]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/mm/tlb.c
x86/mm: Implement PCID based optimization: try to preserve old TLB entries using PCID
[linux.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18  *      TLB flushing, formerly SMP-only
19  *              c/o Linus Torvalds.
20  *
21  *      These mean you can really definitely utterly forget about
22  *      writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *      More scalable flush, from Andi Kleen
27  *
28  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30
31 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
32
33 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
34                             u16 *new_asid, bool *need_flush)
35 {
36         u16 asid;
37
38         if (!static_cpu_has(X86_FEATURE_PCID)) {
39                 *new_asid = 0;
40                 *need_flush = true;
41                 return;
42         }
43
44         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
45                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
46                     next->context.ctx_id)
47                         continue;
48
49                 *new_asid = asid;
50                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
51                                next_tlb_gen);
52                 return;
53         }
54
55         /*
56          * We don't currently own an ASID slot on this CPU.
57          * Allocate a slot.
58          */
59         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
60         if (*new_asid >= TLB_NR_DYN_ASIDS) {
61                 *new_asid = 0;
62                 this_cpu_write(cpu_tlbstate.next_asid, 1);
63         }
64         *need_flush = true;
65 }
66
67 void leave_mm(int cpu)
68 {
69         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
70
71         /*
72          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
73          * If so, our callers still expect us to flush the TLB, but there
74          * aren't any user TLB entries in init_mm to worry about.
75          *
76          * This needs to happen before any other sanity checks due to
77          * intel_idle's shenanigans.
78          */
79         if (loaded_mm == &init_mm)
80                 return;
81
82         /* Warn if we're not lazy. */
83         WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm)));
84
85         switch_mm(NULL, &init_mm, NULL);
86 }
87
88 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
89                struct task_struct *tsk)
90 {
91         unsigned long flags;
92
93         local_irq_save(flags);
94         switch_mm_irqs_off(prev, next, tsk);
95         local_irq_restore(flags);
96 }
97
98 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
99                         struct task_struct *tsk)
100 {
101         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
102         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
103         unsigned cpu = smp_processor_id();
104         u64 next_tlb_gen;
105
106         /*
107          * NB: The scheduler will call us with prev == next when switching
108          * from lazy TLB mode to normal mode if active_mm isn't changing.
109          * When this happens, we don't assume that CR3 (and hence
110          * cpu_tlbstate.loaded_mm) matches next.
111          *
112          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
113          */
114
115         /* We don't want flush_tlb_func_* to run concurrently with us. */
116         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
117                 WARN_ON_ONCE(!irqs_disabled());
118
119         /*
120          * Verify that CR3 is what we think it is.  This will catch
121          * hypothetical buggy code that directly switches to swapper_pg_dir
122          * without going through leave_mm() / switch_mm_irqs_off() or that
123          * does something like write_cr3(read_cr3_pa()).
124          */
125         VM_BUG_ON(__read_cr3() != (__sme_pa(real_prev->pgd) | prev_asid));
126
127         if (real_prev == next) {
128                 VM_BUG_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
129                           next->context.ctx_id);
130
131                 if (cpumask_test_cpu(cpu, mm_cpumask(next))) {
132                         /*
133                          * There's nothing to do: we weren't lazy, and we
134                          * aren't changing our mm.  We don't need to flush
135                          * anything, nor do we need to update CR3, CR4, or
136                          * LDTR.
137                          */
138                         return;
139                 }
140
141                 /* Resume remote flushes and then read tlb_gen. */
142                 cpumask_set_cpu(cpu, mm_cpumask(next));
143                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
144
145                 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) <
146                     next_tlb_gen) {
147                         /*
148                          * Ideally, we'd have a flush_tlb() variant that
149                          * takes the known CR3 value as input.  This would
150                          * be faster on Xen PV and on hypothetical CPUs
151                          * on which INVPCID is fast.
152                          */
153                         this_cpu_write(cpu_tlbstate.ctxs[prev_asid].tlb_gen,
154                                        next_tlb_gen);
155                         write_cr3(__sme_pa(next->pgd) | prev_asid);
156                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
157                                         TLB_FLUSH_ALL);
158                 }
159
160                 /*
161                  * We just exited lazy mode, which means that CR4 and/or LDTR
162                  * may be stale.  (Changes to the required CR4 and LDTR states
163                  * are not reflected in tlb_gen.)
164                  */
165         } else {
166                 u16 new_asid;
167                 bool need_flush;
168
169                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
170                         /*
171                          * If our current stack is in vmalloc space and isn't
172                          * mapped in the new pgd, we'll double-fault.  Forcibly
173                          * map it.
174                          */
175                         unsigned int index = pgd_index(current_stack_pointer());
176                         pgd_t *pgd = next->pgd + index;
177
178                         if (unlikely(pgd_none(*pgd)))
179                                 set_pgd(pgd, init_mm.pgd[index]);
180                 }
181
182                 /* Stop remote flushes for the previous mm */
183                 if (cpumask_test_cpu(cpu, mm_cpumask(real_prev)))
184                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
185
186                 VM_WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
187
188                 /*
189                  * Start remote flushes and then read tlb_gen.
190                  */
191                 cpumask_set_cpu(cpu, mm_cpumask(next));
192                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
193
194                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
195
196                 if (need_flush) {
197                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
198                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
199                         write_cr3(__sme_pa(next->pgd) | new_asid);
200                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH,
201                                         TLB_FLUSH_ALL);
202                 } else {
203                         /* The new ASID is already up to date. */
204                         write_cr3(__sme_pa(next->pgd) | new_asid | CR3_NOFLUSH);
205                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
206                 }
207
208                 this_cpu_write(cpu_tlbstate.loaded_mm, next);
209                 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
210         }
211
212         load_mm_cr4(next);
213         switch_ldt(real_prev, next);
214 }
215
216 /*
217  * flush_tlb_func_common()'s memory ordering requirement is that any
218  * TLB fills that happen after we flush the TLB are ordered after we
219  * read active_mm's tlb_gen.  We don't need any explicit barriers
220  * because all x86 flush operations are serializing and the
221  * atomic64_read operation won't be reordered by the compiler.
222  */
223 static void flush_tlb_func_common(const struct flush_tlb_info *f,
224                                   bool local, enum tlb_flush_reason reason)
225 {
226         /*
227          * We have three different tlb_gen values in here.  They are:
228          *
229          * - mm_tlb_gen:     the latest generation.
230          * - local_tlb_gen:  the generation that this CPU has already caught
231          *                   up to.
232          * - f->new_tlb_gen: the generation that the requester of the flush
233          *                   wants us to catch up to.
234          */
235         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
236         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
237         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
238         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
239
240         /* This code cannot presently handle being reentered. */
241         VM_WARN_ON(!irqs_disabled());
242
243         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
244                    loaded_mm->context.ctx_id);
245
246         if (!cpumask_test_cpu(smp_processor_id(), mm_cpumask(loaded_mm))) {
247                 /*
248                  * We're in lazy mode -- don't flush.  We can get here on
249                  * remote flushes due to races and on local flushes if a
250                  * kernel thread coincidentally flushes the mm it's lazily
251                  * still using.
252                  */
253                 return;
254         }
255
256         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
257                 /*
258                  * There's nothing to do: we're already up to date.  This can
259                  * happen if two concurrent flushes happen -- the first flush to
260                  * be handled can catch us all the way up, leaving no work for
261                  * the second flush.
262                  */
263                 trace_tlb_flush(reason, 0);
264                 return;
265         }
266
267         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
268         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
269
270         /*
271          * If we get to this point, we know that our TLB is out of date.
272          * This does not strictly imply that we need to flush (it's
273          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
274          * going to need to flush in the very near future, so we might
275          * as well get it over with.
276          *
277          * The only question is whether to do a full or partial flush.
278          *
279          * We do a partial flush if requested and two extra conditions
280          * are met:
281          *
282          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
283          *    we've always done all needed flushes to catch up to
284          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
285          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
286          *    us up to date for tlb_gen 3 is the partial flush we're
287          *    processing.
288          *
289          *    As an example of why this check is needed, suppose that there
290          *    are two concurrent flushes.  The first is a full flush that
291          *    changes context.tlb_gen from 1 to 2.  The second is a partial
292          *    flush that changes context.tlb_gen from 2 to 3.  If they get
293          *    processed on this CPU in reverse order, we'll see
294          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
295          *    If we were to use __flush_tlb_single() and set local_tlb_gen to
296          *    3, we'd be break the invariant: we'd update local_tlb_gen above
297          *    1 without the full flush that's needed for tlb_gen 2.
298          *
299          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
300          *    Partial TLB flushes are not all that much cheaper than full TLB
301          *    flushes, so it seems unlikely that it would be a performance win
302          *    to do a partial flush if that won't bring our TLB fully up to
303          *    date.  By doing a full flush instead, we can increase
304          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
305          *    avoid another flush in the very near future.
306          */
307         if (f->end != TLB_FLUSH_ALL &&
308             f->new_tlb_gen == local_tlb_gen + 1 &&
309             f->new_tlb_gen == mm_tlb_gen) {
310                 /* Partial flush */
311                 unsigned long addr;
312                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
313
314                 addr = f->start;
315                 while (addr < f->end) {
316                         __flush_tlb_single(addr);
317                         addr += PAGE_SIZE;
318                 }
319                 if (local)
320                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
321                 trace_tlb_flush(reason, nr_pages);
322         } else {
323                 /* Full flush. */
324                 local_flush_tlb();
325                 if (local)
326                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
327                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
328         }
329
330         /* Both paths above update our state to mm_tlb_gen. */
331         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
332 }
333
334 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
335 {
336         const struct flush_tlb_info *f = info;
337
338         flush_tlb_func_common(f, true, reason);
339 }
340
341 static void flush_tlb_func_remote(void *info)
342 {
343         const struct flush_tlb_info *f = info;
344
345         inc_irq_stat(irq_tlb_count);
346
347         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
348                 return;
349
350         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
351         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
352 }
353
354 void native_flush_tlb_others(const struct cpumask *cpumask,
355                              const struct flush_tlb_info *info)
356 {
357         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
358         if (info->end == TLB_FLUSH_ALL)
359                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
360         else
361                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
362                                 (info->end - info->start) >> PAGE_SHIFT);
363
364         if (is_uv_system()) {
365                 /*
366                  * This whole special case is confused.  UV has a "Broadcast
367                  * Assist Unit", which seems to be a fancy way to send IPIs.
368                  * Back when x86 used an explicit TLB flush IPI, UV was
369                  * optimized to use its own mechanism.  These days, x86 uses
370                  * smp_call_function_many(), but UV still uses a manual IPI,
371                  * and that IPI's action is out of date -- it does a manual
372                  * flush instead of calling flush_tlb_func_remote().  This
373                  * means that the percpu tlb_gen variables won't be updated
374                  * and we'll do pointless flushes on future context switches.
375                  *
376                  * Rather than hooking native_flush_tlb_others() here, I think
377                  * that UV should be updated so that smp_call_function_many(),
378                  * etc, are optimal on UV.
379                  */
380                 unsigned int cpu;
381
382                 cpu = smp_processor_id();
383                 cpumask = uv_flush_tlb_others(cpumask, info);
384                 if (cpumask)
385                         smp_call_function_many(cpumask, flush_tlb_func_remote,
386                                                (void *)info, 1);
387                 return;
388         }
389         smp_call_function_many(cpumask, flush_tlb_func_remote,
390                                (void *)info, 1);
391 }
392
393 /*
394  * See Documentation/x86/tlb.txt for details.  We choose 33
395  * because it is large enough to cover the vast majority (at
396  * least 95%) of allocations, and is small enough that we are
397  * confident it will not cause too much overhead.  Each single
398  * flush is about 100 ns, so this caps the maximum overhead at
399  * _about_ 3,000 ns.
400  *
401  * This is in units of pages.
402  */
403 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
404
405 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
406                                 unsigned long end, unsigned long vmflag)
407 {
408         int cpu;
409
410         struct flush_tlb_info info = {
411                 .mm = mm,
412         };
413
414         cpu = get_cpu();
415
416         /* This is also a barrier that synchronizes with switch_mm(). */
417         info.new_tlb_gen = inc_mm_tlb_gen(mm);
418
419         /* Should we flush just the requested range? */
420         if ((end != TLB_FLUSH_ALL) &&
421             !(vmflag & VM_HUGETLB) &&
422             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
423                 info.start = start;
424                 info.end = end;
425         } else {
426                 info.start = 0UL;
427                 info.end = TLB_FLUSH_ALL;
428         }
429
430         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
431                 VM_WARN_ON(irqs_disabled());
432                 local_irq_disable();
433                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
434                 local_irq_enable();
435         }
436
437         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
438                 flush_tlb_others(mm_cpumask(mm), &info);
439
440         put_cpu();
441 }
442
443
444 static void do_flush_tlb_all(void *info)
445 {
446         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
447         __flush_tlb_all();
448 }
449
450 void flush_tlb_all(void)
451 {
452         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
453         on_each_cpu(do_flush_tlb_all, NULL, 1);
454 }
455
456 static void do_kernel_range_flush(void *info)
457 {
458         struct flush_tlb_info *f = info;
459         unsigned long addr;
460
461         /* flush range by one by one 'invlpg' */
462         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
463                 __flush_tlb_single(addr);
464 }
465
466 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
467 {
468
469         /* Balance as user space task's flush, a bit conservative */
470         if (end == TLB_FLUSH_ALL ||
471             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
472                 on_each_cpu(do_flush_tlb_all, NULL, 1);
473         } else {
474                 struct flush_tlb_info info;
475                 info.start = start;
476                 info.end = end;
477                 on_each_cpu(do_kernel_range_flush, &info, 1);
478         }
479 }
480
481 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
482 {
483         struct flush_tlb_info info = {
484                 .mm = NULL,
485                 .start = 0UL,
486                 .end = TLB_FLUSH_ALL,
487         };
488
489         int cpu = get_cpu();
490
491         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
492                 VM_WARN_ON(irqs_disabled());
493                 local_irq_disable();
494                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
495                 local_irq_enable();
496         }
497
498         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
499                 flush_tlb_others(&batch->cpumask, &info);
500
501         cpumask_clear(&batch->cpumask);
502
503         put_cpu();
504 }
505
506 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
507                              size_t count, loff_t *ppos)
508 {
509         char buf[32];
510         unsigned int len;
511
512         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
513         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
514 }
515
516 static ssize_t tlbflush_write_file(struct file *file,
517                  const char __user *user_buf, size_t count, loff_t *ppos)
518 {
519         char buf[32];
520         ssize_t len;
521         int ceiling;
522
523         len = min(count, sizeof(buf) - 1);
524         if (copy_from_user(buf, user_buf, len))
525                 return -EFAULT;
526
527         buf[len] = '\0';
528         if (kstrtoint(buf, 0, &ceiling))
529                 return -EINVAL;
530
531         if (ceiling < 0)
532                 return -EINVAL;
533
534         tlb_single_page_flush_ceiling = ceiling;
535         return count;
536 }
537
538 static const struct file_operations fops_tlbflush = {
539         .read = tlbflush_read_file,
540         .write = tlbflush_write_file,
541         .llseek = default_llseek,
542 };
543
544 static int __init create_tlb_single_page_flush_ceiling(void)
545 {
546         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
547                             arch_debugfs_dir, NULL, &fops_tlbflush);
548         return 0;
549 }
550 late_initcall(create_tlb_single_page_flush_ceiling);