]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/mm/tlb.c
x86/mm: Rework lazy TLB to track the actual loaded mm
[linux.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18  *      TLB flushing, formerly SMP-only
19  *              c/o Linus Torvalds.
20  *
21  *      These mean you can really definitely utterly forget about
22  *      writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *      More scalable flush, from Andi Kleen
27  *
28  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30
31 void leave_mm(int cpu)
32 {
33         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
34
35         /*
36          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
37          * If so, our callers still expect us to flush the TLB, but there
38          * aren't any user TLB entries in init_mm to worry about.
39          *
40          * This needs to happen before any other sanity checks due to
41          * intel_idle's shenanigans.
42          */
43         if (loaded_mm == &init_mm)
44                 return;
45
46         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47                 BUG();
48
49         switch_mm(NULL, &init_mm, NULL);
50 }
51 EXPORT_SYMBOL_GPL(leave_mm);
52
53 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
54                struct task_struct *tsk)
55 {
56         unsigned long flags;
57
58         local_irq_save(flags);
59         switch_mm_irqs_off(prev, next, tsk);
60         local_irq_restore(flags);
61 }
62
63 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
64                         struct task_struct *tsk)
65 {
66         unsigned cpu = smp_processor_id();
67         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
68
69         /*
70          * NB: The scheduler will call us with prev == next when
71          * switching from lazy TLB mode to normal mode if active_mm
72          * isn't changing.  When this happens, there is no guarantee
73          * that CR3 (and hence cpu_tlbstate.loaded_mm) matches next.
74          *
75          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
76          */
77
78         this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
79
80         if (real_prev == next) {
81                 /*
82                  * There's nothing to do: we always keep the per-mm control
83                  * regs in sync with cpu_tlbstate.loaded_mm.  Just
84                  * sanity-check mm_cpumask.
85                  */
86                 if (WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(next))))
87                         cpumask_set_cpu(cpu, mm_cpumask(next));
88                 return;
89         }
90
91         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
92                 /*
93                  * If our current stack is in vmalloc space and isn't
94                  * mapped in the new pgd, we'll double-fault.  Forcibly
95                  * map it.
96                  */
97                 unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
98
99                 pgd_t *pgd = next->pgd + stack_pgd_index;
100
101                 if (unlikely(pgd_none(*pgd)))
102                         set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
103         }
104
105         this_cpu_write(cpu_tlbstate.loaded_mm, next);
106
107         WARN_ON_ONCE(cpumask_test_cpu(cpu, mm_cpumask(next)));
108         cpumask_set_cpu(cpu, mm_cpumask(next));
109
110         /*
111          * Re-load page tables.
112          *
113          * This logic has an ordering constraint:
114          *
115          *  CPU 0: Write to a PTE for 'next'
116          *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
117          *  CPU 1: set bit 1 in next's mm_cpumask
118          *  CPU 1: load from the PTE that CPU 0 writes (implicit)
119          *
120          * We need to prevent an outcome in which CPU 1 observes
121          * the new PTE value and CPU 0 observes bit 1 clear in
122          * mm_cpumask.  (If that occurs, then the IPI will never
123          * be sent, and CPU 0's TLB will contain a stale entry.)
124          *
125          * The bad outcome can occur if either CPU's load is
126          * reordered before that CPU's store, so both CPUs must
127          * execute full barriers to prevent this from happening.
128          *
129          * Thus, switch_mm needs a full barrier between the
130          * store to mm_cpumask and any operation that could load
131          * from next->pgd.  TLB fills are special and can happen
132          * due to instruction fetches or for no reason at all,
133          * and neither LOCK nor MFENCE orders them.
134          * Fortunately, load_cr3() is serializing and gives the
135          * ordering guarantee we need.
136          */
137         load_cr3(next->pgd);
138
139         /*
140          * This gets called via leave_mm() in the idle path where RCU
141          * functions differently.  Tracing normally uses RCU, so we have to
142          * call the tracepoint specially here.
143          */
144         trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
145
146         /* Stop flush ipis for the previous mm */
147         WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
148                      real_prev != &init_mm);
149         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
150
151         /* Load per-mm CR4 state */
152         load_mm_cr4(next);
153
154 #ifdef CONFIG_MODIFY_LDT_SYSCALL
155         /*
156          * Load the LDT, if the LDT is different.
157          *
158          * It's possible that prev->context.ldt doesn't match
159          * the LDT register.  This can happen if leave_mm(prev)
160          * was called and then modify_ldt changed
161          * prev->context.ldt but suppressed an IPI to this CPU.
162          * In this case, prev->context.ldt != NULL, because we
163          * never set context.ldt to NULL while the mm still
164          * exists.  That means that next->context.ldt !=
165          * prev->context.ldt, because mms never share an LDT.
166          */
167         if (unlikely(real_prev->context.ldt != next->context.ldt))
168                 load_mm_ldt(next);
169 #endif
170 }
171
172 /*
173  * The flush IPI assumes that a thread switch happens in this order:
174  * [cpu0: the cpu that switches]
175  * 1) switch_mm() either 1a) or 1b)
176  * 1a) thread switch to a different mm
177  * 1a1) set cpu_tlbstate to TLBSTATE_OK
178  *      Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
179  *      if cpu0 was in lazy tlb mode.
180  * 1a2) update cpu active_mm
181  *      Now cpu0 accepts tlb flushes for the new mm.
182  * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
183  *      Now the other cpus will send tlb flush ipis.
184  * 1a4) change cr3.
185  * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
186  *      Stop ipi delivery for the old mm. This is not synchronized with
187  *      the other cpus, but flush_tlb_func ignore flush ipis for the wrong
188  *      mm, and in the worst case we perform a superfluous tlb flush.
189  * 1b) thread switch without mm change
190  *      cpu active_mm is correct, cpu0 already handles flush ipis.
191  * 1b1) set cpu_tlbstate to TLBSTATE_OK
192  * 1b2) test_and_set the cpu bit in cpu_vm_mask.
193  *      Atomically set the bit [other cpus will start sending flush ipis],
194  *      and test the bit.
195  * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
196  * 2) switch %%esp, ie current
197  *
198  * The interrupt must handle 2 special cases:
199  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
200  * - the cpu performs speculative tlb reads, i.e. even if the cpu only
201  *   runs in kernel space, the cpu could load tlb entries for user space
202  *   pages.
203  *
204  * The good news is that cpu_tlbstate is local to each cpu, no
205  * write/read ordering problems.
206  */
207
208 static void flush_tlb_func_common(const struct flush_tlb_info *f,
209                                   bool local, enum tlb_flush_reason reason)
210 {
211         if (this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) {
212                 leave_mm(smp_processor_id());
213                 return;
214         }
215
216         if (f->end == TLB_FLUSH_ALL) {
217                 local_flush_tlb();
218                 if (local)
219                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
220                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
221         } else {
222                 unsigned long addr;
223                 unsigned long nr_pages =
224                         (f->end - f->start) / PAGE_SIZE;
225                 addr = f->start;
226                 while (addr < f->end) {
227                         __flush_tlb_single(addr);
228                         addr += PAGE_SIZE;
229                 }
230                 if (local)
231                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
232                 trace_tlb_flush(reason, nr_pages);
233         }
234 }
235
236 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
237 {
238         const struct flush_tlb_info *f = info;
239
240         flush_tlb_func_common(f, true, reason);
241 }
242
243 static void flush_tlb_func_remote(void *info)
244 {
245         const struct flush_tlb_info *f = info;
246
247         inc_irq_stat(irq_tlb_count);
248
249         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
250                 return;
251
252         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
253         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
254 }
255
256 void native_flush_tlb_others(const struct cpumask *cpumask,
257                              const struct flush_tlb_info *info)
258 {
259         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
260         if (info->end == TLB_FLUSH_ALL)
261                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
262         else
263                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
264                                 (info->end - info->start) >> PAGE_SHIFT);
265
266         if (is_uv_system()) {
267                 unsigned int cpu;
268
269                 cpu = smp_processor_id();
270                 cpumask = uv_flush_tlb_others(cpumask, info);
271                 if (cpumask)
272                         smp_call_function_many(cpumask, flush_tlb_func_remote,
273                                                (void *)info, 1);
274                 return;
275         }
276         smp_call_function_many(cpumask, flush_tlb_func_remote,
277                                (void *)info, 1);
278 }
279
280 /*
281  * See Documentation/x86/tlb.txt for details.  We choose 33
282  * because it is large enough to cover the vast majority (at
283  * least 95%) of allocations, and is small enough that we are
284  * confident it will not cause too much overhead.  Each single
285  * flush is about 100 ns, so this caps the maximum overhead at
286  * _about_ 3,000 ns.
287  *
288  * This is in units of pages.
289  */
290 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
291
292 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
293                                 unsigned long end, unsigned long vmflag)
294 {
295         int cpu;
296
297         struct flush_tlb_info info = {
298                 .mm = mm,
299         };
300
301         cpu = get_cpu();
302
303         /* Synchronize with switch_mm. */
304         smp_mb();
305
306         /* Should we flush just the requested range? */
307         if ((end != TLB_FLUSH_ALL) &&
308             !(vmflag & VM_HUGETLB) &&
309             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
310                 info.start = start;
311                 info.end = end;
312         } else {
313                 info.start = 0UL;
314                 info.end = TLB_FLUSH_ALL;
315         }
316
317         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm))
318                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
319         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
320                 flush_tlb_others(mm_cpumask(mm), &info);
321         put_cpu();
322 }
323
324
325 static void do_flush_tlb_all(void *info)
326 {
327         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
328         __flush_tlb_all();
329         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
330                 leave_mm(smp_processor_id());
331 }
332
333 void flush_tlb_all(void)
334 {
335         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
336         on_each_cpu(do_flush_tlb_all, NULL, 1);
337 }
338
339 static void do_kernel_range_flush(void *info)
340 {
341         struct flush_tlb_info *f = info;
342         unsigned long addr;
343
344         /* flush range by one by one 'invlpg' */
345         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
346                 __flush_tlb_single(addr);
347 }
348
349 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
350 {
351
352         /* Balance as user space task's flush, a bit conservative */
353         if (end == TLB_FLUSH_ALL ||
354             (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
355                 on_each_cpu(do_flush_tlb_all, NULL, 1);
356         } else {
357                 struct flush_tlb_info info;
358                 info.start = start;
359                 info.end = end;
360                 on_each_cpu(do_kernel_range_flush, &info, 1);
361         }
362 }
363
364 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
365 {
366         struct flush_tlb_info info = {
367                 .mm = NULL,
368                 .start = 0UL,
369                 .end = TLB_FLUSH_ALL,
370         };
371
372         int cpu = get_cpu();
373
374         if (cpumask_test_cpu(cpu, &batch->cpumask))
375                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
376         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
377                 flush_tlb_others(&batch->cpumask, &info);
378         cpumask_clear(&batch->cpumask);
379
380         put_cpu();
381 }
382
383 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
384                              size_t count, loff_t *ppos)
385 {
386         char buf[32];
387         unsigned int len;
388
389         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
390         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
391 }
392
393 static ssize_t tlbflush_write_file(struct file *file,
394                  const char __user *user_buf, size_t count, loff_t *ppos)
395 {
396         char buf[32];
397         ssize_t len;
398         int ceiling;
399
400         len = min(count, sizeof(buf) - 1);
401         if (copy_from_user(buf, user_buf, len))
402                 return -EFAULT;
403
404         buf[len] = '\0';
405         if (kstrtoint(buf, 0, &ceiling))
406                 return -EINVAL;
407
408         if (ceiling < 0)
409                 return -EINVAL;
410
411         tlb_single_page_flush_ceiling = ceiling;
412         return count;
413 }
414
415 static const struct file_operations fops_tlbflush = {
416         .read = tlbflush_read_file,
417         .write = tlbflush_write_file,
418         .llseek = default_llseek,
419 };
420
421 static int __init create_tlb_single_page_flush_ceiling(void)
422 {
423         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
424                             arch_debugfs_dir, NULL, &fops_tlbflush);
425         return 0;
426 }
427 late_initcall(create_tlb_single_page_flush_ceiling);