]> asedeno.scripts.mit.edu Git - linux.git/blob - arch/x86/xen/enlighten.c
Merge branch 'kvm-arm/vgic-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/events.h>
37 #include <xen/interface/xen.h>
38 #include <xen/interface/version.h>
39 #include <xen/interface/physdev.h>
40 #include <xen/interface/vcpu.h>
41 #include <xen/interface/memory.h>
42 #include <xen/interface/xen-mca.h>
43 #include <xen/features.h>
44 #include <xen/page.h>
45 #include <xen/hvm.h>
46 #include <xen/hvc-console.h>
47 #include <xen/acpi.h>
48
49 #include <asm/paravirt.h>
50 #include <asm/apic.h>
51 #include <asm/page.h>
52 #include <asm/xen/pci.h>
53 #include <asm/xen/hypercall.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/fixmap.h>
56 #include <asm/processor.h>
57 #include <asm/proto.h>
58 #include <asm/msr-index.h>
59 #include <asm/traps.h>
60 #include <asm/setup.h>
61 #include <asm/desc.h>
62 #include <asm/pgalloc.h>
63 #include <asm/pgtable.h>
64 #include <asm/tlbflush.h>
65 #include <asm/reboot.h>
66 #include <asm/stackprotector.h>
67 #include <asm/hypervisor.h>
68 #include <asm/mwait.h>
69 #include <asm/pci_x86.h>
70 #include <asm/pat.h>
71
72 #ifdef CONFIG_ACPI
73 #include <linux/acpi.h>
74 #include <asm/acpi.h>
75 #include <acpi/pdc_intel.h>
76 #include <acpi/processor.h>
77 #include <xen/interface/platform.h>
78 #endif
79
80 #include "xen-ops.h"
81 #include "mmu.h"
82 #include "smp.h"
83 #include "multicalls.h"
84
85 EXPORT_SYMBOL_GPL(hypercall_page);
86
87 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
88 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
89
90 enum xen_domain_type xen_domain_type = XEN_NATIVE;
91 EXPORT_SYMBOL_GPL(xen_domain_type);
92
93 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
94 EXPORT_SYMBOL(machine_to_phys_mapping);
95 unsigned long  machine_to_phys_nr;
96 EXPORT_SYMBOL(machine_to_phys_nr);
97
98 struct start_info *xen_start_info;
99 EXPORT_SYMBOL_GPL(xen_start_info);
100
101 struct shared_info xen_dummy_shared_info;
102
103 void *xen_initial_gdt;
104
105 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
106 __read_mostly int xen_have_vector_callback;
107 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
108
109 /*
110  * Point at some empty memory to start with. We map the real shared_info
111  * page as soon as fixmap is up and running.
112  */
113 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
114
115 /*
116  * Flag to determine whether vcpu info placement is available on all
117  * VCPUs.  We assume it is to start with, and then set it to zero on
118  * the first failure.  This is because it can succeed on some VCPUs
119  * and not others, since it can involve hypervisor memory allocation,
120  * or because the guest failed to guarantee all the appropriate
121  * constraints on all VCPUs (ie buffer can't cross a page boundary).
122  *
123  * Note that any particular CPU may be using a placed vcpu structure,
124  * but we can only optimise if the all are.
125  *
126  * 0: not available, 1: available
127  */
128 static int have_vcpu_info_placement = 1;
129
130 struct tls_descs {
131         struct desc_struct desc[3];
132 };
133
134 /*
135  * Updating the 3 TLS descriptors in the GDT on every task switch is
136  * surprisingly expensive so we avoid updating them if they haven't
137  * changed.  Since Xen writes different descriptors than the one
138  * passed in the update_descriptor hypercall we keep shadow copies to
139  * compare against.
140  */
141 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
142
143 static void clamp_max_cpus(void)
144 {
145 #ifdef CONFIG_SMP
146         if (setup_max_cpus > MAX_VIRT_CPUS)
147                 setup_max_cpus = MAX_VIRT_CPUS;
148 #endif
149 }
150
151 static void xen_vcpu_setup(int cpu)
152 {
153         struct vcpu_register_vcpu_info info;
154         int err;
155         struct vcpu_info *vcpup;
156
157         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
158
159         if (cpu < MAX_VIRT_CPUS)
160                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
161
162         if (!have_vcpu_info_placement) {
163                 if (cpu >= MAX_VIRT_CPUS)
164                         clamp_max_cpus();
165                 return;
166         }
167
168         vcpup = &per_cpu(xen_vcpu_info, cpu);
169         info.mfn = arbitrary_virt_to_mfn(vcpup);
170         info.offset = offset_in_page(vcpup);
171
172         /* Check to see if the hypervisor will put the vcpu_info
173            structure where we want it, which allows direct access via
174            a percpu-variable. */
175         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
176
177         if (err) {
178                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
179                 have_vcpu_info_placement = 0;
180                 clamp_max_cpus();
181         } else {
182                 /* This cpu is using the registered vcpu info, even if
183                    later ones fail to. */
184                 per_cpu(xen_vcpu, cpu) = vcpup;
185         }
186 }
187
188 /*
189  * On restore, set the vcpu placement up again.
190  * If it fails, then we're in a bad state, since
191  * we can't back out from using it...
192  */
193 void xen_vcpu_restore(void)
194 {
195         int cpu;
196
197         for_each_possible_cpu(cpu) {
198                 bool other_cpu = (cpu != smp_processor_id());
199                 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
200
201                 if (other_cpu && is_up &&
202                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
203                         BUG();
204
205                 xen_setup_runstate_info(cpu);
206
207                 if (have_vcpu_info_placement)
208                         xen_vcpu_setup(cpu);
209
210                 if (other_cpu && is_up &&
211                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
212                         BUG();
213         }
214 }
215
216 static void __init xen_banner(void)
217 {
218         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
219         struct xen_extraversion extra;
220         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
221
222         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
223                pv_info.name);
224         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
225                version >> 16, version & 0xffff, extra.extraversion,
226                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
227 }
228 /* Check if running on Xen version (major, minor) or later */
229 bool
230 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
231 {
232         unsigned int version;
233
234         if (!xen_domain())
235                 return false;
236
237         version = HYPERVISOR_xen_version(XENVER_version, NULL);
238         if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
239                 ((version >> 16) > major))
240                 return true;
241         return false;
242 }
243
244 #define CPUID_THERM_POWER_LEAF 6
245 #define APERFMPERF_PRESENT 0
246
247 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
248 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
249
250 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
251 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
252 static __read_mostly unsigned int cpuid_leaf5_edx_val;
253
254 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
255                       unsigned int *cx, unsigned int *dx)
256 {
257         unsigned maskebx = ~0;
258         unsigned maskecx = ~0;
259         unsigned maskedx = ~0;
260         unsigned setecx = 0;
261         /*
262          * Mask out inconvenient features, to try and disable as many
263          * unsupported kernel subsystems as possible.
264          */
265         switch (*ax) {
266         case 1:
267                 maskecx = cpuid_leaf1_ecx_mask;
268                 setecx = cpuid_leaf1_ecx_set_mask;
269                 maskedx = cpuid_leaf1_edx_mask;
270                 break;
271
272         case CPUID_MWAIT_LEAF:
273                 /* Synthesize the values.. */
274                 *ax = 0;
275                 *bx = 0;
276                 *cx = cpuid_leaf5_ecx_val;
277                 *dx = cpuid_leaf5_edx_val;
278                 return;
279
280         case CPUID_THERM_POWER_LEAF:
281                 /* Disabling APERFMPERF for kernel usage */
282                 maskecx = ~(1 << APERFMPERF_PRESENT);
283                 break;
284
285         case 0xb:
286                 /* Suppress extended topology stuff */
287                 maskebx = 0;
288                 break;
289         }
290
291         asm(XEN_EMULATE_PREFIX "cpuid"
292                 : "=a" (*ax),
293                   "=b" (*bx),
294                   "=c" (*cx),
295                   "=d" (*dx)
296                 : "0" (*ax), "2" (*cx));
297
298         *bx &= maskebx;
299         *cx &= maskecx;
300         *cx |= setecx;
301         *dx &= maskedx;
302
303 }
304
305 static bool __init xen_check_mwait(void)
306 {
307 #ifdef CONFIG_ACPI
308         struct xen_platform_op op = {
309                 .cmd                    = XENPF_set_processor_pminfo,
310                 .u.set_pminfo.id        = -1,
311                 .u.set_pminfo.type      = XEN_PM_PDC,
312         };
313         uint32_t buf[3];
314         unsigned int ax, bx, cx, dx;
315         unsigned int mwait_mask;
316
317         /* We need to determine whether it is OK to expose the MWAIT
318          * capability to the kernel to harvest deeper than C3 states from ACPI
319          * _CST using the processor_harvest_xen.c module. For this to work, we
320          * need to gather the MWAIT_LEAF values (which the cstate.c code
321          * checks against). The hypervisor won't expose the MWAIT flag because
322          * it would break backwards compatibility; so we will find out directly
323          * from the hardware and hypercall.
324          */
325         if (!xen_initial_domain())
326                 return false;
327
328         /*
329          * When running under platform earlier than Xen4.2, do not expose
330          * mwait, to avoid the risk of loading native acpi pad driver
331          */
332         if (!xen_running_on_version_or_later(4, 2))
333                 return false;
334
335         ax = 1;
336         cx = 0;
337
338         native_cpuid(&ax, &bx, &cx, &dx);
339
340         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
341                      (1 << (X86_FEATURE_MWAIT % 32));
342
343         if ((cx & mwait_mask) != mwait_mask)
344                 return false;
345
346         /* We need to emulate the MWAIT_LEAF and for that we need both
347          * ecx and edx. The hypercall provides only partial information.
348          */
349
350         ax = CPUID_MWAIT_LEAF;
351         bx = 0;
352         cx = 0;
353         dx = 0;
354
355         native_cpuid(&ax, &bx, &cx, &dx);
356
357         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
358          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
359          */
360         buf[0] = ACPI_PDC_REVISION_ID;
361         buf[1] = 1;
362         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
363
364         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
365
366         if ((HYPERVISOR_dom0_op(&op) == 0) &&
367             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
368                 cpuid_leaf5_ecx_val = cx;
369                 cpuid_leaf5_edx_val = dx;
370         }
371         return true;
372 #else
373         return false;
374 #endif
375 }
376 static void __init xen_init_cpuid_mask(void)
377 {
378         unsigned int ax, bx, cx, dx;
379         unsigned int xsave_mask;
380
381         cpuid_leaf1_edx_mask =
382                 ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
383                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
384
385         if (!xen_initial_domain())
386                 cpuid_leaf1_edx_mask &=
387                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
388                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
389         ax = 1;
390         cx = 0;
391         xen_cpuid(&ax, &bx, &cx, &dx);
392
393         xsave_mask =
394                 (1 << (X86_FEATURE_XSAVE % 32)) |
395                 (1 << (X86_FEATURE_OSXSAVE % 32));
396
397         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
398         if ((cx & xsave_mask) != xsave_mask)
399                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
400         if (xen_check_mwait())
401                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
402 }
403
404 static void xen_set_debugreg(int reg, unsigned long val)
405 {
406         HYPERVISOR_set_debugreg(reg, val);
407 }
408
409 static unsigned long xen_get_debugreg(int reg)
410 {
411         return HYPERVISOR_get_debugreg(reg);
412 }
413
414 static void xen_end_context_switch(struct task_struct *next)
415 {
416         xen_mc_flush();
417         paravirt_end_context_switch(next);
418 }
419
420 static unsigned long xen_store_tr(void)
421 {
422         return 0;
423 }
424
425 /*
426  * Set the page permissions for a particular virtual address.  If the
427  * address is a vmalloc mapping (or other non-linear mapping), then
428  * find the linear mapping of the page and also set its protections to
429  * match.
430  */
431 static void set_aliased_prot(void *v, pgprot_t prot)
432 {
433         int level;
434         pte_t *ptep;
435         pte_t pte;
436         unsigned long pfn;
437         struct page *page;
438
439         ptep = lookup_address((unsigned long)v, &level);
440         BUG_ON(ptep == NULL);
441
442         pfn = pte_pfn(*ptep);
443         page = pfn_to_page(pfn);
444
445         pte = pfn_pte(pfn, prot);
446
447         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
448                 BUG();
449
450         if (!PageHighMem(page)) {
451                 void *av = __va(PFN_PHYS(pfn));
452
453                 if (av != v)
454                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
455                                 BUG();
456         } else
457                 kmap_flush_unused();
458 }
459
460 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
461 {
462         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
463         int i;
464
465         for(i = 0; i < entries; i += entries_per_page)
466                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
467 }
468
469 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
470 {
471         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
472         int i;
473
474         for(i = 0; i < entries; i += entries_per_page)
475                 set_aliased_prot(ldt + i, PAGE_KERNEL);
476 }
477
478 static void xen_set_ldt(const void *addr, unsigned entries)
479 {
480         struct mmuext_op *op;
481         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
482
483         trace_xen_cpu_set_ldt(addr, entries);
484
485         op = mcs.args;
486         op->cmd = MMUEXT_SET_LDT;
487         op->arg1.linear_addr = (unsigned long)addr;
488         op->arg2.nr_ents = entries;
489
490         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
491
492         xen_mc_issue(PARAVIRT_LAZY_CPU);
493 }
494
495 static void xen_load_gdt(const struct desc_ptr *dtr)
496 {
497         unsigned long va = dtr->address;
498         unsigned int size = dtr->size + 1;
499         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
500         unsigned long frames[pages];
501         int f;
502
503         /*
504          * A GDT can be up to 64k in size, which corresponds to 8192
505          * 8-byte entries, or 16 4k pages..
506          */
507
508         BUG_ON(size > 65536);
509         BUG_ON(va & ~PAGE_MASK);
510
511         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
512                 int level;
513                 pte_t *ptep;
514                 unsigned long pfn, mfn;
515                 void *virt;
516
517                 /*
518                  * The GDT is per-cpu and is in the percpu data area.
519                  * That can be virtually mapped, so we need to do a
520                  * page-walk to get the underlying MFN for the
521                  * hypercall.  The page can also be in the kernel's
522                  * linear range, so we need to RO that mapping too.
523                  */
524                 ptep = lookup_address(va, &level);
525                 BUG_ON(ptep == NULL);
526
527                 pfn = pte_pfn(*ptep);
528                 mfn = pfn_to_mfn(pfn);
529                 virt = __va(PFN_PHYS(pfn));
530
531                 frames[f] = mfn;
532
533                 make_lowmem_page_readonly((void *)va);
534                 make_lowmem_page_readonly(virt);
535         }
536
537         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
538                 BUG();
539 }
540
541 /*
542  * load_gdt for early boot, when the gdt is only mapped once
543  */
544 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
545 {
546         unsigned long va = dtr->address;
547         unsigned int size = dtr->size + 1;
548         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
549         unsigned long frames[pages];
550         int f;
551
552         /*
553          * A GDT can be up to 64k in size, which corresponds to 8192
554          * 8-byte entries, or 16 4k pages..
555          */
556
557         BUG_ON(size > 65536);
558         BUG_ON(va & ~PAGE_MASK);
559
560         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
561                 pte_t pte;
562                 unsigned long pfn, mfn;
563
564                 pfn = virt_to_pfn(va);
565                 mfn = pfn_to_mfn(pfn);
566
567                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
568
569                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
570                         BUG();
571
572                 frames[f] = mfn;
573         }
574
575         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
576                 BUG();
577 }
578
579 static inline bool desc_equal(const struct desc_struct *d1,
580                               const struct desc_struct *d2)
581 {
582         return d1->a == d2->a && d1->b == d2->b;
583 }
584
585 static void load_TLS_descriptor(struct thread_struct *t,
586                                 unsigned int cpu, unsigned int i)
587 {
588         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
589         struct desc_struct *gdt;
590         xmaddr_t maddr;
591         struct multicall_space mc;
592
593         if (desc_equal(shadow, &t->tls_array[i]))
594                 return;
595
596         *shadow = t->tls_array[i];
597
598         gdt = get_cpu_gdt_table(cpu);
599         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
600         mc = __xen_mc_entry(0);
601
602         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
603 }
604
605 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
606 {
607         /*
608          * XXX sleazy hack: If we're being called in a lazy-cpu zone
609          * and lazy gs handling is enabled, it means we're in a
610          * context switch, and %gs has just been saved.  This means we
611          * can zero it out to prevent faults on exit from the
612          * hypervisor if the next process has no %gs.  Either way, it
613          * has been saved, and the new value will get loaded properly.
614          * This will go away as soon as Xen has been modified to not
615          * save/restore %gs for normal hypercalls.
616          *
617          * On x86_64, this hack is not used for %gs, because gs points
618          * to KERNEL_GS_BASE (and uses it for PDA references), so we
619          * must not zero %gs on x86_64
620          *
621          * For x86_64, we need to zero %fs, otherwise we may get an
622          * exception between the new %fs descriptor being loaded and
623          * %fs being effectively cleared at __switch_to().
624          */
625         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
626 #ifdef CONFIG_X86_32
627                 lazy_load_gs(0);
628 #else
629                 loadsegment(fs, 0);
630 #endif
631         }
632
633         xen_mc_batch();
634
635         load_TLS_descriptor(t, cpu, 0);
636         load_TLS_descriptor(t, cpu, 1);
637         load_TLS_descriptor(t, cpu, 2);
638
639         xen_mc_issue(PARAVIRT_LAZY_CPU);
640 }
641
642 #ifdef CONFIG_X86_64
643 static void xen_load_gs_index(unsigned int idx)
644 {
645         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
646                 BUG();
647 }
648 #endif
649
650 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
651                                 const void *ptr)
652 {
653         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
654         u64 entry = *(u64 *)ptr;
655
656         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
657
658         preempt_disable();
659
660         xen_mc_flush();
661         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
662                 BUG();
663
664         preempt_enable();
665 }
666
667 static int cvt_gate_to_trap(int vector, const gate_desc *val,
668                             struct trap_info *info)
669 {
670         unsigned long addr;
671
672         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
673                 return 0;
674
675         info->vector = vector;
676
677         addr = gate_offset(*val);
678 #ifdef CONFIG_X86_64
679         /*
680          * Look for known traps using IST, and substitute them
681          * appropriately.  The debugger ones are the only ones we care
682          * about.  Xen will handle faults like double_fault,
683          * so we should never see them.  Warn if
684          * there's an unexpected IST-using fault handler.
685          */
686         if (addr == (unsigned long)debug)
687                 addr = (unsigned long)xen_debug;
688         else if (addr == (unsigned long)int3)
689                 addr = (unsigned long)xen_int3;
690         else if (addr == (unsigned long)stack_segment)
691                 addr = (unsigned long)xen_stack_segment;
692         else if (addr == (unsigned long)double_fault ||
693                  addr == (unsigned long)nmi) {
694                 /* Don't need to handle these */
695                 return 0;
696 #ifdef CONFIG_X86_MCE
697         } else if (addr == (unsigned long)machine_check) {
698                 /*
699                  * when xen hypervisor inject vMCE to guest,
700                  * use native mce handler to handle it
701                  */
702                 ;
703 #endif
704         } else {
705                 /* Some other trap using IST? */
706                 if (WARN_ON(val->ist != 0))
707                         return 0;
708         }
709 #endif  /* CONFIG_X86_64 */
710         info->address = addr;
711
712         info->cs = gate_segment(*val);
713         info->flags = val->dpl;
714         /* interrupt gates clear IF */
715         if (val->type == GATE_INTERRUPT)
716                 info->flags |= 1 << 2;
717
718         return 1;
719 }
720
721 /* Locations of each CPU's IDT */
722 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
723
724 /* Set an IDT entry.  If the entry is part of the current IDT, then
725    also update Xen. */
726 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
727 {
728         unsigned long p = (unsigned long)&dt[entrynum];
729         unsigned long start, end;
730
731         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
732
733         preempt_disable();
734
735         start = __this_cpu_read(idt_desc.address);
736         end = start + __this_cpu_read(idt_desc.size) + 1;
737
738         xen_mc_flush();
739
740         native_write_idt_entry(dt, entrynum, g);
741
742         if (p >= start && (p + 8) <= end) {
743                 struct trap_info info[2];
744
745                 info[1].address = 0;
746
747                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
748                         if (HYPERVISOR_set_trap_table(info))
749                                 BUG();
750         }
751
752         preempt_enable();
753 }
754
755 static void xen_convert_trap_info(const struct desc_ptr *desc,
756                                   struct trap_info *traps)
757 {
758         unsigned in, out, count;
759
760         count = (desc->size+1) / sizeof(gate_desc);
761         BUG_ON(count > 256);
762
763         for (in = out = 0; in < count; in++) {
764                 gate_desc *entry = (gate_desc*)(desc->address) + in;
765
766                 if (cvt_gate_to_trap(in, entry, &traps[out]))
767                         out++;
768         }
769         traps[out].address = 0;
770 }
771
772 void xen_copy_trap_info(struct trap_info *traps)
773 {
774         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
775
776         xen_convert_trap_info(desc, traps);
777 }
778
779 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
780    hold a spinlock to protect the static traps[] array (static because
781    it avoids allocation, and saves stack space). */
782 static void xen_load_idt(const struct desc_ptr *desc)
783 {
784         static DEFINE_SPINLOCK(lock);
785         static struct trap_info traps[257];
786
787         trace_xen_cpu_load_idt(desc);
788
789         spin_lock(&lock);
790
791         __get_cpu_var(idt_desc) = *desc;
792
793         xen_convert_trap_info(desc, traps);
794
795         xen_mc_flush();
796         if (HYPERVISOR_set_trap_table(traps))
797                 BUG();
798
799         spin_unlock(&lock);
800 }
801
802 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
803    they're handled differently. */
804 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
805                                 const void *desc, int type)
806 {
807         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
808
809         preempt_disable();
810
811         switch (type) {
812         case DESC_LDT:
813         case DESC_TSS:
814                 /* ignore */
815                 break;
816
817         default: {
818                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
819
820                 xen_mc_flush();
821                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
822                         BUG();
823         }
824
825         }
826
827         preempt_enable();
828 }
829
830 /*
831  * Version of write_gdt_entry for use at early boot-time needed to
832  * update an entry as simply as possible.
833  */
834 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
835                                             const void *desc, int type)
836 {
837         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
838
839         switch (type) {
840         case DESC_LDT:
841         case DESC_TSS:
842                 /* ignore */
843                 break;
844
845         default: {
846                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
847
848                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
849                         dt[entry] = *(struct desc_struct *)desc;
850         }
851
852         }
853 }
854
855 static void xen_load_sp0(struct tss_struct *tss,
856                          struct thread_struct *thread)
857 {
858         struct multicall_space mcs;
859
860         mcs = xen_mc_entry(0);
861         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
862         xen_mc_issue(PARAVIRT_LAZY_CPU);
863 }
864
865 static void xen_set_iopl_mask(unsigned mask)
866 {
867         struct physdev_set_iopl set_iopl;
868
869         /* Force the change at ring 0. */
870         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
871         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
872 }
873
874 static void xen_io_delay(void)
875 {
876 }
877
878 #ifdef CONFIG_X86_LOCAL_APIC
879 static unsigned long xen_set_apic_id(unsigned int x)
880 {
881         WARN_ON(1);
882         return x;
883 }
884 static unsigned int xen_get_apic_id(unsigned long x)
885 {
886         return ((x)>>24) & 0xFFu;
887 }
888 static u32 xen_apic_read(u32 reg)
889 {
890         struct xen_platform_op op = {
891                 .cmd = XENPF_get_cpuinfo,
892                 .interface_version = XENPF_INTERFACE_VERSION,
893                 .u.pcpu_info.xen_cpuid = 0,
894         };
895         int ret = 0;
896
897         /* Shouldn't need this as APIC is turned off for PV, and we only
898          * get called on the bootup processor. But just in case. */
899         if (!xen_initial_domain() || smp_processor_id())
900                 return 0;
901
902         if (reg == APIC_LVR)
903                 return 0x10;
904
905         if (reg != APIC_ID)
906                 return 0;
907
908         ret = HYPERVISOR_dom0_op(&op);
909         if (ret)
910                 return 0;
911
912         return op.u.pcpu_info.apic_id << 24;
913 }
914
915 static void xen_apic_write(u32 reg, u32 val)
916 {
917         /* Warn to see if there's any stray references */
918         WARN_ON(1);
919 }
920
921 static u64 xen_apic_icr_read(void)
922 {
923         return 0;
924 }
925
926 static void xen_apic_icr_write(u32 low, u32 id)
927 {
928         /* Warn to see if there's any stray references */
929         WARN_ON(1);
930 }
931
932 static void xen_apic_wait_icr_idle(void)
933 {
934         return;
935 }
936
937 static u32 xen_safe_apic_wait_icr_idle(void)
938 {
939         return 0;
940 }
941
942 static void set_xen_basic_apic_ops(void)
943 {
944         apic->read = xen_apic_read;
945         apic->write = xen_apic_write;
946         apic->icr_read = xen_apic_icr_read;
947         apic->icr_write = xen_apic_icr_write;
948         apic->wait_icr_idle = xen_apic_wait_icr_idle;
949         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
950         apic->set_apic_id = xen_set_apic_id;
951         apic->get_apic_id = xen_get_apic_id;
952
953 #ifdef CONFIG_SMP
954         apic->send_IPI_allbutself = xen_send_IPI_allbutself;
955         apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
956         apic->send_IPI_mask = xen_send_IPI_mask;
957         apic->send_IPI_all = xen_send_IPI_all;
958         apic->send_IPI_self = xen_send_IPI_self;
959 #endif
960 }
961
962 #endif
963
964 static void xen_clts(void)
965 {
966         struct multicall_space mcs;
967
968         mcs = xen_mc_entry(0);
969
970         MULTI_fpu_taskswitch(mcs.mc, 0);
971
972         xen_mc_issue(PARAVIRT_LAZY_CPU);
973 }
974
975 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
976
977 static unsigned long xen_read_cr0(void)
978 {
979         unsigned long cr0 = this_cpu_read(xen_cr0_value);
980
981         if (unlikely(cr0 == 0)) {
982                 cr0 = native_read_cr0();
983                 this_cpu_write(xen_cr0_value, cr0);
984         }
985
986         return cr0;
987 }
988
989 static void xen_write_cr0(unsigned long cr0)
990 {
991         struct multicall_space mcs;
992
993         this_cpu_write(xen_cr0_value, cr0);
994
995         /* Only pay attention to cr0.TS; everything else is
996            ignored. */
997         mcs = xen_mc_entry(0);
998
999         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1000
1001         xen_mc_issue(PARAVIRT_LAZY_CPU);
1002 }
1003
1004 static void xen_write_cr4(unsigned long cr4)
1005 {
1006         cr4 &= ~X86_CR4_PGE;
1007         cr4 &= ~X86_CR4_PSE;
1008
1009         native_write_cr4(cr4);
1010 }
1011 #ifdef CONFIG_X86_64
1012 static inline unsigned long xen_read_cr8(void)
1013 {
1014         return 0;
1015 }
1016 static inline void xen_write_cr8(unsigned long val)
1017 {
1018         BUG_ON(val);
1019 }
1020 #endif
1021 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1022 {
1023         int ret;
1024
1025         ret = 0;
1026
1027         switch (msr) {
1028 #ifdef CONFIG_X86_64
1029                 unsigned which;
1030                 u64 base;
1031
1032         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1033         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1034         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1035
1036         set:
1037                 base = ((u64)high << 32) | low;
1038                 if (HYPERVISOR_set_segment_base(which, base) != 0)
1039                         ret = -EIO;
1040                 break;
1041 #endif
1042
1043         case MSR_STAR:
1044         case MSR_CSTAR:
1045         case MSR_LSTAR:
1046         case MSR_SYSCALL_MASK:
1047         case MSR_IA32_SYSENTER_CS:
1048         case MSR_IA32_SYSENTER_ESP:
1049         case MSR_IA32_SYSENTER_EIP:
1050                 /* Fast syscall setup is all done in hypercalls, so
1051                    these are all ignored.  Stub them out here to stop
1052                    Xen console noise. */
1053                 break;
1054
1055         case MSR_IA32_CR_PAT:
1056                 if (smp_processor_id() == 0)
1057                         xen_set_pat(((u64)high << 32) | low);
1058                 break;
1059
1060         default:
1061                 ret = native_write_msr_safe(msr, low, high);
1062         }
1063
1064         return ret;
1065 }
1066
1067 void xen_setup_shared_info(void)
1068 {
1069         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1070                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1071                            xen_start_info->shared_info);
1072
1073                 HYPERVISOR_shared_info =
1074                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1075         } else
1076                 HYPERVISOR_shared_info =
1077                         (struct shared_info *)__va(xen_start_info->shared_info);
1078
1079 #ifndef CONFIG_SMP
1080         /* In UP this is as good a place as any to set up shared info */
1081         xen_setup_vcpu_info_placement();
1082 #endif
1083
1084         xen_setup_mfn_list_list();
1085 }
1086
1087 /* This is called once we have the cpu_possible_mask */
1088 void xen_setup_vcpu_info_placement(void)
1089 {
1090         int cpu;
1091
1092         for_each_possible_cpu(cpu)
1093                 xen_vcpu_setup(cpu);
1094
1095         /* xen_vcpu_setup managed to place the vcpu_info within the
1096            percpu area for all cpus, so make use of it */
1097         if (have_vcpu_info_placement) {
1098                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1099                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1100                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1101                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1102                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1103         }
1104 }
1105
1106 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1107                           unsigned long addr, unsigned len)
1108 {
1109         char *start, *end, *reloc;
1110         unsigned ret;
1111
1112         start = end = reloc = NULL;
1113
1114 #define SITE(op, x)                                                     \
1115         case PARAVIRT_PATCH(op.x):                                      \
1116         if (have_vcpu_info_placement) {                                 \
1117                 start = (char *)xen_##x##_direct;                       \
1118                 end = xen_##x##_direct_end;                             \
1119                 reloc = xen_##x##_direct_reloc;                         \
1120         }                                                               \
1121         goto patch_site
1122
1123         switch (type) {
1124                 SITE(pv_irq_ops, irq_enable);
1125                 SITE(pv_irq_ops, irq_disable);
1126                 SITE(pv_irq_ops, save_fl);
1127                 SITE(pv_irq_ops, restore_fl);
1128 #undef SITE
1129
1130         patch_site:
1131                 if (start == NULL || (end-start) > len)
1132                         goto default_patch;
1133
1134                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1135
1136                 /* Note: because reloc is assigned from something that
1137                    appears to be an array, gcc assumes it's non-null,
1138                    but doesn't know its relationship with start and
1139                    end. */
1140                 if (reloc > start && reloc < end) {
1141                         int reloc_off = reloc - start;
1142                         long *relocp = (long *)(insnbuf + reloc_off);
1143                         long delta = start - (char *)addr;
1144
1145                         *relocp += delta;
1146                 }
1147                 break;
1148
1149         default_patch:
1150         default:
1151                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1152                                              addr, len);
1153                 break;
1154         }
1155
1156         return ret;
1157 }
1158
1159 static const struct pv_info xen_info __initconst = {
1160         .paravirt_enabled = 1,
1161         .shared_kernel_pmd = 0,
1162
1163 #ifdef CONFIG_X86_64
1164         .extra_user_64bit_cs = FLAT_USER_CS64,
1165 #endif
1166
1167         .name = "Xen",
1168 };
1169
1170 static const struct pv_init_ops xen_init_ops __initconst = {
1171         .patch = xen_patch,
1172 };
1173
1174 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1175         .cpuid = xen_cpuid,
1176
1177         .set_debugreg = xen_set_debugreg,
1178         .get_debugreg = xen_get_debugreg,
1179
1180         .clts = xen_clts,
1181
1182         .read_cr0 = xen_read_cr0,
1183         .write_cr0 = xen_write_cr0,
1184
1185         .read_cr4 = native_read_cr4,
1186         .read_cr4_safe = native_read_cr4_safe,
1187         .write_cr4 = xen_write_cr4,
1188
1189 #ifdef CONFIG_X86_64
1190         .read_cr8 = xen_read_cr8,
1191         .write_cr8 = xen_write_cr8,
1192 #endif
1193
1194         .wbinvd = native_wbinvd,
1195
1196         .read_msr = native_read_msr_safe,
1197         .write_msr = xen_write_msr_safe,
1198
1199         .read_tsc = native_read_tsc,
1200         .read_pmc = native_read_pmc,
1201
1202         .read_tscp = native_read_tscp,
1203
1204         .iret = xen_iret,
1205         .irq_enable_sysexit = xen_sysexit,
1206 #ifdef CONFIG_X86_64
1207         .usergs_sysret32 = xen_sysret32,
1208         .usergs_sysret64 = xen_sysret64,
1209 #endif
1210
1211         .load_tr_desc = paravirt_nop,
1212         .set_ldt = xen_set_ldt,
1213         .load_gdt = xen_load_gdt,
1214         .load_idt = xen_load_idt,
1215         .load_tls = xen_load_tls,
1216 #ifdef CONFIG_X86_64
1217         .load_gs_index = xen_load_gs_index,
1218 #endif
1219
1220         .alloc_ldt = xen_alloc_ldt,
1221         .free_ldt = xen_free_ldt,
1222
1223         .store_gdt = native_store_gdt,
1224         .store_idt = native_store_idt,
1225         .store_tr = xen_store_tr,
1226
1227         .write_ldt_entry = xen_write_ldt_entry,
1228         .write_gdt_entry = xen_write_gdt_entry,
1229         .write_idt_entry = xen_write_idt_entry,
1230         .load_sp0 = xen_load_sp0,
1231
1232         .set_iopl_mask = xen_set_iopl_mask,
1233         .io_delay = xen_io_delay,
1234
1235         /* Xen takes care of %gs when switching to usermode for us */
1236         .swapgs = paravirt_nop,
1237
1238         .start_context_switch = paravirt_start_context_switch,
1239         .end_context_switch = xen_end_context_switch,
1240 };
1241
1242 static const struct pv_apic_ops xen_apic_ops __initconst = {
1243 #ifdef CONFIG_X86_LOCAL_APIC
1244         .startup_ipi_hook = paravirt_nop,
1245 #endif
1246 };
1247
1248 static void xen_reboot(int reason)
1249 {
1250         struct sched_shutdown r = { .reason = reason };
1251
1252         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1253                 BUG();
1254 }
1255
1256 static void xen_restart(char *msg)
1257 {
1258         xen_reboot(SHUTDOWN_reboot);
1259 }
1260
1261 static void xen_emergency_restart(void)
1262 {
1263         xen_reboot(SHUTDOWN_reboot);
1264 }
1265
1266 static void xen_machine_halt(void)
1267 {
1268         xen_reboot(SHUTDOWN_poweroff);
1269 }
1270
1271 static void xen_machine_power_off(void)
1272 {
1273         if (pm_power_off)
1274                 pm_power_off();
1275         xen_reboot(SHUTDOWN_poweroff);
1276 }
1277
1278 static void xen_crash_shutdown(struct pt_regs *regs)
1279 {
1280         xen_reboot(SHUTDOWN_crash);
1281 }
1282
1283 static int
1284 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1285 {
1286         xen_reboot(SHUTDOWN_crash);
1287         return NOTIFY_DONE;
1288 }
1289
1290 static struct notifier_block xen_panic_block = {
1291         .notifier_call= xen_panic_event,
1292 };
1293
1294 int xen_panic_handler_init(void)
1295 {
1296         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1297         return 0;
1298 }
1299
1300 static const struct machine_ops xen_machine_ops __initconst = {
1301         .restart = xen_restart,
1302         .halt = xen_machine_halt,
1303         .power_off = xen_machine_power_off,
1304         .shutdown = xen_machine_halt,
1305         .crash_shutdown = xen_crash_shutdown,
1306         .emergency_restart = xen_emergency_restart,
1307 };
1308
1309 /*
1310  * Set up the GDT and segment registers for -fstack-protector.  Until
1311  * we do this, we have to be careful not to call any stack-protected
1312  * function, which is most of the kernel.
1313  */
1314 static void __init xen_setup_stackprotector(void)
1315 {
1316         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1317         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1318
1319         setup_stack_canary_segment(0);
1320         switch_to_new_gdt(0);
1321
1322         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1323         pv_cpu_ops.load_gdt = xen_load_gdt;
1324 }
1325
1326 /* First C function to be called on Xen boot */
1327 asmlinkage void __init xen_start_kernel(void)
1328 {
1329         struct physdev_set_iopl set_iopl;
1330         int rc;
1331
1332         if (!xen_start_info)
1333                 return;
1334
1335         xen_domain_type = XEN_PV_DOMAIN;
1336
1337         xen_setup_machphys_mapping();
1338
1339         /* Install Xen paravirt ops */
1340         pv_info = xen_info;
1341         pv_init_ops = xen_init_ops;
1342         pv_cpu_ops = xen_cpu_ops;
1343         pv_apic_ops = xen_apic_ops;
1344
1345         x86_init.resources.memory_setup = xen_memory_setup;
1346         x86_init.oem.arch_setup = xen_arch_setup;
1347         x86_init.oem.banner = xen_banner;
1348
1349         xen_init_time_ops();
1350
1351         /*
1352          * Set up some pagetable state before starting to set any ptes.
1353          */
1354
1355         xen_init_mmu_ops();
1356
1357         /* Prevent unwanted bits from being set in PTEs. */
1358         __supported_pte_mask &= ~_PAGE_GLOBAL;
1359 #if 0
1360         if (!xen_initial_domain())
1361 #endif
1362                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1363
1364         __supported_pte_mask |= _PAGE_IOMAP;
1365
1366         /*
1367          * Prevent page tables from being allocated in highmem, even
1368          * if CONFIG_HIGHPTE is enabled.
1369          */
1370         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1371
1372         /* Work out if we support NX */
1373         x86_configure_nx();
1374
1375         xen_setup_features();
1376
1377         /* Get mfn list */
1378         if (!xen_feature(XENFEAT_auto_translated_physmap))
1379                 xen_build_dynamic_phys_to_machine();
1380
1381         /*
1382          * Set up kernel GDT and segment registers, mainly so that
1383          * -fstack-protector code can be executed.
1384          */
1385         xen_setup_stackprotector();
1386
1387         xen_init_irq_ops();
1388         xen_init_cpuid_mask();
1389
1390 #ifdef CONFIG_X86_LOCAL_APIC
1391         /*
1392          * set up the basic apic ops.
1393          */
1394         set_xen_basic_apic_ops();
1395 #endif
1396
1397         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1398                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1399                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1400         }
1401
1402         machine_ops = xen_machine_ops;
1403
1404         /*
1405          * The only reliable way to retain the initial address of the
1406          * percpu gdt_page is to remember it here, so we can go and
1407          * mark it RW later, when the initial percpu area is freed.
1408          */
1409         xen_initial_gdt = &per_cpu(gdt_page, 0);
1410
1411         xen_smp_init();
1412
1413 #ifdef CONFIG_ACPI_NUMA
1414         /*
1415          * The pages we from Xen are not related to machine pages, so
1416          * any NUMA information the kernel tries to get from ACPI will
1417          * be meaningless.  Prevent it from trying.
1418          */
1419         acpi_numa = -1;
1420 #endif
1421 #ifdef CONFIG_X86_PAT
1422         /*
1423          * For right now disable the PAT. We should remove this once
1424          * git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
1425          * (xen/pat: Disable PAT support for now) is reverted.
1426          */
1427         pat_enabled = 0;
1428 #endif
1429         /* Don't do the full vcpu_info placement stuff until we have a
1430            possible map and a non-dummy shared_info. */
1431         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1432
1433         local_irq_disable();
1434         early_boot_irqs_disabled = true;
1435
1436         xen_raw_console_write("mapping kernel into physical memory\n");
1437         xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
1438
1439         /* Allocate and initialize top and mid mfn levels for p2m structure */
1440         xen_build_mfn_list_list();
1441
1442         /* keep using Xen gdt for now; no urgent need to change it */
1443
1444 #ifdef CONFIG_X86_32
1445         pv_info.kernel_rpl = 1;
1446         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1447                 pv_info.kernel_rpl = 0;
1448 #else
1449         pv_info.kernel_rpl = 0;
1450 #endif
1451         /* set the limit of our address space */
1452         xen_reserve_top();
1453
1454         /* We used to do this in xen_arch_setup, but that is too late on AMD
1455          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1456          * which pokes 0xcf8 port.
1457          */
1458         set_iopl.iopl = 1;
1459         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1460         if (rc != 0)
1461                 xen_raw_printk("physdev_op failed %d\n", rc);
1462
1463 #ifdef CONFIG_X86_32
1464         /* set up basic CPUID stuff */
1465         cpu_detect(&new_cpu_data);
1466         new_cpu_data.hard_math = 1;
1467         new_cpu_data.wp_works_ok = 1;
1468         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1469 #endif
1470
1471         /* Poke various useful things into boot_params */
1472         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1473         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1474                 ? __pa(xen_start_info->mod_start) : 0;
1475         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1476         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1477
1478         if (!xen_initial_domain()) {
1479                 add_preferred_console("xenboot", 0, NULL);
1480                 add_preferred_console("tty", 0, NULL);
1481                 add_preferred_console("hvc", 0, NULL);
1482                 if (pci_xen)
1483                         x86_init.pci.arch_init = pci_xen_init;
1484         } else {
1485                 const struct dom0_vga_console_info *info =
1486                         (void *)((char *)xen_start_info +
1487                                  xen_start_info->console.dom0.info_off);
1488                 struct xen_platform_op op = {
1489                         .cmd = XENPF_firmware_info,
1490                         .interface_version = XENPF_INTERFACE_VERSION,
1491                         .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1492                 };
1493
1494                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1495                 xen_start_info->console.domU.mfn = 0;
1496                 xen_start_info->console.domU.evtchn = 0;
1497
1498                 if (HYPERVISOR_dom0_op(&op) == 0)
1499                         boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1500
1501                 xen_init_apic();
1502
1503                 /* Make sure ACS will be enabled */
1504                 pci_request_acs();
1505
1506                 xen_acpi_sleep_register();
1507
1508                 /* Avoid searching for BIOS MP tables */
1509                 x86_init.mpparse.find_smp_config = x86_init_noop;
1510                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1511         }
1512 #ifdef CONFIG_PCI
1513         /* PCI BIOS service won't work from a PV guest. */
1514         pci_probe &= ~PCI_PROBE_BIOS;
1515 #endif
1516         xen_raw_console_write("about to get started...\n");
1517
1518         xen_setup_runstate_info(0);
1519
1520         /* Start the world */
1521 #ifdef CONFIG_X86_32
1522         i386_start_kernel();
1523 #else
1524         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1525 #endif
1526 }
1527
1528 void __ref xen_hvm_init_shared_info(void)
1529 {
1530         int cpu;
1531         struct xen_add_to_physmap xatp;
1532         static struct shared_info *shared_info_page = 0;
1533
1534         if (!shared_info_page)
1535                 shared_info_page = (struct shared_info *)
1536                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1537         xatp.domid = DOMID_SELF;
1538         xatp.idx = 0;
1539         xatp.space = XENMAPSPACE_shared_info;
1540         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1541         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1542                 BUG();
1543
1544         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1545
1546         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1547          * page, we use it in the event channel upcall and in some pvclock
1548          * related functions. We don't need the vcpu_info placement
1549          * optimizations because we don't use any pv_mmu or pv_irq op on
1550          * HVM.
1551          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1552          * online but xen_hvm_init_shared_info is run at resume time too and
1553          * in that case multiple vcpus might be online. */
1554         for_each_online_cpu(cpu) {
1555                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1556         }
1557 }
1558
1559 #ifdef CONFIG_XEN_PVHVM
1560 static void __init init_hvm_pv_info(void)
1561 {
1562         int major, minor;
1563         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1564         u64 pfn;
1565
1566         base = xen_cpuid_base();
1567         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1568
1569         major = eax >> 16;
1570         minor = eax & 0xffff;
1571         printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1572
1573         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1574
1575         pfn = __pa(hypercall_page);
1576         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1577
1578         xen_setup_features();
1579
1580         pv_info.name = "Xen HVM";
1581
1582         xen_domain_type = XEN_HVM_DOMAIN;
1583 }
1584
1585 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1586                                     unsigned long action, void *hcpu)
1587 {
1588         int cpu = (long)hcpu;
1589         switch (action) {
1590         case CPU_UP_PREPARE:
1591                 xen_vcpu_setup(cpu);
1592                 if (xen_have_vector_callback)
1593                         xen_init_lock_cpu(cpu);
1594                 break;
1595         default:
1596                 break;
1597         }
1598         return NOTIFY_OK;
1599 }
1600
1601 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1602         .notifier_call  = xen_hvm_cpu_notify,
1603 };
1604
1605 static void __init xen_hvm_guest_init(void)
1606 {
1607         init_hvm_pv_info();
1608
1609         xen_hvm_init_shared_info();
1610
1611         if (xen_feature(XENFEAT_hvm_callback_vector))
1612                 xen_have_vector_callback = 1;
1613         xen_hvm_smp_init();
1614         register_cpu_notifier(&xen_hvm_cpu_notifier);
1615         xen_unplug_emulated_devices();
1616         x86_init.irqs.intr_init = xen_init_IRQ;
1617         xen_hvm_init_time_ops();
1618         xen_hvm_init_mmu_ops();
1619 }
1620
1621 static bool __init xen_hvm_platform(void)
1622 {
1623         if (xen_pv_domain())
1624                 return false;
1625
1626         if (!xen_cpuid_base())
1627                 return false;
1628
1629         return true;
1630 }
1631
1632 bool xen_hvm_need_lapic(void)
1633 {
1634         if (xen_pv_domain())
1635                 return false;
1636         if (!xen_hvm_domain())
1637                 return false;
1638         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1639                 return false;
1640         return true;
1641 }
1642 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1643
1644 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1645         .name                   = "Xen HVM",
1646         .detect                 = xen_hvm_platform,
1647         .init_platform          = xen_hvm_guest_init,
1648         .x2apic_available       = xen_x2apic_para_available,
1649 };
1650 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1651 #endif