]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/kvm/x86.c
Merge tag 'devicetree-fixes-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "mmu.h"
22 #include "i8254.h"
23 #include "tss.h"
24 #include "kvm_cache_regs.h"
25 #include "x86.h"
26 #include "cpuid.h"
27 #include "pmu.h"
28 #include "hyperv.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
56
57 #include <trace/events/kvm.h>
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <clocksource/hyperv_timer.h>
72
73 #define CREATE_TRACE_POINTS
74 #include "trace.h"
75
76 #define MAX_IO_MSRS 256
77 #define KVM_MAX_MCE_BANKS 32
78 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
79 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
80
81 #define emul_to_vcpu(ctxt) \
82         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
83
84 /* EFER defaults:
85  * - enable syscall per default because its emulated by KVM
86  * - enable LME and LMA per default on 64 bit KVM
87  */
88 #ifdef CONFIG_X86_64
89 static
90 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
91 #else
92 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
93 #endif
94
95 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
96 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
97
98 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
99                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
100
101 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
102 static void process_nmi(struct kvm_vcpu *vcpu);
103 static void enter_smm(struct kvm_vcpu *vcpu);
104 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
105 static void store_regs(struct kvm_vcpu *vcpu);
106 static int sync_regs(struct kvm_vcpu *vcpu);
107
108 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
109 EXPORT_SYMBOL_GPL(kvm_x86_ops);
110
111 static bool __read_mostly ignore_msrs = 0;
112 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
113
114 static bool __read_mostly report_ignored_msrs = true;
115 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
116
117 unsigned int min_timer_period_us = 200;
118 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
119
120 static bool __read_mostly kvmclock_periodic_sync = true;
121 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
122
123 bool __read_mostly kvm_has_tsc_control;
124 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
125 u32  __read_mostly kvm_max_guest_tsc_khz;
126 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
127 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
128 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
129 u64  __read_mostly kvm_max_tsc_scaling_ratio;
130 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
131 u64 __read_mostly kvm_default_tsc_scaling_ratio;
132 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
133
134 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
135 static u32 __read_mostly tsc_tolerance_ppm = 250;
136 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
137
138 /*
139  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
140  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
141  * advancement entirely.  Any other value is used as-is and disables adaptive
142  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
143  */
144 static int __read_mostly lapic_timer_advance_ns = -1;
145 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
146
147 static bool __read_mostly vector_hashing = true;
148 module_param(vector_hashing, bool, S_IRUGO);
149
150 bool __read_mostly enable_vmware_backdoor = false;
151 module_param(enable_vmware_backdoor, bool, S_IRUGO);
152 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
153
154 static bool __read_mostly force_emulation_prefix = false;
155 module_param(force_emulation_prefix, bool, S_IRUGO);
156
157 int __read_mostly pi_inject_timer = -1;
158 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
159
160 #define KVM_NR_SHARED_MSRS 16
161
162 struct kvm_shared_msrs_global {
163         int nr;
164         u32 msrs[KVM_NR_SHARED_MSRS];
165 };
166
167 struct kvm_shared_msrs {
168         struct user_return_notifier urn;
169         bool registered;
170         struct kvm_shared_msr_values {
171                 u64 host;
172                 u64 curr;
173         } values[KVM_NR_SHARED_MSRS];
174 };
175
176 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
177 static struct kvm_shared_msrs __percpu *shared_msrs;
178
179 struct kvm_stats_debugfs_item debugfs_entries[] = {
180         { "pf_fixed", VCPU_STAT(pf_fixed) },
181         { "pf_guest", VCPU_STAT(pf_guest) },
182         { "tlb_flush", VCPU_STAT(tlb_flush) },
183         { "invlpg", VCPU_STAT(invlpg) },
184         { "exits", VCPU_STAT(exits) },
185         { "io_exits", VCPU_STAT(io_exits) },
186         { "mmio_exits", VCPU_STAT(mmio_exits) },
187         { "signal_exits", VCPU_STAT(signal_exits) },
188         { "irq_window", VCPU_STAT(irq_window_exits) },
189         { "nmi_window", VCPU_STAT(nmi_window_exits) },
190         { "halt_exits", VCPU_STAT(halt_exits) },
191         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
192         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
193         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
194         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
195         { "hypercalls", VCPU_STAT(hypercalls) },
196         { "request_irq", VCPU_STAT(request_irq_exits) },
197         { "irq_exits", VCPU_STAT(irq_exits) },
198         { "host_state_reload", VCPU_STAT(host_state_reload) },
199         { "fpu_reload", VCPU_STAT(fpu_reload) },
200         { "insn_emulation", VCPU_STAT(insn_emulation) },
201         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
202         { "irq_injections", VCPU_STAT(irq_injections) },
203         { "nmi_injections", VCPU_STAT(nmi_injections) },
204         { "req_event", VCPU_STAT(req_event) },
205         { "l1d_flush", VCPU_STAT(l1d_flush) },
206         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
207         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
208         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
209         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
210         { "mmu_flooded", VM_STAT(mmu_flooded) },
211         { "mmu_recycled", VM_STAT(mmu_recycled) },
212         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
213         { "mmu_unsync", VM_STAT(mmu_unsync) },
214         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
215         { "largepages", VM_STAT(lpages) },
216         { "max_mmu_page_hash_collisions",
217                 VM_STAT(max_mmu_page_hash_collisions) },
218         { NULL }
219 };
220
221 u64 __read_mostly host_xcr0;
222
223 struct kmem_cache *x86_fpu_cache;
224 EXPORT_SYMBOL_GPL(x86_fpu_cache);
225
226 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
227
228 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
229 {
230         int i;
231         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
232                 vcpu->arch.apf.gfns[i] = ~0;
233 }
234
235 static void kvm_on_user_return(struct user_return_notifier *urn)
236 {
237         unsigned slot;
238         struct kvm_shared_msrs *locals
239                 = container_of(urn, struct kvm_shared_msrs, urn);
240         struct kvm_shared_msr_values *values;
241         unsigned long flags;
242
243         /*
244          * Disabling irqs at this point since the following code could be
245          * interrupted and executed through kvm_arch_hardware_disable()
246          */
247         local_irq_save(flags);
248         if (locals->registered) {
249                 locals->registered = false;
250                 user_return_notifier_unregister(urn);
251         }
252         local_irq_restore(flags);
253         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
254                 values = &locals->values[slot];
255                 if (values->host != values->curr) {
256                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
257                         values->curr = values->host;
258                 }
259         }
260 }
261
262 static void shared_msr_update(unsigned slot, u32 msr)
263 {
264         u64 value;
265         unsigned int cpu = smp_processor_id();
266         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
267
268         /* only read, and nobody should modify it at this time,
269          * so don't need lock */
270         if (slot >= shared_msrs_global.nr) {
271                 printk(KERN_ERR "kvm: invalid MSR slot!");
272                 return;
273         }
274         rdmsrl_safe(msr, &value);
275         smsr->values[slot].host = value;
276         smsr->values[slot].curr = value;
277 }
278
279 void kvm_define_shared_msr(unsigned slot, u32 msr)
280 {
281         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
282         shared_msrs_global.msrs[slot] = msr;
283         if (slot >= shared_msrs_global.nr)
284                 shared_msrs_global.nr = slot + 1;
285 }
286 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
287
288 static void kvm_shared_msr_cpu_online(void)
289 {
290         unsigned i;
291
292         for (i = 0; i < shared_msrs_global.nr; ++i)
293                 shared_msr_update(i, shared_msrs_global.msrs[i]);
294 }
295
296 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
297 {
298         unsigned int cpu = smp_processor_id();
299         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
300         int err;
301
302         if (((value ^ smsr->values[slot].curr) & mask) == 0)
303                 return 0;
304         smsr->values[slot].curr = value;
305         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
306         if (err)
307                 return 1;
308
309         if (!smsr->registered) {
310                 smsr->urn.on_user_return = kvm_on_user_return;
311                 user_return_notifier_register(&smsr->urn);
312                 smsr->registered = true;
313         }
314         return 0;
315 }
316 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
317
318 static void drop_user_return_notifiers(void)
319 {
320         unsigned int cpu = smp_processor_id();
321         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
322
323         if (smsr->registered)
324                 kvm_on_user_return(&smsr->urn);
325 }
326
327 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
328 {
329         return vcpu->arch.apic_base;
330 }
331 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
332
333 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
334 {
335         return kvm_apic_mode(kvm_get_apic_base(vcpu));
336 }
337 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
338
339 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
340 {
341         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
342         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
343         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
344                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
345
346         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
347                 return 1;
348         if (!msr_info->host_initiated) {
349                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
350                         return 1;
351                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
352                         return 1;
353         }
354
355         kvm_lapic_set_base(vcpu, msr_info->data);
356         return 0;
357 }
358 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
359
360 asmlinkage __visible void kvm_spurious_fault(void)
361 {
362         /* Fault while not rebooting.  We want the trace. */
363         BUG();
364 }
365 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
366
367 #define EXCPT_BENIGN            0
368 #define EXCPT_CONTRIBUTORY      1
369 #define EXCPT_PF                2
370
371 static int exception_class(int vector)
372 {
373         switch (vector) {
374         case PF_VECTOR:
375                 return EXCPT_PF;
376         case DE_VECTOR:
377         case TS_VECTOR:
378         case NP_VECTOR:
379         case SS_VECTOR:
380         case GP_VECTOR:
381                 return EXCPT_CONTRIBUTORY;
382         default:
383                 break;
384         }
385         return EXCPT_BENIGN;
386 }
387
388 #define EXCPT_FAULT             0
389 #define EXCPT_TRAP              1
390 #define EXCPT_ABORT             2
391 #define EXCPT_INTERRUPT         3
392
393 static int exception_type(int vector)
394 {
395         unsigned int mask;
396
397         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
398                 return EXCPT_INTERRUPT;
399
400         mask = 1 << vector;
401
402         /* #DB is trap, as instruction watchpoints are handled elsewhere */
403         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
404                 return EXCPT_TRAP;
405
406         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
407                 return EXCPT_ABORT;
408
409         /* Reserved exceptions will result in fault */
410         return EXCPT_FAULT;
411 }
412
413 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
414 {
415         unsigned nr = vcpu->arch.exception.nr;
416         bool has_payload = vcpu->arch.exception.has_payload;
417         unsigned long payload = vcpu->arch.exception.payload;
418
419         if (!has_payload)
420                 return;
421
422         switch (nr) {
423         case DB_VECTOR:
424                 /*
425                  * "Certain debug exceptions may clear bit 0-3.  The
426                  * remaining contents of the DR6 register are never
427                  * cleared by the processor".
428                  */
429                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
430                 /*
431                  * DR6.RTM is set by all #DB exceptions that don't clear it.
432                  */
433                 vcpu->arch.dr6 |= DR6_RTM;
434                 vcpu->arch.dr6 |= payload;
435                 /*
436                  * Bit 16 should be set in the payload whenever the #DB
437                  * exception should clear DR6.RTM. This makes the payload
438                  * compatible with the pending debug exceptions under VMX.
439                  * Though not currently documented in the SDM, this also
440                  * makes the payload compatible with the exit qualification
441                  * for #DB exceptions under VMX.
442                  */
443                 vcpu->arch.dr6 ^= payload & DR6_RTM;
444                 break;
445         case PF_VECTOR:
446                 vcpu->arch.cr2 = payload;
447                 break;
448         }
449
450         vcpu->arch.exception.has_payload = false;
451         vcpu->arch.exception.payload = 0;
452 }
453 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
454
455 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
456                 unsigned nr, bool has_error, u32 error_code,
457                 bool has_payload, unsigned long payload, bool reinject)
458 {
459         u32 prev_nr;
460         int class1, class2;
461
462         kvm_make_request(KVM_REQ_EVENT, vcpu);
463
464         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
465         queue:
466                 if (has_error && !is_protmode(vcpu))
467                         has_error = false;
468                 if (reinject) {
469                         /*
470                          * On vmentry, vcpu->arch.exception.pending is only
471                          * true if an event injection was blocked by
472                          * nested_run_pending.  In that case, however,
473                          * vcpu_enter_guest requests an immediate exit,
474                          * and the guest shouldn't proceed far enough to
475                          * need reinjection.
476                          */
477                         WARN_ON_ONCE(vcpu->arch.exception.pending);
478                         vcpu->arch.exception.injected = true;
479                         if (WARN_ON_ONCE(has_payload)) {
480                                 /*
481                                  * A reinjected event has already
482                                  * delivered its payload.
483                                  */
484                                 has_payload = false;
485                                 payload = 0;
486                         }
487                 } else {
488                         vcpu->arch.exception.pending = true;
489                         vcpu->arch.exception.injected = false;
490                 }
491                 vcpu->arch.exception.has_error_code = has_error;
492                 vcpu->arch.exception.nr = nr;
493                 vcpu->arch.exception.error_code = error_code;
494                 vcpu->arch.exception.has_payload = has_payload;
495                 vcpu->arch.exception.payload = payload;
496                 /*
497                  * In guest mode, payload delivery should be deferred,
498                  * so that the L1 hypervisor can intercept #PF before
499                  * CR2 is modified (or intercept #DB before DR6 is
500                  * modified under nVMX).  However, for ABI
501                  * compatibility with KVM_GET_VCPU_EVENTS and
502                  * KVM_SET_VCPU_EVENTS, we can't delay payload
503                  * delivery unless userspace has enabled this
504                  * functionality via the per-VM capability,
505                  * KVM_CAP_EXCEPTION_PAYLOAD.
506                  */
507                 if (!vcpu->kvm->arch.exception_payload_enabled ||
508                     !is_guest_mode(vcpu))
509                         kvm_deliver_exception_payload(vcpu);
510                 return;
511         }
512
513         /* to check exception */
514         prev_nr = vcpu->arch.exception.nr;
515         if (prev_nr == DF_VECTOR) {
516                 /* triple fault -> shutdown */
517                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
518                 return;
519         }
520         class1 = exception_class(prev_nr);
521         class2 = exception_class(nr);
522         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
523                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
524                 /*
525                  * Generate double fault per SDM Table 5-5.  Set
526                  * exception.pending = true so that the double fault
527                  * can trigger a nested vmexit.
528                  */
529                 vcpu->arch.exception.pending = true;
530                 vcpu->arch.exception.injected = false;
531                 vcpu->arch.exception.has_error_code = true;
532                 vcpu->arch.exception.nr = DF_VECTOR;
533                 vcpu->arch.exception.error_code = 0;
534                 vcpu->arch.exception.has_payload = false;
535                 vcpu->arch.exception.payload = 0;
536         } else
537                 /* replace previous exception with a new one in a hope
538                    that instruction re-execution will regenerate lost
539                    exception */
540                 goto queue;
541 }
542
543 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
544 {
545         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
546 }
547 EXPORT_SYMBOL_GPL(kvm_queue_exception);
548
549 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
550 {
551         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
552 }
553 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
554
555 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
556                                   unsigned long payload)
557 {
558         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
559 }
560
561 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
562                                     u32 error_code, unsigned long payload)
563 {
564         kvm_multiple_exception(vcpu, nr, true, error_code,
565                                true, payload, false);
566 }
567
568 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
569 {
570         if (err)
571                 kvm_inject_gp(vcpu, 0);
572         else
573                 return kvm_skip_emulated_instruction(vcpu);
574
575         return 1;
576 }
577 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
578
579 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
580 {
581         ++vcpu->stat.pf_guest;
582         vcpu->arch.exception.nested_apf =
583                 is_guest_mode(vcpu) && fault->async_page_fault;
584         if (vcpu->arch.exception.nested_apf) {
585                 vcpu->arch.apf.nested_apf_token = fault->address;
586                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
587         } else {
588                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
589                                         fault->address);
590         }
591 }
592 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
593
594 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
595 {
596         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
597                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
598         else
599                 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
600
601         return fault->nested_page_fault;
602 }
603
604 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
605 {
606         atomic_inc(&vcpu->arch.nmi_queued);
607         kvm_make_request(KVM_REQ_NMI, vcpu);
608 }
609 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
610
611 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
612 {
613         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
614 }
615 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
616
617 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
618 {
619         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
620 }
621 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
622
623 /*
624  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
625  * a #GP and return false.
626  */
627 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
628 {
629         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
630                 return true;
631         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
632         return false;
633 }
634 EXPORT_SYMBOL_GPL(kvm_require_cpl);
635
636 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
637 {
638         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
639                 return true;
640
641         kvm_queue_exception(vcpu, UD_VECTOR);
642         return false;
643 }
644 EXPORT_SYMBOL_GPL(kvm_require_dr);
645
646 /*
647  * This function will be used to read from the physical memory of the currently
648  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
649  * can read from guest physical or from the guest's guest physical memory.
650  */
651 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
652                             gfn_t ngfn, void *data, int offset, int len,
653                             u32 access)
654 {
655         struct x86_exception exception;
656         gfn_t real_gfn;
657         gpa_t ngpa;
658
659         ngpa     = gfn_to_gpa(ngfn);
660         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
661         if (real_gfn == UNMAPPED_GVA)
662                 return -EFAULT;
663
664         real_gfn = gpa_to_gfn(real_gfn);
665
666         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
667 }
668 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
669
670 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
671                                void *data, int offset, int len, u32 access)
672 {
673         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
674                                        data, offset, len, access);
675 }
676
677 /*
678  * Load the pae pdptrs.  Return true is they are all valid.
679  */
680 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
681 {
682         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
683         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
684         int i;
685         int ret;
686         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
687
688         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
689                                       offset * sizeof(u64), sizeof(pdpte),
690                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
691         if (ret < 0) {
692                 ret = 0;
693                 goto out;
694         }
695         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
696                 if ((pdpte[i] & PT_PRESENT_MASK) &&
697                     (pdpte[i] &
698                      vcpu->arch.mmu->guest_rsvd_check.rsvd_bits_mask[0][2])) {
699                         ret = 0;
700                         goto out;
701                 }
702         }
703         ret = 1;
704
705         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
706         __set_bit(VCPU_EXREG_PDPTR,
707                   (unsigned long *)&vcpu->arch.regs_avail);
708         __set_bit(VCPU_EXREG_PDPTR,
709                   (unsigned long *)&vcpu->arch.regs_dirty);
710 out:
711
712         return ret;
713 }
714 EXPORT_SYMBOL_GPL(load_pdptrs);
715
716 bool pdptrs_changed(struct kvm_vcpu *vcpu)
717 {
718         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
719         bool changed = true;
720         int offset;
721         gfn_t gfn;
722         int r;
723
724         if (!is_pae_paging(vcpu))
725                 return false;
726
727         if (!test_bit(VCPU_EXREG_PDPTR,
728                       (unsigned long *)&vcpu->arch.regs_avail))
729                 return true;
730
731         gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
732         offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
733         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
734                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
735         if (r < 0)
736                 goto out;
737         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
738 out:
739
740         return changed;
741 }
742 EXPORT_SYMBOL_GPL(pdptrs_changed);
743
744 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
745 {
746         unsigned long old_cr0 = kvm_read_cr0(vcpu);
747         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
748
749         cr0 |= X86_CR0_ET;
750
751 #ifdef CONFIG_X86_64
752         if (cr0 & 0xffffffff00000000UL)
753                 return 1;
754 #endif
755
756         cr0 &= ~CR0_RESERVED_BITS;
757
758         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
759                 return 1;
760
761         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
762                 return 1;
763
764         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
765 #ifdef CONFIG_X86_64
766                 if ((vcpu->arch.efer & EFER_LME)) {
767                         int cs_db, cs_l;
768
769                         if (!is_pae(vcpu))
770                                 return 1;
771                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
772                         if (cs_l)
773                                 return 1;
774                 } else
775 #endif
776                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
777                                                  kvm_read_cr3(vcpu)))
778                         return 1;
779         }
780
781         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
782                 return 1;
783
784         kvm_x86_ops->set_cr0(vcpu, cr0);
785
786         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
787                 kvm_clear_async_pf_completion_queue(vcpu);
788                 kvm_async_pf_hash_reset(vcpu);
789         }
790
791         if ((cr0 ^ old_cr0) & update_bits)
792                 kvm_mmu_reset_context(vcpu);
793
794         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
795             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
796             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
797                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
798
799         return 0;
800 }
801 EXPORT_SYMBOL_GPL(kvm_set_cr0);
802
803 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
804 {
805         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
806 }
807 EXPORT_SYMBOL_GPL(kvm_lmsw);
808
809 void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
810 {
811         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
812                         !vcpu->guest_xcr0_loaded) {
813                 /* kvm_set_xcr() also depends on this */
814                 if (vcpu->arch.xcr0 != host_xcr0)
815                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
816                 vcpu->guest_xcr0_loaded = 1;
817         }
818 }
819 EXPORT_SYMBOL_GPL(kvm_load_guest_xcr0);
820
821 void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
822 {
823         if (vcpu->guest_xcr0_loaded) {
824                 if (vcpu->arch.xcr0 != host_xcr0)
825                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
826                 vcpu->guest_xcr0_loaded = 0;
827         }
828 }
829 EXPORT_SYMBOL_GPL(kvm_put_guest_xcr0);
830
831 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
832 {
833         u64 xcr0 = xcr;
834         u64 old_xcr0 = vcpu->arch.xcr0;
835         u64 valid_bits;
836
837         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
838         if (index != XCR_XFEATURE_ENABLED_MASK)
839                 return 1;
840         if (!(xcr0 & XFEATURE_MASK_FP))
841                 return 1;
842         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
843                 return 1;
844
845         /*
846          * Do not allow the guest to set bits that we do not support
847          * saving.  However, xcr0 bit 0 is always set, even if the
848          * emulated CPU does not support XSAVE (see fx_init).
849          */
850         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
851         if (xcr0 & ~valid_bits)
852                 return 1;
853
854         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
855             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
856                 return 1;
857
858         if (xcr0 & XFEATURE_MASK_AVX512) {
859                 if (!(xcr0 & XFEATURE_MASK_YMM))
860                         return 1;
861                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
862                         return 1;
863         }
864         vcpu->arch.xcr0 = xcr0;
865
866         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
867                 kvm_update_cpuid(vcpu);
868         return 0;
869 }
870
871 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
872 {
873         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
874             __kvm_set_xcr(vcpu, index, xcr)) {
875                 kvm_inject_gp(vcpu, 0);
876                 return 1;
877         }
878         return 0;
879 }
880 EXPORT_SYMBOL_GPL(kvm_set_xcr);
881
882 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
883 {
884         unsigned long old_cr4 = kvm_read_cr4(vcpu);
885         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
886                                    X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
887
888         if (cr4 & CR4_RESERVED_BITS)
889                 return 1;
890
891         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
892                 return 1;
893
894         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
895                 return 1;
896
897         if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
898                 return 1;
899
900         if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
901                 return 1;
902
903         if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
904                 return 1;
905
906         if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
907                 return 1;
908
909         if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
910                 return 1;
911
912         if (is_long_mode(vcpu)) {
913                 if (!(cr4 & X86_CR4_PAE))
914                         return 1;
915         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
916                    && ((cr4 ^ old_cr4) & pdptr_bits)
917                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
918                                    kvm_read_cr3(vcpu)))
919                 return 1;
920
921         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
922                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
923                         return 1;
924
925                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
926                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
927                         return 1;
928         }
929
930         if (kvm_x86_ops->set_cr4(vcpu, cr4))
931                 return 1;
932
933         if (((cr4 ^ old_cr4) & pdptr_bits) ||
934             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
935                 kvm_mmu_reset_context(vcpu);
936
937         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
938                 kvm_update_cpuid(vcpu);
939
940         return 0;
941 }
942 EXPORT_SYMBOL_GPL(kvm_set_cr4);
943
944 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
945 {
946         bool skip_tlb_flush = false;
947 #ifdef CONFIG_X86_64
948         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
949
950         if (pcid_enabled) {
951                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
952                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
953         }
954 #endif
955
956         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
957                 if (!skip_tlb_flush) {
958                         kvm_mmu_sync_roots(vcpu);
959                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
960                 }
961                 return 0;
962         }
963
964         if (is_long_mode(vcpu) &&
965             (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
966                 return 1;
967         else if (is_pae_paging(vcpu) &&
968                  !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
969                 return 1;
970
971         kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
972         vcpu->arch.cr3 = cr3;
973         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
974
975         return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr3);
978
979 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
980 {
981         if (cr8 & CR8_RESERVED_BITS)
982                 return 1;
983         if (lapic_in_kernel(vcpu))
984                 kvm_lapic_set_tpr(vcpu, cr8);
985         else
986                 vcpu->arch.cr8 = cr8;
987         return 0;
988 }
989 EXPORT_SYMBOL_GPL(kvm_set_cr8);
990
991 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
992 {
993         if (lapic_in_kernel(vcpu))
994                 return kvm_lapic_get_cr8(vcpu);
995         else
996                 return vcpu->arch.cr8;
997 }
998 EXPORT_SYMBOL_GPL(kvm_get_cr8);
999
1000 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1001 {
1002         int i;
1003
1004         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1005                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1006                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1007                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1008         }
1009 }
1010
1011 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1012 {
1013         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1014                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1015 }
1016
1017 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1018 {
1019         unsigned long dr7;
1020
1021         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1022                 dr7 = vcpu->arch.guest_debug_dr7;
1023         else
1024                 dr7 = vcpu->arch.dr7;
1025         kvm_x86_ops->set_dr7(vcpu, dr7);
1026         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1027         if (dr7 & DR7_BP_EN_MASK)
1028                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1029 }
1030
1031 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1032 {
1033         u64 fixed = DR6_FIXED_1;
1034
1035         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1036                 fixed |= DR6_RTM;
1037         return fixed;
1038 }
1039
1040 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1041 {
1042         switch (dr) {
1043         case 0 ... 3:
1044                 vcpu->arch.db[dr] = val;
1045                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1046                         vcpu->arch.eff_db[dr] = val;
1047                 break;
1048         case 4:
1049                 /* fall through */
1050         case 6:
1051                 if (val & 0xffffffff00000000ULL)
1052                         return -1; /* #GP */
1053                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1054                 kvm_update_dr6(vcpu);
1055                 break;
1056         case 5:
1057                 /* fall through */
1058         default: /* 7 */
1059                 if (val & 0xffffffff00000000ULL)
1060                         return -1; /* #GP */
1061                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1062                 kvm_update_dr7(vcpu);
1063                 break;
1064         }
1065
1066         return 0;
1067 }
1068
1069 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1070 {
1071         if (__kvm_set_dr(vcpu, dr, val)) {
1072                 kvm_inject_gp(vcpu, 0);
1073                 return 1;
1074         }
1075         return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(kvm_set_dr);
1078
1079 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1080 {
1081         switch (dr) {
1082         case 0 ... 3:
1083                 *val = vcpu->arch.db[dr];
1084                 break;
1085         case 4:
1086                 /* fall through */
1087         case 6:
1088                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1089                         *val = vcpu->arch.dr6;
1090                 else
1091                         *val = kvm_x86_ops->get_dr6(vcpu);
1092                 break;
1093         case 5:
1094                 /* fall through */
1095         default: /* 7 */
1096                 *val = vcpu->arch.dr7;
1097                 break;
1098         }
1099         return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_get_dr);
1102
1103 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1104 {
1105         u32 ecx = kvm_rcx_read(vcpu);
1106         u64 data;
1107         int err;
1108
1109         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1110         if (err)
1111                 return err;
1112         kvm_rax_write(vcpu, (u32)data);
1113         kvm_rdx_write(vcpu, data >> 32);
1114         return err;
1115 }
1116 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1117
1118 /*
1119  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1120  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1121  *
1122  * This list is modified at module load time to reflect the
1123  * capabilities of the host cpu. This capabilities test skips MSRs that are
1124  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
1125  * may depend on host virtualization features rather than host cpu features.
1126  */
1127
1128 static u32 msrs_to_save[] = {
1129         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1130         MSR_STAR,
1131 #ifdef CONFIG_X86_64
1132         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1133 #endif
1134         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1135         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1136         MSR_IA32_SPEC_CTRL,
1137         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1138         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1139         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1140         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1141         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1142         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1143 };
1144
1145 static unsigned num_msrs_to_save;
1146
1147 static u32 emulated_msrs[] = {
1148         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1149         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1150         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1151         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1152         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1153         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1154         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1155         HV_X64_MSR_RESET,
1156         HV_X64_MSR_VP_INDEX,
1157         HV_X64_MSR_VP_RUNTIME,
1158         HV_X64_MSR_SCONTROL,
1159         HV_X64_MSR_STIMER0_CONFIG,
1160         HV_X64_MSR_VP_ASSIST_PAGE,
1161         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1162         HV_X64_MSR_TSC_EMULATION_STATUS,
1163
1164         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1165         MSR_KVM_PV_EOI_EN,
1166
1167         MSR_IA32_TSC_ADJUST,
1168         MSR_IA32_TSCDEADLINE,
1169         MSR_IA32_ARCH_CAPABILITIES,
1170         MSR_IA32_MISC_ENABLE,
1171         MSR_IA32_MCG_STATUS,
1172         MSR_IA32_MCG_CTL,
1173         MSR_IA32_MCG_EXT_CTL,
1174         MSR_IA32_SMBASE,
1175         MSR_SMI_COUNT,
1176         MSR_PLATFORM_INFO,
1177         MSR_MISC_FEATURES_ENABLES,
1178         MSR_AMD64_VIRT_SPEC_CTRL,
1179         MSR_IA32_POWER_CTL,
1180
1181         /*
1182          * The following list leaves out MSRs whose values are determined
1183          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1184          * We always support the "true" VMX control MSRs, even if the host
1185          * processor does not, so I am putting these registers here rather
1186          * than in msrs_to_save.
1187          */
1188         MSR_IA32_VMX_BASIC,
1189         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1190         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1191         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1192         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1193         MSR_IA32_VMX_MISC,
1194         MSR_IA32_VMX_CR0_FIXED0,
1195         MSR_IA32_VMX_CR4_FIXED0,
1196         MSR_IA32_VMX_VMCS_ENUM,
1197         MSR_IA32_VMX_PROCBASED_CTLS2,
1198         MSR_IA32_VMX_EPT_VPID_CAP,
1199         MSR_IA32_VMX_VMFUNC,
1200
1201         MSR_K7_HWCR,
1202         MSR_KVM_POLL_CONTROL,
1203 };
1204
1205 static unsigned num_emulated_msrs;
1206
1207 /*
1208  * List of msr numbers which are used to expose MSR-based features that
1209  * can be used by a hypervisor to validate requested CPU features.
1210  */
1211 static u32 msr_based_features[] = {
1212         MSR_IA32_VMX_BASIC,
1213         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1214         MSR_IA32_VMX_PINBASED_CTLS,
1215         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1216         MSR_IA32_VMX_PROCBASED_CTLS,
1217         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1218         MSR_IA32_VMX_EXIT_CTLS,
1219         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1220         MSR_IA32_VMX_ENTRY_CTLS,
1221         MSR_IA32_VMX_MISC,
1222         MSR_IA32_VMX_CR0_FIXED0,
1223         MSR_IA32_VMX_CR0_FIXED1,
1224         MSR_IA32_VMX_CR4_FIXED0,
1225         MSR_IA32_VMX_CR4_FIXED1,
1226         MSR_IA32_VMX_VMCS_ENUM,
1227         MSR_IA32_VMX_PROCBASED_CTLS2,
1228         MSR_IA32_VMX_EPT_VPID_CAP,
1229         MSR_IA32_VMX_VMFUNC,
1230
1231         MSR_F10H_DECFG,
1232         MSR_IA32_UCODE_REV,
1233         MSR_IA32_ARCH_CAPABILITIES,
1234 };
1235
1236 static unsigned int num_msr_based_features;
1237
1238 static u64 kvm_get_arch_capabilities(void)
1239 {
1240         u64 data = 0;
1241
1242         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1243                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1244
1245         /*
1246          * If we're doing cache flushes (either "always" or "cond")
1247          * we will do one whenever the guest does a vmlaunch/vmresume.
1248          * If an outer hypervisor is doing the cache flush for us
1249          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1250          * capability to the guest too, and if EPT is disabled we're not
1251          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1252          * require a nested hypervisor to do a flush of its own.
1253          */
1254         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1255                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1256
1257         return data;
1258 }
1259
1260 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1261 {
1262         switch (msr->index) {
1263         case MSR_IA32_ARCH_CAPABILITIES:
1264                 msr->data = kvm_get_arch_capabilities();
1265                 break;
1266         case MSR_IA32_UCODE_REV:
1267                 rdmsrl_safe(msr->index, &msr->data);
1268                 break;
1269         default:
1270                 if (kvm_x86_ops->get_msr_feature(msr))
1271                         return 1;
1272         }
1273         return 0;
1274 }
1275
1276 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1277 {
1278         struct kvm_msr_entry msr;
1279         int r;
1280
1281         msr.index = index;
1282         r = kvm_get_msr_feature(&msr);
1283         if (r)
1284                 return r;
1285
1286         *data = msr.data;
1287
1288         return 0;
1289 }
1290
1291 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1292 {
1293         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1294                 return false;
1295
1296         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1297                 return false;
1298
1299         if (efer & (EFER_LME | EFER_LMA) &&
1300             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1301                 return false;
1302
1303         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1304                 return false;
1305
1306         return true;
1307
1308 }
1309 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1310 {
1311         if (efer & efer_reserved_bits)
1312                 return false;
1313
1314         return __kvm_valid_efer(vcpu, efer);
1315 }
1316 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1317
1318 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1319 {
1320         u64 old_efer = vcpu->arch.efer;
1321         u64 efer = msr_info->data;
1322
1323         if (efer & efer_reserved_bits)
1324                 return 1;
1325
1326         if (!msr_info->host_initiated) {
1327                 if (!__kvm_valid_efer(vcpu, efer))
1328                         return 1;
1329
1330                 if (is_paging(vcpu) &&
1331                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1332                         return 1;
1333         }
1334
1335         efer &= ~EFER_LMA;
1336         efer |= vcpu->arch.efer & EFER_LMA;
1337
1338         kvm_x86_ops->set_efer(vcpu, efer);
1339
1340         /* Update reserved bits */
1341         if ((efer ^ old_efer) & EFER_NX)
1342                 kvm_mmu_reset_context(vcpu);
1343
1344         return 0;
1345 }
1346
1347 void kvm_enable_efer_bits(u64 mask)
1348 {
1349        efer_reserved_bits &= ~mask;
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1352
1353 /*
1354  * Writes msr value into into the appropriate "register".
1355  * Returns 0 on success, non-0 otherwise.
1356  * Assumes vcpu_load() was already called.
1357  */
1358 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1359 {
1360         switch (msr->index) {
1361         case MSR_FS_BASE:
1362         case MSR_GS_BASE:
1363         case MSR_KERNEL_GS_BASE:
1364         case MSR_CSTAR:
1365         case MSR_LSTAR:
1366                 if (is_noncanonical_address(msr->data, vcpu))
1367                         return 1;
1368                 break;
1369         case MSR_IA32_SYSENTER_EIP:
1370         case MSR_IA32_SYSENTER_ESP:
1371                 /*
1372                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1373                  * non-canonical address is written on Intel but not on
1374                  * AMD (which ignores the top 32-bits, because it does
1375                  * not implement 64-bit SYSENTER).
1376                  *
1377                  * 64-bit code should hence be able to write a non-canonical
1378                  * value on AMD.  Making the address canonical ensures that
1379                  * vmentry does not fail on Intel after writing a non-canonical
1380                  * value, and that something deterministic happens if the guest
1381                  * invokes 64-bit SYSENTER.
1382                  */
1383                 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu));
1384         }
1385         return kvm_x86_ops->set_msr(vcpu, msr);
1386 }
1387 EXPORT_SYMBOL_GPL(kvm_set_msr);
1388
1389 /*
1390  * Adapt set_msr() to msr_io()'s calling convention
1391  */
1392 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1393 {
1394         struct msr_data msr;
1395         int r;
1396
1397         msr.index = index;
1398         msr.host_initiated = true;
1399         r = kvm_get_msr(vcpu, &msr);
1400         if (r)
1401                 return r;
1402
1403         *data = msr.data;
1404         return 0;
1405 }
1406
1407 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1408 {
1409         struct msr_data msr;
1410
1411         msr.data = *data;
1412         msr.index = index;
1413         msr.host_initiated = true;
1414         return kvm_set_msr(vcpu, &msr);
1415 }
1416
1417 #ifdef CONFIG_X86_64
1418 struct pvclock_gtod_data {
1419         seqcount_t      seq;
1420
1421         struct { /* extract of a clocksource struct */
1422                 int vclock_mode;
1423                 u64     cycle_last;
1424                 u64     mask;
1425                 u32     mult;
1426                 u32     shift;
1427         } clock;
1428
1429         u64             boot_ns;
1430         u64             nsec_base;
1431         u64             wall_time_sec;
1432 };
1433
1434 static struct pvclock_gtod_data pvclock_gtod_data;
1435
1436 static void update_pvclock_gtod(struct timekeeper *tk)
1437 {
1438         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1439         u64 boot_ns;
1440
1441         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1442
1443         write_seqcount_begin(&vdata->seq);
1444
1445         /* copy pvclock gtod data */
1446         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1447         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1448         vdata->clock.mask               = tk->tkr_mono.mask;
1449         vdata->clock.mult               = tk->tkr_mono.mult;
1450         vdata->clock.shift              = tk->tkr_mono.shift;
1451
1452         vdata->boot_ns                  = boot_ns;
1453         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1454
1455         vdata->wall_time_sec            = tk->xtime_sec;
1456
1457         write_seqcount_end(&vdata->seq);
1458 }
1459 #endif
1460
1461 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1462 {
1463         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1464         kvm_vcpu_kick(vcpu);
1465 }
1466
1467 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1468 {
1469         int version;
1470         int r;
1471         struct pvclock_wall_clock wc;
1472         struct timespec64 boot;
1473
1474         if (!wall_clock)
1475                 return;
1476
1477         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1478         if (r)
1479                 return;
1480
1481         if (version & 1)
1482                 ++version;  /* first time write, random junk */
1483
1484         ++version;
1485
1486         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1487                 return;
1488
1489         /*
1490          * The guest calculates current wall clock time by adding
1491          * system time (updated by kvm_guest_time_update below) to the
1492          * wall clock specified here.  guest system time equals host
1493          * system time for us, thus we must fill in host boot time here.
1494          */
1495         getboottime64(&boot);
1496
1497         if (kvm->arch.kvmclock_offset) {
1498                 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1499                 boot = timespec64_sub(boot, ts);
1500         }
1501         wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1502         wc.nsec = boot.tv_nsec;
1503         wc.version = version;
1504
1505         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1506
1507         version++;
1508         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1509 }
1510
1511 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1512 {
1513         do_shl32_div32(dividend, divisor);
1514         return dividend;
1515 }
1516
1517 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1518                                s8 *pshift, u32 *pmultiplier)
1519 {
1520         uint64_t scaled64;
1521         int32_t  shift = 0;
1522         uint64_t tps64;
1523         uint32_t tps32;
1524
1525         tps64 = base_hz;
1526         scaled64 = scaled_hz;
1527         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1528                 tps64 >>= 1;
1529                 shift--;
1530         }
1531
1532         tps32 = (uint32_t)tps64;
1533         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1534                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1535                         scaled64 >>= 1;
1536                 else
1537                         tps32 <<= 1;
1538                 shift++;
1539         }
1540
1541         *pshift = shift;
1542         *pmultiplier = div_frac(scaled64, tps32);
1543 }
1544
1545 #ifdef CONFIG_X86_64
1546 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1547 #endif
1548
1549 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1550 static unsigned long max_tsc_khz;
1551
1552 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1553 {
1554         u64 v = (u64)khz * (1000000 + ppm);
1555         do_div(v, 1000000);
1556         return v;
1557 }
1558
1559 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1560 {
1561         u64 ratio;
1562
1563         /* Guest TSC same frequency as host TSC? */
1564         if (!scale) {
1565                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1566                 return 0;
1567         }
1568
1569         /* TSC scaling supported? */
1570         if (!kvm_has_tsc_control) {
1571                 if (user_tsc_khz > tsc_khz) {
1572                         vcpu->arch.tsc_catchup = 1;
1573                         vcpu->arch.tsc_always_catchup = 1;
1574                         return 0;
1575                 } else {
1576                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1577                         return -1;
1578                 }
1579         }
1580
1581         /* TSC scaling required  - calculate ratio */
1582         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1583                                 user_tsc_khz, tsc_khz);
1584
1585         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1586                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1587                                     user_tsc_khz);
1588                 return -1;
1589         }
1590
1591         vcpu->arch.tsc_scaling_ratio = ratio;
1592         return 0;
1593 }
1594
1595 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1596 {
1597         u32 thresh_lo, thresh_hi;
1598         int use_scaling = 0;
1599
1600         /* tsc_khz can be zero if TSC calibration fails */
1601         if (user_tsc_khz == 0) {
1602                 /* set tsc_scaling_ratio to a safe value */
1603                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1604                 return -1;
1605         }
1606
1607         /* Compute a scale to convert nanoseconds in TSC cycles */
1608         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1609                            &vcpu->arch.virtual_tsc_shift,
1610                            &vcpu->arch.virtual_tsc_mult);
1611         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1612
1613         /*
1614          * Compute the variation in TSC rate which is acceptable
1615          * within the range of tolerance and decide if the
1616          * rate being applied is within that bounds of the hardware
1617          * rate.  If so, no scaling or compensation need be done.
1618          */
1619         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1620         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1621         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1622                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1623                 use_scaling = 1;
1624         }
1625         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1626 }
1627
1628 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1629 {
1630         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1631                                       vcpu->arch.virtual_tsc_mult,
1632                                       vcpu->arch.virtual_tsc_shift);
1633         tsc += vcpu->arch.this_tsc_write;
1634         return tsc;
1635 }
1636
1637 static inline int gtod_is_based_on_tsc(int mode)
1638 {
1639         return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1640 }
1641
1642 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1643 {
1644 #ifdef CONFIG_X86_64
1645         bool vcpus_matched;
1646         struct kvm_arch *ka = &vcpu->kvm->arch;
1647         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1648
1649         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1650                          atomic_read(&vcpu->kvm->online_vcpus));
1651
1652         /*
1653          * Once the masterclock is enabled, always perform request in
1654          * order to update it.
1655          *
1656          * In order to enable masterclock, the host clocksource must be TSC
1657          * and the vcpus need to have matched TSCs.  When that happens,
1658          * perform request to enable masterclock.
1659          */
1660         if (ka->use_master_clock ||
1661             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1662                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1663
1664         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1665                             atomic_read(&vcpu->kvm->online_vcpus),
1666                             ka->use_master_clock, gtod->clock.vclock_mode);
1667 #endif
1668 }
1669
1670 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1671 {
1672         u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1673         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1674 }
1675
1676 /*
1677  * Multiply tsc by a fixed point number represented by ratio.
1678  *
1679  * The most significant 64-N bits (mult) of ratio represent the
1680  * integral part of the fixed point number; the remaining N bits
1681  * (frac) represent the fractional part, ie. ratio represents a fixed
1682  * point number (mult + frac * 2^(-N)).
1683  *
1684  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1685  */
1686 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1687 {
1688         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1689 }
1690
1691 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1692 {
1693         u64 _tsc = tsc;
1694         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1695
1696         if (ratio != kvm_default_tsc_scaling_ratio)
1697                 _tsc = __scale_tsc(ratio, tsc);
1698
1699         return _tsc;
1700 }
1701 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1702
1703 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1704 {
1705         u64 tsc;
1706
1707         tsc = kvm_scale_tsc(vcpu, rdtsc());
1708
1709         return target_tsc - tsc;
1710 }
1711
1712 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1713 {
1714         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1715
1716         return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1717 }
1718 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1719
1720 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1721 {
1722         vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1723 }
1724
1725 static inline bool kvm_check_tsc_unstable(void)
1726 {
1727 #ifdef CONFIG_X86_64
1728         /*
1729          * TSC is marked unstable when we're running on Hyper-V,
1730          * 'TSC page' clocksource is good.
1731          */
1732         if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1733                 return false;
1734 #endif
1735         return check_tsc_unstable();
1736 }
1737
1738 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1739 {
1740         struct kvm *kvm = vcpu->kvm;
1741         u64 offset, ns, elapsed;
1742         unsigned long flags;
1743         bool matched;
1744         bool already_matched;
1745         u64 data = msr->data;
1746         bool synchronizing = false;
1747
1748         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1749         offset = kvm_compute_tsc_offset(vcpu, data);
1750         ns = ktime_get_boottime_ns();
1751         elapsed = ns - kvm->arch.last_tsc_nsec;
1752
1753         if (vcpu->arch.virtual_tsc_khz) {
1754                 if (data == 0 && msr->host_initiated) {
1755                         /*
1756                          * detection of vcpu initialization -- need to sync
1757                          * with other vCPUs. This particularly helps to keep
1758                          * kvm_clock stable after CPU hotplug
1759                          */
1760                         synchronizing = true;
1761                 } else {
1762                         u64 tsc_exp = kvm->arch.last_tsc_write +
1763                                                 nsec_to_cycles(vcpu, elapsed);
1764                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1765                         /*
1766                          * Special case: TSC write with a small delta (1 second)
1767                          * of virtual cycle time against real time is
1768                          * interpreted as an attempt to synchronize the CPU.
1769                          */
1770                         synchronizing = data < tsc_exp + tsc_hz &&
1771                                         data + tsc_hz > tsc_exp;
1772                 }
1773         }
1774
1775         /*
1776          * For a reliable TSC, we can match TSC offsets, and for an unstable
1777          * TSC, we add elapsed time in this computation.  We could let the
1778          * compensation code attempt to catch up if we fall behind, but
1779          * it's better to try to match offsets from the beginning.
1780          */
1781         if (synchronizing &&
1782             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1783                 if (!kvm_check_tsc_unstable()) {
1784                         offset = kvm->arch.cur_tsc_offset;
1785                 } else {
1786                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1787                         data += delta;
1788                         offset = kvm_compute_tsc_offset(vcpu, data);
1789                 }
1790                 matched = true;
1791                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1792         } else {
1793                 /*
1794                  * We split periods of matched TSC writes into generations.
1795                  * For each generation, we track the original measured
1796                  * nanosecond time, offset, and write, so if TSCs are in
1797                  * sync, we can match exact offset, and if not, we can match
1798                  * exact software computation in compute_guest_tsc()
1799                  *
1800                  * These values are tracked in kvm->arch.cur_xxx variables.
1801                  */
1802                 kvm->arch.cur_tsc_generation++;
1803                 kvm->arch.cur_tsc_nsec = ns;
1804                 kvm->arch.cur_tsc_write = data;
1805                 kvm->arch.cur_tsc_offset = offset;
1806                 matched = false;
1807         }
1808
1809         /*
1810          * We also track th most recent recorded KHZ, write and time to
1811          * allow the matching interval to be extended at each write.
1812          */
1813         kvm->arch.last_tsc_nsec = ns;
1814         kvm->arch.last_tsc_write = data;
1815         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1816
1817         vcpu->arch.last_guest_tsc = data;
1818
1819         /* Keep track of which generation this VCPU has synchronized to */
1820         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1821         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1822         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1823
1824         if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1825                 update_ia32_tsc_adjust_msr(vcpu, offset);
1826
1827         kvm_vcpu_write_tsc_offset(vcpu, offset);
1828         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1829
1830         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1831         if (!matched) {
1832                 kvm->arch.nr_vcpus_matched_tsc = 0;
1833         } else if (!already_matched) {
1834                 kvm->arch.nr_vcpus_matched_tsc++;
1835         }
1836
1837         kvm_track_tsc_matching(vcpu);
1838         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1839 }
1840
1841 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1842
1843 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1844                                            s64 adjustment)
1845 {
1846         u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1847         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1848 }
1849
1850 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1851 {
1852         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1853                 WARN_ON(adjustment < 0);
1854         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1855         adjust_tsc_offset_guest(vcpu, adjustment);
1856 }
1857
1858 #ifdef CONFIG_X86_64
1859
1860 static u64 read_tsc(void)
1861 {
1862         u64 ret = (u64)rdtsc_ordered();
1863         u64 last = pvclock_gtod_data.clock.cycle_last;
1864
1865         if (likely(ret >= last))
1866                 return ret;
1867
1868         /*
1869          * GCC likes to generate cmov here, but this branch is extremely
1870          * predictable (it's just a function of time and the likely is
1871          * very likely) and there's a data dependence, so force GCC
1872          * to generate a branch instead.  I don't barrier() because
1873          * we don't actually need a barrier, and if this function
1874          * ever gets inlined it will generate worse code.
1875          */
1876         asm volatile ("");
1877         return last;
1878 }
1879
1880 static inline u64 vgettsc(u64 *tsc_timestamp, int *mode)
1881 {
1882         long v;
1883         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1884         u64 tsc_pg_val;
1885
1886         switch (gtod->clock.vclock_mode) {
1887         case VCLOCK_HVCLOCK:
1888                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
1889                                                   tsc_timestamp);
1890                 if (tsc_pg_val != U64_MAX) {
1891                         /* TSC page valid */
1892                         *mode = VCLOCK_HVCLOCK;
1893                         v = (tsc_pg_val - gtod->clock.cycle_last) &
1894                                 gtod->clock.mask;
1895                 } else {
1896                         /* TSC page invalid */
1897                         *mode = VCLOCK_NONE;
1898                 }
1899                 break;
1900         case VCLOCK_TSC:
1901                 *mode = VCLOCK_TSC;
1902                 *tsc_timestamp = read_tsc();
1903                 v = (*tsc_timestamp - gtod->clock.cycle_last) &
1904                         gtod->clock.mask;
1905                 break;
1906         default:
1907                 *mode = VCLOCK_NONE;
1908         }
1909
1910         if (*mode == VCLOCK_NONE)
1911                 *tsc_timestamp = v = 0;
1912
1913         return v * gtod->clock.mult;
1914 }
1915
1916 static int do_monotonic_boot(s64 *t, u64 *tsc_timestamp)
1917 {
1918         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1919         unsigned long seq;
1920         int mode;
1921         u64 ns;
1922
1923         do {
1924                 seq = read_seqcount_begin(&gtod->seq);
1925                 ns = gtod->nsec_base;
1926                 ns += vgettsc(tsc_timestamp, &mode);
1927                 ns >>= gtod->clock.shift;
1928                 ns += gtod->boot_ns;
1929         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1930         *t = ns;
1931
1932         return mode;
1933 }
1934
1935 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
1936 {
1937         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1938         unsigned long seq;
1939         int mode;
1940         u64 ns;
1941
1942         do {
1943                 seq = read_seqcount_begin(&gtod->seq);
1944                 ts->tv_sec = gtod->wall_time_sec;
1945                 ns = gtod->nsec_base;
1946                 ns += vgettsc(tsc_timestamp, &mode);
1947                 ns >>= gtod->clock.shift;
1948         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1949
1950         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
1951         ts->tv_nsec = ns;
1952
1953         return mode;
1954 }
1955
1956 /* returns true if host is using TSC based clocksource */
1957 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
1958 {
1959         /* checked again under seqlock below */
1960         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1961                 return false;
1962
1963         return gtod_is_based_on_tsc(do_monotonic_boot(kernel_ns,
1964                                                       tsc_timestamp));
1965 }
1966
1967 /* returns true if host is using TSC based clocksource */
1968 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
1969                                            u64 *tsc_timestamp)
1970 {
1971         /* checked again under seqlock below */
1972         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
1973                 return false;
1974
1975         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
1976 }
1977 #endif
1978
1979 /*
1980  *
1981  * Assuming a stable TSC across physical CPUS, and a stable TSC
1982  * across virtual CPUs, the following condition is possible.
1983  * Each numbered line represents an event visible to both
1984  * CPUs at the next numbered event.
1985  *
1986  * "timespecX" represents host monotonic time. "tscX" represents
1987  * RDTSC value.
1988  *
1989  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1990  *
1991  * 1.  read timespec0,tsc0
1992  * 2.                                   | timespec1 = timespec0 + N
1993  *                                      | tsc1 = tsc0 + M
1994  * 3. transition to guest               | transition to guest
1995  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1996  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1997  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1998  *
1999  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2000  *
2001  *      - ret0 < ret1
2002  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2003  *              ...
2004  *      - 0 < N - M => M < N
2005  *
2006  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2007  * always the case (the difference between two distinct xtime instances
2008  * might be smaller then the difference between corresponding TSC reads,
2009  * when updating guest vcpus pvclock areas).
2010  *
2011  * To avoid that problem, do not allow visibility of distinct
2012  * system_timestamp/tsc_timestamp values simultaneously: use a master
2013  * copy of host monotonic time values. Update that master copy
2014  * in lockstep.
2015  *
2016  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2017  *
2018  */
2019
2020 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2021 {
2022 #ifdef CONFIG_X86_64
2023         struct kvm_arch *ka = &kvm->arch;
2024         int vclock_mode;
2025         bool host_tsc_clocksource, vcpus_matched;
2026
2027         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2028                         atomic_read(&kvm->online_vcpus));
2029
2030         /*
2031          * If the host uses TSC clock, then passthrough TSC as stable
2032          * to the guest.
2033          */
2034         host_tsc_clocksource = kvm_get_time_and_clockread(
2035                                         &ka->master_kernel_ns,
2036                                         &ka->master_cycle_now);
2037
2038         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2039                                 && !ka->backwards_tsc_observed
2040                                 && !ka->boot_vcpu_runs_old_kvmclock;
2041
2042         if (ka->use_master_clock)
2043                 atomic_set(&kvm_guest_has_master_clock, 1);
2044
2045         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2046         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2047                                         vcpus_matched);
2048 #endif
2049 }
2050
2051 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2052 {
2053         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2054 }
2055
2056 static void kvm_gen_update_masterclock(struct kvm *kvm)
2057 {
2058 #ifdef CONFIG_X86_64
2059         int i;
2060         struct kvm_vcpu *vcpu;
2061         struct kvm_arch *ka = &kvm->arch;
2062
2063         spin_lock(&ka->pvclock_gtod_sync_lock);
2064         kvm_make_mclock_inprogress_request(kvm);
2065         /* no guest entries from this point */
2066         pvclock_update_vm_gtod_copy(kvm);
2067
2068         kvm_for_each_vcpu(i, vcpu, kvm)
2069                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2070
2071         /* guest entries allowed */
2072         kvm_for_each_vcpu(i, vcpu, kvm)
2073                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2074
2075         spin_unlock(&ka->pvclock_gtod_sync_lock);
2076 #endif
2077 }
2078
2079 u64 get_kvmclock_ns(struct kvm *kvm)
2080 {
2081         struct kvm_arch *ka = &kvm->arch;
2082         struct pvclock_vcpu_time_info hv_clock;
2083         u64 ret;
2084
2085         spin_lock(&ka->pvclock_gtod_sync_lock);
2086         if (!ka->use_master_clock) {
2087                 spin_unlock(&ka->pvclock_gtod_sync_lock);
2088                 return ktime_get_boottime_ns() + ka->kvmclock_offset;
2089         }
2090
2091         hv_clock.tsc_timestamp = ka->master_cycle_now;
2092         hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2093         spin_unlock(&ka->pvclock_gtod_sync_lock);
2094
2095         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2096         get_cpu();
2097
2098         if (__this_cpu_read(cpu_tsc_khz)) {
2099                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2100                                    &hv_clock.tsc_shift,
2101                                    &hv_clock.tsc_to_system_mul);
2102                 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2103         } else
2104                 ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2105
2106         put_cpu();
2107
2108         return ret;
2109 }
2110
2111 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2112 {
2113         struct kvm_vcpu_arch *vcpu = &v->arch;
2114         struct pvclock_vcpu_time_info guest_hv_clock;
2115
2116         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2117                 &guest_hv_clock, sizeof(guest_hv_clock))))
2118                 return;
2119
2120         /* This VCPU is paused, but it's legal for a guest to read another
2121          * VCPU's kvmclock, so we really have to follow the specification where
2122          * it says that version is odd if data is being modified, and even after
2123          * it is consistent.
2124          *
2125          * Version field updates must be kept separate.  This is because
2126          * kvm_write_guest_cached might use a "rep movs" instruction, and
2127          * writes within a string instruction are weakly ordered.  So there
2128          * are three writes overall.
2129          *
2130          * As a small optimization, only write the version field in the first
2131          * and third write.  The vcpu->pv_time cache is still valid, because the
2132          * version field is the first in the struct.
2133          */
2134         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2135
2136         if (guest_hv_clock.version & 1)
2137                 ++guest_hv_clock.version;  /* first time write, random junk */
2138
2139         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2140         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2141                                 &vcpu->hv_clock,
2142                                 sizeof(vcpu->hv_clock.version));
2143
2144         smp_wmb();
2145
2146         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2147         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2148
2149         if (vcpu->pvclock_set_guest_stopped_request) {
2150                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2151                 vcpu->pvclock_set_guest_stopped_request = false;
2152         }
2153
2154         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2155
2156         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2157                                 &vcpu->hv_clock,
2158                                 sizeof(vcpu->hv_clock));
2159
2160         smp_wmb();
2161
2162         vcpu->hv_clock.version++;
2163         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2164                                 &vcpu->hv_clock,
2165                                 sizeof(vcpu->hv_clock.version));
2166 }
2167
2168 static int kvm_guest_time_update(struct kvm_vcpu *v)
2169 {
2170         unsigned long flags, tgt_tsc_khz;
2171         struct kvm_vcpu_arch *vcpu = &v->arch;
2172         struct kvm_arch *ka = &v->kvm->arch;
2173         s64 kernel_ns;
2174         u64 tsc_timestamp, host_tsc;
2175         u8 pvclock_flags;
2176         bool use_master_clock;
2177
2178         kernel_ns = 0;
2179         host_tsc = 0;
2180
2181         /*
2182          * If the host uses TSC clock, then passthrough TSC as stable
2183          * to the guest.
2184          */
2185         spin_lock(&ka->pvclock_gtod_sync_lock);
2186         use_master_clock = ka->use_master_clock;
2187         if (use_master_clock) {
2188                 host_tsc = ka->master_cycle_now;
2189                 kernel_ns = ka->master_kernel_ns;
2190         }
2191         spin_unlock(&ka->pvclock_gtod_sync_lock);
2192
2193         /* Keep irq disabled to prevent changes to the clock */
2194         local_irq_save(flags);
2195         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2196         if (unlikely(tgt_tsc_khz == 0)) {
2197                 local_irq_restore(flags);
2198                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2199                 return 1;
2200         }
2201         if (!use_master_clock) {
2202                 host_tsc = rdtsc();
2203                 kernel_ns = ktime_get_boottime_ns();
2204         }
2205
2206         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2207
2208         /*
2209          * We may have to catch up the TSC to match elapsed wall clock
2210          * time for two reasons, even if kvmclock is used.
2211          *   1) CPU could have been running below the maximum TSC rate
2212          *   2) Broken TSC compensation resets the base at each VCPU
2213          *      entry to avoid unknown leaps of TSC even when running
2214          *      again on the same CPU.  This may cause apparent elapsed
2215          *      time to disappear, and the guest to stand still or run
2216          *      very slowly.
2217          */
2218         if (vcpu->tsc_catchup) {
2219                 u64 tsc = compute_guest_tsc(v, kernel_ns);
2220                 if (tsc > tsc_timestamp) {
2221                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2222                         tsc_timestamp = tsc;
2223                 }
2224         }
2225
2226         local_irq_restore(flags);
2227
2228         /* With all the info we got, fill in the values */
2229
2230         if (kvm_has_tsc_control)
2231                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2232
2233         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2234                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2235                                    &vcpu->hv_clock.tsc_shift,
2236                                    &vcpu->hv_clock.tsc_to_system_mul);
2237                 vcpu->hw_tsc_khz = tgt_tsc_khz;
2238         }
2239
2240         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2241         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2242         vcpu->last_guest_tsc = tsc_timestamp;
2243
2244         /* If the host uses TSC clocksource, then it is stable */
2245         pvclock_flags = 0;
2246         if (use_master_clock)
2247                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2248
2249         vcpu->hv_clock.flags = pvclock_flags;
2250
2251         if (vcpu->pv_time_enabled)
2252                 kvm_setup_pvclock_page(v);
2253         if (v == kvm_get_vcpu(v->kvm, 0))
2254                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2255         return 0;
2256 }
2257
2258 /*
2259  * kvmclock updates which are isolated to a given vcpu, such as
2260  * vcpu->cpu migration, should not allow system_timestamp from
2261  * the rest of the vcpus to remain static. Otherwise ntp frequency
2262  * correction applies to one vcpu's system_timestamp but not
2263  * the others.
2264  *
2265  * So in those cases, request a kvmclock update for all vcpus.
2266  * We need to rate-limit these requests though, as they can
2267  * considerably slow guests that have a large number of vcpus.
2268  * The time for a remote vcpu to update its kvmclock is bound
2269  * by the delay we use to rate-limit the updates.
2270  */
2271
2272 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2273
2274 static void kvmclock_update_fn(struct work_struct *work)
2275 {
2276         int i;
2277         struct delayed_work *dwork = to_delayed_work(work);
2278         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2279                                            kvmclock_update_work);
2280         struct kvm *kvm = container_of(ka, struct kvm, arch);
2281         struct kvm_vcpu *vcpu;
2282
2283         kvm_for_each_vcpu(i, vcpu, kvm) {
2284                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2285                 kvm_vcpu_kick(vcpu);
2286         }
2287 }
2288
2289 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2290 {
2291         struct kvm *kvm = v->kvm;
2292
2293         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2294         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2295                                         KVMCLOCK_UPDATE_DELAY);
2296 }
2297
2298 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2299
2300 static void kvmclock_sync_fn(struct work_struct *work)
2301 {
2302         struct delayed_work *dwork = to_delayed_work(work);
2303         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2304                                            kvmclock_sync_work);
2305         struct kvm *kvm = container_of(ka, struct kvm, arch);
2306
2307         if (!kvmclock_periodic_sync)
2308                 return;
2309
2310         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2311         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2312                                         KVMCLOCK_SYNC_PERIOD);
2313 }
2314
2315 /*
2316  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2317  */
2318 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2319 {
2320         /* McStatusWrEn enabled? */
2321         if (guest_cpuid_is_amd(vcpu))
2322                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2323
2324         return false;
2325 }
2326
2327 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2328 {
2329         u64 mcg_cap = vcpu->arch.mcg_cap;
2330         unsigned bank_num = mcg_cap & 0xff;
2331         u32 msr = msr_info->index;
2332         u64 data = msr_info->data;
2333
2334         switch (msr) {
2335         case MSR_IA32_MCG_STATUS:
2336                 vcpu->arch.mcg_status = data;
2337                 break;
2338         case MSR_IA32_MCG_CTL:
2339                 if (!(mcg_cap & MCG_CTL_P) &&
2340                     (data || !msr_info->host_initiated))
2341                         return 1;
2342                 if (data != 0 && data != ~(u64)0)
2343                         return 1;
2344                 vcpu->arch.mcg_ctl = data;
2345                 break;
2346         default:
2347                 if (msr >= MSR_IA32_MC0_CTL &&
2348                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2349                         u32 offset = msr - MSR_IA32_MC0_CTL;
2350                         /* only 0 or all 1s can be written to IA32_MCi_CTL
2351                          * some Linux kernels though clear bit 10 in bank 4 to
2352                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2353                          * this to avoid an uncatched #GP in the guest
2354                          */
2355                         if ((offset & 0x3) == 0 &&
2356                             data != 0 && (data | (1 << 10)) != ~(u64)0)
2357                                 return -1;
2358
2359                         /* MCi_STATUS */
2360                         if (!msr_info->host_initiated &&
2361                             (offset & 0x3) == 1 && data != 0) {
2362                                 if (!can_set_mci_status(vcpu))
2363                                         return -1;
2364                         }
2365
2366                         vcpu->arch.mce_banks[offset] = data;
2367                         break;
2368                 }
2369                 return 1;
2370         }
2371         return 0;
2372 }
2373
2374 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2375 {
2376         struct kvm *kvm = vcpu->kvm;
2377         int lm = is_long_mode(vcpu);
2378         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2379                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2380         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2381                 : kvm->arch.xen_hvm_config.blob_size_32;
2382         u32 page_num = data & ~PAGE_MASK;
2383         u64 page_addr = data & PAGE_MASK;
2384         u8 *page;
2385         int r;
2386
2387         r = -E2BIG;
2388         if (page_num >= blob_size)
2389                 goto out;
2390         r = -ENOMEM;
2391         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2392         if (IS_ERR(page)) {
2393                 r = PTR_ERR(page);
2394                 goto out;
2395         }
2396         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2397                 goto out_free;
2398         r = 0;
2399 out_free:
2400         kfree(page);
2401 out:
2402         return r;
2403 }
2404
2405 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2406 {
2407         gpa_t gpa = data & ~0x3f;
2408
2409         /* Bits 3:5 are reserved, Should be zero */
2410         if (data & 0x38)
2411                 return 1;
2412
2413         vcpu->arch.apf.msr_val = data;
2414
2415         if (!(data & KVM_ASYNC_PF_ENABLED)) {
2416                 kvm_clear_async_pf_completion_queue(vcpu);
2417                 kvm_async_pf_hash_reset(vcpu);
2418                 return 0;
2419         }
2420
2421         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2422                                         sizeof(u32)))
2423                 return 1;
2424
2425         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2426         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2427         kvm_async_pf_wakeup_all(vcpu);
2428         return 0;
2429 }
2430
2431 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2432 {
2433         vcpu->arch.pv_time_enabled = false;
2434 }
2435
2436 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2437 {
2438         ++vcpu->stat.tlb_flush;
2439         kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2440 }
2441
2442 static void record_steal_time(struct kvm_vcpu *vcpu)
2443 {
2444         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2445                 return;
2446
2447         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2448                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2449                 return;
2450
2451         /*
2452          * Doing a TLB flush here, on the guest's behalf, can avoid
2453          * expensive IPIs.
2454          */
2455         if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2456                 kvm_vcpu_flush_tlb(vcpu, false);
2457
2458         if (vcpu->arch.st.steal.version & 1)
2459                 vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2460
2461         vcpu->arch.st.steal.version += 1;
2462
2463         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2464                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2465
2466         smp_wmb();
2467
2468         vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2469                 vcpu->arch.st.last_steal;
2470         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2471
2472         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2473                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2474
2475         smp_wmb();
2476
2477         vcpu->arch.st.steal.version += 1;
2478
2479         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2480                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2481 }
2482
2483 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2484 {
2485         bool pr = false;
2486         u32 msr = msr_info->index;
2487         u64 data = msr_info->data;
2488
2489         switch (msr) {
2490         case MSR_AMD64_NB_CFG:
2491         case MSR_IA32_UCODE_WRITE:
2492         case MSR_VM_HSAVE_PA:
2493         case MSR_AMD64_PATCH_LOADER:
2494         case MSR_AMD64_BU_CFG2:
2495         case MSR_AMD64_DC_CFG:
2496         case MSR_F15H_EX_CFG:
2497                 break;
2498
2499         case MSR_IA32_UCODE_REV:
2500                 if (msr_info->host_initiated)
2501                         vcpu->arch.microcode_version = data;
2502                 break;
2503         case MSR_IA32_ARCH_CAPABILITIES:
2504                 if (!msr_info->host_initiated)
2505                         return 1;
2506                 vcpu->arch.arch_capabilities = data;
2507                 break;
2508         case MSR_EFER:
2509                 return set_efer(vcpu, msr_info);
2510         case MSR_K7_HWCR:
2511                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2512                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2513                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2514
2515                 /* Handle McStatusWrEn */
2516                 if (data == BIT_ULL(18)) {
2517                         vcpu->arch.msr_hwcr = data;
2518                 } else if (data != 0) {
2519                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2520                                     data);
2521                         return 1;
2522                 }
2523                 break;
2524         case MSR_FAM10H_MMIO_CONF_BASE:
2525                 if (data != 0) {
2526                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2527                                     "0x%llx\n", data);
2528                         return 1;
2529                 }
2530                 break;
2531         case MSR_IA32_DEBUGCTLMSR:
2532                 if (!data) {
2533                         /* We support the non-activated case already */
2534                         break;
2535                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2536                         /* Values other than LBR and BTF are vendor-specific,
2537                            thus reserved and should throw a #GP */
2538                         return 1;
2539                 }
2540                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2541                             __func__, data);
2542                 break;
2543         case 0x200 ... 0x2ff:
2544                 return kvm_mtrr_set_msr(vcpu, msr, data);
2545         case MSR_IA32_APICBASE:
2546                 return kvm_set_apic_base(vcpu, msr_info);
2547         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2548                 return kvm_x2apic_msr_write(vcpu, msr, data);
2549         case MSR_IA32_TSCDEADLINE:
2550                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2551                 break;
2552         case MSR_IA32_TSC_ADJUST:
2553                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2554                         if (!msr_info->host_initiated) {
2555                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2556                                 adjust_tsc_offset_guest(vcpu, adj);
2557                         }
2558                         vcpu->arch.ia32_tsc_adjust_msr = data;
2559                 }
2560                 break;
2561         case MSR_IA32_MISC_ENABLE:
2562                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2563                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2564                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2565                                 return 1;
2566                         vcpu->arch.ia32_misc_enable_msr = data;
2567                         kvm_update_cpuid(vcpu);
2568                 } else {
2569                         vcpu->arch.ia32_misc_enable_msr = data;
2570                 }
2571                 break;
2572         case MSR_IA32_SMBASE:
2573                 if (!msr_info->host_initiated)
2574                         return 1;
2575                 vcpu->arch.smbase = data;
2576                 break;
2577         case MSR_IA32_POWER_CTL:
2578                 vcpu->arch.msr_ia32_power_ctl = data;
2579                 break;
2580         case MSR_IA32_TSC:
2581                 kvm_write_tsc(vcpu, msr_info);
2582                 break;
2583         case MSR_SMI_COUNT:
2584                 if (!msr_info->host_initiated)
2585                         return 1;
2586                 vcpu->arch.smi_count = data;
2587                 break;
2588         case MSR_KVM_WALL_CLOCK_NEW:
2589         case MSR_KVM_WALL_CLOCK:
2590                 vcpu->kvm->arch.wall_clock = data;
2591                 kvm_write_wall_clock(vcpu->kvm, data);
2592                 break;
2593         case MSR_KVM_SYSTEM_TIME_NEW:
2594         case MSR_KVM_SYSTEM_TIME: {
2595                 struct kvm_arch *ka = &vcpu->kvm->arch;
2596
2597                 kvmclock_reset(vcpu);
2598
2599                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2600                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2601
2602                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2603                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2604
2605                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2606                 }
2607
2608                 vcpu->arch.time = data;
2609                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2610
2611                 /* we verify if the enable bit is set... */
2612                 if (!(data & 1))
2613                         break;
2614
2615                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2616                      &vcpu->arch.pv_time, data & ~1ULL,
2617                      sizeof(struct pvclock_vcpu_time_info)))
2618                         vcpu->arch.pv_time_enabled = false;
2619                 else
2620                         vcpu->arch.pv_time_enabled = true;
2621
2622                 break;
2623         }
2624         case MSR_KVM_ASYNC_PF_EN:
2625                 if (kvm_pv_enable_async_pf(vcpu, data))
2626                         return 1;
2627                 break;
2628         case MSR_KVM_STEAL_TIME:
2629
2630                 if (unlikely(!sched_info_on()))
2631                         return 1;
2632
2633                 if (data & KVM_STEAL_RESERVED_MASK)
2634                         return 1;
2635
2636                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2637                                                 data & KVM_STEAL_VALID_BITS,
2638                                                 sizeof(struct kvm_steal_time)))
2639                         return 1;
2640
2641                 vcpu->arch.st.msr_val = data;
2642
2643                 if (!(data & KVM_MSR_ENABLED))
2644                         break;
2645
2646                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2647
2648                 break;
2649         case MSR_KVM_PV_EOI_EN:
2650                 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2651                         return 1;
2652                 break;
2653
2654         case MSR_KVM_POLL_CONTROL:
2655                 /* only enable bit supported */
2656                 if (data & (-1ULL << 1))
2657                         return 1;
2658
2659                 vcpu->arch.msr_kvm_poll_control = data;
2660                 break;
2661
2662         case MSR_IA32_MCG_CTL:
2663         case MSR_IA32_MCG_STATUS:
2664         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2665                 return set_msr_mce(vcpu, msr_info);
2666
2667         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2668         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2669                 pr = true; /* fall through */
2670         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2671         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2672                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2673                         return kvm_pmu_set_msr(vcpu, msr_info);
2674
2675                 if (pr || data != 0)
2676                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2677                                     "0x%x data 0x%llx\n", msr, data);
2678                 break;
2679         case MSR_K7_CLK_CTL:
2680                 /*
2681                  * Ignore all writes to this no longer documented MSR.
2682                  * Writes are only relevant for old K7 processors,
2683                  * all pre-dating SVM, but a recommended workaround from
2684                  * AMD for these chips. It is possible to specify the
2685                  * affected processor models on the command line, hence
2686                  * the need to ignore the workaround.
2687                  */
2688                 break;
2689         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2690         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2691         case HV_X64_MSR_CRASH_CTL:
2692         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2693         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2694         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2695         case HV_X64_MSR_TSC_EMULATION_STATUS:
2696                 return kvm_hv_set_msr_common(vcpu, msr, data,
2697                                              msr_info->host_initiated);
2698         case MSR_IA32_BBL_CR_CTL3:
2699                 /* Drop writes to this legacy MSR -- see rdmsr
2700                  * counterpart for further detail.
2701                  */
2702                 if (report_ignored_msrs)
2703                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2704                                 msr, data);
2705                 break;
2706         case MSR_AMD64_OSVW_ID_LENGTH:
2707                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2708                         return 1;
2709                 vcpu->arch.osvw.length = data;
2710                 break;
2711         case MSR_AMD64_OSVW_STATUS:
2712                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2713                         return 1;
2714                 vcpu->arch.osvw.status = data;
2715                 break;
2716         case MSR_PLATFORM_INFO:
2717                 if (!msr_info->host_initiated ||
2718                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2719                      cpuid_fault_enabled(vcpu)))
2720                         return 1;
2721                 vcpu->arch.msr_platform_info = data;
2722                 break;
2723         case MSR_MISC_FEATURES_ENABLES:
2724                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2725                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2726                      !supports_cpuid_fault(vcpu)))
2727                         return 1;
2728                 vcpu->arch.msr_misc_features_enables = data;
2729                 break;
2730         default:
2731                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2732                         return xen_hvm_config(vcpu, data);
2733                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2734                         return kvm_pmu_set_msr(vcpu, msr_info);
2735                 if (!ignore_msrs) {
2736                         vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2737                                     msr, data);
2738                         return 1;
2739                 } else {
2740                         if (report_ignored_msrs)
2741                                 vcpu_unimpl(vcpu,
2742                                         "ignored wrmsr: 0x%x data 0x%llx\n",
2743                                         msr, data);
2744                         break;
2745                 }
2746         }
2747         return 0;
2748 }
2749 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2750
2751
2752 /*
2753  * Reads an msr value (of 'msr_index') into 'pdata'.
2754  * Returns 0 on success, non-0 otherwise.
2755  * Assumes vcpu_load() was already called.
2756  */
2757 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2758 {
2759         return kvm_x86_ops->get_msr(vcpu, msr);
2760 }
2761 EXPORT_SYMBOL_GPL(kvm_get_msr);
2762
2763 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2764 {
2765         u64 data;
2766         u64 mcg_cap = vcpu->arch.mcg_cap;
2767         unsigned bank_num = mcg_cap & 0xff;
2768
2769         switch (msr) {
2770         case MSR_IA32_P5_MC_ADDR:
2771         case MSR_IA32_P5_MC_TYPE:
2772                 data = 0;
2773                 break;
2774         case MSR_IA32_MCG_CAP:
2775                 data = vcpu->arch.mcg_cap;
2776                 break;
2777         case MSR_IA32_MCG_CTL:
2778                 if (!(mcg_cap & MCG_CTL_P) && !host)
2779                         return 1;
2780                 data = vcpu->arch.mcg_ctl;
2781                 break;
2782         case MSR_IA32_MCG_STATUS:
2783                 data = vcpu->arch.mcg_status;
2784                 break;
2785         default:
2786                 if (msr >= MSR_IA32_MC0_CTL &&
2787                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2788                         u32 offset = msr - MSR_IA32_MC0_CTL;
2789                         data = vcpu->arch.mce_banks[offset];
2790                         break;
2791                 }
2792                 return 1;
2793         }
2794         *pdata = data;
2795         return 0;
2796 }
2797
2798 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2799 {
2800         switch (msr_info->index) {
2801         case MSR_IA32_PLATFORM_ID:
2802         case MSR_IA32_EBL_CR_POWERON:
2803         case MSR_IA32_DEBUGCTLMSR:
2804         case MSR_IA32_LASTBRANCHFROMIP:
2805         case MSR_IA32_LASTBRANCHTOIP:
2806         case MSR_IA32_LASTINTFROMIP:
2807         case MSR_IA32_LASTINTTOIP:
2808         case MSR_K8_SYSCFG:
2809         case MSR_K8_TSEG_ADDR:
2810         case MSR_K8_TSEG_MASK:
2811         case MSR_VM_HSAVE_PA:
2812         case MSR_K8_INT_PENDING_MSG:
2813         case MSR_AMD64_NB_CFG:
2814         case MSR_FAM10H_MMIO_CONF_BASE:
2815         case MSR_AMD64_BU_CFG2:
2816         case MSR_IA32_PERF_CTL:
2817         case MSR_AMD64_DC_CFG:
2818         case MSR_F15H_EX_CFG:
2819                 msr_info->data = 0;
2820                 break;
2821         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2822         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2823         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2824         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2825         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2826                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2827                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2828                 msr_info->data = 0;
2829                 break;
2830         case MSR_IA32_UCODE_REV:
2831                 msr_info->data = vcpu->arch.microcode_version;
2832                 break;
2833         case MSR_IA32_ARCH_CAPABILITIES:
2834                 if (!msr_info->host_initiated &&
2835                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2836                         return 1;
2837                 msr_info->data = vcpu->arch.arch_capabilities;
2838                 break;
2839         case MSR_IA32_POWER_CTL:
2840                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2841                 break;
2842         case MSR_IA32_TSC:
2843                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2844                 break;
2845         case MSR_MTRRcap:
2846         case 0x200 ... 0x2ff:
2847                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2848         case 0xcd: /* fsb frequency */
2849                 msr_info->data = 3;
2850                 break;
2851                 /*
2852                  * MSR_EBC_FREQUENCY_ID
2853                  * Conservative value valid for even the basic CPU models.
2854                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2855                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2856                  * and 266MHz for model 3, or 4. Set Core Clock
2857                  * Frequency to System Bus Frequency Ratio to 1 (bits
2858                  * 31:24) even though these are only valid for CPU
2859                  * models > 2, however guests may end up dividing or
2860                  * multiplying by zero otherwise.
2861                  */
2862         case MSR_EBC_FREQUENCY_ID:
2863                 msr_info->data = 1 << 24;
2864                 break;
2865         case MSR_IA32_APICBASE:
2866                 msr_info->data = kvm_get_apic_base(vcpu);
2867                 break;
2868         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2869                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2870                 break;
2871         case MSR_IA32_TSCDEADLINE:
2872                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2873                 break;
2874         case MSR_IA32_TSC_ADJUST:
2875                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2876                 break;
2877         case MSR_IA32_MISC_ENABLE:
2878                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2879                 break;
2880         case MSR_IA32_SMBASE:
2881                 if (!msr_info->host_initiated)
2882                         return 1;
2883                 msr_info->data = vcpu->arch.smbase;
2884                 break;
2885         case MSR_SMI_COUNT:
2886                 msr_info->data = vcpu->arch.smi_count;
2887                 break;
2888         case MSR_IA32_PERF_STATUS:
2889                 /* TSC increment by tick */
2890                 msr_info->data = 1000ULL;
2891                 /* CPU multiplier */
2892                 msr_info->data |= (((uint64_t)4ULL) << 40);
2893                 break;
2894         case MSR_EFER:
2895                 msr_info->data = vcpu->arch.efer;
2896                 break;
2897         case MSR_KVM_WALL_CLOCK:
2898         case MSR_KVM_WALL_CLOCK_NEW:
2899                 msr_info->data = vcpu->kvm->arch.wall_clock;
2900                 break;
2901         case MSR_KVM_SYSTEM_TIME:
2902         case MSR_KVM_SYSTEM_TIME_NEW:
2903                 msr_info->data = vcpu->arch.time;
2904                 break;
2905         case MSR_KVM_ASYNC_PF_EN:
2906                 msr_info->data = vcpu->arch.apf.msr_val;
2907                 break;
2908         case MSR_KVM_STEAL_TIME:
2909                 msr_info->data = vcpu->arch.st.msr_val;
2910                 break;
2911         case MSR_KVM_PV_EOI_EN:
2912                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2913                 break;
2914         case MSR_KVM_POLL_CONTROL:
2915                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
2916                 break;
2917         case MSR_IA32_P5_MC_ADDR:
2918         case MSR_IA32_P5_MC_TYPE:
2919         case MSR_IA32_MCG_CAP:
2920         case MSR_IA32_MCG_CTL:
2921         case MSR_IA32_MCG_STATUS:
2922         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2923                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
2924                                    msr_info->host_initiated);
2925         case MSR_K7_CLK_CTL:
2926                 /*
2927                  * Provide expected ramp-up count for K7. All other
2928                  * are set to zero, indicating minimum divisors for
2929                  * every field.
2930                  *
2931                  * This prevents guest kernels on AMD host with CPU
2932                  * type 6, model 8 and higher from exploding due to
2933                  * the rdmsr failing.
2934                  */
2935                 msr_info->data = 0x20000000;
2936                 break;
2937         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2938         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2939         case HV_X64_MSR_CRASH_CTL:
2940         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2941         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2942         case HV_X64_MSR_TSC_EMULATION_CONTROL:
2943         case HV_X64_MSR_TSC_EMULATION_STATUS:
2944                 return kvm_hv_get_msr_common(vcpu,
2945                                              msr_info->index, &msr_info->data,
2946                                              msr_info->host_initiated);
2947                 break;
2948         case MSR_IA32_BBL_CR_CTL3:
2949                 /* This legacy MSR exists but isn't fully documented in current
2950                  * silicon.  It is however accessed by winxp in very narrow
2951                  * scenarios where it sets bit #19, itself documented as
2952                  * a "reserved" bit.  Best effort attempt to source coherent
2953                  * read data here should the balance of the register be
2954                  * interpreted by the guest:
2955                  *
2956                  * L2 cache control register 3: 64GB range, 256KB size,
2957                  * enabled, latency 0x1, configured
2958                  */
2959                 msr_info->data = 0xbe702111;
2960                 break;
2961         case MSR_AMD64_OSVW_ID_LENGTH:
2962                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2963                         return 1;
2964                 msr_info->data = vcpu->arch.osvw.length;
2965                 break;
2966         case MSR_AMD64_OSVW_STATUS:
2967                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2968                         return 1;
2969                 msr_info->data = vcpu->arch.osvw.status;
2970                 break;
2971         case MSR_PLATFORM_INFO:
2972                 if (!msr_info->host_initiated &&
2973                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
2974                         return 1;
2975                 msr_info->data = vcpu->arch.msr_platform_info;
2976                 break;
2977         case MSR_MISC_FEATURES_ENABLES:
2978                 msr_info->data = vcpu->arch.msr_misc_features_enables;
2979                 break;
2980         case MSR_K7_HWCR:
2981                 msr_info->data = vcpu->arch.msr_hwcr;
2982                 break;
2983         default:
2984                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2985                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2986                 if (!ignore_msrs) {
2987                         vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
2988                                                msr_info->index);
2989                         return 1;
2990                 } else {
2991                         if (report_ignored_msrs)
2992                                 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
2993                                         msr_info->index);
2994                         msr_info->data = 0;
2995                 }
2996                 break;
2997         }
2998         return 0;
2999 }
3000 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3001
3002 /*
3003  * Read or write a bunch of msrs. All parameters are kernel addresses.
3004  *
3005  * @return number of msrs set successfully.
3006  */
3007 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3008                     struct kvm_msr_entry *entries,
3009                     int (*do_msr)(struct kvm_vcpu *vcpu,
3010                                   unsigned index, u64 *data))
3011 {
3012         int i;
3013
3014         for (i = 0; i < msrs->nmsrs; ++i)
3015                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3016                         break;
3017
3018         return i;
3019 }
3020
3021 /*
3022  * Read or write a bunch of msrs. Parameters are user addresses.
3023  *
3024  * @return number of msrs set successfully.
3025  */
3026 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3027                   int (*do_msr)(struct kvm_vcpu *vcpu,
3028                                 unsigned index, u64 *data),
3029                   int writeback)
3030 {
3031         struct kvm_msrs msrs;
3032         struct kvm_msr_entry *entries;
3033         int r, n;
3034         unsigned size;
3035
3036         r = -EFAULT;
3037         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3038                 goto out;
3039
3040         r = -E2BIG;
3041         if (msrs.nmsrs >= MAX_IO_MSRS)
3042                 goto out;
3043
3044         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3045         entries = memdup_user(user_msrs->entries, size);
3046         if (IS_ERR(entries)) {
3047                 r = PTR_ERR(entries);
3048                 goto out;
3049         }
3050
3051         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3052         if (r < 0)
3053                 goto out_free;
3054
3055         r = -EFAULT;
3056         if (writeback && copy_to_user(user_msrs->entries, entries, size))
3057                 goto out_free;
3058
3059         r = n;
3060
3061 out_free:
3062         kfree(entries);
3063 out:
3064         return r;
3065 }
3066
3067 static inline bool kvm_can_mwait_in_guest(void)
3068 {
3069         return boot_cpu_has(X86_FEATURE_MWAIT) &&
3070                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3071                 boot_cpu_has(X86_FEATURE_ARAT);
3072 }
3073
3074 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3075 {
3076         int r = 0;
3077
3078         switch (ext) {
3079         case KVM_CAP_IRQCHIP:
3080         case KVM_CAP_HLT:
3081         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3082         case KVM_CAP_SET_TSS_ADDR:
3083         case KVM_CAP_EXT_CPUID:
3084         case KVM_CAP_EXT_EMUL_CPUID:
3085         case KVM_CAP_CLOCKSOURCE:
3086         case KVM_CAP_PIT:
3087         case KVM_CAP_NOP_IO_DELAY:
3088         case KVM_CAP_MP_STATE:
3089         case KVM_CAP_SYNC_MMU:
3090         case KVM_CAP_USER_NMI:
3091         case KVM_CAP_REINJECT_CONTROL:
3092         case KVM_CAP_IRQ_INJECT_STATUS:
3093         case KVM_CAP_IOEVENTFD:
3094         case KVM_CAP_IOEVENTFD_NO_LENGTH:
3095         case KVM_CAP_PIT2:
3096         case KVM_CAP_PIT_STATE2:
3097         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3098         case KVM_CAP_XEN_HVM:
3099         case KVM_CAP_VCPU_EVENTS:
3100         case KVM_CAP_HYPERV:
3101         case KVM_CAP_HYPERV_VAPIC:
3102         case KVM_CAP_HYPERV_SPIN:
3103         case KVM_CAP_HYPERV_SYNIC:
3104         case KVM_CAP_HYPERV_SYNIC2:
3105         case KVM_CAP_HYPERV_VP_INDEX:
3106         case KVM_CAP_HYPERV_EVENTFD:
3107         case KVM_CAP_HYPERV_TLBFLUSH:
3108         case KVM_CAP_HYPERV_SEND_IPI:
3109         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3110         case KVM_CAP_HYPERV_CPUID:
3111         case KVM_CAP_PCI_SEGMENT:
3112         case KVM_CAP_DEBUGREGS:
3113         case KVM_CAP_X86_ROBUST_SINGLESTEP:
3114         case KVM_CAP_XSAVE:
3115         case KVM_CAP_ASYNC_PF:
3116         case KVM_CAP_GET_TSC_KHZ:
3117         case KVM_CAP_KVMCLOCK_CTRL:
3118         case KVM_CAP_READONLY_MEM:
3119         case KVM_CAP_HYPERV_TIME:
3120         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3121         case KVM_CAP_TSC_DEADLINE_TIMER:
3122         case KVM_CAP_DISABLE_QUIRKS:
3123         case KVM_CAP_SET_BOOT_CPU_ID:
3124         case KVM_CAP_SPLIT_IRQCHIP:
3125         case KVM_CAP_IMMEDIATE_EXIT:
3126         case KVM_CAP_PMU_EVENT_FILTER:
3127         case KVM_CAP_GET_MSR_FEATURES:
3128         case KVM_CAP_MSR_PLATFORM_INFO:
3129         case KVM_CAP_EXCEPTION_PAYLOAD:
3130                 r = 1;
3131                 break;
3132         case KVM_CAP_SYNC_REGS:
3133                 r = KVM_SYNC_X86_VALID_FIELDS;
3134                 break;
3135         case KVM_CAP_ADJUST_CLOCK:
3136                 r = KVM_CLOCK_TSC_STABLE;
3137                 break;
3138         case KVM_CAP_X86_DISABLE_EXITS:
3139                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3140                       KVM_X86_DISABLE_EXITS_CSTATE;
3141                 if(kvm_can_mwait_in_guest())
3142                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
3143                 break;
3144         case KVM_CAP_X86_SMM:
3145                 /* SMBASE is usually relocated above 1M on modern chipsets,
3146                  * and SMM handlers might indeed rely on 4G segment limits,
3147                  * so do not report SMM to be available if real mode is
3148                  * emulated via vm86 mode.  Still, do not go to great lengths
3149                  * to avoid userspace's usage of the feature, because it is a
3150                  * fringe case that is not enabled except via specific settings
3151                  * of the module parameters.
3152                  */
3153                 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3154                 break;
3155         case KVM_CAP_VAPIC:
3156                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3157                 break;
3158         case KVM_CAP_NR_VCPUS:
3159                 r = KVM_SOFT_MAX_VCPUS;
3160                 break;
3161         case KVM_CAP_MAX_VCPUS:
3162                 r = KVM_MAX_VCPUS;
3163                 break;
3164         case KVM_CAP_MAX_VCPU_ID:
3165                 r = KVM_MAX_VCPU_ID;
3166                 break;
3167         case KVM_CAP_PV_MMU:    /* obsolete */
3168                 r = 0;
3169                 break;
3170         case KVM_CAP_MCE:
3171                 r = KVM_MAX_MCE_BANKS;
3172                 break;
3173         case KVM_CAP_XCRS:
3174                 r = boot_cpu_has(X86_FEATURE_XSAVE);
3175                 break;
3176         case KVM_CAP_TSC_CONTROL:
3177                 r = kvm_has_tsc_control;
3178                 break;
3179         case KVM_CAP_X2APIC_API:
3180                 r = KVM_X2APIC_API_VALID_FLAGS;
3181                 break;
3182         case KVM_CAP_NESTED_STATE:
3183                 r = kvm_x86_ops->get_nested_state ?
3184                         kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3185                 break;
3186         default:
3187                 break;
3188         }
3189         return r;
3190
3191 }
3192
3193 long kvm_arch_dev_ioctl(struct file *filp,
3194                         unsigned int ioctl, unsigned long arg)
3195 {
3196         void __user *argp = (void __user *)arg;
3197         long r;
3198
3199         switch (ioctl) {
3200         case KVM_GET_MSR_INDEX_LIST: {
3201                 struct kvm_msr_list __user *user_msr_list = argp;
3202                 struct kvm_msr_list msr_list;
3203                 unsigned n;
3204
3205                 r = -EFAULT;
3206                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3207                         goto out;
3208                 n = msr_list.nmsrs;
3209                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3210                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3211                         goto out;
3212                 r = -E2BIG;
3213                 if (n < msr_list.nmsrs)
3214                         goto out;
3215                 r = -EFAULT;
3216                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3217                                  num_msrs_to_save * sizeof(u32)))
3218                         goto out;
3219                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3220                                  &emulated_msrs,
3221                                  num_emulated_msrs * sizeof(u32)))
3222                         goto out;
3223                 r = 0;
3224                 break;
3225         }
3226         case KVM_GET_SUPPORTED_CPUID:
3227         case KVM_GET_EMULATED_CPUID: {
3228                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3229                 struct kvm_cpuid2 cpuid;
3230
3231                 r = -EFAULT;
3232                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3233                         goto out;
3234
3235                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3236                                             ioctl);
3237                 if (r)
3238                         goto out;
3239
3240                 r = -EFAULT;
3241                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3242                         goto out;
3243                 r = 0;
3244                 break;
3245         }
3246         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3247                 r = -EFAULT;
3248                 if (copy_to_user(argp, &kvm_mce_cap_supported,
3249                                  sizeof(kvm_mce_cap_supported)))
3250                         goto out;
3251                 r = 0;
3252                 break;
3253         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3254                 struct kvm_msr_list __user *user_msr_list = argp;
3255                 struct kvm_msr_list msr_list;
3256                 unsigned int n;
3257
3258                 r = -EFAULT;
3259                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3260                         goto out;
3261                 n = msr_list.nmsrs;
3262                 msr_list.nmsrs = num_msr_based_features;
3263                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3264                         goto out;
3265                 r = -E2BIG;
3266                 if (n < msr_list.nmsrs)
3267                         goto out;
3268                 r = -EFAULT;
3269                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3270                                  num_msr_based_features * sizeof(u32)))
3271                         goto out;
3272                 r = 0;
3273                 break;
3274         }
3275         case KVM_GET_MSRS:
3276                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3277                 break;
3278         }
3279         default:
3280                 r = -EINVAL;
3281         }
3282 out:
3283         return r;
3284 }
3285
3286 static void wbinvd_ipi(void *garbage)
3287 {
3288         wbinvd();
3289 }
3290
3291 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3292 {
3293         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3294 }
3295
3296 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3297 {
3298         /* Address WBINVD may be executed by guest */
3299         if (need_emulate_wbinvd(vcpu)) {
3300                 if (kvm_x86_ops->has_wbinvd_exit())
3301                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3302                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3303                         smp_call_function_single(vcpu->cpu,
3304                                         wbinvd_ipi, NULL, 1);
3305         }
3306
3307         kvm_x86_ops->vcpu_load(vcpu, cpu);
3308
3309         /* Apply any externally detected TSC adjustments (due to suspend) */
3310         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3311                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3312                 vcpu->arch.tsc_offset_adjustment = 0;
3313                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3314         }
3315
3316         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3317                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3318                                 rdtsc() - vcpu->arch.last_host_tsc;
3319                 if (tsc_delta < 0)
3320                         mark_tsc_unstable("KVM discovered backwards TSC");
3321
3322                 if (kvm_check_tsc_unstable()) {
3323                         u64 offset = kvm_compute_tsc_offset(vcpu,
3324                                                 vcpu->arch.last_guest_tsc);
3325                         kvm_vcpu_write_tsc_offset(vcpu, offset);
3326                         vcpu->arch.tsc_catchup = 1;
3327                 }
3328
3329                 if (kvm_lapic_hv_timer_in_use(vcpu))
3330                         kvm_lapic_restart_hv_timer(vcpu);
3331
3332                 /*
3333                  * On a host with synchronized TSC, there is no need to update
3334                  * kvmclock on vcpu->cpu migration
3335                  */
3336                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3337                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3338                 if (vcpu->cpu != cpu)
3339                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3340                 vcpu->cpu = cpu;
3341         }
3342
3343         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3344 }
3345
3346 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3347 {
3348         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3349                 return;
3350
3351         vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3352
3353         kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3354                         &vcpu->arch.st.steal.preempted,
3355                         offsetof(struct kvm_steal_time, preempted),
3356                         sizeof(vcpu->arch.st.steal.preempted));
3357 }
3358
3359 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3360 {
3361         int idx;
3362
3363         if (vcpu->preempted)
3364                 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3365
3366         /*
3367          * Disable page faults because we're in atomic context here.
3368          * kvm_write_guest_offset_cached() would call might_fault()
3369          * that relies on pagefault_disable() to tell if there's a
3370          * bug. NOTE: the write to guest memory may not go through if
3371          * during postcopy live migration or if there's heavy guest
3372          * paging.
3373          */
3374         pagefault_disable();
3375         /*
3376          * kvm_memslots() will be called by
3377          * kvm_write_guest_offset_cached() so take the srcu lock.
3378          */
3379         idx = srcu_read_lock(&vcpu->kvm->srcu);
3380         kvm_steal_time_set_preempted(vcpu);
3381         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3382         pagefault_enable();
3383         kvm_x86_ops->vcpu_put(vcpu);
3384         vcpu->arch.last_host_tsc = rdtsc();
3385         /*
3386          * If userspace has set any breakpoints or watchpoints, dr6 is restored
3387          * on every vmexit, but if not, we might have a stale dr6 from the
3388          * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3389          */
3390         set_debugreg(0, 6);
3391 }
3392
3393 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3394                                     struct kvm_lapic_state *s)
3395 {
3396         if (vcpu->arch.apicv_active)
3397                 kvm_x86_ops->sync_pir_to_irr(vcpu);
3398
3399         return kvm_apic_get_state(vcpu, s);
3400 }
3401
3402 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3403                                     struct kvm_lapic_state *s)
3404 {
3405         int r;
3406
3407         r = kvm_apic_set_state(vcpu, s);
3408         if (r)
3409                 return r;
3410         update_cr8_intercept(vcpu);
3411
3412         return 0;
3413 }
3414
3415 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3416 {
3417         return (!lapic_in_kernel(vcpu) ||
3418                 kvm_apic_accept_pic_intr(vcpu));
3419 }
3420
3421 /*
3422  * if userspace requested an interrupt window, check that the
3423  * interrupt window is open.
3424  *
3425  * No need to exit to userspace if we already have an interrupt queued.
3426  */
3427 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3428 {
3429         return kvm_arch_interrupt_allowed(vcpu) &&
3430                 !kvm_cpu_has_interrupt(vcpu) &&
3431                 !kvm_event_needs_reinjection(vcpu) &&
3432                 kvm_cpu_accept_dm_intr(vcpu);
3433 }
3434
3435 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3436                                     struct kvm_interrupt *irq)
3437 {
3438         if (irq->irq >= KVM_NR_INTERRUPTS)
3439                 return -EINVAL;
3440
3441         if (!irqchip_in_kernel(vcpu->kvm)) {
3442                 kvm_queue_interrupt(vcpu, irq->irq, false);
3443                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3444                 return 0;
3445         }
3446
3447         /*
3448          * With in-kernel LAPIC, we only use this to inject EXTINT, so
3449          * fail for in-kernel 8259.
3450          */
3451         if (pic_in_kernel(vcpu->kvm))
3452                 return -ENXIO;
3453
3454         if (vcpu->arch.pending_external_vector != -1)
3455                 return -EEXIST;
3456
3457         vcpu->arch.pending_external_vector = irq->irq;
3458         kvm_make_request(KVM_REQ_EVENT, vcpu);
3459         return 0;
3460 }
3461
3462 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3463 {
3464         kvm_inject_nmi(vcpu);
3465
3466         return 0;
3467 }
3468
3469 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3470 {
3471         kvm_make_request(KVM_REQ_SMI, vcpu);
3472
3473         return 0;
3474 }
3475
3476 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3477                                            struct kvm_tpr_access_ctl *tac)
3478 {
3479         if (tac->flags)
3480                 return -EINVAL;
3481         vcpu->arch.tpr_access_reporting = !!tac->enabled;
3482         return 0;
3483 }
3484
3485 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3486                                         u64 mcg_cap)
3487 {
3488         int r;
3489         unsigned bank_num = mcg_cap & 0xff, bank;
3490
3491         r = -EINVAL;
3492         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3493                 goto out;
3494         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3495                 goto out;
3496         r = 0;
3497         vcpu->arch.mcg_cap = mcg_cap;
3498         /* Init IA32_MCG_CTL to all 1s */
3499         if (mcg_cap & MCG_CTL_P)
3500                 vcpu->arch.mcg_ctl = ~(u64)0;
3501         /* Init IA32_MCi_CTL to all 1s */
3502         for (bank = 0; bank < bank_num; bank++)
3503                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3504
3505         if (kvm_x86_ops->setup_mce)
3506                 kvm_x86_ops->setup_mce(vcpu);
3507 out:
3508         return r;
3509 }
3510
3511 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3512                                       struct kvm_x86_mce *mce)
3513 {
3514         u64 mcg_cap = vcpu->arch.mcg_cap;
3515         unsigned bank_num = mcg_cap & 0xff;
3516         u64 *banks = vcpu->arch.mce_banks;
3517
3518         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3519                 return -EINVAL;
3520         /*
3521          * if IA32_MCG_CTL is not all 1s, the uncorrected error
3522          * reporting is disabled
3523          */
3524         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3525             vcpu->arch.mcg_ctl != ~(u64)0)
3526                 return 0;
3527         banks += 4 * mce->bank;
3528         /*
3529          * if IA32_MCi_CTL is not all 1s, the uncorrected error
3530          * reporting is disabled for the bank
3531          */
3532         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3533                 return 0;
3534         if (mce->status & MCI_STATUS_UC) {
3535                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3536                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3537                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3538                         return 0;
3539                 }
3540                 if (banks[1] & MCI_STATUS_VAL)
3541                         mce->status |= MCI_STATUS_OVER;
3542                 banks[2] = mce->addr;
3543                 banks[3] = mce->misc;
3544                 vcpu->arch.mcg_status = mce->mcg_status;
3545                 banks[1] = mce->status;
3546                 kvm_queue_exception(vcpu, MC_VECTOR);
3547         } else if (!(banks[1] & MCI_STATUS_VAL)
3548                    || !(banks[1] & MCI_STATUS_UC)) {
3549                 if (banks[1] & MCI_STATUS_VAL)
3550                         mce->status |= MCI_STATUS_OVER;
3551                 banks[2] = mce->addr;
3552                 banks[3] = mce->misc;
3553                 banks[1] = mce->status;
3554         } else
3555                 banks[1] |= MCI_STATUS_OVER;
3556         return 0;
3557 }
3558
3559 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3560                                                struct kvm_vcpu_events *events)
3561 {
3562         process_nmi(vcpu);
3563
3564         /*
3565          * The API doesn't provide the instruction length for software
3566          * exceptions, so don't report them. As long as the guest RIP
3567          * isn't advanced, we should expect to encounter the exception
3568          * again.
3569          */
3570         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3571                 events->exception.injected = 0;
3572                 events->exception.pending = 0;
3573         } else {
3574                 events->exception.injected = vcpu->arch.exception.injected;
3575                 events->exception.pending = vcpu->arch.exception.pending;
3576                 /*
3577                  * For ABI compatibility, deliberately conflate
3578                  * pending and injected exceptions when
3579                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3580                  */
3581                 if (!vcpu->kvm->arch.exception_payload_enabled)
3582                         events->exception.injected |=
3583                                 vcpu->arch.exception.pending;
3584         }
3585         events->exception.nr = vcpu->arch.exception.nr;
3586         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3587         events->exception.error_code = vcpu->arch.exception.error_code;
3588         events->exception_has_payload = vcpu->arch.exception.has_payload;
3589         events->exception_payload = vcpu->arch.exception.payload;
3590
3591         events->interrupt.injected =
3592                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3593         events->interrupt.nr = vcpu->arch.interrupt.nr;
3594         events->interrupt.soft = 0;
3595         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3596
3597         events->nmi.injected = vcpu->arch.nmi_injected;
3598         events->nmi.pending = vcpu->arch.nmi_pending != 0;
3599         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3600         events->nmi.pad = 0;
3601
3602         events->sipi_vector = 0; /* never valid when reporting to user space */
3603
3604         events->smi.smm = is_smm(vcpu);
3605         events->smi.pending = vcpu->arch.smi_pending;
3606         events->smi.smm_inside_nmi =
3607                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3608         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3609
3610         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3611                          | KVM_VCPUEVENT_VALID_SHADOW
3612                          | KVM_VCPUEVENT_VALID_SMM);
3613         if (vcpu->kvm->arch.exception_payload_enabled)
3614                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3615
3616         memset(&events->reserved, 0, sizeof(events->reserved));
3617 }
3618
3619 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3620
3621 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3622                                               struct kvm_vcpu_events *events)
3623 {
3624         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3625                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3626                               | KVM_VCPUEVENT_VALID_SHADOW
3627                               | KVM_VCPUEVENT_VALID_SMM
3628                               | KVM_VCPUEVENT_VALID_PAYLOAD))
3629                 return -EINVAL;
3630
3631         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3632                 if (!vcpu->kvm->arch.exception_payload_enabled)
3633                         return -EINVAL;
3634                 if (events->exception.pending)
3635                         events->exception.injected = 0;
3636                 else
3637                         events->exception_has_payload = 0;
3638         } else {
3639                 events->exception.pending = 0;
3640                 events->exception_has_payload = 0;
3641         }
3642
3643         if ((events->exception.injected || events->exception.pending) &&
3644             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3645                 return -EINVAL;
3646
3647         /* INITs are latched while in SMM */
3648         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3649             (events->smi.smm || events->smi.pending) &&
3650             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3651                 return -EINVAL;
3652
3653         process_nmi(vcpu);
3654         vcpu->arch.exception.injected = events->exception.injected;
3655         vcpu->arch.exception.pending = events->exception.pending;
3656         vcpu->arch.exception.nr = events->exception.nr;
3657         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3658         vcpu->arch.exception.error_code = events->exception.error_code;
3659         vcpu->arch.exception.has_payload = events->exception_has_payload;
3660         vcpu->arch.exception.payload = events->exception_payload;
3661
3662         vcpu->arch.interrupt.injected = events->interrupt.injected;
3663         vcpu->arch.interrupt.nr = events->interrupt.nr;
3664         vcpu->arch.interrupt.soft = events->interrupt.soft;
3665         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3666                 kvm_x86_ops->set_interrupt_shadow(vcpu,
3667                                                   events->interrupt.shadow);
3668
3669         vcpu->arch.nmi_injected = events->nmi.injected;
3670         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3671                 vcpu->arch.nmi_pending = events->nmi.pending;
3672         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3673
3674         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3675             lapic_in_kernel(vcpu))
3676                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3677
3678         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3679                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3680                         if (events->smi.smm)
3681                                 vcpu->arch.hflags |= HF_SMM_MASK;
3682                         else
3683                                 vcpu->arch.hflags &= ~HF_SMM_MASK;
3684                         kvm_smm_changed(vcpu);
3685                 }
3686
3687                 vcpu->arch.smi_pending = events->smi.pending;
3688
3689                 if (events->smi.smm) {
3690                         if (events->smi.smm_inside_nmi)
3691                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3692                         else
3693                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3694                         if (lapic_in_kernel(vcpu)) {
3695                                 if (events->smi.latched_init)
3696                                         set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3697                                 else
3698                                         clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3699                         }
3700                 }
3701         }
3702
3703         kvm_make_request(KVM_REQ_EVENT, vcpu);
3704
3705         return 0;
3706 }
3707
3708 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3709                                              struct kvm_debugregs *dbgregs)
3710 {
3711         unsigned long val;
3712
3713         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3714         kvm_get_dr(vcpu, 6, &val);
3715         dbgregs->dr6 = val;
3716         dbgregs->dr7 = vcpu->arch.dr7;
3717         dbgregs->flags = 0;
3718         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3719 }
3720
3721 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3722                                             struct kvm_debugregs *dbgregs)
3723 {
3724         if (dbgregs->flags)
3725                 return -EINVAL;
3726
3727         if (dbgregs->dr6 & ~0xffffffffull)
3728                 return -EINVAL;
3729         if (dbgregs->dr7 & ~0xffffffffull)
3730                 return -EINVAL;
3731
3732         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3733         kvm_update_dr0123(vcpu);
3734         vcpu->arch.dr6 = dbgregs->dr6;
3735         kvm_update_dr6(vcpu);
3736         vcpu->arch.dr7 = dbgregs->dr7;
3737         kvm_update_dr7(vcpu);
3738
3739         return 0;
3740 }
3741
3742 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3743
3744 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3745 {
3746         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3747         u64 xstate_bv = xsave->header.xfeatures;
3748         u64 valid;
3749
3750         /*
3751          * Copy legacy XSAVE area, to avoid complications with CPUID
3752          * leaves 0 and 1 in the loop below.
3753          */
3754         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3755
3756         /* Set XSTATE_BV */
3757         xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3758         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3759
3760         /*
3761          * Copy each region from the possibly compacted offset to the
3762          * non-compacted offset.
3763          */
3764         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3765         while (valid) {
3766                 u64 xfeature_mask = valid & -valid;
3767                 int xfeature_nr = fls64(xfeature_mask) - 1;
3768                 void *src = get_xsave_addr(xsave, xfeature_nr);
3769
3770                 if (src) {
3771                         u32 size, offset, ecx, edx;
3772                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3773                                     &size, &offset, &ecx, &edx);
3774                         if (xfeature_nr == XFEATURE_PKRU)
3775                                 memcpy(dest + offset, &vcpu->arch.pkru,
3776                                        sizeof(vcpu->arch.pkru));
3777                         else
3778                                 memcpy(dest + offset, src, size);
3779
3780                 }
3781
3782                 valid -= xfeature_mask;
3783         }
3784 }
3785
3786 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3787 {
3788         struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3789         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3790         u64 valid;
3791
3792         /*
3793          * Copy legacy XSAVE area, to avoid complications with CPUID
3794          * leaves 0 and 1 in the loop below.
3795          */
3796         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3797
3798         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3799         xsave->header.xfeatures = xstate_bv;
3800         if (boot_cpu_has(X86_FEATURE_XSAVES))
3801                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3802
3803         /*
3804          * Copy each region from the non-compacted offset to the
3805          * possibly compacted offset.
3806          */
3807         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3808         while (valid) {
3809                 u64 xfeature_mask = valid & -valid;
3810                 int xfeature_nr = fls64(xfeature_mask) - 1;
3811                 void *dest = get_xsave_addr(xsave, xfeature_nr);
3812
3813                 if (dest) {
3814                         u32 size, offset, ecx, edx;
3815                         cpuid_count(XSTATE_CPUID, xfeature_nr,
3816                                     &size, &offset, &ecx, &edx);
3817                         if (xfeature_nr == XFEATURE_PKRU)
3818                                 memcpy(&vcpu->arch.pkru, src + offset,
3819                                        sizeof(vcpu->arch.pkru));
3820                         else
3821                                 memcpy(dest, src + offset, size);
3822                 }
3823
3824                 valid -= xfeature_mask;
3825         }
3826 }
3827
3828 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3829                                          struct kvm_xsave *guest_xsave)
3830 {
3831         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3832                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3833                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3834         } else {
3835                 memcpy(guest_xsave->region,
3836                         &vcpu->arch.guest_fpu->state.fxsave,
3837                         sizeof(struct fxregs_state));
3838                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3839                         XFEATURE_MASK_FPSSE;
3840         }
3841 }
3842
3843 #define XSAVE_MXCSR_OFFSET 24
3844
3845 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3846                                         struct kvm_xsave *guest_xsave)
3847 {
3848         u64 xstate_bv =
3849                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3850         u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
3851
3852         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3853                 /*
3854                  * Here we allow setting states that are not present in
3855                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3856                  * with old userspace.
3857                  */
3858                 if (xstate_bv & ~kvm_supported_xcr0() ||
3859                         mxcsr & ~mxcsr_feature_mask)
3860                         return -EINVAL;
3861                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3862         } else {
3863                 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
3864                         mxcsr & ~mxcsr_feature_mask)
3865                         return -EINVAL;
3866                 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
3867                         guest_xsave->region, sizeof(struct fxregs_state));
3868         }
3869         return 0;
3870 }
3871
3872 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3873                                         struct kvm_xcrs *guest_xcrs)
3874 {
3875         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3876                 guest_xcrs->nr_xcrs = 0;
3877                 return;
3878         }
3879
3880         guest_xcrs->nr_xcrs = 1;
3881         guest_xcrs->flags = 0;
3882         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3883         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3884 }
3885
3886 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3887                                        struct kvm_xcrs *guest_xcrs)
3888 {
3889         int i, r = 0;
3890
3891         if (!boot_cpu_has(X86_FEATURE_XSAVE))
3892                 return -EINVAL;
3893
3894         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3895                 return -EINVAL;
3896
3897         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3898                 /* Only support XCR0 currently */
3899                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3900                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3901                                 guest_xcrs->xcrs[i].value);
3902                         break;
3903                 }
3904         if (r)
3905                 r = -EINVAL;
3906         return r;
3907 }
3908
3909 /*
3910  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3911  * stopped by the hypervisor.  This function will be called from the host only.
3912  * EINVAL is returned when the host attempts to set the flag for a guest that
3913  * does not support pv clocks.
3914  */
3915 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3916 {
3917         if (!vcpu->arch.pv_time_enabled)
3918                 return -EINVAL;
3919         vcpu->arch.pvclock_set_guest_stopped_request = true;
3920         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3921         return 0;
3922 }
3923
3924 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3925                                      struct kvm_enable_cap *cap)
3926 {
3927         int r;
3928         uint16_t vmcs_version;
3929         void __user *user_ptr;
3930
3931         if (cap->flags)
3932                 return -EINVAL;
3933
3934         switch (cap->cap) {
3935         case KVM_CAP_HYPERV_SYNIC2:
3936                 if (cap->args[0])
3937                         return -EINVAL;
3938                 /* fall through */
3939
3940         case KVM_CAP_HYPERV_SYNIC:
3941                 if (!irqchip_in_kernel(vcpu->kvm))
3942                         return -EINVAL;
3943                 return kvm_hv_activate_synic(vcpu, cap->cap ==
3944                                              KVM_CAP_HYPERV_SYNIC2);
3945         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3946                 if (!kvm_x86_ops->nested_enable_evmcs)
3947                         return -ENOTTY;
3948                 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
3949                 if (!r) {
3950                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
3951                         if (copy_to_user(user_ptr, &vmcs_version,
3952                                          sizeof(vmcs_version)))
3953                                 r = -EFAULT;
3954                 }
3955                 return r;
3956
3957         default:
3958                 return -EINVAL;
3959         }
3960 }
3961
3962 long kvm_arch_vcpu_ioctl(struct file *filp,
3963                          unsigned int ioctl, unsigned long arg)
3964 {
3965         struct kvm_vcpu *vcpu = filp->private_data;
3966         void __user *argp = (void __user *)arg;
3967         int r;
3968         union {
3969                 struct kvm_lapic_state *lapic;
3970                 struct kvm_xsave *xsave;
3971                 struct kvm_xcrs *xcrs;
3972                 void *buffer;
3973         } u;
3974
3975         vcpu_load(vcpu);
3976
3977         u.buffer = NULL;
3978         switch (ioctl) {
3979         case KVM_GET_LAPIC: {
3980                 r = -EINVAL;
3981                 if (!lapic_in_kernel(vcpu))
3982                         goto out;
3983                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
3984                                 GFP_KERNEL_ACCOUNT);
3985
3986                 r = -ENOMEM;
3987                 if (!u.lapic)
3988                         goto out;
3989                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3990                 if (r)
3991                         goto out;
3992                 r = -EFAULT;
3993                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3994                         goto out;
3995                 r = 0;
3996                 break;
3997         }
3998         case KVM_SET_LAPIC: {
3999                 r = -EINVAL;
4000                 if (!lapic_in_kernel(vcpu))
4001                         goto out;
4002                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4003                 if (IS_ERR(u.lapic)) {
4004                         r = PTR_ERR(u.lapic);
4005                         goto out_nofree;
4006                 }
4007
4008                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4009                 break;
4010         }
4011         case KVM_INTERRUPT: {
4012                 struct kvm_interrupt irq;
4013
4014                 r = -EFAULT;
4015                 if (copy_from_user(&irq, argp, sizeof(irq)))
4016                         goto out;
4017                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4018                 break;
4019         }
4020         case KVM_NMI: {
4021                 r = kvm_vcpu_ioctl_nmi(vcpu);
4022                 break;
4023         }
4024         case KVM_SMI: {
4025                 r = kvm_vcpu_ioctl_smi(vcpu);
4026                 break;
4027         }
4028         case KVM_SET_CPUID: {
4029                 struct kvm_cpuid __user *cpuid_arg = argp;
4030                 struct kvm_cpuid cpuid;
4031
4032                 r = -EFAULT;
4033                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4034                         goto out;
4035                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4036                 break;
4037         }
4038         case KVM_SET_CPUID2: {
4039                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4040                 struct kvm_cpuid2 cpuid;
4041
4042                 r = -EFAULT;
4043                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4044                         goto out;
4045                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4046                                               cpuid_arg->entries);
4047                 break;
4048         }
4049         case KVM_GET_CPUID2: {
4050                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4051                 struct kvm_cpuid2 cpuid;
4052
4053                 r = -EFAULT;
4054                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4055                         goto out;
4056                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4057                                               cpuid_arg->entries);
4058                 if (r)
4059                         goto out;
4060                 r = -EFAULT;
4061                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4062                         goto out;
4063                 r = 0;
4064                 break;
4065         }
4066         case KVM_GET_MSRS: {
4067                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4068                 r = msr_io(vcpu, argp, do_get_msr, 1);
4069                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4070                 break;
4071         }
4072         case KVM_SET_MSRS: {
4073                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4074                 r = msr_io(vcpu, argp, do_set_msr, 0);
4075                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4076                 break;
4077         }
4078         case KVM_TPR_ACCESS_REPORTING: {
4079                 struct kvm_tpr_access_ctl tac;
4080
4081                 r = -EFAULT;
4082                 if (copy_from_user(&tac, argp, sizeof(tac)))
4083                         goto out;
4084                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4085                 if (r)
4086                         goto out;
4087                 r = -EFAULT;
4088                 if (copy_to_user(argp, &tac, sizeof(tac)))
4089                         goto out;
4090                 r = 0;
4091                 break;
4092         };
4093         case KVM_SET_VAPIC_ADDR: {
4094                 struct kvm_vapic_addr va;
4095                 int idx;
4096
4097                 r = -EINVAL;
4098                 if (!lapic_in_kernel(vcpu))
4099                         goto out;
4100                 r = -EFAULT;
4101                 if (copy_from_user(&va, argp, sizeof(va)))
4102                         goto out;
4103                 idx = srcu_read_lock(&vcpu->kvm->srcu);
4104                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4105                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4106                 break;
4107         }
4108         case KVM_X86_SETUP_MCE: {
4109                 u64 mcg_cap;
4110
4111                 r = -EFAULT;
4112                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4113                         goto out;
4114                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4115                 break;
4116         }
4117         case KVM_X86_SET_MCE: {
4118                 struct kvm_x86_mce mce;
4119
4120                 r = -EFAULT;
4121                 if (copy_from_user(&mce, argp, sizeof(mce)))
4122                         goto out;
4123                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4124                 break;
4125         }
4126         case KVM_GET_VCPU_EVENTS: {
4127                 struct kvm_vcpu_events events;
4128
4129                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4130
4131                 r = -EFAULT;
4132                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4133                         break;
4134                 r = 0;
4135                 break;
4136         }
4137         case KVM_SET_VCPU_EVENTS: {
4138                 struct kvm_vcpu_events events;
4139
4140                 r = -EFAULT;
4141                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4142                         break;
4143
4144                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4145                 break;
4146         }
4147         case KVM_GET_DEBUGREGS: {
4148                 struct kvm_debugregs dbgregs;
4149
4150                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4151
4152                 r = -EFAULT;
4153                 if (copy_to_user(argp, &dbgregs,
4154                                  sizeof(struct kvm_debugregs)))
4155                         break;
4156                 r = 0;
4157                 break;
4158         }
4159         case KVM_SET_DEBUGREGS: {
4160                 struct kvm_debugregs dbgregs;
4161
4162                 r = -EFAULT;
4163                 if (copy_from_user(&dbgregs, argp,
4164                                    sizeof(struct kvm_debugregs)))
4165                         break;
4166
4167                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4168                 break;
4169         }
4170         case KVM_GET_XSAVE: {
4171                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4172                 r = -ENOMEM;
4173                 if (!u.xsave)
4174                         break;
4175
4176                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4177
4178                 r = -EFAULT;
4179                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4180                         break;
4181                 r = 0;
4182                 break;
4183         }
4184         case KVM_SET_XSAVE: {
4185                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4186                 if (IS_ERR(u.xsave)) {
4187                         r = PTR_ERR(u.xsave);
4188                         goto out_nofree;
4189                 }
4190
4191                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4192                 break;
4193         }
4194         case KVM_GET_XCRS: {
4195                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4196                 r = -ENOMEM;
4197                 if (!u.xcrs)
4198                         break;
4199
4200                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4201
4202                 r = -EFAULT;
4203                 if (copy_to_user(argp, u.xcrs,
4204                                  sizeof(struct kvm_xcrs)))
4205                         break;
4206                 r = 0;
4207                 break;
4208         }
4209         case KVM_SET_XCRS: {
4210                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4211                 if (IS_ERR(u.xcrs)) {
4212                         r = PTR_ERR(u.xcrs);
4213                         goto out_nofree;
4214                 }
4215
4216                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4217                 break;
4218         }
4219         case KVM_SET_TSC_KHZ: {
4220                 u32 user_tsc_khz;
4221
4222                 r = -EINVAL;
4223                 user_tsc_khz = (u32)arg;
4224
4225                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4226                         goto out;
4227
4228                 if (user_tsc_khz == 0)
4229                         user_tsc_khz = tsc_khz;
4230
4231                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4232                         r = 0;
4233
4234                 goto out;
4235         }
4236         case KVM_GET_TSC_KHZ: {
4237                 r = vcpu->arch.virtual_tsc_khz;
4238                 goto out;
4239         }
4240         case KVM_KVMCLOCK_CTRL: {
4241                 r = kvm_set_guest_paused(vcpu);
4242                 goto out;
4243         }
4244         case KVM_ENABLE_CAP: {
4245                 struct kvm_enable_cap cap;
4246
4247                 r = -EFAULT;
4248                 if (copy_from_user(&cap, argp, sizeof(cap)))
4249                         goto out;
4250                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4251                 break;
4252         }
4253         case KVM_GET_NESTED_STATE: {
4254                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4255                 u32 user_data_size;
4256
4257                 r = -EINVAL;
4258                 if (!kvm_x86_ops->get_nested_state)
4259                         break;
4260
4261                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4262                 r = -EFAULT;
4263                 if (get_user(user_data_size, &user_kvm_nested_state->size))
4264                         break;
4265
4266                 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4267                                                   user_data_size);
4268                 if (r < 0)
4269                         break;
4270
4271                 if (r > user_data_size) {
4272                         if (put_user(r, &user_kvm_nested_state->size))
4273                                 r = -EFAULT;
4274                         else
4275                                 r = -E2BIG;
4276                         break;
4277                 }
4278
4279                 r = 0;
4280                 break;
4281         }
4282         case KVM_SET_NESTED_STATE: {
4283                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4284                 struct kvm_nested_state kvm_state;
4285
4286                 r = -EINVAL;
4287                 if (!kvm_x86_ops->set_nested_state)
4288                         break;
4289
4290                 r = -EFAULT;
4291                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4292                         break;
4293
4294                 r = -EINVAL;
4295                 if (kvm_state.size < sizeof(kvm_state))
4296                         break;
4297
4298                 if (kvm_state.flags &
4299                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4300                       | KVM_STATE_NESTED_EVMCS))
4301                         break;
4302
4303                 /* nested_run_pending implies guest_mode.  */
4304                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4305                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4306                         break;
4307
4308                 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4309                 break;
4310         }
4311         case KVM_GET_SUPPORTED_HV_CPUID: {
4312                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4313                 struct kvm_cpuid2 cpuid;
4314
4315                 r = -EFAULT;
4316                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4317                         goto out;
4318
4319                 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4320                                                 cpuid_arg->entries);
4321                 if (r)
4322                         goto out;
4323
4324                 r = -EFAULT;
4325                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4326                         goto out;
4327                 r = 0;
4328                 break;
4329         }
4330         default:
4331                 r = -EINVAL;
4332         }
4333 out:
4334         kfree(u.buffer);
4335 out_nofree:
4336         vcpu_put(vcpu);
4337         return r;
4338 }
4339
4340 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4341 {
4342         return VM_FAULT_SIGBUS;
4343 }
4344
4345 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4346 {
4347         int ret;
4348
4349         if (addr > (unsigned int)(-3 * PAGE_SIZE))
4350                 return -EINVAL;
4351         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4352         return ret;
4353 }
4354
4355 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4356                                               u64 ident_addr)
4357 {
4358         return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4359 }
4360
4361 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4362                                          unsigned long kvm_nr_mmu_pages)
4363 {
4364         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4365                 return -EINVAL;
4366
4367         mutex_lock(&kvm->slots_lock);
4368
4369         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4370         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4371
4372         mutex_unlock(&kvm->slots_lock);
4373         return 0;
4374 }
4375
4376 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4377 {
4378         return kvm->arch.n_max_mmu_pages;
4379 }
4380
4381 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4382 {
4383         struct kvm_pic *pic = kvm->arch.vpic;
4384         int r;
4385
4386         r = 0;
4387         switch (chip->chip_id) {
4388         case KVM_IRQCHIP_PIC_MASTER:
4389                 memcpy(&chip->chip.pic, &pic->pics[0],
4390                         sizeof(struct kvm_pic_state));
4391                 break;
4392         case KVM_IRQCHIP_PIC_SLAVE:
4393                 memcpy(&chip->chip.pic, &pic->pics[1],
4394                         sizeof(struct kvm_pic_state));
4395                 break;
4396         case KVM_IRQCHIP_IOAPIC:
4397                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4398                 break;
4399         default:
4400                 r = -EINVAL;
4401                 break;
4402         }
4403         return r;
4404 }
4405
4406 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4407 {
4408         struct kvm_pic *pic = kvm->arch.vpic;
4409         int r;
4410
4411         r = 0;
4412         switch (chip->chip_id) {
4413         case KVM_IRQCHIP_PIC_MASTER:
4414                 spin_lock(&pic->lock);
4415                 memcpy(&pic->pics[0], &chip->chip.pic,
4416                         sizeof(struct kvm_pic_state));
4417                 spin_unlock(&pic->lock);
4418                 break;
4419         case KVM_IRQCHIP_PIC_SLAVE:
4420                 spin_lock(&pic->lock);
4421                 memcpy(&pic->pics[1], &chip->chip.pic,
4422                         sizeof(struct kvm_pic_state));
4423                 spin_unlock(&pic->lock);
4424                 break;
4425         case KVM_IRQCHIP_IOAPIC:
4426                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4427                 break;
4428         default:
4429                 r = -EINVAL;
4430                 break;
4431         }
4432         kvm_pic_update_irq(pic);
4433         return r;
4434 }
4435
4436 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4437 {
4438         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4439
4440         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4441
4442         mutex_lock(&kps->lock);
4443         memcpy(ps, &kps->channels, sizeof(*ps));
4444         mutex_unlock(&kps->lock);
4445         return 0;
4446 }
4447
4448 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4449 {
4450         int i;
4451         struct kvm_pit *pit = kvm->arch.vpit;
4452
4453         mutex_lock(&pit->pit_state.lock);
4454         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4455         for (i = 0; i < 3; i++)
4456                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4457         mutex_unlock(&pit->pit_state.lock);
4458         return 0;
4459 }
4460
4461 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4462 {
4463         mutex_lock(&kvm->arch.vpit->pit_state.lock);
4464         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4465                 sizeof(ps->channels));
4466         ps->flags = kvm->arch.vpit->pit_state.flags;
4467         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4468         memset(&ps->reserved, 0, sizeof(ps->reserved));
4469         return 0;
4470 }
4471
4472 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4473 {
4474         int start = 0;
4475         int i;
4476         u32 prev_legacy, cur_legacy;
4477         struct kvm_pit *pit = kvm->arch.vpit;
4478
4479         mutex_lock(&pit->pit_state.lock);
4480         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4481         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4482         if (!prev_legacy && cur_legacy)
4483                 start = 1;
4484         memcpy(&pit->pit_state.channels, &ps->channels,
4485                sizeof(pit->pit_state.channels));
4486         pit->pit_state.flags = ps->flags;
4487         for (i = 0; i < 3; i++)
4488                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4489                                    start && i == 0);
4490         mutex_unlock(&pit->pit_state.lock);
4491         return 0;
4492 }
4493
4494 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4495                                  struct kvm_reinject_control *control)
4496 {
4497         struct kvm_pit *pit = kvm->arch.vpit;
4498
4499         if (!pit)
4500                 return -ENXIO;
4501
4502         /* pit->pit_state.lock was overloaded to prevent userspace from getting
4503          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4504          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
4505          */
4506         mutex_lock(&pit->pit_state.lock);
4507         kvm_pit_set_reinject(pit, control->pit_reinject);
4508         mutex_unlock(&pit->pit_state.lock);
4509
4510         return 0;
4511 }
4512
4513 /**
4514  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4515  * @kvm: kvm instance
4516  * @log: slot id and address to which we copy the log
4517  *
4518  * Steps 1-4 below provide general overview of dirty page logging. See
4519  * kvm_get_dirty_log_protect() function description for additional details.
4520  *
4521  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4522  * always flush the TLB (step 4) even if previous step failed  and the dirty
4523  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4524  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4525  * writes will be marked dirty for next log read.
4526  *
4527  *   1. Take a snapshot of the bit and clear it if needed.
4528  *   2. Write protect the corresponding page.
4529  *   3. Copy the snapshot to the userspace.
4530  *   4. Flush TLB's if needed.
4531  */
4532 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4533 {
4534         bool flush = false;
4535         int r;
4536
4537         mutex_lock(&kvm->slots_lock);
4538
4539         /*
4540          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4541          */
4542         if (kvm_x86_ops->flush_log_dirty)
4543                 kvm_x86_ops->flush_log_dirty(kvm);
4544
4545         r = kvm_get_dirty_log_protect(kvm, log, &flush);
4546
4547         /*
4548          * All the TLBs can be flushed out of mmu lock, see the comments in
4549          * kvm_mmu_slot_remove_write_access().
4550          */
4551         lockdep_assert_held(&kvm->slots_lock);
4552         if (flush)
4553                 kvm_flush_remote_tlbs(kvm);
4554
4555         mutex_unlock(&kvm->slots_lock);
4556         return r;
4557 }
4558
4559 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4560 {
4561         bool flush = false;
4562         int r;
4563
4564         mutex_lock(&kvm->slots_lock);
4565
4566         /*
4567          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4568          */
4569         if (kvm_x86_ops->flush_log_dirty)
4570                 kvm_x86_ops->flush_log_dirty(kvm);
4571
4572         r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4573
4574         /*
4575          * All the TLBs can be flushed out of mmu lock, see the comments in
4576          * kvm_mmu_slot_remove_write_access().
4577          */
4578         lockdep_assert_held(&kvm->slots_lock);
4579         if (flush)
4580                 kvm_flush_remote_tlbs(kvm);
4581
4582         mutex_unlock(&kvm->slots_lock);
4583         return r;
4584 }
4585
4586 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4587                         bool line_status)
4588 {
4589         if (!irqchip_in_kernel(kvm))
4590                 return -ENXIO;
4591
4592         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4593                                         irq_event->irq, irq_event->level,
4594                                         line_status);
4595         return 0;
4596 }
4597
4598 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4599                             struct kvm_enable_cap *cap)
4600 {
4601         int r;
4602
4603         if (cap->flags)
4604                 return -EINVAL;
4605
4606         switch (cap->cap) {
4607         case KVM_CAP_DISABLE_QUIRKS:
4608                 kvm->arch.disabled_quirks = cap->args[0];
4609                 r = 0;
4610                 break;
4611         case KVM_CAP_SPLIT_IRQCHIP: {
4612                 mutex_lock(&kvm->lock);
4613                 r = -EINVAL;
4614                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4615                         goto split_irqchip_unlock;
4616                 r = -EEXIST;
4617                 if (irqchip_in_kernel(kvm))
4618                         goto split_irqchip_unlock;
4619                 if (kvm->created_vcpus)
4620                         goto split_irqchip_unlock;
4621                 r = kvm_setup_empty_irq_routing(kvm);
4622                 if (r)
4623                         goto split_irqchip_unlock;
4624                 /* Pairs with irqchip_in_kernel. */
4625                 smp_wmb();
4626                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4627                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4628                 r = 0;
4629 split_irqchip_unlock:
4630                 mutex_unlock(&kvm->lock);
4631                 break;
4632         }
4633         case KVM_CAP_X2APIC_API:
4634                 r = -EINVAL;
4635                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4636                         break;
4637
4638                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4639                         kvm->arch.x2apic_format = true;
4640                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4641                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
4642
4643                 r = 0;
4644                 break;
4645         case KVM_CAP_X86_DISABLE_EXITS:
4646                 r = -EINVAL;
4647                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4648                         break;
4649
4650                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4651                         kvm_can_mwait_in_guest())
4652                         kvm->arch.mwait_in_guest = true;
4653                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4654                         kvm->arch.hlt_in_guest = true;
4655                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4656                         kvm->arch.pause_in_guest = true;
4657                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4658                         kvm->arch.cstate_in_guest = true;
4659                 r = 0;
4660                 break;
4661         case KVM_CAP_MSR_PLATFORM_INFO:
4662                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4663                 r = 0;
4664                 break;
4665         case KVM_CAP_EXCEPTION_PAYLOAD:
4666                 kvm->arch.exception_payload_enabled = cap->args[0];
4667                 r = 0;
4668                 break;
4669         default:
4670                 r = -EINVAL;
4671                 break;
4672         }
4673         return r;
4674 }
4675
4676 long kvm_arch_vm_ioctl(struct file *filp,
4677                        unsigned int ioctl, unsigned long arg)
4678 {
4679         struct kvm *kvm = filp->private_data;
4680         void __user *argp = (void __user *)arg;
4681         int r = -ENOTTY;
4682         /*
4683          * This union makes it completely explicit to gcc-3.x
4684          * that these two variables' stack usage should be
4685          * combined, not added together.
4686          */
4687         union {
4688                 struct kvm_pit_state ps;
4689                 struct kvm_pit_state2 ps2;
4690                 struct kvm_pit_config pit_config;
4691         } u;
4692
4693         switch (ioctl) {
4694         case KVM_SET_TSS_ADDR:
4695                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4696                 break;
4697         case KVM_SET_IDENTITY_MAP_ADDR: {
4698                 u64 ident_addr;
4699
4700                 mutex_lock(&kvm->lock);
4701                 r = -EINVAL;
4702                 if (kvm->created_vcpus)
4703                         goto set_identity_unlock;
4704                 r = -EFAULT;
4705                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4706                         goto set_identity_unlock;
4707                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4708 set_identity_unlock:
4709                 mutex_unlock(&kvm->lock);
4710                 break;
4711         }
4712         case KVM_SET_NR_MMU_PAGES:
4713                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4714                 break;
4715         case KVM_GET_NR_MMU_PAGES:
4716                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4717                 break;
4718         case KVM_CREATE_IRQCHIP: {
4719                 mutex_lock(&kvm->lock);
4720
4721                 r = -EEXIST;
4722                 if (irqchip_in_kernel(kvm))
4723                         goto create_irqchip_unlock;
4724
4725                 r = -EINVAL;
4726                 if (kvm->created_vcpus)
4727                         goto create_irqchip_unlock;
4728
4729                 r = kvm_pic_init(kvm);
4730                 if (r)
4731                         goto create_irqchip_unlock;
4732
4733                 r = kvm_ioapic_init(kvm);
4734                 if (r) {
4735                         kvm_pic_destroy(kvm);
4736                         goto create_irqchip_unlock;
4737                 }
4738
4739                 r = kvm_setup_default_irq_routing(kvm);
4740                 if (r) {
4741                         kvm_ioapic_destroy(kvm);
4742                         kvm_pic_destroy(kvm);
4743                         goto create_irqchip_unlock;
4744                 }
4745                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4746                 smp_wmb();
4747                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4748         create_irqchip_unlock:
4749                 mutex_unlock(&kvm->lock);
4750                 break;
4751         }
4752         case KVM_CREATE_PIT:
4753                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4754                 goto create_pit;
4755         case KVM_CREATE_PIT2:
4756                 r = -EFAULT;
4757                 if (copy_from_user(&u.pit_config, argp,
4758                                    sizeof(struct kvm_pit_config)))
4759                         goto out;
4760         create_pit:
4761                 mutex_lock(&kvm->lock);
4762                 r = -EEXIST;
4763                 if (kvm->arch.vpit)
4764                         goto create_pit_unlock;
4765                 r = -ENOMEM;
4766                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4767                 if (kvm->arch.vpit)
4768                         r = 0;
4769         create_pit_unlock:
4770                 mutex_unlock(&kvm->lock);
4771                 break;
4772         case KVM_GET_IRQCHIP: {
4773                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4774                 struct kvm_irqchip *chip;
4775
4776                 chip = memdup_user(argp, sizeof(*chip));
4777                 if (IS_ERR(chip)) {
4778                         r = PTR_ERR(chip);
4779                         goto out;
4780                 }
4781
4782                 r = -ENXIO;
4783                 if (!irqchip_kernel(kvm))
4784                         goto get_irqchip_out;
4785                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4786                 if (r)
4787                         goto get_irqchip_out;
4788                 r = -EFAULT;
4789                 if (copy_to_user(argp, chip, sizeof(*chip)))
4790                         goto get_irqchip_out;
4791                 r = 0;
4792         get_irqchip_out:
4793                 kfree(chip);
4794                 break;
4795         }
4796         case KVM_SET_IRQCHIP: {
4797                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4798                 struct kvm_irqchip *chip;
4799
4800                 chip = memdup_user(argp, sizeof(*chip));
4801                 if (IS_ERR(chip)) {
4802                         r = PTR_ERR(chip);
4803                         goto out;
4804                 }
4805
4806                 r = -ENXIO;
4807                 if (!irqchip_kernel(kvm))
4808                         goto set_irqchip_out;
4809                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4810                 if (r)
4811                         goto set_irqchip_out;
4812                 r = 0;
4813         set_irqchip_out:
4814                 kfree(chip);
4815                 break;
4816         }
4817         case KVM_GET_PIT: {
4818                 r = -EFAULT;
4819                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4820                         goto out;
4821                 r = -ENXIO;
4822                 if (!kvm->arch.vpit)
4823                         goto out;
4824                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4825                 if (r)
4826                         goto out;
4827                 r = -EFAULT;
4828                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4829                         goto out;
4830                 r = 0;
4831                 break;
4832         }
4833         case KVM_SET_PIT: {
4834                 r = -EFAULT;
4835                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4836                         goto out;
4837                 r = -ENXIO;
4838                 if (!kvm->arch.vpit)
4839                         goto out;
4840                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
4841                 break;
4842         }
4843         case KVM_GET_PIT2: {
4844                 r = -ENXIO;
4845                 if (!kvm->arch.vpit)
4846                         goto out;
4847                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
4848                 if (r)
4849                         goto out;
4850                 r = -EFAULT;
4851                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
4852                         goto out;
4853                 r = 0;
4854                 break;
4855         }
4856         case KVM_SET_PIT2: {
4857                 r = -EFAULT;
4858                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4859                         goto out;
4860                 r = -ENXIO;
4861                 if (!kvm->arch.vpit)
4862                         goto out;
4863                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4864                 break;
4865         }
4866         case KVM_REINJECT_CONTROL: {
4867                 struct kvm_reinject_control control;
4868                 r =  -EFAULT;
4869                 if (copy_from_user(&control, argp, sizeof(control)))
4870                         goto out;
4871                 r = kvm_vm_ioctl_reinject(kvm, &control);
4872                 break;
4873         }
4874         case KVM_SET_BOOT_CPU_ID:
4875                 r = 0;
4876                 mutex_lock(&kvm->lock);
4877                 if (kvm->created_vcpus)
4878                         r = -EBUSY;
4879                 else
4880                         kvm->arch.bsp_vcpu_id = arg;
4881                 mutex_unlock(&kvm->lock);
4882                 break;
4883         case KVM_XEN_HVM_CONFIG: {
4884                 struct kvm_xen_hvm_config xhc;
4885                 r = -EFAULT;
4886                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
4887                         goto out;
4888                 r = -EINVAL;
4889                 if (xhc.flags)
4890                         goto out;
4891                 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
4892                 r = 0;
4893                 break;
4894         }
4895         case KVM_SET_CLOCK: {
4896                 struct kvm_clock_data user_ns;
4897                 u64 now_ns;
4898
4899                 r = -EFAULT;
4900                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4901                         goto out;
4902
4903                 r = -EINVAL;
4904                 if (user_ns.flags)
4905                         goto out;
4906
4907                 r = 0;
4908                 /*
4909                  * TODO: userspace has to take care of races with VCPU_RUN, so
4910                  * kvm_gen_update_masterclock() can be cut down to locked
4911                  * pvclock_update_vm_gtod_copy().
4912                  */
4913                 kvm_gen_update_masterclock(kvm);
4914                 now_ns = get_kvmclock_ns(kvm);
4915                 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
4916                 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
4917                 break;
4918         }
4919         case KVM_GET_CLOCK: {
4920                 struct kvm_clock_data user_ns;
4921                 u64 now_ns;
4922
4923                 now_ns = get_kvmclock_ns(kvm);
4924                 user_ns.clock = now_ns;
4925                 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
4926                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4927
4928                 r = -EFAULT;
4929                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4930                         goto out;
4931                 r = 0;
4932                 break;
4933         }
4934         case KVM_MEMORY_ENCRYPT_OP: {
4935                 r = -ENOTTY;
4936                 if (kvm_x86_ops->mem_enc_op)
4937                         r = kvm_x86_ops->mem_enc_op(kvm, argp);
4938                 break;
4939         }
4940         case KVM_MEMORY_ENCRYPT_REG_REGION: {
4941                 struct kvm_enc_region region;
4942
4943                 r = -EFAULT;
4944                 if (copy_from_user(&region, argp, sizeof(region)))
4945                         goto out;
4946
4947                 r = -ENOTTY;
4948                 if (kvm_x86_ops->mem_enc_reg_region)
4949                         r = kvm_x86_ops->mem_enc_reg_region(kvm, &region);
4950                 break;
4951         }
4952         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
4953                 struct kvm_enc_region region;
4954
4955                 r = -EFAULT;
4956                 if (copy_from_user(&region, argp, sizeof(region)))
4957                         goto out;
4958
4959                 r = -ENOTTY;
4960                 if (kvm_x86_ops->mem_enc_unreg_region)
4961                         r = kvm_x86_ops->mem_enc_unreg_region(kvm, &region);
4962                 break;
4963         }
4964         case KVM_HYPERV_EVENTFD: {
4965                 struct kvm_hyperv_eventfd hvevfd;
4966
4967                 r = -EFAULT;
4968                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
4969                         goto out;
4970                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
4971                 break;
4972         }
4973         case KVM_SET_PMU_EVENT_FILTER:
4974                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
4975                 break;
4976         default:
4977                 r = -ENOTTY;
4978         }
4979 out:
4980         return r;
4981 }
4982
4983 static void kvm_init_msr_list(void)
4984 {
4985         u32 dummy[2];
4986         unsigned i, j;
4987
4988         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4989                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4990                         continue;
4991
4992                 /*
4993                  * Even MSRs that are valid in the host may not be exposed
4994                  * to the guests in some cases.
4995                  */
4996                 switch (msrs_to_save[i]) {
4997                 case MSR_IA32_BNDCFGS:
4998                         if (!kvm_mpx_supported())
4999                                 continue;
5000                         break;
5001                 case MSR_TSC_AUX:
5002                         if (!kvm_x86_ops->rdtscp_supported())
5003                                 continue;
5004                         break;
5005                 case MSR_IA32_RTIT_CTL:
5006                 case MSR_IA32_RTIT_STATUS:
5007                         if (!kvm_x86_ops->pt_supported())
5008                                 continue;
5009                         break;
5010                 case MSR_IA32_RTIT_CR3_MATCH:
5011                         if (!kvm_x86_ops->pt_supported() ||
5012                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5013                                 continue;
5014                         break;
5015                 case MSR_IA32_RTIT_OUTPUT_BASE:
5016                 case MSR_IA32_RTIT_OUTPUT_MASK:
5017                         if (!kvm_x86_ops->pt_supported() ||
5018                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5019                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5020                                 continue;
5021                         break;
5022                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5023                         if (!kvm_x86_ops->pt_supported() ||
5024                                 msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
5025                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5026                                 continue;
5027                         break;
5028                 }
5029                 default:
5030                         break;
5031                 }
5032
5033                 if (j < i)
5034                         msrs_to_save[j] = msrs_to_save[i];
5035                 j++;
5036         }
5037         num_msrs_to_save = j;
5038
5039         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
5040                 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs[i]))
5041                         continue;
5042
5043                 if (j < i)
5044                         emulated_msrs[j] = emulated_msrs[i];
5045                 j++;
5046         }
5047         num_emulated_msrs = j;
5048
5049         for (i = j = 0; i < ARRAY_SIZE(msr_based_features); i++) {
5050                 struct kvm_msr_entry msr;
5051
5052                 msr.index = msr_based_features[i];
5053                 if (kvm_get_msr_feature(&msr))
5054                         continue;
5055
5056                 if (j < i)
5057                         msr_based_features[j] = msr_based_features[i];
5058                 j++;
5059         }
5060         num_msr_based_features = j;
5061 }
5062
5063 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5064                            const void *v)
5065 {
5066         int handled = 0;
5067         int n;
5068
5069         do {
5070                 n = min(len, 8);
5071                 if (!(lapic_in_kernel(vcpu) &&
5072                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5073                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5074                         break;
5075                 handled += n;
5076                 addr += n;
5077                 len -= n;
5078                 v += n;
5079         } while (len);
5080
5081         return handled;
5082 }
5083
5084 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5085 {
5086         int handled = 0;
5087         int n;
5088
5089         do {
5090                 n = min(len, 8);
5091                 if (!(lapic_in_kernel(vcpu) &&
5092                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5093                                          addr, n, v))
5094                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5095                         break;
5096                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5097                 handled += n;
5098                 addr += n;
5099                 len -= n;
5100                 v += n;
5101         } while (len);
5102
5103         return handled;
5104 }
5105
5106 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5107                         struct kvm_segment *var, int seg)
5108 {
5109         kvm_x86_ops->set_segment(vcpu, var, seg);
5110 }
5111
5112 void kvm_get_segment(struct kvm_vcpu *vcpu,
5113                      struct kvm_segment *var, int seg)
5114 {
5115         kvm_x86_ops->get_segment(vcpu, var, seg);
5116 }
5117
5118 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5119                            struct x86_exception *exception)
5120 {
5121         gpa_t t_gpa;
5122
5123         BUG_ON(!mmu_is_nested(vcpu));
5124
5125         /* NPT walks are always user-walks */
5126         access |= PFERR_USER_MASK;
5127         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5128
5129         return t_gpa;
5130 }
5131
5132 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5133                               struct x86_exception *exception)
5134 {
5135         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5136         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5137 }
5138
5139  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5140                                 struct x86_exception *exception)
5141 {
5142         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5143         access |= PFERR_FETCH_MASK;
5144         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5145 }
5146
5147 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5148                                struct x86_exception *exception)
5149 {
5150         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5151         access |= PFERR_WRITE_MASK;
5152         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5153 }
5154
5155 /* uses this to access any guest's mapped memory without checking CPL */
5156 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5157                                 struct x86_exception *exception)
5158 {
5159         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5160 }
5161
5162 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5163                                       struct kvm_vcpu *vcpu, u32 access,
5164                                       struct x86_exception *exception)
5165 {
5166         void *data = val;
5167         int r = X86EMUL_CONTINUE;
5168
5169         while (bytes) {
5170                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5171                                                             exception);
5172                 unsigned offset = addr & (PAGE_SIZE-1);
5173                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5174                 int ret;
5175
5176                 if (gpa == UNMAPPED_GVA)
5177                         return X86EMUL_PROPAGATE_FAULT;
5178                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5179                                                offset, toread);
5180                 if (ret < 0) {
5181                         r = X86EMUL_IO_NEEDED;
5182                         goto out;
5183                 }
5184
5185                 bytes -= toread;
5186                 data += toread;
5187                 addr += toread;
5188         }
5189 out:
5190         return r;
5191 }
5192
5193 /* used for instruction fetching */
5194 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5195                                 gva_t addr, void *val, unsigned int bytes,
5196                                 struct x86_exception *exception)
5197 {
5198         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5199         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5200         unsigned offset;
5201         int ret;
5202
5203         /* Inline kvm_read_guest_virt_helper for speed.  */
5204         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5205                                                     exception);
5206         if (unlikely(gpa == UNMAPPED_GVA))
5207                 return X86EMUL_PROPAGATE_FAULT;
5208
5209         offset = addr & (PAGE_SIZE-1);
5210         if (WARN_ON(offset + bytes > PAGE_SIZE))
5211                 bytes = (unsigned)PAGE_SIZE - offset;
5212         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5213                                        offset, bytes);
5214         if (unlikely(ret < 0))
5215                 return X86EMUL_IO_NEEDED;
5216
5217         return X86EMUL_CONTINUE;
5218 }
5219
5220 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5221                                gva_t addr, void *val, unsigned int bytes,
5222                                struct x86_exception *exception)
5223 {
5224         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5225
5226         /*
5227          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5228          * is returned, but our callers are not ready for that and they blindly
5229          * call kvm_inject_page_fault.  Ensure that they at least do not leak
5230          * uninitialized kernel stack memory into cr2 and error code.
5231          */
5232         memset(exception, 0, sizeof(*exception));
5233         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5234                                           exception);
5235 }
5236 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5237
5238 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5239                              gva_t addr, void *val, unsigned int bytes,
5240                              struct x86_exception *exception, bool system)
5241 {
5242         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5243         u32 access = 0;
5244
5245         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5246                 access |= PFERR_USER_MASK;
5247
5248         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5249 }
5250
5251 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5252                 unsigned long addr, void *val, unsigned int bytes)
5253 {
5254         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5255         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5256
5257         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5258 }
5259
5260 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5261                                       struct kvm_vcpu *vcpu, u32 access,
5262                                       struct x86_exception *exception)
5263 {
5264         void *data = val;
5265         int r = X86EMUL_CONTINUE;
5266
5267         while (bytes) {
5268                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5269                                                              access,
5270                                                              exception);
5271                 unsigned offset = addr & (PAGE_SIZE-1);
5272                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5273                 int ret;
5274
5275                 if (gpa == UNMAPPED_GVA)
5276                         return X86EMUL_PROPAGATE_FAULT;
5277                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5278                 if (ret < 0) {
5279                         r = X86EMUL_IO_NEEDED;
5280                         goto out;
5281                 }
5282
5283                 bytes -= towrite;
5284                 data += towrite;
5285                 addr += towrite;
5286         }
5287 out:
5288         return r;
5289 }
5290
5291 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5292                               unsigned int bytes, struct x86_exception *exception,
5293                               bool system)
5294 {
5295         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5296         u32 access = PFERR_WRITE_MASK;
5297
5298         if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5299                 access |= PFERR_USER_MASK;
5300
5301         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5302                                            access, exception);
5303 }
5304
5305 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5306                                 unsigned int bytes, struct x86_exception *exception)
5307 {
5308         /* kvm_write_guest_virt_system can pull in tons of pages. */
5309         vcpu->arch.l1tf_flush_l1d = true;
5310
5311         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5312                                            PFERR_WRITE_MASK, exception);
5313 }
5314 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5315
5316 int handle_ud(struct kvm_vcpu *vcpu)
5317 {
5318         int emul_type = EMULTYPE_TRAP_UD;
5319         enum emulation_result er;
5320         char sig[5]; /* ud2; .ascii "kvm" */
5321         struct x86_exception e;
5322
5323         if (force_emulation_prefix &&
5324             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5325                                 sig, sizeof(sig), &e) == 0 &&
5326             memcmp(sig, "\xf\xbkvm", sizeof(sig)) == 0) {
5327                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5328                 emul_type = 0;
5329         }
5330
5331         er = kvm_emulate_instruction(vcpu, emul_type);
5332         if (er == EMULATE_USER_EXIT)
5333                 return 0;
5334         if (er != EMULATE_DONE)
5335                 kvm_queue_exception(vcpu, UD_VECTOR);
5336         return 1;
5337 }
5338 EXPORT_SYMBOL_GPL(handle_ud);
5339
5340 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5341                             gpa_t gpa, bool write)
5342 {
5343         /* For APIC access vmexit */
5344         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5345                 return 1;
5346
5347         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5348                 trace_vcpu_match_mmio(gva, gpa, write, true);
5349                 return 1;
5350         }
5351
5352         return 0;
5353 }
5354
5355 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5356                                 gpa_t *gpa, struct x86_exception *exception,
5357                                 bool write)
5358 {
5359         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5360                 | (write ? PFERR_WRITE_MASK : 0);
5361
5362         /*
5363          * currently PKRU is only applied to ept enabled guest so
5364          * there is no pkey in EPT page table for L1 guest or EPT
5365          * shadow page table for L2 guest.
5366          */
5367         if (vcpu_match_mmio_gva(vcpu, gva)
5368             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5369                                  vcpu->arch.access, 0, access)) {
5370                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5371                                         (gva & (PAGE_SIZE - 1));
5372                 trace_vcpu_match_mmio(gva, *gpa, write, false);
5373                 return 1;
5374         }
5375
5376         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5377
5378         if (*gpa == UNMAPPED_GVA)
5379                 return -1;
5380
5381         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5382 }
5383
5384 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5385                         const void *val, int bytes)
5386 {
5387         int ret;
5388
5389         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5390         if (ret < 0)
5391                 return 0;
5392         kvm_page_track_write(vcpu, gpa, val, bytes);
5393         return 1;
5394 }
5395
5396 struct read_write_emulator_ops {
5397         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5398                                   int bytes);
5399         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5400                                   void *val, int bytes);
5401         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5402                                int bytes, void *val);
5403         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5404                                     void *val, int bytes);
5405         bool write;
5406 };
5407
5408 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5409 {
5410         if (vcpu->mmio_read_completed) {
5411                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5412                                vcpu->mmio_fragments[0].gpa, val);
5413                 vcpu->mmio_read_completed = 0;
5414                 return 1;
5415         }
5416
5417         return 0;
5418 }
5419
5420 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5421                         void *val, int bytes)
5422 {
5423         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5424 }
5425
5426 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5427                          void *val, int bytes)
5428 {
5429         return emulator_write_phys(vcpu, gpa, val, bytes);
5430 }
5431
5432 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5433 {
5434         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5435         return vcpu_mmio_write(vcpu, gpa, bytes, val);
5436 }
5437
5438 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5439                           void *val, int bytes)
5440 {
5441         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5442         return X86EMUL_IO_NEEDED;
5443 }
5444
5445 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5446                            void *val, int bytes)
5447 {
5448         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5449
5450         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5451         return X86EMUL_CONTINUE;
5452 }
5453
5454 static const struct read_write_emulator_ops read_emultor = {
5455         .read_write_prepare = read_prepare,
5456         .read_write_emulate = read_emulate,
5457         .read_write_mmio = vcpu_mmio_read,
5458         .read_write_exit_mmio = read_exit_mmio,
5459 };
5460
5461 static const struct read_write_emulator_ops write_emultor = {
5462         .read_write_emulate = write_emulate,
5463         .read_write_mmio = write_mmio,
5464         .read_write_exit_mmio = write_exit_mmio,
5465         .write = true,
5466 };
5467
5468 static int emulator_read_write_onepage(unsigned long addr, void *val,
5469                                        unsigned int bytes,
5470                                        struct x86_exception *exception,
5471                                        struct kvm_vcpu *vcpu,
5472                                        const struct read_write_emulator_ops *ops)
5473 {
5474         gpa_t gpa;
5475         int handled, ret;
5476         bool write = ops->write;
5477         struct kvm_mmio_fragment *frag;
5478         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5479
5480         /*
5481          * If the exit was due to a NPF we may already have a GPA.
5482          * If the GPA is present, use it to avoid the GVA to GPA table walk.
5483          * Note, this cannot be used on string operations since string
5484          * operation using rep will only have the initial GPA from the NPF
5485          * occurred.
5486          */
5487         if (vcpu->arch.gpa_available &&
5488             emulator_can_use_gpa(ctxt) &&
5489             (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5490                 gpa = vcpu->arch.gpa_val;
5491                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5492         } else {
5493                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5494                 if (ret < 0)
5495                         return X86EMUL_PROPAGATE_FAULT;
5496         }
5497
5498         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5499                 return X86EMUL_CONTINUE;
5500
5501         /*
5502          * Is this MMIO handled locally?
5503          */
5504         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5505         if (handled == bytes)
5506                 return X86EMUL_CONTINUE;
5507
5508         gpa += handled;
5509         bytes -= handled;
5510         val += handled;
5511
5512         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5513         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5514         frag->gpa = gpa;
5515         frag->data = val;
5516         frag->len = bytes;
5517         return X86EMUL_CONTINUE;
5518 }
5519
5520 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5521                         unsigned long addr,
5522                         void *val, unsigned int bytes,
5523                         struct x86_exception *exception,
5524                         const struct read_write_emulator_ops *ops)
5525 {
5526         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5527         gpa_t gpa;
5528         int rc;
5529
5530         if (ops->read_write_prepare &&
5531                   ops->read_write_prepare(vcpu, val, bytes))
5532                 return X86EMUL_CONTINUE;
5533
5534         vcpu->mmio_nr_fragments = 0;
5535
5536         /* Crossing a page boundary? */
5537         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5538                 int now;
5539
5540                 now = -addr & ~PAGE_MASK;
5541                 rc = emulator_read_write_onepage(addr, val, now, exception,
5542                                                  vcpu, ops);
5543
5544                 if (rc != X86EMUL_CONTINUE)
5545                         return rc;
5546                 addr += now;
5547                 if (ctxt->mode != X86EMUL_MODE_PROT64)
5548                         addr = (u32)addr;
5549                 val += now;
5550                 bytes -= now;
5551         }
5552
5553         rc = emulator_read_write_onepage(addr, val, bytes, exception,
5554                                          vcpu, ops);
5555         if (rc != X86EMUL_CONTINUE)
5556                 return rc;
5557
5558         if (!vcpu->mmio_nr_fragments)
5559                 return rc;
5560
5561         gpa = vcpu->mmio_fragments[0].gpa;
5562
5563         vcpu->mmio_needed = 1;
5564         vcpu->mmio_cur_fragment = 0;
5565
5566         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5567         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5568         vcpu->run->exit_reason = KVM_EXIT_MMIO;
5569         vcpu->run->mmio.phys_addr = gpa;
5570
5571         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5572 }
5573
5574 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5575                                   unsigned long addr,
5576                                   void *val,
5577                                   unsigned int bytes,
5578                                   struct x86_exception *exception)
5579 {
5580         return emulator_read_write(ctxt, addr, val, bytes,
5581                                    exception, &read_emultor);
5582 }
5583
5584 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5585                             unsigned long addr,
5586                             const void *val,
5587                             unsigned int bytes,
5588                             struct x86_exception *exception)
5589 {
5590         return emulator_read_write(ctxt, addr, (void *)val, bytes,
5591                                    exception, &write_emultor);
5592 }
5593
5594 #define CMPXCHG_TYPE(t, ptr, old, new) \
5595         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5596
5597 #ifdef CONFIG_X86_64
5598 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5599 #else
5600 #  define CMPXCHG64(ptr, old, new) \
5601         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5602 #endif
5603
5604 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5605                                      unsigned long addr,
5606                                      const void *old,
5607                                      const void *new,
5608                                      unsigned int bytes,
5609                                      struct x86_exception *exception)
5610 {
5611         struct kvm_host_map map;
5612         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5613         gpa_t gpa;
5614         char *kaddr;
5615         bool exchanged;
5616
5617         /* guests cmpxchg8b have to be emulated atomically */
5618         if (bytes > 8 || (bytes & (bytes - 1)))
5619                 goto emul_write;
5620
5621         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5622
5623         if (gpa == UNMAPPED_GVA ||
5624             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5625                 goto emul_write;
5626
5627         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5628                 goto emul_write;
5629
5630         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5631                 goto emul_write;
5632
5633         kaddr = map.hva + offset_in_page(gpa);
5634
5635         switch (bytes) {
5636         case 1:
5637                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5638                 break;
5639         case 2:
5640                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5641                 break;
5642         case 4:
5643                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5644                 break;
5645         case 8:
5646                 exchanged = CMPXCHG64(kaddr, old, new);
5647                 break;
5648         default:
5649                 BUG();
5650         }
5651
5652         kvm_vcpu_unmap(vcpu, &map, true);
5653
5654         if (!exchanged)
5655                 return X86EMUL_CMPXCHG_FAILED;
5656
5657         kvm_page_track_write(vcpu, gpa, new, bytes);
5658
5659         return X86EMUL_CONTINUE;
5660
5661 emul_write:
5662         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5663
5664         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5665 }
5666
5667 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5668 {
5669         int r = 0, i;
5670
5671         for (i = 0; i < vcpu->arch.pio.count; i++) {
5672                 if (vcpu->arch.pio.in)
5673                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5674                                             vcpu->arch.pio.size, pd);
5675                 else
5676                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5677                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
5678                                              pd);
5679                 if (r)
5680                         break;
5681                 pd += vcpu->arch.pio.size;
5682         }
5683         return r;
5684 }
5685
5686 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5687                                unsigned short port, void *val,
5688                                unsigned int count, bool in)
5689 {
5690         vcpu->arch.pio.port = port;
5691         vcpu->arch.pio.in = in;
5692         vcpu->arch.pio.count  = count;
5693         vcpu->arch.pio.size = size;
5694
5695         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5696                 vcpu->arch.pio.count = 0;
5697                 return 1;
5698         }
5699
5700         vcpu->run->exit_reason = KVM_EXIT_IO;
5701         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5702         vcpu->run->io.size = size;
5703         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5704         vcpu->run->io.count = count;
5705         vcpu->run->io.port = port;
5706
5707         return 0;
5708 }
5709
5710 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5711                                     int size, unsigned short port, void *val,
5712                                     unsigned int count)
5713 {
5714         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5715         int ret;
5716
5717         if (vcpu->arch.pio.count)
5718                 goto data_avail;
5719
5720         memset(vcpu->arch.pio_data, 0, size * count);
5721
5722         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5723         if (ret) {
5724 data_avail:
5725                 memcpy(val, vcpu->arch.pio_data, size * count);
5726                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5727                 vcpu->arch.pio.count = 0;
5728                 return 1;
5729         }
5730
5731         return 0;
5732 }
5733
5734 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5735                                      int size, unsigned short port,
5736                                      const void *val, unsigned int count)
5737 {
5738         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5739
5740         memcpy(vcpu->arch.pio_data, val, size * count);
5741         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5742         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5743 }
5744
5745 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5746 {
5747         return kvm_x86_ops->get_segment_base(vcpu, seg);
5748 }
5749
5750 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5751 {
5752         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5753 }
5754
5755 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5756 {
5757         if (!need_emulate_wbinvd(vcpu))
5758                 return X86EMUL_CONTINUE;
5759
5760         if (kvm_x86_ops->has_wbinvd_exit()) {
5761                 int cpu = get_cpu();
5762
5763                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5764                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5765                                 wbinvd_ipi, NULL, 1);
5766                 put_cpu();
5767                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5768         } else
5769                 wbinvd();
5770         return X86EMUL_CONTINUE;
5771 }
5772
5773 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5774 {
5775         kvm_emulate_wbinvd_noskip(vcpu);
5776         return kvm_skip_emulated_instruction(vcpu);
5777 }
5778 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5779
5780
5781
5782 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5783 {
5784         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5785 }
5786
5787 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5788                            unsigned long *dest)
5789 {
5790         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5791 }
5792
5793 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5794                            unsigned long value)
5795 {
5796
5797         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5798 }
5799
5800 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5801 {
5802         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5803 }
5804
5805 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5806 {
5807         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5808         unsigned long value;
5809
5810         switch (cr) {
5811         case 0:
5812                 value = kvm_read_cr0(vcpu);
5813                 break;
5814         case 2:
5815                 value = vcpu->arch.cr2;
5816                 break;
5817         case 3:
5818                 value = kvm_read_cr3(vcpu);
5819                 break;
5820         case 4:
5821                 value = kvm_read_cr4(vcpu);
5822                 break;
5823         case 8:
5824                 value = kvm_get_cr8(vcpu);
5825                 break;
5826         default:
5827                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5828                 return 0;
5829         }
5830
5831         return value;
5832 }
5833
5834 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
5835 {
5836         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5837         int res = 0;
5838
5839         switch (cr) {
5840         case 0:
5841                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
5842                 break;
5843         case 2:
5844                 vcpu->arch.cr2 = val;
5845                 break;
5846         case 3:
5847                 res = kvm_set_cr3(vcpu, val);
5848                 break;
5849         case 4:
5850                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
5851                 break;
5852         case 8:
5853                 res = kvm_set_cr8(vcpu, val);
5854                 break;
5855         default:
5856                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
5857                 res = -1;
5858         }
5859
5860         return res;
5861 }
5862
5863 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
5864 {
5865         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
5866 }
5867
5868 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5869 {
5870         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
5871 }
5872
5873 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5874 {
5875         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
5876 }
5877
5878 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5879 {
5880         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
5881 }
5882
5883 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
5884 {
5885         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
5886 }
5887
5888 static unsigned long emulator_get_cached_segment_base(
5889         struct x86_emulate_ctxt *ctxt, int seg)
5890 {
5891         return get_segment_base(emul_to_vcpu(ctxt), seg);
5892 }
5893
5894 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
5895                                  struct desc_struct *desc, u32 *base3,
5896                                  int seg)
5897 {
5898         struct kvm_segment var;
5899
5900         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
5901         *selector = var.selector;
5902
5903         if (var.unusable) {
5904                 memset(desc, 0, sizeof(*desc));
5905                 if (base3)
5906                         *base3 = 0;
5907                 return false;
5908         }
5909
5910         if (var.g)
5911                 var.limit >>= 12;
5912         set_desc_limit(desc, var.limit);
5913         set_desc_base(desc, (unsigned long)var.base);
5914 #ifdef CONFIG_X86_64
5915         if (base3)
5916                 *base3 = var.base >> 32;
5917 #endif
5918         desc->type = var.type;
5919         desc->s = var.s;
5920         desc->dpl = var.dpl;
5921         desc->p = var.present;
5922         desc->avl = var.avl;
5923         desc->l = var.l;
5924         desc->d = var.db;
5925         desc->g = var.g;
5926
5927         return true;
5928 }
5929
5930 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
5931                                  struct desc_struct *desc, u32 base3,
5932                                  int seg)
5933 {
5934         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5935         struct kvm_segment var;
5936
5937         var.selector = selector;
5938         var.base = get_desc_base(desc);
5939 #ifdef CONFIG_X86_64
5940         var.base |= ((u64)base3) << 32;
5941 #endif
5942         var.limit = get_desc_limit(desc);
5943         if (desc->g)
5944                 var.limit = (var.limit << 12) | 0xfff;
5945         var.type = desc->type;
5946         var.dpl = desc->dpl;
5947         var.db = desc->d;
5948         var.s = desc->s;
5949         var.l = desc->l;
5950         var.g = desc->g;
5951         var.avl = desc->avl;
5952         var.present = desc->p;
5953         var.unusable = !var.present;
5954         var.padding = 0;
5955
5956         kvm_set_segment(vcpu, &var, seg);
5957         return;
5958 }
5959
5960 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
5961                             u32 msr_index, u64 *pdata)
5962 {
5963         struct msr_data msr;
5964         int r;
5965
5966         msr.index = msr_index;
5967         msr.host_initiated = false;
5968         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
5969         if (r)
5970                 return r;
5971
5972         *pdata = msr.data;
5973         return 0;
5974 }
5975
5976 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
5977                             u32 msr_index, u64 data)
5978 {
5979         struct msr_data msr;
5980
5981         msr.data = data;
5982         msr.index = msr_index;
5983         msr.host_initiated = false;
5984         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
5985 }
5986
5987 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
5988 {
5989         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5990
5991         return vcpu->arch.smbase;
5992 }
5993
5994 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
5995 {
5996         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5997
5998         vcpu->arch.smbase = smbase;
5999 }
6000
6001 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6002                               u32 pmc)
6003 {
6004         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
6005 }
6006
6007 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6008                              u32 pmc, u64 *pdata)
6009 {
6010         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6011 }
6012
6013 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6014 {
6015         emul_to_vcpu(ctxt)->arch.halt_request = 1;
6016 }
6017
6018 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6019                               struct x86_instruction_info *info,
6020                               enum x86_intercept_stage stage)
6021 {
6022         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6023 }
6024
6025 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6026                         u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6027 {
6028         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6029 }
6030
6031 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6032 {
6033         return kvm_register_read(emul_to_vcpu(ctxt), reg);
6034 }
6035
6036 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6037 {
6038         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6039 }
6040
6041 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6042 {
6043         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6044 }
6045
6046 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6047 {
6048         return emul_to_vcpu(ctxt)->arch.hflags;
6049 }
6050
6051 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6052 {
6053         emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6054 }
6055
6056 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6057                                   const char *smstate)
6058 {
6059         return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6060 }
6061
6062 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6063 {
6064         kvm_smm_changed(emul_to_vcpu(ctxt));
6065 }
6066
6067 static const struct x86_emulate_ops emulate_ops = {
6068         .read_gpr            = emulator_read_gpr,
6069         .write_gpr           = emulator_write_gpr,
6070         .read_std            = emulator_read_std,
6071         .write_std           = emulator_write_std,
6072         .read_phys           = kvm_read_guest_phys_system,
6073         .fetch               = kvm_fetch_guest_virt,
6074         .read_emulated       = emulator_read_emulated,
6075         .write_emulated      = emulator_write_emulated,
6076         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
6077         .invlpg              = emulator_invlpg,
6078         .pio_in_emulated     = emulator_pio_in_emulated,
6079         .pio_out_emulated    = emulator_pio_out_emulated,
6080         .get_segment         = emulator_get_segment,
6081         .set_segment         = emulator_set_segment,
6082         .get_cached_segment_base = emulator_get_cached_segment_base,
6083         .get_gdt             = emulator_get_gdt,
6084         .get_idt             = emulator_get_idt,
6085         .set_gdt             = emulator_set_gdt,
6086         .set_idt             = emulator_set_idt,
6087         .get_cr              = emulator_get_cr,
6088         .set_cr              = emulator_set_cr,
6089         .cpl                 = emulator_get_cpl,
6090         .get_dr              = emulator_get_dr,
6091         .set_dr              = emulator_set_dr,
6092         .get_smbase          = emulator_get_smbase,
6093         .set_smbase          = emulator_set_smbase,
6094         .set_msr             = emulator_set_msr,
6095         .get_msr             = emulator_get_msr,
6096         .check_pmc           = emulator_check_pmc,
6097         .read_pmc            = emulator_read_pmc,
6098         .halt                = emulator_halt,
6099         .wbinvd              = emulator_wbinvd,
6100         .fix_hypercall       = emulator_fix_hypercall,
6101         .intercept           = emulator_intercept,
6102         .get_cpuid           = emulator_get_cpuid,
6103         .set_nmi_mask        = emulator_set_nmi_mask,
6104         .get_hflags          = emulator_get_hflags,
6105         .set_hflags          = emulator_set_hflags,
6106         .pre_leave_smm       = emulator_pre_leave_smm,
6107         .post_leave_smm      = emulator_post_leave_smm,
6108 };
6109
6110 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6111 {
6112         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6113         /*
6114          * an sti; sti; sequence only disable interrupts for the first
6115          * instruction. So, if the last instruction, be it emulated or
6116          * not, left the system with the INT_STI flag enabled, it
6117          * means that the last instruction is an sti. We should not
6118          * leave the flag on in this case. The same goes for mov ss
6119          */
6120         if (int_shadow & mask)
6121                 mask = 0;
6122         if (unlikely(int_shadow || mask)) {
6123                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6124                 if (!mask)
6125                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6126         }
6127 }
6128
6129 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6130 {
6131         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6132         if (ctxt->exception.vector == PF_VECTOR)
6133                 return kvm_propagate_fault(vcpu, &ctxt->exception);
6134
6135         if (ctxt->exception.error_code_valid)
6136                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6137                                       ctxt->exception.error_code);
6138         else
6139                 kvm_queue_exception(vcpu, ctxt->exception.vector);
6140         return false;
6141 }
6142
6143 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6144 {
6145         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6146         int cs_db, cs_l;
6147
6148         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6149
6150         ctxt->eflags = kvm_get_rflags(vcpu);
6151         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6152
6153         ctxt->eip = kvm_rip_read(vcpu);
6154         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
6155                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
6156                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
6157                      cs_db                              ? X86EMUL_MODE_PROT32 :
6158                                                           X86EMUL_MODE_PROT16;
6159         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6160         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6161         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6162
6163         init_decode_cache(ctxt);
6164         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6165 }
6166
6167 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6168 {
6169         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6170         int ret;
6171
6172         init_emulate_ctxt(vcpu);
6173
6174         ctxt->op_bytes = 2;
6175         ctxt->ad_bytes = 2;
6176         ctxt->_eip = ctxt->eip + inc_eip;
6177         ret = emulate_int_real(ctxt, irq);
6178
6179         if (ret != X86EMUL_CONTINUE)
6180                 return EMULATE_FAIL;
6181
6182         ctxt->eip = ctxt->_eip;
6183         kvm_rip_write(vcpu, ctxt->eip);
6184         kvm_set_rflags(vcpu, ctxt->eflags);
6185
6186         return EMULATE_DONE;
6187 }
6188 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6189
6190 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6191 {
6192         int r = EMULATE_DONE;
6193
6194         ++vcpu->stat.insn_emulation_fail;
6195         trace_kvm_emulate_insn_failed(vcpu);
6196
6197         if (emulation_type & EMULTYPE_NO_UD_ON_FAIL)
6198                 return EMULATE_FAIL;
6199
6200         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6201                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6202                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6203                 vcpu->run->internal.ndata = 0;
6204                 r = EMULATE_USER_EXIT;
6205         }
6206
6207         kvm_queue_exception(vcpu, UD_VECTOR);
6208
6209         return r;
6210 }
6211
6212 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6213                                   bool write_fault_to_shadow_pgtable,
6214                                   int emulation_type)
6215 {
6216         gpa_t gpa = cr2;
6217         kvm_pfn_t pfn;
6218
6219         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6220                 return false;
6221
6222         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6223                 return false;
6224
6225         if (!vcpu->arch.mmu->direct_map) {
6226                 /*
6227                  * Write permission should be allowed since only
6228                  * write access need to be emulated.
6229                  */
6230                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6231
6232                 /*
6233                  * If the mapping is invalid in guest, let cpu retry
6234                  * it to generate fault.
6235                  */
6236                 if (gpa == UNMAPPED_GVA)
6237                         return true;
6238         }
6239
6240         /*
6241          * Do not retry the unhandleable instruction if it faults on the
6242          * readonly host memory, otherwise it will goto a infinite loop:
6243          * retry instruction -> write #PF -> emulation fail -> retry
6244          * instruction -> ...
6245          */
6246         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6247
6248         /*
6249          * If the instruction failed on the error pfn, it can not be fixed,
6250          * report the error to userspace.
6251          */
6252         if (is_error_noslot_pfn(pfn))
6253                 return false;
6254
6255         kvm_release_pfn_clean(pfn);
6256
6257         /* The instructions are well-emulated on direct mmu. */
6258         if (vcpu->arch.mmu->direct_map) {
6259                 unsigned int indirect_shadow_pages;
6260
6261                 spin_lock(&vcpu->kvm->mmu_lock);
6262                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6263                 spin_unlock(&vcpu->kvm->mmu_lock);
6264
6265                 if (indirect_shadow_pages)
6266                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6267
6268                 return true;
6269         }
6270
6271         /*
6272          * if emulation was due to access to shadowed page table
6273          * and it failed try to unshadow page and re-enter the
6274          * guest to let CPU execute the instruction.
6275          */
6276         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6277
6278         /*
6279          * If the access faults on its page table, it can not
6280          * be fixed by unprotecting shadow page and it should
6281          * be reported to userspace.
6282          */
6283         return !write_fault_to_shadow_pgtable;
6284 }
6285
6286 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6287                               unsigned long cr2,  int emulation_type)
6288 {
6289         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6290         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6291
6292         last_retry_eip = vcpu->arch.last_retry_eip;
6293         last_retry_addr = vcpu->arch.last_retry_addr;
6294
6295         /*
6296          * If the emulation is caused by #PF and it is non-page_table
6297          * writing instruction, it means the VM-EXIT is caused by shadow
6298          * page protected, we can zap the shadow page and retry this
6299          * instruction directly.
6300          *
6301          * Note: if the guest uses a non-page-table modifying instruction
6302          * on the PDE that points to the instruction, then we will unmap
6303          * the instruction and go to an infinite loop. So, we cache the
6304          * last retried eip and the last fault address, if we meet the eip
6305          * and the address again, we can break out of the potential infinite
6306          * loop.
6307          */
6308         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6309
6310         if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6311                 return false;
6312
6313         if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6314                 return false;
6315
6316         if (x86_page_table_writing_insn(ctxt))
6317                 return false;
6318
6319         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6320                 return false;
6321
6322         vcpu->arch.last_retry_eip = ctxt->eip;
6323         vcpu->arch.last_retry_addr = cr2;
6324
6325         if (!vcpu->arch.mmu->direct_map)
6326                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6327
6328         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6329
6330         return true;
6331 }
6332
6333 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6334 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6335
6336 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6337 {
6338         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6339                 /* This is a good place to trace that we are exiting SMM.  */
6340                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6341
6342                 /* Process a latched INIT or SMI, if any.  */
6343                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6344         }
6345
6346         kvm_mmu_reset_context(vcpu);
6347 }
6348
6349 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6350                                 unsigned long *db)
6351 {
6352         u32 dr6 = 0;
6353         int i;
6354         u32 enable, rwlen;
6355
6356         enable = dr7;
6357         rwlen = dr7 >> 16;
6358         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6359                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6360                         dr6 |= (1 << i);
6361         return dr6;
6362 }
6363
6364 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r)
6365 {
6366         struct kvm_run *kvm_run = vcpu->run;
6367
6368         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6369                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6370                 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6371                 kvm_run->debug.arch.exception = DB_VECTOR;
6372                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6373                 *r = EMULATE_USER_EXIT;
6374         } else {
6375                 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6376         }
6377 }
6378
6379 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6380 {
6381         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6382         int r = EMULATE_DONE;
6383
6384         kvm_x86_ops->skip_emulated_instruction(vcpu);
6385
6386         /*
6387          * rflags is the old, "raw" value of the flags.  The new value has
6388          * not been saved yet.
6389          *
6390          * This is correct even for TF set by the guest, because "the
6391          * processor will not generate this exception after the instruction
6392          * that sets the TF flag".
6393          */
6394         if (unlikely(rflags & X86_EFLAGS_TF))
6395                 kvm_vcpu_do_singlestep(vcpu, &r);
6396         return r == EMULATE_DONE;
6397 }
6398 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6399
6400 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6401 {
6402         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6403             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6404                 struct kvm_run *kvm_run = vcpu->run;
6405                 unsigned long eip = kvm_get_linear_rip(vcpu);
6406                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6407                                            vcpu->arch.guest_debug_dr7,
6408                                            vcpu->arch.eff_db);
6409
6410                 if (dr6 != 0) {
6411                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6412                         kvm_run->debug.arch.pc = eip;
6413                         kvm_run->debug.arch.exception = DB_VECTOR;
6414                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
6415                         *r = EMULATE_USER_EXIT;
6416                         return true;
6417                 }
6418         }
6419
6420         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6421             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6422                 unsigned long eip = kvm_get_linear_rip(vcpu);
6423                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6424                                            vcpu->arch.dr7,
6425                                            vcpu->arch.db);
6426
6427                 if (dr6 != 0) {
6428                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6429                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
6430                         kvm_queue_exception(vcpu, DB_VECTOR);
6431                         *r = EMULATE_DONE;
6432                         return true;
6433                 }
6434         }
6435
6436         return false;
6437 }
6438
6439 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6440 {
6441         switch (ctxt->opcode_len) {
6442         case 1:
6443                 switch (ctxt->b) {
6444                 case 0xe4:      /* IN */
6445                 case 0xe5:
6446                 case 0xec:
6447                 case 0xed:
6448                 case 0xe6:      /* OUT */
6449                 case 0xe7:
6450                 case 0xee:
6451                 case 0xef:
6452                 case 0x6c:      /* INS */
6453                 case 0x6d:
6454                 case 0x6e:      /* OUTS */
6455                 case 0x6f:
6456                         return true;
6457                 }
6458                 break;
6459         case 2:
6460                 switch (ctxt->b) {
6461                 case 0x33:      /* RDPMC */
6462                         return true;
6463                 }
6464                 break;
6465         }
6466
6467         return false;
6468 }
6469
6470 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6471                             unsigned long cr2,
6472                             int emulation_type,
6473                             void *insn,
6474                             int insn_len)
6475 {
6476         int r;
6477         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6478         bool writeback = true;
6479         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6480
6481         vcpu->arch.l1tf_flush_l1d = true;
6482
6483         /*
6484          * Clear write_fault_to_shadow_pgtable here to ensure it is
6485          * never reused.
6486          */
6487         vcpu->arch.write_fault_to_shadow_pgtable = false;
6488         kvm_clear_exception_queue(vcpu);
6489
6490         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6491                 init_emulate_ctxt(vcpu);
6492
6493                 /*
6494                  * We will reenter on the same instruction since
6495                  * we do not set complete_userspace_io.  This does not
6496                  * handle watchpoints yet, those would be handled in
6497                  * the emulate_ops.
6498                  */
6499                 if (!(emulation_type & EMULTYPE_SKIP) &&
6500                     kvm_vcpu_check_breakpoint(vcpu, &r))
6501                         return r;
6502
6503                 ctxt->interruptibility = 0;
6504                 ctxt->have_exception = false;
6505                 ctxt->exception.vector = -1;
6506                 ctxt->perm_ok = false;
6507
6508                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6509
6510                 r = x86_decode_insn(ctxt, insn, insn_len);
6511
6512                 trace_kvm_emulate_insn_start(vcpu);
6513                 ++vcpu->stat.insn_emulation;
6514                 if (r != EMULATION_OK)  {
6515                         if (emulation_type & EMULTYPE_TRAP_UD)
6516                                 return EMULATE_FAIL;
6517                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6518                                                 emulation_type))
6519                                 return EMULATE_DONE;
6520                         if (ctxt->have_exception && inject_emulated_exception(vcpu))
6521                                 return EMULATE_DONE;
6522                         if (emulation_type & EMULTYPE_SKIP)
6523                                 return EMULATE_FAIL;
6524                         return handle_emulation_failure(vcpu, emulation_type);
6525                 }
6526         }
6527
6528         if ((emulation_type & EMULTYPE_VMWARE) &&
6529             !is_vmware_backdoor_opcode(ctxt))
6530                 return EMULATE_FAIL;
6531
6532         if (emulation_type & EMULTYPE_SKIP) {
6533                 kvm_rip_write(vcpu, ctxt->_eip);
6534                 if (ctxt->eflags & X86_EFLAGS_RF)
6535                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6536                 return EMULATE_DONE;
6537         }
6538
6539         if (retry_instruction(ctxt, cr2, emulation_type))
6540                 return EMULATE_DONE;
6541
6542         /* this is needed for vmware backdoor interface to work since it
6543            changes registers values  during IO operation */
6544         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6545                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6546                 emulator_invalidate_register_cache(ctxt);
6547         }
6548
6549 restart:
6550         /* Save the faulting GPA (cr2) in the address field */
6551         ctxt->exception.address = cr2;
6552
6553         r = x86_emulate_insn(ctxt);
6554
6555         if (r == EMULATION_INTERCEPTED)
6556                 return EMULATE_DONE;
6557
6558         if (r == EMULATION_FAILED) {
6559                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6560                                         emulation_type))
6561                         return EMULATE_DONE;
6562
6563                 return handle_emulation_failure(vcpu, emulation_type);
6564         }
6565
6566         if (ctxt->have_exception) {
6567                 r = EMULATE_DONE;
6568                 if (inject_emulated_exception(vcpu))
6569                         return r;
6570         } else if (vcpu->arch.pio.count) {
6571                 if (!vcpu->arch.pio.in) {
6572                         /* FIXME: return into emulator if single-stepping.  */
6573                         vcpu->arch.pio.count = 0;
6574                 } else {
6575                         writeback = false;
6576                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
6577                 }
6578                 r = EMULATE_USER_EXIT;
6579         } else if (vcpu->mmio_needed) {
6580                 if (!vcpu->mmio_is_write)
6581                         writeback = false;
6582                 r = EMULATE_USER_EXIT;
6583                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6584         } else if (r == EMULATION_RESTART)
6585                 goto restart;
6586         else
6587                 r = EMULATE_DONE;
6588
6589         if (writeback) {
6590                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6591                 toggle_interruptibility(vcpu, ctxt->interruptibility);
6592                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6593                 kvm_rip_write(vcpu, ctxt->eip);
6594                 if (r == EMULATE_DONE && ctxt->tf)
6595                         kvm_vcpu_do_singlestep(vcpu, &r);
6596                 if (!ctxt->have_exception ||
6597                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
6598                         __kvm_set_rflags(vcpu, ctxt->eflags);
6599
6600                 /*
6601                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6602                  * do nothing, and it will be requested again as soon as
6603                  * the shadow expires.  But we still need to check here,
6604                  * because POPF has no interrupt shadow.
6605                  */
6606                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6607                         kvm_make_request(KVM_REQ_EVENT, vcpu);
6608         } else
6609                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6610
6611         return r;
6612 }
6613
6614 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6615 {
6616         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6617 }
6618 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6619
6620 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6621                                         void *insn, int insn_len)
6622 {
6623         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6624 }
6625 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6626
6627 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6628 {
6629         vcpu->arch.pio.count = 0;
6630         return 1;
6631 }
6632
6633 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6634 {
6635         vcpu->arch.pio.count = 0;
6636
6637         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6638                 return 1;
6639
6640         return kvm_skip_emulated_instruction(vcpu);
6641 }
6642
6643 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6644                             unsigned short port)
6645 {
6646         unsigned long val = kvm_rax_read(vcpu);
6647         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6648                                             size, port, &val, 1);
6649         if (ret)
6650                 return ret;
6651
6652         /*
6653          * Workaround userspace that relies on old KVM behavior of %rip being
6654          * incremented prior to exiting to userspace to handle "OUT 0x7e".
6655          */
6656         if (port == 0x7e &&
6657             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6658                 vcpu->arch.complete_userspace_io =
6659                         complete_fast_pio_out_port_0x7e;
6660                 kvm_skip_emulated_instruction(vcpu);
6661         } else {
6662                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6663                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6664         }
6665         return 0;
6666 }
6667
6668 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6669 {
6670         unsigned long val;
6671
6672         /* We should only ever be called with arch.pio.count equal to 1 */
6673         BUG_ON(vcpu->arch.pio.count != 1);
6674
6675         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6676                 vcpu->arch.pio.count = 0;
6677                 return 1;
6678         }
6679
6680         /* For size less than 4 we merge, else we zero extend */
6681         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6682
6683         /*
6684          * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6685          * the copy and tracing
6686          */
6687         emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6688                                  vcpu->arch.pio.port, &val, 1);
6689         kvm_rax_write(vcpu, val);
6690
6691         return kvm_skip_emulated_instruction(vcpu);
6692 }
6693
6694 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6695                            unsigned short port)
6696 {
6697         unsigned long val;
6698         int ret;
6699
6700         /* For size less than 4 we merge, else we zero extend */
6701         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6702
6703         ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6704                                        &val, 1);
6705         if (ret) {
6706                 kvm_rax_write(vcpu, val);
6707                 return ret;
6708         }
6709
6710         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6711         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6712
6713         return 0;
6714 }
6715
6716 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6717 {
6718         int ret;
6719
6720         if (in)
6721                 ret = kvm_fast_pio_in(vcpu, size, port);
6722         else
6723                 ret = kvm_fast_pio_out(vcpu, size, port);
6724         return ret && kvm_skip_emulated_instruction(vcpu);
6725 }
6726 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6727
6728 static int kvmclock_cpu_down_prep(unsigned int cpu)
6729 {
6730         __this_cpu_write(cpu_tsc_khz, 0);
6731         return 0;
6732 }
6733
6734 static void tsc_khz_changed(void *data)
6735 {
6736         struct cpufreq_freqs *freq = data;
6737         unsigned long khz = 0;
6738
6739         if (data)
6740                 khz = freq->new;
6741         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6742                 khz = cpufreq_quick_get(raw_smp_processor_id());
6743         if (!khz)
6744                 khz = tsc_khz;
6745         __this_cpu_write(cpu_tsc_khz, khz);
6746 }
6747
6748 #ifdef CONFIG_X86_64
6749 static void kvm_hyperv_tsc_notifier(void)
6750 {
6751         struct kvm *kvm;
6752         struct kvm_vcpu *vcpu;
6753         int cpu;
6754
6755         mutex_lock(&kvm_lock);
6756         list_for_each_entry(kvm, &vm_list, vm_list)
6757                 kvm_make_mclock_inprogress_request(kvm);
6758
6759         hyperv_stop_tsc_emulation();
6760
6761         /* TSC frequency always matches when on Hyper-V */
6762         for_each_present_cpu(cpu)
6763                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6764         kvm_max_guest_tsc_khz = tsc_khz;
6765
6766         list_for_each_entry(kvm, &vm_list, vm_list) {
6767                 struct kvm_arch *ka = &kvm->arch;
6768
6769                 spin_lock(&ka->pvclock_gtod_sync_lock);
6770
6771                 pvclock_update_vm_gtod_copy(kvm);
6772
6773                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6774                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6775
6776                 kvm_for_each_vcpu(cpu, vcpu, kvm)
6777                         kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6778
6779                 spin_unlock(&ka->pvclock_gtod_sync_lock);
6780         }
6781         mutex_unlock(&kvm_lock);
6782 }
6783 #endif
6784
6785 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6786 {
6787         struct kvm *kvm;
6788         struct kvm_vcpu *vcpu;
6789         int i, send_ipi = 0;
6790
6791         /*
6792          * We allow guests to temporarily run on slowing clocks,
6793          * provided we notify them after, or to run on accelerating
6794          * clocks, provided we notify them before.  Thus time never
6795          * goes backwards.
6796          *
6797          * However, we have a problem.  We can't atomically update
6798          * the frequency of a given CPU from this function; it is
6799          * merely a notifier, which can be called from any CPU.
6800          * Changing the TSC frequency at arbitrary points in time
6801          * requires a recomputation of local variables related to
6802          * the TSC for each VCPU.  We must flag these local variables
6803          * to be updated and be sure the update takes place with the
6804          * new frequency before any guests proceed.
6805          *
6806          * Unfortunately, the combination of hotplug CPU and frequency
6807          * change creates an intractable locking scenario; the order
6808          * of when these callouts happen is undefined with respect to
6809          * CPU hotplug, and they can race with each other.  As such,
6810          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
6811          * undefined; you can actually have a CPU frequency change take
6812          * place in between the computation of X and the setting of the
6813          * variable.  To protect against this problem, all updates of
6814          * the per_cpu tsc_khz variable are done in an interrupt
6815          * protected IPI, and all callers wishing to update the value
6816          * must wait for a synchronous IPI to complete (which is trivial
6817          * if the caller is on the CPU already).  This establishes the
6818          * necessary total order on variable updates.
6819          *
6820          * Note that because a guest time update may take place
6821          * anytime after the setting of the VCPU's request bit, the
6822          * correct TSC value must be set before the request.  However,
6823          * to ensure the update actually makes it to any guest which
6824          * starts running in hardware virtualization between the set
6825          * and the acquisition of the spinlock, we must also ping the
6826          * CPU after setting the request bit.
6827          *
6828          */
6829
6830         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6831
6832         mutex_lock(&kvm_lock);
6833         list_for_each_entry(kvm, &vm_list, vm_list) {
6834                 kvm_for_each_vcpu(i, vcpu, kvm) {
6835                         if (vcpu->cpu != cpu)
6836                                 continue;
6837                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6838                         if (vcpu->cpu != raw_smp_processor_id())
6839                                 send_ipi = 1;
6840                 }
6841         }
6842         mutex_unlock(&kvm_lock);
6843
6844         if (freq->old < freq->new && send_ipi) {
6845                 /*
6846                  * We upscale the frequency.  Must make the guest
6847                  * doesn't see old kvmclock values while running with
6848                  * the new frequency, otherwise we risk the guest sees
6849                  * time go backwards.
6850                  *
6851                  * In case we update the frequency for another cpu
6852                  * (which might be in guest context) send an interrupt
6853                  * to kick the cpu out of guest context.  Next time
6854                  * guest context is entered kvmclock will be updated,
6855                  * so the guest will not see stale values.
6856                  */
6857                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
6858         }
6859 }
6860
6861 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
6862                                      void *data)
6863 {
6864         struct cpufreq_freqs *freq = data;
6865         int cpu;
6866
6867         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
6868                 return 0;
6869         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
6870                 return 0;
6871
6872         for_each_cpu(cpu, freq->policy->cpus)
6873                 __kvmclock_cpufreq_notifier(freq, cpu);
6874
6875         return 0;
6876 }
6877
6878 static struct notifier_block kvmclock_cpufreq_notifier_block = {
6879         .notifier_call  = kvmclock_cpufreq_notifier
6880 };
6881
6882 static int kvmclock_cpu_online(unsigned int cpu)
6883 {
6884         tsc_khz_changed(NULL);
6885         return 0;
6886 }
6887
6888 static void kvm_timer_init(void)
6889 {
6890         max_tsc_khz = tsc_khz;
6891
6892         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
6893 #ifdef CONFIG_CPU_FREQ
6894                 struct cpufreq_policy policy;
6895                 int cpu;
6896
6897                 memset(&policy, 0, sizeof(policy));
6898                 cpu = get_cpu();
6899                 cpufreq_get_policy(&policy, cpu);
6900                 if (policy.cpuinfo.max_freq)
6901                         max_tsc_khz = policy.cpuinfo.max_freq;
6902                 put_cpu();
6903 #endif
6904                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
6905                                           CPUFREQ_TRANSITION_NOTIFIER);
6906         }
6907
6908         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
6909                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
6910 }
6911
6912 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
6913 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
6914
6915 int kvm_is_in_guest(void)
6916 {
6917         return __this_cpu_read(current_vcpu) != NULL;
6918 }
6919
6920 static int kvm_is_user_mode(void)
6921 {
6922         int user_mode = 3;
6923
6924         if (__this_cpu_read(current_vcpu))
6925                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
6926
6927         return user_mode != 0;
6928 }
6929
6930 static unsigned long kvm_get_guest_ip(void)
6931 {
6932         unsigned long ip = 0;
6933
6934         if (__this_cpu_read(current_vcpu))
6935                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
6936
6937         return ip;
6938 }
6939
6940 static void kvm_handle_intel_pt_intr(void)
6941 {
6942         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
6943
6944         kvm_make_request(KVM_REQ_PMI, vcpu);
6945         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
6946                         (unsigned long *)&vcpu->arch.pmu.global_status);
6947 }
6948
6949 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6950         .is_in_guest            = kvm_is_in_guest,
6951         .is_user_mode           = kvm_is_user_mode,
6952         .get_guest_ip           = kvm_get_guest_ip,
6953         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
6954 };
6955
6956 #ifdef CONFIG_X86_64
6957 static void pvclock_gtod_update_fn(struct work_struct *work)
6958 {
6959         struct kvm *kvm;
6960
6961         struct kvm_vcpu *vcpu;
6962         int i;
6963
6964         mutex_lock(&kvm_lock);
6965         list_for_each_entry(kvm, &vm_list, vm_list)
6966                 kvm_for_each_vcpu(i, vcpu, kvm)
6967                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
6968         atomic_set(&kvm_guest_has_master_clock, 0);
6969         mutex_unlock(&kvm_lock);
6970 }
6971
6972 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
6973
6974 /*
6975  * Notification about pvclock gtod data update.
6976  */
6977 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
6978                                void *priv)
6979 {
6980         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
6981         struct timekeeper *tk = priv;
6982
6983         update_pvclock_gtod(tk);
6984
6985         /* disable master clock if host does not trust, or does not
6986          * use, TSC based clocksource.
6987          */
6988         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
6989             atomic_read(&kvm_guest_has_master_clock) != 0)
6990                 queue_work(system_long_wq, &pvclock_gtod_work);
6991
6992         return 0;
6993 }
6994
6995 static struct notifier_block pvclock_gtod_notifier = {
6996         .notifier_call = pvclock_gtod_notify,
6997 };
6998 #endif
6999
7000 int kvm_arch_init(void *opaque)
7001 {
7002         int r;
7003         struct kvm_x86_ops *ops = opaque;
7004
7005         if (kvm_x86_ops) {
7006                 printk(KERN_ERR "kvm: already loaded the other module\n");
7007                 r = -EEXIST;
7008                 goto out;
7009         }
7010
7011         if (!ops->cpu_has_kvm_support()) {
7012                 printk(KERN_ERR "kvm: no hardware support\n");
7013                 r = -EOPNOTSUPP;
7014                 goto out;
7015         }
7016         if (ops->disabled_by_bios()) {
7017                 printk(KERN_ERR "kvm: disabled by bios\n");
7018                 r = -EOPNOTSUPP;
7019                 goto out;
7020         }
7021
7022         /*
7023          * KVM explicitly assumes that the guest has an FPU and
7024          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7025          * vCPU's FPU state as a fxregs_state struct.
7026          */
7027         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7028                 printk(KERN_ERR "kvm: inadequate fpu\n");
7029                 r = -EOPNOTSUPP;
7030                 goto out;
7031         }
7032
7033         r = -ENOMEM;
7034         x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7035                                           __alignof__(struct fpu), SLAB_ACCOUNT,
7036                                           NULL);
7037         if (!x86_fpu_cache) {
7038                 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7039                 goto out;
7040         }
7041
7042         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7043         if (!shared_msrs) {
7044                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7045                 goto out_free_x86_fpu_cache;
7046         }
7047
7048         r = kvm_mmu_module_init();
7049         if (r)
7050                 goto out_free_percpu;
7051
7052         kvm_x86_ops = ops;
7053
7054         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7055                         PT_DIRTY_MASK, PT64_NX_MASK, 0,
7056                         PT_PRESENT_MASK, 0, sme_me_mask);
7057         kvm_timer_init();
7058
7059         perf_register_guest_info_callbacks(&kvm_guest_cbs);
7060
7061         if (boot_cpu_has(X86_FEATURE_XSAVE))
7062                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7063
7064         kvm_lapic_init();
7065         if (pi_inject_timer == -1)
7066                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7067 #ifdef CONFIG_X86_64
7068         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7069
7070         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7071                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7072 #endif
7073
7074         return 0;
7075
7076 out_free_percpu:
7077         free_percpu(shared_msrs);
7078 out_free_x86_fpu_cache:
7079         kmem_cache_destroy(x86_fpu_cache);
7080 out:
7081         return r;
7082 }
7083
7084 void kvm_arch_exit(void)
7085 {
7086 #ifdef CONFIG_X86_64
7087         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7088                 clear_hv_tscchange_cb();
7089 #endif
7090         kvm_lapic_exit();
7091         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7092
7093         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7094                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7095                                             CPUFREQ_TRANSITION_NOTIFIER);
7096         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7097 #ifdef CONFIG_X86_64
7098         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7099 #endif
7100         kvm_x86_ops = NULL;
7101         kvm_mmu_module_exit();
7102         free_percpu(shared_msrs);
7103         kmem_cache_destroy(x86_fpu_cache);
7104 }
7105
7106 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7107 {
7108         ++vcpu->stat.halt_exits;
7109         if (lapic_in_kernel(vcpu)) {
7110                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7111                 return 1;
7112         } else {
7113                 vcpu->run->exit_reason = KVM_EXIT_HLT;
7114                 return 0;
7115         }
7116 }
7117 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7118
7119 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7120 {
7121         int ret = kvm_skip_emulated_instruction(vcpu);
7122         /*
7123          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7124          * KVM_EXIT_DEBUG here.
7125          */
7126         return kvm_vcpu_halt(vcpu) && ret;
7127 }
7128 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7129
7130 #ifdef CONFIG_X86_64
7131 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7132                                 unsigned long clock_type)
7133 {
7134         struct kvm_clock_pairing clock_pairing;
7135         struct timespec64 ts;
7136         u64 cycle;
7137         int ret;
7138
7139         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7140                 return -KVM_EOPNOTSUPP;
7141
7142         if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7143                 return -KVM_EOPNOTSUPP;
7144
7145         clock_pairing.sec = ts.tv_sec;
7146         clock_pairing.nsec = ts.tv_nsec;
7147         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7148         clock_pairing.flags = 0;
7149         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7150
7151         ret = 0;
7152         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7153                             sizeof(struct kvm_clock_pairing)))
7154                 ret = -KVM_EFAULT;
7155
7156         return ret;
7157 }
7158 #endif
7159
7160 /*
7161  * kvm_pv_kick_cpu_op:  Kick a vcpu.
7162  *
7163  * @apicid - apicid of vcpu to be kicked.
7164  */
7165 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7166 {
7167         struct kvm_lapic_irq lapic_irq;
7168
7169         lapic_irq.shorthand = 0;
7170         lapic_irq.dest_mode = 0;
7171         lapic_irq.level = 0;
7172         lapic_irq.dest_id = apicid;
7173         lapic_irq.msi_redir_hint = false;
7174
7175         lapic_irq.delivery_mode = APIC_DM_REMRD;
7176         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7177 }
7178
7179 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7180 {
7181         if (!lapic_in_kernel(vcpu)) {
7182                 WARN_ON_ONCE(vcpu->arch.apicv_active);
7183                 return;
7184         }
7185         if (!vcpu->arch.apicv_active)
7186                 return;
7187
7188         vcpu->arch.apicv_active = false;
7189         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7190 }
7191
7192 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7193 {
7194         struct kvm_vcpu *target = NULL;
7195         struct kvm_apic_map *map;
7196
7197         rcu_read_lock();
7198         map = rcu_dereference(kvm->arch.apic_map);
7199
7200         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7201                 target = map->phys_map[dest_id]->vcpu;
7202
7203         rcu_read_unlock();
7204
7205         if (target)
7206                 kvm_vcpu_yield_to(target);
7207 }
7208
7209 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7210 {
7211         unsigned long nr, a0, a1, a2, a3, ret;
7212         int op_64_bit;
7213
7214         if (kvm_hv_hypercall_enabled(vcpu->kvm))
7215                 return kvm_hv_hypercall(vcpu);
7216
7217         nr = kvm_rax_read(vcpu);
7218         a0 = kvm_rbx_read(vcpu);
7219         a1 = kvm_rcx_read(vcpu);
7220         a2 = kvm_rdx_read(vcpu);
7221         a3 = kvm_rsi_read(vcpu);
7222
7223         trace_kvm_hypercall(nr, a0, a1, a2, a3);
7224
7225         op_64_bit = is_64_bit_mode(vcpu);
7226         if (!op_64_bit) {
7227                 nr &= 0xFFFFFFFF;
7228                 a0 &= 0xFFFFFFFF;
7229                 a1 &= 0xFFFFFFFF;
7230                 a2 &= 0xFFFFFFFF;
7231                 a3 &= 0xFFFFFFFF;
7232         }
7233
7234         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7235                 ret = -KVM_EPERM;
7236                 goto out;
7237         }
7238
7239         switch (nr) {
7240         case KVM_HC_VAPIC_POLL_IRQ:
7241                 ret = 0;
7242                 break;
7243         case KVM_HC_KICK_CPU:
7244                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7245                 ret = 0;
7246                 break;
7247 #ifdef CONFIG_X86_64
7248         case KVM_HC_CLOCK_PAIRING:
7249                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7250                 break;
7251 #endif
7252         case KVM_HC_SEND_IPI:
7253                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7254                 break;
7255         case KVM_HC_SCHED_YIELD:
7256                 kvm_sched_yield(vcpu->kvm, a0);
7257                 ret = 0;
7258                 break;
7259         default:
7260                 ret = -KVM_ENOSYS;
7261                 break;
7262         }
7263 out:
7264         if (!op_64_bit)
7265                 ret = (u32)ret;
7266         kvm_rax_write(vcpu, ret);
7267
7268         ++vcpu->stat.hypercalls;
7269         return kvm_skip_emulated_instruction(vcpu);
7270 }
7271 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7272
7273 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7274 {
7275         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7276         char instruction[3];
7277         unsigned long rip = kvm_rip_read(vcpu);
7278
7279         kvm_x86_ops->patch_hypercall(vcpu, instruction);
7280
7281         return emulator_write_emulated(ctxt, rip, instruction, 3,
7282                 &ctxt->exception);
7283 }
7284
7285 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7286 {
7287         return vcpu->run->request_interrupt_window &&
7288                 likely(!pic_in_kernel(vcpu->kvm));
7289 }
7290
7291 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7292 {
7293         struct kvm_run *kvm_run = vcpu->run;
7294
7295         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7296         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7297         kvm_run->cr8 = kvm_get_cr8(vcpu);
7298         kvm_run->apic_base = kvm_get_apic_base(vcpu);
7299         kvm_run->ready_for_interrupt_injection =
7300                 pic_in_kernel(vcpu->kvm) ||
7301                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7302 }
7303
7304 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7305 {
7306         int max_irr, tpr;
7307
7308         if (!kvm_x86_ops->update_cr8_intercept)
7309                 return;
7310
7311         if (!lapic_in_kernel(vcpu))
7312                 return;
7313
7314         if (vcpu->arch.apicv_active)
7315                 return;
7316
7317         if (!vcpu->arch.apic->vapic_addr)
7318                 max_irr = kvm_lapic_find_highest_irr(vcpu);
7319         else
7320                 max_irr = -1;
7321
7322         if (max_irr != -1)
7323                 max_irr >>= 4;
7324
7325         tpr = kvm_lapic_get_cr8(vcpu);
7326
7327         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7328 }
7329
7330 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7331 {
7332         int r;
7333
7334         /* try to reinject previous events if any */
7335
7336         if (vcpu->arch.exception.injected)
7337                 kvm_x86_ops->queue_exception(vcpu);
7338         /*
7339          * Do not inject an NMI or interrupt if there is a pending
7340          * exception.  Exceptions and interrupts are recognized at
7341          * instruction boundaries, i.e. the start of an instruction.
7342          * Trap-like exceptions, e.g. #DB, have higher priority than
7343          * NMIs and interrupts, i.e. traps are recognized before an
7344          * NMI/interrupt that's pending on the same instruction.
7345          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7346          * priority, but are only generated (pended) during instruction
7347          * execution, i.e. a pending fault-like exception means the
7348          * fault occurred on the *previous* instruction and must be
7349          * serviced prior to recognizing any new events in order to
7350          * fully complete the previous instruction.
7351          */
7352         else if (!vcpu->arch.exception.pending) {
7353                 if (vcpu->arch.nmi_injected)
7354                         kvm_x86_ops->set_nmi(vcpu);
7355                 else if (vcpu->arch.interrupt.injected)
7356                         kvm_x86_ops->set_irq(vcpu);
7357         }
7358
7359         /*
7360          * Call check_nested_events() even if we reinjected a previous event
7361          * in order for caller to determine if it should require immediate-exit
7362          * from L2 to L1 due to pending L1 events which require exit
7363          * from L2 to L1.
7364          */
7365         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7366                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7367                 if (r != 0)
7368                         return r;
7369         }
7370
7371         /* try to inject new event if pending */
7372         if (vcpu->arch.exception.pending) {
7373                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7374                                         vcpu->arch.exception.has_error_code,
7375                                         vcpu->arch.exception.error_code);
7376
7377                 WARN_ON_ONCE(vcpu->arch.exception.injected);
7378                 vcpu->arch.exception.pending = false;
7379                 vcpu->arch.exception.injected = true;
7380
7381                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7382                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7383                                              X86_EFLAGS_RF);
7384
7385                 if (vcpu->arch.exception.nr == DB_VECTOR) {
7386                         /*
7387                          * This code assumes that nSVM doesn't use
7388                          * check_nested_events(). If it does, the
7389                          * DR6/DR7 changes should happen before L1
7390                          * gets a #VMEXIT for an intercepted #DB in
7391                          * L2.  (Under VMX, on the other hand, the
7392                          * DR6/DR7 changes should not happen in the
7393                          * event of a VM-exit to L1 for an intercepted
7394                          * #DB in L2.)
7395                          */
7396                         kvm_deliver_exception_payload(vcpu);
7397                         if (vcpu->arch.dr7 & DR7_GD) {
7398                                 vcpu->arch.dr7 &= ~DR7_GD;
7399                                 kvm_update_dr7(vcpu);
7400                         }
7401                 }
7402
7403                 kvm_x86_ops->queue_exception(vcpu);
7404         }
7405
7406         /* Don't consider new event if we re-injected an event */
7407         if (kvm_event_needs_reinjection(vcpu))
7408                 return 0;
7409
7410         if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7411             kvm_x86_ops->smi_allowed(vcpu)) {
7412                 vcpu->arch.smi_pending = false;
7413                 ++vcpu->arch.smi_count;
7414                 enter_smm(vcpu);
7415         } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7416                 --vcpu->arch.nmi_pending;
7417                 vcpu->arch.nmi_injected = true;
7418                 kvm_x86_ops->set_nmi(vcpu);
7419         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7420                 /*
7421                  * Because interrupts can be injected asynchronously, we are
7422                  * calling check_nested_events again here to avoid a race condition.
7423                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7424                  * proposal and current concerns.  Perhaps we should be setting
7425                  * KVM_REQ_EVENT only on certain events and not unconditionally?
7426                  */
7427                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7428                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7429                         if (r != 0)
7430                                 return r;
7431                 }
7432                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7433                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7434                                             false);
7435                         kvm_x86_ops->set_irq(vcpu);
7436                 }
7437         }
7438
7439         return 0;
7440 }
7441
7442 static void process_nmi(struct kvm_vcpu *vcpu)
7443 {
7444         unsigned limit = 2;
7445
7446         /*
7447          * x86 is limited to one NMI running, and one NMI pending after it.
7448          * If an NMI is already in progress, limit further NMIs to just one.
7449          * Otherwise, allow two (and we'll inject the first one immediately).
7450          */
7451         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7452                 limit = 1;
7453
7454         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7455         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7456         kvm_make_request(KVM_REQ_EVENT, vcpu);
7457 }
7458
7459 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7460 {
7461         u32 flags = 0;
7462         flags |= seg->g       << 23;
7463         flags |= seg->db      << 22;
7464         flags |= seg->l       << 21;
7465         flags |= seg->avl     << 20;
7466         flags |= seg->present << 15;
7467         flags |= seg->dpl     << 13;
7468         flags |= seg->s       << 12;
7469         flags |= seg->type    << 8;
7470         return flags;
7471 }
7472
7473 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7474 {
7475         struct kvm_segment seg;
7476         int offset;
7477
7478         kvm_get_segment(vcpu, &seg, n);
7479         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7480
7481         if (n < 3)
7482                 offset = 0x7f84 + n * 12;
7483         else
7484                 offset = 0x7f2c + (n - 3) * 12;
7485
7486         put_smstate(u32, buf, offset + 8, seg.base);
7487         put_smstate(u32, buf, offset + 4, seg.limit);
7488         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7489 }
7490
7491 #ifdef CONFIG_X86_64
7492 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7493 {
7494         struct kvm_segment seg;
7495         int offset;
7496         u16 flags;
7497
7498         kvm_get_segment(vcpu, &seg, n);
7499         offset = 0x7e00 + n * 16;
7500
7501         flags = enter_smm_get_segment_flags(&seg) >> 8;
7502         put_smstate(u16, buf, offset, seg.selector);
7503         put_smstate(u16, buf, offset + 2, flags);
7504         put_smstate(u32, buf, offset + 4, seg.limit);
7505         put_smstate(u64, buf, offset + 8, seg.base);
7506 }
7507 #endif
7508
7509 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7510 {
7511         struct desc_ptr dt;
7512         struct kvm_segment seg;
7513         unsigned long val;
7514         int i;
7515
7516         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7517         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7518         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7519         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7520
7521         for (i = 0; i < 8; i++)
7522                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7523
7524         kvm_get_dr(vcpu, 6, &val);
7525         put_smstate(u32, buf, 0x7fcc, (u32)val);
7526         kvm_get_dr(vcpu, 7, &val);
7527         put_smstate(u32, buf, 0x7fc8, (u32)val);
7528
7529         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7530         put_smstate(u32, buf, 0x7fc4, seg.selector);
7531         put_smstate(u32, buf, 0x7f64, seg.base);
7532         put_smstate(u32, buf, 0x7f60, seg.limit);
7533         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7534
7535         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7536         put_smstate(u32, buf, 0x7fc0, seg.selector);
7537         put_smstate(u32, buf, 0x7f80, seg.base);
7538         put_smstate(u32, buf, 0x7f7c, seg.limit);
7539         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7540
7541         kvm_x86_ops->get_gdt(vcpu, &dt);
7542         put_smstate(u32, buf, 0x7f74, dt.address);
7543         put_smstate(u32, buf, 0x7f70, dt.size);
7544
7545         kvm_x86_ops->get_idt(vcpu, &dt);
7546         put_smstate(u32, buf, 0x7f58, dt.address);
7547         put_smstate(u32, buf, 0x7f54, dt.size);
7548
7549         for (i = 0; i < 6; i++)
7550                 enter_smm_save_seg_32(vcpu, buf, i);
7551
7552         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7553
7554         /* revision id */
7555         put_smstate(u32, buf, 0x7efc, 0x00020000);
7556         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7557 }
7558
7559 #ifdef CONFIG_X86_64
7560 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7561 {
7562         struct desc_ptr dt;
7563         struct kvm_segment seg;
7564         unsigned long val;
7565         int i;
7566
7567         for (i = 0; i < 16; i++)
7568                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7569
7570         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7571         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7572
7573         kvm_get_dr(vcpu, 6, &val);
7574         put_smstate(u64, buf, 0x7f68, val);
7575         kvm_get_dr(vcpu, 7, &val);
7576         put_smstate(u64, buf, 0x7f60, val);
7577
7578         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7579         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7580         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7581
7582         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7583
7584         /* revision id */
7585         put_smstate(u32, buf, 0x7efc, 0x00020064);
7586
7587         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7588
7589         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7590         put_smstate(u16, buf, 0x7e90, seg.selector);
7591         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7592         put_smstate(u32, buf, 0x7e94, seg.limit);
7593         put_smstate(u64, buf, 0x7e98, seg.base);
7594
7595         kvm_x86_ops->get_idt(vcpu, &dt);
7596         put_smstate(u32, buf, 0x7e84, dt.size);
7597         put_smstate(u64, buf, 0x7e88, dt.address);
7598
7599         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7600         put_smstate(u16, buf, 0x7e70, seg.selector);
7601         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7602         put_smstate(u32, buf, 0x7e74, seg.limit);
7603         put_smstate(u64, buf, 0x7e78, seg.base);
7604
7605         kvm_x86_ops->get_gdt(vcpu, &dt);
7606         put_smstate(u32, buf, 0x7e64, dt.size);
7607         put_smstate(u64, buf, 0x7e68, dt.address);
7608
7609         for (i = 0; i < 6; i++)
7610                 enter_smm_save_seg_64(vcpu, buf, i);
7611 }
7612 #endif
7613
7614 static void enter_smm(struct kvm_vcpu *vcpu)
7615 {
7616         struct kvm_segment cs, ds;
7617         struct desc_ptr dt;
7618         char buf[512];
7619         u32 cr0;
7620
7621         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7622         memset(buf, 0, 512);
7623 #ifdef CONFIG_X86_64
7624         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7625                 enter_smm_save_state_64(vcpu, buf);
7626         else
7627 #endif
7628                 enter_smm_save_state_32(vcpu, buf);
7629
7630         /*
7631          * Give pre_enter_smm() a chance to make ISA-specific changes to the
7632          * vCPU state (e.g. leave guest mode) after we've saved the state into
7633          * the SMM state-save area.
7634          */
7635         kvm_x86_ops->pre_enter_smm(vcpu, buf);
7636
7637         vcpu->arch.hflags |= HF_SMM_MASK;
7638         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7639
7640         if (kvm_x86_ops->get_nmi_mask(vcpu))
7641                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7642         else
7643                 kvm_x86_ops->set_nmi_mask(vcpu, true);
7644
7645         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7646         kvm_rip_write(vcpu, 0x8000);
7647
7648         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7649         kvm_x86_ops->set_cr0(vcpu, cr0);
7650         vcpu->arch.cr0 = cr0;
7651
7652         kvm_x86_ops->set_cr4(vcpu, 0);
7653
7654         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
7655         dt.address = dt.size = 0;
7656         kvm_x86_ops->set_idt(vcpu, &dt);
7657
7658         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7659
7660         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7661         cs.base = vcpu->arch.smbase;
7662
7663         ds.selector = 0;
7664         ds.base = 0;
7665
7666         cs.limit    = ds.limit = 0xffffffff;
7667         cs.type     = ds.type = 0x3;
7668         cs.dpl      = ds.dpl = 0;
7669         cs.db       = ds.db = 0;
7670         cs.s        = ds.s = 1;
7671         cs.l        = ds.l = 0;
7672         cs.g        = ds.g = 1;
7673         cs.avl      = ds.avl = 0;
7674         cs.present  = ds.present = 1;
7675         cs.unusable = ds.unusable = 0;
7676         cs.padding  = ds.padding = 0;
7677
7678         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7679         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7680         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7681         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7682         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7683         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7684
7685 #ifdef CONFIG_X86_64
7686         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7687                 kvm_x86_ops->set_efer(vcpu, 0);
7688 #endif
7689
7690         kvm_update_cpuid(vcpu);
7691         kvm_mmu_reset_context(vcpu);
7692 }
7693
7694 static void process_smi(struct kvm_vcpu *vcpu)
7695 {
7696         vcpu->arch.smi_pending = true;
7697         kvm_make_request(KVM_REQ_EVENT, vcpu);
7698 }
7699
7700 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7701 {
7702         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7703 }
7704
7705 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7706 {
7707         if (!kvm_apic_present(vcpu))
7708                 return;
7709
7710         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7711
7712         if (irqchip_split(vcpu->kvm))
7713                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7714         else {
7715                 if (vcpu->arch.apicv_active)
7716                         kvm_x86_ops->sync_pir_to_irr(vcpu);
7717                 if (ioapic_in_kernel(vcpu->kvm))
7718                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7719         }
7720
7721         if (is_guest_mode(vcpu))
7722                 vcpu->arch.load_eoi_exitmap_pending = true;
7723         else
7724                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7725 }
7726
7727 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7728 {
7729         u64 eoi_exit_bitmap[4];
7730
7731         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7732                 return;
7733
7734         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7735                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
7736         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7737 }
7738
7739 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7740                 unsigned long start, unsigned long end,
7741                 bool blockable)
7742 {
7743         unsigned long apic_address;
7744
7745         /*
7746          * The physical address of apic access page is stored in the VMCS.
7747          * Update it when it becomes invalid.
7748          */
7749         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7750         if (start <= apic_address && apic_address < end)
7751                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7752
7753         return 0;
7754 }
7755
7756 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7757 {
7758         struct page *page = NULL;
7759
7760         if (!lapic_in_kernel(vcpu))
7761                 return;
7762
7763         if (!kvm_x86_ops->set_apic_access_page_addr)
7764                 return;
7765
7766         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7767         if (is_error_page(page))
7768                 return;
7769         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7770
7771         /*
7772          * Do not pin apic access page in memory, the MMU notifier
7773          * will call us again if it is migrated or swapped out.
7774          */
7775         put_page(page);
7776 }
7777 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
7778
7779 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7780 {
7781         smp_send_reschedule(vcpu->cpu);
7782 }
7783 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7784
7785 /*
7786  * Returns 1 to let vcpu_run() continue the guest execution loop without
7787  * exiting to the userspace.  Otherwise, the value will be returned to the
7788  * userspace.
7789  */
7790 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7791 {
7792         int r;
7793         bool req_int_win =
7794                 dm_request_for_irq_injection(vcpu) &&
7795                 kvm_cpu_accept_dm_intr(vcpu);
7796
7797         bool req_immediate_exit = false;
7798
7799         if (kvm_request_pending(vcpu)) {
7800                 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu))
7801                         kvm_x86_ops->get_vmcs12_pages(vcpu);
7802                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
7803                         kvm_mmu_unload(vcpu);
7804                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
7805                         __kvm_migrate_timers(vcpu);
7806                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
7807                         kvm_gen_update_masterclock(vcpu->kvm);
7808                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
7809                         kvm_gen_kvmclock_update(vcpu);
7810                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
7811                         r = kvm_guest_time_update(vcpu);
7812                         if (unlikely(r))
7813                                 goto out;
7814                 }
7815                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
7816                         kvm_mmu_sync_roots(vcpu);
7817                 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
7818                         kvm_mmu_load_cr3(vcpu);
7819                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7820                         kvm_vcpu_flush_tlb(vcpu, true);
7821                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
7822                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
7823                         r = 0;
7824                         goto out;
7825                 }
7826                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
7827                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
7828                         vcpu->mmio_needed = 0;
7829                         r = 0;
7830                         goto out;
7831                 }
7832                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
7833                         /* Page is swapped out. Do synthetic halt */
7834                         vcpu->arch.apf.halted = true;
7835                         r = 1;
7836                         goto out;
7837                 }
7838                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
7839                         record_steal_time(vcpu);
7840                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
7841                         process_smi(vcpu);
7842                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
7843                         process_nmi(vcpu);
7844                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
7845                         kvm_pmu_handle_event(vcpu);
7846                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
7847                         kvm_pmu_deliver_pmi(vcpu);
7848                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
7849                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
7850                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
7851                                      vcpu->arch.ioapic_handled_vectors)) {
7852                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
7853                                 vcpu->run->eoi.vector =
7854                                                 vcpu->arch.pending_ioapic_eoi;
7855                                 r = 0;
7856                                 goto out;
7857                         }
7858                 }
7859                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
7860                         vcpu_scan_ioapic(vcpu);
7861                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
7862                         vcpu_load_eoi_exitmap(vcpu);
7863                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
7864                         kvm_vcpu_reload_apic_access_page(vcpu);
7865                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
7866                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7867                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
7868                         r = 0;
7869                         goto out;
7870                 }
7871                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
7872                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
7873                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
7874                         r = 0;
7875                         goto out;
7876                 }
7877                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
7878                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
7879                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
7880                         r = 0;
7881                         goto out;
7882                 }
7883
7884                 /*
7885                  * KVM_REQ_HV_STIMER has to be processed after
7886                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
7887                  * depend on the guest clock being up-to-date
7888                  */
7889                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
7890                         kvm_hv_process_stimers(vcpu);
7891         }
7892
7893         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
7894                 ++vcpu->stat.req_event;
7895                 kvm_apic_accept_events(vcpu);
7896                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
7897                         r = 1;
7898                         goto out;
7899                 }
7900
7901                 if (inject_pending_event(vcpu, req_int_win) != 0)
7902                         req_immediate_exit = true;
7903                 else {
7904                         /* Enable SMI/NMI/IRQ window open exits if needed.
7905                          *
7906                          * SMIs have three cases:
7907                          * 1) They can be nested, and then there is nothing to
7908                          *    do here because RSM will cause a vmexit anyway.
7909                          * 2) There is an ISA-specific reason why SMI cannot be
7910                          *    injected, and the moment when this changes can be
7911                          *    intercepted.
7912                          * 3) Or the SMI can be pending because
7913                          *    inject_pending_event has completed the injection
7914                          *    of an IRQ or NMI from the previous vmexit, and
7915                          *    then we request an immediate exit to inject the
7916                          *    SMI.
7917                          */
7918                         if (vcpu->arch.smi_pending && !is_smm(vcpu))
7919                                 if (!kvm_x86_ops->enable_smi_window(vcpu))
7920                                         req_immediate_exit = true;
7921                         if (vcpu->arch.nmi_pending)
7922                                 kvm_x86_ops->enable_nmi_window(vcpu);
7923                         if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
7924                                 kvm_x86_ops->enable_irq_window(vcpu);
7925                         WARN_ON(vcpu->arch.exception.pending);
7926                 }
7927
7928                 if (kvm_lapic_enabled(vcpu)) {
7929                         update_cr8_intercept(vcpu);
7930                         kvm_lapic_sync_to_vapic(vcpu);
7931                 }
7932         }
7933
7934         r = kvm_mmu_reload(vcpu);
7935         if (unlikely(r)) {
7936                 goto cancel_injection;
7937         }
7938
7939         preempt_disable();
7940
7941         kvm_x86_ops->prepare_guest_switch(vcpu);
7942
7943         /*
7944          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
7945          * IPI are then delayed after guest entry, which ensures that they
7946          * result in virtual interrupt delivery.
7947          */
7948         local_irq_disable();
7949         vcpu->mode = IN_GUEST_MODE;
7950
7951         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
7952
7953         /*
7954          * 1) We should set ->mode before checking ->requests.  Please see
7955          * the comment in kvm_vcpu_exiting_guest_mode().
7956          *
7957          * 2) For APICv, we should set ->mode before checking PID.ON. This
7958          * pairs with the memory barrier implicit in pi_test_and_set_on
7959          * (see vmx_deliver_posted_interrupt).
7960          *
7961          * 3) This also orders the write to mode from any reads to the page
7962          * tables done while the VCPU is running.  Please see the comment
7963          * in kvm_flush_remote_tlbs.
7964          */
7965         smp_mb__after_srcu_read_unlock();
7966
7967         /*
7968          * This handles the case where a posted interrupt was
7969          * notified with kvm_vcpu_kick.
7970          */
7971         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
7972                 kvm_x86_ops->sync_pir_to_irr(vcpu);
7973
7974         if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
7975             || need_resched() || signal_pending(current)) {
7976                 vcpu->mode = OUTSIDE_GUEST_MODE;
7977                 smp_wmb();
7978                 local_irq_enable();
7979                 preempt_enable();
7980                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
7981                 r = 1;
7982                 goto cancel_injection;
7983         }
7984
7985         if (req_immediate_exit) {
7986                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7987                 kvm_x86_ops->request_immediate_exit(vcpu);
7988         }
7989
7990         trace_kvm_entry(vcpu->vcpu_id);
7991         guest_enter_irqoff();
7992
7993         fpregs_assert_state_consistent();
7994         if (test_thread_flag(TIF_NEED_FPU_LOAD))
7995                 switch_fpu_return();
7996
7997         if (unlikely(vcpu->arch.switch_db_regs)) {
7998                 set_debugreg(0, 7);
7999                 set_debugreg(vcpu->arch.eff_db[0], 0);
8000                 set_debugreg(vcpu->arch.eff_db[1], 1);
8001                 set_debugreg(vcpu->arch.eff_db[2], 2);
8002                 set_debugreg(vcpu->arch.eff_db[3], 3);
8003                 set_debugreg(vcpu->arch.dr6, 6);
8004                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8005         }
8006
8007         kvm_x86_ops->run(vcpu);
8008
8009         /*
8010          * Do this here before restoring debug registers on the host.  And
8011          * since we do this before handling the vmexit, a DR access vmexit
8012          * can (a) read the correct value of the debug registers, (b) set
8013          * KVM_DEBUGREG_WONT_EXIT again.
8014          */
8015         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8016                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8017                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8018                 kvm_update_dr0123(vcpu);
8019                 kvm_update_dr6(vcpu);
8020                 kvm_update_dr7(vcpu);
8021                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8022         }
8023
8024         /*
8025          * If the guest has used debug registers, at least dr7
8026          * will be disabled while returning to the host.
8027          * If we don't have active breakpoints in the host, we don't
8028          * care about the messed up debug address registers. But if
8029          * we have some of them active, restore the old state.
8030          */
8031         if (hw_breakpoint_active())
8032                 hw_breakpoint_restore();
8033
8034         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8035
8036         vcpu->mode = OUTSIDE_GUEST_MODE;
8037         smp_wmb();
8038
8039         kvm_x86_ops->handle_exit_irqoff(vcpu);
8040
8041         /*
8042          * Consume any pending interrupts, including the possible source of
8043          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8044          * An instruction is required after local_irq_enable() to fully unblock
8045          * interrupts on processors that implement an interrupt shadow, the
8046          * stat.exits increment will do nicely.
8047          */
8048         kvm_before_interrupt(vcpu);
8049         local_irq_enable();
8050         ++vcpu->stat.exits;
8051         local_irq_disable();
8052         kvm_after_interrupt(vcpu);
8053
8054         guest_exit_irqoff();
8055         if (lapic_in_kernel(vcpu)) {
8056                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8057                 if (delta != S64_MIN) {
8058                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8059                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8060                 }
8061         }
8062
8063         local_irq_enable();
8064         preempt_enable();
8065
8066         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8067
8068         /*
8069          * Profile KVM exit RIPs:
8070          */
8071         if (unlikely(prof_on == KVM_PROFILING)) {
8072                 unsigned long rip = kvm_rip_read(vcpu);
8073                 profile_hit(KVM_PROFILING, (void *)rip);
8074         }
8075
8076         if (unlikely(vcpu->arch.tsc_always_catchup))
8077                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8078
8079         if (vcpu->arch.apic_attention)
8080                 kvm_lapic_sync_from_vapic(vcpu);
8081
8082         vcpu->arch.gpa_available = false;
8083         r = kvm_x86_ops->handle_exit(vcpu);
8084         return r;
8085
8086 cancel_injection:
8087         kvm_x86_ops->cancel_injection(vcpu);
8088         if (unlikely(vcpu->arch.apic_attention))
8089                 kvm_lapic_sync_from_vapic(vcpu);
8090 out:
8091         return r;
8092 }
8093
8094 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8095 {
8096         if (!kvm_arch_vcpu_runnable(vcpu) &&
8097             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8098                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8099                 kvm_vcpu_block(vcpu);
8100                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8101
8102                 if (kvm_x86_ops->post_block)
8103                         kvm_x86_ops->post_block(vcpu);
8104
8105                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8106                         return 1;
8107         }
8108
8109         kvm_apic_accept_events(vcpu);
8110         switch(vcpu->arch.mp_state) {
8111         case KVM_MP_STATE_HALTED:
8112                 vcpu->arch.pv.pv_unhalted = false;
8113                 vcpu->arch.mp_state =
8114                         KVM_MP_STATE_RUNNABLE;
8115                 /* fall through */
8116         case KVM_MP_STATE_RUNNABLE:
8117                 vcpu->arch.apf.halted = false;
8118                 break;
8119         case KVM_MP_STATE_INIT_RECEIVED:
8120                 break;
8121         default:
8122                 return -EINTR;
8123                 break;
8124         }
8125         return 1;
8126 }
8127
8128 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8129 {
8130         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8131                 kvm_x86_ops->check_nested_events(vcpu, false);
8132
8133         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8134                 !vcpu->arch.apf.halted);
8135 }
8136
8137 static int vcpu_run(struct kvm_vcpu *vcpu)
8138 {
8139         int r;
8140         struct kvm *kvm = vcpu->kvm;
8141
8142         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8143         vcpu->arch.l1tf_flush_l1d = true;
8144
8145         for (;;) {
8146                 if (kvm_vcpu_running(vcpu)) {
8147                         r = vcpu_enter_guest(vcpu);
8148                 } else {
8149                         r = vcpu_block(kvm, vcpu);
8150                 }
8151
8152                 if (r <= 0)
8153                         break;
8154
8155                 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8156                 if (kvm_cpu_has_pending_timer(vcpu))
8157                         kvm_inject_pending_timer_irqs(vcpu);
8158
8159                 if (dm_request_for_irq_injection(vcpu) &&
8160                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8161                         r = 0;
8162                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8163                         ++vcpu->stat.request_irq_exits;
8164                         break;
8165                 }
8166
8167                 kvm_check_async_pf_completion(vcpu);
8168
8169                 if (signal_pending(current)) {
8170                         r = -EINTR;
8171                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8172                         ++vcpu->stat.signal_exits;
8173                         break;
8174                 }
8175                 if (need_resched()) {
8176                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8177                         cond_resched();
8178                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8179                 }
8180         }
8181
8182         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8183
8184         return r;
8185 }
8186
8187 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8188 {
8189         int r;
8190         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8191         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8192         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8193         if (r != EMULATE_DONE)
8194                 return 0;
8195         return 1;
8196 }
8197
8198 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8199 {
8200         BUG_ON(!vcpu->arch.pio.count);
8201
8202         return complete_emulated_io(vcpu);
8203 }
8204
8205 /*
8206  * Implements the following, as a state machine:
8207  *
8208  * read:
8209  *   for each fragment
8210  *     for each mmio piece in the fragment
8211  *       write gpa, len
8212  *       exit
8213  *       copy data
8214  *   execute insn
8215  *
8216  * write:
8217  *   for each fragment
8218  *     for each mmio piece in the fragment
8219  *       write gpa, len
8220  *       copy data
8221  *       exit
8222  */
8223 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8224 {
8225         struct kvm_run *run = vcpu->run;
8226         struct kvm_mmio_fragment *frag;
8227         unsigned len;
8228
8229         BUG_ON(!vcpu->mmio_needed);
8230
8231         /* Complete previous fragment */
8232         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8233         len = min(8u, frag->len);
8234         if (!vcpu->mmio_is_write)
8235                 memcpy(frag->data, run->mmio.data, len);
8236
8237         if (frag->len <= 8) {
8238                 /* Switch to the next fragment. */
8239                 frag++;
8240                 vcpu->mmio_cur_fragment++;
8241         } else {
8242                 /* Go forward to the next mmio piece. */
8243                 frag->data += len;
8244                 frag->gpa += len;
8245                 frag->len -= len;
8246         }
8247
8248         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8249                 vcpu->mmio_needed = 0;
8250
8251                 /* FIXME: return into emulator if single-stepping.  */
8252                 if (vcpu->mmio_is_write)
8253                         return 1;
8254                 vcpu->mmio_read_completed = 1;
8255                 return complete_emulated_io(vcpu);
8256         }
8257
8258         run->exit_reason = KVM_EXIT_MMIO;
8259         run->mmio.phys_addr = frag->gpa;
8260         if (vcpu->mmio_is_write)
8261                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8262         run->mmio.len = min(8u, frag->len);
8263         run->mmio.is_write = vcpu->mmio_is_write;
8264         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8265         return 0;
8266 }
8267
8268 /* Swap (qemu) user FPU context for the guest FPU context. */
8269 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8270 {
8271         fpregs_lock();
8272
8273         copy_fpregs_to_fpstate(&current->thread.fpu);
8274         /* PKRU is separately restored in kvm_x86_ops->run.  */
8275         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8276                                 ~XFEATURE_MASK_PKRU);
8277
8278         fpregs_mark_activate();
8279         fpregs_unlock();
8280
8281         trace_kvm_fpu(1);
8282 }
8283
8284 /* When vcpu_run ends, restore user space FPU context. */
8285 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8286 {
8287         fpregs_lock();
8288
8289         copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8290         copy_kernel_to_fpregs(&current->thread.fpu.state);
8291
8292         fpregs_mark_activate();
8293         fpregs_unlock();
8294
8295         ++vcpu->stat.fpu_reload;
8296         trace_kvm_fpu(0);
8297 }
8298
8299 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8300 {
8301         int r;
8302
8303         vcpu_load(vcpu);
8304         kvm_sigset_activate(vcpu);
8305         kvm_load_guest_fpu(vcpu);
8306
8307         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8308                 if (kvm_run->immediate_exit) {
8309                         r = -EINTR;
8310                         goto out;
8311                 }
8312                 kvm_vcpu_block(vcpu);
8313                 kvm_apic_accept_events(vcpu);
8314                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8315                 r = -EAGAIN;
8316                 if (signal_pending(current)) {
8317                         r = -EINTR;
8318                         vcpu->run->exit_reason = KVM_EXIT_INTR;
8319                         ++vcpu->stat.signal_exits;
8320                 }
8321                 goto out;
8322         }
8323
8324         if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8325                 r = -EINVAL;
8326                 goto out;
8327         }
8328
8329         if (vcpu->run->kvm_dirty_regs) {
8330                 r = sync_regs(vcpu);
8331                 if (r != 0)
8332                         goto out;
8333         }
8334
8335         /* re-sync apic's tpr */
8336         if (!lapic_in_kernel(vcpu)) {
8337                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8338                         r = -EINVAL;
8339                         goto out;
8340                 }
8341         }
8342
8343         if (unlikely(vcpu->arch.complete_userspace_io)) {
8344                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8345                 vcpu->arch.complete_userspace_io = NULL;
8346                 r = cui(vcpu);
8347                 if (r <= 0)
8348                         goto out;
8349         } else
8350                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8351
8352         if (kvm_run->immediate_exit)
8353                 r = -EINTR;
8354         else
8355                 r = vcpu_run(vcpu);
8356
8357 out:
8358         kvm_put_guest_fpu(vcpu);
8359         if (vcpu->run->kvm_valid_regs)
8360                 store_regs(vcpu);
8361         post_kvm_run_save(vcpu);
8362         kvm_sigset_deactivate(vcpu);
8363
8364         vcpu_put(vcpu);
8365         return r;
8366 }
8367
8368 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8369 {
8370         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8371                 /*
8372                  * We are here if userspace calls get_regs() in the middle of
8373                  * instruction emulation. Registers state needs to be copied
8374                  * back from emulation context to vcpu. Userspace shouldn't do
8375                  * that usually, but some bad designed PV devices (vmware
8376                  * backdoor interface) need this to work
8377                  */
8378                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8379                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8380         }
8381         regs->rax = kvm_rax_read(vcpu);
8382         regs->rbx = kvm_rbx_read(vcpu);
8383         regs->rcx = kvm_rcx_read(vcpu);
8384         regs->rdx = kvm_rdx_read(vcpu);
8385         regs->rsi = kvm_rsi_read(vcpu);
8386         regs->rdi = kvm_rdi_read(vcpu);
8387         regs->rsp = kvm_rsp_read(vcpu);
8388         regs->rbp = kvm_rbp_read(vcpu);
8389 #ifdef CONFIG_X86_64
8390         regs->r8 = kvm_r8_read(vcpu);
8391         regs->r9 = kvm_r9_read(vcpu);
8392         regs->r10 = kvm_r10_read(vcpu);
8393         regs->r11 = kvm_r11_read(vcpu);
8394         regs->r12 = kvm_r12_read(vcpu);
8395         regs->r13 = kvm_r13_read(vcpu);
8396         regs->r14 = kvm_r14_read(vcpu);
8397         regs->r15 = kvm_r15_read(vcpu);
8398 #endif
8399
8400         regs->rip = kvm_rip_read(vcpu);
8401         regs->rflags = kvm_get_rflags(vcpu);
8402 }
8403
8404 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8405 {
8406         vcpu_load(vcpu);
8407         __get_regs(vcpu, regs);
8408         vcpu_put(vcpu);
8409         return 0;
8410 }
8411
8412 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8413 {
8414         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8415         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8416
8417         kvm_rax_write(vcpu, regs->rax);
8418         kvm_rbx_write(vcpu, regs->rbx);
8419         kvm_rcx_write(vcpu, regs->rcx);
8420         kvm_rdx_write(vcpu, regs->rdx);
8421         kvm_rsi_write(vcpu, regs->rsi);
8422         kvm_rdi_write(vcpu, regs->rdi);
8423         kvm_rsp_write(vcpu, regs->rsp);
8424         kvm_rbp_write(vcpu, regs->rbp);
8425 #ifdef CONFIG_X86_64
8426         kvm_r8_write(vcpu, regs->r8);
8427         kvm_r9_write(vcpu, regs->r9);
8428         kvm_r10_write(vcpu, regs->r10);
8429         kvm_r11_write(vcpu, regs->r11);
8430         kvm_r12_write(vcpu, regs->r12);
8431         kvm_r13_write(vcpu, regs->r13);
8432         kvm_r14_write(vcpu, regs->r14);
8433         kvm_r15_write(vcpu, regs->r15);
8434 #endif
8435
8436         kvm_rip_write(vcpu, regs->rip);
8437         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8438
8439         vcpu->arch.exception.pending = false;
8440
8441         kvm_make_request(KVM_REQ_EVENT, vcpu);
8442 }
8443
8444 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8445 {
8446         vcpu_load(vcpu);
8447         __set_regs(vcpu, regs);
8448         vcpu_put(vcpu);
8449         return 0;
8450 }
8451
8452 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8453 {
8454         struct kvm_segment cs;
8455
8456         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8457         *db = cs.db;
8458         *l = cs.l;
8459 }
8460 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8461
8462 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8463 {
8464         struct desc_ptr dt;
8465
8466         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8467         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8468         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8469         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8470         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8471         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8472
8473         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8474         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8475
8476         kvm_x86_ops->get_idt(vcpu, &dt);
8477         sregs->idt.limit = dt.size;
8478         sregs->idt.base = dt.address;
8479         kvm_x86_ops->get_gdt(vcpu, &dt);
8480         sregs->gdt.limit = dt.size;
8481         sregs->gdt.base = dt.address;
8482
8483         sregs->cr0 = kvm_read_cr0(vcpu);
8484         sregs->cr2 = vcpu->arch.cr2;
8485         sregs->cr3 = kvm_read_cr3(vcpu);
8486         sregs->cr4 = kvm_read_cr4(vcpu);
8487         sregs->cr8 = kvm_get_cr8(vcpu);
8488         sregs->efer = vcpu->arch.efer;
8489         sregs->apic_base = kvm_get_apic_base(vcpu);
8490
8491         memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8492
8493         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8494                 set_bit(vcpu->arch.interrupt.nr,
8495                         (unsigned long *)sregs->interrupt_bitmap);
8496 }
8497
8498 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8499                                   struct kvm_sregs *sregs)
8500 {
8501         vcpu_load(vcpu);
8502         __get_sregs(vcpu, sregs);
8503         vcpu_put(vcpu);
8504         return 0;
8505 }
8506
8507 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8508                                     struct kvm_mp_state *mp_state)
8509 {
8510         vcpu_load(vcpu);
8511
8512         kvm_apic_accept_events(vcpu);
8513         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8514                                         vcpu->arch.pv.pv_unhalted)
8515                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8516         else
8517                 mp_state->mp_state = vcpu->arch.mp_state;
8518
8519         vcpu_put(vcpu);
8520         return 0;
8521 }
8522
8523 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8524                                     struct kvm_mp_state *mp_state)
8525 {
8526         int ret = -EINVAL;
8527
8528         vcpu_load(vcpu);
8529
8530         if (!lapic_in_kernel(vcpu) &&
8531             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8532                 goto out;
8533
8534         /* INITs are latched while in SMM */
8535         if ((is_smm(vcpu) || vcpu->arch.smi_pending) &&
8536             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8537              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8538                 goto out;
8539
8540         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8541                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8542                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8543         } else
8544                 vcpu->arch.mp_state = mp_state->mp_state;
8545         kvm_make_request(KVM_REQ_EVENT, vcpu);
8546
8547         ret = 0;
8548 out:
8549         vcpu_put(vcpu);
8550         return ret;
8551 }
8552
8553 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8554                     int reason, bool has_error_code, u32 error_code)
8555 {
8556         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8557         int ret;
8558
8559         init_emulate_ctxt(vcpu);
8560
8561         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8562                                    has_error_code, error_code);
8563
8564         if (ret)
8565                 return EMULATE_FAIL;
8566
8567         kvm_rip_write(vcpu, ctxt->eip);
8568         kvm_set_rflags(vcpu, ctxt->eflags);
8569         kvm_make_request(KVM_REQ_EVENT, vcpu);
8570         return EMULATE_DONE;
8571 }
8572 EXPORT_SYMBOL_GPL(kvm_task_switch);
8573
8574 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8575 {
8576         if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
8577                         (sregs->cr4 & X86_CR4_OSXSAVE))
8578                 return  -EINVAL;
8579
8580         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8581                 /*
8582                  * When EFER.LME and CR0.PG are set, the processor is in
8583                  * 64-bit mode (though maybe in a 32-bit code segment).
8584                  * CR4.PAE and EFER.LMA must be set.
8585                  */
8586                 if (!(sregs->cr4 & X86_CR4_PAE)
8587                     || !(sregs->efer & EFER_LMA))
8588                         return -EINVAL;
8589         } else {
8590                 /*
8591                  * Not in 64-bit mode: EFER.LMA is clear and the code
8592                  * segment cannot be 64-bit.
8593                  */
8594                 if (sregs->efer & EFER_LMA || sregs->cs.l)
8595                         return -EINVAL;
8596         }
8597
8598         return 0;
8599 }
8600
8601 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8602 {
8603         struct msr_data apic_base_msr;
8604         int mmu_reset_needed = 0;
8605         int cpuid_update_needed = 0;
8606         int pending_vec, max_bits, idx;
8607         struct desc_ptr dt;
8608         int ret = -EINVAL;
8609
8610         if (kvm_valid_sregs(vcpu, sregs))
8611                 goto out;
8612
8613         apic_base_msr.data = sregs->apic_base;
8614         apic_base_msr.host_initiated = true;
8615         if (kvm_set_apic_base(vcpu, &apic_base_msr))
8616                 goto out;
8617
8618         dt.size = sregs->idt.limit;
8619         dt.address = sregs->idt.base;
8620         kvm_x86_ops->set_idt(vcpu, &dt);
8621         dt.size = sregs->gdt.limit;
8622         dt.address = sregs->gdt.base;
8623         kvm_x86_ops->set_gdt(vcpu, &dt);
8624
8625         vcpu->arch.cr2 = sregs->cr2;
8626         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8627         vcpu->arch.cr3 = sregs->cr3;
8628         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
8629
8630         kvm_set_cr8(vcpu, sregs->cr8);
8631
8632         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8633         kvm_x86_ops->set_efer(vcpu, sregs->efer);
8634
8635         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8636         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8637         vcpu->arch.cr0 = sregs->cr0;
8638
8639         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8640         cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8641                                 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8642         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8643         if (cpuid_update_needed)
8644                 kvm_update_cpuid(vcpu);
8645
8646         idx = srcu_read_lock(&vcpu->kvm->srcu);
8647         if (is_pae_paging(vcpu)) {
8648                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8649                 mmu_reset_needed = 1;
8650         }
8651         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8652
8653         if (mmu_reset_needed)
8654                 kvm_mmu_reset_context(vcpu);
8655
8656         max_bits = KVM_NR_INTERRUPTS;
8657         pending_vec = find_first_bit(
8658                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8659         if (pending_vec < max_bits) {
8660                 kvm_queue_interrupt(vcpu, pending_vec, false);
8661                 pr_debug("Set back pending irq %d\n", pending_vec);
8662         }
8663
8664         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8665         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8666         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8667         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8668         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8669         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8670
8671         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8672         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8673
8674         update_cr8_intercept(vcpu);
8675
8676         /* Older userspace won't unhalt the vcpu on reset. */
8677         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8678             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8679             !is_protmode(vcpu))
8680                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8681
8682         kvm_make_request(KVM_REQ_EVENT, vcpu);
8683
8684         ret = 0;
8685 out:
8686         return ret;
8687 }
8688
8689 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8690                                   struct kvm_sregs *sregs)
8691 {
8692         int ret;
8693
8694         vcpu_load(vcpu);
8695         ret = __set_sregs(vcpu, sregs);
8696         vcpu_put(vcpu);
8697         return ret;
8698 }
8699
8700 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8701                                         struct kvm_guest_debug *dbg)
8702 {
8703         unsigned long rflags;
8704         int i, r;
8705
8706         vcpu_load(vcpu);
8707
8708         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8709                 r = -EBUSY;
8710                 if (vcpu->arch.exception.pending)
8711                         goto out;
8712                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8713                         kvm_queue_exception(vcpu, DB_VECTOR);
8714                 else
8715                         kvm_queue_exception(vcpu, BP_VECTOR);
8716         }
8717
8718         /*
8719          * Read rflags as long as potentially injected trace flags are still
8720          * filtered out.
8721          */
8722         rflags = kvm_get_rflags(vcpu);
8723
8724         vcpu->guest_debug = dbg->control;
8725         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8726                 vcpu->guest_debug = 0;
8727
8728         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8729                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8730                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8731                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8732         } else {
8733                 for (i = 0; i < KVM_NR_DB_REGS; i++)
8734                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8735         }
8736         kvm_update_dr7(vcpu);
8737
8738         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8739                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8740                         get_segment_base(vcpu, VCPU_SREG_CS);
8741
8742         /*
8743          * Trigger an rflags update that will inject or remove the trace
8744          * flags.
8745          */
8746         kvm_set_rflags(vcpu, rflags);
8747
8748         kvm_x86_ops->update_bp_intercept(vcpu);
8749
8750         r = 0;
8751
8752 out:
8753         vcpu_put(vcpu);
8754         return r;
8755 }
8756
8757 /*
8758  * Translate a guest virtual address to a guest physical address.
8759  */
8760 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8761                                     struct kvm_translation *tr)
8762 {
8763         unsigned long vaddr = tr->linear_address;
8764         gpa_t gpa;
8765         int idx;
8766
8767         vcpu_load(vcpu);
8768
8769         idx = srcu_read_lock(&vcpu->kvm->srcu);
8770         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8771         srcu_read_unlock(&vcpu->kvm->srcu, idx);
8772         tr->physical_address = gpa;
8773         tr->valid = gpa != UNMAPPED_GVA;
8774         tr->writeable = 1;
8775         tr->usermode = 0;
8776
8777         vcpu_put(vcpu);
8778         return 0;
8779 }
8780
8781 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8782 {
8783         struct fxregs_state *fxsave;
8784
8785         vcpu_load(vcpu);
8786
8787         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8788         memcpy(fpu->fpr, fxsave->st_space, 128);
8789         fpu->fcw = fxsave->cwd;
8790         fpu->fsw = fxsave->swd;
8791         fpu->ftwx = fxsave->twd;
8792         fpu->last_opcode = fxsave->fop;
8793         fpu->last_ip = fxsave->rip;
8794         fpu->last_dp = fxsave->rdp;
8795         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
8796
8797         vcpu_put(vcpu);
8798         return 0;
8799 }
8800
8801 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8802 {
8803         struct fxregs_state *fxsave;
8804
8805         vcpu_load(vcpu);
8806
8807         fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8808
8809         memcpy(fxsave->st_space, fpu->fpr, 128);
8810         fxsave->cwd = fpu->fcw;
8811         fxsave->swd = fpu->fsw;
8812         fxsave->twd = fpu->ftwx;
8813         fxsave->fop = fpu->last_opcode;
8814         fxsave->rip = fpu->last_ip;
8815         fxsave->rdp = fpu->last_dp;
8816         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
8817
8818         vcpu_put(vcpu);
8819         return 0;
8820 }
8821
8822 static void store_regs(struct kvm_vcpu *vcpu)
8823 {
8824         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
8825
8826         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
8827                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
8828
8829         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
8830                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
8831
8832         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
8833                 kvm_vcpu_ioctl_x86_get_vcpu_events(
8834                                 vcpu, &vcpu->run->s.regs.events);
8835 }
8836
8837 static int sync_regs(struct kvm_vcpu *vcpu)
8838 {
8839         if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
8840                 return -EINVAL;
8841
8842         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
8843                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
8844                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
8845         }
8846         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
8847                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
8848                         return -EINVAL;
8849                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
8850         }
8851         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
8852                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
8853                                 vcpu, &vcpu->run->s.regs.events))
8854                         return -EINVAL;
8855                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
8856         }
8857
8858         return 0;
8859 }
8860
8861 static void fx_init(struct kvm_vcpu *vcpu)
8862 {
8863         fpstate_init(&vcpu->arch.guest_fpu->state);
8864         if (boot_cpu_has(X86_FEATURE_XSAVES))
8865                 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
8866                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
8867
8868         /*
8869          * Ensure guest xcr0 is valid for loading
8870          */
8871         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
8872
8873         vcpu->arch.cr0 |= X86_CR0_ET;
8874 }
8875
8876 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
8877 {
8878         void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
8879
8880         kvmclock_reset(vcpu);
8881
8882         kvm_x86_ops->vcpu_free(vcpu);
8883         free_cpumask_var(wbinvd_dirty_mask);
8884 }
8885
8886 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
8887                                                 unsigned int id)
8888 {
8889         struct kvm_vcpu *vcpu;
8890
8891         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
8892                 printk_once(KERN_WARNING
8893                 "kvm: SMP vm created on host with unstable TSC; "
8894                 "guest TSC will not be reliable\n");
8895
8896         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
8897
8898         return vcpu;
8899 }
8900
8901 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
8902 {
8903         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
8904         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
8905         kvm_vcpu_mtrr_init(vcpu);
8906         vcpu_load(vcpu);
8907         kvm_vcpu_reset(vcpu, false);
8908         kvm_init_mmu(vcpu, false);
8909         vcpu_put(vcpu);
8910         return 0;
8911 }
8912
8913 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
8914 {
8915         struct msr_data msr;
8916         struct kvm *kvm = vcpu->kvm;
8917
8918         kvm_hv_vcpu_postcreate(vcpu);
8919
8920         if (mutex_lock_killable(&vcpu->mutex))
8921                 return;
8922         vcpu_load(vcpu);
8923         msr.data = 0x0;
8924         msr.index = MSR_IA32_TSC;
8925         msr.host_initiated = true;
8926         kvm_write_tsc(vcpu, &msr);
8927         vcpu_put(vcpu);
8928
8929         /* poll control enabled by default */
8930         vcpu->arch.msr_kvm_poll_control = 1;
8931
8932         mutex_unlock(&vcpu->mutex);
8933
8934         if (!kvmclock_periodic_sync)
8935                 return;
8936
8937         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
8938                                         KVMCLOCK_SYNC_PERIOD);
8939 }
8940
8941 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
8942 {
8943         vcpu->arch.apf.msr_val = 0;
8944
8945         vcpu_load(vcpu);
8946         kvm_mmu_unload(vcpu);
8947         vcpu_put(vcpu);
8948
8949         kvm_x86_ops->vcpu_free(vcpu);
8950 }
8951
8952 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
8953 {
8954         kvm_lapic_reset(vcpu, init_event);
8955
8956         vcpu->arch.hflags = 0;
8957
8958         vcpu->arch.smi_pending = 0;
8959         vcpu->arch.smi_count = 0;
8960         atomic_set(&vcpu->arch.nmi_queued, 0);
8961         vcpu->arch.nmi_pending = 0;
8962         vcpu->arch.nmi_injected = false;
8963         kvm_clear_interrupt_queue(vcpu);
8964         kvm_clear_exception_queue(vcpu);
8965         vcpu->arch.exception.pending = false;
8966
8967         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
8968         kvm_update_dr0123(vcpu);
8969         vcpu->arch.dr6 = DR6_INIT;
8970         kvm_update_dr6(vcpu);
8971         vcpu->arch.dr7 = DR7_FIXED_1;
8972         kvm_update_dr7(vcpu);
8973
8974         vcpu->arch.cr2 = 0;
8975
8976         kvm_make_request(KVM_REQ_EVENT, vcpu);
8977         vcpu->arch.apf.msr_val = 0;
8978         vcpu->arch.st.msr_val = 0;
8979
8980         kvmclock_reset(vcpu);
8981
8982         kvm_clear_async_pf_completion_queue(vcpu);
8983         kvm_async_pf_hash_reset(vcpu);
8984         vcpu->arch.apf.halted = false;
8985
8986         if (kvm_mpx_supported()) {
8987                 void *mpx_state_buffer;
8988
8989                 /*
8990                  * To avoid have the INIT path from kvm_apic_has_events() that be
8991                  * called with loaded FPU and does not let userspace fix the state.
8992                  */
8993                 if (init_event)
8994                         kvm_put_guest_fpu(vcpu);
8995                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
8996                                         XFEATURE_BNDREGS);
8997                 if (mpx_state_buffer)
8998                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
8999                 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9000                                         XFEATURE_BNDCSR);
9001                 if (mpx_state_buffer)
9002                         memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9003                 if (init_event)
9004                         kvm_load_guest_fpu(vcpu);
9005         }
9006
9007         if (!init_event) {
9008                 kvm_pmu_reset(vcpu);
9009                 vcpu->arch.smbase = 0x30000;
9010
9011                 vcpu->arch.msr_misc_features_enables = 0;
9012
9013                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9014         }
9015
9016         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9017         vcpu->arch.regs_avail = ~0;
9018         vcpu->arch.regs_dirty = ~0;
9019
9020         vcpu->arch.ia32_xss = 0;
9021
9022         kvm_x86_ops->vcpu_reset(vcpu, init_event);
9023 }
9024
9025 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9026 {
9027         struct kvm_segment cs;
9028
9029         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9030         cs.selector = vector << 8;
9031         cs.base = vector << 12;
9032         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9033         kvm_rip_write(vcpu, 0);
9034 }
9035
9036 int kvm_arch_hardware_enable(void)
9037 {
9038         struct kvm *kvm;
9039         struct kvm_vcpu *vcpu;
9040         int i;
9041         int ret;
9042         u64 local_tsc;
9043         u64 max_tsc = 0;
9044         bool stable, backwards_tsc = false;
9045
9046         kvm_shared_msr_cpu_online();
9047         ret = kvm_x86_ops->hardware_enable();
9048         if (ret != 0)
9049                 return ret;
9050
9051         local_tsc = rdtsc();
9052         stable = !kvm_check_tsc_unstable();
9053         list_for_each_entry(kvm, &vm_list, vm_list) {
9054                 kvm_for_each_vcpu(i, vcpu, kvm) {
9055                         if (!stable && vcpu->cpu == smp_processor_id())
9056                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9057                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9058                                 backwards_tsc = true;
9059                                 if (vcpu->arch.last_host_tsc > max_tsc)
9060                                         max_tsc = vcpu->arch.last_host_tsc;
9061                         }
9062                 }
9063         }
9064
9065         /*
9066          * Sometimes, even reliable TSCs go backwards.  This happens on
9067          * platforms that reset TSC during suspend or hibernate actions, but
9068          * maintain synchronization.  We must compensate.  Fortunately, we can
9069          * detect that condition here, which happens early in CPU bringup,
9070          * before any KVM threads can be running.  Unfortunately, we can't
9071          * bring the TSCs fully up to date with real time, as we aren't yet far
9072          * enough into CPU bringup that we know how much real time has actually
9073          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9074          * variables that haven't been updated yet.
9075          *
9076          * So we simply find the maximum observed TSC above, then record the
9077          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
9078          * the adjustment will be applied.  Note that we accumulate
9079          * adjustments, in case multiple suspend cycles happen before some VCPU
9080          * gets a chance to run again.  In the event that no KVM threads get a
9081          * chance to run, we will miss the entire elapsed period, as we'll have
9082          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9083          * loose cycle time.  This isn't too big a deal, since the loss will be
9084          * uniform across all VCPUs (not to mention the scenario is extremely
9085          * unlikely). It is possible that a second hibernate recovery happens
9086          * much faster than a first, causing the observed TSC here to be
9087          * smaller; this would require additional padding adjustment, which is
9088          * why we set last_host_tsc to the local tsc observed here.
9089          *
9090          * N.B. - this code below runs only on platforms with reliable TSC,
9091          * as that is the only way backwards_tsc is set above.  Also note
9092          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9093          * have the same delta_cyc adjustment applied if backwards_tsc
9094          * is detected.  Note further, this adjustment is only done once,
9095          * as we reset last_host_tsc on all VCPUs to stop this from being
9096          * called multiple times (one for each physical CPU bringup).
9097          *
9098          * Platforms with unreliable TSCs don't have to deal with this, they
9099          * will be compensated by the logic in vcpu_load, which sets the TSC to
9100          * catchup mode.  This will catchup all VCPUs to real time, but cannot
9101          * guarantee that they stay in perfect synchronization.
9102          */
9103         if (backwards_tsc) {
9104                 u64 delta_cyc = max_tsc - local_tsc;
9105                 list_for_each_entry(kvm, &vm_list, vm_list) {
9106                         kvm->arch.backwards_tsc_observed = true;
9107                         kvm_for_each_vcpu(i, vcpu, kvm) {
9108                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9109                                 vcpu->arch.last_host_tsc = local_tsc;
9110                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9111                         }
9112
9113                         /*
9114                          * We have to disable TSC offset matching.. if you were
9115                          * booting a VM while issuing an S4 host suspend....
9116                          * you may have some problem.  Solving this issue is
9117                          * left as an exercise to the reader.
9118                          */
9119                         kvm->arch.last_tsc_nsec = 0;
9120                         kvm->arch.last_tsc_write = 0;
9121                 }
9122
9123         }
9124         return 0;
9125 }
9126
9127 void kvm_arch_hardware_disable(void)
9128 {
9129         kvm_x86_ops->hardware_disable();
9130         drop_user_return_notifiers();
9131 }
9132
9133 int kvm_arch_hardware_setup(void)
9134 {
9135         int r;
9136
9137         r = kvm_x86_ops->hardware_setup();
9138         if (r != 0)
9139                 return r;
9140
9141         if (kvm_has_tsc_control) {
9142                 /*
9143                  * Make sure the user can only configure tsc_khz values that
9144                  * fit into a signed integer.
9145                  * A min value is not calculated because it will always
9146                  * be 1 on all machines.
9147                  */
9148                 u64 max = min(0x7fffffffULL,
9149                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9150                 kvm_max_guest_tsc_khz = max;
9151
9152                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9153         }
9154
9155         kvm_init_msr_list();
9156         return 0;
9157 }
9158
9159 void kvm_arch_hardware_unsetup(void)
9160 {
9161         kvm_x86_ops->hardware_unsetup();
9162 }
9163
9164 int kvm_arch_check_processor_compat(void)
9165 {
9166         return kvm_x86_ops->check_processor_compatibility();
9167 }
9168
9169 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9170 {
9171         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9172 }
9173 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9174
9175 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9176 {
9177         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9178 }
9179
9180 struct static_key kvm_no_apic_vcpu __read_mostly;
9181 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9182
9183 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9184 {
9185         struct page *page;
9186         int r;
9187
9188         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9189         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9190                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9191         else
9192                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9193
9194         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9195         if (!page) {
9196                 r = -ENOMEM;
9197                 goto fail;
9198         }
9199         vcpu->arch.pio_data = page_address(page);
9200
9201         kvm_set_tsc_khz(vcpu, max_tsc_khz);
9202
9203         r = kvm_mmu_create(vcpu);
9204         if (r < 0)
9205                 goto fail_free_pio_data;
9206
9207         if (irqchip_in_kernel(vcpu->kvm)) {
9208                 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu);
9209                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9210                 if (r < 0)
9211                         goto fail_mmu_destroy;
9212         } else
9213                 static_key_slow_inc(&kvm_no_apic_vcpu);
9214
9215         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9216                                        GFP_KERNEL_ACCOUNT);
9217         if (!vcpu->arch.mce_banks) {
9218                 r = -ENOMEM;
9219                 goto fail_free_lapic;
9220         }
9221         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9222
9223         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9224                                 GFP_KERNEL_ACCOUNT)) {
9225                 r = -ENOMEM;
9226                 goto fail_free_mce_banks;
9227         }
9228
9229         fx_init(vcpu);
9230
9231         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9232
9233         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9234
9235         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9236
9237         kvm_async_pf_hash_reset(vcpu);
9238         kvm_pmu_init(vcpu);
9239
9240         vcpu->arch.pending_external_vector = -1;
9241         vcpu->arch.preempted_in_kernel = false;
9242
9243         kvm_hv_vcpu_init(vcpu);
9244
9245         return 0;
9246
9247 fail_free_mce_banks:
9248         kfree(vcpu->arch.mce_banks);
9249 fail_free_lapic:
9250         kvm_free_lapic(vcpu);
9251 fail_mmu_destroy:
9252         kvm_mmu_destroy(vcpu);
9253 fail_free_pio_data:
9254         free_page((unsigned long)vcpu->arch.pio_data);
9255 fail:
9256         return r;
9257 }
9258
9259 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9260 {
9261         int idx;
9262
9263         kvm_hv_vcpu_uninit(vcpu);
9264         kvm_pmu_destroy(vcpu);
9265         kfree(vcpu->arch.mce_banks);
9266         kvm_free_lapic(vcpu);
9267         idx = srcu_read_lock(&vcpu->kvm->srcu);
9268         kvm_mmu_destroy(vcpu);
9269         srcu_read_unlock(&vcpu->kvm->srcu, idx);
9270         free_page((unsigned long)vcpu->arch.pio_data);
9271         if (!lapic_in_kernel(vcpu))
9272                 static_key_slow_dec(&kvm_no_apic_vcpu);
9273 }
9274
9275 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9276 {
9277         vcpu->arch.l1tf_flush_l1d = true;
9278         kvm_x86_ops->sched_in(vcpu, cpu);
9279 }
9280
9281 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9282 {
9283         if (type)
9284                 return -EINVAL;
9285
9286         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9287         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9288         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9289         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9290
9291         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9292         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9293         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9294         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9295                 &kvm->arch.irq_sources_bitmap);
9296
9297         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9298         mutex_init(&kvm->arch.apic_map_lock);
9299         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9300
9301         kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9302         pvclock_update_vm_gtod_copy(kvm);
9303
9304         kvm->arch.guest_can_read_msr_platform_info = true;
9305
9306         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9307         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9308
9309         kvm_hv_init_vm(kvm);
9310         kvm_page_track_init(kvm);
9311         kvm_mmu_init_vm(kvm);
9312
9313         if (kvm_x86_ops->vm_init)
9314                 return kvm_x86_ops->vm_init(kvm);
9315
9316         return 0;
9317 }
9318
9319 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9320 {
9321         vcpu_load(vcpu);
9322         kvm_mmu_unload(vcpu);
9323         vcpu_put(vcpu);
9324 }
9325
9326 static void kvm_free_vcpus(struct kvm *kvm)
9327 {
9328         unsigned int i;
9329         struct kvm_vcpu *vcpu;
9330
9331         /*
9332          * Unpin any mmu pages first.
9333          */
9334         kvm_for_each_vcpu(i, vcpu, kvm) {
9335                 kvm_clear_async_pf_completion_queue(vcpu);
9336                 kvm_unload_vcpu_mmu(vcpu);
9337         }
9338         kvm_for_each_vcpu(i, vcpu, kvm)
9339                 kvm_arch_vcpu_free(vcpu);
9340
9341         mutex_lock(&kvm->lock);
9342         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9343                 kvm->vcpus[i] = NULL;
9344
9345         atomic_set(&kvm->online_vcpus, 0);
9346         mutex_unlock(&kvm->lock);
9347 }
9348
9349 void kvm_arch_sync_events(struct kvm *kvm)
9350 {
9351         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9352         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9353         kvm_free_pit(kvm);
9354 }
9355
9356 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9357 {
9358         int i, r;
9359         unsigned long hva;
9360         struct kvm_memslots *slots = kvm_memslots(kvm);
9361         struct kvm_memory_slot *slot, old;
9362
9363         /* Called with kvm->slots_lock held.  */
9364         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9365                 return -EINVAL;
9366
9367         slot = id_to_memslot(slots, id);
9368         if (size) {
9369                 if (slot->npages)
9370                         return -EEXIST;
9371
9372                 /*
9373                  * MAP_SHARED to prevent internal slot pages from being moved
9374                  * by fork()/COW.
9375                  */
9376                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9377                               MAP_SHARED | MAP_ANONYMOUS, 0);
9378                 if (IS_ERR((void *)hva))
9379                         return PTR_ERR((void *)hva);
9380         } else {
9381                 if (!slot->npages)
9382                         return 0;
9383
9384                 hva = 0;
9385         }
9386
9387         old = *slot;
9388         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9389                 struct kvm_userspace_memory_region m;
9390
9391                 m.slot = id | (i << 16);
9392                 m.flags = 0;
9393                 m.guest_phys_addr = gpa;
9394                 m.userspace_addr = hva;
9395                 m.memory_size = size;
9396                 r = __kvm_set_memory_region(kvm, &m);
9397                 if (r < 0)
9398                         return r;
9399         }
9400
9401         if (!size)
9402                 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9403
9404         return 0;
9405 }
9406 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9407
9408 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9409 {
9410         int r;
9411
9412         mutex_lock(&kvm->slots_lock);
9413         r = __x86_set_memory_region(kvm, id, gpa, size);
9414         mutex_unlock(&kvm->slots_lock);
9415
9416         return r;
9417 }
9418 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9419
9420 void kvm_arch_destroy_vm(struct kvm *kvm)
9421 {
9422         if (current->mm == kvm->mm) {
9423                 /*
9424                  * Free memory regions allocated on behalf of userspace,
9425                  * unless the the memory map has changed due to process exit
9426                  * or fd copying.
9427                  */
9428                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9429                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9430                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9431         }
9432         if (kvm_x86_ops->vm_destroy)
9433                 kvm_x86_ops->vm_destroy(kvm);
9434         kvm_pic_destroy(kvm);
9435         kvm_ioapic_destroy(kvm);
9436         kvm_free_vcpus(kvm);
9437         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9438         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9439         kvm_mmu_uninit_vm(kvm);
9440         kvm_page_track_cleanup(kvm);
9441         kvm_hv_destroy_vm(kvm);
9442 }
9443
9444 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9445                            struct kvm_memory_slot *dont)
9446 {
9447         int i;
9448
9449         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9450                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9451                         kvfree(free->arch.rmap[i]);
9452                         free->arch.rmap[i] = NULL;
9453                 }
9454                 if (i == 0)
9455                         continue;
9456
9457                 if (!dont || free->arch.lpage_info[i - 1] !=
9458                              dont->arch.lpage_info[i - 1]) {
9459                         kvfree(free->arch.lpage_info[i - 1]);
9460                         free->arch.lpage_info[i - 1] = NULL;
9461                 }
9462         }
9463
9464         kvm_page_track_free_memslot(free, dont);
9465 }
9466
9467 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9468                             unsigned long npages)
9469 {
9470         int i;
9471
9472         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9473                 struct kvm_lpage_info *linfo;
9474                 unsigned long ugfn;
9475                 int lpages;
9476                 int level = i + 1;
9477
9478                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9479                                       slot->base_gfn, level) + 1;
9480
9481                 slot->arch.rmap[i] =
9482                         kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9483                                  GFP_KERNEL_ACCOUNT);
9484                 if (!slot->arch.rmap[i])
9485                         goto out_free;
9486                 if (i == 0)
9487                         continue;
9488
9489                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9490                 if (!linfo)
9491                         goto out_free;
9492
9493                 slot->arch.lpage_info[i - 1] = linfo;
9494
9495                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9496                         linfo[0].disallow_lpage = 1;
9497                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9498                         linfo[lpages - 1].disallow_lpage = 1;
9499                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9500                 /*
9501                  * If the gfn and userspace address are not aligned wrt each
9502                  * other, or if explicitly asked to, disable large page
9503                  * support for this slot
9504                  */
9505                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9506                     !kvm_largepages_enabled()) {
9507                         unsigned long j;
9508
9509                         for (j = 0; j < lpages; ++j)
9510                                 linfo[j].disallow_lpage = 1;
9511                 }
9512         }
9513
9514         if (kvm_page_track_create_memslot(slot, npages))
9515                 goto out_free;
9516
9517         return 0;
9518
9519 out_free:
9520         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9521                 kvfree(slot->arch.rmap[i]);
9522                 slot->arch.rmap[i] = NULL;
9523                 if (i == 0)
9524                         continue;
9525
9526                 kvfree(slot->arch.lpage_info[i - 1]);
9527                 slot->arch.lpage_info[i - 1] = NULL;
9528         }
9529         return -ENOMEM;
9530 }
9531
9532 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9533 {
9534         /*
9535          * memslots->generation has been incremented.
9536          * mmio generation may have reached its maximum value.
9537          */
9538         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9539 }
9540
9541 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9542                                 struct kvm_memory_slot *memslot,
9543                                 const struct kvm_userspace_memory_region *mem,
9544                                 enum kvm_mr_change change)
9545 {
9546         return 0;
9547 }
9548
9549 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9550                                      struct kvm_memory_slot *new)
9551 {
9552         /* Still write protect RO slot */
9553         if (new->flags & KVM_MEM_READONLY) {
9554                 kvm_mmu_slot_remove_write_access(kvm, new);
9555                 return;
9556         }
9557
9558         /*
9559          * Call kvm_x86_ops dirty logging hooks when they are valid.
9560          *
9561          * kvm_x86_ops->slot_disable_log_dirty is called when:
9562          *
9563          *  - KVM_MR_CREATE with dirty logging is disabled
9564          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9565          *
9566          * The reason is, in case of PML, we need to set D-bit for any slots
9567          * with dirty logging disabled in order to eliminate unnecessary GPA
9568          * logging in PML buffer (and potential PML buffer full VMEXT). This
9569          * guarantees leaving PML enabled during guest's lifetime won't have
9570          * any additional overhead from PML when guest is running with dirty
9571          * logging disabled for memory slots.
9572          *
9573          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9574          * to dirty logging mode.
9575          *
9576          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9577          *
9578          * In case of write protect:
9579          *
9580          * Write protect all pages for dirty logging.
9581          *
9582          * All the sptes including the large sptes which point to this
9583          * slot are set to readonly. We can not create any new large
9584          * spte on this slot until the end of the logging.
9585          *
9586          * See the comments in fast_page_fault().
9587          */
9588         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9589                 if (kvm_x86_ops->slot_enable_log_dirty)
9590                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9591                 else
9592                         kvm_mmu_slot_remove_write_access(kvm, new);
9593         } else {
9594                 if (kvm_x86_ops->slot_disable_log_dirty)
9595                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9596         }
9597 }
9598
9599 void kvm_arch_commit_memory_region(struct kvm *kvm,
9600                                 const struct kvm_userspace_memory_region *mem,
9601                                 const struct kvm_memory_slot *old,
9602                                 const struct kvm_memory_slot *new,
9603                                 enum kvm_mr_change change)
9604 {
9605         if (!kvm->arch.n_requested_mmu_pages)
9606                 kvm_mmu_change_mmu_pages(kvm,
9607                                 kvm_mmu_calculate_default_mmu_pages(kvm));
9608
9609         /*
9610          * Dirty logging tracks sptes in 4k granularity, meaning that large
9611          * sptes have to be split.  If live migration is successful, the guest
9612          * in the source machine will be destroyed and large sptes will be
9613          * created in the destination. However, if the guest continues to run
9614          * in the source machine (for example if live migration fails), small
9615          * sptes will remain around and cause bad performance.
9616          *
9617          * Scan sptes if dirty logging has been stopped, dropping those
9618          * which can be collapsed into a single large-page spte.  Later
9619          * page faults will create the large-page sptes.
9620          */
9621         if ((change != KVM_MR_DELETE) &&
9622                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9623                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9624                 kvm_mmu_zap_collapsible_sptes(kvm, new);
9625
9626         /*
9627          * Set up write protection and/or dirty logging for the new slot.
9628          *
9629          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9630          * been zapped so no dirty logging staff is needed for old slot. For
9631          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9632          * new and it's also covered when dealing with the new slot.
9633          *
9634          * FIXME: const-ify all uses of struct kvm_memory_slot.
9635          */
9636         if (change != KVM_MR_DELETE)
9637                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9638 }
9639
9640 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9641 {
9642         kvm_mmu_zap_all(kvm);
9643 }
9644
9645 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9646                                    struct kvm_memory_slot *slot)
9647 {
9648         kvm_page_track_flush_slot(kvm, slot);
9649 }
9650
9651 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9652 {
9653         return (is_guest_mode(vcpu) &&
9654                         kvm_x86_ops->guest_apic_has_interrupt &&
9655                         kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9656 }
9657
9658 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9659 {
9660         if (!list_empty_careful(&vcpu->async_pf.done))
9661                 return true;
9662
9663         if (kvm_apic_has_events(vcpu))
9664                 return true;
9665
9666         if (vcpu->arch.pv.pv_unhalted)
9667                 return true;
9668
9669         if (vcpu->arch.exception.pending)
9670                 return true;
9671
9672         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9673             (vcpu->arch.nmi_pending &&
9674              kvm_x86_ops->nmi_allowed(vcpu)))
9675                 return true;
9676
9677         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9678             (vcpu->arch.smi_pending && !is_smm(vcpu)))
9679                 return true;
9680
9681         if (kvm_arch_interrupt_allowed(vcpu) &&
9682             (kvm_cpu_has_interrupt(vcpu) ||
9683             kvm_guest_apic_has_interrupt(vcpu)))
9684                 return true;
9685
9686         if (kvm_hv_has_stimer_pending(vcpu))
9687                 return true;
9688
9689         return false;
9690 }
9691
9692 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9693 {
9694         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9695 }
9696
9697 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9698 {
9699         return vcpu->arch.preempted_in_kernel;
9700 }
9701
9702 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9703 {
9704         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9705 }
9706
9707 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9708 {
9709         return kvm_x86_ops->interrupt_allowed(vcpu);
9710 }
9711
9712 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9713 {
9714         if (is_64_bit_mode(vcpu))
9715                 return kvm_rip_read(vcpu);
9716         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9717                      kvm_rip_read(vcpu));
9718 }
9719 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9720
9721 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9722 {
9723         return kvm_get_linear_rip(vcpu) == linear_rip;
9724 }
9725 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9726
9727 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9728 {
9729         unsigned long rflags;
9730
9731         rflags = kvm_x86_ops->get_rflags(vcpu);
9732         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9733                 rflags &= ~X86_EFLAGS_TF;
9734         return rflags;
9735 }
9736 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9737
9738 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9739 {
9740         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9741             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9742                 rflags |= X86_EFLAGS_TF;
9743         kvm_x86_ops->set_rflags(vcpu, rflags);
9744 }
9745
9746 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9747 {
9748         __kvm_set_rflags(vcpu, rflags);
9749         kvm_make_request(KVM_REQ_EVENT, vcpu);
9750 }
9751 EXPORT_SYMBOL_GPL(kvm_set_rflags);
9752
9753 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
9754 {
9755         int r;
9756
9757         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
9758               work->wakeup_all)
9759                 return;
9760
9761         r = kvm_mmu_reload(vcpu);
9762         if (unlikely(r))
9763                 return;
9764
9765         if (!vcpu->arch.mmu->direct_map &&
9766               work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
9767                 return;
9768
9769         vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
9770 }
9771
9772 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
9773 {
9774         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
9775 }
9776
9777 static inline u32 kvm_async_pf_next_probe(u32 key)
9778 {
9779         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
9780 }
9781
9782 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9783 {
9784         u32 key = kvm_async_pf_hash_fn(gfn);
9785
9786         while (vcpu->arch.apf.gfns[key] != ~0)
9787                 key = kvm_async_pf_next_probe(key);
9788
9789         vcpu->arch.apf.gfns[key] = gfn;
9790 }
9791
9792 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
9793 {
9794         int i;
9795         u32 key = kvm_async_pf_hash_fn(gfn);
9796
9797         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
9798                      (vcpu->arch.apf.gfns[key] != gfn &&
9799                       vcpu->arch.apf.gfns[key] != ~0); i++)
9800                 key = kvm_async_pf_next_probe(key);
9801
9802         return key;
9803 }
9804
9805 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9806 {
9807         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
9808 }
9809
9810 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
9811 {
9812         u32 i, j, k;
9813
9814         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
9815         while (true) {
9816                 vcpu->arch.apf.gfns[i] = ~0;
9817                 do {
9818                         j = kvm_async_pf_next_probe(j);
9819                         if (vcpu->arch.apf.gfns[j] == ~0)
9820                                 return;
9821                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
9822                         /*
9823                          * k lies cyclically in ]i,j]
9824                          * |    i.k.j |
9825                          * |....j i.k.| or  |.k..j i...|
9826                          */
9827                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
9828                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
9829                 i = j;
9830         }
9831 }
9832
9833 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
9834 {
9835
9836         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
9837                                       sizeof(val));
9838 }
9839
9840 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
9841 {
9842
9843         return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
9844                                       sizeof(u32));
9845 }
9846
9847 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
9848 {
9849         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9850                 return false;
9851
9852         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
9853             (vcpu->arch.apf.send_user_only &&
9854              kvm_x86_ops->get_cpl(vcpu) == 0))
9855                 return false;
9856
9857         return true;
9858 }
9859
9860 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
9861 {
9862         if (unlikely(!lapic_in_kernel(vcpu) ||
9863                      kvm_event_needs_reinjection(vcpu) ||
9864                      vcpu->arch.exception.pending))
9865                 return false;
9866
9867         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
9868                 return false;
9869
9870         /*
9871          * If interrupts are off we cannot even use an artificial
9872          * halt state.
9873          */
9874         return kvm_x86_ops->interrupt_allowed(vcpu);
9875 }
9876
9877 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
9878                                      struct kvm_async_pf *work)
9879 {
9880         struct x86_exception fault;
9881
9882         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
9883         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
9884
9885         if (kvm_can_deliver_async_pf(vcpu) &&
9886             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
9887                 fault.vector = PF_VECTOR;
9888                 fault.error_code_valid = true;
9889                 fault.error_code = 0;
9890                 fault.nested_page_fault = false;
9891                 fault.address = work->arch.token;
9892                 fault.async_page_fault = true;
9893                 kvm_inject_page_fault(vcpu, &fault);
9894         } else {
9895                 /*
9896                  * It is not possible to deliver a paravirtualized asynchronous
9897                  * page fault, but putting the guest in an artificial halt state
9898                  * can be beneficial nevertheless: if an interrupt arrives, we
9899                  * can deliver it timely and perhaps the guest will schedule
9900                  * another process.  When the instruction that triggered a page
9901                  * fault is retried, hopefully the page will be ready in the host.
9902                  */
9903                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
9904         }
9905 }
9906
9907 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
9908                                  struct kvm_async_pf *work)
9909 {
9910         struct x86_exception fault;
9911         u32 val;
9912
9913         if (work->wakeup_all)
9914                 work->arch.token = ~0; /* broadcast wakeup */
9915         else
9916                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
9917         trace_kvm_async_pf_ready(work->arch.token, work->gva);
9918
9919         if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
9920             !apf_get_user(vcpu, &val)) {
9921                 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
9922                     vcpu->arch.exception.pending &&
9923                     vcpu->arch.exception.nr == PF_VECTOR &&
9924                     !apf_put_user(vcpu, 0)) {
9925                         vcpu->arch.exception.injected = false;
9926                         vcpu->arch.exception.pending = false;
9927                         vcpu->arch.exception.nr = 0;
9928                         vcpu->arch.exception.has_error_code = false;
9929                         vcpu->arch.exception.error_code = 0;
9930                         vcpu->arch.exception.has_payload = false;
9931                         vcpu->arch.exception.payload = 0;
9932                 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
9933                         fault.vector = PF_VECTOR;
9934                         fault.error_code_valid = true;
9935                         fault.error_code = 0;
9936                         fault.nested_page_fault = false;
9937                         fault.address = work->arch.token;
9938                         fault.async_page_fault = true;
9939                         kvm_inject_page_fault(vcpu, &fault);
9940                 }
9941         }
9942         vcpu->arch.apf.halted = false;
9943         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9944 }
9945
9946 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
9947 {
9948         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
9949                 return true;
9950         else
9951                 return kvm_can_do_async_pf(vcpu);
9952 }
9953
9954 void kvm_arch_start_assignment(struct kvm *kvm)
9955 {
9956         atomic_inc(&kvm->arch.assigned_device_count);
9957 }
9958 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
9959
9960 void kvm_arch_end_assignment(struct kvm *kvm)
9961 {
9962         atomic_dec(&kvm->arch.assigned_device_count);
9963 }
9964 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
9965
9966 bool kvm_arch_has_assigned_device(struct kvm *kvm)
9967 {
9968         return atomic_read(&kvm->arch.assigned_device_count);
9969 }
9970 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
9971
9972 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
9973 {
9974         atomic_inc(&kvm->arch.noncoherent_dma_count);
9975 }
9976 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
9977
9978 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
9979 {
9980         atomic_dec(&kvm->arch.noncoherent_dma_count);
9981 }
9982 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
9983
9984 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
9985 {
9986         return atomic_read(&kvm->arch.noncoherent_dma_count);
9987 }
9988 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
9989
9990 bool kvm_arch_has_irq_bypass(void)
9991 {
9992         return kvm_x86_ops->update_pi_irte != NULL;
9993 }
9994
9995 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
9996                                       struct irq_bypass_producer *prod)
9997 {
9998         struct kvm_kernel_irqfd *irqfd =
9999                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10000
10001         irqfd->producer = prod;
10002
10003         return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10004                                            prod->irq, irqfd->gsi, 1);
10005 }
10006
10007 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10008                                       struct irq_bypass_producer *prod)
10009 {
10010         int ret;
10011         struct kvm_kernel_irqfd *irqfd =
10012                 container_of(cons, struct kvm_kernel_irqfd, consumer);
10013
10014         WARN_ON(irqfd->producer != prod);
10015         irqfd->producer = NULL;
10016
10017         /*
10018          * When producer of consumer is unregistered, we change back to
10019          * remapped mode, so we can re-use the current implementation
10020          * when the irq is masked/disabled or the consumer side (KVM
10021          * int this case doesn't want to receive the interrupts.
10022         */
10023         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10024         if (ret)
10025                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10026                        " fails: %d\n", irqfd->consumer.token, ret);
10027 }
10028
10029 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10030                                    uint32_t guest_irq, bool set)
10031 {
10032         if (!kvm_x86_ops->update_pi_irte)
10033                 return -EINVAL;
10034
10035         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10036 }
10037
10038 bool kvm_vector_hashing_enabled(void)
10039 {
10040         return vector_hashing;
10041 }
10042 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10043
10044 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10045 {
10046         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10047 }
10048 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10049
10050
10051 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10052 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10053 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10054 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10055 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10056 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10057 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10058 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10059 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10060 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10061 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10064 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
10066 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10067 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10068 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10069 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);