]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/mm/pageattr.c
x86/fault: Fix sign-extend unintended sign extension
[linux.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/memblock.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
28
29 #include "mm_internal.h"
30
31 /*
32  * The current flushing context - we pass it instead of 5 arguments:
33  */
34 struct cpa_data {
35         unsigned long   *vaddr;
36         pgd_t           *pgd;
37         pgprot_t        mask_set;
38         pgprot_t        mask_clr;
39         unsigned long   numpages;
40         unsigned long   curpage;
41         unsigned long   pfn;
42         unsigned int    flags;
43         unsigned int    force_split             : 1,
44                         force_static_prot       : 1;
45         struct page     **pages;
46 };
47
48 enum cpa_warn {
49         CPA_CONFLICT,
50         CPA_PROTECT,
51         CPA_DETECT,
52 };
53
54 static const int cpa_warn_level = CPA_PROTECT;
55
56 /*
57  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
58  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
59  * entries change the page attribute in parallel to some other cpu
60  * splitting a large page entry along with changing the attribute.
61  */
62 static DEFINE_SPINLOCK(cpa_lock);
63
64 #define CPA_FLUSHTLB 1
65 #define CPA_ARRAY 2
66 #define CPA_PAGES_ARRAY 4
67 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
68
69 #ifdef CONFIG_PROC_FS
70 static unsigned long direct_pages_count[PG_LEVEL_NUM];
71
72 void update_page_count(int level, unsigned long pages)
73 {
74         /* Protect against CPA */
75         spin_lock(&pgd_lock);
76         direct_pages_count[level] += pages;
77         spin_unlock(&pgd_lock);
78 }
79
80 static void split_page_count(int level)
81 {
82         if (direct_pages_count[level] == 0)
83                 return;
84
85         direct_pages_count[level]--;
86         direct_pages_count[level - 1] += PTRS_PER_PTE;
87 }
88
89 void arch_report_meminfo(struct seq_file *m)
90 {
91         seq_printf(m, "DirectMap4k:    %8lu kB\n",
92                         direct_pages_count[PG_LEVEL_4K] << 2);
93 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
94         seq_printf(m, "DirectMap2M:    %8lu kB\n",
95                         direct_pages_count[PG_LEVEL_2M] << 11);
96 #else
97         seq_printf(m, "DirectMap4M:    %8lu kB\n",
98                         direct_pages_count[PG_LEVEL_2M] << 12);
99 #endif
100         if (direct_gbpages)
101                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
102                         direct_pages_count[PG_LEVEL_1G] << 20);
103 }
104 #else
105 static inline void split_page_count(int level) { }
106 #endif
107
108 #ifdef CONFIG_X86_CPA_STATISTICS
109
110 static unsigned long cpa_1g_checked;
111 static unsigned long cpa_1g_sameprot;
112 static unsigned long cpa_1g_preserved;
113 static unsigned long cpa_2m_checked;
114 static unsigned long cpa_2m_sameprot;
115 static unsigned long cpa_2m_preserved;
116 static unsigned long cpa_4k_install;
117
118 static inline void cpa_inc_1g_checked(void)
119 {
120         cpa_1g_checked++;
121 }
122
123 static inline void cpa_inc_2m_checked(void)
124 {
125         cpa_2m_checked++;
126 }
127
128 static inline void cpa_inc_4k_install(void)
129 {
130         cpa_4k_install++;
131 }
132
133 static inline void cpa_inc_lp_sameprot(int level)
134 {
135         if (level == PG_LEVEL_1G)
136                 cpa_1g_sameprot++;
137         else
138                 cpa_2m_sameprot++;
139 }
140
141 static inline void cpa_inc_lp_preserved(int level)
142 {
143         if (level == PG_LEVEL_1G)
144                 cpa_1g_preserved++;
145         else
146                 cpa_2m_preserved++;
147 }
148
149 static int cpastats_show(struct seq_file *m, void *p)
150 {
151         seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
152         seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
153         seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
154         seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
155         seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
156         seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
157         seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
158         return 0;
159 }
160
161 static int cpastats_open(struct inode *inode, struct file *file)
162 {
163         return single_open(file, cpastats_show, NULL);
164 }
165
166 static const struct file_operations cpastats_fops = {
167         .open           = cpastats_open,
168         .read           = seq_read,
169         .llseek         = seq_lseek,
170         .release        = single_release,
171 };
172
173 static int __init cpa_stats_init(void)
174 {
175         debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
176                             &cpastats_fops);
177         return 0;
178 }
179 late_initcall(cpa_stats_init);
180 #else
181 static inline void cpa_inc_1g_checked(void) { }
182 static inline void cpa_inc_2m_checked(void) { }
183 static inline void cpa_inc_4k_install(void) { }
184 static inline void cpa_inc_lp_sameprot(int level) { }
185 static inline void cpa_inc_lp_preserved(int level) { }
186 #endif
187
188
189 static inline int
190 within(unsigned long addr, unsigned long start, unsigned long end)
191 {
192         return addr >= start && addr < end;
193 }
194
195 static inline int
196 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
197 {
198         return addr >= start && addr <= end;
199 }
200
201 #ifdef CONFIG_X86_64
202
203 static inline unsigned long highmap_start_pfn(void)
204 {
205         return __pa_symbol(_text) >> PAGE_SHIFT;
206 }
207
208 static inline unsigned long highmap_end_pfn(void)
209 {
210         /* Do not reference physical address outside the kernel. */
211         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
212 }
213
214 static bool __cpa_pfn_in_highmap(unsigned long pfn)
215 {
216         /*
217          * Kernel text has an alias mapping at a high address, known
218          * here as "highmap".
219          */
220         return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
221 }
222
223 #else
224
225 static bool __cpa_pfn_in_highmap(unsigned long pfn)
226 {
227         /* There is no highmap on 32-bit */
228         return false;
229 }
230
231 #endif
232
233 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
234 {
235         if (cpa->flags & CPA_PAGES_ARRAY) {
236                 struct page *page = cpa->pages[idx];
237
238                 if (unlikely(PageHighMem(page)))
239                         return 0;
240
241                 return (unsigned long)page_address(page);
242         }
243
244         if (cpa->flags & CPA_ARRAY)
245                 return cpa->vaddr[idx];
246
247         return *cpa->vaddr + idx * PAGE_SIZE;
248 }
249
250 /*
251  * Flushing functions
252  */
253
254 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
255 {
256         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
257         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
258         void *vend = vaddr + size;
259
260         if (p >= vend)
261                 return;
262
263         for (; p < vend; p += clflush_size)
264                 clflushopt(p);
265 }
266
267 /**
268  * clflush_cache_range - flush a cache range with clflush
269  * @vaddr:      virtual start address
270  * @size:       number of bytes to flush
271  *
272  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
273  * SFENCE to avoid ordering issues.
274  */
275 void clflush_cache_range(void *vaddr, unsigned int size)
276 {
277         mb();
278         clflush_cache_range_opt(vaddr, size);
279         mb();
280 }
281 EXPORT_SYMBOL_GPL(clflush_cache_range);
282
283 void arch_invalidate_pmem(void *addr, size_t size)
284 {
285         clflush_cache_range(addr, size);
286 }
287 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
288
289 static void __cpa_flush_all(void *arg)
290 {
291         unsigned long cache = (unsigned long)arg;
292
293         /*
294          * Flush all to work around Errata in early athlons regarding
295          * large page flushing.
296          */
297         __flush_tlb_all();
298
299         if (cache && boot_cpu_data.x86 >= 4)
300                 wbinvd();
301 }
302
303 static void cpa_flush_all(unsigned long cache)
304 {
305         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
306
307         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
308 }
309
310 void __cpa_flush_tlb(void *data)
311 {
312         struct cpa_data *cpa = data;
313         unsigned int i;
314
315         for (i = 0; i < cpa->numpages; i++)
316                 __flush_tlb_one_kernel(__cpa_addr(cpa, i));
317 }
318
319 static void cpa_flush(struct cpa_data *data, int cache)
320 {
321         struct cpa_data *cpa = data;
322         unsigned int i;
323
324         BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
325
326         if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
327                 cpa_flush_all(cache);
328                 return;
329         }
330
331         if (cpa->numpages <= tlb_single_page_flush_ceiling)
332                 on_each_cpu(__cpa_flush_tlb, cpa, 1);
333         else
334                 flush_tlb_all();
335
336         if (!cache)
337                 return;
338
339         mb();
340         for (i = 0; i < cpa->numpages; i++) {
341                 unsigned long addr = __cpa_addr(cpa, i);
342                 unsigned int level;
343
344                 pte_t *pte = lookup_address(addr, &level);
345
346                 /*
347                  * Only flush present addresses:
348                  */
349                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
350                         clflush_cache_range_opt((void *)addr, PAGE_SIZE);
351         }
352         mb();
353 }
354
355 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
356                      unsigned long r2_start, unsigned long r2_end)
357 {
358         return (r1_start <= r2_end && r1_end >= r2_start) ||
359                 (r2_start <= r1_end && r2_end >= r1_start);
360 }
361
362 #ifdef CONFIG_PCI_BIOS
363 /*
364  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
365  * based config access (CONFIG_PCI_GOBIOS) support.
366  */
367 #define BIOS_PFN        PFN_DOWN(BIOS_BEGIN)
368 #define BIOS_PFN_END    PFN_DOWN(BIOS_END - 1)
369
370 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
371 {
372         if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
373                 return _PAGE_NX;
374         return 0;
375 }
376 #else
377 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
378 {
379         return 0;
380 }
381 #endif
382
383 /*
384  * The .rodata section needs to be read-only. Using the pfn catches all
385  * aliases.  This also includes __ro_after_init, so do not enforce until
386  * kernel_set_to_readonly is true.
387  */
388 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
389 {
390         unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
391
392         /*
393          * Note: __end_rodata is at page aligned and not inclusive, so
394          * subtract 1 to get the last enforced PFN in the rodata area.
395          */
396         epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
397
398         if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
399                 return _PAGE_RW;
400         return 0;
401 }
402
403 /*
404  * Protect kernel text against becoming non executable by forbidding
405  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
406  * out of which the kernel actually executes.  Do not protect the low
407  * mapping.
408  *
409  * This does not cover __inittext since that is gone after boot.
410  */
411 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
412 {
413         unsigned long t_end = (unsigned long)_etext - 1;
414         unsigned long t_start = (unsigned long)_text;
415
416         if (overlaps(start, end, t_start, t_end))
417                 return _PAGE_NX;
418         return 0;
419 }
420
421 #if defined(CONFIG_X86_64)
422 /*
423  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
424  * kernel text mappings for the large page aligned text, rodata sections
425  * will be always read-only. For the kernel identity mappings covering the
426  * holes caused by this alignment can be anything that user asks.
427  *
428  * This will preserve the large page mappings for kernel text/data at no
429  * extra cost.
430  */
431 static pgprotval_t protect_kernel_text_ro(unsigned long start,
432                                           unsigned long end)
433 {
434         unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
435         unsigned long t_start = (unsigned long)_text;
436         unsigned int level;
437
438         if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
439                 return 0;
440         /*
441          * Don't enforce the !RW mapping for the kernel text mapping, if
442          * the current mapping is already using small page mapping.  No
443          * need to work hard to preserve large page mappings in this case.
444          *
445          * This also fixes the Linux Xen paravirt guest boot failure caused
446          * by unexpected read-only mappings for kernel identity
447          * mappings. In this paravirt guest case, the kernel text mapping
448          * and the kernel identity mapping share the same page-table pages,
449          * so the protections for kernel text and identity mappings have to
450          * be the same.
451          */
452         if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
453                 return _PAGE_RW;
454         return 0;
455 }
456 #else
457 static pgprotval_t protect_kernel_text_ro(unsigned long start,
458                                           unsigned long end)
459 {
460         return 0;
461 }
462 #endif
463
464 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
465 {
466         return (pgprot_val(prot) & ~val) != pgprot_val(prot);
467 }
468
469 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
470                                   unsigned long start, unsigned long end,
471                                   unsigned long pfn, const char *txt)
472 {
473         static const char *lvltxt[] = {
474                 [CPA_CONFLICT]  = "conflict",
475                 [CPA_PROTECT]   = "protect",
476                 [CPA_DETECT]    = "detect",
477         };
478
479         if (warnlvl > cpa_warn_level || !conflicts(prot, val))
480                 return;
481
482         pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
483                 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
484                 (unsigned long long)val);
485 }
486
487 /*
488  * Certain areas of memory on x86 require very specific protection flags,
489  * for example the BIOS area or kernel text. Callers don't always get this
490  * right (again, ioremap() on BIOS memory is not uncommon) so this function
491  * checks and fixes these known static required protection bits.
492  */
493 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
494                                           unsigned long pfn, unsigned long npg,
495                                           int warnlvl)
496 {
497         pgprotval_t forbidden, res;
498         unsigned long end;
499
500         /*
501          * There is no point in checking RW/NX conflicts when the requested
502          * mapping is setting the page !PRESENT.
503          */
504         if (!(pgprot_val(prot) & _PAGE_PRESENT))
505                 return prot;
506
507         /* Operate on the virtual address */
508         end = start + npg * PAGE_SIZE - 1;
509
510         res = protect_kernel_text(start, end);
511         check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
512         forbidden = res;
513
514         res = protect_kernel_text_ro(start, end);
515         check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
516         forbidden |= res;
517
518         /* Check the PFN directly */
519         res = protect_pci_bios(pfn, pfn + npg - 1);
520         check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
521         forbidden |= res;
522
523         res = protect_rodata(pfn, pfn + npg - 1);
524         check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
525         forbidden |= res;
526
527         return __pgprot(pgprot_val(prot) & ~forbidden);
528 }
529
530 /*
531  * Lookup the page table entry for a virtual address in a specific pgd.
532  * Return a pointer to the entry and the level of the mapping.
533  */
534 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
535                              unsigned int *level)
536 {
537         p4d_t *p4d;
538         pud_t *pud;
539         pmd_t *pmd;
540
541         *level = PG_LEVEL_NONE;
542
543         if (pgd_none(*pgd))
544                 return NULL;
545
546         p4d = p4d_offset(pgd, address);
547         if (p4d_none(*p4d))
548                 return NULL;
549
550         *level = PG_LEVEL_512G;
551         if (p4d_large(*p4d) || !p4d_present(*p4d))
552                 return (pte_t *)p4d;
553
554         pud = pud_offset(p4d, address);
555         if (pud_none(*pud))
556                 return NULL;
557
558         *level = PG_LEVEL_1G;
559         if (pud_large(*pud) || !pud_present(*pud))
560                 return (pte_t *)pud;
561
562         pmd = pmd_offset(pud, address);
563         if (pmd_none(*pmd))
564                 return NULL;
565
566         *level = PG_LEVEL_2M;
567         if (pmd_large(*pmd) || !pmd_present(*pmd))
568                 return (pte_t *)pmd;
569
570         *level = PG_LEVEL_4K;
571
572         return pte_offset_kernel(pmd, address);
573 }
574
575 /*
576  * Lookup the page table entry for a virtual address. Return a pointer
577  * to the entry and the level of the mapping.
578  *
579  * Note: We return pud and pmd either when the entry is marked large
580  * or when the present bit is not set. Otherwise we would return a
581  * pointer to a nonexisting mapping.
582  */
583 pte_t *lookup_address(unsigned long address, unsigned int *level)
584 {
585         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
586 }
587 EXPORT_SYMBOL_GPL(lookup_address);
588
589 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
590                                   unsigned int *level)
591 {
592         if (cpa->pgd)
593                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
594                                                address, level);
595
596         return lookup_address(address, level);
597 }
598
599 /*
600  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
601  * or NULL if not present.
602  */
603 pmd_t *lookup_pmd_address(unsigned long address)
604 {
605         pgd_t *pgd;
606         p4d_t *p4d;
607         pud_t *pud;
608
609         pgd = pgd_offset_k(address);
610         if (pgd_none(*pgd))
611                 return NULL;
612
613         p4d = p4d_offset(pgd, address);
614         if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
615                 return NULL;
616
617         pud = pud_offset(p4d, address);
618         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
619                 return NULL;
620
621         return pmd_offset(pud, address);
622 }
623
624 /*
625  * This is necessary because __pa() does not work on some
626  * kinds of memory, like vmalloc() or the alloc_remap()
627  * areas on 32-bit NUMA systems.  The percpu areas can
628  * end up in this kind of memory, for instance.
629  *
630  * This could be optimized, but it is only intended to be
631  * used at inititalization time, and keeping it
632  * unoptimized should increase the testing coverage for
633  * the more obscure platforms.
634  */
635 phys_addr_t slow_virt_to_phys(void *__virt_addr)
636 {
637         unsigned long virt_addr = (unsigned long)__virt_addr;
638         phys_addr_t phys_addr;
639         unsigned long offset;
640         enum pg_level level;
641         pte_t *pte;
642
643         pte = lookup_address(virt_addr, &level);
644         BUG_ON(!pte);
645
646         /*
647          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
648          * before being left-shifted PAGE_SHIFT bits -- this trick is to
649          * make 32-PAE kernel work correctly.
650          */
651         switch (level) {
652         case PG_LEVEL_1G:
653                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
654                 offset = virt_addr & ~PUD_PAGE_MASK;
655                 break;
656         case PG_LEVEL_2M:
657                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
658                 offset = virt_addr & ~PMD_PAGE_MASK;
659                 break;
660         default:
661                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
662                 offset = virt_addr & ~PAGE_MASK;
663         }
664
665         return (phys_addr_t)(phys_addr | offset);
666 }
667 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
668
669 /*
670  * Set the new pmd in all the pgds we know about:
671  */
672 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
673 {
674         /* change init_mm */
675         set_pte_atomic(kpte, pte);
676 #ifdef CONFIG_X86_32
677         if (!SHARED_KERNEL_PMD) {
678                 struct page *page;
679
680                 list_for_each_entry(page, &pgd_list, lru) {
681                         pgd_t *pgd;
682                         p4d_t *p4d;
683                         pud_t *pud;
684                         pmd_t *pmd;
685
686                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
687                         p4d = p4d_offset(pgd, address);
688                         pud = pud_offset(p4d, address);
689                         pmd = pmd_offset(pud, address);
690                         set_pte_atomic((pte_t *)pmd, pte);
691                 }
692         }
693 #endif
694 }
695
696 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
697 {
698         /*
699          * _PAGE_GLOBAL means "global page" for present PTEs.
700          * But, it is also used to indicate _PAGE_PROTNONE
701          * for non-present PTEs.
702          *
703          * This ensures that a _PAGE_GLOBAL PTE going from
704          * present to non-present is not confused as
705          * _PAGE_PROTNONE.
706          */
707         if (!(pgprot_val(prot) & _PAGE_PRESENT))
708                 pgprot_val(prot) &= ~_PAGE_GLOBAL;
709
710         return prot;
711 }
712
713 static int __should_split_large_page(pte_t *kpte, unsigned long address,
714                                      struct cpa_data *cpa)
715 {
716         unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
717         pgprot_t old_prot, new_prot, req_prot, chk_prot;
718         pte_t new_pte, old_pte, *tmp;
719         enum pg_level level;
720
721         /*
722          * Check for races, another CPU might have split this page
723          * up already:
724          */
725         tmp = _lookup_address_cpa(cpa, address, &level);
726         if (tmp != kpte)
727                 return 1;
728
729         switch (level) {
730         case PG_LEVEL_2M:
731                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
732                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
733                 cpa_inc_2m_checked();
734                 break;
735         case PG_LEVEL_1G:
736                 old_prot = pud_pgprot(*(pud_t *)kpte);
737                 old_pfn = pud_pfn(*(pud_t *)kpte);
738                 cpa_inc_1g_checked();
739                 break;
740         default:
741                 return -EINVAL;
742         }
743
744         psize = page_level_size(level);
745         pmask = page_level_mask(level);
746
747         /*
748          * Calculate the number of pages, which fit into this large
749          * page starting at address:
750          */
751         lpaddr = (address + psize) & pmask;
752         numpages = (lpaddr - address) >> PAGE_SHIFT;
753         if (numpages < cpa->numpages)
754                 cpa->numpages = numpages;
755
756         /*
757          * We are safe now. Check whether the new pgprot is the same:
758          * Convert protection attributes to 4k-format, as cpa->mask* are set
759          * up accordingly.
760          */
761         old_pte = *kpte;
762         /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
763         req_prot = pgprot_large_2_4k(old_prot);
764
765         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
766         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
767
768         /*
769          * req_prot is in format of 4k pages. It must be converted to large
770          * page format: the caching mode includes the PAT bit located at
771          * different bit positions in the two formats.
772          */
773         req_prot = pgprot_4k_2_large(req_prot);
774         req_prot = pgprot_clear_protnone_bits(req_prot);
775         if (pgprot_val(req_prot) & _PAGE_PRESENT)
776                 pgprot_val(req_prot) |= _PAGE_PSE;
777
778         /*
779          * old_pfn points to the large page base pfn. So we need to add the
780          * offset of the virtual address:
781          */
782         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
783         cpa->pfn = pfn;
784
785         /*
786          * Calculate the large page base address and the number of 4K pages
787          * in the large page
788          */
789         lpaddr = address & pmask;
790         numpages = psize >> PAGE_SHIFT;
791
792         /*
793          * Sanity check that the existing mapping is correct versus the static
794          * protections. static_protections() guards against !PRESENT, so no
795          * extra conditional required here.
796          */
797         chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
798                                       CPA_CONFLICT);
799
800         if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
801                 /*
802                  * Split the large page and tell the split code to
803                  * enforce static protections.
804                  */
805                 cpa->force_static_prot = 1;
806                 return 1;
807         }
808
809         /*
810          * Optimization: If the requested pgprot is the same as the current
811          * pgprot, then the large page can be preserved and no updates are
812          * required independent of alignment and length of the requested
813          * range. The above already established that the current pgprot is
814          * correct, which in consequence makes the requested pgprot correct
815          * as well if it is the same. The static protection scan below will
816          * not come to a different conclusion.
817          */
818         if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
819                 cpa_inc_lp_sameprot(level);
820                 return 0;
821         }
822
823         /*
824          * If the requested range does not cover the full page, split it up
825          */
826         if (address != lpaddr || cpa->numpages != numpages)
827                 return 1;
828
829         /*
830          * Check whether the requested pgprot is conflicting with a static
831          * protection requirement in the large page.
832          */
833         new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
834                                       CPA_DETECT);
835
836         /*
837          * If there is a conflict, split the large page.
838          *
839          * There used to be a 4k wise evaluation trying really hard to
840          * preserve the large pages, but experimentation has shown, that this
841          * does not help at all. There might be corner cases which would
842          * preserve one large page occasionally, but it's really not worth the
843          * extra code and cycles for the common case.
844          */
845         if (pgprot_val(req_prot) != pgprot_val(new_prot))
846                 return 1;
847
848         /* All checks passed. Update the large page mapping. */
849         new_pte = pfn_pte(old_pfn, new_prot);
850         __set_pmd_pte(kpte, address, new_pte);
851         cpa->flags |= CPA_FLUSHTLB;
852         cpa_inc_lp_preserved(level);
853         return 0;
854 }
855
856 static int should_split_large_page(pte_t *kpte, unsigned long address,
857                                    struct cpa_data *cpa)
858 {
859         int do_split;
860
861         if (cpa->force_split)
862                 return 1;
863
864         spin_lock(&pgd_lock);
865         do_split = __should_split_large_page(kpte, address, cpa);
866         spin_unlock(&pgd_lock);
867
868         return do_split;
869 }
870
871 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
872                           pgprot_t ref_prot, unsigned long address,
873                           unsigned long size)
874 {
875         unsigned int npg = PFN_DOWN(size);
876         pgprot_t prot;
877
878         /*
879          * If should_split_large_page() discovered an inconsistent mapping,
880          * remove the invalid protection in the split mapping.
881          */
882         if (!cpa->force_static_prot)
883                 goto set;
884
885         prot = static_protections(ref_prot, address, pfn, npg, CPA_PROTECT);
886
887         if (pgprot_val(prot) == pgprot_val(ref_prot))
888                 goto set;
889
890         /*
891          * If this is splitting a PMD, fix it up. PUD splits cannot be
892          * fixed trivially as that would require to rescan the newly
893          * installed PMD mappings after returning from split_large_page()
894          * so an eventual further split can allocate the necessary PTE
895          * pages. Warn for now and revisit it in case this actually
896          * happens.
897          */
898         if (size == PAGE_SIZE)
899                 ref_prot = prot;
900         else
901                 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
902 set:
903         set_pte(pte, pfn_pte(pfn, ref_prot));
904 }
905
906 static int
907 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
908                    struct page *base)
909 {
910         unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
911         pte_t *pbase = (pte_t *)page_address(base);
912         unsigned int i, level;
913         pgprot_t ref_prot;
914         pte_t *tmp;
915
916         spin_lock(&pgd_lock);
917         /*
918          * Check for races, another CPU might have split this page
919          * up for us already:
920          */
921         tmp = _lookup_address_cpa(cpa, address, &level);
922         if (tmp != kpte) {
923                 spin_unlock(&pgd_lock);
924                 return 1;
925         }
926
927         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
928
929         switch (level) {
930         case PG_LEVEL_2M:
931                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
932                 /*
933                  * Clear PSE (aka _PAGE_PAT) and move
934                  * PAT bit to correct position.
935                  */
936                 ref_prot = pgprot_large_2_4k(ref_prot);
937                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
938                 lpaddr = address & PMD_MASK;
939                 lpinc = PAGE_SIZE;
940                 break;
941
942         case PG_LEVEL_1G:
943                 ref_prot = pud_pgprot(*(pud_t *)kpte);
944                 ref_pfn = pud_pfn(*(pud_t *)kpte);
945                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
946                 lpaddr = address & PUD_MASK;
947                 lpinc = PMD_SIZE;
948                 /*
949                  * Clear the PSE flags if the PRESENT flag is not set
950                  * otherwise pmd_present/pmd_huge will return true
951                  * even on a non present pmd.
952                  */
953                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
954                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
955                 break;
956
957         default:
958                 spin_unlock(&pgd_lock);
959                 return 1;
960         }
961
962         ref_prot = pgprot_clear_protnone_bits(ref_prot);
963
964         /*
965          * Get the target pfn from the original entry:
966          */
967         pfn = ref_pfn;
968         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
969                 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
970
971         if (virt_addr_valid(address)) {
972                 unsigned long pfn = PFN_DOWN(__pa(address));
973
974                 if (pfn_range_is_mapped(pfn, pfn + 1))
975                         split_page_count(level);
976         }
977
978         /*
979          * Install the new, split up pagetable.
980          *
981          * We use the standard kernel pagetable protections for the new
982          * pagetable protections, the actual ptes set above control the
983          * primary protection behavior:
984          */
985         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
986
987         /*
988          * Do a global flush tlb after splitting the large page
989          * and before we do the actual change page attribute in the PTE.
990          *
991          * Without this, we violate the TLB application note, that says:
992          * "The TLBs may contain both ordinary and large-page
993          *  translations for a 4-KByte range of linear addresses. This
994          *  may occur if software modifies the paging structures so that
995          *  the page size used for the address range changes. If the two
996          *  translations differ with respect to page frame or attributes
997          *  (e.g., permissions), processor behavior is undefined and may
998          *  be implementation-specific."
999          *
1000          * We do this global tlb flush inside the cpa_lock, so that we
1001          * don't allow any other cpu, with stale tlb entries change the
1002          * page attribute in parallel, that also falls into the
1003          * just split large page entry.
1004          */
1005         flush_tlb_all();
1006         spin_unlock(&pgd_lock);
1007
1008         return 0;
1009 }
1010
1011 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1012                             unsigned long address)
1013 {
1014         struct page *base;
1015
1016         if (!debug_pagealloc_enabled())
1017                 spin_unlock(&cpa_lock);
1018         base = alloc_pages(GFP_KERNEL, 0);
1019         if (!debug_pagealloc_enabled())
1020                 spin_lock(&cpa_lock);
1021         if (!base)
1022                 return -ENOMEM;
1023
1024         if (__split_large_page(cpa, kpte, address, base))
1025                 __free_page(base);
1026
1027         return 0;
1028 }
1029
1030 static bool try_to_free_pte_page(pte_t *pte)
1031 {
1032         int i;
1033
1034         for (i = 0; i < PTRS_PER_PTE; i++)
1035                 if (!pte_none(pte[i]))
1036                         return false;
1037
1038         free_page((unsigned long)pte);
1039         return true;
1040 }
1041
1042 static bool try_to_free_pmd_page(pmd_t *pmd)
1043 {
1044         int i;
1045
1046         for (i = 0; i < PTRS_PER_PMD; i++)
1047                 if (!pmd_none(pmd[i]))
1048                         return false;
1049
1050         free_page((unsigned long)pmd);
1051         return true;
1052 }
1053
1054 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1055 {
1056         pte_t *pte = pte_offset_kernel(pmd, start);
1057
1058         while (start < end) {
1059                 set_pte(pte, __pte(0));
1060
1061                 start += PAGE_SIZE;
1062                 pte++;
1063         }
1064
1065         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1066                 pmd_clear(pmd);
1067                 return true;
1068         }
1069         return false;
1070 }
1071
1072 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1073                               unsigned long start, unsigned long end)
1074 {
1075         if (unmap_pte_range(pmd, start, end))
1076                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1077                         pud_clear(pud);
1078 }
1079
1080 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1081 {
1082         pmd_t *pmd = pmd_offset(pud, start);
1083
1084         /*
1085          * Not on a 2MB page boundary?
1086          */
1087         if (start & (PMD_SIZE - 1)) {
1088                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1089                 unsigned long pre_end = min_t(unsigned long, end, next_page);
1090
1091                 __unmap_pmd_range(pud, pmd, start, pre_end);
1092
1093                 start = pre_end;
1094                 pmd++;
1095         }
1096
1097         /*
1098          * Try to unmap in 2M chunks.
1099          */
1100         while (end - start >= PMD_SIZE) {
1101                 if (pmd_large(*pmd))
1102                         pmd_clear(pmd);
1103                 else
1104                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1105
1106                 start += PMD_SIZE;
1107                 pmd++;
1108         }
1109
1110         /*
1111          * 4K leftovers?
1112          */
1113         if (start < end)
1114                 return __unmap_pmd_range(pud, pmd, start, end);
1115
1116         /*
1117          * Try again to free the PMD page if haven't succeeded above.
1118          */
1119         if (!pud_none(*pud))
1120                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1121                         pud_clear(pud);
1122 }
1123
1124 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1125 {
1126         pud_t *pud = pud_offset(p4d, start);
1127
1128         /*
1129          * Not on a GB page boundary?
1130          */
1131         if (start & (PUD_SIZE - 1)) {
1132                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1133                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
1134
1135                 unmap_pmd_range(pud, start, pre_end);
1136
1137                 start = pre_end;
1138                 pud++;
1139         }
1140
1141         /*
1142          * Try to unmap in 1G chunks?
1143          */
1144         while (end - start >= PUD_SIZE) {
1145
1146                 if (pud_large(*pud))
1147                         pud_clear(pud);
1148                 else
1149                         unmap_pmd_range(pud, start, start + PUD_SIZE);
1150
1151                 start += PUD_SIZE;
1152                 pud++;
1153         }
1154
1155         /*
1156          * 2M leftovers?
1157          */
1158         if (start < end)
1159                 unmap_pmd_range(pud, start, end);
1160
1161         /*
1162          * No need to try to free the PUD page because we'll free it in
1163          * populate_pgd's error path
1164          */
1165 }
1166
1167 static int alloc_pte_page(pmd_t *pmd)
1168 {
1169         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1170         if (!pte)
1171                 return -1;
1172
1173         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1174         return 0;
1175 }
1176
1177 static int alloc_pmd_page(pud_t *pud)
1178 {
1179         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1180         if (!pmd)
1181                 return -1;
1182
1183         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1184         return 0;
1185 }
1186
1187 static void populate_pte(struct cpa_data *cpa,
1188                          unsigned long start, unsigned long end,
1189                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1190 {
1191         pte_t *pte;
1192
1193         pte = pte_offset_kernel(pmd, start);
1194
1195         pgprot = pgprot_clear_protnone_bits(pgprot);
1196
1197         while (num_pages-- && start < end) {
1198                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1199
1200                 start    += PAGE_SIZE;
1201                 cpa->pfn++;
1202                 pte++;
1203         }
1204 }
1205
1206 static long populate_pmd(struct cpa_data *cpa,
1207                          unsigned long start, unsigned long end,
1208                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1209 {
1210         long cur_pages = 0;
1211         pmd_t *pmd;
1212         pgprot_t pmd_pgprot;
1213
1214         /*
1215          * Not on a 2M boundary?
1216          */
1217         if (start & (PMD_SIZE - 1)) {
1218                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1219                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1220
1221                 pre_end   = min_t(unsigned long, pre_end, next_page);
1222                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1223                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1224
1225                 /*
1226                  * Need a PTE page?
1227                  */
1228                 pmd = pmd_offset(pud, start);
1229                 if (pmd_none(*pmd))
1230                         if (alloc_pte_page(pmd))
1231                                 return -1;
1232
1233                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1234
1235                 start = pre_end;
1236         }
1237
1238         /*
1239          * We mapped them all?
1240          */
1241         if (num_pages == cur_pages)
1242                 return cur_pages;
1243
1244         pmd_pgprot = pgprot_4k_2_large(pgprot);
1245
1246         while (end - start >= PMD_SIZE) {
1247
1248                 /*
1249                  * We cannot use a 1G page so allocate a PMD page if needed.
1250                  */
1251                 if (pud_none(*pud))
1252                         if (alloc_pmd_page(pud))
1253                                 return -1;
1254
1255                 pmd = pmd_offset(pud, start);
1256
1257                 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1258                                         canon_pgprot(pmd_pgprot))));
1259
1260                 start     += PMD_SIZE;
1261                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1262                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1263         }
1264
1265         /*
1266          * Map trailing 4K pages.
1267          */
1268         if (start < end) {
1269                 pmd = pmd_offset(pud, start);
1270                 if (pmd_none(*pmd))
1271                         if (alloc_pte_page(pmd))
1272                                 return -1;
1273
1274                 populate_pte(cpa, start, end, num_pages - cur_pages,
1275                              pmd, pgprot);
1276         }
1277         return num_pages;
1278 }
1279
1280 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1281                         pgprot_t pgprot)
1282 {
1283         pud_t *pud;
1284         unsigned long end;
1285         long cur_pages = 0;
1286         pgprot_t pud_pgprot;
1287
1288         end = start + (cpa->numpages << PAGE_SHIFT);
1289
1290         /*
1291          * Not on a Gb page boundary? => map everything up to it with
1292          * smaller pages.
1293          */
1294         if (start & (PUD_SIZE - 1)) {
1295                 unsigned long pre_end;
1296                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1297
1298                 pre_end   = min_t(unsigned long, end, next_page);
1299                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1300                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1301
1302                 pud = pud_offset(p4d, start);
1303
1304                 /*
1305                  * Need a PMD page?
1306                  */
1307                 if (pud_none(*pud))
1308                         if (alloc_pmd_page(pud))
1309                                 return -1;
1310
1311                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1312                                          pud, pgprot);
1313                 if (cur_pages < 0)
1314                         return cur_pages;
1315
1316                 start = pre_end;
1317         }
1318
1319         /* We mapped them all? */
1320         if (cpa->numpages == cur_pages)
1321                 return cur_pages;
1322
1323         pud = pud_offset(p4d, start);
1324         pud_pgprot = pgprot_4k_2_large(pgprot);
1325
1326         /*
1327          * Map everything starting from the Gb boundary, possibly with 1G pages
1328          */
1329         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1330                 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1331                                    canon_pgprot(pud_pgprot))));
1332
1333                 start     += PUD_SIZE;
1334                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1335                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1336                 pud++;
1337         }
1338
1339         /* Map trailing leftover */
1340         if (start < end) {
1341                 long tmp;
1342
1343                 pud = pud_offset(p4d, start);
1344                 if (pud_none(*pud))
1345                         if (alloc_pmd_page(pud))
1346                                 return -1;
1347
1348                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1349                                    pud, pgprot);
1350                 if (tmp < 0)
1351                         return cur_pages;
1352
1353                 cur_pages += tmp;
1354         }
1355         return cur_pages;
1356 }
1357
1358 /*
1359  * Restrictions for kernel page table do not necessarily apply when mapping in
1360  * an alternate PGD.
1361  */
1362 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1363 {
1364         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1365         pud_t *pud = NULL;      /* shut up gcc */
1366         p4d_t *p4d;
1367         pgd_t *pgd_entry;
1368         long ret;
1369
1370         pgd_entry = cpa->pgd + pgd_index(addr);
1371
1372         if (pgd_none(*pgd_entry)) {
1373                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1374                 if (!p4d)
1375                         return -1;
1376
1377                 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1378         }
1379
1380         /*
1381          * Allocate a PUD page and hand it down for mapping.
1382          */
1383         p4d = p4d_offset(pgd_entry, addr);
1384         if (p4d_none(*p4d)) {
1385                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1386                 if (!pud)
1387                         return -1;
1388
1389                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1390         }
1391
1392         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1393         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1394
1395         ret = populate_pud(cpa, addr, p4d, pgprot);
1396         if (ret < 0) {
1397                 /*
1398                  * Leave the PUD page in place in case some other CPU or thread
1399                  * already found it, but remove any useless entries we just
1400                  * added to it.
1401                  */
1402                 unmap_pud_range(p4d, addr,
1403                                 addr + (cpa->numpages << PAGE_SHIFT));
1404                 return ret;
1405         }
1406
1407         cpa->numpages = ret;
1408         return 0;
1409 }
1410
1411 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1412                                int primary)
1413 {
1414         if (cpa->pgd) {
1415                 /*
1416                  * Right now, we only execute this code path when mapping
1417                  * the EFI virtual memory map regions, no other users
1418                  * provide a ->pgd value. This may change in the future.
1419                  */
1420                 return populate_pgd(cpa, vaddr);
1421         }
1422
1423         /*
1424          * Ignore all non primary paths.
1425          */
1426         if (!primary) {
1427                 cpa->numpages = 1;
1428                 return 0;
1429         }
1430
1431         /*
1432          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1433          * to have holes.
1434          * Also set numpages to '1' indicating that we processed cpa req for
1435          * one virtual address page and its pfn. TBD: numpages can be set based
1436          * on the initial value and the level returned by lookup_address().
1437          */
1438         if (within(vaddr, PAGE_OFFSET,
1439                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1440                 cpa->numpages = 1;
1441                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1442                 return 0;
1443
1444         } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1445                 /* Faults in the highmap are OK, so do not warn: */
1446                 return -EFAULT;
1447         } else {
1448                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1449                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1450                         *cpa->vaddr);
1451
1452                 return -EFAULT;
1453         }
1454 }
1455
1456 static int __change_page_attr(struct cpa_data *cpa, int primary)
1457 {
1458         unsigned long address;
1459         int do_split, err;
1460         unsigned int level;
1461         pte_t *kpte, old_pte;
1462
1463         address = __cpa_addr(cpa, cpa->curpage);
1464 repeat:
1465         kpte = _lookup_address_cpa(cpa, address, &level);
1466         if (!kpte)
1467                 return __cpa_process_fault(cpa, address, primary);
1468
1469         old_pte = *kpte;
1470         if (pte_none(old_pte))
1471                 return __cpa_process_fault(cpa, address, primary);
1472
1473         if (level == PG_LEVEL_4K) {
1474                 pte_t new_pte;
1475                 pgprot_t new_prot = pte_pgprot(old_pte);
1476                 unsigned long pfn = pte_pfn(old_pte);
1477
1478                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1479                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1480
1481                 cpa_inc_4k_install();
1482                 new_prot = static_protections(new_prot, address, pfn, 1,
1483                                               CPA_PROTECT);
1484
1485                 new_prot = pgprot_clear_protnone_bits(new_prot);
1486
1487                 /*
1488                  * We need to keep the pfn from the existing PTE,
1489                  * after all we're only going to change it's attributes
1490                  * not the memory it points to
1491                  */
1492                 new_pte = pfn_pte(pfn, new_prot);
1493                 cpa->pfn = pfn;
1494                 /*
1495                  * Do we really change anything ?
1496                  */
1497                 if (pte_val(old_pte) != pte_val(new_pte)) {
1498                         set_pte_atomic(kpte, new_pte);
1499                         cpa->flags |= CPA_FLUSHTLB;
1500                 }
1501                 cpa->numpages = 1;
1502                 return 0;
1503         }
1504
1505         /*
1506          * Check, whether we can keep the large page intact
1507          * and just change the pte:
1508          */
1509         do_split = should_split_large_page(kpte, address, cpa);
1510         /*
1511          * When the range fits into the existing large page,
1512          * return. cp->numpages and cpa->tlbflush have been updated in
1513          * try_large_page:
1514          */
1515         if (do_split <= 0)
1516                 return do_split;
1517
1518         /*
1519          * We have to split the large page:
1520          */
1521         err = split_large_page(cpa, kpte, address);
1522         if (!err)
1523                 goto repeat;
1524
1525         return err;
1526 }
1527
1528 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1529
1530 static int cpa_process_alias(struct cpa_data *cpa)
1531 {
1532         struct cpa_data alias_cpa;
1533         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1534         unsigned long vaddr;
1535         int ret;
1536
1537         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1538                 return 0;
1539
1540         /*
1541          * No need to redo, when the primary call touched the direct
1542          * mapping already:
1543          */
1544         vaddr = __cpa_addr(cpa, cpa->curpage);
1545         if (!(within(vaddr, PAGE_OFFSET,
1546                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1547
1548                 alias_cpa = *cpa;
1549                 alias_cpa.vaddr = &laddr;
1550                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1551                 alias_cpa.curpage = 0;
1552
1553                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1554                 if (ret)
1555                         return ret;
1556         }
1557
1558 #ifdef CONFIG_X86_64
1559         /*
1560          * If the primary call didn't touch the high mapping already
1561          * and the physical address is inside the kernel map, we need
1562          * to touch the high mapped kernel as well:
1563          */
1564         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1565             __cpa_pfn_in_highmap(cpa->pfn)) {
1566                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1567                                                __START_KERNEL_map - phys_base;
1568                 alias_cpa = *cpa;
1569                 alias_cpa.vaddr = &temp_cpa_vaddr;
1570                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1571                 alias_cpa.curpage = 0;
1572
1573                 /*
1574                  * The high mapping range is imprecise, so ignore the
1575                  * return value.
1576                  */
1577                 __change_page_attr_set_clr(&alias_cpa, 0);
1578         }
1579 #endif
1580
1581         return 0;
1582 }
1583
1584 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1585 {
1586         unsigned long numpages = cpa->numpages;
1587         unsigned long rempages = numpages;
1588         int ret = 0;
1589
1590         while (rempages) {
1591                 /*
1592                  * Store the remaining nr of pages for the large page
1593                  * preservation check.
1594                  */
1595                 cpa->numpages = rempages;
1596                 /* for array changes, we can't use large page */
1597                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1598                         cpa->numpages = 1;
1599
1600                 if (!debug_pagealloc_enabled())
1601                         spin_lock(&cpa_lock);
1602                 ret = __change_page_attr(cpa, checkalias);
1603                 if (!debug_pagealloc_enabled())
1604                         spin_unlock(&cpa_lock);
1605                 if (ret)
1606                         goto out;
1607
1608                 if (checkalias) {
1609                         ret = cpa_process_alias(cpa);
1610                         if (ret)
1611                                 goto out;
1612                 }
1613
1614                 /*
1615                  * Adjust the number of pages with the result of the
1616                  * CPA operation. Either a large page has been
1617                  * preserved or a single page update happened.
1618                  */
1619                 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1620                 rempages -= cpa->numpages;
1621                 cpa->curpage += cpa->numpages;
1622         }
1623
1624 out:
1625         /* Restore the original numpages */
1626         cpa->numpages = numpages;
1627         return ret;
1628 }
1629
1630 /*
1631  * Machine check recovery code needs to change cache mode of poisoned
1632  * pages to UC to avoid speculative access logging another error. But
1633  * passing the address of the 1:1 mapping to set_memory_uc() is a fine
1634  * way to encourage a speculative access. So we cheat and flip the top
1635  * bit of the address. This works fine for the code that updates the
1636  * page tables. But at the end of the process we need to flush the cache
1637  * and the non-canonical address causes a #GP fault when used by the
1638  * CLFLUSH instruction.
1639  *
1640  * But in the common case we already have a canonical address. This code
1641  * will fix the top bit if needed and is a no-op otherwise.
1642  */
1643 static inline unsigned long make_addr_canonical_again(unsigned long addr)
1644 {
1645 #ifdef CONFIG_X86_64
1646         return (long)(addr << 1) >> 1;
1647 #else
1648         return addr;
1649 #endif
1650 }
1651
1652
1653 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1654                                     pgprot_t mask_set, pgprot_t mask_clr,
1655                                     int force_split, int in_flag,
1656                                     struct page **pages)
1657 {
1658         struct cpa_data cpa;
1659         int ret, cache, checkalias;
1660
1661         memset(&cpa, 0, sizeof(cpa));
1662
1663         /*
1664          * Check, if we are requested to set a not supported
1665          * feature.  Clearing non-supported features is OK.
1666          */
1667         mask_set = canon_pgprot(mask_set);
1668
1669         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1670                 return 0;
1671
1672         /* Ensure we are PAGE_SIZE aligned */
1673         if (in_flag & CPA_ARRAY) {
1674                 int i;
1675                 for (i = 0; i < numpages; i++) {
1676                         if (addr[i] & ~PAGE_MASK) {
1677                                 addr[i] &= PAGE_MASK;
1678                                 WARN_ON_ONCE(1);
1679                         }
1680                 }
1681         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1682                 /*
1683                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1684                  * No need to check in that case
1685                  */
1686                 if (*addr & ~PAGE_MASK) {
1687                         *addr &= PAGE_MASK;
1688                         /*
1689                          * People should not be passing in unaligned addresses:
1690                          */
1691                         WARN_ON_ONCE(1);
1692                 }
1693         }
1694
1695         /* Must avoid aliasing mappings in the highmem code */
1696         kmap_flush_unused();
1697
1698         vm_unmap_aliases();
1699
1700         cpa.vaddr = addr;
1701         cpa.pages = pages;
1702         cpa.numpages = numpages;
1703         cpa.mask_set = mask_set;
1704         cpa.mask_clr = mask_clr;
1705         cpa.flags = 0;
1706         cpa.curpage = 0;
1707         cpa.force_split = force_split;
1708
1709         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1710                 cpa.flags |= in_flag;
1711
1712         /* No alias checking for _NX bit modifications */
1713         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1714         /* Has caller explicitly disabled alias checking? */
1715         if (in_flag & CPA_NO_CHECK_ALIAS)
1716                 checkalias = 0;
1717
1718         ret = __change_page_attr_set_clr(&cpa, checkalias);
1719
1720         /*
1721          * Check whether we really changed something:
1722          */
1723         if (!(cpa.flags & CPA_FLUSHTLB))
1724                 goto out;
1725
1726         /*
1727          * No need to flush, when we did not set any of the caching
1728          * attributes:
1729          */
1730         cache = !!pgprot2cachemode(mask_set);
1731
1732         /*
1733          * On error; flush everything to be sure.
1734          */
1735         if (ret) {
1736                 cpa_flush_all(cache);
1737                 goto out;
1738         }
1739
1740         cpa_flush(&cpa, cache);
1741 out:
1742         return ret;
1743 }
1744
1745 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1746                                        pgprot_t mask, int array)
1747 {
1748         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1749                 (array ? CPA_ARRAY : 0), NULL);
1750 }
1751
1752 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1753                                          pgprot_t mask, int array)
1754 {
1755         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1756                 (array ? CPA_ARRAY : 0), NULL);
1757 }
1758
1759 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1760                                        pgprot_t mask)
1761 {
1762         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1763                 CPA_PAGES_ARRAY, pages);
1764 }
1765
1766 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1767                                          pgprot_t mask)
1768 {
1769         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1770                 CPA_PAGES_ARRAY, pages);
1771 }
1772
1773 int _set_memory_uc(unsigned long addr, int numpages)
1774 {
1775         /*
1776          * for now UC MINUS. see comments in ioremap_nocache()
1777          * If you really need strong UC use ioremap_uc(), but note
1778          * that you cannot override IO areas with set_memory_*() as
1779          * these helpers cannot work with IO memory.
1780          */
1781         return change_page_attr_set(&addr, numpages,
1782                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1783                                     0);
1784 }
1785
1786 int set_memory_uc(unsigned long addr, int numpages)
1787 {
1788         int ret;
1789
1790         /*
1791          * for now UC MINUS. see comments in ioremap_nocache()
1792          */
1793         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1794                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1795         if (ret)
1796                 goto out_err;
1797
1798         ret = _set_memory_uc(addr, numpages);
1799         if (ret)
1800                 goto out_free;
1801
1802         return 0;
1803
1804 out_free:
1805         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1806 out_err:
1807         return ret;
1808 }
1809 EXPORT_SYMBOL(set_memory_uc);
1810
1811 static int _set_memory_array(unsigned long *addr, int numpages,
1812                 enum page_cache_mode new_type)
1813 {
1814         enum page_cache_mode set_type;
1815         int i, j;
1816         int ret;
1817
1818         for (i = 0; i < numpages; i++) {
1819                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1820                                         new_type, NULL);
1821                 if (ret)
1822                         goto out_free;
1823         }
1824
1825         /* If WC, set to UC- first and then WC */
1826         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1827                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1828
1829         ret = change_page_attr_set(addr, numpages,
1830                                    cachemode2pgprot(set_type), 1);
1831
1832         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1833                 ret = change_page_attr_set_clr(addr, numpages,
1834                                                cachemode2pgprot(
1835                                                 _PAGE_CACHE_MODE_WC),
1836                                                __pgprot(_PAGE_CACHE_MASK),
1837                                                0, CPA_ARRAY, NULL);
1838         if (ret)
1839                 goto out_free;
1840
1841         return 0;
1842
1843 out_free:
1844         for (j = 0; j < i; j++)
1845                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1846
1847         return ret;
1848 }
1849
1850 int set_memory_array_uc(unsigned long *addr, int numpages)
1851 {
1852         return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_UC_MINUS);
1853 }
1854 EXPORT_SYMBOL(set_memory_array_uc);
1855
1856 int set_memory_array_wc(unsigned long *addr, int numpages)
1857 {
1858         return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WC);
1859 }
1860 EXPORT_SYMBOL(set_memory_array_wc);
1861
1862 int set_memory_array_wt(unsigned long *addr, int numpages)
1863 {
1864         return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WT);
1865 }
1866 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1867
1868 int _set_memory_wc(unsigned long addr, int numpages)
1869 {
1870         int ret;
1871
1872         ret = change_page_attr_set(&addr, numpages,
1873                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1874                                    0);
1875         if (!ret) {
1876                 ret = change_page_attr_set_clr(&addr, numpages,
1877                                                cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1878                                                __pgprot(_PAGE_CACHE_MASK),
1879                                                0, 0, NULL);
1880         }
1881         return ret;
1882 }
1883
1884 int set_memory_wc(unsigned long addr, int numpages)
1885 {
1886         int ret;
1887
1888         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1889                 _PAGE_CACHE_MODE_WC, NULL);
1890         if (ret)
1891                 return ret;
1892
1893         ret = _set_memory_wc(addr, numpages);
1894         if (ret)
1895                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1896
1897         return ret;
1898 }
1899 EXPORT_SYMBOL(set_memory_wc);
1900
1901 int _set_memory_wt(unsigned long addr, int numpages)
1902 {
1903         return change_page_attr_set(&addr, numpages,
1904                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1905 }
1906
1907 int set_memory_wt(unsigned long addr, int numpages)
1908 {
1909         int ret;
1910
1911         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1912                               _PAGE_CACHE_MODE_WT, NULL);
1913         if (ret)
1914                 return ret;
1915
1916         ret = _set_memory_wt(addr, numpages);
1917         if (ret)
1918                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1919
1920         return ret;
1921 }
1922 EXPORT_SYMBOL_GPL(set_memory_wt);
1923
1924 int _set_memory_wb(unsigned long addr, int numpages)
1925 {
1926         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1927         return change_page_attr_clear(&addr, numpages,
1928                                       __pgprot(_PAGE_CACHE_MASK), 0);
1929 }
1930
1931 int set_memory_wb(unsigned long addr, int numpages)
1932 {
1933         int ret;
1934
1935         ret = _set_memory_wb(addr, numpages);
1936         if (ret)
1937                 return ret;
1938
1939         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1940         return 0;
1941 }
1942 EXPORT_SYMBOL(set_memory_wb);
1943
1944 int set_memory_array_wb(unsigned long *addr, int numpages)
1945 {
1946         int i;
1947         int ret;
1948
1949         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1950         ret = change_page_attr_clear(addr, numpages,
1951                                       __pgprot(_PAGE_CACHE_MASK), 1);
1952         if (ret)
1953                 return ret;
1954
1955         for (i = 0; i < numpages; i++)
1956                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1957
1958         return 0;
1959 }
1960 EXPORT_SYMBOL(set_memory_array_wb);
1961
1962 int set_memory_x(unsigned long addr, int numpages)
1963 {
1964         if (!(__supported_pte_mask & _PAGE_NX))
1965                 return 0;
1966
1967         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1968 }
1969 EXPORT_SYMBOL(set_memory_x);
1970
1971 int set_memory_nx(unsigned long addr, int numpages)
1972 {
1973         if (!(__supported_pte_mask & _PAGE_NX))
1974                 return 0;
1975
1976         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1977 }
1978 EXPORT_SYMBOL(set_memory_nx);
1979
1980 int set_memory_ro(unsigned long addr, int numpages)
1981 {
1982         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1983 }
1984
1985 int set_memory_rw(unsigned long addr, int numpages)
1986 {
1987         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1988 }
1989
1990 int set_memory_np(unsigned long addr, int numpages)
1991 {
1992         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1993 }
1994
1995 int set_memory_np_noalias(unsigned long addr, int numpages)
1996 {
1997         int cpa_flags = CPA_NO_CHECK_ALIAS;
1998
1999         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2000                                         __pgprot(_PAGE_PRESENT), 0,
2001                                         cpa_flags, NULL);
2002 }
2003
2004 int set_memory_4k(unsigned long addr, int numpages)
2005 {
2006         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2007                                         __pgprot(0), 1, 0, NULL);
2008 }
2009
2010 int set_memory_nonglobal(unsigned long addr, int numpages)
2011 {
2012         return change_page_attr_clear(&addr, numpages,
2013                                       __pgprot(_PAGE_GLOBAL), 0);
2014 }
2015
2016 int set_memory_global(unsigned long addr, int numpages)
2017 {
2018         return change_page_attr_set(&addr, numpages,
2019                                     __pgprot(_PAGE_GLOBAL), 0);
2020 }
2021
2022 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2023 {
2024         struct cpa_data cpa;
2025         int ret;
2026
2027         /* Nothing to do if memory encryption is not active */
2028         if (!mem_encrypt_active())
2029                 return 0;
2030
2031         /* Should not be working on unaligned addresses */
2032         if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2033                 addr &= PAGE_MASK;
2034
2035         memset(&cpa, 0, sizeof(cpa));
2036         cpa.vaddr = &addr;
2037         cpa.numpages = numpages;
2038         cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2039         cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2040         cpa.pgd = init_mm.pgd;
2041
2042         /* Must avoid aliasing mappings in the highmem code */
2043         kmap_flush_unused();
2044         vm_unmap_aliases();
2045
2046         /*
2047          * Before changing the encryption attribute, we need to flush caches.
2048          */
2049         cpa_flush(&cpa, 1);
2050
2051         ret = __change_page_attr_set_clr(&cpa, 1);
2052
2053         /*
2054          * After changing the encryption attribute, we need to flush TLBs again
2055          * in case any speculative TLB caching occurred (but no need to flush
2056          * caches again).  We could just use cpa_flush_all(), but in case TLB
2057          * flushing gets optimized in the cpa_flush() path use the same logic
2058          * as above.
2059          */
2060         cpa_flush(&cpa, 0);
2061
2062         return ret;
2063 }
2064
2065 int set_memory_encrypted(unsigned long addr, int numpages)
2066 {
2067         return __set_memory_enc_dec(addr, numpages, true);
2068 }
2069 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2070
2071 int set_memory_decrypted(unsigned long addr, int numpages)
2072 {
2073         return __set_memory_enc_dec(addr, numpages, false);
2074 }
2075 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2076
2077 int set_pages_uc(struct page *page, int numpages)
2078 {
2079         unsigned long addr = (unsigned long)page_address(page);
2080
2081         return set_memory_uc(addr, numpages);
2082 }
2083 EXPORT_SYMBOL(set_pages_uc);
2084
2085 static int _set_pages_array(struct page **pages, int numpages,
2086                 enum page_cache_mode new_type)
2087 {
2088         unsigned long start;
2089         unsigned long end;
2090         enum page_cache_mode set_type;
2091         int i;
2092         int free_idx;
2093         int ret;
2094
2095         for (i = 0; i < numpages; i++) {
2096                 if (PageHighMem(pages[i]))
2097                         continue;
2098                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2099                 end = start + PAGE_SIZE;
2100                 if (reserve_memtype(start, end, new_type, NULL))
2101                         goto err_out;
2102         }
2103
2104         /* If WC, set to UC- first and then WC */
2105         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2106                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2107
2108         ret = cpa_set_pages_array(pages, numpages,
2109                                   cachemode2pgprot(set_type));
2110         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2111                 ret = change_page_attr_set_clr(NULL, numpages,
2112                                                cachemode2pgprot(
2113                                                 _PAGE_CACHE_MODE_WC),
2114                                                __pgprot(_PAGE_CACHE_MASK),
2115                                                0, CPA_PAGES_ARRAY, pages);
2116         if (ret)
2117                 goto err_out;
2118         return 0; /* Success */
2119 err_out:
2120         free_idx = i;
2121         for (i = 0; i < free_idx; i++) {
2122                 if (PageHighMem(pages[i]))
2123                         continue;
2124                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2125                 end = start + PAGE_SIZE;
2126                 free_memtype(start, end);
2127         }
2128         return -EINVAL;
2129 }
2130
2131 int set_pages_array_uc(struct page **pages, int numpages)
2132 {
2133         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2134 }
2135 EXPORT_SYMBOL(set_pages_array_uc);
2136
2137 int set_pages_array_wc(struct page **pages, int numpages)
2138 {
2139         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2140 }
2141 EXPORT_SYMBOL(set_pages_array_wc);
2142
2143 int set_pages_array_wt(struct page **pages, int numpages)
2144 {
2145         return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2146 }
2147 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2148
2149 int set_pages_wb(struct page *page, int numpages)
2150 {
2151         unsigned long addr = (unsigned long)page_address(page);
2152
2153         return set_memory_wb(addr, numpages);
2154 }
2155 EXPORT_SYMBOL(set_pages_wb);
2156
2157 int set_pages_array_wb(struct page **pages, int numpages)
2158 {
2159         int retval;
2160         unsigned long start;
2161         unsigned long end;
2162         int i;
2163
2164         /* WB cache mode is hard wired to all cache attribute bits being 0 */
2165         retval = cpa_clear_pages_array(pages, numpages,
2166                         __pgprot(_PAGE_CACHE_MASK));
2167         if (retval)
2168                 return retval;
2169
2170         for (i = 0; i < numpages; i++) {
2171                 if (PageHighMem(pages[i]))
2172                         continue;
2173                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2174                 end = start + PAGE_SIZE;
2175                 free_memtype(start, end);
2176         }
2177
2178         return 0;
2179 }
2180 EXPORT_SYMBOL(set_pages_array_wb);
2181
2182 int set_pages_x(struct page *page, int numpages)
2183 {
2184         unsigned long addr = (unsigned long)page_address(page);
2185
2186         return set_memory_x(addr, numpages);
2187 }
2188 EXPORT_SYMBOL(set_pages_x);
2189
2190 int set_pages_nx(struct page *page, int numpages)
2191 {
2192         unsigned long addr = (unsigned long)page_address(page);
2193
2194         return set_memory_nx(addr, numpages);
2195 }
2196 EXPORT_SYMBOL(set_pages_nx);
2197
2198 int set_pages_ro(struct page *page, int numpages)
2199 {
2200         unsigned long addr = (unsigned long)page_address(page);
2201
2202         return set_memory_ro(addr, numpages);
2203 }
2204
2205 int set_pages_rw(struct page *page, int numpages)
2206 {
2207         unsigned long addr = (unsigned long)page_address(page);
2208
2209         return set_memory_rw(addr, numpages);
2210 }
2211
2212 #ifdef CONFIG_DEBUG_PAGEALLOC
2213
2214 static int __set_pages_p(struct page *page, int numpages)
2215 {
2216         unsigned long tempaddr = (unsigned long) page_address(page);
2217         struct cpa_data cpa = { .vaddr = &tempaddr,
2218                                 .pgd = NULL,
2219                                 .numpages = numpages,
2220                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2221                                 .mask_clr = __pgprot(0),
2222                                 .flags = 0};
2223
2224         /*
2225          * No alias checking needed for setting present flag. otherwise,
2226          * we may need to break large pages for 64-bit kernel text
2227          * mappings (this adds to complexity if we want to do this from
2228          * atomic context especially). Let's keep it simple!
2229          */
2230         return __change_page_attr_set_clr(&cpa, 0);
2231 }
2232
2233 static int __set_pages_np(struct page *page, int numpages)
2234 {
2235         unsigned long tempaddr = (unsigned long) page_address(page);
2236         struct cpa_data cpa = { .vaddr = &tempaddr,
2237                                 .pgd = NULL,
2238                                 .numpages = numpages,
2239                                 .mask_set = __pgprot(0),
2240                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2241                                 .flags = 0};
2242
2243         /*
2244          * No alias checking needed for setting not present flag. otherwise,
2245          * we may need to break large pages for 64-bit kernel text
2246          * mappings (this adds to complexity if we want to do this from
2247          * atomic context especially). Let's keep it simple!
2248          */
2249         return __change_page_attr_set_clr(&cpa, 0);
2250 }
2251
2252 void __kernel_map_pages(struct page *page, int numpages, int enable)
2253 {
2254         if (PageHighMem(page))
2255                 return;
2256         if (!enable) {
2257                 debug_check_no_locks_freed(page_address(page),
2258                                            numpages * PAGE_SIZE);
2259         }
2260
2261         /*
2262          * The return value is ignored as the calls cannot fail.
2263          * Large pages for identity mappings are not used at boot time
2264          * and hence no memory allocations during large page split.
2265          */
2266         if (enable)
2267                 __set_pages_p(page, numpages);
2268         else
2269                 __set_pages_np(page, numpages);
2270
2271         /*
2272          * We should perform an IPI and flush all tlbs,
2273          * but that can deadlock->flush only current cpu.
2274          * Preemption needs to be disabled around __flush_tlb_all() due to
2275          * CR3 reload in __native_flush_tlb().
2276          */
2277         preempt_disable();
2278         __flush_tlb_all();
2279         preempt_enable();
2280
2281         arch_flush_lazy_mmu_mode();
2282 }
2283
2284 #ifdef CONFIG_HIBERNATION
2285
2286 bool kernel_page_present(struct page *page)
2287 {
2288         unsigned int level;
2289         pte_t *pte;
2290
2291         if (PageHighMem(page))
2292                 return false;
2293
2294         pte = lookup_address((unsigned long)page_address(page), &level);
2295         return (pte_val(*pte) & _PAGE_PRESENT);
2296 }
2297
2298 #endif /* CONFIG_HIBERNATION */
2299
2300 #endif /* CONFIG_DEBUG_PAGEALLOC */
2301
2302 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2303                                    unsigned numpages, unsigned long page_flags)
2304 {
2305         int retval = -EINVAL;
2306
2307         struct cpa_data cpa = {
2308                 .vaddr = &address,
2309                 .pfn = pfn,
2310                 .pgd = pgd,
2311                 .numpages = numpages,
2312                 .mask_set = __pgprot(0),
2313                 .mask_clr = __pgprot(0),
2314                 .flags = 0,
2315         };
2316
2317         WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2318
2319         if (!(__supported_pte_mask & _PAGE_NX))
2320                 goto out;
2321
2322         if (!(page_flags & _PAGE_NX))
2323                 cpa.mask_clr = __pgprot(_PAGE_NX);
2324
2325         if (!(page_flags & _PAGE_RW))
2326                 cpa.mask_clr = __pgprot(_PAGE_RW);
2327
2328         if (!(page_flags & _PAGE_ENC))
2329                 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2330
2331         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2332
2333         retval = __change_page_attr_set_clr(&cpa, 0);
2334         __flush_tlb_all();
2335
2336 out:
2337         return retval;
2338 }
2339
2340 /*
2341  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2342  * function shouldn't be used in an SMP environment. Presently, it's used only
2343  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2344  */
2345 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2346                                      unsigned long numpages)
2347 {
2348         int retval;
2349
2350         /*
2351          * The typical sequence for unmapping is to find a pte through
2352          * lookup_address_in_pgd() (ideally, it should never return NULL because
2353          * the address is already mapped) and change it's protections. As pfn is
2354          * the *target* of a mapping, it's not useful while unmapping.
2355          */
2356         struct cpa_data cpa = {
2357                 .vaddr          = &address,
2358                 .pfn            = 0,
2359                 .pgd            = pgd,
2360                 .numpages       = numpages,
2361                 .mask_set       = __pgprot(0),
2362                 .mask_clr       = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2363                 .flags          = 0,
2364         };
2365
2366         WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2367
2368         retval = __change_page_attr_set_clr(&cpa, 0);
2369         __flush_tlb_all();
2370
2371         return retval;
2372 }
2373
2374 /*
2375  * The testcases use internal knowledge of the implementation that shouldn't
2376  * be exposed to the rest of the kernel. Include these directly here.
2377  */
2378 #ifdef CONFIG_CPA_DEBUG
2379 #include "pageattr-test.c"
2380 #endif