]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/mm/kasan_init_64.c
ARM: signal: Mark expected switch fall-through
[linux.git] / arch / x86 / mm / kasan_init_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
4
5 /* cpu_feature_enabled() cannot be used this early */
6 #define USE_EARLY_PGTABLE_L5
7
8 #include <linux/memblock.h>
9 #include <linux/kasan.h>
10 #include <linux/kdebug.h>
11 #include <linux/mm.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/vmalloc.h>
15
16 #include <asm/e820/types.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/pgtable.h>
21 #include <asm/cpu_entry_area.h>
22
23 extern struct range pfn_mapped[E820_MAX_ENTRIES];
24
25 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
26
27 static __init void *early_alloc(size_t size, int nid, bool should_panic)
28 {
29         void *ptr = memblock_alloc_try_nid(size, size,
30                         __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
31
32         if (!ptr && should_panic)
33                 panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
34                       (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
35
36         return ptr;
37 }
38
39 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
40                                       unsigned long end, int nid)
41 {
42         pte_t *pte;
43
44         if (pmd_none(*pmd)) {
45                 void *p;
46
47                 if (boot_cpu_has(X86_FEATURE_PSE) &&
48                     ((end - addr) == PMD_SIZE) &&
49                     IS_ALIGNED(addr, PMD_SIZE)) {
50                         p = early_alloc(PMD_SIZE, nid, false);
51                         if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
52                                 return;
53                         else if (p)
54                                 memblock_free(__pa(p), PMD_SIZE);
55                 }
56
57                 p = early_alloc(PAGE_SIZE, nid, true);
58                 pmd_populate_kernel(&init_mm, pmd, p);
59         }
60
61         pte = pte_offset_kernel(pmd, addr);
62         do {
63                 pte_t entry;
64                 void *p;
65
66                 if (!pte_none(*pte))
67                         continue;
68
69                 p = early_alloc(PAGE_SIZE, nid, true);
70                 entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
71                 set_pte_at(&init_mm, addr, pte, entry);
72         } while (pte++, addr += PAGE_SIZE, addr != end);
73 }
74
75 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
76                                       unsigned long end, int nid)
77 {
78         pmd_t *pmd;
79         unsigned long next;
80
81         if (pud_none(*pud)) {
82                 void *p;
83
84                 if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
85                     ((end - addr) == PUD_SIZE) &&
86                     IS_ALIGNED(addr, PUD_SIZE)) {
87                         p = early_alloc(PUD_SIZE, nid, false);
88                         if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
89                                 return;
90                         else if (p)
91                                 memblock_free(__pa(p), PUD_SIZE);
92                 }
93
94                 p = early_alloc(PAGE_SIZE, nid, true);
95                 pud_populate(&init_mm, pud, p);
96         }
97
98         pmd = pmd_offset(pud, addr);
99         do {
100                 next = pmd_addr_end(addr, end);
101                 if (!pmd_large(*pmd))
102                         kasan_populate_pmd(pmd, addr, next, nid);
103         } while (pmd++, addr = next, addr != end);
104 }
105
106 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
107                                       unsigned long end, int nid)
108 {
109         pud_t *pud;
110         unsigned long next;
111
112         if (p4d_none(*p4d)) {
113                 void *p = early_alloc(PAGE_SIZE, nid, true);
114
115                 p4d_populate(&init_mm, p4d, p);
116         }
117
118         pud = pud_offset(p4d, addr);
119         do {
120                 next = pud_addr_end(addr, end);
121                 if (!pud_large(*pud))
122                         kasan_populate_pud(pud, addr, next, nid);
123         } while (pud++, addr = next, addr != end);
124 }
125
126 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
127                                       unsigned long end, int nid)
128 {
129         void *p;
130         p4d_t *p4d;
131         unsigned long next;
132
133         if (pgd_none(*pgd)) {
134                 p = early_alloc(PAGE_SIZE, nid, true);
135                 pgd_populate(&init_mm, pgd, p);
136         }
137
138         p4d = p4d_offset(pgd, addr);
139         do {
140                 next = p4d_addr_end(addr, end);
141                 kasan_populate_p4d(p4d, addr, next, nid);
142         } while (p4d++, addr = next, addr != end);
143 }
144
145 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
146                                          int nid)
147 {
148         pgd_t *pgd;
149         unsigned long next;
150
151         addr = addr & PAGE_MASK;
152         end = round_up(end, PAGE_SIZE);
153         pgd = pgd_offset_k(addr);
154         do {
155                 next = pgd_addr_end(addr, end);
156                 kasan_populate_pgd(pgd, addr, next, nid);
157         } while (pgd++, addr = next, addr != end);
158 }
159
160 static void __init map_range(struct range *range)
161 {
162         unsigned long start;
163         unsigned long end;
164
165         start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
166         end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
167
168         kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
169 }
170
171 static void __init clear_pgds(unsigned long start,
172                         unsigned long end)
173 {
174         pgd_t *pgd;
175         /* See comment in kasan_init() */
176         unsigned long pgd_end = end & PGDIR_MASK;
177
178         for (; start < pgd_end; start += PGDIR_SIZE) {
179                 pgd = pgd_offset_k(start);
180                 /*
181                  * With folded p4d, pgd_clear() is nop, use p4d_clear()
182                  * instead.
183                  */
184                 if (pgtable_l5_enabled())
185                         pgd_clear(pgd);
186                 else
187                         p4d_clear(p4d_offset(pgd, start));
188         }
189
190         pgd = pgd_offset_k(start);
191         for (; start < end; start += P4D_SIZE)
192                 p4d_clear(p4d_offset(pgd, start));
193 }
194
195 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
196 {
197         unsigned long p4d;
198
199         if (!pgtable_l5_enabled())
200                 return (p4d_t *)pgd;
201
202         p4d = pgd_val(*pgd) & PTE_PFN_MASK;
203         p4d += __START_KERNEL_map - phys_base;
204         return (p4d_t *)p4d + p4d_index(addr);
205 }
206
207 static void __init kasan_early_p4d_populate(pgd_t *pgd,
208                 unsigned long addr,
209                 unsigned long end)
210 {
211         pgd_t pgd_entry;
212         p4d_t *p4d, p4d_entry;
213         unsigned long next;
214
215         if (pgd_none(*pgd)) {
216                 pgd_entry = __pgd(_KERNPG_TABLE |
217                                         __pa_nodebug(kasan_early_shadow_p4d));
218                 set_pgd(pgd, pgd_entry);
219         }
220
221         p4d = early_p4d_offset(pgd, addr);
222         do {
223                 next = p4d_addr_end(addr, end);
224
225                 if (!p4d_none(*p4d))
226                         continue;
227
228                 p4d_entry = __p4d(_KERNPG_TABLE |
229                                         __pa_nodebug(kasan_early_shadow_pud));
230                 set_p4d(p4d, p4d_entry);
231         } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
232 }
233
234 static void __init kasan_map_early_shadow(pgd_t *pgd)
235 {
236         /* See comment in kasan_init() */
237         unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
238         unsigned long end = KASAN_SHADOW_END;
239         unsigned long next;
240
241         pgd += pgd_index(addr);
242         do {
243                 next = pgd_addr_end(addr, end);
244                 kasan_early_p4d_populate(pgd, addr, next);
245         } while (pgd++, addr = next, addr != end);
246 }
247
248 #ifdef CONFIG_KASAN_INLINE
249 static int kasan_die_handler(struct notifier_block *self,
250                              unsigned long val,
251                              void *data)
252 {
253         if (val == DIE_GPF) {
254                 pr_emerg("CONFIG_KASAN_INLINE enabled\n");
255                 pr_emerg("GPF could be caused by NULL-ptr deref or user memory access\n");
256         }
257         return NOTIFY_OK;
258 }
259
260 static struct notifier_block kasan_die_notifier = {
261         .notifier_call = kasan_die_handler,
262 };
263 #endif
264
265 void __init kasan_early_init(void)
266 {
267         int i;
268         pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
269                                 __PAGE_KERNEL | _PAGE_ENC;
270         pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
271         pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
272         p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
273
274         /* Mask out unsupported __PAGE_KERNEL bits: */
275         pte_val &= __default_kernel_pte_mask;
276         pmd_val &= __default_kernel_pte_mask;
277         pud_val &= __default_kernel_pte_mask;
278         p4d_val &= __default_kernel_pte_mask;
279
280         for (i = 0; i < PTRS_PER_PTE; i++)
281                 kasan_early_shadow_pte[i] = __pte(pte_val);
282
283         for (i = 0; i < PTRS_PER_PMD; i++)
284                 kasan_early_shadow_pmd[i] = __pmd(pmd_val);
285
286         for (i = 0; i < PTRS_PER_PUD; i++)
287                 kasan_early_shadow_pud[i] = __pud(pud_val);
288
289         for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
290                 kasan_early_shadow_p4d[i] = __p4d(p4d_val);
291
292         kasan_map_early_shadow(early_top_pgt);
293         kasan_map_early_shadow(init_top_pgt);
294 }
295
296 void __init kasan_init(void)
297 {
298         int i;
299         void *shadow_cpu_entry_begin, *shadow_cpu_entry_end;
300
301 #ifdef CONFIG_KASAN_INLINE
302         register_die_notifier(&kasan_die_notifier);
303 #endif
304
305         memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
306
307         /*
308          * We use the same shadow offset for 4- and 5-level paging to
309          * facilitate boot-time switching between paging modes.
310          * As result in 5-level paging mode KASAN_SHADOW_START and
311          * KASAN_SHADOW_END are not aligned to PGD boundary.
312          *
313          * KASAN_SHADOW_START doesn't share PGD with anything else.
314          * We claim whole PGD entry to make things easier.
315          *
316          * KASAN_SHADOW_END lands in the last PGD entry and it collides with
317          * bunch of things like kernel code, modules, EFI mapping, etc.
318          * We need to take extra steps to not overwrite them.
319          */
320         if (pgtable_l5_enabled()) {
321                 void *ptr;
322
323                 ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
324                 memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
325                 set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
326                                 __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
327         }
328
329         load_cr3(early_top_pgt);
330         __flush_tlb_all();
331
332         clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
333
334         kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
335                         kasan_mem_to_shadow((void *)PAGE_OFFSET));
336
337         for (i = 0; i < E820_MAX_ENTRIES; i++) {
338                 if (pfn_mapped[i].end == 0)
339                         break;
340
341                 map_range(&pfn_mapped[i]);
342         }
343
344         shadow_cpu_entry_begin = (void *)CPU_ENTRY_AREA_BASE;
345         shadow_cpu_entry_begin = kasan_mem_to_shadow(shadow_cpu_entry_begin);
346         shadow_cpu_entry_begin = (void *)round_down(
347                         (unsigned long)shadow_cpu_entry_begin, PAGE_SIZE);
348
349         shadow_cpu_entry_end = (void *)(CPU_ENTRY_AREA_BASE +
350                                         CPU_ENTRY_AREA_MAP_SIZE);
351         shadow_cpu_entry_end = kasan_mem_to_shadow(shadow_cpu_entry_end);
352         shadow_cpu_entry_end = (void *)round_up(
353                         (unsigned long)shadow_cpu_entry_end, PAGE_SIZE);
354
355         kasan_populate_early_shadow(
356                 kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
357                 shadow_cpu_entry_begin);
358
359         kasan_populate_shadow((unsigned long)shadow_cpu_entry_begin,
360                               (unsigned long)shadow_cpu_entry_end, 0);
361
362         kasan_populate_early_shadow(shadow_cpu_entry_end,
363                         kasan_mem_to_shadow((void *)__START_KERNEL_map));
364
365         kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
366                               (unsigned long)kasan_mem_to_shadow(_end),
367                               early_pfn_to_nid(__pa(_stext)));
368
369         kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
370                                         (void *)KASAN_SHADOW_END);
371
372         load_cr3(init_top_pgt);
373         __flush_tlb_all();
374
375         /*
376          * kasan_early_shadow_page has been used as early shadow memory, thus
377          * it may contain some garbage. Now we can clear and write protect it,
378          * since after the TLB flush no one should write to it.
379          */
380         memset(kasan_early_shadow_page, 0, PAGE_SIZE);
381         for (i = 0; i < PTRS_PER_PTE; i++) {
382                 pte_t pte;
383                 pgprot_t prot;
384
385                 prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
386                 pgprot_val(prot) &= __default_kernel_pte_mask;
387
388                 pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
389                 set_pte(&kasan_early_shadow_pte[i], pte);
390         }
391         /* Flush TLBs again to be sure that write protection applied. */
392         __flush_tlb_all();
393
394         init_task.kasan_depth = 0;
395         pr_info("KernelAddressSanitizer initialized\n");
396 }