]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/platform/efi/efi_64.c
Merge branches 'pm-core', 'pm-qos', 'pm-domains' and 'pm-opp'
[linux.git] / arch / x86 / platform / efi / efi_64.c
1 /*
2  * x86_64 specific EFI support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 2005-2008 Intel Co.
6  *      Fenghua Yu <fenghua.yu@intel.com>
7  *      Bibo Mao <bibo.mao@intel.com>
8  *      Chandramouli Narayanan <mouli@linux.intel.com>
9  *      Huang Ying <ying.huang@intel.com>
10  *
11  * Code to convert EFI to E820 map has been implemented in elilo bootloader
12  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13  * is setup appropriately for EFI runtime code.
14  * - mouli 06/14/2007.
15  *
16  */
17
18 #define pr_fmt(fmt) "efi: " fmt
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/mm.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
31 #include <linux/io.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 #include <linux/ucs2_string.h>
35
36 #include <asm/setup.h>
37 #include <asm/page.h>
38 #include <asm/e820.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/proto.h>
42 #include <asm/efi.h>
43 #include <asm/cacheflush.h>
44 #include <asm/fixmap.h>
45 #include <asm/realmode.h>
46 #include <asm/time.h>
47 #include <asm/pgalloc.h>
48
49 /*
50  * We allocate runtime services regions bottom-up, starting from -4G, i.e.
51  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
52  */
53 static u64 efi_va = EFI_VA_START;
54
55 struct efi_scratch efi_scratch;
56
57 static void __init early_code_mapping_set_exec(int executable)
58 {
59         efi_memory_desc_t *md;
60
61         if (!(__supported_pte_mask & _PAGE_NX))
62                 return;
63
64         /* Make EFI service code area executable */
65         for_each_efi_memory_desc(md) {
66                 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
67                     md->type == EFI_BOOT_SERVICES_CODE)
68                         efi_set_executable(md, executable);
69         }
70 }
71
72 pgd_t * __init efi_call_phys_prolog(void)
73 {
74         unsigned long vaddress;
75         pgd_t *save_pgd;
76
77         int pgd;
78         int n_pgds;
79
80         if (!efi_enabled(EFI_OLD_MEMMAP)) {
81                 save_pgd = (pgd_t *)read_cr3();
82                 write_cr3((unsigned long)efi_scratch.efi_pgt);
83                 goto out;
84         }
85
86         early_code_mapping_set_exec(1);
87
88         n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
89         save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
90
91         for (pgd = 0; pgd < n_pgds; pgd++) {
92                 save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE);
93                 vaddress = (unsigned long)__va(pgd * PGDIR_SIZE);
94                 set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress));
95         }
96 out:
97         __flush_tlb_all();
98
99         return save_pgd;
100 }
101
102 void __init efi_call_phys_epilog(pgd_t *save_pgd)
103 {
104         /*
105          * After the lock is released, the original page table is restored.
106          */
107         int pgd_idx;
108         int nr_pgds;
109
110         if (!efi_enabled(EFI_OLD_MEMMAP)) {
111                 write_cr3((unsigned long)save_pgd);
112                 __flush_tlb_all();
113                 return;
114         }
115
116         nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
117
118         for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++)
119                 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
120
121         kfree(save_pgd);
122
123         __flush_tlb_all();
124         early_code_mapping_set_exec(0);
125 }
126
127 static pgd_t *efi_pgd;
128
129 /*
130  * We need our own copy of the higher levels of the page tables
131  * because we want to avoid inserting EFI region mappings (EFI_VA_END
132  * to EFI_VA_START) into the standard kernel page tables. Everything
133  * else can be shared, see efi_sync_low_kernel_mappings().
134  */
135 int __init efi_alloc_page_tables(void)
136 {
137         pgd_t *pgd;
138         pud_t *pud;
139         gfp_t gfp_mask;
140
141         if (efi_enabled(EFI_OLD_MEMMAP))
142                 return 0;
143
144         gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
145         efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
146         if (!efi_pgd)
147                 return -ENOMEM;
148
149         pgd = efi_pgd + pgd_index(EFI_VA_END);
150
151         pud = pud_alloc_one(NULL, 0);
152         if (!pud) {
153                 free_page((unsigned long)efi_pgd);
154                 return -ENOMEM;
155         }
156
157         pgd_populate(NULL, pgd, pud);
158
159         return 0;
160 }
161
162 /*
163  * Add low kernel mappings for passing arguments to EFI functions.
164  */
165 void efi_sync_low_kernel_mappings(void)
166 {
167         unsigned num_entries;
168         pgd_t *pgd_k, *pgd_efi;
169         pud_t *pud_k, *pud_efi;
170
171         if (efi_enabled(EFI_OLD_MEMMAP))
172                 return;
173
174         /*
175          * We can share all PGD entries apart from the one entry that
176          * covers the EFI runtime mapping space.
177          *
178          * Make sure the EFI runtime region mappings are guaranteed to
179          * only span a single PGD entry and that the entry also maps
180          * other important kernel regions.
181          */
182         BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
183         BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
184                         (EFI_VA_END & PGDIR_MASK));
185
186         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
187         pgd_k = pgd_offset_k(PAGE_OFFSET);
188
189         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
190         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
191
192         /*
193          * We share all the PUD entries apart from those that map the
194          * EFI regions. Copy around them.
195          */
196         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
197         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
198
199         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
200         pud_efi = pud_offset(pgd_efi, 0);
201
202         pgd_k = pgd_offset_k(EFI_VA_END);
203         pud_k = pud_offset(pgd_k, 0);
204
205         num_entries = pud_index(EFI_VA_END);
206         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
207
208         pud_efi = pud_offset(pgd_efi, EFI_VA_START);
209         pud_k = pud_offset(pgd_k, EFI_VA_START);
210
211         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
212         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
213 }
214
215 /*
216  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
217  */
218 static inline phys_addr_t
219 virt_to_phys_or_null_size(void *va, unsigned long size)
220 {
221         bool bad_size;
222
223         if (!va)
224                 return 0;
225
226         if (virt_addr_valid(va))
227                 return virt_to_phys(va);
228
229         /*
230          * A fully aligned variable on the stack is guaranteed not to
231          * cross a page bounary. Try to catch strings on the stack by
232          * checking that 'size' is a power of two.
233          */
234         bad_size = size > PAGE_SIZE || !is_power_of_2(size);
235
236         WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
237
238         return slow_virt_to_phys(va);
239 }
240
241 #define virt_to_phys_or_null(addr)                              \
242         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
243
244 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
245 {
246         unsigned long pfn, text;
247         struct page *page;
248         unsigned npages;
249         pgd_t *pgd;
250
251         if (efi_enabled(EFI_OLD_MEMMAP))
252                 return 0;
253
254         efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
255         pgd = efi_pgd;
256
257         /*
258          * It can happen that the physical address of new_memmap lands in memory
259          * which is not mapped in the EFI page table. Therefore we need to go
260          * and ident-map those pages containing the map before calling
261          * phys_efi_set_virtual_address_map().
262          */
263         pfn = pa_memmap >> PAGE_SHIFT;
264         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
265                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
266                 return 1;
267         }
268
269         efi_scratch.use_pgd = true;
270
271         /*
272          * Certain firmware versions are way too sentimential and still believe
273          * they are exclusive and unquestionable owners of the first physical page,
274          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
275          * (but then write-access it later during SetVirtualAddressMap()).
276          *
277          * Create a 1:1 mapping for this page, to avoid triple faults during early
278          * boot with such firmware. We are free to hand this page to the BIOS,
279          * as trim_bios_range() will reserve the first page and isolate it away
280          * from memory allocators anyway.
281          */
282         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
283                 pr_err("Failed to create 1:1 mapping for the first page!\n");
284                 return 1;
285         }
286
287         /*
288          * When making calls to the firmware everything needs to be 1:1
289          * mapped and addressable with 32-bit pointers. Map the kernel
290          * text and allocate a new stack because we can't rely on the
291          * stack pointer being < 4GB.
292          */
293         if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
294                 return 0;
295
296         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
297         if (!page)
298                 panic("Unable to allocate EFI runtime stack < 4GB\n");
299
300         efi_scratch.phys_stack = virt_to_phys(page_address(page));
301         efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
302
303         npages = (_etext - _text) >> PAGE_SHIFT;
304         text = __pa(_text);
305         pfn = text >> PAGE_SHIFT;
306
307         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
308                 pr_err("Failed to map kernel text 1:1\n");
309                 return 1;
310         }
311
312         return 0;
313 }
314
315 static void __init __map_region(efi_memory_desc_t *md, u64 va)
316 {
317         unsigned long flags = _PAGE_RW;
318         unsigned long pfn;
319         pgd_t *pgd = efi_pgd;
320
321         if (!(md->attribute & EFI_MEMORY_WB))
322                 flags |= _PAGE_PCD;
323
324         pfn = md->phys_addr >> PAGE_SHIFT;
325         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
326                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
327                            md->phys_addr, va);
328 }
329
330 void __init efi_map_region(efi_memory_desc_t *md)
331 {
332         unsigned long size = md->num_pages << PAGE_SHIFT;
333         u64 pa = md->phys_addr;
334
335         if (efi_enabled(EFI_OLD_MEMMAP))
336                 return old_map_region(md);
337
338         /*
339          * Make sure the 1:1 mappings are present as a catch-all for b0rked
340          * firmware which doesn't update all internal pointers after switching
341          * to virtual mode and would otherwise crap on us.
342          */
343         __map_region(md, md->phys_addr);
344
345         /*
346          * Enforce the 1:1 mapping as the default virtual address when
347          * booting in EFI mixed mode, because even though we may be
348          * running a 64-bit kernel, the firmware may only be 32-bit.
349          */
350         if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
351                 md->virt_addr = md->phys_addr;
352                 return;
353         }
354
355         efi_va -= size;
356
357         /* Is PA 2M-aligned? */
358         if (!(pa & (PMD_SIZE - 1))) {
359                 efi_va &= PMD_MASK;
360         } else {
361                 u64 pa_offset = pa & (PMD_SIZE - 1);
362                 u64 prev_va = efi_va;
363
364                 /* get us the same offset within this 2M page */
365                 efi_va = (efi_va & PMD_MASK) + pa_offset;
366
367                 if (efi_va > prev_va)
368                         efi_va -= PMD_SIZE;
369         }
370
371         if (efi_va < EFI_VA_END) {
372                 pr_warn(FW_WARN "VA address range overflow!\n");
373                 return;
374         }
375
376         /* Do the VA map */
377         __map_region(md, efi_va);
378         md->virt_addr = efi_va;
379 }
380
381 /*
382  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
383  * md->virt_addr is the original virtual address which had been mapped in kexec
384  * 1st kernel.
385  */
386 void __init efi_map_region_fixed(efi_memory_desc_t *md)
387 {
388         __map_region(md, md->phys_addr);
389         __map_region(md, md->virt_addr);
390 }
391
392 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
393                                  u32 type, u64 attribute)
394 {
395         unsigned long last_map_pfn;
396
397         if (type == EFI_MEMORY_MAPPED_IO)
398                 return ioremap(phys_addr, size);
399
400         last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
401         if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
402                 unsigned long top = last_map_pfn << PAGE_SHIFT;
403                 efi_ioremap(top, size - (top - phys_addr), type, attribute);
404         }
405
406         if (!(attribute & EFI_MEMORY_WB))
407                 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
408
409         return (void __iomem *)__va(phys_addr);
410 }
411
412 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
413 {
414         efi_setup = phys_addr + sizeof(struct setup_data);
415 }
416
417 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
418 {
419         unsigned long pfn;
420         pgd_t *pgd = efi_pgd;
421         int err1, err2;
422
423         /* Update the 1:1 mapping */
424         pfn = md->phys_addr >> PAGE_SHIFT;
425         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
426         if (err1) {
427                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
428                            md->phys_addr, md->virt_addr);
429         }
430
431         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
432         if (err2) {
433                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
434                            md->phys_addr, md->virt_addr);
435         }
436
437         return err1 || err2;
438 }
439
440 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
441 {
442         unsigned long pf = 0;
443
444         if (md->attribute & EFI_MEMORY_XP)
445                 pf |= _PAGE_NX;
446
447         if (!(md->attribute & EFI_MEMORY_RO))
448                 pf |= _PAGE_RW;
449
450         return efi_update_mappings(md, pf);
451 }
452
453 void __init efi_runtime_update_mappings(void)
454 {
455         efi_memory_desc_t *md;
456
457         if (efi_enabled(EFI_OLD_MEMMAP)) {
458                 if (__supported_pte_mask & _PAGE_NX)
459                         runtime_code_page_mkexec();
460                 return;
461         }
462
463         /*
464          * Use the EFI Memory Attribute Table for mapping permissions if it
465          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
466          */
467         if (efi_enabled(EFI_MEM_ATTR)) {
468                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
469                 return;
470         }
471
472         /*
473          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
474          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
475          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
476          * published by the firmware. Even if we find a buggy implementation of
477          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
478          * EFI_PROPERTIES_TABLE, because of the same reason.
479          */
480
481         if (!efi_enabled(EFI_NX_PE_DATA))
482                 return;
483
484         for_each_efi_memory_desc(md) {
485                 unsigned long pf = 0;
486
487                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
488                         continue;
489
490                 if (!(md->attribute & EFI_MEMORY_WB))
491                         pf |= _PAGE_PCD;
492
493                 if ((md->attribute & EFI_MEMORY_XP) ||
494                         (md->type == EFI_RUNTIME_SERVICES_DATA))
495                         pf |= _PAGE_NX;
496
497                 if (!(md->attribute & EFI_MEMORY_RO) &&
498                         (md->type != EFI_RUNTIME_SERVICES_CODE))
499                         pf |= _PAGE_RW;
500
501                 efi_update_mappings(md, pf);
502         }
503 }
504
505 void __init efi_dump_pagetable(void)
506 {
507 #ifdef CONFIG_EFI_PGT_DUMP
508         ptdump_walk_pgd_level(NULL, efi_pgd);
509 #endif
510 }
511
512 #ifdef CONFIG_EFI_MIXED
513 extern efi_status_t efi64_thunk(u32, ...);
514
515 #define runtime_service32(func)                                          \
516 ({                                                                       \
517         u32 table = (u32)(unsigned long)efi.systab;                      \
518         u32 *rt, *___f;                                                  \
519                                                                          \
520         rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));  \
521         ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
522         *___f;                                                           \
523 })
524
525 /*
526  * Switch to the EFI page tables early so that we can access the 1:1
527  * runtime services mappings which are not mapped in any other page
528  * tables. This function must be called before runtime_service32().
529  *
530  * Also, disable interrupts because the IDT points to 64-bit handlers,
531  * which aren't going to function correctly when we switch to 32-bit.
532  */
533 #define efi_thunk(f, ...)                                               \
534 ({                                                                      \
535         efi_status_t __s;                                               \
536         unsigned long __flags;                                          \
537         u32 __func;                                                     \
538                                                                         \
539         local_irq_save(__flags);                                        \
540         arch_efi_call_virt_setup();                                     \
541                                                                         \
542         __func = runtime_service32(f);                                  \
543         __s = efi64_thunk(__func, __VA_ARGS__);                         \
544                                                                         \
545         arch_efi_call_virt_teardown();                                  \
546         local_irq_restore(__flags);                                     \
547                                                                         \
548         __s;                                                            \
549 })
550
551 efi_status_t efi_thunk_set_virtual_address_map(
552         void *phys_set_virtual_address_map,
553         unsigned long memory_map_size,
554         unsigned long descriptor_size,
555         u32 descriptor_version,
556         efi_memory_desc_t *virtual_map)
557 {
558         efi_status_t status;
559         unsigned long flags;
560         u32 func;
561
562         efi_sync_low_kernel_mappings();
563         local_irq_save(flags);
564
565         efi_scratch.prev_cr3 = read_cr3();
566         write_cr3((unsigned long)efi_scratch.efi_pgt);
567         __flush_tlb_all();
568
569         func = (u32)(unsigned long)phys_set_virtual_address_map;
570         status = efi64_thunk(func, memory_map_size, descriptor_size,
571                              descriptor_version, virtual_map);
572
573         write_cr3(efi_scratch.prev_cr3);
574         __flush_tlb_all();
575         local_irq_restore(flags);
576
577         return status;
578 }
579
580 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
581 {
582         efi_status_t status;
583         u32 phys_tm, phys_tc;
584
585         spin_lock(&rtc_lock);
586
587         phys_tm = virt_to_phys_or_null(tm);
588         phys_tc = virt_to_phys_or_null(tc);
589
590         status = efi_thunk(get_time, phys_tm, phys_tc);
591
592         spin_unlock(&rtc_lock);
593
594         return status;
595 }
596
597 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
598 {
599         efi_status_t status;
600         u32 phys_tm;
601
602         spin_lock(&rtc_lock);
603
604         phys_tm = virt_to_phys_or_null(tm);
605
606         status = efi_thunk(set_time, phys_tm);
607
608         spin_unlock(&rtc_lock);
609
610         return status;
611 }
612
613 static efi_status_t
614 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
615                           efi_time_t *tm)
616 {
617         efi_status_t status;
618         u32 phys_enabled, phys_pending, phys_tm;
619
620         spin_lock(&rtc_lock);
621
622         phys_enabled = virt_to_phys_or_null(enabled);
623         phys_pending = virt_to_phys_or_null(pending);
624         phys_tm = virt_to_phys_or_null(tm);
625
626         status = efi_thunk(get_wakeup_time, phys_enabled,
627                              phys_pending, phys_tm);
628
629         spin_unlock(&rtc_lock);
630
631         return status;
632 }
633
634 static efi_status_t
635 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
636 {
637         efi_status_t status;
638         u32 phys_tm;
639
640         spin_lock(&rtc_lock);
641
642         phys_tm = virt_to_phys_or_null(tm);
643
644         status = efi_thunk(set_wakeup_time, enabled, phys_tm);
645
646         spin_unlock(&rtc_lock);
647
648         return status;
649 }
650
651 static unsigned long efi_name_size(efi_char16_t *name)
652 {
653         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
654 }
655
656 static efi_status_t
657 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
658                        u32 *attr, unsigned long *data_size, void *data)
659 {
660         efi_status_t status;
661         u32 phys_name, phys_vendor, phys_attr;
662         u32 phys_data_size, phys_data;
663
664         phys_data_size = virt_to_phys_or_null(data_size);
665         phys_vendor = virt_to_phys_or_null(vendor);
666         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
667         phys_attr = virt_to_phys_or_null(attr);
668         phys_data = virt_to_phys_or_null_size(data, *data_size);
669
670         status = efi_thunk(get_variable, phys_name, phys_vendor,
671                            phys_attr, phys_data_size, phys_data);
672
673         return status;
674 }
675
676 static efi_status_t
677 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
678                        u32 attr, unsigned long data_size, void *data)
679 {
680         u32 phys_name, phys_vendor, phys_data;
681         efi_status_t status;
682
683         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
684         phys_vendor = virt_to_phys_or_null(vendor);
685         phys_data = virt_to_phys_or_null_size(data, data_size);
686
687         /* If data_size is > sizeof(u32) we've got problems */
688         status = efi_thunk(set_variable, phys_name, phys_vendor,
689                            attr, data_size, phys_data);
690
691         return status;
692 }
693
694 static efi_status_t
695 efi_thunk_get_next_variable(unsigned long *name_size,
696                             efi_char16_t *name,
697                             efi_guid_t *vendor)
698 {
699         efi_status_t status;
700         u32 phys_name_size, phys_name, phys_vendor;
701
702         phys_name_size = virt_to_phys_or_null(name_size);
703         phys_vendor = virt_to_phys_or_null(vendor);
704         phys_name = virt_to_phys_or_null_size(name, *name_size);
705
706         status = efi_thunk(get_next_variable, phys_name_size,
707                            phys_name, phys_vendor);
708
709         return status;
710 }
711
712 static efi_status_t
713 efi_thunk_get_next_high_mono_count(u32 *count)
714 {
715         efi_status_t status;
716         u32 phys_count;
717
718         phys_count = virt_to_phys_or_null(count);
719         status = efi_thunk(get_next_high_mono_count, phys_count);
720
721         return status;
722 }
723
724 static void
725 efi_thunk_reset_system(int reset_type, efi_status_t status,
726                        unsigned long data_size, efi_char16_t *data)
727 {
728         u32 phys_data;
729
730         phys_data = virt_to_phys_or_null_size(data, data_size);
731
732         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
733 }
734
735 static efi_status_t
736 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
737                          unsigned long count, unsigned long sg_list)
738 {
739         /*
740          * To properly support this function we would need to repackage
741          * 'capsules' because the firmware doesn't understand 64-bit
742          * pointers.
743          */
744         return EFI_UNSUPPORTED;
745 }
746
747 static efi_status_t
748 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
749                               u64 *remaining_space,
750                               u64 *max_variable_size)
751 {
752         efi_status_t status;
753         u32 phys_storage, phys_remaining, phys_max;
754
755         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
756                 return EFI_UNSUPPORTED;
757
758         phys_storage = virt_to_phys_or_null(storage_space);
759         phys_remaining = virt_to_phys_or_null(remaining_space);
760         phys_max = virt_to_phys_or_null(max_variable_size);
761
762         status = efi_thunk(query_variable_info, attr, phys_storage,
763                            phys_remaining, phys_max);
764
765         return status;
766 }
767
768 static efi_status_t
769 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
770                              unsigned long count, u64 *max_size,
771                              int *reset_type)
772 {
773         /*
774          * To properly support this function we would need to repackage
775          * 'capsules' because the firmware doesn't understand 64-bit
776          * pointers.
777          */
778         return EFI_UNSUPPORTED;
779 }
780
781 void efi_thunk_runtime_setup(void)
782 {
783         efi.get_time = efi_thunk_get_time;
784         efi.set_time = efi_thunk_set_time;
785         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
786         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
787         efi.get_variable = efi_thunk_get_variable;
788         efi.get_next_variable = efi_thunk_get_next_variable;
789         efi.set_variable = efi_thunk_set_variable;
790         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
791         efi.reset_system = efi_thunk_reset_system;
792         efi.query_variable_info = efi_thunk_query_variable_info;
793         efi.update_capsule = efi_thunk_update_capsule;
794         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
795 }
796 #endif /* CONFIG_EFI_MIXED */