099                 m.memory_size = size;
9100                 r = __kvm_set_memory_region(kvm, &m);
9101                 if (r < 0)
9102                         return r;
9103         }
9104
9105         if (!size)
9106                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9107
9108         return 0;
9109 }
9110 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9111
9112 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9113 {
9114         int r;
9115
9116         mutex_lock(&kvm->slots_lock);
9117         r = __x86_set_memory_region(kvm, id, gpa, size);
9118         mutex_unlock(&kvm->slots_lock);
9119
9120         return r;
9121 }
9122 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9123
9124 void kvm_arch_destroy_vm(struct kvm *kvm)
9125 {
9126         if (current->mm == kvm->mm) {
9127                 /*
9128                  * Free memory regions allocated on behalf of userspace,
9129                  * unless the the memory map has changed due to process exit
9130                  * or fd copying.
9131                  */
9132                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9133                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9134                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9135         }
9136         if (kvm_x86_ops->vm_destroy)
9137                 kvm_x86_ops->vm_destroy(kvm);
9138         kvm_pic_destroy(kvm);
9139         kvm_ioapic_destroy(kvm);
9140         kvm_free_vcpus(kvm);
9141         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9142         kvm_mmu_uninit_vm(kvm);
9143         kvm_page_track_cleanup(kvm);
9144         kvm_hv_destroy_vm(kvm);
9145 }
9146
9147 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9148                            struct kvm_memory_slot *dont)
9149 {
9150         int i;
9151
9152         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9153                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9154                         kvfree(free->arch.rmap[i]);
9155                         free->arch.rmap[i] = NULL;
9156                 }
9157                 if (i == 0)
9158                         continue;
9159
9160                 if (!dont || free->arch.lpage_info[i - 1] !=
9161                              dont->arch.lpage_info[i - 1]) {
9162                         kvfree(free->arch.lpage_info[i - 1]);
9163                         free->arch.lpage_info[i - 1] = NULL;
9164                 }
9165         }
9166
9167         kvm_page_track_free_memslot(free, dont);
9168 }
9169
9170 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9171                             unsigned long npages)
9172 {
9173         int i;
9174
9175         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9176                 struct kvm_lpage_info *linfo;
9177                 unsigned long ugfn;
9178                 int lpages;
9179                 int level = i + 1;
9180
9181                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9182                                       slot->base_gfn, level) + 1;
9183
9184                 slot->arch.rmap[i] =
9185                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9186                                  GFP_KERNEL);
9187                 if (!slot->arch.rmap[i])
9188                         goto out_free;
9189                 if (i == 0)
9190                         continue;
9191
9192                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL);
9193                 if (!linfo)
9194                         goto out_free;
9195
9196                 slot->arch.lpage_info[i - 1] = linfo;
9197
9198                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9199                         linfo[0].disallow_lpage = 1;
9200                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9201                         linfo[lpages - 1].disallow_lpage = 1;
9202                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9203                 /*
9204                  * If the gfn and userspace address are not aligned wrt each
9205                  * other, or if explicitly asked to, disable large page
9206                  * support for this slot
9207                  */
9208                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9209                     !kvm_largepages_enabled()) {
9210                         unsigned long j;
9211
9212                         for (j = 0; j < lpages; ++j)
9213                                 linfo[j].disallow_lpage = 1;
9214                 }
9215         }
9216
9217         if (kvm_page_track_create_memslot(slot, npages))
9218                 goto out_free;
9219
9220         return 0;
9221
9222 out_free:
9223         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9224                 kvfree(slot->arch.rmap[i]);
9225                 slot->arch.rmap[i] = NULL;
9226                 if (i == 0)
9227                         continue;
9228
9229                 kvfree(slot->arch.lpage_info[i - 1]);
9230                 slot->arch.lpage_info[i - 1] = NULL;
9231         }
9232         return -ENOMEM;
9233 }
9234
9235 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
9236 {
9237         /*
9238          * memslots->generation has been incremented.
9239          * mmio generation may have reached its maximum value.
9240          */
9241         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
9242 }
9243
9244 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9245                                 struct kvm_memory_slot *memslot,
9246                                 const struct kvm_userspace_memory_region *mem,
9247                                 enum kvm_mr_change change)
9248 {
9249         return 0;
9250 }
9251
9252 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9253                                      struct kvm_memory_slot *new)
9254 {
9255         /* Still write protect RO slot */
9256         if (new->flags & KVM_MEM_READONLY) {
9257                 kvm_mmu_slot_remove_write_access(kvm, new);
9258                 return;
9259         }
9260
9261         /*
9262          * Call kvm_x86_ops dirty logging hooks when they are valid.
9263          *
9264          * kvm_x86_ops->slot_disable_log_dirty is called when:
9265          *
9266          *  - KVM_MR_CREATE with dirty logging is disabled
9267          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9268          *
9269          * The reason is, in case of PML, we need to set D-bit for any slots
9270          * with dirty logging disabled in order to eliminate unnecessary GPA
9271          * logging in PML buffer (and potential PML buffer full VMEXT). This
9272          * guarantees leaving PML enabled during guest's lifetime won't have
9273          * any additonal overhead from PML when guest is running with dirty
9274          * logging disabled for memory slots.
9275          *
9276          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9277          * to dirty logging mode.
9278          *
9279          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9280          *
9281          * In case of write protect:
9282          *
9283          * Write protect all pages for dirty logging.
9284          *
9285          * All the sptes including the large sptes which point to this
9286          * slot are set to readonly. We can not create any new large
9287          * spte on this slot until the end of the logging.
9288          *
9289          * See the comments in fast_page_fault().
9290          */
9291         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9292                 if (kvm_x86_ops->slot_enable_log_dirty)
9293                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9294                 else
9295                         kvm_mmu_slot_remove_write_access(kvm, new);
9296         } else {
9297                 if (kvm_x86_ops->slot_disable_log_dirty)
9298                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9299         }
9300 }
9301
9302 void kvm_arch_commit_memory_region(struct kvm *kvm,
9303                                 const struct kvm_userspace_memory_region *mem,
9304                                 const struct kvm_memory_slot *old,
9305                                 const struct kvm_memory_slot *new,
9306                                 enum kvm_mr_change change)
9307 {
9308         int nr_mmu_pages = 0;
9309
9310         if (!kvm->arch.n_requested_mmu_pages)
9311                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
9312
9313         if (nr_mmu_pages)
9314                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
9315
9316         /*
9317          * Dirty logging tracks sptes in 4k granularity, meaning that large
9318          * sptes have to be split.  If live migration is successful, the guest
9319          * in the source machine will be destroyed and large sptes will be
9320          * created in the destination. However, if the guest continues to run
9321          * in the source machine (for example if live migration fails), small
9322          * sptes will remain around and cause bad performance.
9323          *
9324          * Scan sptes if dirty logging has been stopped, dropping those
9325          * which can be collapsed into a single large-page spte.  Later
9326          * page faults will create the large-page sptes.
9327          */
9328         if ((change != KVM_MR_DELETE) &&
9329                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9330                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9331                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9332
9333         /*
9334          * Set up write protection and/or dirty logging for the new slot.
9335          *
9336          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9337          * been zapped so no dirty logging staff is needed for old slot. For
9338          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9339          * new and it's also covered when dealing with the new slot.
9340          *
9341          * FIXME: const-ify all uses of struct kvm_memory_slot.
9342          */
9343         if (change != KVM_MR_DELETE)
9344                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9345 }
9346
9347 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9348 {
9349         kvm_mmu_invalidate_zap_all_pages(kvm);
9350 }
9351
9352 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9353                                    struct kvm_memory_slot *slot)
9354 {
9355         kvm_page_track_flush_slot(kvm, slot);
9356 }
9357
9358 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9359 {
9360         return (is_guest_mode(vcpu) &&
9361                         kvm_x86_ops->guest_apic_has_interrupt &&
9362                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9363 }
9364
9365 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9366 {
9367         if (!list_empty_careful(&vcpu->async_pf.done))
9368                 return true;
9369
9370         if (kvm_apic_has_events(vcpu))
9371                 return true;
9372
9373         if (vcpu->arch.pv.pv_unhalted)
9374                 return true;
9375
9376         if (vcpu->arch.exception.pending)
9377                 return true;
9378
9379         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9380             (vcpu->arch.nmi_pending &&
9381              kvm_x86_ops->nmi_allowed(vcpu)))
9382                 return true;
9383
9384         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9385             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9386                 return true;
9387
9388         if (kvm_arch_interrupt_allowed(vcpu) &&
9389             (kvm_cpu_has_interrupt(vcpu) ||
9390             kvm_guest_apic_has_interrupt(vcpu)))
9391                 return true;
9392
9393         if (kvm_hv_has_stimer_pending(vcpu))
9394                 return true;
9395
9396         return false;
9397 }
9398
9399 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9400 {
9401         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9402 }
9403
9404 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9405 {
9406         return vcpu->arch.preempted_in_kernel;
9407 }
9408
9409 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9410 {
9411         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9412 }
9413
9414 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9415 {
9416         return kvm_x86_ops->interrupt_allowed(vcpu);
9417 }
9418
9419 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9420 {
9421         if (is_64_bit_mode(vcpu))
9422                 return kvm_rip_read(vcpu);
9423         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9424                      kvm_rip_read(vcpu));
9425 }
9426 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9427
9428 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9429 {
9430         return kvm_get_linear_rip(vcpu) == linear_rip;
9431 }
9432 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9433
9434 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9435 {
9436         unsigned long rflags;
9437
9438         rflags = kvm_x86_ops->get_rflags(vcpu);
9439         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9440                 rflags &= ~X86_EFLAGS_TF;
9441         return rflags;
9442 }
9443 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9444
9445 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9446 {
9447         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9448             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9449                 rflags |= X86_EFLAGS_TF;
9450         kvm_x86_ops->set_rflags(vcpu, rflags);
9451 }
9452
9453 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9454 {
9455         __kvm_set_rflags(vcpu, rflags);
9456         kvm_make_request(KVM_REQ_EVENT, vcpu);
9457 }
9458 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9459
9460 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9461 {
9462         int r;
9463
9464         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9465               work->wakeup_all)
9466                 return;
9467
9468         r = kvm_mmu_reload(vcpu);
9469         if (unlikely(r))
9470                 return;
9471
9472         if (!vcpu->arch.mmu->direct_map &&
9473               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9474                 return;
9475
9476         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9477 }
9478
9479 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9480 {
9481         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9482 }
9483
9484 static inline u32 kvm_async_pf_next_probe(u32 key)
9485 {
9486         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9487 }
9488
9489 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9490 {
9491         u32 key = kvm_async_pf_hash_fn(gfn);
9492
9493         while (vcpu->arch.apf.gfns[key] != ~0)
9494                 key = kvm_async_pf_next_probe(key);
9495
9496         vcpu->arch.apf.gfns[key] = gfn;
9497 }
9498
9499 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9500 {
9501         int i;
9502         u32 key = kvm_async_pf_hash_fn(gfn);
9503
9504         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9505                      (vcpu->arch.apf.gfns[key] != gfn &&
9506                       vcpu->arch.apf.gfns[key] != ~0); i++)
9507                 key = kvm_async_pf_next_probe(key);
9508
9509         return key;
9510 }
9511
9512 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9513 {
9514         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9515 }
9516
9517 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9518 {
9519         u32 i, j, k;
9520
9521         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9522         while (true) {
9523                 vcpu->arch.apf.gfns[i] = ~0;
9524                 do {
9525                         j = kvm_async_pf_next_probe(j);
9526                         if (vcpu->arch.apf.gfns[j] == ~0)
9527                                 return;
9528                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9529                         /*
9530                          * k lies cyclically in ]i,j]
9531                          * |    i.k.j |
9532                          * |....j i.k.| or  |.k..j i...|
9533                          */
9534                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9535                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9536                 i = j;
9537         }
9538 }
9539
9540 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9541 {
9542
9543         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9544                                       sizeof(val));
9545 }
9546
9547 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9548 {
9549
9550         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9551                                       sizeof(u32));
9552 }
9553
9554 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9555                                      struct kvm_async_pf *work)
9556 {
9557         struct x86_exception fault;
9558
9559         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9560         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9561
9562         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9563             (vcpu->arch.apf.send_user_only &&
9564              kvm_x86_ops->get_cpl(vcpu) == 0))
9565                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9566         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9567                 fault.vector = PF_VECTOR;
9568                 fault.error_code_valid = true;
9569                 fault.error_code = 0;
9570                 fault.nested_page_fault = false;
9571                 fault.address = work->arch.token;
9572                 fault.async_page_fault = true;
9573                 kvm_inject_page_fault(vcpu, &fault);
9574         }
9575 }
9576
9577 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9578                                  struct kvm_async_pf *work)
9579 {
9580         struct x86_exception fault;
9581         u32 val;
9582
9583         if (work->wakeup_all)
9584                 work->arch.token = ~0; /* broadcast wakeup */
9585         else
9586                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9587         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9588
9589         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9590             !apf_get_user(vcpu, &val)) {
9591                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9592                     vcpu->arch.exception.pending &&
9593                     vcpu->arch.exception.nr == PF_VECTOR &&
9594                     !apf_put_user(vcpu, 0)) {
9595                         vcpu->arch.exception.injected = false;
9596                         vcpu->arch.exception.pending = false;
9597                         vcpu->arch.exception.nr = 0;
9598                         vcpu->arch.exception.has_error_code = false;
9599                         vcpu->arch.exception.error_code = 0;
9600                         vcpu->arch.exception.has_payload = false;
9601                         vcpu->arch.exception.payload = 0;
9602                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9603                         fault.vector = PF_VECTOR;
9604                         fault.error_code_valid = true;
9605                         fault.error_code = 0;
9606                         fault.nested_page_fault = false;
9607                         fault.address = work->arch.token;
9608                         fault.async_page_fault = true;
9609                         kvm_inject_page_fault(vcpu, &fault);
9610                 }
9611         }
9612         vcpu->arch.apf.halted = false;
9613         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9614 }
9615
9616 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9617 {
9618         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9619                 return true;
9620         else
9621                 return kvm_can_do_async_pf(vcpu);
9622 }
9623
9624 void kvm_arch_start_assignment(struct kvm *kvm)
9625 {
9626         atomic_inc(&kvm->arch.assigned_device_count);
9627 }
9628 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9629
9630 void kvm_arch_end_assignment(struct kvm *kvm)
9631 {
9632         atomic_dec(&kvm->arch.assigned_device_count);
9633 }
9634 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9635
9636 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9637 {
9638         return atomic_read(&kvm->arch.assigned_device_count);
9639 }
9640 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9641
9642 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9643 {
9644         atomic_inc(&kvm->arch.noncoherent_dma_count);
9645 }
9646 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9647
9648 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9649 {
9650         atomic_dec(&kvm->arch.noncoherent_dma_count);
9651 }
9652 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9653
9654 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9655 {
9656         return atomic_read(&kvm->arch.noncoherent_dma_count);
9657 }
9658 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9659
9660 bool kvm_arch_has_irq_bypass(void)
9661 {
9662         return kvm_x86_ops->update_pi_irte != NULL;
9663 }
9664
9665 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9666                                       struct irq_bypass_producer *prod)
9667 {
9668         struct kvm_kernel_irqfd *irqfd =
9669                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9670
9671         irqfd->producer = prod;
9672
9673         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
9674                                            prod->irq, irqfd->gsi, 1);
9675 }
9676
9677 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
9678                                       struct irq_bypass_producer *prod)
9679 {
9680         int ret;
9681         struct kvm_kernel_irqfd *irqfd =
9682                 container_of(cons, struct kvm_kernel_irqfd, consumer);
9683
9684         WARN_ON(irqfd->producer != prod);
9685         irqfd->producer = NULL;
9686
9687         /*
9688          * When producer of consumer is unregistered, we change back to
9689          * remapped mode, so we can re-use the current implementation
9690          * when the irq is masked/disabled or the consumer side (KVM
9691          * int this case doesn't want to receive the interrupts.
9692         */
9693         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
9694         if (ret)
9695                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
9696                        " fails: %d\n", irqfd->consumer.token, ret);
9697 }
9698
9699 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
9700                                    uint32_t guest_irq, bool set)
9701 {
9702         if (!kvm_x86_ops->update_pi_irte)
9703                 return -EINVAL;
9704
9705         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
9706 }
9707
9708 bool kvm_vector_hashing_enabled(void)
9709 {
9710         return vector_hashing;
9711 }
9712 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
9713
9714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
9715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
9716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
9717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
9718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
9719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
9720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
9721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
9722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
9723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
9724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
9725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
9726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
9727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
9728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
9729 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
9730 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
9731 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
9732 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);