]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "pmu.h"
31 #include "hyperv.h"
32
33 #include <linux/clocksource.h>
34 #include <linux/interrupt.h>
35 #include <linux/kvm.h>
36 #include <linux/fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <linux/moduleparam.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/mem_encrypt.h>
58
59 #include <trace/events/kvm.h>
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define CREATE_TRACE_POINTS
72 #include "trace.h"
73
74 #define MAX_IO_MSRS 256
75 #define KVM_MAX_MCE_BANKS 32
76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
78
79 #define emul_to_vcpu(ctxt) \
80         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
81
82 /* EFER defaults:
83  * - enable syscall per default because its emulated by KVM
84  * - enable LME and LMA per default on 64 bit KVM
85  */
86 #ifdef CONFIG_X86_64
87 static
88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
89 #else
90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
91 #endif
92
93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
95
96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
97                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
98
99 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
100 static void process_nmi(struct kvm_vcpu *vcpu);
101 static void enter_smm(struct kvm_vcpu *vcpu);
102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
103
104 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
105 EXPORT_SYMBOL_GPL(kvm_x86_ops);
106
107 static bool __read_mostly ignore_msrs = 0;
108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
109
110 static bool __read_mostly report_ignored_msrs = true;
111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
112
113 unsigned int min_timer_period_us = 500;
114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
115
116 static bool __read_mostly kvmclock_periodic_sync = true;
117 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
118
119 bool __read_mostly kvm_has_tsc_control;
120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
121 u32  __read_mostly kvm_max_guest_tsc_khz;
122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
123 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
125 u64  __read_mostly kvm_max_tsc_scaling_ratio;
126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
127 u64 __read_mostly kvm_default_tsc_scaling_ratio;
128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
129
130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
131 static u32 __read_mostly tsc_tolerance_ppm = 250;
132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
133
134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
135 unsigned int __read_mostly lapic_timer_advance_ns = 0;
136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
137
138 static bool __read_mostly vector_hashing = true;
139 module_param(vector_hashing, bool, S_IRUGO);
140
141 #define KVM_NR_SHARED_MSRS 16
142
143 struct kvm_shared_msrs_global {
144         int nr;
145         u32 msrs[KVM_NR_SHARED_MSRS];
146 };
147
148 struct kvm_shared_msrs {
149         struct user_return_notifier urn;
150         bool registered;
151         struct kvm_shared_msr_values {
152                 u64 host;
153                 u64 curr;
154         } values[KVM_NR_SHARED_MSRS];
155 };
156
157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
158 static struct kvm_shared_msrs __percpu *shared_msrs;
159
160 struct kvm_stats_debugfs_item debugfs_entries[] = {
161         { "pf_fixed", VCPU_STAT(pf_fixed) },
162         { "pf_guest", VCPU_STAT(pf_guest) },
163         { "tlb_flush", VCPU_STAT(tlb_flush) },
164         { "invlpg", VCPU_STAT(invlpg) },
165         { "exits", VCPU_STAT(exits) },
166         { "io_exits", VCPU_STAT(io_exits) },
167         { "mmio_exits", VCPU_STAT(mmio_exits) },
168         { "signal_exits", VCPU_STAT(signal_exits) },
169         { "irq_window", VCPU_STAT(irq_window_exits) },
170         { "nmi_window", VCPU_STAT(nmi_window_exits) },
171         { "halt_exits", VCPU_STAT(halt_exits) },
172         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
173         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
174         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
175         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
176         { "hypercalls", VCPU_STAT(hypercalls) },
177         { "request_irq", VCPU_STAT(request_irq_exits) },
178         { "irq_exits", VCPU_STAT(irq_exits) },
179         { "host_state_reload", VCPU_STAT(host_state_reload) },
180         { "efer_reload", VCPU_STAT(efer_reload) },
181         { "fpu_reload", VCPU_STAT(fpu_reload) },
182         { "insn_emulation", VCPU_STAT(insn_emulation) },
183         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
184         { "irq_injections", VCPU_STAT(irq_injections) },
185         { "nmi_injections", VCPU_STAT(nmi_injections) },
186         { "req_event", VCPU_STAT(req_event) },
187         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
188         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
189         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
190         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
191         { "mmu_flooded", VM_STAT(mmu_flooded) },
192         { "mmu_recycled", VM_STAT(mmu_recycled) },
193         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
194         { "mmu_unsync", VM_STAT(mmu_unsync) },
195         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
196         { "largepages", VM_STAT(lpages) },
197         { "max_mmu_page_hash_collisions",
198                 VM_STAT(max_mmu_page_hash_collisions) },
199         { NULL }
200 };
201
202 u64 __read_mostly host_xcr0;
203
204 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
205
206 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
207 {
208         int i;
209         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
210                 vcpu->arch.apf.gfns[i] = ~0;
211 }
212
213 static void kvm_on_user_return(struct user_return_notifier *urn)
214 {
215         unsigned slot;
216         struct kvm_shared_msrs *locals
217                 = container_of(urn, struct kvm_shared_msrs, urn);
218         struct kvm_shared_msr_values *values;
219         unsigned long flags;
220
221         /*
222          * Disabling irqs at this point since the following code could be
223          * interrupted and executed through kvm_arch_hardware_disable()
224          */
225         local_irq_save(flags);
226         if (locals->registered) {
227                 locals->registered = false;
228                 user_return_notifier_unregister(urn);
229         }
230         local_irq_restore(flags);
231         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
232                 values = &locals->values[slot];
233                 if (values->host != values->curr) {
234                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
235                         values->curr = values->host;
236                 }
237         }
238 }
239
240 static void shared_msr_update(unsigned slot, u32 msr)
241 {
242         u64 value;
243         unsigned int cpu = smp_processor_id();
244         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
245
246         /* only read, and nobody should modify it at this time,
247          * so don't need lock */
248         if (slot >= shared_msrs_global.nr) {
249                 printk(KERN_ERR "kvm: invalid MSR slot!");
250                 return;
251         }
252         rdmsrl_safe(msr, &value);
253         smsr->values[slot].host = value;
254         smsr->values[slot].curr = value;
255 }
256
257 void kvm_define_shared_msr(unsigned slot, u32 msr)
258 {
259         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
260         shared_msrs_global.msrs[slot] = msr;
261         if (slot >= shared_msrs_global.nr)
262                 shared_msrs_global.nr = slot + 1;
263 }
264 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
265
266 static void kvm_shared_msr_cpu_online(void)
267 {
268         unsigned i;
269
270         for (i = 0; i < shared_msrs_global.nr; ++i)
271                 shared_msr_update(i, shared_msrs_global.msrs[i]);
272 }
273
274 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
275 {
276         unsigned int cpu = smp_processor_id();
277         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
278         int err;
279
280         if (((value ^ smsr->values[slot].curr) & mask) == 0)
281                 return 0;
282         smsr->values[slot].curr = value;
283         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
284         if (err)
285                 return 1;
286
287         if (!smsr->registered) {
288                 smsr->urn.on_user_return = kvm_on_user_return;
289                 user_return_notifier_register(&smsr->urn);
290                 smsr->registered = true;
291         }
292         return 0;
293 }
294 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
295
296 static void drop_user_return_notifiers(void)
297 {
298         unsigned int cpu = smp_processor_id();
299         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300
301         if (smsr->registered)
302                 kvm_on_user_return(&smsr->urn);
303 }
304
305 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
306 {
307         return vcpu->arch.apic_base;
308 }
309 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
310
311 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
312 {
313         u64 old_state = vcpu->arch.apic_base &
314                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
315         u64 new_state = msr_info->data &
316                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
317         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
318                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
319
320         if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE)
321                 return 1;
322         if (!msr_info->host_initiated &&
323             ((new_state == MSR_IA32_APICBASE_ENABLE &&
324               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
325              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
326               old_state == 0)))
327                 return 1;
328
329         kvm_lapic_set_base(vcpu, msr_info->data);
330         return 0;
331 }
332 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
333
334 asmlinkage __visible void kvm_spurious_fault(void)
335 {
336         /* Fault while not rebooting.  We want the trace. */
337         BUG();
338 }
339 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
340
341 #define EXCPT_BENIGN            0
342 #define EXCPT_CONTRIBUTORY      1
343 #define EXCPT_PF                2
344
345 static int exception_class(int vector)
346 {
347         switch (vector) {
348         case PF_VECTOR:
349                 return EXCPT_PF;
350         case DE_VECTOR:
351         case TS_VECTOR:
352         case NP_VECTOR:
353         case SS_VECTOR:
354         case GP_VECTOR:
355                 return EXCPT_CONTRIBUTORY;
356         default:
357                 break;
358         }
359         return EXCPT_BENIGN;
360 }
361
362 #define EXCPT_FAULT             0
363 #define EXCPT_TRAP              1
364 #define EXCPT_ABORT             2
365 #define EXCPT_INTERRUPT         3
366
367 static int exception_type(int vector)
368 {
369         unsigned int mask;
370
371         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
372                 return EXCPT_INTERRUPT;
373
374         mask = 1 << vector;
375
376         /* #DB is trap, as instruction watchpoints are handled elsewhere */
377         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
378                 return EXCPT_TRAP;
379
380         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
381                 return EXCPT_ABORT;
382
383         /* Reserved exceptions will result in fault */
384         return EXCPT_FAULT;
385 }
386
387 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
388                 unsigned nr, bool has_error, u32 error_code,
389                 bool reinject)
390 {
391         u32 prev_nr;
392         int class1, class2;
393
394         kvm_make_request(KVM_REQ_EVENT, vcpu);
395
396         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
397         queue:
398                 if (has_error && !is_protmode(vcpu))
399                         has_error = false;
400                 if (reinject) {
401                         /*
402                          * On vmentry, vcpu->arch.exception.pending is only
403                          * true if an event injection was blocked by
404                          * nested_run_pending.  In that case, however,
405                          * vcpu_enter_guest requests an immediate exit,
406                          * and the guest shouldn't proceed far enough to
407                          * need reinjection.
408                          */
409                         WARN_ON_ONCE(vcpu->arch.exception.pending);
410                         vcpu->arch.exception.injected = true;
411                 } else {
412                         vcpu->arch.exception.pending = true;
413                         vcpu->arch.exception.injected = false;
414                 }
415                 vcpu->arch.exception.has_error_code = has_error;
416                 vcpu->arch.exception.nr = nr;
417                 vcpu->arch.exception.error_code = error_code;
418                 return;
419         }
420
421         /* to check exception */
422         prev_nr = vcpu->arch.exception.nr;
423         if (prev_nr == DF_VECTOR) {
424                 /* triple fault -> shutdown */
425                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
426                 return;
427         }
428         class1 = exception_class(prev_nr);
429         class2 = exception_class(nr);
430         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
431                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
432                 /*
433                  * Generate double fault per SDM Table 5-5.  Set
434                  * exception.pending = true so that the double fault
435                  * can trigger a nested vmexit.
436                  */
437                 vcpu->arch.exception.pending = true;
438                 vcpu->arch.exception.injected = false;
439                 vcpu->arch.exception.has_error_code = true;
440                 vcpu->arch.exception.nr = DF_VECTOR;
441                 vcpu->arch.exception.error_code = 0;
442         } else
443                 /* replace previous exception with a new one in a hope
444                    that instruction re-execution will regenerate lost
445                    exception */
446                 goto queue;
447 }
448
449 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
450 {
451         kvm_multiple_exception(vcpu, nr, false, 0, false);
452 }
453 EXPORT_SYMBOL_GPL(kvm_queue_exception);
454
455 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
456 {
457         kvm_multiple_exception(vcpu, nr, false, 0, true);
458 }
459 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
460
461 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
462 {
463         if (err)
464                 kvm_inject_gp(vcpu, 0);
465         else
466                 return kvm_skip_emulated_instruction(vcpu);
467
468         return 1;
469 }
470 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
471
472 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
473 {
474         ++vcpu->stat.pf_guest;
475         vcpu->arch.exception.nested_apf =
476                 is_guest_mode(vcpu) && fault->async_page_fault;
477         if (vcpu->arch.exception.nested_apf)
478                 vcpu->arch.apf.nested_apf_token = fault->address;
479         else
480                 vcpu->arch.cr2 = fault->address;
481         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
482 }
483 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
484
485 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
486 {
487         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
488                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
489         else
490                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
491
492         return fault->nested_page_fault;
493 }
494
495 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
496 {
497         atomic_inc(&vcpu->arch.nmi_queued);
498         kvm_make_request(KVM_REQ_NMI, vcpu);
499 }
500 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
501
502 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
503 {
504         kvm_multiple_exception(vcpu, nr, true, error_code, false);
505 }
506 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
507
508 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
509 {
510         kvm_multiple_exception(vcpu, nr, true, error_code, true);
511 }
512 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
513
514 /*
515  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
516  * a #GP and return false.
517  */
518 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
519 {
520         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
521                 return true;
522         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
523         return false;
524 }
525 EXPORT_SYMBOL_GPL(kvm_require_cpl);
526
527 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
528 {
529         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
530                 return true;
531
532         kvm_queue_exception(vcpu, UD_VECTOR);
533         return false;
534 }
535 EXPORT_SYMBOL_GPL(kvm_require_dr);
536
537 /*
538  * This function will be used to read from the physical memory of the currently
539  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
540  * can read from guest physical or from the guest's guest physical memory.
541  */
542 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
543                             gfn_t ngfn, void *data, int offset, int len,
544                             u32 access)
545 {
546         struct x86_exception exception;
547         gfn_t real_gfn;
548         gpa_t ngpa;
549
550         ngpa     = gfn_to_gpa(ngfn);
551         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
552         if (real_gfn == UNMAPPED_GVA)
553                 return -EFAULT;
554
555         real_gfn = gpa_to_gfn(real_gfn);
556
557         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
558 }
559 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
560
561 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
562                                void *data, int offset, int len, u32 access)
563 {
564         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
565                                        data, offset, len, access);
566 }
567
568 /*
569  * Load the pae pdptrs.  Return true is they are all valid.
570  */
571 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
572 {
573         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
574         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
575         int i;
576         int ret;
577         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
578
579         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
580                                       offset * sizeof(u64), sizeof(pdpte),
581                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
582         if (ret < 0) {
583                 ret = 0;
584                 goto out;
585         }
586         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
587                 if ((pdpte[i] & PT_PRESENT_MASK) &&
588                     (pdpte[i] &
589                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
590                         ret = 0;
591                         goto out;
592                 }
593         }
594         ret = 1;
595
596         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
597         __set_bit(VCPU_EXREG_PDPTR,
598                   (unsigned long *)&vcpu->arch.regs_avail);
599         __set_bit(VCPU_EXREG_PDPTR,
600                   (unsigned long *)&vcpu->arch.regs_dirty);
601 out:
602
603         return ret;
604 }
605 EXPORT_SYMBOL_GPL(load_pdptrs);
606
607 bool pdptrs_changed(struct kvm_vcpu *vcpu)
608 {
609         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
610         bool changed = true;
611         int offset;
612         gfn_t gfn;
613         int r;
614
615         if (is_long_mode(vcpu) || !is_pae(vcpu))
616                 return false;
617
618         if (!test_bit(VCPU_EXREG_PDPTR,
619                       (unsigned long *)&vcpu->arch.regs_avail))
620                 return true;
621
622         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
623         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
624         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
625                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
626         if (r < 0)
627                 goto out;
628         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
629 out:
630
631         return changed;
632 }
633 EXPORT_SYMBOL_GPL(pdptrs_changed);
634
635 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
636 {
637         unsigned long old_cr0 = kvm_read_cr0(vcpu);
638         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
639
640         cr0 |= X86_CR0_ET;
641
642 #ifdef CONFIG_X86_64
643         if (cr0 & 0xffffffff00000000UL)
644                 return 1;
645 #endif
646
647         cr0 &= ~CR0_RESERVED_BITS;
648
649         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
650                 return 1;
651
652         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
653                 return 1;
654
655         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
656 #ifdef CONFIG_X86_64
657                 if ((vcpu->arch.efer & EFER_LME)) {
658                         int cs_db, cs_l;
659
660                         if (!is_pae(vcpu))
661                                 return 1;
662                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
663                         if (cs_l)
664                                 return 1;
665                 } else
666 #endif
667                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
668                                                  kvm_read_cr3(vcpu)))
669                         return 1;
670         }
671
672         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
673                 return 1;
674
675         kvm_x86_ops->set_cr0(vcpu, cr0);
676
677         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
678                 kvm_clear_async_pf_completion_queue(vcpu);
679                 kvm_async_pf_hash_reset(vcpu);
680         }
681
682         if ((cr0 ^ old_cr0) & update_bits)
683                 kvm_mmu_reset_context(vcpu);
684
685         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
686             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
687             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
688                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
689
690         return 0;
691 }
692 EXPORT_SYMBOL_GPL(kvm_set_cr0);
693
694 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
695 {
696         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
697 }
698 EXPORT_SYMBOL_GPL(kvm_lmsw);
699
700 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
701 {
702         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
703                         !vcpu->guest_xcr0_loaded) {
704                 /* kvm_set_xcr() also depends on this */
705                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
706                 vcpu->guest_xcr0_loaded = 1;
707         }
708 }
709
710 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
711 {
712         if (vcpu->guest_xcr0_loaded) {
713                 if (vcpu->arch.xcr0 != host_xcr0)
714                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
715                 vcpu->guest_xcr0_loaded = 0;
716         }
717 }
718
719 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
720 {
721         u64 xcr0 = xcr;
722         u64 old_xcr0 = vcpu->arch.xcr0;
723         u64 valid_bits;
724
725         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
726         if (index != XCR_XFEATURE_ENABLED_MASK)
727                 return 1;
728         if (!(xcr0 & XFEATURE_MASK_FP))
729                 return 1;
730         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
731                 return 1;
732
733         /*
734          * Do not allow the guest to set bits that we do not support
735          * saving.  However, xcr0 bit 0 is always set, even if the
736          * emulated CPU does not support XSAVE (see fx_init).
737          */
738         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
739         if (xcr0 & ~valid_bits)
740                 return 1;
741
742         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
743             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
744                 return 1;
745
746         if (xcr0 & XFEATURE_MASK_AVX512) {
747                 if (!(xcr0 & XFEATURE_MASK_YMM))
748                         return 1;
749                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
750                         return 1;
751         }
752         vcpu->arch.xcr0 = xcr0;
753
754         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
755                 kvm_update_cpuid(vcpu);
756         return 0;
757 }
758
759 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
760 {
761         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
762             __kvm_set_xcr(vcpu, index, xcr)) {
763                 kvm_inject_gp(vcpu, 0);
764                 return 1;
765         }
766         return 0;
767 }
768 EXPORT_SYMBOL_GPL(kvm_set_xcr);
769
770 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
771 {
772         unsigned long old_cr4 = kvm_read_cr4(vcpu);
773         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
774                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
775
776         if (cr4 & CR4_RESERVED_BITS)
777                 return 1;
778
779         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
780                 return 1;
781
782         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
783                 return 1;
784
785         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
786                 return 1;
787
788         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
789                 return 1;
790
791         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
792                 return 1;
793
794         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
795                 return 1;
796
797         if (is_long_mode(vcpu)) {
798                 if (!(cr4 & X86_CR4_PAE))
799                         return 1;
800         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
801                    && ((cr4 ^ old_cr4) & pdptr_bits)
802                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
803                                    kvm_read_cr3(vcpu)))
804                 return 1;
805
806         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
807                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
808                         return 1;
809
810                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
811                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
812                         return 1;
813         }
814
815         if (kvm_x86_ops->set_cr4(vcpu, cr4))
816                 return 1;
817
818         if (((cr4 ^ old_cr4) & pdptr_bits) ||
819             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
820                 kvm_mmu_reset_context(vcpu);
821
822         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
823                 kvm_update_cpuid(vcpu);
824
825         return 0;
826 }
827 EXPORT_SYMBOL_GPL(kvm_set_cr4);
828
829 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
830 {
831 #ifdef CONFIG_X86_64
832         cr3 &= ~CR3_PCID_INVD;
833 #endif
834
835         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
836                 kvm_mmu_sync_roots(vcpu);
837                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
838                 return 0;
839         }
840
841         if (is_long_mode(vcpu) &&
842             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62)))
843                 return 1;
844         else if (is_pae(vcpu) && is_paging(vcpu) &&
845                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
846                 return 1;
847
848         vcpu->arch.cr3 = cr3;
849         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
850         kvm_mmu_new_cr3(vcpu);
851         return 0;
852 }
853 EXPORT_SYMBOL_GPL(kvm_set_cr3);
854
855 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
856 {
857         if (cr8 & CR8_RESERVED_BITS)
858                 return 1;
859         if (lapic_in_kernel(vcpu))
860                 kvm_lapic_set_tpr(vcpu, cr8);
861         else
862                 vcpu->arch.cr8 = cr8;
863         return 0;
864 }
865 EXPORT_SYMBOL_GPL(kvm_set_cr8);
866
867 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
868 {
869         if (lapic_in_kernel(vcpu))
870                 return kvm_lapic_get_cr8(vcpu);
871         else
872                 return vcpu->arch.cr8;
873 }
874 EXPORT_SYMBOL_GPL(kvm_get_cr8);
875
876 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
877 {
878         int i;
879
880         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
881                 for (i = 0; i < KVM_NR_DB_REGS; i++)
882                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
883                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
884         }
885 }
886
887 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
888 {
889         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
890                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
891 }
892
893 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
894 {
895         unsigned long dr7;
896
897         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
898                 dr7 = vcpu->arch.guest_debug_dr7;
899         else
900                 dr7 = vcpu->arch.dr7;
901         kvm_x86_ops->set_dr7(vcpu, dr7);
902         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
903         if (dr7 & DR7_BP_EN_MASK)
904                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
905 }
906
907 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
908 {
909         u64 fixed = DR6_FIXED_1;
910
911         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
912                 fixed |= DR6_RTM;
913         return fixed;
914 }
915
916 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
917 {
918         switch (dr) {
919         case 0 ... 3:
920                 vcpu->arch.db[dr] = val;
921                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
922                         vcpu->arch.eff_db[dr] = val;
923                 break;
924         case 4:
925                 /* fall through */
926         case 6:
927                 if (val & 0xffffffff00000000ULL)
928                         return -1; /* #GP */
929                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
930                 kvm_update_dr6(vcpu);
931                 break;
932         case 5:
933                 /* fall through */
934         default: /* 7 */
935                 if (val & 0xffffffff00000000ULL)
936                         return -1; /* #GP */
937                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
938                 kvm_update_dr7(vcpu);
939                 break;
940         }
941
942         return 0;
943 }
944
945 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
946 {
947         if (__kvm_set_dr(vcpu, dr, val)) {
948                 kvm_inject_gp(vcpu, 0);
949                 return 1;
950         }
951         return 0;
952 }
953 EXPORT_SYMBOL_GPL(kvm_set_dr);
954
955 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
956 {
957         switch (dr) {
958         case 0 ... 3:
959                 *val = vcpu->arch.db[dr];
960                 break;
961         case 4:
962                 /* fall through */
963         case 6:
964                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
965                         *val = vcpu->arch.dr6;
966                 else
967                         *val = kvm_x86_ops->get_dr6(vcpu);
968                 break;
969         case 5:
970                 /* fall through */
971         default: /* 7 */
972                 *val = vcpu->arch.dr7;
973                 break;
974         }
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_get_dr);
978
979 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
980 {
981         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
982         u64 data;
983         int err;
984
985         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
986         if (err)
987                 return err;
988         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
989         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
990         return err;
991 }
992 EXPORT_SYMBOL_GPL(kvm_rdpmc);
993
994 /*
995  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
996  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
997  *
998  * This list is modified at module load time to reflect the
999  * capabilities of the host cpu. This capabilities test skips MSRs that are
1000  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1001  * may depend on host virtualization features rather than host cpu features.
1002  */
1003
1004 static u32 msrs_to_save[] = {
1005         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1006         MSR_STAR,
1007 #ifdef CONFIG_X86_64
1008         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1009 #endif
1010         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1011         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1012 };
1013
1014 static unsigned num_msrs_to_save;
1015
1016 static u32 emulated_msrs[] = {
1017         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1018         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1019         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1020         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1021         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1022         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1023         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1024         HV_X64_MSR_RESET,
1025         HV_X64_MSR_VP_INDEX,
1026         HV_X64_MSR_VP_RUNTIME,
1027         HV_X64_MSR_SCONTROL,
1028         HV_X64_MSR_STIMER0_CONFIG,
1029         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1030         MSR_KVM_PV_EOI_EN,
1031
1032         MSR_IA32_TSC_ADJUST,
1033         MSR_IA32_TSCDEADLINE,
1034         MSR_IA32_MISC_ENABLE,
1035         MSR_IA32_MCG_STATUS,
1036         MSR_IA32_MCG_CTL,
1037         MSR_IA32_MCG_EXT_CTL,
1038         MSR_IA32_SMBASE,
1039         MSR_PLATFORM_INFO,
1040         MSR_MISC_FEATURES_ENABLES,
1041 };
1042
1043 static unsigned num_emulated_msrs;
1044
1045 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1046 {
1047         if (efer & efer_reserved_bits)
1048                 return false;
1049
1050         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1051                         return false;
1052
1053         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1054                         return false;
1055
1056         return true;
1057 }
1058 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1059
1060 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1061 {
1062         u64 old_efer = vcpu->arch.efer;
1063
1064         if (!kvm_valid_efer(vcpu, efer))
1065                 return 1;
1066
1067         if (is_paging(vcpu)
1068             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1069                 return 1;
1070
1071         efer &= ~EFER_LMA;
1072         efer |= vcpu->arch.efer & EFER_LMA;
1073
1074         kvm_x86_ops->set_efer(vcpu, efer);
1075
1076         /* Update reserved bits */
1077         if ((efer ^ old_efer) & EFER_NX)
1078                 kvm_mmu_reset_context(vcpu);
1079
1080         return 0;
1081 }
1082
1083 void kvm_enable_efer_bits(u64 mask)
1084 {
1085        efer_reserved_bits &= ~mask;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1088
1089 /*
1090  * Writes msr value into into the appropriate "register".
1091  * Returns 0 on success, non-0 otherwise.
1092  * Assumes vcpu_load() was already called.
1093  */
1094 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1095 {
1096         switch (msr->index) {
1097         case MSR_FS_BASE:
1098         case MSR_GS_BASE:
1099         case MSR_KERNEL_GS_BASE:
1100         case MSR_CSTAR:
1101         case MSR_LSTAR:
1102                 if (is_noncanonical_address(msr->data, vcpu))
1103                         return 1;
1104                 break;
1105         case MSR_IA32_SYSENTER_EIP:
1106         case MSR_IA32_SYSENTER_ESP:
1107                 /*
1108                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1109                  * non-canonical address is written on Intel but not on
1110                  * AMD (which ignores the top 32-bits, because it does
1111                  * not implement 64-bit SYSENTER).
1112                  *
1113                  * 64-bit code should hence be able to write a non-canonical
1114                  * value on AMD.  Making the address canonical ensures that
1115                  * vmentry does not fail on Intel after writing a non-canonical
1116                  * value, and that something deterministic happens if the guest
1117                  * invokes 64-bit SYSENTER.
1118                  */
1119                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1120         }
1121         return kvm_x86_ops->set_msr(vcpu, msr);
1122 }
1123 EXPORT_SYMBOL_GPL(kvm_set_msr);
1124
1125 /*
1126  * Adapt set_msr() to msr_io()'s calling convention
1127  */
1128 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1129 {
1130         struct msr_data msr;
1131         int r;
1132
1133         msr.index = index;
1134         msr.host_initiated = true;
1135         r = kvm_get_msr(vcpu, &msr);
1136         if (r)
1137                 return r;
1138
1139         *data = msr.data;
1140         return 0;
1141 }
1142
1143 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1144 {
1145         struct msr_data msr;
1146
1147         msr.data = *data;
1148         msr.index = index;
1149         msr.host_initiated = true;
1150         return kvm_set_msr(vcpu, &msr);
1151 }
1152
1153 #ifdef CONFIG_X86_64
1154 struct pvclock_gtod_data {
1155         seqcount_t      seq;
1156
1157         struct { /* extract of a clocksource struct */
1158                 int vclock_mode;
1159                 u64     cycle_last;
1160                 u64     mask;
1161                 u32     mult;
1162                 u32     shift;
1163         } clock;
1164
1165         u64             boot_ns;
1166         u64             nsec_base;
1167         u64             wall_time_sec;
1168 };
1169
1170 static struct pvclock_gtod_data pvclock_gtod_data;
1171
1172 static void update_pvclock_gtod(struct timekeeper *tk)
1173 {
1174         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1175         u64 boot_ns;
1176
1177         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1178
1179         write_seqcount_begin(&vdata->seq);
1180
1181         /* copy pvclock gtod data */
1182         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1183         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1184         vdata->clock.mask               = tk->tkr_mono.mask;
1185         vdata->clock.mult               = tk->tkr_mono.mult;
1186         vdata->clock.shift              = tk->tkr_mono.shift;
1187
1188         vdata->boot_ns                  = boot_ns;
1189         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1190
1191         vdata->wall_time_sec            = tk->xtime_sec;
1192
1193         write_seqcount_end(&vdata->seq);
1194 }
1195 #endif
1196
1197 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1198 {
1199         /*
1200          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1201          * vcpu_enter_guest.  This function is only called from
1202          * the physical CPU that is running vcpu.
1203          */
1204         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1205 }
1206
1207 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1208 {
1209         int version;
1210         int r;
1211         struct pvclock_wall_clock wc;
1212         struct timespec64 boot;
1213
1214         if (!wall_clock)
1215                 return;
1216
1217         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1218         if (r)
1219                 return;
1220
1221         if (version & 1)
1222                 ++version;  /* first time write, random junk */
1223
1224         ++version;
1225
1226         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1227                 return;
1228
1229         /*
1230          * The guest calculates current wall clock time by adding
1231          * system time (updated by kvm_guest_time_update below) to the
1232          * wall clock specified here.  guest system time equals host
1233          * system time for us, thus we must fill in host boot time here.
1234          */
1235         getboottime64(&boot);
1236
1237         if (kvm->arch.kvmclock_offset) {
1238                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1239                 boot = timespec64_sub(boot, ts);
1240         }
1241         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1242         wc.nsec = boot.tv_nsec;
1243         wc.version = version;
1244
1245         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1246
1247         version++;
1248         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1249 }
1250
1251 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1252 {
1253         do_shl32_div32(dividend, divisor);
1254         return dividend;
1255 }
1256
1257 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1258                                s8 *pshift, u32 *pmultiplier)
1259 {
1260         uint64_t scaled64;
1261         int32_t  shift = 0;
1262         uint64_t tps64;
1263         uint32_t tps32;
1264
1265         tps64 = base_hz;
1266         scaled64 = scaled_hz;
1267         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1268                 tps64 >>= 1;
1269                 shift--;
1270         }
1271
1272         tps32 = (uint32_t)tps64;
1273         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1274                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1275                         scaled64 >>= 1;
1276                 else
1277                         tps32 <<= 1;
1278                 shift++;
1279         }
1280
1281         *pshift = shift;
1282         *pmultiplier = div_frac(scaled64, tps32);
1283
1284         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1285                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1286 }
1287
1288 #ifdef CONFIG_X86_64
1289 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1290 #endif
1291
1292 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1293 static unsigned long max_tsc_khz;
1294
1295 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1296 {
1297         u64 v = (u64)khz * (1000000 + ppm);
1298         do_div(v, 1000000);
1299         return v;
1300 }
1301
1302 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1303 {
1304         u64 ratio;
1305
1306         /* Guest TSC same frequency as host TSC? */
1307         if (!scale) {
1308                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1309                 return 0;
1310         }
1311
1312         /* TSC scaling supported? */
1313         if (!kvm_has_tsc_control) {
1314                 if (user_tsc_khz > tsc_khz) {
1315                         vcpu->arch.tsc_catchup = 1;
1316                         vcpu->arch.tsc_always_catchup = 1;
1317                         return 0;
1318                 } else {
1319                         WARN(1, "user requested TSC rate below hardware speed\n");
1320                         return -1;
1321                 }
1322         }
1323
1324         /* TSC scaling required  - calculate ratio */
1325         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1326                                 user_tsc_khz, tsc_khz);
1327
1328         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1329                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1330                           user_tsc_khz);
1331                 return -1;
1332         }
1333
1334         vcpu->arch.tsc_scaling_ratio = ratio;
1335         return 0;
1336 }
1337
1338 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1339 {
1340         u32 thresh_lo, thresh_hi;
1341         int use_scaling = 0;
1342
1343         /* tsc_khz can be zero if TSC calibration fails */
1344         if (user_tsc_khz == 0) {
1345                 /* set tsc_scaling_ratio to a safe value */
1346                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1347                 return -1;
1348         }
1349
1350         /* Compute a scale to convert nanoseconds in TSC cycles */
1351         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1352                            &vcpu->arch.virtual_tsc_shift,
1353                            &vcpu->arch.virtual_tsc_mult);
1354         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1355
1356         /*
1357          * Compute the variation in TSC rate which is acceptable
1358          * within the range of tolerance and decide if the
1359          * rate being applied is within that bounds of the hardware
1360          * rate.  If so, no scaling or compensation need be done.
1361          */
1362         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1363         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1364         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1365                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1366                 use_scaling = 1;
1367         }
1368         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1369 }
1370
1371 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1372 {
1373         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1374                                       vcpu->arch.virtual_tsc_mult,
1375                                       vcpu->arch.virtual_tsc_shift);
1376         tsc += vcpu->arch.this_tsc_write;
1377         return tsc;
1378 }
1379
1380 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1381 {
1382 #ifdef CONFIG_X86_64
1383         bool vcpus_matched;
1384         struct kvm_arch *ka = &vcpu->kvm->arch;
1385         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1386
1387         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1388                          atomic_read(&vcpu->kvm->online_vcpus));
1389
1390         /*
1391          * Once the masterclock is enabled, always perform request in
1392          * order to update it.
1393          *
1394          * In order to enable masterclock, the host clocksource must be TSC
1395          * and the vcpus need to have matched TSCs.  When that happens,
1396          * perform request to enable masterclock.
1397          */
1398         if (ka->use_master_clock ||
1399             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1400                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1401
1402         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1403                             atomic_read(&vcpu->kvm->online_vcpus),
1404                             ka->use_master_clock, gtod->clock.vclock_mode);
1405 #endif
1406 }
1407
1408 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1409 {
1410         u64 curr_offset = vcpu->arch.tsc_offset;
1411         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1412 }
1413
1414 /*
1415  * Multiply tsc by a fixed point number represented by ratio.
1416  *
1417  * The most significant 64-N bits (mult) of ratio represent the
1418  * integral part of the fixed point number; the remaining N bits
1419  * (frac) represent the fractional part, ie. ratio represents a fixed
1420  * point number (mult + frac * 2^(-N)).
1421  *
1422  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1423  */
1424 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1425 {
1426         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1427 }
1428
1429 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1430 {
1431         u64 _tsc = tsc;
1432         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1433
1434         if (ratio != kvm_default_tsc_scaling_ratio)
1435                 _tsc = __scale_tsc(ratio, tsc);
1436
1437         return _tsc;
1438 }
1439 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1440
1441 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1442 {
1443         u64 tsc;
1444
1445         tsc = kvm_scale_tsc(vcpu, rdtsc());
1446
1447         return target_tsc - tsc;
1448 }
1449
1450 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1451 {
1452         return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1453 }
1454 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1455
1456 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1457 {
1458         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1459         vcpu->arch.tsc_offset = offset;
1460 }
1461
1462 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1463 {
1464         struct kvm *kvm = vcpu->kvm;
1465         u64 offset, ns, elapsed;
1466         unsigned long flags;
1467         bool matched;
1468         bool already_matched;
1469         u64 data = msr->data;
1470         bool synchronizing = false;
1471
1472         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1473         offset = kvm_compute_tsc_offset(vcpu, data);
1474         ns = ktime_get_boot_ns();
1475         elapsed = ns - kvm->arch.last_tsc_nsec;
1476
1477         if (vcpu->arch.virtual_tsc_khz) {
1478                 if (data == 0 && msr->host_initiated) {
1479                         /*
1480                          * detection of vcpu initialization -- need to sync
1481                          * with other vCPUs. This particularly helps to keep
1482                          * kvm_clock stable after CPU hotplug
1483                          */
1484                         synchronizing = true;
1485                 } else {
1486                         u64 tsc_exp = kvm->arch.last_tsc_write +
1487                                                 nsec_to_cycles(vcpu, elapsed);
1488                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1489                         /*
1490                          * Special case: TSC write with a small delta (1 second)
1491                          * of virtual cycle time against real time is
1492                          * interpreted as an attempt to synchronize the CPU.
1493                          */
1494                         synchronizing = data < tsc_exp + tsc_hz &&
1495                                         data + tsc_hz > tsc_exp;
1496                 }
1497         }
1498
1499         /*
1500          * For a reliable TSC, we can match TSC offsets, and for an unstable
1501          * TSC, we add elapsed time in this computation.  We could let the
1502          * compensation code attempt to catch up if we fall behind, but
1503          * it's better to try to match offsets from the beginning.
1504          */
1505         if (synchronizing &&
1506             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1507                 if (!check_tsc_unstable()) {
1508                         offset = kvm->arch.cur_tsc_offset;
1509                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1510                 } else {
1511                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1512                         data += delta;
1513                         offset = kvm_compute_tsc_offset(vcpu, data);
1514                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1515                 }
1516                 matched = true;
1517                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1518         } else {
1519                 /*
1520                  * We split periods of matched TSC writes into generations.
1521                  * For each generation, we track the original measured
1522                  * nanosecond time, offset, and write, so if TSCs are in
1523                  * sync, we can match exact offset, and if not, we can match
1524                  * exact software computation in compute_guest_tsc()
1525                  *
1526                  * These values are tracked in kvm->arch.cur_xxx variables.
1527                  */
1528                 kvm->arch.cur_tsc_generation++;
1529                 kvm->arch.cur_tsc_nsec = ns;
1530                 kvm->arch.cur_tsc_write = data;
1531                 kvm->arch.cur_tsc_offset = offset;
1532                 matched = false;
1533                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1534                          kvm->arch.cur_tsc_generation, data);
1535         }
1536
1537         /*
1538          * We also track th most recent recorded KHZ, write and time to
1539          * allow the matching interval to be extended at each write.
1540          */
1541         kvm->arch.last_tsc_nsec = ns;
1542         kvm->arch.last_tsc_write = data;
1543         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1544
1545         vcpu->arch.last_guest_tsc = data;
1546
1547         /* Keep track of which generation this VCPU has synchronized to */
1548         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1549         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1550         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1551
1552         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1553                 update_ia32_tsc_adjust_msr(vcpu, offset);
1554
1555         kvm_vcpu_write_tsc_offset(vcpu, offset);
1556         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1557
1558         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1559         if (!matched) {
1560                 kvm->arch.nr_vcpus_matched_tsc = 0;
1561         } else if (!already_matched) {
1562                 kvm->arch.nr_vcpus_matched_tsc++;
1563         }
1564
1565         kvm_track_tsc_matching(vcpu);
1566         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1567 }
1568
1569 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1570
1571 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1572                                            s64 adjustment)
1573 {
1574         kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment);
1575 }
1576
1577 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1578 {
1579         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1580                 WARN_ON(adjustment < 0);
1581         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1582         adjust_tsc_offset_guest(vcpu, adjustment);
1583 }
1584
1585 #ifdef CONFIG_X86_64
1586
1587 static u64 read_tsc(void)
1588 {
1589         u64 ret = (u64)rdtsc_ordered();
1590         u64 last = pvclock_gtod_data.clock.cycle_last;
1591
1592         if (likely(ret >= last))
1593                 return ret;
1594
1595         /*
1596          * GCC likes to generate cmov here, but this branch is extremely
1597          * predictable (it's just a function of time and the likely is
1598          * very likely) and there's a data dependence, so force GCC
1599          * to generate a branch instead.  I don't barrier() because
1600          * we don't actually need a barrier, and if this function
1601          * ever gets inlined it will generate worse code.
1602          */
1603         asm volatile ("");
1604         return last;
1605 }
1606
1607 static inline u64 vgettsc(u64 *cycle_now)
1608 {
1609         long v;
1610         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1611
1612         *cycle_now = read_tsc();
1613
1614         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1615         return v * gtod->clock.mult;
1616 }
1617
1618 static int do_monotonic_boot(s64 *t, u64 *cycle_now)
1619 {
1620         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1621         unsigned long seq;
1622         int mode;
1623         u64 ns;
1624
1625         do {
1626                 seq = read_seqcount_begin(&gtod->seq);
1627                 mode = gtod->clock.vclock_mode;
1628                 ns = gtod->nsec_base;
1629                 ns += vgettsc(cycle_now);
1630                 ns >>= gtod->clock.shift;
1631                 ns += gtod->boot_ns;
1632         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1633         *t = ns;
1634
1635         return mode;
1636 }
1637
1638 static int do_realtime(struct timespec *ts, u64 *cycle_now)
1639 {
1640         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1641         unsigned long seq;
1642         int mode;
1643         u64 ns;
1644
1645         do {
1646                 seq = read_seqcount_begin(&gtod->seq);
1647                 mode = gtod->clock.vclock_mode;
1648                 ts->tv_sec = gtod->wall_time_sec;
1649                 ns = gtod->nsec_base;
1650                 ns += vgettsc(cycle_now);
1651                 ns >>= gtod->clock.shift;
1652         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1653
1654         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1655         ts->tv_nsec = ns;
1656
1657         return mode;
1658 }
1659
1660 /* returns true if host is using tsc clocksource */
1661 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now)
1662 {
1663         /* checked again under seqlock below */
1664         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1665                 return false;
1666
1667         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1668 }
1669
1670 /* returns true if host is using tsc clocksource */
1671 static bool kvm_get_walltime_and_clockread(struct timespec *ts,
1672                                            u64 *cycle_now)
1673 {
1674         /* checked again under seqlock below */
1675         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1676                 return false;
1677
1678         return do_realtime(ts, cycle_now) == VCLOCK_TSC;
1679 }
1680 #endif
1681
1682 /*
1683  *
1684  * Assuming a stable TSC across physical CPUS, and a stable TSC
1685  * across virtual CPUs, the following condition is possible.
1686  * Each numbered line represents an event visible to both
1687  * CPUs at the next numbered event.
1688  *
1689  * "timespecX" represents host monotonic time. "tscX" represents
1690  * RDTSC value.
1691  *
1692  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1693  *
1694  * 1.  read timespec0,tsc0
1695  * 2.                                   | timespec1 = timespec0 + N
1696  *                                      | tsc1 = tsc0 + M
1697  * 3. transition to guest               | transition to guest
1698  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1699  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1700  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1701  *
1702  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1703  *
1704  *      - ret0 < ret1
1705  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1706  *              ...
1707  *      - 0 < N - M => M < N
1708  *
1709  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1710  * always the case (the difference between two distinct xtime instances
1711  * might be smaller then the difference between corresponding TSC reads,
1712  * when updating guest vcpus pvclock areas).
1713  *
1714  * To avoid that problem, do not allow visibility of distinct
1715  * system_timestamp/tsc_timestamp values simultaneously: use a master
1716  * copy of host monotonic time values. Update that master copy
1717  * in lockstep.
1718  *
1719  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1720  *
1721  */
1722
1723 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1724 {
1725 #ifdef CONFIG_X86_64
1726         struct kvm_arch *ka = &kvm->arch;
1727         int vclock_mode;
1728         bool host_tsc_clocksource, vcpus_matched;
1729
1730         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1731                         atomic_read(&kvm->online_vcpus));
1732
1733         /*
1734          * If the host uses TSC clock, then passthrough TSC as stable
1735          * to the guest.
1736          */
1737         host_tsc_clocksource = kvm_get_time_and_clockread(
1738                                         &ka->master_kernel_ns,
1739                                         &ka->master_cycle_now);
1740
1741         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1742                                 && !ka->backwards_tsc_observed
1743                                 && !ka->boot_vcpu_runs_old_kvmclock;
1744
1745         if (ka->use_master_clock)
1746                 atomic_set(&kvm_guest_has_master_clock, 1);
1747
1748         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1749         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1750                                         vcpus_matched);
1751 #endif
1752 }
1753
1754 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1755 {
1756         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1757 }
1758
1759 static void kvm_gen_update_masterclock(struct kvm *kvm)
1760 {
1761 #ifdef CONFIG_X86_64
1762         int i;
1763         struct kvm_vcpu *vcpu;
1764         struct kvm_arch *ka = &kvm->arch;
1765
1766         spin_lock(&ka->pvclock_gtod_sync_lock);
1767         kvm_make_mclock_inprogress_request(kvm);
1768         /* no guest entries from this point */
1769         pvclock_update_vm_gtod_copy(kvm);
1770
1771         kvm_for_each_vcpu(i, vcpu, kvm)
1772                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1773
1774         /* guest entries allowed */
1775         kvm_for_each_vcpu(i, vcpu, kvm)
1776                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
1777
1778         spin_unlock(&ka->pvclock_gtod_sync_lock);
1779 #endif
1780 }
1781
1782 u64 get_kvmclock_ns(struct kvm *kvm)
1783 {
1784         struct kvm_arch *ka = &kvm->arch;
1785         struct pvclock_vcpu_time_info hv_clock;
1786         u64 ret;
1787
1788         spin_lock(&ka->pvclock_gtod_sync_lock);
1789         if (!ka->use_master_clock) {
1790                 spin_unlock(&ka->pvclock_gtod_sync_lock);
1791                 return ktime_get_boot_ns() + ka->kvmclock_offset;
1792         }
1793
1794         hv_clock.tsc_timestamp = ka->master_cycle_now;
1795         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
1796         spin_unlock(&ka->pvclock_gtod_sync_lock);
1797
1798         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
1799         get_cpu();
1800
1801         if (__this_cpu_read(cpu_tsc_khz)) {
1802                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
1803                                    &hv_clock.tsc_shift,
1804                                    &hv_clock.tsc_to_system_mul);
1805                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
1806         } else
1807                 ret = ktime_get_boot_ns() + ka->kvmclock_offset;
1808
1809         put_cpu();
1810
1811         return ret;
1812 }
1813
1814 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
1815 {
1816         struct kvm_vcpu_arch *vcpu = &v->arch;
1817         struct pvclock_vcpu_time_info guest_hv_clock;
1818
1819         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1820                 &guest_hv_clock, sizeof(guest_hv_clock))))
1821                 return;
1822
1823         /* This VCPU is paused, but it's legal for a guest to read another
1824          * VCPU's kvmclock, so we really have to follow the specification where
1825          * it says that version is odd if data is being modified, and even after
1826          * it is consistent.
1827          *
1828          * Version field updates must be kept separate.  This is because
1829          * kvm_write_guest_cached might use a "rep movs" instruction, and
1830          * writes within a string instruction are weakly ordered.  So there
1831          * are three writes overall.
1832          *
1833          * As a small optimization, only write the version field in the first
1834          * and third write.  The vcpu->pv_time cache is still valid, because the
1835          * version field is the first in the struct.
1836          */
1837         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1838
1839         if (guest_hv_clock.version & 1)
1840                 ++guest_hv_clock.version;  /* first time write, random junk */
1841
1842         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1843         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844                                 &vcpu->hv_clock,
1845                                 sizeof(vcpu->hv_clock.version));
1846
1847         smp_wmb();
1848
1849         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1850         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1851
1852         if (vcpu->pvclock_set_guest_stopped_request) {
1853                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
1854                 vcpu->pvclock_set_guest_stopped_request = false;
1855         }
1856
1857         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1858
1859         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1860                                 &vcpu->hv_clock,
1861                                 sizeof(vcpu->hv_clock));
1862
1863         smp_wmb();
1864
1865         vcpu->hv_clock.version++;
1866         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1867                                 &vcpu->hv_clock,
1868                                 sizeof(vcpu->hv_clock.version));
1869 }
1870
1871 static int kvm_guest_time_update(struct kvm_vcpu *v)
1872 {
1873         unsigned long flags, tgt_tsc_khz;
1874         struct kvm_vcpu_arch *vcpu = &v->arch;
1875         struct kvm_arch *ka = &v->kvm->arch;
1876         s64 kernel_ns;
1877         u64 tsc_timestamp, host_tsc;
1878         u8 pvclock_flags;
1879         bool use_master_clock;
1880
1881         kernel_ns = 0;
1882         host_tsc = 0;
1883
1884         /*
1885          * If the host uses TSC clock, then passthrough TSC as stable
1886          * to the guest.
1887          */
1888         spin_lock(&ka->pvclock_gtod_sync_lock);
1889         use_master_clock = ka->use_master_clock;
1890         if (use_master_clock) {
1891                 host_tsc = ka->master_cycle_now;
1892                 kernel_ns = ka->master_kernel_ns;
1893         }
1894         spin_unlock(&ka->pvclock_gtod_sync_lock);
1895
1896         /* Keep irq disabled to prevent changes to the clock */
1897         local_irq_save(flags);
1898         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1899         if (unlikely(tgt_tsc_khz == 0)) {
1900                 local_irq_restore(flags);
1901                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1902                 return 1;
1903         }
1904         if (!use_master_clock) {
1905                 host_tsc = rdtsc();
1906                 kernel_ns = ktime_get_boot_ns();
1907         }
1908
1909         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1910
1911         /*
1912          * We may have to catch up the TSC to match elapsed wall clock
1913          * time for two reasons, even if kvmclock is used.
1914          *   1) CPU could have been running below the maximum TSC rate
1915          *   2) Broken TSC compensation resets the base at each VCPU
1916          *      entry to avoid unknown leaps of TSC even when running
1917          *      again on the same CPU.  This may cause apparent elapsed
1918          *      time to disappear, and the guest to stand still or run
1919          *      very slowly.
1920          */
1921         if (vcpu->tsc_catchup) {
1922                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1923                 if (tsc > tsc_timestamp) {
1924                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1925                         tsc_timestamp = tsc;
1926                 }
1927         }
1928
1929         local_irq_restore(flags);
1930
1931         /* With all the info we got, fill in the values */
1932
1933         if (kvm_has_tsc_control)
1934                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1935
1936         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1937                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1938                                    &vcpu->hv_clock.tsc_shift,
1939                                    &vcpu->hv_clock.tsc_to_system_mul);
1940                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1941         }
1942
1943         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1944         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1945         vcpu->last_guest_tsc = tsc_timestamp;
1946
1947         /* If the host uses TSC clocksource, then it is stable */
1948         pvclock_flags = 0;
1949         if (use_master_clock)
1950                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1951
1952         vcpu->hv_clock.flags = pvclock_flags;
1953
1954         if (vcpu->pv_time_enabled)
1955                 kvm_setup_pvclock_page(v);
1956         if (v == kvm_get_vcpu(v->kvm, 0))
1957                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
1958         return 0;
1959 }
1960
1961 /*
1962  * kvmclock updates which are isolated to a given vcpu, such as
1963  * vcpu->cpu migration, should not allow system_timestamp from
1964  * the rest of the vcpus to remain static. Otherwise ntp frequency
1965  * correction applies to one vcpu's system_timestamp but not
1966  * the others.
1967  *
1968  * So in those cases, request a kvmclock update for all vcpus.
1969  * We need to rate-limit these requests though, as they can
1970  * considerably slow guests that have a large number of vcpus.
1971  * The time for a remote vcpu to update its kvmclock is bound
1972  * by the delay we use to rate-limit the updates.
1973  */
1974
1975 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1976
1977 static void kvmclock_update_fn(struct work_struct *work)
1978 {
1979         int i;
1980         struct delayed_work *dwork = to_delayed_work(work);
1981         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1982                                            kvmclock_update_work);
1983         struct kvm *kvm = container_of(ka, struct kvm, arch);
1984         struct kvm_vcpu *vcpu;
1985
1986         kvm_for_each_vcpu(i, vcpu, kvm) {
1987                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1988                 kvm_vcpu_kick(vcpu);
1989         }
1990 }
1991
1992 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1993 {
1994         struct kvm *kvm = v->kvm;
1995
1996         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1997         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1998                                         KVMCLOCK_UPDATE_DELAY);
1999 }
2000
2001 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2002
2003 static void kvmclock_sync_fn(struct work_struct *work)
2004 {
2005         struct delayed_work *dwork = to_delayed_work(work);
2006         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2007                                            kvmclock_sync_work);
2008         struct kvm *kvm = container_of(ka, struct kvm, arch);
2009
2010         if (!kvmclock_periodic_sync)
2011                 return;
2012
2013         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2014         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2015                                         KVMCLOCK_SYNC_PERIOD);
2016 }
2017
2018 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2019 {
2020         u64 mcg_cap = vcpu->arch.mcg_cap;
2021         unsigned bank_num = mcg_cap & 0xff;
2022         u32 msr = msr_info->index;
2023         u64 data = msr_info->data;
2024
2025         switch (msr) {
2026         case MSR_IA32_MCG_STATUS:
2027                 vcpu->arch.mcg_status = data;
2028                 break;
2029         case MSR_IA32_MCG_CTL:
2030                 if (!(mcg_cap & MCG_CTL_P))
2031                         return 1;
2032                 if (data != 0 && data != ~(u64)0)
2033                         return -1;
2034                 vcpu->arch.mcg_ctl = data;
2035                 break;
2036         default:
2037                 if (msr >= MSR_IA32_MC0_CTL &&
2038                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2039                         u32 offset = msr - MSR_IA32_MC0_CTL;
2040                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2041                          * some Linux kernels though clear bit 10 in bank 4 to
2042                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2043                          * this to avoid an uncatched #GP in the guest
2044                          */
2045                         if ((offset & 0x3) == 0 &&
2046                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2047                                 return -1;
2048                         if (!msr_info->host_initiated &&
2049                                 (offset & 0x3) == 1 && data != 0)
2050                                 return -1;
2051                         vcpu->arch.mce_banks[offset] = data;
2052                         break;
2053                 }
2054                 return 1;
2055         }
2056         return 0;
2057 }
2058
2059 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2060 {
2061         struct kvm *kvm = vcpu->kvm;
2062         int lm = is_long_mode(vcpu);
2063         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2064                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2065         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2066                 : kvm->arch.xen_hvm_config.blob_size_32;
2067         u32 page_num = data & ~PAGE_MASK;
2068         u64 page_addr = data & PAGE_MASK;
2069         u8 *page;
2070         int r;
2071
2072         r = -E2BIG;
2073         if (page_num >= blob_size)
2074                 goto out;
2075         r = -ENOMEM;
2076         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2077         if (IS_ERR(page)) {
2078                 r = PTR_ERR(page);
2079                 goto out;
2080         }
2081         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2082                 goto out_free;
2083         r = 0;
2084 out_free:
2085         kfree(page);
2086 out:
2087         return r;
2088 }
2089
2090 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2091 {
2092         gpa_t gpa = data & ~0x3f;
2093
2094         /* Bits 3:5 are reserved, Should be zero */
2095         if (data & 0x38)
2096                 return 1;
2097
2098         vcpu->arch.apf.msr_val = data;
2099
2100         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2101                 kvm_clear_async_pf_completion_queue(vcpu);
2102                 kvm_async_pf_hash_reset(vcpu);
2103                 return 0;
2104         }
2105
2106         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2107                                         sizeof(u32)))
2108                 return 1;
2109
2110         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2111         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2112         kvm_async_pf_wakeup_all(vcpu);
2113         return 0;
2114 }
2115
2116 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2117 {
2118         vcpu->arch.pv_time_enabled = false;
2119 }
2120
2121 static void record_steal_time(struct kvm_vcpu *vcpu)
2122 {
2123         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2124                 return;
2125
2126         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2127                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2128                 return;
2129
2130         vcpu->arch.st.steal.preempted = 0;
2131
2132         if (vcpu->arch.st.steal.version & 1)
2133                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2134
2135         vcpu->arch.st.steal.version += 1;
2136
2137         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2138                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2139
2140         smp_wmb();
2141
2142         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2143                 vcpu->arch.st.last_steal;
2144         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2145
2146         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2147                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2148
2149         smp_wmb();
2150
2151         vcpu->arch.st.steal.version += 1;
2152
2153         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2154                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2155 }
2156
2157 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2158 {
2159         bool pr = false;
2160         u32 msr = msr_info->index;
2161         u64 data = msr_info->data;
2162
2163         switch (msr) {
2164         case MSR_AMD64_NB_CFG:
2165         case MSR_IA32_UCODE_REV:
2166         case MSR_IA32_UCODE_WRITE:
2167         case MSR_VM_HSAVE_PA:
2168         case MSR_AMD64_PATCH_LOADER:
2169         case MSR_AMD64_BU_CFG2:
2170         case MSR_AMD64_DC_CFG:
2171                 break;
2172
2173         case MSR_EFER:
2174                 return set_efer(vcpu, data);
2175         case MSR_K7_HWCR:
2176                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2177                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2178                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2179                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2180                 if (data != 0) {
2181                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2182                                     data);
2183                         return 1;
2184                 }
2185                 break;
2186         case MSR_FAM10H_MMIO_CONF_BASE:
2187                 if (data != 0) {
2188                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2189                                     "0x%llx\n", data);
2190                         return 1;
2191                 }
2192                 break;
2193         case MSR_IA32_DEBUGCTLMSR:
2194                 if (!data) {
2195                         /* We support the non-activated case already */
2196                         break;
2197                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2198                         /* Values other than LBR and BTF are vendor-specific,
2199                            thus reserved and should throw a #GP */
2200                         return 1;
2201                 }
2202                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2203                             __func__, data);
2204                 break;
2205         case 0x200 ... 0x2ff:
2206                 return kvm_mtrr_set_msr(vcpu, msr, data);
2207         case MSR_IA32_APICBASE:
2208                 return kvm_set_apic_base(vcpu, msr_info);
2209         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2210                 return kvm_x2apic_msr_write(vcpu, msr, data);
2211         case MSR_IA32_TSCDEADLINE:
2212                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2213                 break;
2214         case MSR_IA32_TSC_ADJUST:
2215                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2216                         if (!msr_info->host_initiated) {
2217                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2218                                 adjust_tsc_offset_guest(vcpu, adj);
2219                         }
2220                         vcpu->arch.ia32_tsc_adjust_msr = data;
2221                 }
2222                 break;
2223         case MSR_IA32_MISC_ENABLE:
2224                 vcpu->arch.ia32_misc_enable_msr = data;
2225                 break;
2226         case MSR_IA32_SMBASE:
2227                 if (!msr_info->host_initiated)
2228                         return 1;
2229                 vcpu->arch.smbase = data;
2230                 break;
2231         case MSR_KVM_WALL_CLOCK_NEW:
2232         case MSR_KVM_WALL_CLOCK:
2233                 vcpu->kvm->arch.wall_clock = data;
2234                 kvm_write_wall_clock(vcpu->kvm, data);
2235                 break;
2236         case MSR_KVM_SYSTEM_TIME_NEW:
2237         case MSR_KVM_SYSTEM_TIME: {
2238                 struct kvm_arch *ka = &vcpu->kvm->arch;
2239
2240                 kvmclock_reset(vcpu);
2241
2242                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2243                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2244
2245                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2246                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2247
2248                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2249                 }
2250
2251                 vcpu->arch.time = data;
2252                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2253
2254                 /* we verify if the enable bit is set... */
2255                 if (!(data & 1))
2256                         break;
2257
2258                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2259                      &vcpu->arch.pv_time, data & ~1ULL,
2260                      sizeof(struct pvclock_vcpu_time_info)))
2261                         vcpu->arch.pv_time_enabled = false;
2262                 else
2263                         vcpu->arch.pv_time_enabled = true;
2264
2265                 break;
2266         }
2267         case MSR_KVM_ASYNC_PF_EN:
2268                 if (kvm_pv_enable_async_pf(vcpu, data))
2269                         return 1;
2270                 break;
2271         case MSR_KVM_STEAL_TIME:
2272
2273                 if (unlikely(!sched_info_on()))
2274                         return 1;
2275
2276                 if (data & KVM_STEAL_RESERVED_MASK)
2277                         return 1;
2278
2279                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2280                                                 data & KVM_STEAL_VALID_BITS,
2281                                                 sizeof(struct kvm_steal_time)))
2282                         return 1;
2283
2284                 vcpu->arch.st.msr_val = data;
2285
2286                 if (!(data & KVM_MSR_ENABLED))
2287                         break;
2288
2289                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2290
2291                 break;
2292         case MSR_KVM_PV_EOI_EN:
2293                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2294                         return 1;
2295                 break;
2296
2297         case MSR_IA32_MCG_CTL:
2298         case MSR_IA32_MCG_STATUS:
2299         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2300                 return set_msr_mce(vcpu, msr_info);
2301
2302         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2303         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2304                 pr = true; /* fall through */
2305         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2306         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2307                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2308                         return kvm_pmu_set_msr(vcpu, msr_info);
2309
2310                 if (pr || data != 0)
2311                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2312                                     "0x%x data 0x%llx\n", msr, data);
2313                 break;
2314         case MSR_K7_CLK_CTL:
2315                 /*
2316                  * Ignore all writes to this no longer documented MSR.
2317                  * Writes are only relevant for old K7 processors,
2318                  * all pre-dating SVM, but a recommended workaround from
2319                  * AMD for these chips. It is possible to specify the
2320                  * affected processor models on the command line, hence
2321                  * the need to ignore the workaround.
2322                  */
2323                 break;
2324         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2325         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2326         case HV_X64_MSR_CRASH_CTL:
2327         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2328                 return kvm_hv_set_msr_common(vcpu, msr, data,
2329                                              msr_info->host_initiated);
2330         case MSR_IA32_BBL_CR_CTL3:
2331                 /* Drop writes to this legacy MSR -- see rdmsr
2332                  * counterpart for further detail.
2333                  */
2334                 if (report_ignored_msrs)
2335                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2336                                 msr, data);
2337                 break;
2338         case MSR_AMD64_OSVW_ID_LENGTH:
2339                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2340                         return 1;
2341                 vcpu->arch.osvw.length = data;
2342                 break;
2343         case MSR_AMD64_OSVW_STATUS:
2344                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2345                         return 1;
2346                 vcpu->arch.osvw.status = data;
2347                 break;
2348         case MSR_PLATFORM_INFO:
2349                 if (!msr_info->host_initiated ||
2350                     data & ~MSR_PLATFORM_INFO_CPUID_FAULT ||
2351                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2352                      cpuid_fault_enabled(vcpu)))
2353                         return 1;
2354                 vcpu->arch.msr_platform_info = data;
2355                 break;
2356         case MSR_MISC_FEATURES_ENABLES:
2357                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2358                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2359                      !supports_cpuid_fault(vcpu)))
2360                         return 1;
2361                 vcpu->arch.msr_misc_features_enables = data;
2362                 break;
2363         default:
2364                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2365                         return xen_hvm_config(vcpu, data);
2366                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2367                         return kvm_pmu_set_msr(vcpu, msr_info);
2368                 if (!ignore_msrs) {
2369                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2370                                     msr, data);
2371                         return 1;
2372                 } else {
2373                         if (report_ignored_msrs)
2374                                 vcpu_unimpl(vcpu,
2375                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2376                                         msr, data);
2377                         break;
2378                 }
2379         }
2380         return 0;
2381 }
2382 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2383
2384
2385 /*
2386  * Reads an msr value (of 'msr_index') into 'pdata'.
2387  * Returns 0 on success, non-0 otherwise.
2388  * Assumes vcpu_load() was already called.
2389  */
2390 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2391 {
2392         return kvm_x86_ops->get_msr(vcpu, msr);
2393 }
2394 EXPORT_SYMBOL_GPL(kvm_get_msr);
2395
2396 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2397 {
2398         u64 data;
2399         u64 mcg_cap = vcpu->arch.mcg_cap;
2400         unsigned bank_num = mcg_cap & 0xff;
2401
2402         switch (msr) {
2403         case MSR_IA32_P5_MC_ADDR:
2404         case MSR_IA32_P5_MC_TYPE:
2405                 data = 0;
2406                 break;
2407         case MSR_IA32_MCG_CAP:
2408                 data = vcpu->arch.mcg_cap;
2409                 break;
2410         case MSR_IA32_MCG_CTL:
2411                 if (!(mcg_cap & MCG_CTL_P))
2412                         return 1;
2413                 data = vcpu->arch.mcg_ctl;
2414                 break;
2415         case MSR_IA32_MCG_STATUS:
2416                 data = vcpu->arch.mcg_status;
2417                 break;
2418         default:
2419                 if (msr >= MSR_IA32_MC0_CTL &&
2420                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2421                         u32 offset = msr - MSR_IA32_MC0_CTL;
2422                         data = vcpu->arch.mce_banks[offset];
2423                         break;
2424                 }
2425                 return 1;
2426         }
2427         *pdata = data;
2428         return 0;
2429 }
2430
2431 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2432 {
2433         switch (msr_info->index) {
2434         case MSR_IA32_PLATFORM_ID:
2435         case MSR_IA32_EBL_CR_POWERON:
2436         case MSR_IA32_DEBUGCTLMSR:
2437         case MSR_IA32_LASTBRANCHFROMIP:
2438         case MSR_IA32_LASTBRANCHTOIP:
2439         case MSR_IA32_LASTINTFROMIP:
2440         case MSR_IA32_LASTINTTOIP:
2441         case MSR_K8_SYSCFG:
2442         case MSR_K8_TSEG_ADDR:
2443         case MSR_K8_TSEG_MASK:
2444         case MSR_K7_HWCR:
2445         case MSR_VM_HSAVE_PA:
2446         case MSR_K8_INT_PENDING_MSG:
2447         case MSR_AMD64_NB_CFG:
2448         case MSR_FAM10H_MMIO_CONF_BASE:
2449         case MSR_AMD64_BU_CFG2:
2450         case MSR_IA32_PERF_CTL:
2451         case MSR_AMD64_DC_CFG:
2452                 msr_info->data = 0;
2453                 break;
2454         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2455         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2456         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2457         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2458                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2459                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2460                 msr_info->data = 0;
2461                 break;
2462         case MSR_IA32_UCODE_REV:
2463                 msr_info->data = 0x100000000ULL;
2464                 break;
2465         case MSR_MTRRcap:
2466         case 0x200 ... 0x2ff:
2467                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2468         case 0xcd: /* fsb frequency */
2469                 msr_info->data = 3;
2470                 break;
2471                 /*
2472                  * MSR_EBC_FREQUENCY_ID
2473                  * Conservative value valid for even the basic CPU models.
2474                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2475                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2476                  * and 266MHz for model 3, or 4. Set Core Clock
2477                  * Frequency to System Bus Frequency Ratio to 1 (bits
2478                  * 31:24) even though these are only valid for CPU
2479                  * models > 2, however guests may end up dividing or
2480                  * multiplying by zero otherwise.
2481                  */
2482         case MSR_EBC_FREQUENCY_ID:
2483                 msr_info->data = 1 << 24;
2484                 break;
2485         case MSR_IA32_APICBASE:
2486                 msr_info->data = kvm_get_apic_base(vcpu);
2487                 break;
2488         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2489                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2490                 break;
2491         case MSR_IA32_TSCDEADLINE:
2492                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2493                 break;
2494         case MSR_IA32_TSC_ADJUST:
2495                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2496                 break;
2497         case MSR_IA32_MISC_ENABLE:
2498                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2499                 break;
2500         case MSR_IA32_SMBASE:
2501                 if (!msr_info->host_initiated)
2502                         return 1;
2503                 msr_info->data = vcpu->arch.smbase;
2504                 break;
2505         case MSR_IA32_PERF_STATUS:
2506                 /* TSC increment by tick */
2507                 msr_info->data = 1000ULL;
2508                 /* CPU multiplier */
2509                 msr_info->data |= (((uint64_t)4ULL) << 40);
2510                 break;
2511         case MSR_EFER:
2512                 msr_info->data = vcpu->arch.efer;
2513                 break;
2514         case MSR_KVM_WALL_CLOCK:
2515         case MSR_KVM_WALL_CLOCK_NEW:
2516                 msr_info->data = vcpu->kvm->arch.wall_clock;
2517                 break;
2518         case MSR_KVM_SYSTEM_TIME:
2519         case MSR_KVM_SYSTEM_TIME_NEW:
2520                 msr_info->data = vcpu->arch.time;
2521                 break;
2522         case MSR_KVM_ASYNC_PF_EN:
2523                 msr_info->data = vcpu->arch.apf.msr_val;
2524                 break;
2525         case MSR_KVM_STEAL_TIME:
2526                 msr_info->data = vcpu->arch.st.msr_val;
2527                 break;
2528         case MSR_KVM_PV_EOI_EN:
2529                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2530                 break;
2531         case MSR_IA32_P5_MC_ADDR:
2532         case MSR_IA32_P5_MC_TYPE:
2533         case MSR_IA32_MCG_CAP:
2534         case MSR_IA32_MCG_CTL:
2535         case MSR_IA32_MCG_STATUS:
2536         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2537                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2538         case MSR_K7_CLK_CTL:
2539                 /*
2540                  * Provide expected ramp-up count for K7. All other
2541                  * are set to zero, indicating minimum divisors for
2542                  * every field.
2543                  *
2544                  * This prevents guest kernels on AMD host with CPU
2545                  * type 6, model 8 and higher from exploding due to
2546                  * the rdmsr failing.
2547                  */
2548                 msr_info->data = 0x20000000;
2549                 break;
2550         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2551         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2552         case HV_X64_MSR_CRASH_CTL:
2553         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2554                 return kvm_hv_get_msr_common(vcpu,
2555                                              msr_info->index, &msr_info->data);
2556                 break;
2557         case MSR_IA32_BBL_CR_CTL3:
2558                 /* This legacy MSR exists but isn't fully documented in current
2559                  * silicon.  It is however accessed by winxp in very narrow
2560                  * scenarios where it sets bit #19, itself documented as
2561                  * a "reserved" bit.  Best effort attempt to source coherent
2562                  * read data here should the balance of the register be
2563                  * interpreted by the guest:
2564                  *
2565                  * L2 cache control register 3: 64GB range, 256KB size,
2566                  * enabled, latency 0x1, configured
2567                  */
2568                 msr_info->data = 0xbe702111;
2569                 break;
2570         case MSR_AMD64_OSVW_ID_LENGTH:
2571                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2572                         return 1;
2573                 msr_info->data = vcpu->arch.osvw.length;
2574                 break;
2575         case MSR_AMD64_OSVW_STATUS:
2576                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2577                         return 1;
2578                 msr_info->data = vcpu->arch.osvw.status;
2579                 break;
2580         case MSR_PLATFORM_INFO:
2581                 msr_info->data = vcpu->arch.msr_platform_info;
2582                 break;
2583         case MSR_MISC_FEATURES_ENABLES:
2584                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2585                 break;
2586         default:
2587                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2588                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2589                 if (!ignore_msrs) {
2590                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2591                                                msr_info->index);
2592                         return 1;
2593                 } else {
2594                         if (report_ignored_msrs)
2595                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2596                                         msr_info->index);
2597                         msr_info->data = 0;
2598                 }
2599                 break;
2600         }
2601         return 0;
2602 }
2603 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2604
2605 /*
2606  * Read or write a bunch of msrs. All parameters are kernel addresses.
2607  *
2608  * @return number of msrs set successfully.
2609  */
2610 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2611                     struct kvm_msr_entry *entries,
2612                     int (*do_msr)(struct kvm_vcpu *vcpu,
2613                                   unsigned index, u64 *data))
2614 {
2615         int i, idx;
2616
2617         idx = srcu_read_lock(&vcpu->kvm->srcu);
2618         for (i = 0; i < msrs->nmsrs; ++i)
2619                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2620                         break;
2621         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2622
2623         return i;
2624 }
2625
2626 /*
2627  * Read or write a bunch of msrs. Parameters are user addresses.
2628  *
2629  * @return number of msrs set successfully.
2630  */
2631 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2632                   int (*do_msr)(struct kvm_vcpu *vcpu,
2633                                 unsigned index, u64 *data),
2634                   int writeback)
2635 {
2636         struct kvm_msrs msrs;
2637         struct kvm_msr_entry *entries;
2638         int r, n;
2639         unsigned size;
2640
2641         r = -EFAULT;
2642         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2643                 goto out;
2644
2645         r = -E2BIG;
2646         if (msrs.nmsrs >= MAX_IO_MSRS)
2647                 goto out;
2648
2649         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2650         entries = memdup_user(user_msrs->entries, size);
2651         if (IS_ERR(entries)) {
2652                 r = PTR_ERR(entries);
2653                 goto out;
2654         }
2655
2656         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2657         if (r < 0)
2658                 goto out_free;
2659
2660         r = -EFAULT;
2661         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2662                 goto out_free;
2663
2664         r = n;
2665
2666 out_free:
2667         kfree(entries);
2668 out:
2669         return r;
2670 }
2671
2672 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2673 {
2674         int r;
2675
2676         switch (ext) {
2677         case KVM_CAP_IRQCHIP:
2678         case KVM_CAP_HLT:
2679         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2680         case KVM_CAP_SET_TSS_ADDR:
2681         case KVM_CAP_EXT_CPUID:
2682         case KVM_CAP_EXT_EMUL_CPUID:
2683         case KVM_CAP_CLOCKSOURCE:
2684         case KVM_CAP_PIT:
2685         case KVM_CAP_NOP_IO_DELAY:
2686         case KVM_CAP_MP_STATE:
2687         case KVM_CAP_SYNC_MMU:
2688         case KVM_CAP_USER_NMI:
2689         case KVM_CAP_REINJECT_CONTROL:
2690         case KVM_CAP_IRQ_INJECT_STATUS:
2691         case KVM_CAP_IOEVENTFD:
2692         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2693         case KVM_CAP_PIT2:
2694         case KVM_CAP_PIT_STATE2:
2695         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2696         case KVM_CAP_XEN_HVM:
2697         case KVM_CAP_VCPU_EVENTS:
2698         case KVM_CAP_HYPERV:
2699         case KVM_CAP_HYPERV_VAPIC:
2700         case KVM_CAP_HYPERV_SPIN:
2701         case KVM_CAP_HYPERV_SYNIC:
2702         case KVM_CAP_HYPERV_SYNIC2:
2703         case KVM_CAP_HYPERV_VP_INDEX:
2704         case KVM_CAP_PCI_SEGMENT:
2705         case KVM_CAP_DEBUGREGS:
2706         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2707         case KVM_CAP_XSAVE:
2708         case KVM_CAP_ASYNC_PF:
2709         case KVM_CAP_GET_TSC_KHZ:
2710         case KVM_CAP_KVMCLOCK_CTRL:
2711         case KVM_CAP_READONLY_MEM:
2712         case KVM_CAP_HYPERV_TIME:
2713         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2714         case KVM_CAP_TSC_DEADLINE_TIMER:
2715         case KVM_CAP_ENABLE_CAP_VM:
2716         case KVM_CAP_DISABLE_QUIRKS:
2717         case KVM_CAP_SET_BOOT_CPU_ID:
2718         case KVM_CAP_SPLIT_IRQCHIP:
2719         case KVM_CAP_IMMEDIATE_EXIT:
2720                 r = 1;
2721                 break;
2722         case KVM_CAP_ADJUST_CLOCK:
2723                 r = KVM_CLOCK_TSC_STABLE;
2724                 break;
2725         case KVM_CAP_X86_GUEST_MWAIT:
2726                 r = kvm_mwait_in_guest();
2727                 break;
2728         case KVM_CAP_X86_SMM:
2729                 /* SMBASE is usually relocated above 1M on modern chipsets,
2730                  * and SMM handlers might indeed rely on 4G segment limits,
2731                  * so do not report SMM to be available if real mode is
2732                  * emulated via vm86 mode.  Still, do not go to great lengths
2733                  * to avoid userspace's usage of the feature, because it is a
2734                  * fringe case that is not enabled except via specific settings
2735                  * of the module parameters.
2736                  */
2737                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2738                 break;
2739         case KVM_CAP_VAPIC:
2740                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2741                 break;
2742         case KVM_CAP_NR_VCPUS:
2743                 r = KVM_SOFT_MAX_VCPUS;
2744                 break;
2745         case KVM_CAP_MAX_VCPUS:
2746                 r = KVM_MAX_VCPUS;
2747                 break;
2748         case KVM_CAP_NR_MEMSLOTS:
2749                 r = KVM_USER_MEM_SLOTS;
2750                 break;
2751         case KVM_CAP_PV_MMU:    /* obsolete */
2752                 r = 0;
2753                 break;
2754         case KVM_CAP_MCE:
2755                 r = KVM_MAX_MCE_BANKS;
2756                 break;
2757         case KVM_CAP_XCRS:
2758                 r = boot_cpu_has(X86_FEATURE_XSAVE);
2759                 break;
2760         case KVM_CAP_TSC_CONTROL:
2761                 r = kvm_has_tsc_control;
2762                 break;
2763         case KVM_CAP_X2APIC_API:
2764                 r = KVM_X2APIC_API_VALID_FLAGS;
2765                 break;
2766         default:
2767                 r = 0;
2768                 break;
2769         }
2770         return r;
2771
2772 }
2773
2774 long kvm_arch_dev_ioctl(struct file *filp,
2775                         unsigned int ioctl, unsigned long arg)
2776 {
2777         void __user *argp = (void __user *)arg;
2778         long r;
2779
2780         switch (ioctl) {
2781         case KVM_GET_MSR_INDEX_LIST: {
2782                 struct kvm_msr_list __user *user_msr_list = argp;
2783                 struct kvm_msr_list msr_list;
2784                 unsigned n;
2785
2786                 r = -EFAULT;
2787                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2788                         goto out;
2789                 n = msr_list.nmsrs;
2790                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2791                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2792                         goto out;
2793                 r = -E2BIG;
2794                 if (n < msr_list.nmsrs)
2795                         goto out;
2796                 r = -EFAULT;
2797                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2798                                  num_msrs_to_save * sizeof(u32)))
2799                         goto out;
2800                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2801                                  &emulated_msrs,
2802                                  num_emulated_msrs * sizeof(u32)))
2803                         goto out;
2804                 r = 0;
2805                 break;
2806         }
2807         case KVM_GET_SUPPORTED_CPUID:
2808         case KVM_GET_EMULATED_CPUID: {
2809                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2810                 struct kvm_cpuid2 cpuid;
2811
2812                 r = -EFAULT;
2813                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2814                         goto out;
2815
2816                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2817                                             ioctl);
2818                 if (r)
2819                         goto out;
2820
2821                 r = -EFAULT;
2822                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2823                         goto out;
2824                 r = 0;
2825                 break;
2826         }
2827         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2828                 r = -EFAULT;
2829                 if (copy_to_user(argp, &kvm_mce_cap_supported,
2830                                  sizeof(kvm_mce_cap_supported)))
2831                         goto out;
2832                 r = 0;
2833                 break;
2834         }
2835         default:
2836                 r = -EINVAL;
2837         }
2838 out:
2839         return r;
2840 }
2841
2842 static void wbinvd_ipi(void *garbage)
2843 {
2844         wbinvd();
2845 }
2846
2847 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2848 {
2849         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2850 }
2851
2852 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2853 {
2854         /* Address WBINVD may be executed by guest */
2855         if (need_emulate_wbinvd(vcpu)) {
2856                 if (kvm_x86_ops->has_wbinvd_exit())
2857                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2858                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2859                         smp_call_function_single(vcpu->cpu,
2860                                         wbinvd_ipi, NULL, 1);
2861         }
2862
2863         kvm_x86_ops->vcpu_load(vcpu, cpu);
2864
2865         /* Apply any externally detected TSC adjustments (due to suspend) */
2866         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2867                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2868                 vcpu->arch.tsc_offset_adjustment = 0;
2869                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2870         }
2871
2872         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2873                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2874                                 rdtsc() - vcpu->arch.last_host_tsc;
2875                 if (tsc_delta < 0)
2876                         mark_tsc_unstable("KVM discovered backwards TSC");
2877
2878                 if (check_tsc_unstable()) {
2879                         u64 offset = kvm_compute_tsc_offset(vcpu,
2880                                                 vcpu->arch.last_guest_tsc);
2881                         kvm_vcpu_write_tsc_offset(vcpu, offset);
2882                         vcpu->arch.tsc_catchup = 1;
2883                 }
2884
2885                 if (kvm_lapic_hv_timer_in_use(vcpu))
2886                         kvm_lapic_restart_hv_timer(vcpu);
2887
2888                 /*
2889                  * On a host with synchronized TSC, there is no need to update
2890                  * kvmclock on vcpu->cpu migration
2891                  */
2892                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2893                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2894                 if (vcpu->cpu != cpu)
2895                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
2896                 vcpu->cpu = cpu;
2897         }
2898
2899         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2900 }
2901
2902 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
2903 {
2904         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2905                 return;
2906
2907         vcpu->arch.st.steal.preempted = 1;
2908
2909         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
2910                         &vcpu->arch.st.steal.preempted,
2911                         offsetof(struct kvm_steal_time, preempted),
2912                         sizeof(vcpu->arch.st.steal.preempted));
2913 }
2914
2915 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2916 {
2917         int idx;
2918
2919         if (vcpu->preempted)
2920                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
2921
2922         /*
2923          * Disable page faults because we're in atomic context here.
2924          * kvm_write_guest_offset_cached() would call might_fault()
2925          * that relies on pagefault_disable() to tell if there's a
2926          * bug. NOTE: the write to guest memory may not go through if
2927          * during postcopy live migration or if there's heavy guest
2928          * paging.
2929          */
2930         pagefault_disable();
2931         /*
2932          * kvm_memslots() will be called by
2933          * kvm_write_guest_offset_cached() so take the srcu lock.
2934          */
2935         idx = srcu_read_lock(&vcpu->kvm->srcu);
2936         kvm_steal_time_set_preempted(vcpu);
2937         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2938         pagefault_enable();
2939         kvm_x86_ops->vcpu_put(vcpu);
2940         vcpu->arch.last_host_tsc = rdtsc();
2941 }
2942
2943 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2944                                     struct kvm_lapic_state *s)
2945 {
2946         if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
2947                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2948
2949         return kvm_apic_get_state(vcpu, s);
2950 }
2951
2952 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2953                                     struct kvm_lapic_state *s)
2954 {
2955         int r;
2956
2957         r = kvm_apic_set_state(vcpu, s);
2958         if (r)
2959                 return r;
2960         update_cr8_intercept(vcpu);
2961
2962         return 0;
2963 }
2964
2965 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2966 {
2967         return (!lapic_in_kernel(vcpu) ||
2968                 kvm_apic_accept_pic_intr(vcpu));
2969 }
2970
2971 /*
2972  * if userspace requested an interrupt window, check that the
2973  * interrupt window is open.
2974  *
2975  * No need to exit to userspace if we already have an interrupt queued.
2976  */
2977 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2978 {
2979         return kvm_arch_interrupt_allowed(vcpu) &&
2980                 !kvm_cpu_has_interrupt(vcpu) &&
2981                 !kvm_event_needs_reinjection(vcpu) &&
2982                 kvm_cpu_accept_dm_intr(vcpu);
2983 }
2984
2985 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2986                                     struct kvm_interrupt *irq)
2987 {
2988         if (irq->irq >= KVM_NR_INTERRUPTS)
2989                 return -EINVAL;
2990
2991         if (!irqchip_in_kernel(vcpu->kvm)) {
2992                 kvm_queue_interrupt(vcpu, irq->irq, false);
2993                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2994                 return 0;
2995         }
2996
2997         /*
2998          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2999          * fail for in-kernel 8259.
3000          */
3001         if (pic_in_kernel(vcpu->kvm))
3002                 return -ENXIO;
3003
3004         if (vcpu->arch.pending_external_vector != -1)
3005                 return -EEXIST;
3006
3007         vcpu->arch.pending_external_vector = irq->irq;
3008         kvm_make_request(KVM_REQ_EVENT, vcpu);
3009         return 0;
3010 }
3011
3012 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3013 {
3014         kvm_inject_nmi(vcpu);
3015
3016         return 0;
3017 }
3018
3019 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3020 {
3021         kvm_make_request(KVM_REQ_SMI, vcpu);
3022
3023         return 0;
3024 }
3025
3026 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3027                                            struct kvm_tpr_access_ctl *tac)
3028 {
3029         if (tac->flags)
3030                 return -EINVAL;
3031         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3032         return 0;
3033 }
3034
3035 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3036                                         u64 mcg_cap)
3037 {
3038         int r;
3039         unsigned bank_num = mcg_cap & 0xff, bank;
3040
3041         r = -EINVAL;
3042         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3043                 goto out;
3044         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3045                 goto out;
3046         r = 0;
3047         vcpu->arch.mcg_cap = mcg_cap;
3048         /* Init IA32_MCG_CTL to all 1s */
3049         if (mcg_cap & MCG_CTL_P)
3050                 vcpu->arch.mcg_ctl = ~(u64)0;
3051         /* Init IA32_MCi_CTL to all 1s */
3052         for (bank = 0; bank < bank_num; bank++)
3053                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3054
3055         if (kvm_x86_ops->setup_mce)
3056                 kvm_x86_ops->setup_mce(vcpu);
3057 out:
3058         return r;
3059 }
3060
3061 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3062                                       struct kvm_x86_mce *mce)
3063 {
3064         u64 mcg_cap = vcpu->arch.mcg_cap;
3065         unsigned bank_num = mcg_cap & 0xff;
3066         u64 *banks = vcpu->arch.mce_banks;
3067
3068         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3069                 return -EINVAL;
3070         /*
3071          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3072          * reporting is disabled
3073          */
3074         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3075             vcpu->arch.mcg_ctl != ~(u64)0)
3076                 return 0;
3077         banks += 4 * mce->bank;
3078         /*
3079          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3080          * reporting is disabled for the bank
3081          */
3082         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3083                 return 0;
3084         if (mce->status & MCI_STATUS_UC) {
3085                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3086                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3087                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3088                         return 0;
3089                 }
3090                 if (banks[1] & MCI_STATUS_VAL)
3091                         mce->status |= MCI_STATUS_OVER;
3092                 banks[2] = mce->addr;
3093                 banks[3] = mce->misc;
3094                 vcpu->arch.mcg_status = mce->mcg_status;
3095                 banks[1] = mce->status;
3096                 kvm_queue_exception(vcpu, MC_VECTOR);
3097         } else if (!(banks[1] & MCI_STATUS_VAL)
3098                    || !(banks[1] & MCI_STATUS_UC)) {
3099                 if (banks[1] & MCI_STATUS_VAL)
3100                         mce->status |= MCI_STATUS_OVER;
3101                 banks[2] = mce->addr;
3102                 banks[3] = mce->misc;
3103                 banks[1] = mce->status;
3104         } else
3105                 banks[1] |= MCI_STATUS_OVER;
3106         return 0;
3107 }
3108
3109 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3110                                                struct kvm_vcpu_events *events)
3111 {
3112         process_nmi(vcpu);
3113         /*
3114          * FIXME: pass injected and pending separately.  This is only
3115          * needed for nested virtualization, whose state cannot be
3116          * migrated yet.  For now we can combine them.
3117          */
3118         events->exception.injected =
3119                 (vcpu->arch.exception.pending ||
3120                  vcpu->arch.exception.injected) &&
3121                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
3122         events->exception.nr = vcpu->arch.exception.nr;
3123         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3124         events->exception.pad = 0;
3125         events->exception.error_code = vcpu->arch.exception.error_code;
3126
3127         events->interrupt.injected =
3128                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
3129         events->interrupt.nr = vcpu->arch.interrupt.nr;
3130         events->interrupt.soft = 0;
3131         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3132
3133         events->nmi.injected = vcpu->arch.nmi_injected;
3134         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3135         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3136         events->nmi.pad = 0;
3137
3138         events->sipi_vector = 0; /* never valid when reporting to user space */
3139
3140         events->smi.smm = is_smm(vcpu);
3141         events->smi.pending = vcpu->arch.smi_pending;
3142         events->smi.smm_inside_nmi =
3143                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3144         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3145
3146         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3147                          | KVM_VCPUEVENT_VALID_SHADOW
3148                          | KVM_VCPUEVENT_VALID_SMM);
3149         memset(&events->reserved, 0, sizeof(events->reserved));
3150 }
3151
3152 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags);
3153
3154 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3155                                               struct kvm_vcpu_events *events)
3156 {
3157         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3158                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3159                               | KVM_VCPUEVENT_VALID_SHADOW
3160                               | KVM_VCPUEVENT_VALID_SMM))
3161                 return -EINVAL;
3162
3163         if (events->exception.injected &&
3164             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR ||
3165              is_guest_mode(vcpu)))
3166                 return -EINVAL;
3167
3168         /* INITs are latched while in SMM */
3169         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3170             (events->smi.smm || events->smi.pending) &&
3171             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3172                 return -EINVAL;
3173
3174         process_nmi(vcpu);
3175         vcpu->arch.exception.injected = false;
3176         vcpu->arch.exception.pending = events->exception.injected;
3177         vcpu->arch.exception.nr = events->exception.nr;
3178         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3179         vcpu->arch.exception.error_code = events->exception.error_code;
3180
3181         vcpu->arch.interrupt.pending = events->interrupt.injected;
3182         vcpu->arch.interrupt.nr = events->interrupt.nr;
3183         vcpu->arch.interrupt.soft = events->interrupt.soft;
3184         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3185                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3186                                                   events->interrupt.shadow);
3187
3188         vcpu->arch.nmi_injected = events->nmi.injected;
3189         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3190                 vcpu->arch.nmi_pending = events->nmi.pending;
3191         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3192
3193         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3194             lapic_in_kernel(vcpu))
3195                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3196
3197         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3198                 u32 hflags = vcpu->arch.hflags;
3199                 if (events->smi.smm)
3200                         hflags |= HF_SMM_MASK;
3201                 else
3202                         hflags &= ~HF_SMM_MASK;
3203                 kvm_set_hflags(vcpu, hflags);
3204
3205                 vcpu->arch.smi_pending = events->smi.pending;
3206
3207                 if (events->smi.smm) {
3208                         if (events->smi.smm_inside_nmi)
3209                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3210                         else
3211                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3212                         if (lapic_in_kernel(vcpu)) {
3213                                 if (events->smi.latched_init)
3214                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3215                                 else
3216                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3217                         }
3218                 }
3219         }
3220
3221         kvm_make_request(KVM_REQ_EVENT, vcpu);
3222
3223         return 0;
3224 }
3225
3226 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3227                                              struct kvm_debugregs *dbgregs)
3228 {
3229         unsigned long val;
3230
3231         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3232         kvm_get_dr(vcpu, 6, &val);
3233         dbgregs->dr6 = val;
3234         dbgregs->dr7 = vcpu->arch.dr7;
3235         dbgregs->flags = 0;
3236         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3237 }
3238
3239 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3240                                             struct kvm_debugregs *dbgregs)
3241 {
3242         if (dbgregs->flags)
3243                 return -EINVAL;
3244
3245         if (dbgregs->dr6 & ~0xffffffffull)
3246                 return -EINVAL;
3247         if (dbgregs->dr7 & ~0xffffffffull)
3248                 return -EINVAL;
3249
3250         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3251         kvm_update_dr0123(vcpu);
3252         vcpu->arch.dr6 = dbgregs->dr6;
3253         kvm_update_dr6(vcpu);
3254         vcpu->arch.dr7 = dbgregs->dr7;
3255         kvm_update_dr7(vcpu);
3256
3257         return 0;
3258 }
3259
3260 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3261
3262 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3263 {
3264         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3265         u64 xstate_bv = xsave->header.xfeatures;
3266         u64 valid;
3267
3268         /*
3269          * Copy legacy XSAVE area, to avoid complications with CPUID
3270          * leaves 0 and 1 in the loop below.
3271          */
3272         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3273
3274         /* Set XSTATE_BV */
3275         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3276         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3277
3278         /*
3279          * Copy each region from the possibly compacted offset to the
3280          * non-compacted offset.
3281          */
3282         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3283         while (valid) {
3284                 u64 feature = valid & -valid;
3285                 int index = fls64(feature) - 1;
3286                 void *src = get_xsave_addr(xsave, feature);
3287
3288                 if (src) {
3289                         u32 size, offset, ecx, edx;
3290                         cpuid_count(XSTATE_CPUID, index,
3291                                     &size, &offset, &ecx, &edx);
3292                         if (feature == XFEATURE_MASK_PKRU)
3293                                 memcpy(dest + offset, &vcpu->arch.pkru,
3294                                        sizeof(vcpu->arch.pkru));
3295                         else
3296                                 memcpy(dest + offset, src, size);
3297
3298                 }
3299
3300                 valid -= feature;
3301         }
3302 }
3303
3304 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3305 {
3306         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3307         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3308         u64 valid;
3309
3310         /*
3311          * Copy legacy XSAVE area, to avoid complications with CPUID
3312          * leaves 0 and 1 in the loop below.
3313          */
3314         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3315
3316         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3317         xsave->header.xfeatures = xstate_bv;
3318         if (boot_cpu_has(X86_FEATURE_XSAVES))
3319                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3320
3321         /*
3322          * Copy each region from the non-compacted offset to the
3323          * possibly compacted offset.
3324          */
3325         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3326         while (valid) {
3327                 u64 feature = valid & -valid;
3328                 int index = fls64(feature) - 1;
3329                 void *dest = get_xsave_addr(xsave, feature);
3330
3331                 if (dest) {
3332                         u32 size, offset, ecx, edx;
3333                         cpuid_count(XSTATE_CPUID, index,
3334                                     &size, &offset, &ecx, &edx);
3335                         if (feature == XFEATURE_MASK_PKRU)
3336                                 memcpy(&vcpu->arch.pkru, src + offset,
3337                                        sizeof(vcpu->arch.pkru));
3338                         else
3339                                 memcpy(dest, src + offset, size);
3340                 }
3341
3342                 valid -= feature;
3343         }
3344 }
3345
3346 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3347                                          struct kvm_xsave *guest_xsave)
3348 {
3349         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3350                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3351                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3352         } else {
3353                 memcpy(guest_xsave->region,
3354                         &vcpu->arch.guest_fpu.state.fxsave,
3355                         sizeof(struct fxregs_state));
3356                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3357                         XFEATURE_MASK_FPSSE;
3358         }
3359 }
3360
3361 #define XSAVE_MXCSR_OFFSET 24
3362
3363 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3364                                         struct kvm_xsave *guest_xsave)
3365 {
3366         u64 xstate_bv =
3367                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3368         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3369
3370         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3371                 /*
3372                  * Here we allow setting states that are not present in
3373                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3374                  * with old userspace.
3375                  */
3376                 if (xstate_bv & ~kvm_supported_xcr0() ||
3377                         mxcsr & ~mxcsr_feature_mask)
3378                         return -EINVAL;
3379                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3380         } else {
3381                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3382                         mxcsr & ~mxcsr_feature_mask)
3383                         return -EINVAL;
3384                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3385                         guest_xsave->region, sizeof(struct fxregs_state));
3386         }
3387         return 0;
3388 }
3389
3390 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3391                                         struct kvm_xcrs *guest_xcrs)
3392 {
3393         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3394                 guest_xcrs->nr_xcrs = 0;
3395                 return;
3396         }
3397
3398         guest_xcrs->nr_xcrs = 1;
3399         guest_xcrs->flags = 0;
3400         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3401         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3402 }
3403
3404 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3405                                        struct kvm_xcrs *guest_xcrs)
3406 {
3407         int i, r = 0;
3408
3409         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3410                 return -EINVAL;
3411
3412         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3413                 return -EINVAL;
3414
3415         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3416                 /* Only support XCR0 currently */
3417                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3418                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3419                                 guest_xcrs->xcrs[i].value);
3420                         break;
3421                 }
3422         if (r)
3423                 r = -EINVAL;
3424         return r;
3425 }
3426
3427 /*
3428  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3429  * stopped by the hypervisor.  This function will be called from the host only.
3430  * EINVAL is returned when the host attempts to set the flag for a guest that
3431  * does not support pv clocks.
3432  */
3433 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3434 {
3435         if (!vcpu->arch.pv_time_enabled)
3436                 return -EINVAL;
3437         vcpu->arch.pvclock_set_guest_stopped_request = true;
3438         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3439         return 0;
3440 }
3441
3442 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3443                                      struct kvm_enable_cap *cap)
3444 {
3445         if (cap->flags)
3446                 return -EINVAL;
3447
3448         switch (cap->cap) {
3449         case KVM_CAP_HYPERV_SYNIC2:
3450                 if (cap->args[0])
3451                         return -EINVAL;
3452         case KVM_CAP_HYPERV_SYNIC:
3453                 if (!irqchip_in_kernel(vcpu->kvm))
3454                         return -EINVAL;
3455                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3456                                              KVM_CAP_HYPERV_SYNIC2);
3457         default:
3458                 return -EINVAL;
3459         }
3460 }
3461
3462 long kvm_arch_vcpu_ioctl(struct file *filp,
3463                          unsigned int ioctl, unsigned long arg)
3464 {
3465         struct kvm_vcpu *vcpu = filp->private_data;
3466         void __user *argp = (void __user *)arg;
3467         int r;
3468         union {
3469                 struct kvm_lapic_state *lapic;
3470                 struct kvm_xsave *xsave;
3471                 struct kvm_xcrs *xcrs;
3472                 void *buffer;
3473         } u;
3474
3475         u.buffer = NULL;
3476         switch (ioctl) {
3477         case KVM_GET_LAPIC: {
3478                 r = -EINVAL;
3479                 if (!lapic_in_kernel(vcpu))
3480                         goto out;
3481                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3482
3483                 r = -ENOMEM;
3484                 if (!u.lapic)
3485                         goto out;
3486                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3487                 if (r)
3488                         goto out;
3489                 r = -EFAULT;
3490                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3491                         goto out;
3492                 r = 0;
3493                 break;
3494         }
3495         case KVM_SET_LAPIC: {
3496                 r = -EINVAL;
3497                 if (!lapic_in_kernel(vcpu))
3498                         goto out;
3499                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3500                 if (IS_ERR(u.lapic))
3501                         return PTR_ERR(u.lapic);
3502
3503                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3504                 break;
3505         }
3506         case KVM_INTERRUPT: {
3507                 struct kvm_interrupt irq;
3508
3509                 r = -EFAULT;
3510                 if (copy_from_user(&irq, argp, sizeof irq))
3511                         goto out;
3512                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3513                 break;
3514         }
3515         case KVM_NMI: {
3516                 r = kvm_vcpu_ioctl_nmi(vcpu);
3517                 break;
3518         }
3519         case KVM_SMI: {
3520                 r = kvm_vcpu_ioctl_smi(vcpu);
3521                 break;
3522         }
3523         case KVM_SET_CPUID: {
3524                 struct kvm_cpuid __user *cpuid_arg = argp;
3525                 struct kvm_cpuid cpuid;
3526
3527                 r = -EFAULT;
3528                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3529                         goto out;
3530                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3531                 break;
3532         }
3533         case KVM_SET_CPUID2: {
3534                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3535                 struct kvm_cpuid2 cpuid;
3536
3537                 r = -EFAULT;
3538                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3539                         goto out;
3540                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3541                                               cpuid_arg->entries);
3542                 break;
3543         }
3544         case KVM_GET_CPUID2: {
3545                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3546                 struct kvm_cpuid2 cpuid;
3547
3548                 r = -EFAULT;
3549                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3550                         goto out;
3551                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3552                                               cpuid_arg->entries);
3553                 if (r)
3554                         goto out;
3555                 r = -EFAULT;
3556                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3557                         goto out;
3558                 r = 0;
3559                 break;
3560         }
3561         case KVM_GET_MSRS:
3562                 r = msr_io(vcpu, argp, do_get_msr, 1);
3563                 break;
3564         case KVM_SET_MSRS:
3565                 r = msr_io(vcpu, argp, do_set_msr, 0);
3566                 break;
3567         case KVM_TPR_ACCESS_REPORTING: {
3568                 struct kvm_tpr_access_ctl tac;
3569
3570                 r = -EFAULT;
3571                 if (copy_from_user(&tac, argp, sizeof tac))
3572                         goto out;
3573                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3574                 if (r)
3575                         goto out;
3576                 r = -EFAULT;
3577                 if (copy_to_user(argp, &tac, sizeof tac))
3578                         goto out;
3579                 r = 0;
3580                 break;
3581         };
3582         case KVM_SET_VAPIC_ADDR: {
3583                 struct kvm_vapic_addr va;
3584                 int idx;
3585
3586                 r = -EINVAL;
3587                 if (!lapic_in_kernel(vcpu))
3588                         goto out;
3589                 r = -EFAULT;
3590                 if (copy_from_user(&va, argp, sizeof va))
3591                         goto out;
3592                 idx = srcu_read_lock(&vcpu->kvm->srcu);
3593                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3594                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3595                 break;
3596         }
3597         case KVM_X86_SETUP_MCE: {
3598                 u64 mcg_cap;
3599
3600                 r = -EFAULT;
3601                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3602                         goto out;
3603                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3604                 break;
3605         }
3606         case KVM_X86_SET_MCE: {
3607                 struct kvm_x86_mce mce;
3608
3609                 r = -EFAULT;
3610                 if (copy_from_user(&mce, argp, sizeof mce))
3611                         goto out;
3612                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3613                 break;
3614         }
3615         case KVM_GET_VCPU_EVENTS: {
3616                 struct kvm_vcpu_events events;
3617
3618                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3619
3620                 r = -EFAULT;
3621                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3622                         break;
3623                 r = 0;
3624                 break;
3625         }
3626         case KVM_SET_VCPU_EVENTS: {
3627                 struct kvm_vcpu_events events;
3628
3629                 r = -EFAULT;
3630                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3631                         break;
3632
3633                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3634                 break;
3635         }
3636         case KVM_GET_DEBUGREGS: {
3637                 struct kvm_debugregs dbgregs;
3638
3639                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3640
3641                 r = -EFAULT;
3642                 if (copy_to_user(argp, &dbgregs,
3643                                  sizeof(struct kvm_debugregs)))
3644                         break;
3645                 r = 0;
3646                 break;
3647         }
3648         case KVM_SET_DEBUGREGS: {
3649                 struct kvm_debugregs dbgregs;
3650
3651                 r = -EFAULT;
3652                 if (copy_from_user(&dbgregs, argp,
3653                                    sizeof(struct kvm_debugregs)))
3654                         break;
3655
3656                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3657                 break;
3658         }
3659         case KVM_GET_XSAVE: {
3660                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3661                 r = -ENOMEM;
3662                 if (!u.xsave)
3663                         break;
3664
3665                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3666
3667                 r = -EFAULT;
3668                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3669                         break;
3670                 r = 0;
3671                 break;
3672         }
3673         case KVM_SET_XSAVE: {
3674                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3675                 if (IS_ERR(u.xsave))
3676                         return PTR_ERR(u.xsave);
3677
3678                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3679                 break;
3680         }
3681         case KVM_GET_XCRS: {
3682                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3683                 r = -ENOMEM;
3684                 if (!u.xcrs)
3685                         break;
3686
3687                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3688
3689                 r = -EFAULT;
3690                 if (copy_to_user(argp, u.xcrs,
3691                                  sizeof(struct kvm_xcrs)))
3692                         break;
3693                 r = 0;
3694                 break;
3695         }
3696         case KVM_SET_XCRS: {
3697                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3698                 if (IS_ERR(u.xcrs))
3699                         return PTR_ERR(u.xcrs);
3700
3701                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3702                 break;
3703         }
3704         case KVM_SET_TSC_KHZ: {
3705                 u32 user_tsc_khz;
3706
3707                 r = -EINVAL;
3708                 user_tsc_khz = (u32)arg;
3709
3710                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3711                         goto out;
3712
3713                 if (user_tsc_khz == 0)
3714                         user_tsc_khz = tsc_khz;
3715
3716                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3717                         r = 0;
3718
3719                 goto out;
3720         }
3721         case KVM_GET_TSC_KHZ: {
3722                 r = vcpu->arch.virtual_tsc_khz;
3723                 goto out;
3724         }
3725         case KVM_KVMCLOCK_CTRL: {
3726                 r = kvm_set_guest_paused(vcpu);
3727                 goto out;
3728         }
3729         case KVM_ENABLE_CAP: {
3730                 struct kvm_enable_cap cap;
3731
3732                 r = -EFAULT;
3733                 if (copy_from_user(&cap, argp, sizeof(cap)))
3734                         goto out;
3735                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3736                 break;
3737         }
3738         default:
3739                 r = -EINVAL;
3740         }
3741 out:
3742         kfree(u.buffer);
3743         return r;
3744 }
3745
3746 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3747 {
3748         return VM_FAULT_SIGBUS;
3749 }
3750
3751 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3752 {
3753         int ret;
3754
3755         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3756                 return -EINVAL;
3757         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3758         return ret;
3759 }
3760
3761 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3762                                               u64 ident_addr)
3763 {
3764         kvm->arch.ept_identity_map_addr = ident_addr;
3765         return 0;
3766 }
3767
3768 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3769                                           u32 kvm_nr_mmu_pages)
3770 {
3771         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3772                 return -EINVAL;
3773
3774         mutex_lock(&kvm->slots_lock);
3775
3776         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3777         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3778
3779         mutex_unlock(&kvm->slots_lock);
3780         return 0;
3781 }
3782
3783 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3784 {
3785         return kvm->arch.n_max_mmu_pages;
3786 }
3787
3788 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3789 {
3790         struct kvm_pic *pic = kvm->arch.vpic;
3791         int r;
3792
3793         r = 0;
3794         switch (chip->chip_id) {
3795         case KVM_IRQCHIP_PIC_MASTER:
3796                 memcpy(&chip->chip.pic, &pic->pics[0],
3797                         sizeof(struct kvm_pic_state));
3798                 break;
3799         case KVM_IRQCHIP_PIC_SLAVE:
3800                 memcpy(&chip->chip.pic, &pic->pics[1],
3801                         sizeof(struct kvm_pic_state));
3802                 break;
3803         case KVM_IRQCHIP_IOAPIC:
3804                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
3805                 break;
3806         default:
3807                 r = -EINVAL;
3808                 break;
3809         }
3810         return r;
3811 }
3812
3813 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3814 {
3815         struct kvm_pic *pic = kvm->arch.vpic;
3816         int r;
3817
3818         r = 0;
3819         switch (chip->chip_id) {
3820         case KVM_IRQCHIP_PIC_MASTER:
3821                 spin_lock(&pic->lock);
3822                 memcpy(&pic->pics[0], &chip->chip.pic,
3823                         sizeof(struct kvm_pic_state));
3824                 spin_unlock(&pic->lock);
3825                 break;
3826         case KVM_IRQCHIP_PIC_SLAVE:
3827                 spin_lock(&pic->lock);
3828                 memcpy(&pic->pics[1], &chip->chip.pic,
3829                         sizeof(struct kvm_pic_state));
3830                 spin_unlock(&pic->lock);
3831                 break;
3832         case KVM_IRQCHIP_IOAPIC:
3833                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
3834                 break;
3835         default:
3836                 r = -EINVAL;
3837                 break;
3838         }
3839         kvm_pic_update_irq(pic);
3840         return r;
3841 }
3842
3843 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3844 {
3845         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3846
3847         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3848
3849         mutex_lock(&kps->lock);
3850         memcpy(ps, &kps->channels, sizeof(*ps));
3851         mutex_unlock(&kps->lock);
3852         return 0;
3853 }
3854
3855 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3856 {
3857         int i;
3858         struct kvm_pit *pit = kvm->arch.vpit;
3859
3860         mutex_lock(&pit->pit_state.lock);
3861         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3862         for (i = 0; i < 3; i++)
3863                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3864         mutex_unlock(&pit->pit_state.lock);
3865         return 0;
3866 }
3867
3868 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3869 {
3870         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3871         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3872                 sizeof(ps->channels));
3873         ps->flags = kvm->arch.vpit->pit_state.flags;
3874         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3875         memset(&ps->reserved, 0, sizeof(ps->reserved));
3876         return 0;
3877 }
3878
3879 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3880 {
3881         int start = 0;
3882         int i;
3883         u32 prev_legacy, cur_legacy;
3884         struct kvm_pit *pit = kvm->arch.vpit;
3885
3886         mutex_lock(&pit->pit_state.lock);
3887         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3888         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3889         if (!prev_legacy && cur_legacy)
3890                 start = 1;
3891         memcpy(&pit->pit_state.channels, &ps->channels,
3892                sizeof(pit->pit_state.channels));
3893         pit->pit_state.flags = ps->flags;
3894         for (i = 0; i < 3; i++)
3895                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3896                                    start && i == 0);
3897         mutex_unlock(&pit->pit_state.lock);
3898         return 0;
3899 }
3900
3901 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3902                                  struct kvm_reinject_control *control)
3903 {
3904         struct kvm_pit *pit = kvm->arch.vpit;
3905
3906         if (!pit)
3907                 return -ENXIO;
3908
3909         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3910          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3911          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3912          */
3913         mutex_lock(&pit->pit_state.lock);
3914         kvm_pit_set_reinject(pit, control->pit_reinject);
3915         mutex_unlock(&pit->pit_state.lock);
3916
3917         return 0;
3918 }
3919
3920 /**
3921  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3922  * @kvm: kvm instance
3923  * @log: slot id and address to which we copy the log
3924  *
3925  * Steps 1-4 below provide general overview of dirty page logging. See
3926  * kvm_get_dirty_log_protect() function description for additional details.
3927  *
3928  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3929  * always flush the TLB (step 4) even if previous step failed  and the dirty
3930  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3931  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3932  * writes will be marked dirty for next log read.
3933  *
3934  *   1. Take a snapshot of the bit and clear it if needed.
3935  *   2. Write protect the corresponding page.
3936  *   3. Copy the snapshot to the userspace.
3937  *   4. Flush TLB's if needed.
3938  */
3939 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3940 {
3941         bool is_dirty = false;
3942         int r;
3943
3944         mutex_lock(&kvm->slots_lock);
3945
3946         /*
3947          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3948          */
3949         if (kvm_x86_ops->flush_log_dirty)
3950                 kvm_x86_ops->flush_log_dirty(kvm);
3951
3952         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3953
3954         /*
3955          * All the TLBs can be flushed out of mmu lock, see the comments in
3956          * kvm_mmu_slot_remove_write_access().
3957          */
3958         lockdep_assert_held(&kvm->slots_lock);
3959         if (is_dirty)
3960                 kvm_flush_remote_tlbs(kvm);
3961
3962         mutex_unlock(&kvm->slots_lock);
3963         return r;
3964 }
3965
3966 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3967                         bool line_status)
3968 {
3969         if (!irqchip_in_kernel(kvm))
3970                 return -ENXIO;
3971
3972         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3973                                         irq_event->irq, irq_event->level,
3974                                         line_status);
3975         return 0;
3976 }
3977
3978 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3979                                    struct kvm_enable_cap *cap)
3980 {
3981         int r;
3982
3983         if (cap->flags)
3984                 return -EINVAL;
3985
3986         switch (cap->cap) {
3987         case KVM_CAP_DISABLE_QUIRKS:
3988                 kvm->arch.disabled_quirks = cap->args[0];
3989                 r = 0;
3990                 break;
3991         case KVM_CAP_SPLIT_IRQCHIP: {
3992                 mutex_lock(&kvm->lock);
3993                 r = -EINVAL;
3994                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3995                         goto split_irqchip_unlock;
3996                 r = -EEXIST;
3997                 if (irqchip_in_kernel(kvm))
3998                         goto split_irqchip_unlock;
3999                 if (kvm->created_vcpus)
4000                         goto split_irqchip_unlock;
4001                 r = kvm_setup_empty_irq_routing(kvm);
4002                 if (r)
4003                         goto split_irqchip_unlock;
4004                 /* Pairs with irqchip_in_kernel. */
4005                 smp_wmb();
4006                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4007                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4008                 r = 0;
4009 split_irqchip_unlock:
4010                 mutex_unlock(&kvm->lock);
4011                 break;
4012         }
4013         case KVM_CAP_X2APIC_API:
4014                 r = -EINVAL;
4015                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4016                         break;
4017
4018                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4019                         kvm->arch.x2apic_format = true;
4020                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4021                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4022
4023                 r = 0;
4024                 break;
4025         default:
4026                 r = -EINVAL;
4027                 break;
4028         }
4029         return r;
4030 }
4031
4032 long kvm_arch_vm_ioctl(struct file *filp,
4033                        unsigned int ioctl, unsigned long arg)
4034 {
4035         struct kvm *kvm = filp->private_data;
4036         void __user *argp = (void __user *)arg;
4037         int r = -ENOTTY;
4038         /*
4039          * This union makes it completely explicit to gcc-3.x
4040          * that these two variables' stack usage should be
4041          * combined, not added together.
4042          */
4043         union {
4044                 struct kvm_pit_state ps;
4045                 struct kvm_pit_state2 ps2;
4046                 struct kvm_pit_config pit_config;
4047         } u;
4048
4049         switch (ioctl) {
4050         case KVM_SET_TSS_ADDR:
4051                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4052                 break;
4053         case KVM_SET_IDENTITY_MAP_ADDR: {
4054                 u64 ident_addr;
4055
4056                 mutex_lock(&kvm->lock);
4057                 r = -EINVAL;
4058                 if (kvm->created_vcpus)
4059                         goto set_identity_unlock;
4060                 r = -EFAULT;
4061                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
4062                         goto set_identity_unlock;
4063                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4064 set_identity_unlock:
4065                 mutex_unlock(&kvm->lock);
4066                 break;
4067         }
4068         case KVM_SET_NR_MMU_PAGES:
4069                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4070                 break;
4071         case KVM_GET_NR_MMU_PAGES:
4072                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4073                 break;
4074         case KVM_CREATE_IRQCHIP: {
4075                 mutex_lock(&kvm->lock);
4076
4077                 r = -EEXIST;
4078                 if (irqchip_in_kernel(kvm))
4079                         goto create_irqchip_unlock;
4080
4081                 r = -EINVAL;
4082                 if (kvm->created_vcpus)
4083                         goto create_irqchip_unlock;
4084
4085                 r = kvm_pic_init(kvm);
4086                 if (r)
4087                         goto create_irqchip_unlock;
4088
4089                 r = kvm_ioapic_init(kvm);
4090                 if (r) {
4091                         kvm_pic_destroy(kvm);
4092                         goto create_irqchip_unlock;
4093                 }
4094
4095                 r = kvm_setup_default_irq_routing(kvm);
4096                 if (r) {
4097                         kvm_ioapic_destroy(kvm);
4098                         kvm_pic_destroy(kvm);
4099                         goto create_irqchip_unlock;
4100                 }
4101                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4102                 smp_wmb();
4103                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4104         create_irqchip_unlock:
4105                 mutex_unlock(&kvm->lock);
4106                 break;
4107         }
4108         case KVM_CREATE_PIT:
4109                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4110                 goto create_pit;
4111         case KVM_CREATE_PIT2:
4112                 r = -EFAULT;
4113                 if (copy_from_user(&u.pit_config, argp,
4114                                    sizeof(struct kvm_pit_config)))
4115                         goto out;
4116         create_pit:
4117                 mutex_lock(&kvm->lock);
4118                 r = -EEXIST;
4119                 if (kvm->arch.vpit)
4120                         goto create_pit_unlock;
4121                 r = -ENOMEM;
4122                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4123                 if (kvm->arch.vpit)
4124                         r = 0;
4125         create_pit_unlock:
4126                 mutex_unlock(&kvm->lock);
4127                 break;
4128         case KVM_GET_IRQCHIP: {
4129                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4130                 struct kvm_irqchip *chip;
4131
4132                 chip = memdup_user(argp, sizeof(*chip));
4133                 if (IS_ERR(chip)) {
4134                         r = PTR_ERR(chip);
4135                         goto out;
4136                 }
4137
4138                 r = -ENXIO;
4139                 if (!irqchip_kernel(kvm))
4140                         goto get_irqchip_out;
4141                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4142                 if (r)
4143                         goto get_irqchip_out;
4144                 r = -EFAULT;
4145                 if (copy_to_user(argp, chip, sizeof *chip))
4146                         goto get_irqchip_out;
4147                 r = 0;
4148         get_irqchip_out:
4149                 kfree(chip);
4150                 break;
4151         }
4152         case KVM_SET_IRQCHIP: {
4153                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4154                 struct kvm_irqchip *chip;
4155
4156                 chip = memdup_user(argp, sizeof(*chip));
4157                 if (IS_ERR(chip)) {
4158                         r = PTR_ERR(chip);
4159                         goto out;
4160                 }
4161
4162                 r = -ENXIO;
4163                 if (!irqchip_kernel(kvm))
4164                         goto set_irqchip_out;
4165                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4166                 if (r)
4167                         goto set_irqchip_out;
4168                 r = 0;
4169         set_irqchip_out:
4170                 kfree(chip);
4171                 break;
4172         }
4173         case KVM_GET_PIT: {
4174                 r = -EFAULT;
4175                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4176                         goto out;
4177                 r = -ENXIO;
4178                 if (!kvm->arch.vpit)
4179                         goto out;
4180                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4181                 if (r)
4182                         goto out;
4183                 r = -EFAULT;
4184                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4185                         goto out;
4186                 r = 0;
4187                 break;
4188         }
4189         case KVM_SET_PIT: {
4190                 r = -EFAULT;
4191                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
4192                         goto out;
4193                 r = -ENXIO;
4194                 if (!kvm->arch.vpit)
4195                         goto out;
4196                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4197                 break;
4198         }
4199         case KVM_GET_PIT2: {
4200                 r = -ENXIO;
4201                 if (!kvm->arch.vpit)
4202                         goto out;
4203                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4204                 if (r)
4205                         goto out;
4206                 r = -EFAULT;
4207                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4208                         goto out;
4209                 r = 0;
4210                 break;
4211         }
4212         case KVM_SET_PIT2: {
4213                 r = -EFAULT;
4214                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4215                         goto out;
4216                 r = -ENXIO;
4217                 if (!kvm->arch.vpit)
4218                         goto out;
4219                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4220                 break;
4221         }
4222         case KVM_REINJECT_CONTROL: {
4223                 struct kvm_reinject_control control;
4224                 r =  -EFAULT;
4225                 if (copy_from_user(&control, argp, sizeof(control)))
4226                         goto out;
4227                 r = kvm_vm_ioctl_reinject(kvm, &control);
4228                 break;
4229         }
4230         case KVM_SET_BOOT_CPU_ID:
4231                 r = 0;
4232                 mutex_lock(&kvm->lock);
4233                 if (kvm->created_vcpus)
4234                         r = -EBUSY;
4235                 else
4236                         kvm->arch.bsp_vcpu_id = arg;
4237                 mutex_unlock(&kvm->lock);
4238                 break;
4239         case KVM_XEN_HVM_CONFIG: {
4240                 r = -EFAULT;
4241                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4242                                    sizeof(struct kvm_xen_hvm_config)))
4243                         goto out;
4244                 r = -EINVAL;
4245                 if (kvm->arch.xen_hvm_config.flags)
4246                         goto out;
4247                 r = 0;
4248                 break;
4249         }
4250         case KVM_SET_CLOCK: {
4251                 struct kvm_clock_data user_ns;
4252                 u64 now_ns;
4253
4254                 r = -EFAULT;
4255                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4256                         goto out;
4257
4258                 r = -EINVAL;
4259                 if (user_ns.flags)
4260                         goto out;
4261
4262                 r = 0;
4263                 /*
4264                  * TODO: userspace has to take care of races with VCPU_RUN, so
4265                  * kvm_gen_update_masterclock() can be cut down to locked
4266                  * pvclock_update_vm_gtod_copy().
4267                  */
4268                 kvm_gen_update_masterclock(kvm);
4269                 now_ns = get_kvmclock_ns(kvm);
4270                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4271                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4272                 break;
4273         }
4274         case KVM_GET_CLOCK: {
4275                 struct kvm_clock_data user_ns;
4276                 u64 now_ns;
4277
4278                 now_ns = get_kvmclock_ns(kvm);
4279                 user_ns.clock = now_ns;
4280                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4281                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4282
4283                 r = -EFAULT;
4284                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4285                         goto out;
4286                 r = 0;
4287                 break;
4288         }
4289         case KVM_ENABLE_CAP: {
4290                 struct kvm_enable_cap cap;
4291
4292                 r = -EFAULT;
4293                 if (copy_from_user(&cap, argp, sizeof(cap)))
4294                         goto out;
4295                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4296                 break;
4297         }
4298         default:
4299                 r = -ENOTTY;
4300         }
4301 out:
4302         return r;
4303 }
4304
4305 static void kvm_init_msr_list(void)
4306 {
4307         u32 dummy[2];
4308         unsigned i, j;
4309
4310         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4311                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4312                         continue;
4313
4314                 /*
4315                  * Even MSRs that are valid in the host may not be exposed
4316                  * to the guests in some cases.
4317                  */
4318                 switch (msrs_to_save[i]) {
4319                 case MSR_IA32_BNDCFGS:
4320                         if (!kvm_x86_ops->mpx_supported())
4321                                 continue;
4322                         break;
4323                 case MSR_TSC_AUX:
4324                         if (!kvm_x86_ops->rdtscp_supported())
4325                                 continue;
4326                         break;
4327                 default:
4328                         break;
4329                 }
4330
4331                 if (j < i)
4332                         msrs_to_save[j] = msrs_to_save[i];
4333                 j++;
4334         }
4335         num_msrs_to_save = j;
4336
4337         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4338                 switch (emulated_msrs[i]) {
4339                 case MSR_IA32_SMBASE:
4340                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4341                                 continue;
4342                         break;
4343                 default:
4344                         break;
4345                 }
4346
4347                 if (j < i)
4348                         emulated_msrs[j] = emulated_msrs[i];
4349                 j++;
4350         }
4351         num_emulated_msrs = j;
4352 }
4353
4354 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4355                            const void *v)
4356 {
4357         int handled = 0;
4358         int n;
4359
4360         do {
4361                 n = min(len, 8);
4362                 if (!(lapic_in_kernel(vcpu) &&
4363                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4364                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4365                         break;
4366                 handled += n;
4367                 addr += n;
4368                 len -= n;
4369                 v += n;
4370         } while (len);
4371
4372         return handled;
4373 }
4374
4375 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4376 {
4377         int handled = 0;
4378         int n;
4379
4380         do {
4381                 n = min(len, 8);
4382                 if (!(lapic_in_kernel(vcpu) &&
4383                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4384                                          addr, n, v))
4385                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4386                         break;
4387                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
4388                 handled += n;
4389                 addr += n;
4390                 len -= n;
4391                 v += n;
4392         } while (len);
4393
4394         return handled;
4395 }
4396
4397 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4398                         struct kvm_segment *var, int seg)
4399 {
4400         kvm_x86_ops->set_segment(vcpu, var, seg);
4401 }
4402
4403 void kvm_get_segment(struct kvm_vcpu *vcpu,
4404                      struct kvm_segment *var, int seg)
4405 {
4406         kvm_x86_ops->get_segment(vcpu, var, seg);
4407 }
4408
4409 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4410                            struct x86_exception *exception)
4411 {
4412         gpa_t t_gpa;
4413
4414         BUG_ON(!mmu_is_nested(vcpu));
4415
4416         /* NPT walks are always user-walks */
4417         access |= PFERR_USER_MASK;
4418         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4419
4420         return t_gpa;
4421 }
4422
4423 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4424                               struct x86_exception *exception)
4425 {
4426         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4427         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4428 }
4429
4430  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4431                                 struct x86_exception *exception)
4432 {
4433         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4434         access |= PFERR_FETCH_MASK;
4435         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4436 }
4437
4438 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4439                                struct x86_exception *exception)
4440 {
4441         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4442         access |= PFERR_WRITE_MASK;
4443         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4444 }
4445
4446 /* uses this to access any guest's mapped memory without checking CPL */
4447 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4448                                 struct x86_exception *exception)
4449 {
4450         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4451 }
4452
4453 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4454                                       struct kvm_vcpu *vcpu, u32 access,
4455                                       struct x86_exception *exception)
4456 {
4457         void *data = val;
4458         int r = X86EMUL_CONTINUE;
4459
4460         while (bytes) {
4461                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4462                                                             exception);
4463                 unsigned offset = addr & (PAGE_SIZE-1);
4464                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4465                 int ret;
4466
4467                 if (gpa == UNMAPPED_GVA)
4468                         return X86EMUL_PROPAGATE_FAULT;
4469                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4470                                                offset, toread);
4471                 if (ret < 0) {
4472                         r = X86EMUL_IO_NEEDED;
4473                         goto out;
4474                 }
4475
4476                 bytes -= toread;
4477                 data += toread;
4478                 addr += toread;
4479         }
4480 out:
4481         return r;
4482 }
4483
4484 /* used for instruction fetching */
4485 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4486                                 gva_t addr, void *val, unsigned int bytes,
4487                                 struct x86_exception *exception)
4488 {
4489         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4490         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4491         unsigned offset;
4492         int ret;
4493
4494         /* Inline kvm_read_guest_virt_helper for speed.  */
4495         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4496                                                     exception);
4497         if (unlikely(gpa == UNMAPPED_GVA))
4498                 return X86EMUL_PROPAGATE_FAULT;
4499
4500         offset = addr & (PAGE_SIZE-1);
4501         if (WARN_ON(offset + bytes > PAGE_SIZE))
4502                 bytes = (unsigned)PAGE_SIZE - offset;
4503         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4504                                        offset, bytes);
4505         if (unlikely(ret < 0))
4506                 return X86EMUL_IO_NEEDED;
4507
4508         return X86EMUL_CONTINUE;
4509 }
4510
4511 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4512                                gva_t addr, void *val, unsigned int bytes,
4513                                struct x86_exception *exception)
4514 {
4515         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4516         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4517
4518         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4519                                           exception);
4520 }
4521 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4522
4523 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4524                                       gva_t addr, void *val, unsigned int bytes,
4525                                       struct x86_exception *exception)
4526 {
4527         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4528         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4529 }
4530
4531 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4532                 unsigned long addr, void *val, unsigned int bytes)
4533 {
4534         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4535         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4536
4537         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4538 }
4539
4540 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4541                                        gva_t addr, void *val,
4542                                        unsigned int bytes,
4543                                        struct x86_exception *exception)
4544 {
4545         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4546         void *data = val;
4547         int r = X86EMUL_CONTINUE;
4548
4549         while (bytes) {
4550                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4551                                                              PFERR_WRITE_MASK,
4552                                                              exception);
4553                 unsigned offset = addr & (PAGE_SIZE-1);
4554                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4555                 int ret;
4556
4557                 if (gpa == UNMAPPED_GVA)
4558                         return X86EMUL_PROPAGATE_FAULT;
4559                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4560                 if (ret < 0) {
4561                         r = X86EMUL_IO_NEEDED;
4562                         goto out;
4563                 }
4564
4565                 bytes -= towrite;
4566                 data += towrite;
4567                 addr += towrite;
4568         }
4569 out:
4570         return r;
4571 }
4572 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4573
4574 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4575                             gpa_t gpa, bool write)
4576 {
4577         /* For APIC access vmexit */
4578         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4579                 return 1;
4580
4581         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
4582                 trace_vcpu_match_mmio(gva, gpa, write, true);
4583                 return 1;
4584         }
4585
4586         return 0;
4587 }
4588
4589 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4590                                 gpa_t *gpa, struct x86_exception *exception,
4591                                 bool write)
4592 {
4593         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4594                 | (write ? PFERR_WRITE_MASK : 0);
4595
4596         /*
4597          * currently PKRU is only applied to ept enabled guest so
4598          * there is no pkey in EPT page table for L1 guest or EPT
4599          * shadow page table for L2 guest.
4600          */
4601         if (vcpu_match_mmio_gva(vcpu, gva)
4602             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4603                                  vcpu->arch.access, 0, access)) {
4604                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4605                                         (gva & (PAGE_SIZE - 1));
4606                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4607                 return 1;
4608         }
4609
4610         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4611
4612         if (*gpa == UNMAPPED_GVA)
4613                 return -1;
4614
4615         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
4616 }
4617
4618 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4619                         const void *val, int bytes)
4620 {
4621         int ret;
4622
4623         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4624         if (ret < 0)
4625                 return 0;
4626         kvm_page_track_write(vcpu, gpa, val, bytes);
4627         return 1;
4628 }
4629
4630 struct read_write_emulator_ops {
4631         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4632                                   int bytes);
4633         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4634                                   void *val, int bytes);
4635         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4636                                int bytes, void *val);
4637         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4638                                     void *val, int bytes);
4639         bool write;
4640 };
4641
4642 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4643 {
4644         if (vcpu->mmio_read_completed) {
4645                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4646                                vcpu->mmio_fragments[0].gpa, val);
4647                 vcpu->mmio_read_completed = 0;
4648                 return 1;
4649         }
4650
4651         return 0;
4652 }
4653
4654 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4655                         void *val, int bytes)
4656 {
4657         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4658 }
4659
4660 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4661                          void *val, int bytes)
4662 {
4663         return emulator_write_phys(vcpu, gpa, val, bytes);
4664 }
4665
4666 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4667 {
4668         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
4669         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4670 }
4671
4672 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4673                           void *val, int bytes)
4674 {
4675         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
4676         return X86EMUL_IO_NEEDED;
4677 }
4678
4679 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4680                            void *val, int bytes)
4681 {
4682         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4683
4684         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4685         return X86EMUL_CONTINUE;
4686 }
4687
4688 static const struct read_write_emulator_ops read_emultor = {
4689         .read_write_prepare = read_prepare,
4690         .read_write_emulate = read_emulate,
4691         .read_write_mmio = vcpu_mmio_read,
4692         .read_write_exit_mmio = read_exit_mmio,
4693 };
4694
4695 static const struct read_write_emulator_ops write_emultor = {
4696         .read_write_emulate = write_emulate,
4697         .read_write_mmio = write_mmio,
4698         .read_write_exit_mmio = write_exit_mmio,
4699         .write = true,
4700 };
4701
4702 static int emulator_read_write_onepage(unsigned long addr, void *val,
4703                                        unsigned int bytes,
4704                                        struct x86_exception *exception,
4705                                        struct kvm_vcpu *vcpu,
4706                                        const struct read_write_emulator_ops *ops)
4707 {
4708         gpa_t gpa;
4709         int handled, ret;
4710         bool write = ops->write;
4711         struct kvm_mmio_fragment *frag;
4712         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4713
4714         /*
4715          * If the exit was due to a NPF we may already have a GPA.
4716          * If the GPA is present, use it to avoid the GVA to GPA table walk.
4717          * Note, this cannot be used on string operations since string
4718          * operation using rep will only have the initial GPA from the NPF
4719          * occurred.
4720          */
4721         if (vcpu->arch.gpa_available &&
4722             emulator_can_use_gpa(ctxt) &&
4723             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
4724                 gpa = vcpu->arch.gpa_val;
4725                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
4726         } else {
4727                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4728                 if (ret < 0)
4729                         return X86EMUL_PROPAGATE_FAULT;
4730         }
4731
4732         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
4733                 return X86EMUL_CONTINUE;
4734
4735         /*
4736          * Is this MMIO handled locally?
4737          */
4738         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4739         if (handled == bytes)
4740                 return X86EMUL_CONTINUE;
4741
4742         gpa += handled;
4743         bytes -= handled;
4744         val += handled;
4745
4746         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4747         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4748         frag->gpa = gpa;
4749         frag->data = val;
4750         frag->len = bytes;
4751         return X86EMUL_CONTINUE;
4752 }
4753
4754 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4755                         unsigned long addr,
4756                         void *val, unsigned int bytes,
4757                         struct x86_exception *exception,
4758                         const struct read_write_emulator_ops *ops)
4759 {
4760         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4761         gpa_t gpa;
4762         int rc;
4763
4764         if (ops->read_write_prepare &&
4765                   ops->read_write_prepare(vcpu, val, bytes))
4766                 return X86EMUL_CONTINUE;
4767
4768         vcpu->mmio_nr_fragments = 0;
4769
4770         /* Crossing a page boundary? */
4771         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4772                 int now;
4773
4774                 now = -addr & ~PAGE_MASK;
4775                 rc = emulator_read_write_onepage(addr, val, now, exception,
4776                                                  vcpu, ops);
4777
4778                 if (rc != X86EMUL_CONTINUE)
4779                         return rc;
4780                 addr += now;
4781                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4782                         addr = (u32)addr;
4783                 val += now;
4784                 bytes -= now;
4785         }
4786
4787         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4788                                          vcpu, ops);
4789         if (rc != X86EMUL_CONTINUE)
4790                 return rc;
4791
4792         if (!vcpu->mmio_nr_fragments)
4793                 return rc;
4794
4795         gpa = vcpu->mmio_fragments[0].gpa;
4796
4797         vcpu->mmio_needed = 1;
4798         vcpu->mmio_cur_fragment = 0;
4799
4800         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4801         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4802         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4803         vcpu->run->mmio.phys_addr = gpa;
4804
4805         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4806 }
4807
4808 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4809                                   unsigned long addr,
4810                                   void *val,
4811                                   unsigned int bytes,
4812                                   struct x86_exception *exception)
4813 {
4814         return emulator_read_write(ctxt, addr, val, bytes,
4815                                    exception, &read_emultor);
4816 }
4817
4818 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4819                             unsigned long addr,
4820                             const void *val,
4821                             unsigned int bytes,
4822                             struct x86_exception *exception)
4823 {
4824         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4825                                    exception, &write_emultor);
4826 }
4827
4828 #define CMPXCHG_TYPE(t, ptr, old, new) \
4829         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4830
4831 #ifdef CONFIG_X86_64
4832 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4833 #else
4834 #  define CMPXCHG64(ptr, old, new) \
4835         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4836 #endif
4837
4838 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4839                                      unsigned long addr,
4840                                      const void *old,
4841                                      const void *new,
4842                                      unsigned int bytes,
4843                                      struct x86_exception *exception)
4844 {
4845         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4846         gpa_t gpa;
4847         struct page *page;
4848         char *kaddr;
4849         bool exchanged;
4850
4851         /* guests cmpxchg8b have to be emulated atomically */
4852         if (bytes > 8 || (bytes & (bytes - 1)))
4853                 goto emul_write;
4854
4855         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4856
4857         if (gpa == UNMAPPED_GVA ||
4858             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4859                 goto emul_write;
4860
4861         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4862                 goto emul_write;
4863
4864         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4865         if (is_error_page(page))
4866                 goto emul_write;
4867
4868         kaddr = kmap_atomic(page);
4869         kaddr += offset_in_page(gpa);
4870         switch (bytes) {
4871         case 1:
4872                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4873                 break;
4874         case 2:
4875                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4876                 break;
4877         case 4:
4878                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4879                 break;
4880         case 8:
4881                 exchanged = CMPXCHG64(kaddr, old, new);
4882                 break;
4883         default:
4884                 BUG();
4885         }
4886         kunmap_atomic(kaddr);
4887         kvm_release_page_dirty(page);
4888
4889         if (!exchanged)
4890                 return X86EMUL_CMPXCHG_FAILED;
4891
4892         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4893         kvm_page_track_write(vcpu, gpa, new, bytes);
4894
4895         return X86EMUL_CONTINUE;
4896
4897 emul_write:
4898         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4899
4900         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4901 }
4902
4903 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4904 {
4905         int r = 0, i;
4906
4907         for (i = 0; i < vcpu->arch.pio.count; i++) {
4908                 if (vcpu->arch.pio.in)
4909                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4910                                             vcpu->arch.pio.size, pd);
4911                 else
4912                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4913                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
4914                                              pd);
4915                 if (r)
4916                         break;
4917                 pd += vcpu->arch.pio.size;
4918         }
4919         return r;
4920 }
4921
4922 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4923                                unsigned short port, void *val,
4924                                unsigned int count, bool in)
4925 {
4926         vcpu->arch.pio.port = port;
4927         vcpu->arch.pio.in = in;
4928         vcpu->arch.pio.count  = count;
4929         vcpu->arch.pio.size = size;
4930
4931         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4932                 vcpu->arch.pio.count = 0;
4933                 return 1;
4934         }
4935
4936         vcpu->run->exit_reason = KVM_EXIT_IO;
4937         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4938         vcpu->run->io.size = size;
4939         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4940         vcpu->run->io.count = count;
4941         vcpu->run->io.port = port;
4942
4943         return 0;
4944 }
4945
4946 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4947                                     int size, unsigned short port, void *val,
4948                                     unsigned int count)
4949 {
4950         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4951         int ret;
4952
4953         if (vcpu->arch.pio.count)
4954                 goto data_avail;
4955
4956         memset(vcpu->arch.pio_data, 0, size * count);
4957
4958         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4959         if (ret) {
4960 data_avail:
4961                 memcpy(val, vcpu->arch.pio_data, size * count);
4962                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4963                 vcpu->arch.pio.count = 0;
4964                 return 1;
4965         }
4966
4967         return 0;
4968 }
4969
4970 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4971                                      int size, unsigned short port,
4972                                      const void *val, unsigned int count)
4973 {
4974         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4975
4976         memcpy(vcpu->arch.pio_data, val, size * count);
4977         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4978         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4979 }
4980
4981 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4982 {
4983         return kvm_x86_ops->get_segment_base(vcpu, seg);
4984 }
4985
4986 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4987 {
4988         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4989 }
4990
4991 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4992 {
4993         if (!need_emulate_wbinvd(vcpu))
4994                 return X86EMUL_CONTINUE;
4995
4996         if (kvm_x86_ops->has_wbinvd_exit()) {
4997                 int cpu = get_cpu();
4998
4999                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5000                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5001                                 wbinvd_ipi, NULL, 1);
5002                 put_cpu();
5003                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5004         } else
5005                 wbinvd();
5006         return X86EMUL_CONTINUE;
5007 }
5008
5009 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5010 {
5011         kvm_emulate_wbinvd_noskip(vcpu);
5012         return kvm_skip_emulated_instruction(vcpu);
5013 }
5014 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5015
5016
5017
5018 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5019 {
5020         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5021 }
5022
5023 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5024                            unsigned long *dest)
5025 {
5026         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5027 }
5028
5029 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5030                            unsigned long value)
5031 {
5032
5033         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5034 }
5035
5036 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5037 {
5038         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5039 }
5040
5041 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5042 {
5043         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5044         unsigned long value;
5045
5046         switch (cr) {
5047         case 0:
5048                 value = kvm_read_cr0(vcpu);
5049                 break;
5050         case 2:
5051                 value = vcpu->arch.cr2;
5052                 break;
5053         case 3:
5054                 value = kvm_read_cr3(vcpu);
5055                 break;
5056         case 4:
5057                 value = kvm_read_cr4(vcpu);
5058                 break;
5059         case 8:
5060                 value = kvm_get_cr8(vcpu);
5061                 break;
5062         default:
5063                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5064                 return 0;
5065         }
5066
5067         return value;
5068 }
5069
5070 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5071 {
5072         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5073         int res = 0;
5074
5075         switch (cr) {
5076         case 0:
5077                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5078                 break;
5079         case 2:
5080                 vcpu->arch.cr2 = val;
5081                 break;
5082         case 3:
5083                 res = kvm_set_cr3(vcpu, val);
5084                 break;
5085         case 4:
5086                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5087                 break;
5088         case 8:
5089                 res = kvm_set_cr8(vcpu, val);
5090                 break;
5091         default:
5092                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5093                 res = -1;
5094         }
5095
5096         return res;
5097 }
5098
5099 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5100 {
5101         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5102 }
5103
5104 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5105 {
5106         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5107 }
5108
5109 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5110 {
5111         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5112 }
5113
5114 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5115 {
5116         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5117 }
5118
5119 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5120 {
5121         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5122 }
5123
5124 static unsigned long emulator_get_cached_segment_base(
5125         struct x86_emulate_ctxt *ctxt, int seg)
5126 {
5127         return get_segment_base(emul_to_vcpu(ctxt), seg);
5128 }
5129
5130 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5131                                  struct desc_struct *desc, u32 *base3,
5132                                  int seg)
5133 {
5134         struct kvm_segment var;
5135
5136         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5137         *selector = var.selector;
5138
5139         if (var.unusable) {
5140                 memset(desc, 0, sizeof(*desc));
5141                 if (base3)
5142                         *base3 = 0;
5143                 return false;
5144         }
5145
5146         if (var.g)
5147                 var.limit >>= 12;
5148         set_desc_limit(desc, var.limit);
5149         set_desc_base(desc, (unsigned long)var.base);
5150 #ifdef CONFIG_X86_64
5151         if (base3)
5152                 *base3 = var.base >> 32;
5153 #endif
5154         desc->type = var.type;
5155         desc->s = var.s;
5156         desc->dpl = var.dpl;
5157         desc->p = var.present;
5158         desc->avl = var.avl;
5159         desc->l = var.l;
5160         desc->d = var.db;
5161         desc->g = var.g;
5162
5163         return true;
5164 }
5165
5166 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5167                                  struct desc_struct *desc, u32 base3,
5168                                  int seg)
5169 {
5170         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5171         struct kvm_segment var;
5172
5173         var.selector = selector;
5174         var.base = get_desc_base(desc);
5175 #ifdef CONFIG_X86_64
5176         var.base |= ((u64)base3) << 32;
5177 #endif
5178         var.limit = get_desc_limit(desc);
5179         if (desc->g)
5180                 var.limit = (var.limit << 12) | 0xfff;
5181         var.type = desc->type;
5182         var.dpl = desc->dpl;
5183         var.db = desc->d;
5184         var.s = desc->s;
5185         var.l = desc->l;
5186         var.g = desc->g;
5187         var.avl = desc->avl;
5188         var.present = desc->p;
5189         var.unusable = !var.present;
5190         var.padding = 0;
5191
5192         kvm_set_segment(vcpu, &var, seg);
5193         return;
5194 }
5195
5196 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5197                             u32 msr_index, u64 *pdata)
5198 {
5199         struct msr_data msr;
5200         int r;
5201
5202         msr.index = msr_index;
5203         msr.host_initiated = false;
5204         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5205         if (r)
5206                 return r;
5207
5208         *pdata = msr.data;
5209         return 0;
5210 }
5211
5212 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5213                             u32 msr_index, u64 data)
5214 {
5215         struct msr_data msr;
5216
5217         msr.data = data;
5218         msr.index = msr_index;
5219         msr.host_initiated = false;
5220         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5221 }
5222
5223 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5224 {
5225         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5226
5227         return vcpu->arch.smbase;
5228 }
5229
5230 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5231 {
5232         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5233
5234         vcpu->arch.smbase = smbase;
5235 }
5236
5237 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5238                               u32 pmc)
5239 {
5240         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5241 }
5242
5243 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5244                              u32 pmc, u64 *pdata)
5245 {
5246         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5247 }
5248
5249 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5250 {
5251         emul_to_vcpu(ctxt)->arch.halt_request = 1;
5252 }
5253
5254 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5255                               struct x86_instruction_info *info,
5256                               enum x86_intercept_stage stage)
5257 {
5258         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5259 }
5260
5261 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5262                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
5263 {
5264         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
5265 }
5266
5267 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5268 {
5269         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5270 }
5271
5272 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5273 {
5274         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5275 }
5276
5277 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5278 {
5279         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5280 }
5281
5282 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
5283 {
5284         return emul_to_vcpu(ctxt)->arch.hflags;
5285 }
5286
5287 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
5288 {
5289         kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags);
5290 }
5291
5292 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase)
5293 {
5294         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase);
5295 }
5296
5297 static const struct x86_emulate_ops emulate_ops = {
5298         .read_gpr            = emulator_read_gpr,
5299         .write_gpr           = emulator_write_gpr,
5300         .read_std            = kvm_read_guest_virt_system,
5301         .write_std           = kvm_write_guest_virt_system,
5302         .read_phys           = kvm_read_guest_phys_system,
5303         .fetch               = kvm_fetch_guest_virt,
5304         .read_emulated       = emulator_read_emulated,
5305         .write_emulated      = emulator_write_emulated,
5306         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5307         .invlpg              = emulator_invlpg,
5308         .pio_in_emulated     = emulator_pio_in_emulated,
5309         .pio_out_emulated    = emulator_pio_out_emulated,
5310         .get_segment         = emulator_get_segment,
5311         .set_segment         = emulator_set_segment,
5312         .get_cached_segment_base = emulator_get_cached_segment_base,
5313         .get_gdt             = emulator_get_gdt,
5314         .get_idt             = emulator_get_idt,
5315         .set_gdt             = emulator_set_gdt,
5316         .set_idt             = emulator_set_idt,
5317         .get_cr              = emulator_get_cr,
5318         .set_cr              = emulator_set_cr,
5319         .cpl                 = emulator_get_cpl,
5320         .get_dr              = emulator_get_dr,
5321         .set_dr              = emulator_set_dr,
5322         .get_smbase          = emulator_get_smbase,
5323         .set_smbase          = emulator_set_smbase,
5324         .set_msr             = emulator_set_msr,
5325         .get_msr             = emulator_get_msr,
5326         .check_pmc           = emulator_check_pmc,
5327         .read_pmc            = emulator_read_pmc,
5328         .halt                = emulator_halt,
5329         .wbinvd              = emulator_wbinvd,
5330         .fix_hypercall       = emulator_fix_hypercall,
5331         .intercept           = emulator_intercept,
5332         .get_cpuid           = emulator_get_cpuid,
5333         .set_nmi_mask        = emulator_set_nmi_mask,
5334         .get_hflags          = emulator_get_hflags,
5335         .set_hflags          = emulator_set_hflags,
5336         .pre_leave_smm       = emulator_pre_leave_smm,
5337 };
5338
5339 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5340 {
5341         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5342         /*
5343          * an sti; sti; sequence only disable interrupts for the first
5344          * instruction. So, if the last instruction, be it emulated or
5345          * not, left the system with the INT_STI flag enabled, it
5346          * means that the last instruction is an sti. We should not
5347          * leave the flag on in this case. The same goes for mov ss
5348          */
5349         if (int_shadow & mask)
5350                 mask = 0;
5351         if (unlikely(int_shadow || mask)) {
5352                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5353                 if (!mask)
5354                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5355         }
5356 }
5357
5358 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5359 {
5360         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5361         if (ctxt->exception.vector == PF_VECTOR)
5362                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5363
5364         if (ctxt->exception.error_code_valid)
5365                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5366                                       ctxt->exception.error_code);
5367         else
5368                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5369         return false;
5370 }
5371
5372 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5373 {
5374         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5375         int cs_db, cs_l;
5376
5377         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5378
5379         ctxt->eflags = kvm_get_rflags(vcpu);
5380         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
5381
5382         ctxt->eip = kvm_rip_read(vcpu);
5383         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5384                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5385                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5386                      cs_db                              ? X86EMUL_MODE_PROT32 :
5387                                                           X86EMUL_MODE_PROT16;
5388         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5389         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5390         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5391
5392         init_decode_cache(ctxt);
5393         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5394 }
5395
5396 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5397 {
5398         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5399         int ret;
5400
5401         init_emulate_ctxt(vcpu);
5402
5403         ctxt->op_bytes = 2;
5404         ctxt->ad_bytes = 2;
5405         ctxt->_eip = ctxt->eip + inc_eip;
5406         ret = emulate_int_real(ctxt, irq);
5407
5408         if (ret != X86EMUL_CONTINUE)
5409                 return EMULATE_FAIL;
5410
5411         ctxt->eip = ctxt->_eip;
5412         kvm_rip_write(vcpu, ctxt->eip);
5413         kvm_set_rflags(vcpu, ctxt->eflags);
5414
5415         if (irq == NMI_VECTOR)
5416                 vcpu->arch.nmi_pending = 0;
5417         else
5418                 vcpu->arch.interrupt.pending = false;
5419
5420         return EMULATE_DONE;
5421 }
5422 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5423
5424 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5425 {
5426         int r = EMULATE_DONE;
5427
5428         ++vcpu->stat.insn_emulation_fail;
5429         trace_kvm_emulate_insn_failed(vcpu);
5430         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5431                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5432                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5433                 vcpu->run->internal.ndata = 0;
5434                 r = EMULATE_USER_EXIT;
5435         }
5436         kvm_queue_exception(vcpu, UD_VECTOR);
5437
5438         return r;
5439 }
5440
5441 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5442                                   bool write_fault_to_shadow_pgtable,
5443                                   int emulation_type)
5444 {
5445         gpa_t gpa = cr2;
5446         kvm_pfn_t pfn;
5447
5448         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5449                 return false;
5450
5451         if (!vcpu->arch.mmu.direct_map) {
5452                 /*
5453                  * Write permission should be allowed since only
5454                  * write access need to be emulated.
5455                  */
5456                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5457
5458                 /*
5459                  * If the mapping is invalid in guest, let cpu retry
5460                  * it to generate fault.
5461                  */
5462                 if (gpa == UNMAPPED_GVA)
5463                         return true;
5464         }
5465
5466         /*
5467          * Do not retry the unhandleable instruction if it faults on the
5468          * readonly host memory, otherwise it will goto a infinite loop:
5469          * retry instruction -> write #PF -> emulation fail -> retry
5470          * instruction -> ...
5471          */
5472         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5473
5474         /*
5475          * If the instruction failed on the error pfn, it can not be fixed,
5476          * report the error to userspace.
5477          */
5478         if (is_error_noslot_pfn(pfn))
5479                 return false;
5480
5481         kvm_release_pfn_clean(pfn);
5482
5483         /* The instructions are well-emulated on direct mmu. */
5484         if (vcpu->arch.mmu.direct_map) {
5485                 unsigned int indirect_shadow_pages;
5486
5487                 spin_lock(&vcpu->kvm->mmu_lock);
5488                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5489                 spin_unlock(&vcpu->kvm->mmu_lock);
5490
5491                 if (indirect_shadow_pages)
5492                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5493
5494                 return true;
5495         }
5496
5497         /*
5498          * if emulation was due to access to shadowed page table
5499          * and it failed try to unshadow page and re-enter the
5500          * guest to let CPU execute the instruction.
5501          */
5502         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5503
5504         /*
5505          * If the access faults on its page table, it can not
5506          * be fixed by unprotecting shadow page and it should
5507          * be reported to userspace.
5508          */
5509         return !write_fault_to_shadow_pgtable;
5510 }
5511
5512 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5513                               unsigned long cr2,  int emulation_type)
5514 {
5515         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5516         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5517
5518         last_retry_eip = vcpu->arch.last_retry_eip;
5519         last_retry_addr = vcpu->arch.last_retry_addr;
5520
5521         /*
5522          * If the emulation is caused by #PF and it is non-page_table
5523          * writing instruction, it means the VM-EXIT is caused by shadow
5524          * page protected, we can zap the shadow page and retry this
5525          * instruction directly.
5526          *
5527          * Note: if the guest uses a non-page-table modifying instruction
5528          * on the PDE that points to the instruction, then we will unmap
5529          * the instruction and go to an infinite loop. So, we cache the
5530          * last retried eip and the last fault address, if we meet the eip
5531          * and the address again, we can break out of the potential infinite
5532          * loop.
5533          */
5534         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5535
5536         if (!(emulation_type & EMULTYPE_RETRY))
5537                 return false;
5538
5539         if (x86_page_table_writing_insn(ctxt))
5540                 return false;
5541
5542         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5543                 return false;
5544
5545         vcpu->arch.last_retry_eip = ctxt->eip;
5546         vcpu->arch.last_retry_addr = cr2;
5547
5548         if (!vcpu->arch.mmu.direct_map)
5549                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5550
5551         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5552
5553         return true;
5554 }
5555
5556 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5557 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5558
5559 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5560 {
5561         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5562                 /* This is a good place to trace that we are exiting SMM.  */
5563                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5564
5565                 /* Process a latched INIT or SMI, if any.  */
5566                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5567         }
5568
5569         kvm_mmu_reset_context(vcpu);
5570 }
5571
5572 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5573 {
5574         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5575
5576         vcpu->arch.hflags = emul_flags;
5577
5578         if (changed & HF_SMM_MASK)
5579                 kvm_smm_changed(vcpu);
5580 }
5581
5582 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5583                                 unsigned long *db)
5584 {
5585         u32 dr6 = 0;
5586         int i;
5587         u32 enable, rwlen;
5588
5589         enable = dr7;
5590         rwlen = dr7 >> 16;
5591         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5592                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5593                         dr6 |= (1 << i);
5594         return dr6;
5595 }
5596
5597 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
5598 {
5599         struct kvm_run *kvm_run = vcpu->run;
5600
5601         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5602                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
5603                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5604                 kvm_run->debug.arch.exception = DB_VECTOR;
5605                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5606                 *r = EMULATE_USER_EXIT;
5607         } else {
5608                 /*
5609                  * "Certain debug exceptions may clear bit 0-3.  The
5610                  * remaining contents of the DR6 register are never
5611                  * cleared by the processor".
5612                  */
5613                 vcpu->arch.dr6 &= ~15;
5614                 vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5615                 kvm_queue_exception(vcpu, DB_VECTOR);
5616         }
5617 }
5618
5619 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
5620 {
5621         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5622         int r = EMULATE_DONE;
5623
5624         kvm_x86_ops->skip_emulated_instruction(vcpu);
5625
5626         /*
5627          * rflags is the old, "raw" value of the flags.  The new value has
5628          * not been saved yet.
5629          *
5630          * This is correct even for TF set by the guest, because "the
5631          * processor will not generate this exception after the instruction
5632          * that sets the TF flag".
5633          */
5634         if (unlikely(rflags & X86_EFLAGS_TF))
5635                 kvm_vcpu_do_singlestep(vcpu, &r);
5636         return r == EMULATE_DONE;
5637 }
5638 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
5639
5640 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5641 {
5642         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5643             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5644                 struct kvm_run *kvm_run = vcpu->run;
5645                 unsigned long eip = kvm_get_linear_rip(vcpu);
5646                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5647                                            vcpu->arch.guest_debug_dr7,
5648                                            vcpu->arch.eff_db);
5649
5650                 if (dr6 != 0) {
5651                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5652                         kvm_run->debug.arch.pc = eip;
5653                         kvm_run->debug.arch.exception = DB_VECTOR;
5654                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5655                         *r = EMULATE_USER_EXIT;
5656                         return true;
5657                 }
5658         }
5659
5660         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5661             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5662                 unsigned long eip = kvm_get_linear_rip(vcpu);
5663                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5664                                            vcpu->arch.dr7,
5665                                            vcpu->arch.db);
5666
5667                 if (dr6 != 0) {
5668                         vcpu->arch.dr6 &= ~15;
5669                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5670                         kvm_queue_exception(vcpu, DB_VECTOR);
5671                         *r = EMULATE_DONE;
5672                         return true;
5673                 }
5674         }
5675
5676         return false;
5677 }
5678
5679 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5680                             unsigned long cr2,
5681                             int emulation_type,
5682                             void *insn,
5683                             int insn_len)
5684 {
5685         int r;
5686         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5687         bool writeback = true;
5688         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5689
5690         /*
5691          * Clear write_fault_to_shadow_pgtable here to ensure it is
5692          * never reused.
5693          */
5694         vcpu->arch.write_fault_to_shadow_pgtable = false;
5695         kvm_clear_exception_queue(vcpu);
5696
5697         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5698                 init_emulate_ctxt(vcpu);
5699
5700                 /*
5701                  * We will reenter on the same instruction since
5702                  * we do not set complete_userspace_io.  This does not
5703                  * handle watchpoints yet, those would be handled in
5704                  * the emulate_ops.
5705                  */
5706                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5707                         return r;
5708
5709                 ctxt->interruptibility = 0;
5710                 ctxt->have_exception = false;
5711                 ctxt->exception.vector = -1;
5712                 ctxt->perm_ok = false;
5713
5714                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5715
5716                 r = x86_decode_insn(ctxt, insn, insn_len);
5717
5718                 trace_kvm_emulate_insn_start(vcpu);
5719                 ++vcpu->stat.insn_emulation;
5720                 if (r != EMULATION_OK)  {
5721                         if (emulation_type & EMULTYPE_TRAP_UD)
5722                                 return EMULATE_FAIL;
5723                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5724                                                 emulation_type))
5725                                 return EMULATE_DONE;
5726                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
5727                                 return EMULATE_DONE;
5728                         if (emulation_type & EMULTYPE_SKIP)
5729                                 return EMULATE_FAIL;
5730                         return handle_emulation_failure(vcpu);
5731                 }
5732         }
5733
5734         if (emulation_type & EMULTYPE_SKIP) {
5735                 kvm_rip_write(vcpu, ctxt->_eip);
5736                 if (ctxt->eflags & X86_EFLAGS_RF)
5737                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5738                 return EMULATE_DONE;
5739         }
5740
5741         if (retry_instruction(ctxt, cr2, emulation_type))
5742                 return EMULATE_DONE;
5743
5744         /* this is needed for vmware backdoor interface to work since it
5745            changes registers values  during IO operation */
5746         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5747                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5748                 emulator_invalidate_register_cache(ctxt);
5749         }
5750
5751 restart:
5752         /* Save the faulting GPA (cr2) in the address field */
5753         ctxt->exception.address = cr2;
5754
5755         r = x86_emulate_insn(ctxt);
5756
5757         if (r == EMULATION_INTERCEPTED)
5758                 return EMULATE_DONE;
5759
5760         if (r == EMULATION_FAILED) {
5761                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5762                                         emulation_type))
5763                         return EMULATE_DONE;
5764
5765                 return handle_emulation_failure(vcpu);
5766         }
5767
5768         if (ctxt->have_exception) {
5769                 r = EMULATE_DONE;
5770                 if (inject_emulated_exception(vcpu))
5771                         return r;
5772         } else if (vcpu->arch.pio.count) {
5773                 if (!vcpu->arch.pio.in) {
5774                         /* FIXME: return into emulator if single-stepping.  */
5775                         vcpu->arch.pio.count = 0;
5776                 } else {
5777                         writeback = false;
5778                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5779                 }
5780                 r = EMULATE_USER_EXIT;
5781         } else if (vcpu->mmio_needed) {
5782                 if (!vcpu->mmio_is_write)
5783                         writeback = false;
5784                 r = EMULATE_USER_EXIT;
5785                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5786         } else if (r == EMULATION_RESTART)
5787                 goto restart;
5788         else
5789                 r = EMULATE_DONE;
5790
5791         if (writeback) {
5792                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5793                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5794                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5795                 kvm_rip_write(vcpu, ctxt->eip);
5796                 if (r == EMULATE_DONE &&
5797                     (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
5798                         kvm_vcpu_do_singlestep(vcpu, &r);
5799                 if (!ctxt->have_exception ||
5800                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5801                         __kvm_set_rflags(vcpu, ctxt->eflags);
5802
5803                 /*
5804                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5805                  * do nothing, and it will be requested again as soon as
5806                  * the shadow expires.  But we still need to check here,
5807                  * because POPF has no interrupt shadow.
5808                  */
5809                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5810                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5811         } else
5812                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5813
5814         return r;
5815 }
5816 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5817
5818 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5819 {
5820         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5821         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5822                                             size, port, &val, 1);
5823         /* do not return to emulator after return from userspace */
5824         vcpu->arch.pio.count = 0;
5825         return ret;
5826 }
5827 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5828
5829 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
5830 {
5831         unsigned long val;
5832
5833         /* We should only ever be called with arch.pio.count equal to 1 */
5834         BUG_ON(vcpu->arch.pio.count != 1);
5835
5836         /* For size less than 4 we merge, else we zero extend */
5837         val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX)
5838                                         : 0;
5839
5840         /*
5841          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
5842          * the copy and tracing
5843          */
5844         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
5845                                  vcpu->arch.pio.port, &val, 1);
5846         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5847
5848         return 1;
5849 }
5850
5851 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port)
5852 {
5853         unsigned long val;
5854         int ret;
5855
5856         /* For size less than 4 we merge, else we zero extend */
5857         val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0;
5858
5859         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
5860                                        &val, 1);
5861         if (ret) {
5862                 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
5863                 return ret;
5864         }
5865
5866         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
5867
5868         return 0;
5869 }
5870 EXPORT_SYMBOL_GPL(kvm_fast_pio_in);
5871
5872 static int kvmclock_cpu_down_prep(unsigned int cpu)
5873 {
5874         __this_cpu_write(cpu_tsc_khz, 0);
5875         return 0;
5876 }
5877
5878 static void tsc_khz_changed(void *data)
5879 {
5880         struct cpufreq_freqs *freq = data;
5881         unsigned long khz = 0;
5882
5883         if (data)
5884                 khz = freq->new;
5885         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5886                 khz = cpufreq_quick_get(raw_smp_processor_id());
5887         if (!khz)
5888                 khz = tsc_khz;
5889         __this_cpu_write(cpu_tsc_khz, khz);
5890 }
5891
5892 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5893                                      void *data)
5894 {
5895         struct cpufreq_freqs *freq = data;
5896         struct kvm *kvm;
5897         struct kvm_vcpu *vcpu;
5898         int i, send_ipi = 0;
5899
5900         /*
5901          * We allow guests to temporarily run on slowing clocks,
5902          * provided we notify them after, or to run on accelerating
5903          * clocks, provided we notify them before.  Thus time never
5904          * goes backwards.
5905          *
5906          * However, we have a problem.  We can't atomically update
5907          * the frequency of a given CPU from this function; it is
5908          * merely a notifier, which can be called from any CPU.
5909          * Changing the TSC frequency at arbitrary points in time
5910          * requires a recomputation of local variables related to
5911          * the TSC for each VCPU.  We must flag these local variables
5912          * to be updated and be sure the update takes place with the
5913          * new frequency before any guests proceed.
5914          *
5915          * Unfortunately, the combination of hotplug CPU and frequency
5916          * change creates an intractable locking scenario; the order
5917          * of when these callouts happen is undefined with respect to
5918          * CPU hotplug, and they can race with each other.  As such,
5919          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5920          * undefined; you can actually have a CPU frequency change take
5921          * place in between the computation of X and the setting of the
5922          * variable.  To protect against this problem, all updates of
5923          * the per_cpu tsc_khz variable are done in an interrupt
5924          * protected IPI, and all callers wishing to update the value
5925          * must wait for a synchronous IPI to complete (which is trivial
5926          * if the caller is on the CPU already).  This establishes the
5927          * necessary total order on variable updates.
5928          *
5929          * Note that because a guest time update may take place
5930          * anytime after the setting of the VCPU's request bit, the
5931          * correct TSC value must be set before the request.  However,
5932          * to ensure the update actually makes it to any guest which
5933          * starts running in hardware virtualization between the set
5934          * and the acquisition of the spinlock, we must also ping the
5935          * CPU after setting the request bit.
5936          *
5937          */
5938
5939         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5940                 return 0;
5941         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5942                 return 0;
5943
5944         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5945
5946         spin_lock(&kvm_lock);
5947         list_for_each_entry(kvm, &vm_list, vm_list) {
5948                 kvm_for_each_vcpu(i, vcpu, kvm) {
5949                         if (vcpu->cpu != freq->cpu)
5950                                 continue;
5951                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5952                         if (vcpu->cpu != smp_processor_id())
5953                                 send_ipi = 1;
5954                 }
5955         }
5956         spin_unlock(&kvm_lock);
5957
5958         if (freq->old < freq->new && send_ipi) {
5959                 /*
5960                  * We upscale the frequency.  Must make the guest
5961                  * doesn't see old kvmclock values while running with
5962                  * the new frequency, otherwise we risk the guest sees
5963                  * time go backwards.
5964                  *
5965                  * In case we update the frequency for another cpu
5966                  * (which might be in guest context) send an interrupt
5967                  * to kick the cpu out of guest context.  Next time
5968                  * guest context is entered kvmclock will be updated,
5969                  * so the guest will not see stale values.
5970                  */
5971                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5972         }
5973         return 0;
5974 }
5975
5976 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5977         .notifier_call  = kvmclock_cpufreq_notifier
5978 };
5979
5980 static int kvmclock_cpu_online(unsigned int cpu)
5981 {
5982         tsc_khz_changed(NULL);
5983         return 0;
5984 }
5985
5986 static void kvm_timer_init(void)
5987 {
5988         max_tsc_khz = tsc_khz;
5989
5990         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5991 #ifdef CONFIG_CPU_FREQ
5992                 struct cpufreq_policy policy;
5993                 int cpu;
5994
5995                 memset(&policy, 0, sizeof(policy));
5996                 cpu = get_cpu();
5997                 cpufreq_get_policy(&policy, cpu);
5998                 if (policy.cpuinfo.max_freq)
5999                         max_tsc_khz = policy.cpuinfo.max_freq;
6000                 put_cpu();
6001 #endif
6002                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6003                                           CPUFREQ_TRANSITION_NOTIFIER);
6004         }
6005         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
6006
6007         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6008                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6009 }
6010
6011 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6012
6013 int kvm_is_in_guest(void)
6014 {
6015         return __this_cpu_read(current_vcpu) != NULL;
6016 }
6017
6018 static int kvm_is_user_mode(void)
6019 {
6020         int user_mode = 3;
6021
6022         if (__this_cpu_read(current_vcpu))
6023                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6024
6025         return user_mode != 0;
6026 }
6027
6028 static unsigned long kvm_get_guest_ip(void)
6029 {
6030         unsigned long ip = 0;
6031
6032         if (__this_cpu_read(current_vcpu))
6033                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6034
6035         return ip;
6036 }
6037
6038 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6039         .is_in_guest            = kvm_is_in_guest,
6040         .is_user_mode           = kvm_is_user_mode,
6041         .get_guest_ip           = kvm_get_guest_ip,
6042 };
6043
6044 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
6045 {
6046         __this_cpu_write(current_vcpu, vcpu);
6047 }
6048 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
6049
6050 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
6051 {
6052         __this_cpu_write(current_vcpu, NULL);
6053 }
6054 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
6055
6056 static void kvm_set_mmio_spte_mask(void)
6057 {
6058         u64 mask;
6059         int maxphyaddr = boot_cpu_data.x86_phys_bits;
6060
6061         /*
6062          * Set the reserved bits and the present bit of an paging-structure
6063          * entry to generate page fault with PFER.RSV = 1.
6064          */
6065          /* Mask the reserved physical address bits. */
6066         mask = rsvd_bits(maxphyaddr, 51);
6067
6068         /* Set the present bit. */
6069         mask |= 1ull;
6070
6071 #ifdef CONFIG_X86_64
6072         /*
6073          * If reserved bit is not supported, clear the present bit to disable
6074          * mmio page fault.
6075          */
6076         if (maxphyaddr == 52)
6077                 mask &= ~1ull;
6078 #endif
6079
6080         kvm_mmu_set_mmio_spte_mask(mask, mask);
6081 }
6082
6083 #ifdef CONFIG_X86_64
6084 static void pvclock_gtod_update_fn(struct work_struct *work)
6085 {
6086         struct kvm *kvm;
6087
6088         struct kvm_vcpu *vcpu;
6089         int i;
6090
6091         spin_lock(&kvm_lock);
6092         list_for_each_entry(kvm, &vm_list, vm_list)
6093                 kvm_for_each_vcpu(i, vcpu, kvm)
6094                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6095         atomic_set(&kvm_guest_has_master_clock, 0);
6096         spin_unlock(&kvm_lock);
6097 }
6098
6099 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6100
6101 /*
6102  * Notification about pvclock gtod data update.
6103  */
6104 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6105                                void *priv)
6106 {
6107         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6108         struct timekeeper *tk = priv;
6109
6110         update_pvclock_gtod(tk);
6111
6112         /* disable master clock if host does not trust, or does not
6113          * use, TSC clocksource
6114          */
6115         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
6116             atomic_read(&kvm_guest_has_master_clock) != 0)
6117                 queue_work(system_long_wq, &pvclock_gtod_work);
6118
6119         return 0;
6120 }
6121
6122 static struct notifier_block pvclock_gtod_notifier = {
6123         .notifier_call = pvclock_gtod_notify,
6124 };
6125 #endif
6126
6127 int kvm_arch_init(void *opaque)
6128 {
6129         int r;
6130         struct kvm_x86_ops *ops = opaque;
6131
6132         if (kvm_x86_ops) {
6133                 printk(KERN_ERR "kvm: already loaded the other module\n");
6134                 r = -EEXIST;
6135                 goto out;
6136         }
6137
6138         if (!ops->cpu_has_kvm_support()) {
6139                 printk(KERN_ERR "kvm: no hardware support\n");
6140                 r = -EOPNOTSUPP;
6141                 goto out;
6142         }
6143         if (ops->disabled_by_bios()) {
6144                 printk(KERN_ERR "kvm: disabled by bios\n");
6145                 r = -EOPNOTSUPP;
6146                 goto out;
6147         }
6148
6149         r = -ENOMEM;
6150         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
6151         if (!shared_msrs) {
6152                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
6153                 goto out;
6154         }
6155
6156         r = kvm_mmu_module_init();
6157         if (r)
6158                 goto out_free_percpu;
6159
6160         kvm_set_mmio_spte_mask();
6161
6162         kvm_x86_ops = ops;
6163
6164         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
6165                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
6166                         PT_PRESENT_MASK, 0, sme_me_mask);
6167         kvm_timer_init();
6168
6169         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6170
6171         if (boot_cpu_has(X86_FEATURE_XSAVE))
6172                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
6173
6174         kvm_lapic_init();
6175 #ifdef CONFIG_X86_64
6176         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
6177 #endif
6178
6179         return 0;
6180
6181 out_free_percpu:
6182         free_percpu(shared_msrs);
6183 out:
6184         return r;
6185 }
6186
6187 void kvm_arch_exit(void)
6188 {
6189         kvm_lapic_exit();
6190         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6191
6192         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6193                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
6194                                             CPUFREQ_TRANSITION_NOTIFIER);
6195         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
6196 #ifdef CONFIG_X86_64
6197         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
6198 #endif
6199         kvm_x86_ops = NULL;
6200         kvm_mmu_module_exit();
6201         free_percpu(shared_msrs);
6202 }
6203
6204 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
6205 {
6206         ++vcpu->stat.halt_exits;
6207         if (lapic_in_kernel(vcpu)) {
6208                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
6209                 return 1;
6210         } else {
6211                 vcpu->run->exit_reason = KVM_EXIT_HLT;
6212                 return 0;
6213         }
6214 }
6215 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
6216
6217 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
6218 {
6219         int ret = kvm_skip_emulated_instruction(vcpu);
6220         /*
6221          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
6222          * KVM_EXIT_DEBUG here.
6223          */
6224         return kvm_vcpu_halt(vcpu) && ret;
6225 }
6226 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
6227
6228 #ifdef CONFIG_X86_64
6229 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
6230                                 unsigned long clock_type)
6231 {
6232         struct kvm_clock_pairing clock_pairing;
6233         struct timespec ts;
6234         u64 cycle;
6235         int ret;
6236
6237         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
6238                 return -KVM_EOPNOTSUPP;
6239
6240         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
6241                 return -KVM_EOPNOTSUPP;
6242
6243         clock_pairing.sec = ts.tv_sec;
6244         clock_pairing.nsec = ts.tv_nsec;
6245         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
6246         clock_pairing.flags = 0;
6247
6248         ret = 0;
6249         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
6250                             sizeof(struct kvm_clock_pairing)))
6251                 ret = -KVM_EFAULT;
6252
6253         return ret;
6254 }
6255 #endif
6256
6257 /*
6258  * kvm_pv_kick_cpu_op:  Kick a vcpu.
6259  *
6260  * @apicid - apicid of vcpu to be kicked.
6261  */
6262 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
6263 {
6264         struct kvm_lapic_irq lapic_irq;
6265
6266         lapic_irq.shorthand = 0;
6267         lapic_irq.dest_mode = 0;
6268         lapic_irq.level = 0;
6269         lapic_irq.dest_id = apicid;
6270         lapic_irq.msi_redir_hint = false;
6271
6272         lapic_irq.delivery_mode = APIC_DM_REMRD;
6273         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6274 }
6275
6276 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
6277 {
6278         vcpu->arch.apicv_active = false;
6279         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
6280 }
6281
6282 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
6283 {
6284         unsigned long nr, a0, a1, a2, a3, ret;
6285         int op_64_bit, r;
6286
6287         r = kvm_skip_emulated_instruction(vcpu);
6288
6289         if (kvm_hv_hypercall_enabled(vcpu->kvm))
6290                 return kvm_hv_hypercall(vcpu);
6291
6292         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
6293         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
6294         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
6295         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
6296         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
6297
6298         trace_kvm_hypercall(nr, a0, a1, a2, a3);
6299
6300         op_64_bit = is_64_bit_mode(vcpu);
6301         if (!op_64_bit) {
6302                 nr &= 0xFFFFFFFF;
6303                 a0 &= 0xFFFFFFFF;
6304                 a1 &= 0xFFFFFFFF;
6305                 a2 &= 0xFFFFFFFF;
6306                 a3 &= 0xFFFFFFFF;
6307         }
6308
6309         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
6310                 ret = -KVM_EPERM;
6311                 goto out;
6312         }
6313
6314         switch (nr) {
6315         case KVM_HC_VAPIC_POLL_IRQ:
6316                 ret = 0;
6317                 break;
6318         case KVM_HC_KICK_CPU:
6319                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
6320                 ret = 0;
6321                 break;
6322 #ifdef CONFIG_X86_64
6323         case KVM_HC_CLOCK_PAIRING:
6324                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
6325                 break;
6326 #endif
6327         default:
6328                 ret = -KVM_ENOSYS;
6329                 break;
6330         }
6331 out:
6332         if (!op_64_bit)
6333                 ret = (u32)ret;
6334         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6335         ++vcpu->stat.hypercalls;
6336         return r;
6337 }
6338 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6339
6340 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6341 {
6342         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6343         char instruction[3];
6344         unsigned long rip = kvm_rip_read(vcpu);
6345
6346         kvm_x86_ops->patch_hypercall(vcpu, instruction);
6347
6348         return emulator_write_emulated(ctxt, rip, instruction, 3,
6349                 &ctxt->exception);
6350 }
6351
6352 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6353 {
6354         return vcpu->run->request_interrupt_window &&
6355                 likely(!pic_in_kernel(vcpu->kvm));
6356 }
6357
6358 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6359 {
6360         struct kvm_run *kvm_run = vcpu->run;
6361
6362         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6363         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6364         kvm_run->cr8 = kvm_get_cr8(vcpu);
6365         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6366         kvm_run->ready_for_interrupt_injection =
6367                 pic_in_kernel(vcpu->kvm) ||
6368                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6369 }
6370
6371 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6372 {
6373         int max_irr, tpr;
6374
6375         if (!kvm_x86_ops->update_cr8_intercept)
6376                 return;
6377
6378         if (!lapic_in_kernel(vcpu))
6379                 return;
6380
6381         if (vcpu->arch.apicv_active)
6382                 return;
6383
6384         if (!vcpu->arch.apic->vapic_addr)
6385                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6386         else
6387                 max_irr = -1;
6388
6389         if (max_irr != -1)
6390                 max_irr >>= 4;
6391
6392         tpr = kvm_lapic_get_cr8(vcpu);
6393
6394         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6395 }
6396
6397 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6398 {
6399         int r;
6400
6401         /* try to reinject previous events if any */
6402         if (vcpu->arch.exception.injected) {
6403                 kvm_x86_ops->queue_exception(vcpu);
6404                 return 0;
6405         }
6406
6407         /*
6408          * Exceptions must be injected immediately, or the exception
6409          * frame will have the address of the NMI or interrupt handler.
6410          */
6411         if (!vcpu->arch.exception.pending) {
6412                 if (vcpu->arch.nmi_injected) {
6413                         kvm_x86_ops->set_nmi(vcpu);
6414                         return 0;
6415                 }
6416
6417                 if (vcpu->arch.interrupt.pending) {
6418                         kvm_x86_ops->set_irq(vcpu);
6419                         return 0;
6420                 }
6421         }
6422
6423         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6424                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6425                 if (r != 0)
6426                         return r;
6427         }
6428
6429         /* try to inject new event if pending */
6430         if (vcpu->arch.exception.pending) {
6431                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6432                                         vcpu->arch.exception.has_error_code,
6433                                         vcpu->arch.exception.error_code);
6434
6435                 vcpu->arch.exception.pending = false;
6436                 vcpu->arch.exception.injected = true;
6437
6438                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6439                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6440                                              X86_EFLAGS_RF);
6441
6442                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6443                     (vcpu->arch.dr7 & DR7_GD)) {
6444                         vcpu->arch.dr7 &= ~DR7_GD;
6445                         kvm_update_dr7(vcpu);
6446                 }
6447
6448                 kvm_x86_ops->queue_exception(vcpu);
6449         } else if (vcpu->arch.smi_pending && !is_smm(vcpu) && kvm_x86_ops->smi_allowed(vcpu)) {
6450                 vcpu->arch.smi_pending = false;
6451                 enter_smm(vcpu);
6452         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6453                 --vcpu->arch.nmi_pending;
6454                 vcpu->arch.nmi_injected = true;
6455                 kvm_x86_ops->set_nmi(vcpu);
6456         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6457                 /*
6458                  * Because interrupts can be injected asynchronously, we are
6459                  * calling check_nested_events again here to avoid a race condition.
6460                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6461                  * proposal and current concerns.  Perhaps we should be setting
6462                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6463                  */
6464                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6465                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6466                         if (r != 0)
6467                                 return r;
6468                 }
6469                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6470                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6471                                             false);
6472                         kvm_x86_ops->set_irq(vcpu);
6473                 }
6474         }
6475
6476         return 0;
6477 }
6478
6479 static void process_nmi(struct kvm_vcpu *vcpu)
6480 {
6481         unsigned limit = 2;
6482
6483         /*
6484          * x86 is limited to one NMI running, and one NMI pending after it.
6485          * If an NMI is already in progress, limit further NMIs to just one.
6486          * Otherwise, allow two (and we'll inject the first one immediately).
6487          */
6488         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6489                 limit = 1;
6490
6491         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6492         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6493         kvm_make_request(KVM_REQ_EVENT, vcpu);
6494 }
6495
6496 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6497 {
6498         u32 flags = 0;
6499         flags |= seg->g       << 23;
6500         flags |= seg->db      << 22;
6501         flags |= seg->l       << 21;
6502         flags |= seg->avl     << 20;
6503         flags |= seg->present << 15;
6504         flags |= seg->dpl     << 13;
6505         flags |= seg->s       << 12;
6506         flags |= seg->type    << 8;
6507         return flags;
6508 }
6509
6510 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6511 {
6512         struct kvm_segment seg;
6513         int offset;
6514
6515         kvm_get_segment(vcpu, &seg, n);
6516         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6517
6518         if (n < 3)
6519                 offset = 0x7f84 + n * 12;
6520         else
6521                 offset = 0x7f2c + (n - 3) * 12;
6522
6523         put_smstate(u32, buf, offset + 8, seg.base);
6524         put_smstate(u32, buf, offset + 4, seg.limit);
6525         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6526 }
6527
6528 #ifdef CONFIG_X86_64
6529 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6530 {
6531         struct kvm_segment seg;
6532         int offset;
6533         u16 flags;
6534
6535         kvm_get_segment(vcpu, &seg, n);
6536         offset = 0x7e00 + n * 16;
6537
6538         flags = enter_smm_get_segment_flags(&seg) >> 8;
6539         put_smstate(u16, buf, offset, seg.selector);
6540         put_smstate(u16, buf, offset + 2, flags);
6541         put_smstate(u32, buf, offset + 4, seg.limit);
6542         put_smstate(u64, buf, offset + 8, seg.base);
6543 }
6544 #endif
6545
6546 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6547 {
6548         struct desc_ptr dt;
6549         struct kvm_segment seg;
6550         unsigned long val;
6551         int i;
6552
6553         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6554         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6555         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6556         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6557
6558         for (i = 0; i < 8; i++)
6559                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6560
6561         kvm_get_dr(vcpu, 6, &val);
6562         put_smstate(u32, buf, 0x7fcc, (u32)val);
6563         kvm_get_dr(vcpu, 7, &val);
6564         put_smstate(u32, buf, 0x7fc8, (u32)val);
6565
6566         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6567         put_smstate(u32, buf, 0x7fc4, seg.selector);
6568         put_smstate(u32, buf, 0x7f64, seg.base);
6569         put_smstate(u32, buf, 0x7f60, seg.limit);
6570         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6571
6572         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6573         put_smstate(u32, buf, 0x7fc0, seg.selector);
6574         put_smstate(u32, buf, 0x7f80, seg.base);
6575         put_smstate(u32, buf, 0x7f7c, seg.limit);
6576         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6577
6578         kvm_x86_ops->get_gdt(vcpu, &dt);
6579         put_smstate(u32, buf, 0x7f74, dt.address);
6580         put_smstate(u32, buf, 0x7f70, dt.size);
6581
6582         kvm_x86_ops->get_idt(vcpu, &dt);
6583         put_smstate(u32, buf, 0x7f58, dt.address);
6584         put_smstate(u32, buf, 0x7f54, dt.size);
6585
6586         for (i = 0; i < 6; i++)
6587                 enter_smm_save_seg_32(vcpu, buf, i);
6588
6589         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6590
6591         /* revision id */
6592         put_smstate(u32, buf, 0x7efc, 0x00020000);
6593         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6594 }
6595
6596 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6597 {
6598 #ifdef CONFIG_X86_64
6599         struct desc_ptr dt;
6600         struct kvm_segment seg;
6601         unsigned long val;
6602         int i;
6603
6604         for (i = 0; i < 16; i++)
6605                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6606
6607         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6608         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6609
6610         kvm_get_dr(vcpu, 6, &val);
6611         put_smstate(u64, buf, 0x7f68, val);
6612         kvm_get_dr(vcpu, 7, &val);
6613         put_smstate(u64, buf, 0x7f60, val);
6614
6615         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6616         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6617         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6618
6619         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6620
6621         /* revision id */
6622         put_smstate(u32, buf, 0x7efc, 0x00020064);
6623
6624         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6625
6626         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6627         put_smstate(u16, buf, 0x7e90, seg.selector);
6628         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6629         put_smstate(u32, buf, 0x7e94, seg.limit);
6630         put_smstate(u64, buf, 0x7e98, seg.base);
6631
6632         kvm_x86_ops->get_idt(vcpu, &dt);
6633         put_smstate(u32, buf, 0x7e84, dt.size);
6634         put_smstate(u64, buf, 0x7e88, dt.address);
6635
6636         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6637         put_smstate(u16, buf, 0x7e70, seg.selector);
6638         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6639         put_smstate(u32, buf, 0x7e74, seg.limit);
6640         put_smstate(u64, buf, 0x7e78, seg.base);
6641
6642         kvm_x86_ops->get_gdt(vcpu, &dt);
6643         put_smstate(u32, buf, 0x7e64, dt.size);
6644         put_smstate(u64, buf, 0x7e68, dt.address);
6645
6646         for (i = 0; i < 6; i++)
6647                 enter_smm_save_seg_64(vcpu, buf, i);
6648 #else
6649         WARN_ON_ONCE(1);
6650 #endif
6651 }
6652
6653 static void enter_smm(struct kvm_vcpu *vcpu)
6654 {
6655         struct kvm_segment cs, ds;
6656         struct desc_ptr dt;
6657         char buf[512];
6658         u32 cr0;
6659
6660         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6661         memset(buf, 0, 512);
6662         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6663                 enter_smm_save_state_64(vcpu, buf);
6664         else
6665                 enter_smm_save_state_32(vcpu, buf);
6666
6667         /*
6668          * Give pre_enter_smm() a chance to make ISA-specific changes to the
6669          * vCPU state (e.g. leave guest mode) after we've saved the state into
6670          * the SMM state-save area.
6671          */
6672         kvm_x86_ops->pre_enter_smm(vcpu, buf);
6673
6674         vcpu->arch.hflags |= HF_SMM_MASK;
6675         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6676
6677         if (kvm_x86_ops->get_nmi_mask(vcpu))
6678                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6679         else
6680                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6681
6682         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6683         kvm_rip_write(vcpu, 0x8000);
6684
6685         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6686         kvm_x86_ops->set_cr0(vcpu, cr0);
6687         vcpu->arch.cr0 = cr0;
6688
6689         kvm_x86_ops->set_cr4(vcpu, 0);
6690
6691         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6692         dt.address = dt.size = 0;
6693         kvm_x86_ops->set_idt(vcpu, &dt);
6694
6695         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6696
6697         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6698         cs.base = vcpu->arch.smbase;
6699
6700         ds.selector = 0;
6701         ds.base = 0;
6702
6703         cs.limit    = ds.limit = 0xffffffff;
6704         cs.type     = ds.type = 0x3;
6705         cs.dpl      = ds.dpl = 0;
6706         cs.db       = ds.db = 0;
6707         cs.s        = ds.s = 1;
6708         cs.l        = ds.l = 0;
6709         cs.g        = ds.g = 1;
6710         cs.avl      = ds.avl = 0;
6711         cs.present  = ds.present = 1;
6712         cs.unusable = ds.unusable = 0;
6713         cs.padding  = ds.padding = 0;
6714
6715         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6716         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6717         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6718         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6719         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6720         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6721
6722         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
6723                 kvm_x86_ops->set_efer(vcpu, 0);
6724
6725         kvm_update_cpuid(vcpu);
6726         kvm_mmu_reset_context(vcpu);
6727 }
6728
6729 static void process_smi(struct kvm_vcpu *vcpu)
6730 {
6731         vcpu->arch.smi_pending = true;
6732         kvm_make_request(KVM_REQ_EVENT, vcpu);
6733 }
6734
6735 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6736 {
6737         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6738 }
6739
6740 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6741 {
6742         u64 eoi_exit_bitmap[4];
6743
6744         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6745                 return;
6746
6747         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6748
6749         if (irqchip_split(vcpu->kvm))
6750                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6751         else {
6752                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6753                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6754                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6755         }
6756         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6757                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6758         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6759 }
6760
6761 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6762 {
6763         ++vcpu->stat.tlb_flush;
6764         kvm_x86_ops->tlb_flush(vcpu);
6765 }
6766
6767 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
6768                 unsigned long start, unsigned long end)
6769 {
6770         unsigned long apic_address;
6771
6772         /*
6773          * The physical address of apic access page is stored in the VMCS.
6774          * Update it when it becomes invalid.
6775          */
6776         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6777         if (start <= apic_address && apic_address < end)
6778                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6779 }
6780
6781 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6782 {
6783         struct page *page = NULL;
6784
6785         if (!lapic_in_kernel(vcpu))
6786                 return;
6787
6788         if (!kvm_x86_ops->set_apic_access_page_addr)
6789                 return;
6790
6791         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6792         if (is_error_page(page))
6793                 return;
6794         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6795
6796         /*
6797          * Do not pin apic access page in memory, the MMU notifier
6798          * will call us again if it is migrated or swapped out.
6799          */
6800         put_page(page);
6801 }
6802 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6803
6804 /*
6805  * Returns 1 to let vcpu_run() continue the guest execution loop without
6806  * exiting to the userspace.  Otherwise, the value will be returned to the
6807  * userspace.
6808  */
6809 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6810 {
6811         int r;
6812         bool req_int_win =
6813                 dm_request_for_irq_injection(vcpu) &&
6814                 kvm_cpu_accept_dm_intr(vcpu);
6815
6816         bool req_immediate_exit = false;
6817
6818         if (kvm_request_pending(vcpu)) {
6819                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6820                         kvm_mmu_unload(vcpu);
6821                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6822                         __kvm_migrate_timers(vcpu);
6823                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6824                         kvm_gen_update_masterclock(vcpu->kvm);
6825                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6826                         kvm_gen_kvmclock_update(vcpu);
6827                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6828                         r = kvm_guest_time_update(vcpu);
6829                         if (unlikely(r))
6830                                 goto out;
6831                 }
6832                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6833                         kvm_mmu_sync_roots(vcpu);
6834                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6835                         kvm_vcpu_flush_tlb(vcpu);
6836                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6837                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6838                         r = 0;
6839                         goto out;
6840                 }
6841                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6842                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6843                         vcpu->mmio_needed = 0;
6844                         r = 0;
6845                         goto out;
6846                 }
6847                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6848                         /* Page is swapped out. Do synthetic halt */
6849                         vcpu->arch.apf.halted = true;
6850                         r = 1;
6851                         goto out;
6852                 }
6853                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6854                         record_steal_time(vcpu);
6855                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6856                         process_smi(vcpu);
6857                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6858                         process_nmi(vcpu);
6859                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6860                         kvm_pmu_handle_event(vcpu);
6861                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6862                         kvm_pmu_deliver_pmi(vcpu);
6863                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6864                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6865                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6866                                      vcpu->arch.ioapic_handled_vectors)) {
6867                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6868                                 vcpu->run->eoi.vector =
6869                                                 vcpu->arch.pending_ioapic_eoi;
6870                                 r = 0;
6871                                 goto out;
6872                         }
6873                 }
6874                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6875                         vcpu_scan_ioapic(vcpu);
6876                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6877                         kvm_vcpu_reload_apic_access_page(vcpu);
6878                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6879                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6880                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6881                         r = 0;
6882                         goto out;
6883                 }
6884                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6885                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6886                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6887                         r = 0;
6888                         goto out;
6889                 }
6890                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6891                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6892                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6893                         r = 0;
6894                         goto out;
6895                 }
6896
6897                 /*
6898                  * KVM_REQ_HV_STIMER has to be processed after
6899                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6900                  * depend on the guest clock being up-to-date
6901                  */
6902                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6903                         kvm_hv_process_stimers(vcpu);
6904         }
6905
6906         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6907                 ++vcpu->stat.req_event;
6908                 kvm_apic_accept_events(vcpu);
6909                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6910                         r = 1;
6911                         goto out;
6912                 }
6913
6914                 if (inject_pending_event(vcpu, req_int_win) != 0)
6915                         req_immediate_exit = true;
6916                 else {
6917                         /* Enable SMI/NMI/IRQ window open exits if needed.
6918                          *
6919                          * SMIs have three cases:
6920                          * 1) They can be nested, and then there is nothing to
6921                          *    do here because RSM will cause a vmexit anyway.
6922                          * 2) There is an ISA-specific reason why SMI cannot be
6923                          *    injected, and the moment when this changes can be
6924                          *    intercepted.
6925                          * 3) Or the SMI can be pending because
6926                          *    inject_pending_event has completed the injection
6927                          *    of an IRQ or NMI from the previous vmexit, and
6928                          *    then we request an immediate exit to inject the
6929                          *    SMI.
6930                          */
6931                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
6932                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
6933                                         req_immediate_exit = true;
6934                         if (vcpu->arch.nmi_pending)
6935                                 kvm_x86_ops->enable_nmi_window(vcpu);
6936                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6937                                 kvm_x86_ops->enable_irq_window(vcpu);
6938                         WARN_ON(vcpu->arch.exception.pending);
6939                 }
6940
6941                 if (kvm_lapic_enabled(vcpu)) {
6942                         update_cr8_intercept(vcpu);
6943                         kvm_lapic_sync_to_vapic(vcpu);
6944                 }
6945         }
6946
6947         r = kvm_mmu_reload(vcpu);
6948         if (unlikely(r)) {
6949                 goto cancel_injection;
6950         }
6951
6952         preempt_disable();
6953
6954         kvm_x86_ops->prepare_guest_switch(vcpu);
6955
6956         /*
6957          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
6958          * IPI are then delayed after guest entry, which ensures that they
6959          * result in virtual interrupt delivery.
6960          */
6961         local_irq_disable();
6962         vcpu->mode = IN_GUEST_MODE;
6963
6964         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6965
6966         /*
6967          * 1) We should set ->mode before checking ->requests.  Please see
6968          * the comment in kvm_vcpu_exiting_guest_mode().
6969          *
6970          * 2) For APICv, we should set ->mode before checking PIR.ON.  This
6971          * pairs with the memory barrier implicit in pi_test_and_set_on
6972          * (see vmx_deliver_posted_interrupt).
6973          *
6974          * 3) This also orders the write to mode from any reads to the page
6975          * tables done while the VCPU is running.  Please see the comment
6976          * in kvm_flush_remote_tlbs.
6977          */
6978         smp_mb__after_srcu_read_unlock();
6979
6980         /*
6981          * This handles the case where a posted interrupt was
6982          * notified with kvm_vcpu_kick.
6983          */
6984         if (kvm_lapic_enabled(vcpu)) {
6985                 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active)
6986                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6987         }
6988
6989         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
6990             || need_resched() || signal_pending(current)) {
6991                 vcpu->mode = OUTSIDE_GUEST_MODE;
6992                 smp_wmb();
6993                 local_irq_enable();
6994                 preempt_enable();
6995                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6996                 r = 1;
6997                 goto cancel_injection;
6998         }
6999
7000         kvm_load_guest_xcr0(vcpu);
7001
7002         if (req_immediate_exit) {
7003                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7004                 smp_send_reschedule(vcpu->cpu);
7005         }
7006
7007         trace_kvm_entry(vcpu->vcpu_id);
7008         wait_lapic_expire(vcpu);
7009         guest_enter_irqoff();
7010
7011         if (unlikely(vcpu->arch.switch_db_regs)) {
7012                 set_debugreg(0, 7);
7013                 set_debugreg(vcpu->arch.eff_db[0], 0);
7014                 set_debugreg(vcpu->arch.eff_db[1], 1);
7015                 set_debugreg(vcpu->arch.eff_db[2], 2);
7016                 set_debugreg(vcpu->arch.eff_db[3], 3);
7017                 set_debugreg(vcpu->arch.dr6, 6);
7018                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7019         }
7020
7021         kvm_x86_ops->run(vcpu);
7022
7023         /*
7024          * Do this here before restoring debug registers on the host.  And
7025          * since we do this before handling the vmexit, a DR access vmexit
7026          * can (a) read the correct value of the debug registers, (b) set
7027          * KVM_DEBUGREG_WONT_EXIT again.
7028          */
7029         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
7030                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
7031                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
7032                 kvm_update_dr0123(vcpu);
7033                 kvm_update_dr6(vcpu);
7034                 kvm_update_dr7(vcpu);
7035                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
7036         }
7037
7038         /*
7039          * If the guest has used debug registers, at least dr7
7040          * will be disabled while returning to the host.
7041          * If we don't have active breakpoints in the host, we don't
7042          * care about the messed up debug address registers. But if
7043          * we have some of them active, restore the old state.
7044          */
7045         if (hw_breakpoint_active())
7046                 hw_breakpoint_restore();
7047
7048         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
7049
7050         vcpu->mode = OUTSIDE_GUEST_MODE;
7051         smp_wmb();
7052
7053         kvm_put_guest_xcr0(vcpu);
7054
7055         kvm_x86_ops->handle_external_intr(vcpu);
7056
7057         ++vcpu->stat.exits;
7058
7059         guest_exit_irqoff();
7060
7061         local_irq_enable();
7062         preempt_enable();
7063
7064         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7065
7066         /*
7067          * Profile KVM exit RIPs:
7068          */
7069         if (unlikely(prof_on == KVM_PROFILING)) {
7070                 unsigned long rip = kvm_rip_read(vcpu);
7071                 profile_hit(KVM_PROFILING, (void *)rip);
7072         }
7073
7074         if (unlikely(vcpu->arch.tsc_always_catchup))
7075                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7076
7077         if (vcpu->arch.apic_attention)
7078                 kvm_lapic_sync_from_vapic(vcpu);
7079
7080         vcpu->arch.gpa_available = false;
7081         r = kvm_x86_ops->handle_exit(vcpu);
7082         return r;
7083
7084 cancel_injection:
7085         kvm_x86_ops->cancel_injection(vcpu);
7086         if (unlikely(vcpu->arch.apic_attention))
7087                 kvm_lapic_sync_from_vapic(vcpu);
7088 out:
7089         return r;
7090 }
7091
7092 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
7093 {
7094         if (!kvm_arch_vcpu_runnable(vcpu) &&
7095             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
7096                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7097                 kvm_vcpu_block(vcpu);
7098                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7099
7100                 if (kvm_x86_ops->post_block)
7101                         kvm_x86_ops->post_block(vcpu);
7102
7103                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
7104                         return 1;
7105         }
7106
7107         kvm_apic_accept_events(vcpu);
7108         switch(vcpu->arch.mp_state) {
7109         case KVM_MP_STATE_HALTED:
7110                 vcpu->arch.pv.pv_unhalted = false;
7111                 vcpu->arch.mp_state =
7112                         KVM_MP_STATE_RUNNABLE;
7113         case KVM_MP_STATE_RUNNABLE:
7114                 vcpu->arch.apf.halted = false;
7115                 break;
7116         case KVM_MP_STATE_INIT_RECEIVED:
7117                 break;
7118         default:
7119                 return -EINTR;
7120                 break;
7121         }
7122         return 1;
7123 }
7124
7125 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
7126 {
7127         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7128                 kvm_x86_ops->check_nested_events(vcpu, false);
7129
7130         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7131                 !vcpu->arch.apf.halted);
7132 }
7133
7134 static int vcpu_run(struct kvm_vcpu *vcpu)
7135 {
7136         int r;
7137         struct kvm *kvm = vcpu->kvm;
7138
7139         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7140
7141         for (;;) {
7142                 if (kvm_vcpu_running(vcpu)) {
7143                         r = vcpu_enter_guest(vcpu);
7144                 } else {
7145                         r = vcpu_block(kvm, vcpu);
7146                 }
7147
7148                 if (r <= 0)
7149                         break;
7150
7151                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
7152                 if (kvm_cpu_has_pending_timer(vcpu))
7153                         kvm_inject_pending_timer_irqs(vcpu);
7154
7155                 if (dm_request_for_irq_injection(vcpu) &&
7156                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
7157                         r = 0;
7158                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
7159                         ++vcpu->stat.request_irq_exits;
7160                         break;
7161                 }
7162
7163                 kvm_check_async_pf_completion(vcpu);
7164
7165                 if (signal_pending(current)) {
7166                         r = -EINTR;
7167                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7168                         ++vcpu->stat.signal_exits;
7169                         break;
7170                 }
7171                 if (need_resched()) {
7172                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7173                         cond_resched();
7174                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
7175                 }
7176         }
7177
7178         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
7179
7180         return r;
7181 }
7182
7183 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
7184 {
7185         int r;
7186         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7187         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
7188         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7189         if (r != EMULATE_DONE)
7190                 return 0;
7191         return 1;
7192 }
7193
7194 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
7195 {
7196         BUG_ON(!vcpu->arch.pio.count);
7197
7198         return complete_emulated_io(vcpu);
7199 }
7200
7201 /*
7202  * Implements the following, as a state machine:
7203  *
7204  * read:
7205  *   for each fragment
7206  *     for each mmio piece in the fragment
7207  *       write gpa, len
7208  *       exit
7209  *       copy data
7210  *   execute insn
7211  *
7212  * write:
7213  *   for each fragment
7214  *     for each mmio piece in the fragment
7215  *       write gpa, len
7216  *       copy data
7217  *       exit
7218  */
7219 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
7220 {
7221         struct kvm_run *run = vcpu->run;
7222         struct kvm_mmio_fragment *frag;
7223         unsigned len;
7224
7225         BUG_ON(!vcpu->mmio_needed);
7226
7227         /* Complete previous fragment */
7228         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
7229         len = min(8u, frag->len);
7230         if (!vcpu->mmio_is_write)
7231                 memcpy(frag->data, run->mmio.data, len);
7232
7233         if (frag->len <= 8) {
7234                 /* Switch to the next fragment. */
7235                 frag++;
7236                 vcpu->mmio_cur_fragment++;
7237         } else {
7238                 /* Go forward to the next mmio piece. */
7239                 frag->data += len;
7240                 frag->gpa += len;
7241                 frag->len -= len;
7242         }
7243
7244         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
7245                 vcpu->mmio_needed = 0;
7246
7247                 /* FIXME: return into emulator if single-stepping.  */
7248                 if (vcpu->mmio_is_write)
7249                         return 1;
7250                 vcpu->mmio_read_completed = 1;
7251                 return complete_emulated_io(vcpu);
7252         }
7253
7254         run->exit_reason = KVM_EXIT_MMIO;
7255         run->mmio.phys_addr = frag->gpa;
7256         if (vcpu->mmio_is_write)
7257                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
7258         run->mmio.len = min(8u, frag->len);
7259         run->mmio.is_write = vcpu->mmio_is_write;
7260         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7261         return 0;
7262 }
7263
7264
7265 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
7266 {
7267         int r;
7268
7269         kvm_sigset_activate(vcpu);
7270
7271         kvm_load_guest_fpu(vcpu);
7272
7273         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
7274                 if (kvm_run->immediate_exit) {
7275                         r = -EINTR;
7276                         goto out;
7277                 }
7278                 kvm_vcpu_block(vcpu);
7279                 kvm_apic_accept_events(vcpu);
7280                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
7281                 r = -EAGAIN;
7282                 if (signal_pending(current)) {
7283                         r = -EINTR;
7284                         vcpu->run->exit_reason = KVM_EXIT_INTR;
7285                         ++vcpu->stat.signal_exits;
7286                 }
7287                 goto out;
7288         }
7289
7290         /* re-sync apic's tpr */
7291         if (!lapic_in_kernel(vcpu)) {
7292                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
7293                         r = -EINVAL;
7294                         goto out;
7295                 }
7296         }
7297
7298         if (unlikely(vcpu->arch.complete_userspace_io)) {
7299                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
7300                 vcpu->arch.complete_userspace_io = NULL;
7301                 r = cui(vcpu);
7302                 if (r <= 0)
7303                         goto out;
7304         } else
7305                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
7306
7307         if (kvm_run->immediate_exit)
7308                 r = -EINTR;
7309         else
7310                 r = vcpu_run(vcpu);
7311
7312 out:
7313         kvm_put_guest_fpu(vcpu);
7314         post_kvm_run_save(vcpu);
7315         kvm_sigset_deactivate(vcpu);
7316
7317         return r;
7318 }
7319
7320 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7321 {
7322         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
7323                 /*
7324                  * We are here if userspace calls get_regs() in the middle of
7325                  * instruction emulation. Registers state needs to be copied
7326                  * back from emulation context to vcpu. Userspace shouldn't do
7327                  * that usually, but some bad designed PV devices (vmware
7328                  * backdoor interface) need this to work
7329                  */
7330                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
7331                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7332         }
7333         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
7334         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
7335         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
7336         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
7337         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
7338         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
7339         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7340         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
7341 #ifdef CONFIG_X86_64
7342         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
7343         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
7344         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
7345         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
7346         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
7347         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
7348         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
7349         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
7350 #endif
7351
7352         regs->rip = kvm_rip_read(vcpu);
7353         regs->rflags = kvm_get_rflags(vcpu);
7354
7355         return 0;
7356 }
7357
7358 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
7359 {
7360         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
7361         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7362
7363         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7364         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7365         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7366         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7367         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7368         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7369         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7370         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7371 #ifdef CONFIG_X86_64
7372         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7373         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7374         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7375         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7376         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7377         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7378         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7379         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7380 #endif
7381
7382         kvm_rip_write(vcpu, regs->rip);
7383         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
7384
7385         vcpu->arch.exception.pending = false;
7386
7387         kvm_make_request(KVM_REQ_EVENT, vcpu);
7388
7389         return 0;
7390 }
7391
7392 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7393 {
7394         struct kvm_segment cs;
7395
7396         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7397         *db = cs.db;
7398         *l = cs.l;
7399 }
7400 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7401
7402 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7403                                   struct kvm_sregs *sregs)
7404 {
7405         struct desc_ptr dt;
7406
7407         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7408         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7409         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7410         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7411         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7412         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7413
7414         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7415         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7416
7417         kvm_x86_ops->get_idt(vcpu, &dt);
7418         sregs->idt.limit = dt.size;
7419         sregs->idt.base = dt.address;
7420         kvm_x86_ops->get_gdt(vcpu, &dt);
7421         sregs->gdt.limit = dt.size;
7422         sregs->gdt.base = dt.address;
7423
7424         sregs->cr0 = kvm_read_cr0(vcpu);
7425         sregs->cr2 = vcpu->arch.cr2;
7426         sregs->cr3 = kvm_read_cr3(vcpu);
7427         sregs->cr4 = kvm_read_cr4(vcpu);
7428         sregs->cr8 = kvm_get_cr8(vcpu);
7429         sregs->efer = vcpu->arch.efer;
7430         sregs->apic_base = kvm_get_apic_base(vcpu);
7431
7432         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7433
7434         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7435                 set_bit(vcpu->arch.interrupt.nr,
7436                         (unsigned long *)sregs->interrupt_bitmap);
7437
7438         return 0;
7439 }
7440
7441 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7442                                     struct kvm_mp_state *mp_state)
7443 {
7444         kvm_apic_accept_events(vcpu);
7445         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7446                                         vcpu->arch.pv.pv_unhalted)
7447                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7448         else
7449                 mp_state->mp_state = vcpu->arch.mp_state;
7450
7451         return 0;
7452 }
7453
7454 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7455                                     struct kvm_mp_state *mp_state)
7456 {
7457         if (!lapic_in_kernel(vcpu) &&
7458             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7459                 return -EINVAL;
7460
7461         /* INITs are latched while in SMM */
7462         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
7463             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
7464              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
7465                 return -EINVAL;
7466
7467         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7468                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7469                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7470         } else
7471                 vcpu->arch.mp_state = mp_state->mp_state;
7472         kvm_make_request(KVM_REQ_EVENT, vcpu);
7473         return 0;
7474 }
7475
7476 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7477                     int reason, bool has_error_code, u32 error_code)
7478 {
7479         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7480         int ret;
7481
7482         init_emulate_ctxt(vcpu);
7483
7484         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7485                                    has_error_code, error_code);
7486
7487         if (ret)
7488                 return EMULATE_FAIL;
7489
7490         kvm_rip_write(vcpu, ctxt->eip);
7491         kvm_set_rflags(vcpu, ctxt->eflags);
7492         kvm_make_request(KVM_REQ_EVENT, vcpu);
7493         return EMULATE_DONE;
7494 }
7495 EXPORT_SYMBOL_GPL(kvm_task_switch);
7496
7497 int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
7498 {
7499         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
7500                 /*
7501                  * When EFER.LME and CR0.PG are set, the processor is in
7502                  * 64-bit mode (though maybe in a 32-bit code segment).
7503                  * CR4.PAE and EFER.LMA must be set.
7504                  */
7505                 if (!(sregs->cr4 & X86_CR4_PAE)
7506                     || !(sregs->efer & EFER_LMA))
7507                         return -EINVAL;
7508         } else {
7509                 /*
7510                  * Not in 64-bit mode: EFER.LMA is clear and the code
7511                  * segment cannot be 64-bit.
7512                  */
7513                 if (sregs->efer & EFER_LMA || sregs->cs.l)
7514                         return -EINVAL;
7515         }
7516
7517         return 0;
7518 }
7519
7520 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7521                                   struct kvm_sregs *sregs)
7522 {
7523         struct msr_data apic_base_msr;
7524         int mmu_reset_needed = 0;
7525         int pending_vec, max_bits, idx;
7526         struct desc_ptr dt;
7527
7528         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
7529                         (sregs->cr4 & X86_CR4_OSXSAVE))
7530                 return -EINVAL;
7531
7532         if (kvm_valid_sregs(vcpu, sregs))
7533                 return -EINVAL;
7534
7535         apic_base_msr.data = sregs->apic_base;
7536         apic_base_msr.host_initiated = true;
7537         if (kvm_set_apic_base(vcpu, &apic_base_msr))
7538                 return -EINVAL;
7539
7540         dt.size = sregs->idt.limit;
7541         dt.address = sregs->idt.base;
7542         kvm_x86_ops->set_idt(vcpu, &dt);
7543         dt.size = sregs->gdt.limit;
7544         dt.address = sregs->gdt.base;
7545         kvm_x86_ops->set_gdt(vcpu, &dt);
7546
7547         vcpu->arch.cr2 = sregs->cr2;
7548         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7549         vcpu->arch.cr3 = sregs->cr3;
7550         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7551
7552         kvm_set_cr8(vcpu, sregs->cr8);
7553
7554         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7555         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7556
7557         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7558         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7559         vcpu->arch.cr0 = sregs->cr0;
7560
7561         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7562         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7563         if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7564                 kvm_update_cpuid(vcpu);
7565
7566         idx = srcu_read_lock(&vcpu->kvm->srcu);
7567         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7568                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7569                 mmu_reset_needed = 1;
7570         }
7571         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7572
7573         if (mmu_reset_needed)
7574                 kvm_mmu_reset_context(vcpu);
7575
7576         max_bits = KVM_NR_INTERRUPTS;
7577         pending_vec = find_first_bit(
7578                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7579         if (pending_vec < max_bits) {
7580                 kvm_queue_interrupt(vcpu, pending_vec, false);
7581                 pr_debug("Set back pending irq %d\n", pending_vec);
7582         }
7583
7584         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7585         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7586         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7587         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7588         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7589         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7590
7591         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7592         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7593
7594         update_cr8_intercept(vcpu);
7595
7596         /* Older userspace won't unhalt the vcpu on reset. */
7597         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7598             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7599             !is_protmode(vcpu))
7600                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7601
7602         kvm_make_request(KVM_REQ_EVENT, vcpu);
7603
7604         return 0;
7605 }
7606
7607 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7608                                         struct kvm_guest_debug *dbg)
7609 {
7610         unsigned long rflags;
7611         int i, r;
7612
7613         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7614                 r = -EBUSY;
7615                 if (vcpu->arch.exception.pending)
7616                         goto out;
7617                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7618                         kvm_queue_exception(vcpu, DB_VECTOR);
7619                 else
7620                         kvm_queue_exception(vcpu, BP_VECTOR);
7621         }
7622
7623         /*
7624          * Read rflags as long as potentially injected trace flags are still
7625          * filtered out.
7626          */
7627         rflags = kvm_get_rflags(vcpu);
7628
7629         vcpu->guest_debug = dbg->control;
7630         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7631                 vcpu->guest_debug = 0;
7632
7633         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7634                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7635                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7636                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7637         } else {
7638                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7639                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7640         }
7641         kvm_update_dr7(vcpu);
7642
7643         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7644                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7645                         get_segment_base(vcpu, VCPU_SREG_CS);
7646
7647         /*
7648          * Trigger an rflags update that will inject or remove the trace
7649          * flags.
7650          */
7651         kvm_set_rflags(vcpu, rflags);
7652
7653         kvm_x86_ops->update_bp_intercept(vcpu);
7654
7655         r = 0;
7656
7657 out:
7658
7659         return r;
7660 }
7661
7662 /*
7663  * Translate a guest virtual address to a guest physical address.
7664  */
7665 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7666                                     struct kvm_translation *tr)
7667 {
7668         unsigned long vaddr = tr->linear_address;
7669         gpa_t gpa;
7670         int idx;
7671
7672         idx = srcu_read_lock(&vcpu->kvm->srcu);
7673         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7674         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7675         tr->physical_address = gpa;
7676         tr->valid = gpa != UNMAPPED_GVA;
7677         tr->writeable = 1;
7678         tr->usermode = 0;
7679
7680         return 0;
7681 }
7682
7683 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7684 {
7685         struct fxregs_state *fxsave =
7686                         &vcpu->arch.guest_fpu.state.fxsave;
7687
7688         memcpy(fpu->fpr, fxsave->st_space, 128);
7689         fpu->fcw = fxsave->cwd;
7690         fpu->fsw = fxsave->swd;
7691         fpu->ftwx = fxsave->twd;
7692         fpu->last_opcode = fxsave->fop;
7693         fpu->last_ip = fxsave->rip;
7694         fpu->last_dp = fxsave->rdp;
7695         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7696
7697         return 0;
7698 }
7699
7700 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7701 {
7702         struct fxregs_state *fxsave =
7703                         &vcpu->arch.guest_fpu.state.fxsave;
7704
7705         memcpy(fxsave->st_space, fpu->fpr, 128);
7706         fxsave->cwd = fpu->fcw;
7707         fxsave->swd = fpu->fsw;
7708         fxsave->twd = fpu->ftwx;
7709         fxsave->fop = fpu->last_opcode;
7710         fxsave->rip = fpu->last_ip;
7711         fxsave->rdp = fpu->last_dp;
7712         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7713
7714         return 0;
7715 }
7716
7717 static void fx_init(struct kvm_vcpu *vcpu)
7718 {
7719         fpstate_init(&vcpu->arch.guest_fpu.state);
7720         if (boot_cpu_has(X86_FEATURE_XSAVES))
7721                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7722                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7723
7724         /*
7725          * Ensure guest xcr0 is valid for loading
7726          */
7727         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7728
7729         vcpu->arch.cr0 |= X86_CR0_ET;
7730 }
7731
7732 /* Swap (qemu) user FPU context for the guest FPU context. */
7733 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7734 {
7735         preempt_disable();
7736         copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
7737         /* PKRU is separately restored in kvm_x86_ops->run.  */
7738         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
7739                                 ~XFEATURE_MASK_PKRU);
7740         preempt_enable();
7741         trace_kvm_fpu(1);
7742 }
7743
7744 /* When vcpu_run ends, restore user space FPU context. */
7745 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7746 {
7747         preempt_disable();
7748         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7749         copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
7750         preempt_enable();
7751         ++vcpu->stat.fpu_reload;
7752         trace_kvm_fpu(0);
7753 }
7754
7755 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7756 {
7757         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
7758
7759         kvmclock_reset(vcpu);
7760
7761         kvm_x86_ops->vcpu_free(vcpu);
7762         free_cpumask_var(wbinvd_dirty_mask);
7763 }
7764
7765 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7766                                                 unsigned int id)
7767 {
7768         struct kvm_vcpu *vcpu;
7769
7770         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7771                 printk_once(KERN_WARNING
7772                 "kvm: SMP vm created on host with unstable TSC; "
7773                 "guest TSC will not be reliable\n");
7774
7775         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7776
7777         return vcpu;
7778 }
7779
7780 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7781 {
7782         int r;
7783
7784         kvm_vcpu_mtrr_init(vcpu);
7785         r = vcpu_load(vcpu);
7786         if (r)
7787                 return r;
7788         kvm_vcpu_reset(vcpu, false);
7789         kvm_mmu_setup(vcpu);
7790         vcpu_put(vcpu);
7791         return r;
7792 }
7793
7794 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7795 {
7796         struct msr_data msr;
7797         struct kvm *kvm = vcpu->kvm;
7798
7799         kvm_hv_vcpu_postcreate(vcpu);
7800
7801         if (vcpu_load(vcpu))
7802                 return;
7803         msr.data = 0x0;
7804         msr.index = MSR_IA32_TSC;
7805         msr.host_initiated = true;
7806         kvm_write_tsc(vcpu, &msr);
7807         vcpu_put(vcpu);
7808
7809         if (!kvmclock_periodic_sync)
7810                 return;
7811
7812         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7813                                         KVMCLOCK_SYNC_PERIOD);
7814 }
7815
7816 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7817 {
7818         int r;
7819         vcpu->arch.apf.msr_val = 0;
7820
7821         r = vcpu_load(vcpu);
7822         BUG_ON(r);
7823         kvm_mmu_unload(vcpu);
7824         vcpu_put(vcpu);
7825
7826         kvm_x86_ops->vcpu_free(vcpu);
7827 }
7828
7829 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7830 {
7831         vcpu->arch.hflags = 0;
7832
7833         vcpu->arch.smi_pending = 0;
7834         atomic_set(&vcpu->arch.nmi_queued, 0);
7835         vcpu->arch.nmi_pending = 0;
7836         vcpu->arch.nmi_injected = false;
7837         kvm_clear_interrupt_queue(vcpu);
7838         kvm_clear_exception_queue(vcpu);
7839         vcpu->arch.exception.pending = false;
7840
7841         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7842         kvm_update_dr0123(vcpu);
7843         vcpu->arch.dr6 = DR6_INIT;
7844         kvm_update_dr6(vcpu);
7845         vcpu->arch.dr7 = DR7_FIXED_1;
7846         kvm_update_dr7(vcpu);
7847
7848         vcpu->arch.cr2 = 0;
7849
7850         kvm_make_request(KVM_REQ_EVENT, vcpu);
7851         vcpu->arch.apf.msr_val = 0;
7852         vcpu->arch.st.msr_val = 0;
7853
7854         kvmclock_reset(vcpu);
7855
7856         kvm_clear_async_pf_completion_queue(vcpu);
7857         kvm_async_pf_hash_reset(vcpu);
7858         vcpu->arch.apf.halted = false;
7859
7860         if (kvm_mpx_supported()) {
7861                 void *mpx_state_buffer;
7862
7863                 /*
7864                  * To avoid have the INIT path from kvm_apic_has_events() that be
7865                  * called with loaded FPU and does not let userspace fix the state.
7866                  */
7867                 if (init_event)
7868                         kvm_put_guest_fpu(vcpu);
7869                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7870                                         XFEATURE_MASK_BNDREGS);
7871                 if (mpx_state_buffer)
7872                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
7873                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
7874                                         XFEATURE_MASK_BNDCSR);
7875                 if (mpx_state_buffer)
7876                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
7877                 if (init_event)
7878                         kvm_load_guest_fpu(vcpu);
7879         }
7880
7881         if (!init_event) {
7882                 kvm_pmu_reset(vcpu);
7883                 vcpu->arch.smbase = 0x30000;
7884
7885                 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
7886                 vcpu->arch.msr_misc_features_enables = 0;
7887
7888                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7889         }
7890
7891         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7892         vcpu->arch.regs_avail = ~0;
7893         vcpu->arch.regs_dirty = ~0;
7894
7895         vcpu->arch.ia32_xss = 0;
7896
7897         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7898 }
7899
7900 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7901 {
7902         struct kvm_segment cs;
7903
7904         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7905         cs.selector = vector << 8;
7906         cs.base = vector << 12;
7907         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7908         kvm_rip_write(vcpu, 0);
7909 }
7910
7911 int kvm_arch_hardware_enable(void)
7912 {
7913         struct kvm *kvm;
7914         struct kvm_vcpu *vcpu;
7915         int i;
7916         int ret;
7917         u64 local_tsc;
7918         u64 max_tsc = 0;
7919         bool stable, backwards_tsc = false;
7920
7921         kvm_shared_msr_cpu_online();
7922         ret = kvm_x86_ops->hardware_enable();
7923         if (ret != 0)
7924                 return ret;
7925
7926         local_tsc = rdtsc();
7927         stable = !check_tsc_unstable();
7928         list_for_each_entry(kvm, &vm_list, vm_list) {
7929                 kvm_for_each_vcpu(i, vcpu, kvm) {
7930                         if (!stable && vcpu->cpu == smp_processor_id())
7931                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7932                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7933                                 backwards_tsc = true;
7934                                 if (vcpu->arch.last_host_tsc > max_tsc)
7935                                         max_tsc = vcpu->arch.last_host_tsc;
7936                         }
7937                 }
7938         }
7939
7940         /*
7941          * Sometimes, even reliable TSCs go backwards.  This happens on
7942          * platforms that reset TSC during suspend or hibernate actions, but
7943          * maintain synchronization.  We must compensate.  Fortunately, we can
7944          * detect that condition here, which happens early in CPU bringup,
7945          * before any KVM threads can be running.  Unfortunately, we can't
7946          * bring the TSCs fully up to date with real time, as we aren't yet far
7947          * enough into CPU bringup that we know how much real time has actually
7948          * elapsed; our helper function, ktime_get_boot_ns() will be using boot
7949          * variables that haven't been updated yet.
7950          *
7951          * So we simply find the maximum observed TSC above, then record the
7952          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7953          * the adjustment will be applied.  Note that we accumulate
7954          * adjustments, in case multiple suspend cycles happen before some VCPU
7955          * gets a chance to run again.  In the event that no KVM threads get a
7956          * chance to run, we will miss the entire elapsed period, as we'll have
7957          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7958          * loose cycle time.  This isn't too big a deal, since the loss will be
7959          * uniform across all VCPUs (not to mention the scenario is extremely
7960          * unlikely). It is possible that a second hibernate recovery happens
7961          * much faster than a first, causing the observed TSC here to be
7962          * smaller; this would require additional padding adjustment, which is
7963          * why we set last_host_tsc to the local tsc observed here.
7964          *
7965          * N.B. - this code below runs only on platforms with reliable TSC,
7966          * as that is the only way backwards_tsc is set above.  Also note
7967          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7968          * have the same delta_cyc adjustment applied if backwards_tsc
7969          * is detected.  Note further, this adjustment is only done once,
7970          * as we reset last_host_tsc on all VCPUs to stop this from being
7971          * called multiple times (one for each physical CPU bringup).
7972          *
7973          * Platforms with unreliable TSCs don't have to deal with this, they
7974          * will be compensated by the logic in vcpu_load, which sets the TSC to
7975          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7976          * guarantee that they stay in perfect synchronization.
7977          */
7978         if (backwards_tsc) {
7979                 u64 delta_cyc = max_tsc - local_tsc;
7980                 list_for_each_entry(kvm, &vm_list, vm_list) {
7981                         kvm->arch.backwards_tsc_observed = true;
7982                         kvm_for_each_vcpu(i, vcpu, kvm) {
7983                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7984                                 vcpu->arch.last_host_tsc = local_tsc;
7985                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7986                         }
7987
7988                         /*
7989                          * We have to disable TSC offset matching.. if you were
7990                          * booting a VM while issuing an S4 host suspend....
7991                          * you may have some problem.  Solving this issue is
7992                          * left as an exercise to the reader.
7993                          */
7994                         kvm->arch.last_tsc_nsec = 0;
7995                         kvm->arch.last_tsc_write = 0;
7996                 }
7997
7998         }
7999         return 0;
8000 }
8001
8002 void kvm_arch_hardware_disable(void)
8003 {
8004         kvm_x86_ops->hardware_disable();
8005         drop_user_return_notifiers();
8006 }
8007
8008 int kvm_arch_hardware_setup(void)
8009 {
8010         int r;
8011
8012         r = kvm_x86_ops->hardware_setup();
8013         if (r != 0)
8014                 return r;
8015
8016         if (kvm_has_tsc_control) {
8017                 /*
8018                  * Make sure the user can only configure tsc_khz values that
8019                  * fit into a signed integer.
8020                  * A min value is not calculated needed because it will always
8021                  * be 1 on all machines.
8022                  */
8023                 u64 max = min(0x7fffffffULL,
8024                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
8025                 kvm_max_guest_tsc_khz = max;
8026
8027                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
8028         }
8029
8030         kvm_init_msr_list();
8031         return 0;
8032 }
8033
8034 void kvm_arch_hardware_unsetup(void)
8035 {
8036         kvm_x86_ops->hardware_unsetup();
8037 }
8038
8039 void kvm_arch_check_processor_compat(void *rtn)
8040 {
8041         kvm_x86_ops->check_processor_compatibility(rtn);
8042 }
8043
8044 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
8045 {
8046         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
8047 }
8048 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
8049
8050 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
8051 {
8052         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
8053 }
8054
8055 struct static_key kvm_no_apic_vcpu __read_mostly;
8056 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
8057
8058 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
8059 {
8060         struct page *page;
8061         int r;
8062
8063         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
8064         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
8065         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
8066                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8067         else
8068                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
8069
8070         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
8071         if (!page) {
8072                 r = -ENOMEM;
8073                 goto fail;
8074         }
8075         vcpu->arch.pio_data = page_address(page);
8076
8077         kvm_set_tsc_khz(vcpu, max_tsc_khz);
8078
8079         r = kvm_mmu_create(vcpu);
8080         if (r < 0)
8081                 goto fail_free_pio_data;
8082
8083         if (irqchip_in_kernel(vcpu->kvm)) {
8084                 r = kvm_create_lapic(vcpu);
8085                 if (r < 0)
8086                         goto fail_mmu_destroy;
8087         } else
8088                 static_key_slow_inc(&kvm_no_apic_vcpu);
8089
8090         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
8091                                        GFP_KERNEL);
8092         if (!vcpu->arch.mce_banks) {
8093                 r = -ENOMEM;
8094                 goto fail_free_lapic;
8095         }
8096         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
8097
8098         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
8099                 r = -ENOMEM;
8100                 goto fail_free_mce_banks;
8101         }
8102
8103         fx_init(vcpu);
8104
8105         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
8106
8107         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
8108
8109         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
8110
8111         kvm_async_pf_hash_reset(vcpu);
8112         kvm_pmu_init(vcpu);
8113
8114         vcpu->arch.pending_external_vector = -1;
8115         vcpu->arch.preempted_in_kernel = false;
8116
8117         kvm_hv_vcpu_init(vcpu);
8118
8119         return 0;
8120
8121 fail_free_mce_banks:
8122         kfree(vcpu->arch.mce_banks);
8123 fail_free_lapic:
8124         kvm_free_lapic(vcpu);
8125 fail_mmu_destroy:
8126         kvm_mmu_destroy(vcpu);
8127 fail_free_pio_data:
8128         free_page((unsigned long)vcpu->arch.pio_data);
8129 fail:
8130         return r;
8131 }
8132
8133 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
8134 {
8135         int idx;
8136
8137         kvm_hv_vcpu_uninit(vcpu);
8138         kvm_pmu_destroy(vcpu);
8139         kfree(vcpu->arch.mce_banks);
8140         kvm_free_lapic(vcpu);
8141         idx = srcu_read_lock(&vcpu->kvm->srcu);
8142         kvm_mmu_destroy(vcpu);
8143         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8144         free_page((unsigned long)vcpu->arch.pio_data);
8145         if (!lapic_in_kernel(vcpu))
8146                 static_key_slow_dec(&kvm_no_apic_vcpu);
8147 }
8148
8149 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
8150 {
8151         kvm_x86_ops->sched_in(vcpu, cpu);
8152 }
8153
8154 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
8155 {
8156         if (type)
8157                 return -EINVAL;
8158
8159         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
8160         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
8161         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
8162         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
8163         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
8164
8165         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
8166         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
8167         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
8168         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
8169                 &kvm->arch.irq_sources_bitmap);
8170
8171         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
8172         mutex_init(&kvm->arch.apic_map_lock);
8173         mutex_init(&kvm->arch.hyperv.hv_lock);
8174         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
8175
8176         kvm->arch.kvmclock_offset = -ktime_get_boot_ns();
8177         pvclock_update_vm_gtod_copy(kvm);
8178
8179         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
8180         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
8181
8182         kvm_page_track_init(kvm);
8183         kvm_mmu_init_vm(kvm);
8184
8185         if (kvm_x86_ops->vm_init)
8186                 return kvm_x86_ops->vm_init(kvm);
8187
8188         return 0;
8189 }
8190
8191 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
8192 {
8193         int r;
8194         r = vcpu_load(vcpu);
8195         BUG_ON(r);
8196         kvm_mmu_unload(vcpu);
8197         vcpu_put(vcpu);
8198 }
8199
8200 static void kvm_free_vcpus(struct kvm *kvm)
8201 {
8202         unsigned int i;
8203         struct kvm_vcpu *vcpu;
8204
8205         /*
8206          * Unpin any mmu pages first.
8207          */
8208         kvm_for_each_vcpu(i, vcpu, kvm) {
8209                 kvm_clear_async_pf_completion_queue(vcpu);
8210                 kvm_unload_vcpu_mmu(vcpu);
8211         }
8212         kvm_for_each_vcpu(i, vcpu, kvm)
8213                 kvm_arch_vcpu_free(vcpu);
8214
8215         mutex_lock(&kvm->lock);
8216         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
8217                 kvm->vcpus[i] = NULL;
8218
8219         atomic_set(&kvm->online_vcpus, 0);
8220         mutex_unlock(&kvm->lock);
8221 }
8222
8223 void kvm_arch_sync_events(struct kvm *kvm)
8224 {
8225         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
8226         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
8227         kvm_free_pit(kvm);
8228 }
8229
8230 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8231 {
8232         int i, r;
8233         unsigned long hva;
8234         struct kvm_memslots *slots = kvm_memslots(kvm);
8235         struct kvm_memory_slot *slot, old;
8236
8237         /* Called with kvm->slots_lock held.  */
8238         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
8239                 return -EINVAL;
8240
8241         slot = id_to_memslot(slots, id);
8242         if (size) {
8243                 if (slot->npages)
8244                         return -EEXIST;
8245
8246                 /*
8247                  * MAP_SHARED to prevent internal slot pages from being moved
8248                  * by fork()/COW.
8249                  */
8250                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
8251                               MAP_SHARED | MAP_ANONYMOUS, 0);
8252                 if (IS_ERR((void *)hva))
8253                         return PTR_ERR((void *)hva);
8254         } else {
8255                 if (!slot->npages)
8256                         return 0;
8257
8258                 hva = 0;
8259         }
8260
8261         old = *slot;
8262         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
8263                 struct kvm_userspace_memory_region m;
8264
8265                 m.slot = id | (i << 16);
8266                 m.flags = 0;
8267                 m.guest_phys_addr = gpa;
8268                 m.userspace_addr = hva;
8269                 m.memory_size = size;
8270                 r = __kvm_set_memory_region(kvm, &m);
8271                 if (r < 0)
8272                         return r;
8273         }
8274
8275         if (!size) {
8276                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
8277                 WARN_ON(r < 0);
8278         }
8279
8280         return 0;
8281 }
8282 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
8283
8284 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
8285 {
8286         int r;
8287
8288         mutex_lock(&kvm->slots_lock);
8289         r = __x86_set_memory_region(kvm, id, gpa, size);
8290         mutex_unlock(&kvm->slots_lock);
8291
8292         return r;
8293 }
8294 EXPORT_SYMBOL_GPL(x86_set_memory_region);
8295
8296 void kvm_arch_destroy_vm(struct kvm *kvm)
8297 {
8298         if (current->mm == kvm->mm) {
8299                 /*
8300                  * Free memory regions allocated on behalf of userspace,
8301                  * unless the the memory map has changed due to process exit
8302                  * or fd copying.
8303                  */
8304                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
8305                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
8306                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
8307         }
8308         if (kvm_x86_ops->vm_destroy)
8309                 kvm_x86_ops->vm_destroy(kvm);
8310         kvm_pic_destroy(kvm);
8311         kvm_ioapic_destroy(kvm);
8312         kvm_free_vcpus(kvm);
8313         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
8314         kvm_mmu_uninit_vm(kvm);
8315         kvm_page_track_cleanup(kvm);
8316 }
8317
8318 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
8319                            struct kvm_memory_slot *dont)
8320 {
8321         int i;
8322
8323         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8324                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
8325                         kvfree(free->arch.rmap[i]);
8326                         free->arch.rmap[i] = NULL;
8327                 }
8328                 if (i == 0)
8329                         continue;
8330
8331                 if (!dont || free->arch.lpage_info[i - 1] !=
8332                              dont->arch.lpage_info[i - 1]) {
8333                         kvfree(free->arch.lpage_info[i - 1]);
8334                         free->arch.lpage_info[i - 1] = NULL;
8335                 }
8336         }
8337
8338         kvm_page_track_free_memslot(free, dont);
8339 }
8340
8341 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
8342                             unsigned long npages)
8343 {
8344         int i;
8345
8346         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8347                 struct kvm_lpage_info *linfo;
8348                 unsigned long ugfn;
8349                 int lpages;
8350                 int level = i + 1;
8351
8352                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
8353                                       slot->base_gfn, level) + 1;
8354
8355                 slot->arch.rmap[i] =
8356                         kvzalloc(lpages * sizeof(*slot->arch.rmap[i]), GFP_KERNEL);
8357                 if (!slot->arch.rmap[i])
8358                         goto out_free;
8359                 if (i == 0)
8360                         continue;
8361
8362                 linfo = kvzalloc(lpages * sizeof(*linfo), GFP_KERNEL);
8363                 if (!linfo)
8364                         goto out_free;
8365
8366                 slot->arch.lpage_info[i - 1] = linfo;
8367
8368                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
8369                         linfo[0].disallow_lpage = 1;
8370                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
8371                         linfo[lpages - 1].disallow_lpage = 1;
8372                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
8373                 /*
8374                  * If the gfn and userspace address are not aligned wrt each
8375                  * other, or if explicitly asked to, disable large page
8376                  * support for this slot
8377                  */
8378                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
8379                     !kvm_largepages_enabled()) {
8380                         unsigned long j;
8381
8382                         for (j = 0; j < lpages; ++j)
8383                                 linfo[j].disallow_lpage = 1;
8384                 }
8385         }
8386
8387         if (kvm_page_track_create_memslot(slot, npages))
8388                 goto out_free;
8389
8390         return 0;
8391
8392 out_free:
8393         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
8394                 kvfree(slot->arch.rmap[i]);
8395                 slot->arch.rmap[i] = NULL;
8396                 if (i == 0)
8397                         continue;
8398
8399                 kvfree(slot->arch.lpage_info[i - 1]);
8400                 slot->arch.lpage_info[i - 1] = NULL;
8401         }
8402         return -ENOMEM;
8403 }
8404
8405 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
8406 {
8407         /*
8408          * memslots->generation has been incremented.
8409          * mmio generation may have reached its maximum value.
8410          */
8411         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8412 }
8413
8414 int kvm_arch_prepare_memory_region(struct kvm *kvm,
8415                                 struct kvm_memory_slot *memslot,
8416                                 const struct kvm_userspace_memory_region *mem,
8417                                 enum kvm_mr_change change)
8418 {
8419         return 0;
8420 }
8421
8422 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8423                                      struct kvm_memory_slot *new)
8424 {
8425         /* Still write protect RO slot */
8426         if (new->flags & KVM_MEM_READONLY) {
8427                 kvm_mmu_slot_remove_write_access(kvm, new);
8428                 return;
8429         }
8430
8431         /*
8432          * Call kvm_x86_ops dirty logging hooks when they are valid.
8433          *
8434          * kvm_x86_ops->slot_disable_log_dirty is called when:
8435          *
8436          *  - KVM_MR_CREATE with dirty logging is disabled
8437          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8438          *
8439          * The reason is, in case of PML, we need to set D-bit for any slots
8440          * with dirty logging disabled in order to eliminate unnecessary GPA
8441          * logging in PML buffer (and potential PML buffer full VMEXT). This
8442          * guarantees leaving PML enabled during guest's lifetime won't have
8443          * any additonal overhead from PML when guest is running with dirty
8444          * logging disabled for memory slots.
8445          *
8446          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8447          * to dirty logging mode.
8448          *
8449          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8450          *
8451          * In case of write protect:
8452          *
8453          * Write protect all pages for dirty logging.
8454          *
8455          * All the sptes including the large sptes which point to this
8456          * slot are set to readonly. We can not create any new large
8457          * spte on this slot until the end of the logging.
8458          *
8459          * See the comments in fast_page_fault().
8460          */
8461         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8462                 if (kvm_x86_ops->slot_enable_log_dirty)
8463                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8464                 else
8465                         kvm_mmu_slot_remove_write_access(kvm, new);
8466         } else {
8467                 if (kvm_x86_ops->slot_disable_log_dirty)
8468                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8469         }
8470 }
8471
8472 void kvm_arch_commit_memory_region(struct kvm *kvm,
8473                                 const struct kvm_userspace_memory_region *mem,
8474                                 const struct kvm_memory_slot *old,
8475                                 const struct kvm_memory_slot *new,
8476                                 enum kvm_mr_change change)
8477 {
8478         int nr_mmu_pages = 0;
8479
8480         if (!kvm->arch.n_requested_mmu_pages)
8481                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8482
8483         if (nr_mmu_pages)
8484                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8485
8486         /*
8487          * Dirty logging tracks sptes in 4k granularity, meaning that large
8488          * sptes have to be split.  If live migration is successful, the guest
8489          * in the source machine will be destroyed and large sptes will be
8490          * created in the destination. However, if the guest continues to run
8491          * in the source machine (for example if live migration fails), small
8492          * sptes will remain around and cause bad performance.
8493          *
8494          * Scan sptes if dirty logging has been stopped, dropping those
8495          * which can be collapsed into a single large-page spte.  Later
8496          * page faults will create the large-page sptes.
8497          */
8498         if ((change != KVM_MR_DELETE) &&
8499                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8500                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8501                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8502
8503         /*
8504          * Set up write protection and/or dirty logging for the new slot.
8505          *
8506          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8507          * been zapped so no dirty logging staff is needed for old slot. For
8508          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8509          * new and it's also covered when dealing with the new slot.
8510          *
8511          * FIXME: const-ify all uses of struct kvm_memory_slot.
8512          */
8513         if (change != KVM_MR_DELETE)
8514                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8515 }
8516
8517 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8518 {
8519         kvm_mmu_invalidate_zap_all_pages(kvm);
8520 }
8521
8522 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8523                                    struct kvm_memory_slot *slot)
8524 {
8525         kvm_page_track_flush_slot(kvm, slot);
8526 }
8527
8528 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8529 {
8530         if (!list_empty_careful(&vcpu->async_pf.done))
8531                 return true;
8532
8533         if (kvm_apic_has_events(vcpu))
8534                 return true;
8535
8536         if (vcpu->arch.pv.pv_unhalted)
8537                 return true;
8538
8539         if (vcpu->arch.exception.pending)
8540                 return true;
8541
8542         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
8543             (vcpu->arch.nmi_pending &&
8544              kvm_x86_ops->nmi_allowed(vcpu)))
8545                 return true;
8546
8547         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
8548             (vcpu->arch.smi_pending && !is_smm(vcpu)))
8549                 return true;
8550
8551         if (kvm_arch_interrupt_allowed(vcpu) &&
8552             kvm_cpu_has_interrupt(vcpu))
8553                 return true;
8554
8555         if (kvm_hv_has_stimer_pending(vcpu))
8556                 return true;
8557
8558         return false;
8559 }
8560
8561 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8562 {
8563         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8564 }
8565
8566 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
8567 {
8568         return vcpu->arch.preempted_in_kernel;
8569 }
8570
8571 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8572 {
8573         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8574 }
8575
8576 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8577 {
8578         return kvm_x86_ops->interrupt_allowed(vcpu);
8579 }
8580
8581 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8582 {
8583         if (is_64_bit_mode(vcpu))
8584                 return kvm_rip_read(vcpu);
8585         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8586                      kvm_rip_read(vcpu));
8587 }
8588 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8589
8590 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8591 {
8592         return kvm_get_linear_rip(vcpu) == linear_rip;
8593 }
8594 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8595
8596 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8597 {
8598         unsigned long rflags;
8599
8600         rflags = kvm_x86_ops->get_rflags(vcpu);
8601         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8602                 rflags &= ~X86_EFLAGS_TF;
8603         return rflags;
8604 }
8605 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8606
8607 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8608 {
8609         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8610             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8611                 rflags |= X86_EFLAGS_TF;
8612         kvm_x86_ops->set_rflags(vcpu, rflags);
8613 }
8614
8615 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8616 {
8617         __kvm_set_rflags(vcpu, rflags);
8618         kvm_make_request(KVM_REQ_EVENT, vcpu);
8619 }
8620 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8621
8622 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8623 {
8624         int r;
8625
8626         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8627               work->wakeup_all)
8628                 return;
8629
8630         r = kvm_mmu_reload(vcpu);
8631         if (unlikely(r))
8632                 return;
8633
8634         if (!vcpu->arch.mmu.direct_map &&
8635               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8636                 return;
8637
8638         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8639 }
8640
8641 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8642 {
8643         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8644 }
8645
8646 static inline u32 kvm_async_pf_next_probe(u32 key)
8647 {
8648         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8649 }
8650
8651 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8652 {
8653         u32 key = kvm_async_pf_hash_fn(gfn);
8654
8655         while (vcpu->arch.apf.gfns[key] != ~0)
8656                 key = kvm_async_pf_next_probe(key);
8657
8658         vcpu->arch.apf.gfns[key] = gfn;
8659 }
8660
8661 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8662 {
8663         int i;
8664         u32 key = kvm_async_pf_hash_fn(gfn);
8665
8666         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8667                      (vcpu->arch.apf.gfns[key] != gfn &&
8668                       vcpu->arch.apf.gfns[key] != ~0); i++)
8669                 key = kvm_async_pf_next_probe(key);
8670
8671         return key;
8672 }
8673
8674 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8675 {
8676         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8677 }
8678
8679 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8680 {
8681         u32 i, j, k;
8682
8683         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8684         while (true) {
8685                 vcpu->arch.apf.gfns[i] = ~0;
8686                 do {
8687                         j = kvm_async_pf_next_probe(j);
8688                         if (vcpu->arch.apf.gfns[j] == ~0)
8689                                 return;
8690                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8691                         /*
8692                          * k lies cyclically in ]i,j]
8693                          * |    i.k.j |
8694                          * |....j i.k.| or  |.k..j i...|
8695                          */
8696                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8697                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8698                 i = j;
8699         }
8700 }
8701
8702 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8703 {
8704
8705         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8706                                       sizeof(val));
8707 }
8708
8709 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
8710 {
8711
8712         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
8713                                       sizeof(u32));
8714 }
8715
8716 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8717                                      struct kvm_async_pf *work)
8718 {
8719         struct x86_exception fault;
8720
8721         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8722         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8723
8724         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8725             (vcpu->arch.apf.send_user_only &&
8726              kvm_x86_ops->get_cpl(vcpu) == 0))
8727                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8728         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8729                 fault.vector = PF_VECTOR;
8730                 fault.error_code_valid = true;
8731                 fault.error_code = 0;
8732                 fault.nested_page_fault = false;
8733                 fault.address = work->arch.token;
8734                 fault.async_page_fault = true;
8735                 kvm_inject_page_fault(vcpu, &fault);
8736         }
8737 }
8738
8739 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8740                                  struct kvm_async_pf *work)
8741 {
8742         struct x86_exception fault;
8743         u32 val;
8744
8745         if (work->wakeup_all)
8746                 work->arch.token = ~0; /* broadcast wakeup */
8747         else
8748                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8749         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8750
8751         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
8752             !apf_get_user(vcpu, &val)) {
8753                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
8754                     vcpu->arch.exception.pending &&
8755                     vcpu->arch.exception.nr == PF_VECTOR &&
8756                     !apf_put_user(vcpu, 0)) {
8757                         vcpu->arch.exception.injected = false;
8758                         vcpu->arch.exception.pending = false;
8759                         vcpu->arch.exception.nr = 0;
8760                         vcpu->arch.exception.has_error_code = false;
8761                         vcpu->arch.exception.error_code = 0;
8762                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8763                         fault.vector = PF_VECTOR;
8764                         fault.error_code_valid = true;
8765                         fault.error_code = 0;
8766                         fault.nested_page_fault = false;
8767                         fault.address = work->arch.token;
8768                         fault.async_page_fault = true;
8769                         kvm_inject_page_fault(vcpu, &fault);
8770                 }
8771         }
8772         vcpu->arch.apf.halted = false;
8773         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8774 }
8775
8776 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8777 {
8778         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8779                 return true;
8780         else
8781                 return kvm_can_do_async_pf(vcpu);
8782 }
8783
8784 void kvm_arch_start_assignment(struct kvm *kvm)
8785 {
8786         atomic_inc(&kvm->arch.assigned_device_count);
8787 }
8788 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8789
8790 void kvm_arch_end_assignment(struct kvm *kvm)
8791 {
8792         atomic_dec(&kvm->arch.assigned_device_count);
8793 }
8794 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8795
8796 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8797 {
8798         return atomic_read(&kvm->arch.assigned_device_count);
8799 }
8800 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8801
8802 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8803 {
8804         atomic_inc(&kvm->arch.noncoherent_dma_count);
8805 }
8806 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8807
8808 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8809 {
8810         atomic_dec(&kvm->arch.noncoherent_dma_count);
8811 }
8812 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8813
8814 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8815 {
8816         return atomic_read(&kvm->arch.noncoherent_dma_count);
8817 }
8818 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8819
8820 bool kvm_arch_has_irq_bypass(void)
8821 {
8822         return kvm_x86_ops->update_pi_irte != NULL;
8823 }
8824
8825 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8826                                       struct irq_bypass_producer *prod)
8827 {
8828         struct kvm_kernel_irqfd *irqfd =
8829                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8830
8831         irqfd->producer = prod;
8832
8833         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8834                                            prod->irq, irqfd->gsi, 1);
8835 }
8836
8837 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8838                                       struct irq_bypass_producer *prod)
8839 {
8840         int ret;
8841         struct kvm_kernel_irqfd *irqfd =
8842                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8843
8844         WARN_ON(irqfd->producer != prod);
8845         irqfd->producer = NULL;
8846
8847         /*
8848          * When producer of consumer is unregistered, we change back to
8849          * remapped mode, so we can re-use the current implementation
8850          * when the irq is masked/disabled or the consumer side (KVM
8851          * int this case doesn't want to receive the interrupts.
8852         */
8853         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8854         if (ret)
8855                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8856                        " fails: %d\n", irqfd->consumer.token, ret);
8857 }
8858
8859 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8860                                    uint32_t guest_irq, bool set)
8861 {
8862         if (!kvm_x86_ops->update_pi_irte)
8863                 return -EINVAL;
8864
8865         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8866 }
8867
8868 bool kvm_vector_hashing_enabled(void)
8869 {
8870         return vector_hashing;
8871 }
8872 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8873
8874 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8875 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8876 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8877 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8878 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8879 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8880 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);